WorldWideScience

Sample records for bioethanol conversion inhibitor

  1. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  2. Bioethanol

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Abubackar, H.N.; Veiga, M.C.; Kennes, C.

    2013-01-01

    Production of bioethanol from cellulosic biomass plays an important role to support energy policies. To produce cellulosic ethanol via fermentation it is required to first break the lignocellulosic complex. Numerous technologies for such pretreatment are under development or in a pilot plant stage.

  3. Bioethanol

    International Nuclear Information System (INIS)

    Poitrat, Etienne

    1994-01-01

    Bioethanol or its deriviatives (ethers), are mixed with petrol for use in combustion engines. Suitably adapted diesel or spark ignition engines can be used with pure ethanol. Several years of experience, in the USA (since 1978) and in France, have proved that bioethanol can be added to gasoline up to 5-10% without modification of engines or of their performances. In France, ethyl alcohol or ethanol is obtained mainly by fermentation of farm crops which have a high sugar content (beet) or starch content (cereals, potatoes). In future, it will be possible to obtain ethanol by using the whole plant (wood and straw) and transforming the cellulose and hemicellulose into elementary sugars (C5,C6) by enzymatic hydrolysis. Research work is underway in this field. The ether considered here is ETBE (ethyl-tertio-butyl-ether), obtained from the reaction between isobutylene and ethanol. (author)

  4. Bioethanol.

    Science.gov (United States)

    Gray, Kevin A; Zhao, Lishan; Emptage, Mark

    2006-04-01

    Alternatives to petroleum-derived fuels are being sought in order to reduce the world's dependence on non-renewable resources. The most common renewable fuel today is ethanol derived from corn grain (starch) and sugar cane (sucrose). It is expected that there will be limits to the supply of these raw materials in the near future, therefore lignocellulosic biomass is seen as an attractive feedstock for future supplies of ethanol. However, there are technical and economical impediments to the development of a commercial processes utilizing biomass. Technologies are being developed that will allow cost-effective conversion of biomass into fuels and chemicals. These technologies include low-cost thermochemical pretreatment, highly effective cellulases and hemicellulases and efficient and robust fermentative microorganisms. Many advances have been made over the past few years that make commercialization more promising.

  5. A review of conversion processes for bioethanol production with a focus on syngas fermentation

    Directory of Open Access Journals (Sweden)

    Mamatha Devarapalli

    2015-09-01

    Full Text Available Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosic and algal biomass and technology advancement led to the development of complex biological conversion processes, such as separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, simultaneous saccharification and co-fermentation (SSCF, consolidated bioprocessing (CBP, and syngas fermentation. SHF, SSF, SSCF, and CBP are direct fermentation processes in which biomass feedstocks are pretreated, hydrolyzed and then fermented into ethanol. Conversely, ethanol from syngas fermentation is an indirect fermentation that utilizes gaseous substrates (mixture of CO, CO2 and H2 made from industrial flue gases or gasification of biomass, coal or municipal solid waste. This review article provides an overview of the various biological processes for ethanol production from sugar, lignocellulosic, and algal biomass. This paper also provides a detailed insight on process development, bioreactor design, and advances and future directions in syngas fermentation.

  6. Woody biomass availability for bioethanol conversion in Mississippi

    International Nuclear Information System (INIS)

    Perez-Verdin, Gustavo; Grebner, Donald L.; Sun, Changyou; Munn, Ian A.; Schultz, Emily B.; Matney, Thomas G.

    2009-01-01

    This study evaluated woody biomass from logging residues, small-diameter trees, mill residues, and urban waste as a feedstock for cellulosic ethanol conversion in Mississippi. The focus on Mississippi was to assess in-state regional variations and provide specific information of biomass estimates for those facilities interested in locating in Mississippi. Supply and cost of four woody biomass sources were derived from Forest Inventory Analysis (FIA) information, a recent forest inventory conducted by the Mississippi Institute for Forest Inventory, and primary production costs. According to our analysis, about 4.0 million dry tons of woody biomass are available for production of up to 1.2 billion liters of ethanol each year in Mississippi. The feedstock consists of 69% logging residues, 21% small-diameter trees, 7% urban waste, and 3% mill residues. Of the total, 3.1 million dry tons (930 million liters of ethanol) can be produced for $34 dry ton -1 or less. Woody biomass from small-diameter trees is more expensive than other sources of biomass. Transportation costs accounted for the majority of total production costs. A sensitivity analysis indicates that the largest impacts in production costs of ethanol come from stumpage price of woody biomass and technological efficiency. These results provide a valuable decision support tool for resource managers and industries in identifying parameters that affect resource magnitude, type, and location of woody biomass feedstocks in Mississippi. (author)

  7. Conversion of coffee residue waste into bioethanol with using popping pretreatment.

    Science.gov (United States)

    Choi, In Seong; Wi, Seung Gon; Kim, Su-Bae; Bae, Hyeun-Jong

    2012-12-01

    Coffee residue waste (CRW), which is produced after coffee extraction for coffee powder and instant coffee preparation, is a primary industrial waste. In this study, the use of CRW for bioethanol production was evaluated. The carbohydrate content of CRW was analyzed for fermentable sugars such as glucose, galactose, and mannose, which can be fermented by Saccharomyces cerevisiae. Pretreatment at a pressure of 1.47 MPa for 10 min with popping pretreatment was required to increase enzymatic hydrolysis. CRW was well hydrolyzed following popping pretreatment at 1.47 MPa. The enzymatic conversion rate of CRW to fermentable sugars was 85.6%. Ethanol concentration and yield (based on sugar content) following enzymatic hydrolysis after simultaneous saccharification and fermentation were 15.3g/L and 87.2%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production.

    Science.gov (United States)

    Westman, Johan O; Mapelli, Valeria; Taherzadeh, Mohammad J; Franzén, Carl Johan

    2014-11-01

    Yeast has long been considered the microorganism of choice for second-generation bioethanol production due to its fermentative capacity and ethanol tolerance. However, tolerance toward inhibitors derived from lignocellulosic materials is still an issue. Flocculating yeast strains often perform relatively well in inhibitory media, but inhibitor tolerance has never been clearly linked to the actual flocculation ability per se. In this study, variants of the flocculation gene FLO1 were transformed into the genome of the nonflocculating laboratory yeast strain Saccharomyces cerevisiae CEN.PK 113-7D. Three mutants with distinct differences in flocculation properties were isolated and characterized. The degree of flocculation and hydrophobicity of the cells were correlated to the length of the gene variant. The effect of different strength of flocculation on the fermentation performance of the strains was studied in defined medium with or without fermentation inhibitors, as well as in media based on dilute acid spruce hydrolysate. Strong flocculation aided against the readily convertible inhibitor furfural but not against less convertible inhibitors such as carboxylic acids. During fermentation of dilute acid spruce hydrolysate, the most strongly flocculating mutant with dense cell flocs showed significantly faster sugar consumption. The modified strain with the weakest flocculation showed a hexose consumption profile similar to the untransformed strain. These findings may explain why flocculation has evolved as a stress response and can find application in fermentation-based biorefinery processes on lignocellulosic raw materials. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. The Impact of Bio-Ethanol Conversion and Global Climate Change on Corn Economic Performanve of Indonesia

    OpenAIRE

    Ferrianta, Yudi; Hanani, Nuhfil; Setiawan, Budi; Muhaimin, Wahib

    2012-01-01

    Many studies conclude that the rise in global food prices due to higher demand from the development of biofuels, climate anomalies, and increased of oil prices. Not only the food commodity index rose more than 60 percent, nonfood commodity price index also rose over 60 percent and crude oil price index has increased even further above 60 percent. The purpose of this study is to analyze the impact of bio-ethanol conversion and global climate change on corn economic performance of Indonesia. Th...

  10. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production.

    Science.gov (United States)

    Favaro, Lorenzo; Basaglia, Marina; Trento, Alberto; Van Rensburg, Eugéne; García-Aparicio, Maria; Van Zyl, Willem H; Casella, Sergio

    2013-11-29

    Robust yeasts with high inhibitor, temperature, and osmotic tolerance remain a crucial requirement for the sustainable production of lignocellulosic bioethanol. These stress factors are known to severely hinder culture growth and fermentation performance. Grape marc was selected as an extreme environment to search for innately robust yeasts because of its limited nutrients, exposure to solar radiation, temperature fluctuations, weak acid and ethanol content. Forty newly isolated Saccharomyces cerevisiae strains gave high ethanol yields at 40°C when inoculated in minimal media at high sugar concentrations of up to 200 g/l glucose. In addition, the isolates displayed distinct inhibitor tolerance in defined broth supplemented with increasing levels of single inhibitors or with a cocktail containing several inhibitory compounds. Both the fermentation ability and inhibitor resistance of these strains were greater than those of established industrial and commercial S. cerevisiae yeasts used as control strains in this study. Liquor from steam-pretreated sugarcane bagasse was used as a key selective condition during the isolation of robust yeasts for industrial ethanol production, thus simulating the industrial environment. The isolate Fm17 produced the highest ethanol concentration (43.4 g/l) from the hydrolysate, despite relatively high concentrations of weak acids, furans, and phenolics. This strain also exhibited a significantly greater conversion rate of inhibitory furaldehydes compared with the reference strain S. cerevisiae 27P. To our knowledge, this is the first report describing a strain of S. cerevisiae able to produce an ethanol yield equal to 89% of theoretical maximum yield in the presence of high concentrations of inhibitors from sugarcane bagasse. This study showed that yeasts with high tolerance to multiple stress factors can be obtained from unconventional ecological niches. Grape marc appeared to be an unexplored and promising substrate for the

  11. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol

    Directory of Open Access Journals (Sweden)

    Qusai Al Abdallah

    2016-11-01

    Full Text Available The production of fuels from biomass is categorized as first-, second- or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits, however they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen, the glucose subunits are linked together by α-(1→4 and α-(1→6 glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon are made of glucose subunits that are linked together by β-(1→3 and β-(1→6 glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden-Meyerhof-Parnas pathway or Entner-Doudoroff pathway. Other monosaccharides must be

  12. The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Al Abdallah, Qusai, E-mail: qalabdal@uthsc.edu [Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN (United States); Nixon, B. Tracy [Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA (United States); Fortwendel, Jarrod R. [Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN (United States)

    2016-11-04

    The production of fuels from biomass is categorized as first-, second-, or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits; however, they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen), the glucose subunits are linked together by α-(1→4) and α-(1→6) glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon) are made of glucose subunits that are linked together by β-(1→3) and β-(1→6) glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild-type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden–Meyerhof–Parnas pathway or Entner–Doudoroff pathway. Other monosaccharides must be converted to

  13. The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol

    International Nuclear Information System (INIS)

    Al Abdallah, Qusai; Nixon, B. Tracy; Fortwendel, Jarrod R.

    2016-01-01

    The production of fuels from biomass is categorized as first-, second-, or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits; however, they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen), the glucose subunits are linked together by α-(1→4) and α-(1→6) glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon) are made of glucose subunits that are linked together by β-(1→3) and β-(1→6) glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild-type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden–Meyerhof–Parnas pathway or Entner–Doudoroff pathway. Other monosaccharides must be converted to

  14. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion.

    Science.gov (United States)

    Maas, Ronald Hw; Bakker, Robert R; Boersma, Arjen R; Bisschops, Iemke; Pels, Jan R; de Jong, Ed; Weusthuis, Ruud A; Reith, Hans

    2008-08-12

    The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis).

  15. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    Directory of Open Access Journals (Sweden)

    de Jong Ed

    2008-08-01

    Full Text Available Abstract Introduction The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae. After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52% in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (inorganic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane, whereas the solid fraction functioned as fuel for thermal conversion (combustion, yielding thermal energy, which can be used for heat and power generation. Conclusion Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per

  16. Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485

    Energy Technology Data Exchange (ETDEWEB)

    Dowe, N.

    2014-05-01

    This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

  17. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    Science.gov (United States)

    Endo, Ayako; Nakamura, Toshihide; Ando, Akira; Tokuyasu, Ken; Shima, Jun

    2008-04-15

    Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.

  18. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Tokuyasu Ken

    2008-04-01

    Full Text Available Abstract Background Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. Results Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. Conclusion Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.

  19. Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol

    Science.gov (United States)

    Heredia-Olea, Erick; Pérez-Carrillo, Esther; Serna-Saldívar, Sergio O.

    2015-01-01

    Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw). PMID:25866776

  20. Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol

    Directory of Open Access Journals (Sweden)

    Erick Heredia-Olea

    2015-01-01

    Full Text Available Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw.

  1. Purification of bioethanol effluent in an UASB reactor system with simultaneous biogas formation

    DEFF Research Database (Denmark)

    Torry-Smith, Mads Peter; Sommer, Peter; Ahring, Birgitte Kiær

    2003-01-01

    In this study, the prospect of using an Upflow Anaerobic Sludge Blanket (UASB) reactor for detoxification of process water derived from bioethanol production has been investigated. The bioethanol effluent (BEE) originated from wet oxidized wheat straw fermented by Saccharomyces cerevisiae...... acid, 4-hydroxyacetophenone, and acetovanillone as compared to conversion of the inhibitors as sole substrate in synthetic media. Furthermore, experiments were carried out treating BEE in a laboratory-scale UASB reactor. The results showed a Chemical Oxygen Demand (COD) removal of 80% (w...... of these compounds were removed from the BEE in the reactor. Implementation of a UASB purification step was found to be a promising approach to detoxify process water from bioethanol production allowing for recirculation of the process water and reduced production costs....

  2. Recent trends in bioethanol production

    Directory of Open Access Journals (Sweden)

    Semenčenko Valentina V.

    2011-01-01

    Full Text Available The rapid depletion of the world petroleum supply and the increasing problem of greenhouse gas effects have strenghtened the worldwide interest in alternative, nonpetroleum sources of energy. Bioethanol accounts for the majority of biofuel use worldwide, either as a fuel or a gasoline enhancer. Utilization of bioethanol can significantly reduce petroleum use and exhaust greenhouse gas emission. The production of this fuel is increasing over the years, and has reached the level of 73.9 billion liters during the year 2009. Even though ethanol production for decades mainly depended on energy crops containing starch and sugar (corn, sugar cane etc., new technologies for converting lignocellulosic biomass into ethanol are under development today. The use of lignocellulosic biomass, such as agricultural residues, forest and municipial waste, for the production of biofuels will be unavoidable if liquid fossil fuels are to be replaced by renewable and sustainable alternatives. For biological conversion of lignocellulosic biomass, pretreatment plays a central role affecting all unit operations in the process and is also an important cost deterrent to the comercial viability of the process. The key obstacles are: pretreatment selection and optimization; decreasing the cost of the enzymatic hydrolysis; maximizing the conversion of sugars (including pentoses to ethanol; process scale-up and integration to minimize energy and water demand; characterization and evaluation of the lignin co-product; and lastly, the use of the representative and reliable data for cost estimation, and the determination of environmental and socio-economic impacts. Currently, not all pretreatments are capable of producing biomass that can be converted to sugars in high enough yield and concentration, while being economically viable. For the three main types of feedstocks, the developement of effective continuous fermentation technologies with near to 100% yields and elevated

  3. Bioethanol: State and perspectives

    Directory of Open Access Journals (Sweden)

    Tasić Marija B.

    2006-01-01

    Full Text Available Processes of bioethanol production currently applied all over the world are reviewed in this paper. Attention is focused on potentially cheap biomass sources, as well as the most important operating factors controlling the progress and result of saccharification and fermentation reactions and affecting the yield of fermentable sugars and ethanol, respectively, such as: the type and concentration of acid, the type of enzyme, the type of working microorganism, operating temperature, duration time and pH. The hydrolysis conditions, namely duration time, temperature and sulfuric acid concentration, were combined in a single parameter, known as the "combined severity" (CS, in order to estimate the efficiency of bioethanol production from biomass. When the CS increases, the yield of fermentable sugars also increases. The decrease in the yield of monosaccharides coincides with the maximum concentrations of by-products, such as furfural and 5-hydroxymethylfurfural, which are well-known as yeast inhibitors. The highest ethanol yields has been obtained using the yeast Saccharomyces cerevisiae. With low oil prices and political reluctance to implement carbon taxes, fuel-ethanol production will remain uncompetitive unless some other form of cost reduction can be made, such as feedstock preparation costs.

  4. production of bioethanol from rice straw using yeast extracts ...

    African Journals Online (AJOL)

    user

    The production of bio-ethanol from Rice Straw (Oryza sativa) was carried out using rice straw as a feedstock and a combination of Yeast Extracts Peptone .... ethanol for rice straw bioethanol and for lignocellulosic biomass cellulose and ... The conversion of cellulose biomass to useful substances such as liquid fuels through ...

  5. Bioethanol from lignocellulosics: Status and perspectives in Canada.

    Science.gov (United States)

    Mabee, W E; Saddler, J N

    2010-07-01

    Canada has invested significantly in the development of a domestic bioethanol industry, and it is expected that bioethanol from lignocellulosics will become more desirable to the industry as it expands. Development of the Canadian industry to date is described in this paper, as are examples of domestic research programs focused on both bioconversion and thermochemical conversion to generate biofuels from lignocellulosic biomass. The availability of lignocellulosic residues from agricultural and forestry operations, and the potential biofuel production associated with these residues, is described. The policy tools used to develop the domestic bioethanol industry are explored. A residue-based process could greatly extend the potential of the bioethanol industry in Canada. It is estimated that bioethanol production from residual lignocellulosic feedstocks could provide up to 50% of Canada's 2006 transportation fuel demand, given ideal conversion and full access to these feedstocks. Utilizing lignocellulosic biomass will extend the geographic range of the bioethanol industry, and increase the stability and security of this sector by reducing the impact of localized disruptions in supply. Use of disturbance crops could add 9% to this figure, but not in a sustainable fashion. If pursued aggressively, energy crops ultimately could contribute bioethanol at a volume double that of Canada's gasoline consumption in 2006. This would move Canada towards greater transportation fuel independence and a larger role in the export of bioethanol to the global market. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-01-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO 2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  7. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  8. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  9. PRODUCTION OF BIOETHAN niger UCTION OF BIOETHANOL ...

    African Journals Online (AJOL)

    userpc

    call by government and other organizations fo conversion of waste to wealth. MATERIALS AND METHODS. Collection of Samples. Rice husk (fito rice) was collected from rice processer at Dawanau, Dawakin tofa loc. , November, 2017 urnal of Pure and Applied Sciences: 10(1): 280 - 284. UCTION OF BIOETHANOL FROM ...

  10. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae

    OpenAIRE

    Endo, Ayako; Nakamura, Toshihide; Ando, Akira; Tokuyasu, Ken; Shima, Jun

    2008-01-01

    Abstract Background Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibit...

  11. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  12. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also...... be used as a versatile feedstock in the chemical industry. Currently the production of carbon-containing commodity chemicals is dependent on fossil resources, and more than 95% of these chemicals are produced from non-renewable carbon resources. The question is: what will be the optimal use of bioethanol...

  13. Bioethanol from biomass containing lignocellulose - potential and technologies; Bioethanol aus lignocellulosehaltiger Biomasse - Potenziale und Technologien

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Schieder, D.; Wagner, U.; Staudenbauer, W.; Igelspacher, R.; Schwarz, W.H.; Meyer-Pittroff, R.; Antoni, D. [Technische Univ. Muenchen (Germany); Prechtl, S. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Bauer, W.P.; Kroner, T. [ia GmbH, Wissensmanagement und Ingenieurleistungen, Muenchen (Germany)

    2004-07-01

    The EU biofuels directive and the tax exemption of biogenic fuels have established a new market for bioethanol in the transport sector. Low-cost lignocellulose biomass (LCB) may be an option for broadening the raw materials base for bioethanol production and to meet the increasing demand for biogenic fuels. Appropriate conversion technologies have been the subject of much research worldwide during the past few years. Against this background, the Bavarian State Minister of Agriculture and Forestry initiated a feasibility study on ethanol production by bioconversion in Bavaria. (orig.)

  14. Everolimus as primary immunosuppression in kidney transplantation: experience in conversion from calcineurin inhibitors.

    Science.gov (United States)

    Sánchez-Fructuoso, Ana I; Ruiz, Juan C; Calvo, Natividad; Rodrigo, Emilio; Perez-Flores, Isabel; Gómez-Alamillo, Carlos; Fernández-Pérez, Cristina; Arias, Manuel; Barrientos, Alberto

    2012-02-27

    We analyzed our clinical experience with everolimus (EVL) and identified prognostic factors for a successful conversion. Retrospective study of 220 kidney recipients consecutively converted to EVL with calcineurin inhibitor elimination. We studied risk factors for proteinuria at 1 year after conversion, decline in renal function, and graft survival. Baseline creatinine clearance was 52.4±17.8 mL/min vs. 53.4±20.1 mL/min 1 year after conversion (P=0.150). Median proteinuria increased from 304 mg/day (interquartile range 160-507) to 458 mg/day (interquartile range 238-892; Pproteinuria ≥900 mg/day (P75) at 1-year postconversion were creatinine clearance less than 60 mL/min (odds ratio [OR] 3.37; 95% confidence interval [CI]: 1.15-9.89), serum triglycerides ≥150 mg/day (OR 4.35; 95% CI: 1.70-11.17), no treatment with prednisone (OR 3.04; 95% CI: 1.22-7.59), baseline proteinuria ≥550 mg/day (OR 10.37; 95% CI: 3.99-26.99), and conversion ≥3 years after transplant (OR 5.77; 95% CI: 1.89-17.59). An interaction was observed between baseline proteinuria and time to conversion: in patients with baseline proteinuria ≥550 mg/day, the risk of developing proteinuria ≥900 mg/day was 77.1% if they were converted after ≥3 years posttransplant. However, this risk was 29.8% in the subgroup converted before (P=0.02). Actuarial graft survival at 1 and 4 years postconversion was 98.2% and 86.5%, respectively. Baseline proteinuria ≥550 mg/day was a risk factor for graft loss in patients converted after the third year but not in patients converted before this time. EVL discontinuation rate was 24% in the first year postconversion. Conversion to EVL and elimination of calcineurin inhibitors is safe. Success depends on not making late conversions and not converting patients with high baseline proteinuria.

  15. Effect of wheat gluten proteins on bioethanol yield from grain

    Energy Technology Data Exchange (ETDEWEB)

    Buresova, Iva [Agrotest Fyto, Ltd., Havlickova 2787/121, 767 01 Kromeriz (Czech Republic); Hrivna, Ludek [Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-04-15

    Bioethanol can be used as motor fuel and/or as a gasoline enhancer. A high yield feedstock for bioethanol production is cereal grain. Cereal grains containing less gluten proteins (glutenin and gliadin), but high starch, are favoured by distillers because they increase the bioethanol conversion. The direct effect of wheat gluten proteins on bioethanol yield was studied on triticale grain. Examined triticale Presto 1R.1D{sub 5+10}-2 and Presto Valdy were developed by introducing selected segments of wheat chromosome 1D into triticale chromosome 1R. Even if the samples analysed in this study do not afford to make definitive assumptions, it can be noticed that in analysed cases the presence of gliadin had more significant effect on investigated parameters than the presence of glutenin. Despite the presence of glutenin subunits did not significantly decrease the investigated parameters - specific weight, Hagberg falling number and starch content in grain met the requirements for grain for bioethanol production - protein content was higher than is optimal. The fermentation experiments demonstrated good bioethanol yields but depression in grain yields caused by the presence of wheat gliadin and glutenin decreased the energy balance of Presto Valdy and Presto 1R.1D{sub 5+10}-2. (author)

  16. Preliminary experience with conversion from calcineurin inhibitors to everolimus in cardiac transplantation maintenance therapy.

    Science.gov (United States)

    Sánchez-Brotons, J A; Sobrino-Márquez, J M; Lage-Gallé, E; Romero-Rodriguez, N; Guisado, A; Jiménez-Díaz, J; Benezet-Mazuecos, J; Arizón-Muñoz, J M; Mogollón, M V; Martínez, A

    2008-11-01

    Everolimus has been prescribed both for initial and maintenance therapy after cardiac transplantation. Herein, we present our initial experience with everolimus as maintenance therapy after cardiac transplantation. We retrospectively included all of our patients in whom therapy was changed from calcineurin inhibitors to everolimus between September 2006 and October 2007. We analyzed their baseline clinical characteristics, indications for conversion to everolimus therapy, and beneficial vs adverse effects of the maneuver. In 16 heart transplant recipients, therapy was changed to everolimus because of allograft vasculopathy (n = 8), renal failure (n = 4), or sirolimus toxicity (n = 4). Treatment with everolimus was initiated at a mean (SD) of 79.8 (52.7) months (range, 10-163 mo) after transplantation. The initial dose was 1.4 (0.2) mg (range, 1.0-1.5 mg), and the maintenance dose was 1 (0.31) mg (range, 0.5-1.5 mg). Follow-up was 7.28 (3.22) months (range, 0.5-13 mo). Observed side effects included hypertriglyceridemia, hypertension, and edema. Only 1 of 4 patients included because of sirolimus intolerance did not tolerate everolimus; renal dysfunction did not worsen in any of these 4 patients. No allograft vasculopathy was observed. Renal function seem to stabilize after conversion to everolimus therapy in patients with previous progressive dysfunction. The safety profile was proved in all patients, although conclusions cannot be established about the evolution of allograft vasculopathy.

  17. Bioethanol productions from rice polish by optimization of dilute acid ...

    African Journals Online (AJOL)

    Lignocellulose materials are abundant renewable resource for the production of biofuel from fermentative organism (Sacchromyces cervesiae). Rice polish is cheapest and abundant lignocelluloses resource and has potential to produce bioethanol. The main steps for the conversion of biomass into glucose required dilute ...

  18. Direct bioethanol production by amylolytic yeast Candida albicans.

    Science.gov (United States)

    Aruna, A; Nagavalli, M; Girijashankar, V; Ponamgi, S P D; Swathisree, V; Rao, L Venkateswar

    2015-03-01

    An attempt was made to produce bioethanol using optimized fermentation parameters and mutationally improved strain of Candida albicans. The mutant strain OMC3E6 obtained by UV irradiation followed by ethidium bromide successive mutations showed 2.6 times more glucoamylase secretion and 1.5 times more bioethanol production via direct conversion of starch. Enhanced hydrolysis of insoluble starch (72%) and potato starch (70%) was achieved with glucoamylase enzyme preparation from mutant C. albicans. In fermentation medium, the use of maltose, corn steep liquor, NaH2 PO4 , NaCl + MgSO4 and Triton X-100 has increased the glucoamylase production by the microbe. Under optimized conditions, C. albicans eventually produced 437 g ethanol kg(-1) potatoes. Earlier reports mentioned the use of thrice the quantity of starch as reported by us followed by more fermentation period (3-4 days) and demanded pretreatment of starch sources with alpha-amylase as well. Here, we simplified these three steps and obtained 73% conversion of insoluble starch into ethanol via direct conversion method in a period of 2 days without the involvement of cell immobilizations or enzyme pretreatment steps. Due to fast depletion of fossil fuels in the modern world, bioethanol usage as an alternate energy source is the need of the hour. For the first time, we report bioethanol production by Candida albicans via direct conversion of starchy biomass into ethanol along with enhanced starch-hydrolysing capacity and ethanol conversion ratio. So far, C. albicans was dealt in the field of clinical pathology, but here we successfully employed this organism to produce bioethanol from starchy agri-substrates. Optimizing fermentation parameters and improving the microbial strains through successive mutagenesis can improve the end product yield. © 2014 The Society for Applied Microbiology.

  19. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.

    Science.gov (United States)

    Moreno, Antonio D; Ibarra, David; Alvira, Pablo; Tomás-Pejó, Elia; Ballesteros, Mercedes

    2015-01-01

    Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.

  20. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X.

    2012-01-15

    involved in furfural and 5-hydroxymethylfurfural (HMF) reductions by this yeast have both cofactor preferences for NADH. Due to the low inhibitor tolerance, the growth of S. passalidarum was completely inhibited in the liquid fraction of pretreated corn stover and wheat straw. The inhibitor tolerance of S. passalidarum was improved by the method of genome shuffling including UV mutagenesis and protoplast fusion. The protoplast of a UV-induced furfural-resistant mutant of S. passalidarum (S. passalidarum M7) was fused with the protoplast of a robust yeast S. cerevisiae ATCC 96581. The finally selected hybrid strain (FS22) has desired phenotypes derived from both parents, namely the ability to ferment xylose from S. passalidarum and an increased tolerance to inhibitors from S. cerevisiae ATCC 96581. Phenotypic and molecular analysis indicated that S. passalidarum M7 was the dominant parental contributor to the hybrid. Rearrangement of DNA segments from the other parental strain S. cerevisiae ATCC 96581 possibly occurred in FS22. The inhibitor tolerance of the robust yeast S. cerevisiae ATCC 96581 was further improved by sequentially adapting this strain into media with increasing amounts of the liquid fraction of pretreated corn stover (CSLQ). The adapted strain completely fermented glucose in 100% CSLQ and the ethanol yield was 0.48 g/g glucose, while the parental strain was unable to ferment under this condition. Co-fermentation of this adapted strain with the selected protoplast fused hybrids (FS2 or FS22) in the pretreated wheat straw hydrolysate improved the final ethanol yield by 11% and 26%, respectively, due to partial conversion of xylose in the hydrolysate by the xylose-fermenting hybrids. Co-fermentation with one robust C6 fermenting yeast for detoxification and one C5 fermenting yeast for converting xylose into ethanol could be a viable strategy for lignocellulosic bioethanol production. (Author)

  1. Long-term results of conversion from calcineurin inhibitors to sirolimus in 150 maintenance kidney transplant patients.

    Science.gov (United States)

    Garrouste, Cyril; Kamar, Nassim; Guilbeau-Frugier, Céline; Guitard, Joëlle; Esposito, Laure; Lavayssière, Laurence; Nogier, Marie-Béatrice; Cointault, Olivier; Ribes, David; Rostaing, Lionel

    2012-04-01

    This retrospective single-center study evaluated long-term renal function after conversion from calcineurin inhibitors to sirolimus-based immunosuppression in kidney transplant recipients. From 2001 to 2009, one hundred fifty kidney transplant recipients were converted from calcineurin inhibitors to sirolimus at least 3 months after transplant. After a mean follow-up of 171 weeks, 56.7% of converted patients remained on sirolimus. The 5-year survival rate of the patients (including intent-to-treat) and grafts was 85.5% and 83.6%. Patients on sirolimus showed significant improvement in renal function with a creatinine clearance of 50.9 ± 20.7 and 52.9 ± 20.8 mL/minute at month 0 and month 24. Independent predictive factors associated with a stable estimated glomerular filtration rate at the last follow-up of sirolimus patients were (1) having a living donor, (2) absence of anti-HLA alloantibodies at month 0, and (3) cyclosporine versus tacrolimus used before conversion. Adverse effects were reported in 134 patients (89.3%). They included (1) hospitalization for infection (n=52), (2) de novo proteinuria (n=40), and (3) eight patients with biopsy-proven acute rejection. Sirolimus was stopped and replaced by calcineurin inhibitors in 37 patients after a mean of 16 months treatment. After stopping sirolimus, renal-allograft function remained stable at 2 years. Conversion of calcineurin inhibitors to sirolimus in kidney transplant recipients was associated with improved renal function. The reintroduction of calcineurin inhibitors was safe in patients who were withdrawn from sirolimus owing to adverse effects.

  2. New Estimates of Land Use Intensity of Potential Bioethanol Production in the U.S.A.

    Science.gov (United States)

    Kheshgi, H. S.; Song, Y.; Torkamani, S.; Jain, A. K.

    2016-12-01

    We estimate potential bioethanol land use intensity (the inverse of potential bioethanol yield per hectare) across the United States by modeling crop yields and conversion to bioethanol (via a fermentation pathway), based on crop field studies and conversion technology analyses. We apply the process-based land surface model, the Integrated Science Assessment model (ISAM), to estimate the potential yield of four crops - corn, Miscanthus, and two variants of switchgrass (Cave-in-Rock and Alamo) - across the U.S.A. landscape for the 14-year period from 1999 through 2012, for the case with fertilizer application but without irrigation. We estimate bioethanol yield based on recent experience for corn bioethanol production from corn kernel, and current cellulosic bioethanol process design specifications under the assumption of the maximum practical harvest fraction for the energy grasses (Miscanthus and switchgrasses) and a moderate (30%) harvest fraction of corn stover. We find that each of four crops included has regions where that crop is estimated to have the lowest land use intensity (highest potential bioethanol yield per hectare). We find that minimizing potential land use intensity by including both corn and the energy grasses only improves incrementally to that of corn (using both harvested kernel and stover for bioethanol). Bioethanol land use intensity is one fundamental factor influencing the desirability of biofuels, but is not the only one; others factors include economics, competition with food production and land use, water and climate, nitrogen runoff, life-cycle emissions, and the pace of crop and technology improvement into the future.

  3. Bioethanol production: Pretreatment and enzymatic hydrolysis of softwood

    Energy Technology Data Exchange (ETDEWEB)

    Tengborg, Charlotte

    2000-05-01

    The enzymatic hydrolysis process can be used to produce bioethanol from softwood, which are the dominating raw material in the Northern hemisphere. This thesis deals with the development of the process focusing on the pretreatment and the enzymatic hydrolysis stages. The influence of pretreatment conditions on sugar yield, and the effect of inhibitors on the ethanol yield, were investigated for spruce and pine. The maximum yields of hemicellulose sugars and glucose were obtained under different pretreatment conditions. This indicates that two-stage pretreatment may be preferable. The added catalysts, H{sub 2}SO{sub 4} and SO{sub 2}, resulted in similar total sugar yields about 40 g/100 g dry raw material. However, the fermentability of SO{sub 2}-impregnated material was better. This pretreatment resulted in the formation of inhibitors to the subsequent process steps, e.g. sugar and lignin degradation products. The glucose yield in the enzymatic hydrolysis stage was affected by various parameters such as enzyme loading, temperature, pH, residence time, substrate concentration, and agitation. To decrease the amount of fresh water used and thereby waste water produced, the sugar-rich prehydrolysate from the pretreatment step was included in the enzymatic hydrolysis of the solid fraction, resulting in a reduction in the cellulose conversion of up to 36%. Different prehydrolysate detoxification methods, such as treatment with Ca(OH){sub 2}, laccase, and fermentation using yeast, were investigated. The latter was shown to be very efficient. The amount of fresh water used can be further reduced by recycling various process streams. This was simulated experimentally in a bench-scale process. A reduction in fresh water demand of 50% was obtained without any further negative effects on either hydrolysis or fermentation.

  4. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    30% of the fossil fuel consumption, and including economic aspects it is much less. Moreover, an economic analysis shows that biomass will not be able compete in a liberal fuel market, i.e. we will need to subsidise it in one way or the other - and money is a limited resource as well. Therefore......, there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  5. Bio-Ethanol Production from Poultry Manure

    African Journals Online (AJOL)

    john

    ethanol. Fuel ethanol is known as bio-ethanol, since it is produced from plant materials by biological processes. Bioethanol is mainly produced by fermentation of sugar containing crops like corn, maize, wheat, sugar cane, sugar beet, potatoes, ...

  6. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds.

    Science.gov (United States)

    Yanagisawa, Mitsunori; Kawai, Shigeyuki; Murata, Kousaku

    2013-01-01

    Bioethanol has attracted attention as an alternative to petroleum-derived fuel. Seaweeds have been proposed as some of the most promising raw materials for bioethanol production because they have several advantages over lignocellulosic biomass. However, because seaweeds contain low contents of glucans, i.e., polysaccharides composed of glucose, the conversion of only the glucans from seaweed is not sufficient to produce high concentrations of ethanol. Therefore, it is also necessary to produce ethanol from other specific carbohydrate components of seaweeds, including sulfated polysaccharides, mannitol, alginate, agar and carrageenan. This review summarizes the current state of research on the production of ethanol from seaweed carbohydrates for which the conversion of carbohydrates to sugars is a key step and makes comparisons with the production of ethanol from lignocellulosic biomass. This review provides valuable information necessary for the production of high concentrations of ethanol from seaweeds.

  7. Production and evaluation of biodiesel and bioethanol from high oil corn using three processing routes.

    Science.gov (United States)

    Shi, Aimin; Du, Zhenyi; Ma, Xiaochen; Cheng, Yanling; Min, Min; Deng, Shaobo; Chen, Paul; Li, Dong; Ruan, Roger

    2013-01-01

    Six Korea high oil (KHO) corn varieties varying in germ and endosperm size and oil content (4-21%, wet basis) were subjected to three sequential combinations of milling (M), germ separation (S), fermentation (F), and in situ transesterification (T) to produce bioethanol and biodiesel. Production parameters including saccharification, bioethanol yield, biodiesel yield and composition, and conversion rate were evaluated. The effects of the contents of germ, endosperm size, oil, and non-oil solid mass on the production parameters strongly depended on the processing routes, namely M-F-T, M-T-F, and S-T|F. The M-F-T route produced the highest bioethanol yield while the S-T|F route produced the highest biodiesel yield. The in situ transesterification reaction, if proceeded before fermentation, reduced the bioethanol yield while fermentation and/or presence of endosperm reduced the biodiesel yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Evaluation of Corrosion Behavior of Galvanized Steel Treated with Conventional Conversion Coatings and a Chromate-Free Organic Inhibitor

    Directory of Open Access Journals (Sweden)

    Laura A. Hernandez-Alvarado

    2012-01-01

    Full Text Available Conventional weight loss tests and both DC and AC electrochemical techniques were used to study if an organic inhibitor containing an alkanolamine salt of a polycarboxylic acid can substitute toxic coatings as chromating and certain phosphating procedures in the protection of galvanized steel. The electrolyte used was a 0.5 M aerated NaCl solution. All tests gave concordant results, indicating that the chromate-free organic inhibitor does protect galvanized steel in this environment, even though the provided protection was less than that of the chromate conversion coating. It was observed that, after a moderate initial attack, the corrosion rate diminishes due to the appearance and growth of passivating corrosion products layers, mainly constituted by zinc hydroxychloride (Zn5(OH8CI2⋅H2O and two varieties of zinc hydroxide, among other crystalline compounds.

  9. Visions for Danish bio-ethanol; Visioner for dansk bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B.K. [BioCentrum-DTU (Denmark); Felby, C. [Det Biovidenskabelige Fakultet -KU (Denmark); Jensen, Arne [Syddansk Univ., Ledelsessekretariatet (Denmark); Nielsen, Charles [DONG Energy (Denmark); Skytte, K. [Risoe National Lab., System Analysis Dept. - DTU (Denmark); Wormslev, E.C. [NIRAS A/S (Denmark); Zinck, A.M. [Dansk Landbrug (DK)] (eds.)

    2007-02-15

    In 2006 the Danish Academy of Technical Sciences set up a working group to prepare a brief and factual presentation of visions for Danish bioenergy targeted at political actors in that area. This report presents the working group's conclusions and recommendations with focus on bioethanol. Denmark has powerful actors and good opportunities to develop and commercialize this particular type of biofuel. Bioethanol has the potential to create large gains for Denmark within supply, environment and export, and the working group considers bioethanol to be the only alternative to petrol for the transport sector in the short term. However, in order to establish Denmark as a strong and relevant partner in international development, it is crucial for the Danish actors to concentrate on a joint effort. (BA)

  10. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass.

    Science.gov (United States)

    Luque, Luis; Westerhof, Roel; Van Rossum, Guus; Oudenhoven, Stijn; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2014-06-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the products was used as the thermochemical process to obtain a pyrolysis-oil rich in anhydro-sugars (levoglucosan) and low in inhibitors. After hydrolysis of these anhydro-sugars, glucose was obtained which was successfully fermented, after detoxification, to obtain bioethanol. Ethanol yields comparable to traditional biochemical processing were achieved (41.3% of theoretical yield based on cellulose fraction). Additional benefits of the proposed biorefinery concept comprise valuable by-products of the thermochemical conversion like bio-char, mono-phenols (production of BTX) and pyrolytic lignin as a source of aromatic rich fuel additive. The inhibitory effect of thermochemically derived fermentation substrates was quantified numerically to compare the effects of different process configurations and upgrading steps within the biorefinery approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Bioethanol Production from Indigenous Algae

    Directory of Open Access Journals (Sweden)

    Madhuka Roy

    2015-02-01

    Full Text Available Enhanced rate of fossil fuel extraction is likely to deplete limited natural resources over short period of time. So search for alternative fuel is only the way to overcome this problem of upcoming energy crisis. In this aspect biofuel is a sustainable option. Agricultural lands cannot be compromised for biofuel production due to the requirement of food for the increasing population. Certain species of algae can produce ethanol during anaerobic fermentation and thus serve as a direct source for bioethanol production. The high content of complex carbohydrates entrapped in the cell wall of the microalgae makes it essential to incorporate a pre-treatment stage to release and convert these complex carbohydrates into simple sugars prior to the fermentation process. There have been researches on production of bioethanol from a particular species of algae, but this work was an attempt to produce bioethanol from easily available indigenous algae. Acid hydrolysis was carried out as pre-treatment. Gas Chromatographic analysis showed that 5 days’ fermentation by baker’s yeast had yielded 93% pure bioethanol. The fuel characterization of the bioethanol with respect to gasoline showed comparable and quite satisfactory results for its use as an alternative fuel.DOI: http://dx.doi.org/10.3126/ije.v4i1.12182International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 112-120  

  12. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L. Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential

    Directory of Open Access Journals (Sweden)

    Chuanji Fang

    2015-01-01

    Full Text Available Date palm residues are one of the most promising lignocellulosic biomass for bioethanol production in the Middle East. In this study, leaflets and rachis were subjected to hydrothermal pretreatment to overcome the recalcitrance of the biomass for enzymatic conversion. Evident morphological, structural, and chemical changes were observed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy after pretreatment. High glucan (>90% for both leaflets and rachis and xylan (>75% for leaflets and >79% for rachis recovery were achieved. Under the optimal condition of hydrothermal pretreatment (210°C/10 min highly digestible (glucan convertibility, 100% to leaflets, 78% to rachis and fermentable (ethanol yield, 96% to leaflets, 80% to rachis solid fractions were obtained. Fermentability test of the liquid fractions proved that no considerable inhibitors to Saccharomyces cerevisiae were produced in hydrothermal pretreatment. Given the high sugar recovery, enzymatic digestibility, and ethanol yield, production of bioethanol by hydrothermal pretreatment could be a promising way of valorization of date palm residues in this region.

  13. Effect of adding Matrix Metallo proteinase inhibitors on the degree of conversion of monomers to polymer an experimental bonding agent

    Directory of Open Access Journals (Sweden)

    Ghavam M.

    2009-11-01

    Full Text Available "nBackground and Aim: In spite of the achievements in the field of dental adhesives, we are facing challenges with dentine bonding resistance, strength and stability. According to recent studies the role of MMP inhibitors in association with bonding,s persistence and leakage reduction and restoration,s persistence is important. The aim of this study was to investigate the effect of doxycycline as a MMP inhibitor on the degree of conversion (DC of an experimental dental adhesive. "nMaterials and Methods: In this experimental study, a new dental adhesive blend was prepared by mixing doxycycline monohydrate (in concentrations of 0.0, 0.25, 0.5, and 1 wt.% with monomers. The monomers were composed of 12% Bis-GMA and 10% TMPTMA, 28% HEMA, and 50% Ethanol by weight for all groups. Comphorquinone and amines were chosen as photo initiator system. Degree of conversion of all adhesives was measured using FTIR spectroscopy. The results were analyzed using one-way ANOVA and Tukey post hoc tests. "nResults: The results showed that addition of 0.25, 0.5, and 1 weight percent doxycycline did not significantly reduce the DC of the adhesives compared to 0.0% control group (p>0.05%. "nConclusion: According to the results of this study, adding doxycycline to the adhesives did not adversely affect the DC.

  14. Inhibitors

    Science.gov (United States)

    ... Icon View public health webinars on blood disorders Inhibitors Language: English (US) Español (Spanish) Recommend on Facebook ... because treatment of bleeds becomes less effective. About Inhibitors People with hemophilia, and many with VWD type ...

  15. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2-3nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50% conversion of ethanol with 98...

  16. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite‐1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2–3 nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50 % conversion of ethanol with 98...

  17. Production of bioethanol

    DEFF Research Database (Denmark)

    Tranekjær, Michael; Sommer, Peter; Ahring, Birgitte Kiær

    1998-01-01

    Efficient conversion of lignocellulosic materials to ethanol requires pretreatment and hydrolysis prior to the ethanolic fermentation. This pretreatment renders the biomass more susceptible to the subsequent hydrolysis. Of the wide variety of pretreatment methods presently available, wet oxidation...

  18. Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater.

    Science.gov (United States)

    Si, Buchun; Li, Jiaming; Zhu, Zhangbing; Shen, Mengmeng; Lu, Jianwen; Duan, Na; Zhang, Yuanhui; Liao, Qiang; Huang, Yun; Liu, Zhidan

    2018-07-15

    One critical challenge of hydrothermal liquefaction (HTL) is its complex aqueous product, which has a high concentration of organic pollutants (up to 100gCOD/L) and diverse fermentation inhibitors, such as furfural, phenolics and N-heterocyclic compounds. Here we report continuous anaerobic digestion of HTL wastewater via an up-flow anaerobic sludge bed reactor (UASB) and packed bed reactor (PBR). Specifically, we investigated the transformation of fermentation inhibitors and microbial response. GC-MS identified the complete degradation of furfural and 5-hydroxymethylfurfural (5-HMF), and partial degradation (54.0-74.6%) of organic nitrogen and phenolic compounds, including 3-hydroxypyridine, phenol and 4-ethyl-phenol. Illumina MiSeq sequencing revealed that the bacteria families related to detoxification increased in response to the HTL aqueous phase. In addition, the increase of acetate-oxidizing bacteria in UASB and acetogens in PBR showed a strengthened acetogenesis. As for the archaeal communities, an increase in hydrogenotrophic methanogens was observed. Based on GC-MS/HPLC and microbial analysis, we speculate that dominant fermentation inhibitors were transformed into intermediates (Acetyl-CoA and acetate), further contributing to biomethane formation. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Recent trends in global production and utilization of bio-ethanol fuel

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Havva

    2009-01-01

    Bio-fuels are important because they replace petroleum fuels. A number of environmental and economic benefits are claimed for bio-fuels. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide. Production of bio-ethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Using bio-ethanol blended gasoline fuel for automobiles can significantly reduce petroleum use and exhaust greenhouse gas emission. Bio-ethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. Bio-ethanol from sugar cane, produced under the proper conditions, is essentially a clean fuel and has several clear advantages over petroleum-derived gasoline in reducing greenhouse gas emissions and improving air quality in metropolitan areas. Conversion technologies for producing bio-ethanol from cellulosic biomass resources such as forest materials, agricultural residues and urban wastes are under development and have not yet been demonstrated commercially.

  20. Renal function three years after early conversion from a calcineurin inhibitor to everolimus

    DEFF Research Database (Denmark)

    Mjörnstedt, Lars; Schwartz Sørensen, Søren; von Zur Mühlen, Bengt

    2015-01-01

    .001). During months 12-36, death-censored graft survival was 100%, patient survival was 98.9% and 96.7% in the everolimus and control groups, respectively, and 13.0% and 11.1% of everolimus and control patients, respectively, experienced mild biopsy-proven acute rejection (BPAR). Protocol biopsies in a limited......, but discontinuation was more frequent with everolimus (33.7% vs. 10.0%). Conversion from cyclosporine to everolimus at 7 weeks post-transplant was associated with a significant benefit in renal function at 3 years when everolimus was continued....

  1. Reclamation of Marine Chitinous Materials for the Production of α-Glucosidase Inhibitors via Microbial Conversion

    Directory of Open Access Journals (Sweden)

    Van Bon Nguyen

    2017-11-01

    Full Text Available Six kinds of chitinous materials have been used as sole carbon/nitrogen (C/N sources for producing α-glucosidase inhibitors (aGI by Paenibacillus sp. TKU042. The aGI productivity was found to be highest in the culture supernatants using demineralized crab shell powder (deCSP and demineralized shrimp shell powder (deSSP as the C/N source. The half maximal inhibitory concentration (IC50 and maximum aGI activity of fermented deCSP (38 µg/mL, 98%, deSSP (108 µg/mL, 89%, squid pen powder (SPP (422 µg/mL, 98%, and shrimp head powder (SHP (455 µg/mL, 92% were compared with those of fermented nutrient broth (FNB (81 µg/mL, 93% and acarbose (1095 µg/mL, 74%, a commercial antidiabetic drug. The result of the protein/chitin ratio on aGI production showed that the optimal ratio was 0.2/1. Fermented deCSP showed lower IC50 and higher maximum inhibitory activity than those of acarbose against rat intestinal α-glucosidase.

  2. Bioethanol production from Asphodelus aestivus

    Energy Technology Data Exchange (ETDEWEB)

    Polycarpou, Polycarpos [Agricultural Research Institute, Soils Science Department, P.O. Box 22016, 1516 Lefkosia (Cyprus)

    2009-12-15

    The increase on the price of fossil fuels and the need to protect the environment from greenhouse gases urge the investigation of the possibility of using biofuels to replace them. Cyprus is faced with severe water shortage and unavailability of agricultural land that limit the cultivation of energy crops that supply the feedstock for biofuel production. A possibility would be to use Asphodelus aestivus L. that is encountered in Cyprus and other Mediterranean countries, growing wild in pastures. Its tubers contain starch that was measured to be 10.1%. The bioethanol is produced by fermentation of the mash produced by crashing the tubers of the plant. The first stage of the process was cooking the mash at a temperature of 95 C, combined by liquefaction and saccharification of the starch using enzymes, like alpha-amylase and glucoamylase. The process was followed by fermentation of the mash for three days and finally distillation of bioethanol. The alcohol yield per kilogram tubers was 49.52 ml/kg, compared to the theoretical value of 83.72 ml/kg, mainly due to the incomplete fermentation of the sugars. The plant seems to be a potential energy plant for bioethanol production in arid regions cultivated on degraded land. (author)

  3. Sugarcane for Bioethanol: Soil and Environmental Issues

    NARCIS (Netherlands)

    Hartemink, A.E.

    2008-01-01

    Cultivation of sugarcane for bioethanol is increasing and the area under sugarcane is expanding. Much of the sugar for bioethanol comes from large plantations where it is grown with relatively high inputs. Sugarcane puts a high demands on the soil because of the use of heavy machinery and because

  4. Comparative study of bioethanol production from sugarcane ...

    African Journals Online (AJOL)

    The study was designed to compare the bioethanol production from Zymomonas mobilis and Saccharomyces cerevisiae using molasses as production medium. The focus was on the retention time at lab scale. Bioethanol and petroleum blend can be used in existing gasoline engines. Present study showed a more ...

  5. Optimization of bioethanol production from simultaneous ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Bioethanol produced by fermentation of plant biomass is considered to be an environmentally friendly alternative to fossil fuels and has the potential to suitably replace gasoline as a transportation fuel (Itelima et al., 2012). The economics of bioethanol production is significantly influenced by the cost of the raw materials and ...

  6. Bioethanol production by immobilized Sacharomyces cerevisiae var ...

    African Journals Online (AJOL)

    Bioethanol can be produced by fermentation of sugars from various waste agricultural materials. Whichever system for bioethanol production is chosen, the attention must be paid to the overall economics and energy consumption. The aim of the present study was to investigate the immobilization of Sacharomyces ...

  7. Techno-economic analysis of bioethanol production from rice straw by liquid-state fermentation

    Science.gov (United States)

    Hidayata, M. H. M.; Salleh, S. F.; Riayatsyahb, T. M. I.; Aditiyac, H. B.; Mahliaa, T. M. I.; Shamsuddina, A. H.

    2016-03-01

    Renewable energy is the latest approach of the Malaysian government in an effort to find sustainable alternative energy sources and to fulfill the ever increasing energy demand. Being a country that thrives in the service and agricultural sector, bioethanol production from lignocellulosic biomass presents itself as a promising option. However, the lack of technical practicality and complexity in the operation system hinder it from being economically viable. Hence, this research acquired multiple case studies in order to provide an insight on the process involved and its implication on production as well as to obtain a cost analysis of bioethanol production. The energy input and cost of three main components of the bioethanol production which are the collection, logistics, and pretreatment of rice straw were evaluated extensively. The theoretical bioethanol yield and conversion efficiency obtained were 250 L/t and 60% respectively. The findings concluded that bioethanol production from rice straw is currently not economically feasible in Malaysia’s market due to lack of efficiency in the pretreatment phase and overbearing logistics and pretreatment costs. This work could serve as a reference to future studies of biofuel commercialization in Malaysia.

  8. Second generation bioethanol potential from selected Malaysia's biodiversity biomasses: A review.

    Science.gov (United States)

    Aditiya, H B; Chong, W T; Mahlia, T M I; Sebayang, A H; Berawi, M A; Nur, Hadi

    2016-01-01

    Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case. As one of countries with rich biodiversity, Malaysia holds enormous potential in second generation bioethanol production from its various agricultural and forestry biomasses, which are the source of lignocellulosic and starch compounds. This paper reviews potentials of biomasses and potential ethanol yield from oil palm, paddy (rice), pineapple, banana and durian, as the common agricultural waste in the country but uncommon to be served as bioethanol feedstock, by calculating the theoretical conversion of cellulose, hemicellulose and starch components of the biomasses into bioethanol. Moreover, the potential of the biomasses as feedstock are discussed based on several reported works. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    Bioethanol (ethanol produced from biomass) as a motor fuel is an attractive renewable fully sustainable energy sources as a means of lowering dependence on fossil fuels and air pollution towards greenhouse gasses, particularly CO2. Bioethanol, unlike gasoline, is an oxygenated fuel, which burns...... environment and public health problems. Increasing demand of bioethanol for transportation sector and higher bioethanol prices than gasoline require utilization of cheap and unlimited raw materials in order to become bioethanol economically competitive with gasoline. Such alternative raw materials...

  10. Marine Enzymes and Microorganisms for Bioethanol Production.

    Science.gov (United States)

    Swain, M R; Natarajan, V; Krishnan, C

    Bioethanol is a potential alternative fuel to fossil fuels. Bioethanol as a fuel has several economic and environmental benefits. Though bioethanol is produced using starch and sugarcane juice, these materials are in conflict with food availability. To avoid food-fuel conflict, the second-generation bioethanol production by utilizing nonfood lignocellulosic materials has been extensively investigated. However, due to the complexity of lignocellulose architecture, the process is complicated and not economically competitive. The cultivation of lignocellulosic energy crops indirectly affects the food supplies by extensive land use. Marine algae have attracted attention to replace the lignocellulosic feedstock for bioethanol production, since the algae grow fast, do not use land, avoid food-fuel conflict and have several varieties to suit the cultivation environment. The composition of algae is not as complex as lignocellulose due to the absence of lignin, which renders easy hydrolysis of polysaccharides to fermentable sugars. Marine organisms also produce cold-active enzymes for hydrolysis of starch, cellulose, and algal polysaccharides, which can be employed in bioethanol process. Marine microoorganisms are also capable of fermenting sugars under high salt environment. Therefore, marine biocatalysts are promising for development of efficient processes for bioethanol production. © 2017 Elsevier Inc. All rights reserved.

  11. The fairy tale of bio-ethanol

    International Nuclear Information System (INIS)

    Beverloo, W.A.

    1992-01-01

    Agricultural products can be converted into bio-ethanol. Proponents of the bio-ethanol production however use inaccurate arguments with regard to the comparison of the prices per liter for bio-ethanol and petrol instead of using the net heating value of the fuels. Also their basic assumptions concerning the energy efficiency or the energy balances or the carbon dioxide emissions are incorrect. The production of biomass for energy does not serve any other societal interest than subsidized employment for agricultural farmers. 4 tabs., 9 refs

  12. The energetic potential of bioethanol in Hungary

    Directory of Open Access Journals (Sweden)

    Károly Lakatos

    2008-11-01

    Full Text Available The basis of the bioethanol production is the agriculture, mostly the corn and wheat growing. With the analysis of their domesticharvest results, the process of the starch formation and the chemical-thermodynamical processes of the alcohol’s fermantation,we calculate the annual amount of the producible bioethanol on average and it’s energy. We determine the specific values of the CO2cycle. We examine the energetic possibilities of total substitution of the 2 billion litres of domestic petrol consumption with bioethanol.

  13. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production.

    Science.gov (United States)

    Ramadoss, Govindarajan; Muthukumar, Karuppan

    2016-01-01

    This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75°C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Phytochemical analysis and assessment of bioethanol production ...

    African Journals Online (AJOL)

    , all having fuel potential and are good source of gasoline. These are produced as a result of fermentation and enzymatic activities of the organic compound present in the biomass sample. Keywords: Bioethanol, Cymbopogon schoenanthus, ...

  15. Addressing land use change and uncertainty in the life-cycle assessment of wheat-based bioethanol

    International Nuclear Information System (INIS)

    Malça, João; Freire, Fausto

    2012-01-01

    Despite the significant growth in the number of published life-cycle assessments of biofuels, important aspects have not captured sufficient attention, namely soil carbon emissions from land use change (LUC) and uncertainty analysis. The main goal of this article is to evaluate the implications of different LUC scenarios and uncertainty in the life-cycle energy renewability efficiency and GHG (greenhouse gases) intensity of wheat-based bioethanol replacing gasoline. A comprehensive assessment of different LUC scenarios (grassland or cropland converted to wheat cultivation) and agricultural practices is conducted, which results in different carbon stock change values. The types of uncertainty addressed include parameter uncertainty (propagated into LC (life-cycle) results using Monte-Carlo simulation) and uncertainty concerning how bioethanol co-product credits are accounted for. Results show that GHG emissions have considerably higher uncertainty than energy efficiency values, mainly due to soil carbon emissions from direct LUC and N 2 O release from cultivated soil. Moreover, LUC dominates the GHG intensity of bioethanol. Very different GHG emissions are calculated depending on the LUC scenario considered. Conversion of full- or low-tillage croplands to wheat cultivation results in bioethanol GHG emissions lower than gasoline emissions, whereas conversion of grassland does not contribute to bioethanol GHG savings over gasoline in the short- to mid-term. -- Highlights: ► We address different LUC scenarios and uncertainty in the LCA of wheat bioethanol. ► GHG emissions have considerably higher uncertainty than energy efficiency values. ► Bioethanol contributes to primary energy savings over gasoline. ► Very different life-cycle GHG emissions are calculated depending on the LUC scenario. ► GHG savings over gasoline are only achieved if cropland is the reference land use.

  16. Bioethanol Quality Improvement of Coffee Fruit Leather

    Directory of Open Access Journals (Sweden)

    Edahwati Luluk

    2016-01-01

    Full Text Available Recently, Indonesia’s dependence on petroleum is to be reduced and even eliminated. To overcome the problem of finding the needed alternative materials that can produce ethanol, in this case as a substitute material or a transport fuel mix, boosting the octane number, and gasoline ethanol (gasohol can be conducted. In the red coffee processing (cooking that will produce 65% and 35% of coffee beans, coffee leather waste is a source of organic material with fairly high cellulose content of 46.82%, 3.01% of pectin and 7.68% of lignin. In this case, its existence is abundant in Indonesia and optimally utilized. During the coffee fruit peeling, the peel waste is only used as a mixture of animal feed or simply left to rot. The purpose of this study was to produce and improve the quality of the fruit skin of bioethanol from coffee cellulose. However, to improve the quality of bioethanol, the production of the lignin content in the skin of the coffee fruit should be eliminated or reduced. Hydrolysis process using organosolve method is expected to improve the quality of bioethanol produced. In particular, the use of enzyme Saccharomyces and Zymmomonas will change the resulting sugar into bioethanol. On one hand, by using batch distillation process for 8 hours with Saccharomyces, bioethanol obtains high purity which is 39.79%; on the other hand, by using the same batch distillation process with Zymmomonas, the bioethanol obtains 38.78%.

  17. Performance indicators of bioethanol distillation

    International Nuclear Information System (INIS)

    Marriaga, Nilson

    2009-01-01

    The increase of biofuels demand accelerates the construction of new production plants and technological improvements in the process so the development of versatile tools for evaluating alternatives becomes an undeniable challenge. It was established through heuristic rules, thermodynamic analysis and simulation computer the energy consumption and performance indicators that govern, from fermented mash (ethanol 8.5 % v/v), the distillation of various capacities for bioethanol production: 20, 60, 100 and 150 KLD (kiloliters / day) through Aspen PlusTM simulator. It was found that the distillation demand nearly 30% of heat that would be obtained by burning alcohol fuel produced thus it is necessary the use of raw materials that generate enough biomass to produce the steam required. In addition, correlations were found to allow for easy diameters of distillation columns in terms of production capacity.

  18. Strategies for the production of high concentrations of bioethanol from seaweeds

    Science.gov (United States)

    Yanagisawa, Mitsunori; Kawai, Shigeyuki; Murata, Kousaku

    2013-01-01

    Bioethanol has attracted attention as an alternative to petroleum-derived fuel. Seaweeds have been proposed as some of the most promising raw materials for bioethanol production because they have several advantages over lignocellulosic biomass. However, because seaweeds contain low contents of glucans, i.e., polysaccharides composed of glucose, the conversion of only the glucans from seaweed is not sufficient to produce high concentrations of ethanol. Therefore, it is also necessary to produce ethanol from other specific carbohydrate components of seaweeds, including sulfated polysaccharides, mannitol, alginate, agar and carrageenan. This review summarizes the current state of research on the production of ethanol from seaweed carbohydrates for which the conversion of carbohydrates to sugars is a key step and makes comparisons with the production of ethanol from lignocellulosic biomass. This review provides valuable information necessary for the production of high concentrations of ethanol from seaweeds. PMID:23314751

  19. Bioethanol production from cassava peels using different microbial ...

    African Journals Online (AJOL)

    Bioethanol production from cassava peels using different microbial inoculants. ... African Journal of Biotechnology ... Abstract. The potential of bioethanol production using different microbial inoculants for the simultaneous saccharification and fermentation of cassava peels from three cassava cultivars was investigated.

  20. Yeast strains designed for 2. generation bioethanol production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roennow, B.

    2013-04-15

    The aim of the project was to develop a suitable fermentation organism for 2G bioethanol production that would efficiently ferment all of the sugars in lignocellulosic biomass into ethanol at a commercially viable rate (comparable to yeast based 1G ethanol production). More specifically, a yeast strain would be developed with the ability to ferment also the pentoses in lignocellulosic biomass and thereby increase the ethanol yield of the process by 30-45% with a profound positive effect on the total process economy. The project has succeeded in developing a new industrial yeast strain V1. The yeast strain can transform the difficult C5 sugars to ethanol from waste products such as straw and the like from the agricultural sector. The classic issues relating to industrial uses such as inhibitor and ethanol tolerance and high ethanol production is resolved satisfactorily. The potential of the use of the new strain for 2nd generation bioethanol production is that the ethanol yields increase by 30-45%. With the increased ethanol yield follows a marked improvement in the overall process economics. (LN)

  1. Sequential co-production of biodiesel and bioethanol with spent coffee grounds.

    Science.gov (United States)

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2013-05-01

    The sequential co-production of bioethanol and biodiesel from spent coffee grounds was investigated. The direct conversion of bioethanol from spent coffee grounds was not found to be a desirable option because of the relatively slow enzymatic saccharification behavior in the presence of triglycerides and the free fatty acids (FFAs) found to exist in the raw materials. Similarly, the direct transformation of the spent coffee grounds into ethanol without first extracting lipids was not found to be a feasible alternative. However, the crude lipids extracted from the spent coffee grounds were themselves converted into fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE) via the non-catalytic biodiesel transesterification reaction. The yields of bioethanol and biodiesel were 0.46 g g(-1) and 97.5±0.5%, which were calculated based on consumed sugar and lipids extracted from spent coffee grounds respectively. Thus, this study clearly validated our theory that spent coffee grounds could be a strong candidate for the production of bioethanol and biodiesel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Bioethanol sources in Pakistan: A renewable energy resource ...

    African Journals Online (AJOL)

    Demand of bioethanol is increasing rapidly as fuel to replace the use of gasoline due to the recent debates on environmental issues and in the increase of gas prices. To combat these threats, bioethanol and biodiesel are being produced as alternative fuel sources. A wide range of substances can be used for bioethanol ...

  3. Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation.

    Science.gov (United States)

    Muñoz, Claudio; Baeza, Jaime; Freer, Juanita; Mendonça, Regis Teixeira

    2011-11-01

    During tree growth, hardwoods can initiate the formation of tension wood, which is a strongly stressed wood on the upper side of the stem and branches. In Eucalyptus globulus, tension wood presents wider and thicker cell walls with low lignin, similar glucan and high xylan content, as compared to opposite wood. In this work, tension and opposite wood of E. globulus trees were separated and evaluated for the production of bioethanol using ethanol/water delignification as pretreatment followed by simultaneous saccharification and fermentation (SSF). Low residual lignin and high glucan retention was obtained in organosolv pulps of tension wood as compared to pulps from opposite wood at the same H-factor of reaction. The faster delignification was associated with the low lignin content in tension wood, which was 15% lower than in opposite wood. Organosolv pulps obtained at low and high H-factor (3,900 and 12,500, respectively) were saccharified by cellulases resulting in glucan-to-glucose yields up to 69 and 77%, respectively. SSF of the pulps resulted in bioethanol yields up to 35 g/l that corresponded to 85-95% of the maximum theoretical yield on wood basis, considering 51% the yield of glucose to ethanol conversion in fermentation, which could be considered a very satisfactory result compared to previous studies on the conversion of organosolv pulps from hardwoods to bioethanol. Both tension and opposite wood of E. globulus were suitable raw materials for organosolv pretreatment and bioethanol production with high conversion yields.

  4. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes.

    Science.gov (United States)

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xia, Xunfeng; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production.

  5. Production of liquid biofuels (biodiesel and bioethanol) from brown marine macroalgae Padina tetrastromatica

    International Nuclear Information System (INIS)

    Ashokkumar, Veeramuthu; Salim, Mohd Razman; Salam, Zainal; Sivakumar, Pandian; Chong, Cheng Tung; Elumalai, Sanniyasi; Suresh, Veeraperumal; Ani, Farid Nasir

    2017-01-01

    Highlights: • Integrated concept of biofuels production from brown macroalgae P. tetrastromatica. • The activation energy was determined as Ea = 34.314 kJ mol −1 . • Brown marine alga produced 7.8% of biodiesel by acid and alkali transesterification. • The fuel properties of Padina biodiesel meet the ASTM specifications. • Spent biomass of Padina yields 16.1% of bioethanol after fermentation process. - Abstract: In this study, an integrated biomass conversion concept of producing liquid biofuels from brown marine macroalga Padina tetrastromatica was investigated. The algal biomass was collected from the Mandapam coastal region and processed under laboratory. Various parameters were studied to extract crude lipids from the biomass. A kinetic study was conducted for extracting the lipids from the biomass, which follows the first order kinetics and the lipid yield was 8.15 wt.%. The activation energy; Ea = 34.314 kJ mol −1 and their thermodynamic parameters were determined. Since the crude algal lipids contain high amount of free fatty acids, a sequential transesterification technique was examined and 7.8% of biodiesel (78 mg/g algal biomass) yield was obtained. The biodiesel was analyzed by 1 H and 13 C–NMR spectroscopy and the conversion yield was estimated. Further, the biodiesel fuel properties were investigated and found that all the features fit the required ASTM D6751 specification limits. The residual biomass after lipid extraction was further explored for bioethanol production through the anaerobic fermentation process. The ethanol yield obtained after saccharification and fermentation were estimated and 161 mg/g residue biomass was reported. The theoretical yield of conversion of hydrolysate to bioethanol was estimated and found to be 83.4%. Therefore, this study demonstrates that macroalga P. tetrastromatica biomass has great potential to produce liquid biofuels such as biodiesel and bioethanol.

  6. Bioethanol production from crops - recent developments

    International Nuclear Information System (INIS)

    Dalton, Colin

    1992-01-01

    The author notes much higher rates of ethanol production in Brazil and the United States of America than in the European Economic Community. While bioethanol from arable crops makes environmental sense there is, at present, a sizeable difference between the value of fuel ethanol (Pound 100-130/t) and the cost of producing it (Pound 236-Pound 450/t). This gap could be remedied using excise duty. Farmers would like to change crop production but await a political initiative. The technology for bioethanol production still needs some fine tuning, with ETBE (an ether produced from reacting isobutylene with ethanol) being preferred to other methods. (UK)

  7. Conversion from a calcineurin inhibitor-based immunosuppressive regimen to everolimus in renal transplant recipients: effect on renal function and proteinuria.

    Science.gov (United States)

    Morales, J; Fierro, A; Benavente, D; Zehnder, C; Ferrario, M; Contreras, L; Herzog, C; Buckel, E

    2007-04-01

    New immunosuppressive agents are being actively researched to avoid complications of chronic allograft nephropathy (CAN), calcineurin inhibitor (CNI) nephrotoxicity, and posttransplantation cancer. The family of mTOR inhibitors offers a unique immunosuppressive opportunity to avoid CNI toxicity and reduce the incidence of malignancy. Nevertheless, increasing data have demonstrated that sirolimus (SRL), the first mTOR introduced in the treatment of solid organ transplant recipients, induces proteinuria, an adverse event that could produce deterioration of long-term renal function. In this short-term study of patients followed for 1 to 16 months, we examined changes in renal function and proteinuria among renal transplant recipients converted from a CNI-based regimen to an everolimus (EVL)-based one, a recently introduced mTOR inhibitor. Our data showed that renal function can be optimized after conversion to EVL by up to 42% in recipients showing CAN grade 1 or 2, or CNI nephrotoxicity. Importantly, patients who improved their creatinine clearance did not show increased proteinuria measured in a voided specimen as the ratio of urinary protein and creatinine concentration (P/C). These results, if confirmed with long-term follow-up and a larger number of patients, would allow us to consider EVL as a promising agent for maintenance immunosuppressive regimens in kidney transplantation.

  8. Early conversion to a sirolimus-based, calcineurin-inhibitor-free immunosuppression in the SMART trial: observational results at 24 and 36months after transplantation.

    Science.gov (United States)

    Guba, Markus; Pratschke, Johann; Hugo, Christian; Krämer, Bernhard K; Pascher, Andreas; Pressmar, Katharina; Hakenberg, Oliver; Fischereder, Michael; Brockmann, Jens; Andrassy, Joachim; Banas, Bernhard; Jauch, Karl-Walter

    2012-04-01

    Early conversion to a calcineurin-inhibitor (CNI)-free maintenance immunosuppression with sirolimus (SRL), mycophenolate mofetil (MMF) and steroids was associated with an improved 1-year renal function as compared with a cyclosporine (CsA)-based regimen (SMART core-study). This observational follow-up describes 132 patients followed up within the SMART study framework for 36months. At 36months, renal function continued to be superior in SRL-treated patients [ITT-eGFR(@36m) : 60.88 vs. 53.72 (CsA) ml/min/1.73m(2) , P=0.031]. However, significantly more patients discontinued therapy in the SRL group 59.4% vs.42.3% (CsA). Patient [99% (SRL) vs.97% (CsA) and graft 96% (SRL) vs.94% (CsA)] survival at 36months was excellent in both arms. There was no difference in late rejection episodes. Late infections and adverse events were similar in both arms except of a higher rate of hyperlipidemia in SRL and a higher incidence of malignancy in CsA-treated patients. In a multivariate analysis, donor age >60years, S-creatinine at conversion >2mg/dl, CMV naïve(-) recipients and immunosuppression with CsA were predictive of an impaired renal function at 36months. Early conversion to a CNI-free SRL-based immunosuppression is associated with a sustained improvement of renal function up to 36months after transplantation. Patient selection will be key to derive long-term benefit and avoid treatment failure using this mTOR-inhibitor-based immunosuppressive regimen. © 2012 The Authors. Transplant International © 2012 European Society for Organ Transplantation.

  9. Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review

    Directory of Open Access Journals (Sweden)

    Marwa M. El-Dalatony

    2017-12-01

    Full Text Available Biomass is a crucial energy resource used for the generation of electricity and transportation fuels. Microalgae exhibit a high content of biocomponents which makes them a potential feedstock for the generation of ecofriendly biofuels. Biofuels derived from microalgae are suitable carbon-neutral replacements for petroleum. Fermentation is the major process for metabolic conversion of microalgal biocompounds into biofuels such as bioethanol and higher alcohols. In this review, we explored the use of all three major biocomponents of microalgal biomass including carbohydrates, proteins, and lipids for maximum biofuel generation. Application of several pretreatment methods for enhancement the bioavailability of substrates (simple sugar, amino acid, and fatty acid was discussed. This review goes one step further to discuss how to direct these biocomponents for the generation of various biofuels (bioethanol, higher alcohol, and biodiesel through fermentation and transesterification processes. Such an approach would result in the maximum utilization of biomasses for economically feasible biofuel production.

  10. Bioethanol Production from Waste Potatoes as a Sustainable Waste-to-energy Resource via Enzymatic Hydrolysis

    Science.gov (United States)

    Memon, A. A.; Shah, F. A.; Kumar, N.

    2017-07-01

    Ever increasing demand of energy and corresponding looming depletion of fossil fuels have transpired into a burning need of time to vie for alternative energy resources before the traditional energy sources are completely exhausted. Scientists are continuously working on sustainable energy production as an alternate source of energy to meet the present and future requirements. This research deals with conversion of the starch to fermentable carbon source (sugars) by fermentation through liquefaction by using yeast and alpha- amylase. The results show that the significant bioethanol production was achieved while using the parameters like temperature (30 °C) pH (6) and incubation time of 84 hrs. About 90 ml of bioethanol was produced from potato intake of 800 g. Pakistan being an agricultural country is rich in potato crop and this research bodes well to open new vistas to arrest the energy shortage in this part of the world

  11. Effect of xylanase, urea, Tween and Triton additives on bioethanol production of corn stover

    Science.gov (United States)

    Xin, Xiu; Lu, Jie; Yang, Rui-Feng; Song, Wen-jing; Li, Hai-ming; Wang, Hai-song; Zhou, Jing-hui

    2017-03-01

    Corn stover is a potential source of renewable biomass for conversion to bioethanol. Fed-batch semi-simultaneous saccharifcation and fermentation (S-SSF) of corn stover pretreated by liquid hot water (LHW) was investigated. The present study aimed to confirm the influence of xylanase, urea, Tween and Triton additives on bioethanol. Results show that the positive effect of xylanase, urea, Tween was observed. High ethanol concentration requires the addition of xylanase in the stage of saccharification. The optimal amount of xylanase was 0.2 g/g biomass and addition of Triton (Triton X-100) increases the effect of xylanase. Urea has a promotion effect on the whole fermentation process.When adding 0.1% urea in the fermentation stage,the best promoting rate is 24.2%. In the longitudinal comparison of the Tween series, under the same experimental conditions, the promoting effect of Tween series: Tween 40 > Tween 80 > Tween 20 > Tween 60.

  12. Bioethanol produced from Moringa oleifera seeds husk

    Science.gov (United States)

    Ali, E. N.; Kemat, S. Z.

    2017-06-01

    This paper presents the potential of bioethanol production from Moringa oleifera seeds husk which contains lignocellulosic through Simultaneous Saccharification and Fermentation (SSF) process by using Saccharomyces cerevisiae. This paper investigates the parameters which produce optimum bioethanol yield. The husk was hydrolyzed using NaOH and fermented using Saccharomyces cerevisiae yeast. Batch fermentation was performed with different yeast dosage of 1, 3, and 5 g/L, pH value was 4.5, 5.0 and 5.5, and fermentation time of 3, 6, 9 and 12 hours. The temperature of fermentation process in incubator shaker is kept constant at 32ºC. The samples are then filtered using a 0.20 μm nylon filter syringe. The yield of bioethanol produced was analysed using High Performance Liquid Chromatography (HPLC). The results showed that the highest yield of 29.69 g/L was obtained at 3 hours of fermentation time at pH of 4.5 and using 1g/L yeast. This research work showed that Moringa oleifera seeds husk can be considered to produce bioethanol.

  13. Optimization of bioethanol production from simultaneous ...

    African Journals Online (AJOL)

    In this study, bioethanol production from the simultaneous saccharification and fermentation (SSF) of pineapple peels using cellulase and Saccharomyces cerevisiae was investigated. A three-factor Box-behnken design (BBD) and response surface methodology (RSM) were employed to study the effect of broth pH (2-6), ...

  14. Yeasts in sustainable bioethanol production: A review.

    Science.gov (United States)

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  15. Scientific challenges of bioethanol production in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Henrique V.; Lopes, Mario Lucio [Fermentec, Piracicaba, SP (Brazil); Castro Oliveira, Juliana Velasco de [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Sao Paulo (Brazil); Buckeridge, Marcos S. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Sao Paulo (Brazil); Universidade de Sao Paulo, INCT do Bioetanol (Brazil). Dept. de Botanica; Goldman, Gustavo Henrique [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Sao Paulo (Brazil); Universidade de Sao Paulo, INCT do Bioetanol (Brazil). Dept. de Ciencias Farmaceuticas

    2011-09-15

    Bioethanol (fuel alcohol) has been produced by industrial alcoholic fermentation processes in Brazil since the beginning of the twentieth century. Currently, 432 mills and distilleries crush about 625 million tons of sugarcane per crop, producing about 27 billion liters of ethanol and 38.7 million tons of sugar. The production of bioethanol from sugarcane represents a major large-scale technology capable of producing biofuel efficiently and economically, providing viable substitutes to gasoline. The combination of immobilization of CO{sub 2} by sugarcane crops by photosynthesis into biomass together with alcoholic fermentation of this biomass has allowed production of a clean and high-quality liquid fuel that contains 93% of the original energy found in sugar. Over the last 30 years, several innovations have been introduced to Brazilian alcohol distilleries resulting in the improvement of plant efficiency and economic competitiveness. Currently, the main scientific challenges are to develop new technologies for bioethanol production from first and second generation feedstocks that exhibit positive energy balances and appropriately meet environmental sustainability criteria. This review focuses on these aspects and provides special emphasis on the selection of new yeast strains, genetic breeding, and recombinant DNA technology, as applied to bioethanol production processes. (orig.)

  16. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    8). It was possible to recover more thermostable activity after distillation meaning that the nzymes could be recycled more efficiently resulting in a net savings of enzymes used. By testing different enzyme cocktails through the bioethanol process, specially during liquefaction and distillation...

  17. Payer Perspectives on PCSK9 Inhibitors: A Conversation with Stephen Gorshow, MD, and James T. Kenney, RPh, MBA.

    Science.gov (United States)

    Mehr, Stanton R

    2016-02-01

    The new proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors can have significant budget effects, depending on the breadth of the US Food and Drug Administration (FDA)'s approved labeling. American Health & Drug Benefits asked Stephen Gorshow, MD, Regional Medical Director, UnitedHealthcare, and James T. Kenney, RPh, MBA, Manager, Specialty and Pharmacy Contracts, Harvard Pilgrim Health Care, to participate in a teleconference to better understand how payers are approaching the management of these agents.

  18. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process.

    Science.gov (United States)

    De Bari, Isabella; Cuna, Daniela; Di Matteo, Vincenzo; Liuzzi, Federico

    2014-03-25

    Agricultural by-products such as corn stover are considered strategic raw materials for the production of second-generation bioethanol from renewable and non-food sources. This paper describes the conversion of steam-pretreated corn stover to ethanol utilising a multi-step process including enzymatic hydrolysis, isomerisation, and fermentation of mixed hydrolysates with native Saccharomyces cerevisiae. An immobilised isomerase enzyme was used for the xylose isomerisation along with high concentrations of S. cerevisiae. The objective was to assess the extent of simultaneity of the various conversion steps, through a detailed analysis of process time courses, and to test this process scheme for the conversion of lignocellulosic hydrolysates containing several inhibitors of the isomerase enzyme (e.g. metal ions, xylitol and glycerol). The process was tested on two types of hydrolysate after acid-catalysed steam pretreatment: (a) the water soluble fraction (WSF) in which xylose was the largest carbon source and (b) the entire slurry, containing both cellulose and hemicellulose carbohydrates, in which glucose predominated. The results indicated that the ethanol concentration rose when the inoculum concentration was increased in the range 10-75 g/L. However, when xylose was the largest carbon source, the metabolic yields were higher than 0.51g(ethanol)/g(consumed) sugars probably due to the use of yeast internal cellular resources. This phenomenon was not observed in the fermentation of mixed hydrolysates obtained from the entire pretreated product and in which glucose was the largest carbon source. The ethanol yield from biomass suspensions with dry matter (DM) concentrations of 11-12% (w/v) was 70% based on total sugars (glucose, xylose, galactose). The results suggest that xylulose uptake was more effective in mixed hydrolysates containing glucose levels similar to, or higher than, xylose. Analysis of the factors that limit isomerase activity in lignocellulosic

  19. Efficient approach for bioethanol production from red seaweed Gelidium amansii.

    Science.gov (United States)

    Kim, Ho Myeong; Wi, Seung Gon; Jung, Sera; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Gelidium amansii (GA), a red seaweed species, is a popular source of food and chemicals due to its high galactose and glucose content. In this study, we investigated the potential of bioethanol production from autoclave-treated GA (ATGA). The proposed method involved autoclaving GA for 60min for hydrolysis to glucose. Separate hydrolysis and fermentation processing (SHF) achieved a maximum ethanol concentration of 3.33mg/mL, with a conversion yield of 74.7% after 6h (2% substrate loading, w/v). In contrast, simultaneous saccharification and fermentation (SSF) produced an ethanol concentration of 3.78mg/mL, with an ethanol conversion yield of 84.9% after 12h. We also recorded an ethanol concentration of 25.7mg/mL from SSF processing of 15% (w/v) dry matter from ATGA after 24h. These results indicate that autoclaving can improve the glucose and ethanol conversion yield of GA, and that SSF is superior to SHF for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Treatment of post-transplantation lymphoproliferative disorders after kidney transplant with rituximab and conversion to m-TOR inhibitor.

    Science.gov (United States)

    Nieto-Rios, John Fredy; Gómez de Los Ríos, Sandra Milena; Serna-Higuita, Lina María; Ocampo-Kohn, Catalina; Aristizabal-Alzate, Arbey; Gálvez-Cárdenas, Kenny Mauricio; Zuluaga-Valencia, Gustavo Adolfo

    2016-12-30

    Post-transplantation lymphoproliferative disorders are serious complications of organ transplantation which treatment is not yet standardized. To describe the clinical response, overall and graft survival of patients in our center with this complication after kidney transplantation, which received rituximab as part of their treatment as well as conversion to m-TOR. Retrospective study, which included patients, diagnosed with post-transplant lymphoproliferative disorders after kidney transplantation from January 2011 to July 2014. Eight cases were found with a wide spectrum of clinical presentations. Most had monomorphic histology, 85% were associated with Epstein-Barr virus, 25% of patients had tumor involvement of the renal graft, and 12.5% ​​had primary central nervous system lymphoma. All patients were managed with reduction of immunosuppression, conversion to m-TOR (except one who lost the graft at diagnosis) and rituximab-based therapy. The overall response rate was 87.5% (62.5% complete response, 25% partial response). Survival was 87.5% with a median follow-up of 34 months. An additional patient lost the graft, with chronic nephropathy already known. All the remaining patients had stable renal function. There are no standardized treatment regimens for lymphoproliferative disorders after kidney transplantation, but these patients can be managed successfully with reduction of immunosuppression, conversion to m-TOR and rituximab-based schemes.

  1. The characteristics of bioethanol fuel made of vegetable raw materials

    Science.gov (United States)

    Muhaji; Sutjahjo, D. H.

    2018-01-01

    The aim of this research is to identify the most potential vegetable raw as the material to make a bioethanol fuel as the alternative energy for gasoline. This study used experimental method. The high-level bioethanol was obtained through the process of saccharification, fermentation and stratified distillation. ASTM standards were used as the method of testing the chemical element (D 5501, D 1744, D 1688, D 512, D 2622, D 381), and physical test (D 1613, D 240, D 1298-99, D 445, and D 93). The result of the analysis showed that from the seven bioethanols being studied there is one bioethanol from Saccharum of icinarum linn that has physical and chemical properties close to the standard of bioethanol. Meanwhile, the others only meet some of the physical and chemical properties of the standard bioethanol.

  2. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol

    Science.gov (United States)

    Lau, Pak-Chung; Kwong, Tsz-Lung; Yung, Ka-Fu

    2016-03-01

    The utilization of bioethanol as the alcohol source for biodiesel production is more environmentally advantageous over methanol owing to its lower toxicity, lower flammability and its sustainable supply from renewable agricultural resources. However, as the presence of water in crude bioethanol is the critical factor limiting the biodiesel production process, the energy-intensive and costly purification of bioethanol is necessary for biodiesel application. Manganese glycerolate (MnGly) is reported the first time here as a robust heterogeneous catalyst that exhibited over 90% conversion by using aqueous ethanol containing 80 wt.% of water in the production of fatty acid ethyl ester (FAEE). The employment of 95 wt.% ethanol with respect to water could achieve 99.7% feedstock conversion in 6 hours under the optimal reaction conditions: reaction temperature (150 °C), feedstock-to-ethanol molar ratio (1:20) and catalyst loading (6 wt.%). Commercially available low grade crude bioethanol with the presence of impurities like sugars were applied which demonstrated remarkable catalytic activity in 24 hours. The high water tolerance of MnGly towards biodiesel production could eventually simplify the purification of bioethanol that consumes less energy and production cost.

  3. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol.

    Science.gov (United States)

    Lau, Pak-Chung; Kwong, Tsz-Lung; Yung, Ka-Fu

    2016-03-31

    The utilization of bioethanol as the alcohol source for biodiesel production is more environmentally advantageous over methanol owing to its lower toxicity, lower flammability and its sustainable supply from renewable agricultural resources. However, as the presence of water in crude bioethanol is the critical factor limiting the biodiesel production process, the energy-intensive and costly purification of bioethanol is necessary for biodiesel application. Manganese glycerolate (MnGly) is reported the first time here as a robust heterogeneous catalyst that exhibited over 90% conversion by using aqueous ethanol containing 80 wt.% of water in the production of fatty acid ethyl ester (FAEE). The employment of 95 wt.% ethanol with respect to water could achieve 99.7% feedstock conversion in 6 hours under the optimal reaction conditions: reaction temperature (150 °C), feedstock-to-ethanol molar ratio (1:20) and catalyst loading (6 wt.%). Commercially available low grade crude bioethanol with the presence of impurities like sugars were applied which demonstrated remarkable catalytic activity in 24 hours. The high water tolerance of MnGly towards biodiesel production could eventually simplify the purification of bioethanol that consumes less energy and production cost.

  4. Designing optimal bioethanol networks with purification for integrated biorefineries

    International Nuclear Information System (INIS)

    Shenoy, Akshay U.; Shenoy, Uday V.

    2014-01-01

    Highlights: • An analytical method is devised for bioethanol network integration with purification. • Minimum fresh bioethanol flow and pinch are found by the Unified Targeting Algorithm. • Optimal bioethanol networks are then synthesized by the Nearest Neighbors Algorithm. • Continuous targets and networks are developed over the purifier inlet flowrate range. • Case study of a biorefinery producing bioethanol from wheat shows large savings. - Abstract: Bioethanol networks with purification for processing pathways in integrated biorefineries are targeted and designed in this work by an analytical approach not requiring graphical constructions. The approach is based on six fundamental equations involving eight variables: two balance equations for the stream flowrate and the bioethanol load over the total network system; one equation for the above-pinch bioethanol load being picked up by the minimum fresh resource and the purified stream; and three equations for the purification unit. A solution strategy is devised by specifying the two variables associated with the purifier inlet stream. Importantly, continuous targeting is then possible over the entire purifier inlet flowrate range on deriving elegant formulae for the remaining six variables. The Unified Targeting Algorithm (UTA) is utilized to establish the minimum fresh bioethanol resource flowrate and identify the pinch purity. The fresh bioethanol resource flowrate target is shown to decrease linearly with purifier inlet flowrate provided the pinch is held by the same point. The Nearest Neighbors Algorithm (NNA) is used to methodically synthesize optimal networks matching bioethanol demands and sources. A case study of a biorefinery producing bioethanol from wheat with arabinoxylan (AX) coproduction is presented. It illustrates the versatility of the approach in generating superior practical designs with up to nearly 94% savings for integrated bioethanol networks, both with and without process

  5. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    International Nuclear Information System (INIS)

    Li Lihua; Yang Huanjie; Chen Di; Cui, Cindy; Ping Dou, Q.

    2008-01-01

    The ubiquitin-proteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF-Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC 50 value of 32 μmol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF-Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF-Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF-Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd

  6. Conversion from calcineurin inhibitors to sirolimus of recipients with chronic kidney graft disease grade iii for a period 2003-2011

    Directory of Open Access Journals (Sweden)

    Ignjatović Ljiljana

    2013-01-01

    Full Text Available Background/Aim. Tremendous breakthrough in solid organ transplantation was made with the introduction of calcineurin inhibitors (CNI. At the same time, they are potentially nephrotoxic drugs with influence on onset and progression of renal graft failure. The aim of this study was to evaluate the outcome of a conversion from CNIbased immunosuppressive protocol to sirolimus (SRL in recipients with graft in chronic kidney disease (CKD grade III and proteinuria below 500 mg/day. Methods. In the period 2003-2011 24 patients (6 famale and 18 male, mean age 41 ± 12.2 years, on triple immunosuppressive therapy: steroids, antiproliferative drug [mycophenolate mofetil (MMF or azathiopirine (AZA] and CNI were switched from CNI to SRL and followe-up for 76 ± 13 months. Nine patients (the group I had early postransplant conversion after 4 ± 3 months and 15 patients (the group II late conversion after 46 ± 29 months. During the regular outpatient controls we followed graft function through the serum creatinine and glomerular filtration rate (GFR, proteinuria, lipidemia and side effects. Results. Thirty days after conversion, in all the patients GFR, proteinuria and lipidemia were insignificantly increased. In the first two post-conversion months all the patients had at least one urinary or respiratory infection, and 10 patients reactivated cytomegalovirus (CMV infection or disease, and they were successfully treated with standard therapy. After 21 ± 11 months 15 patients from both groups discontinued SRL therapy due to reconversion to CNI (10 patients and double immunosuppressive therapy (3 patients, return to hemodialysis (1 patient and death (1 patient. Nine patients were still on SRL therapy. By the end of the follow-up they significantly improved GFR (from 53.2 ± 12.7 to 69 ± 15 mL/min, while the increase in proteinuria (from 265 ± 239 to 530.6 ± 416.7 mg/day and lipidemia (cholesterol from 4.71 ± 0.98 to 5.61 ± 1.6 mmol/L and triglycerides

  7. Comparasion of iles-iles and cassava tubers as a Saccharomyces cerevisiae substrate fermentation for bioethanol production

    Directory of Open Access Journals (Sweden)

    KUSMIYATI

    2010-01-01

    Full Text Available Kusmiyati (2010 Comparasion of iles-iles and cassava tubers as a Saccharomyces cerevisiae substrate fermentation for bioethanol production. Nusantara Bioscience 2: 7-13. The production of bioethanol increase rapidly because it is renewable energy that can be used to solve energy crisis caused by the depleting of fossil oil. The large scale production bioethanol in industry generally use feedstock such as sugarcane, corn, and cassava that are also required as food resouces. Therefore, many studies on the bioethanol process concerned with the use raw materials that were not competing with food supply. One of the alternative feedstock able to utilize for bioethanol production is the starchy material that available locally namely iles-iles (Amorphophallus mueller Blum. The contain of carbohydrate in the iles-iles tubers is around 71.12 % which is slightly lower as compared to cassava tuber (83,47%. The effect of various starting material, starch concentration, pH, fermentation time were studied. The conversion of starchy material to ethanol have three steps, liquefaction and saccharification were conducted using α-amylase and amyloglucosidase then fermentation by yeast S.cerevisiaie. The highest bioethanol was obtained at following variables starch:water ratio=1:4 ;liquefaction with 0.40 mL α-amylase (4h; saccharification with 0.40 mL amyloglucosidase (40h; fermentation with 10 mL S.cerevisiae (72h producing bioethanol 69,81 g/L from cassava while 53,49 g/L from iles-iles tuber. At the optimum condition, total sugar produced was 33,431 g/L from cassava while 16,175 g/L from iles-iles tuber. The effect of pH revealed that the best ethanol produced was obtained at pH 5.5 during fermentation occurred for both cassava and iles-iles tubers. From the results studied shows that iles-iles tuber is promising feedstock because it is producing bioethanol almost similarly compared to cassava.

  8. In search of the best performing Saccharomyces cerevisiae strain isolated from natural or industrial habitats for the production of bioethanol

    OpenAIRE

    Ruyters, Stefan; Mukherjee, Vaskar; Van De Voorde, Ilse; Aerts, Guido; Verstrepen, Kevin; Willems, Kris; Lievens, Bart

    2014-01-01

    1. Introduction One of the main challenges in advanced 2nd generation bioethanol production is the search for and/or engineering of robust microorganisms able to also ferment pentose sugars next to hexoses present in the biomass hydrolysate as well as to cope with a variety of stressors such as osmo- and ethanol stress, and stress from chemical inhibitors present in the lignocellulosic hydrolysate. The aim of this work was to subject multi-tolerant Saccharomyces cerevisiae strains to ferme...

  9. Potential of fecal waste for the production of biomethane, bioethanol and biodiesel.

    Science.gov (United States)

    Gomaa, Mohamed A; Abed, Raeid M M

    2017-07-10

    Fecal waste is an environmental burden that requires proper disposal, which ultimately becomes also an economic burden. Because fecal waste is nutrient-rich and contains a diverse methanogenic community, it has been utilized to produce biomethane via anaerobic digestion. Carbohydrates and lipids in fecal waste could reach up to 50% of the dry weight, which also suggests a potential as a feedstock for bioethanol and biodiesel production. We measured biomethane production from fecal waste of cows, chickens, goats and humans and compared the microbial community composition before and after anaerobic digestion. We also compared the fecal waste for cellulase production, saccharification and fermentation to produce bioethanol and for lipid content and fatty acid profiles to produce biodiesel. All fecal waste produced biomethane, with the highest yield of 433.4±77.1ml CH 4 /g VS from cow fecal waste. Production of bioethanol was achieved from all samples, with chicken fecal waste yielding as high as 1.6±0.25g/l. Sludge samples exhibited the highest extractable portion of lipids (20.9±0.08wt%) and conversion to fatty acid methyl esters (11.94wt%). Utilization of fecal waste for the production of biofuels is environmentally and economically beneficial. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.

    Science.gov (United States)

    Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng

    2016-08-01

    The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An analysis of net energy production and feedstock availability for biobutanol and bioethanol.

    Science.gov (United States)

    Swana, Jeffrey; Yang, Ying; Behnam, Mohsen; Thompson, Robert

    2011-01-01

    In this study, the potential of biobutanol was evaluated as an alternative to bioethanol which is currently the predominant liquid biofuel in the US. Life-cycle assessments (LCAs) suggest that the net energy generated during corn-to-biobutanol conversion is 6.53 MJ/L, which is greater than that of the corn-derived bioethanol (0.40 MJ/L). Additionally, replacing corn with lignocellulosic materials in bioethanol production can further increase the net energy to 15.90 MJ/L. Therefore, it was interesting to study the possibility of using domestically produced switchgrass, hybrid poplar, corn stover, and wheat straw as feedstocks to produce liquid biofuels in the US. By sustainable harvest based on current yields, these materials can be converted to 8.27 billion gallons of biobutanol replacing 7.55 billion gallons of gasoline annually. To further expand the scale, significant crop yield increases and appropriate land use changes are considered two major requirements. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Pequi cake composition, hydrolysis and fermentation to bioethanol

    Directory of Open Access Journals (Sweden)

    A. L. Macedo

    2011-03-01

    Full Text Available Pequizeiro (Caryocar brasiliense Camb fruits have been evaluated as a potential raw material for the newly established biodiesel industry. This scenario demands applications using the solid co-product derived from the extraction of pequi oil, called cake or meal. This study analyses the acid hydrolysis of carbohydrates present in the pequi meal in order to obtain fermentable sugars and evaluates their conversion to bioethanol. There was 27% starch in the pequi meal. The use of a CCRD experimental design type to study the acid saccharification of pequi meal results in 61.6% conversion of its starch content to reducing sugars. Positive and significant linear effects were observed for H2SO4 concentration and temperature factors, while the quadratic effect of H2SO4 concentration and the linear effect of solid-liquid ratio were negative. Even, with non-optimized fermentative condition using 1% of dried baker's yeast in conical flasks, it was possible to obtain a value equivalent to 53 L of ethanol per ton of hydrolyzed pequi meal.

  13. Catalytic valorization of bioethanol to biobutanol

    Energy Technology Data Exchange (ETDEWEB)

    Riittonen, Toni [Abo Akademi Univ., Turku (Finland). Lab. of Industrial Chemistry and Reaction Engineering; Mikkola, Jyri-Pekka [Umea Univ. (Sweden). Chemical-Biological Center

    2010-07-01

    Bioethanol, or ethyl alcohol, has several physico-chemical disadvantages as engine fuel, such as it's corrosiveness and low energy content. One way to overcome these shortcomings is to upgrade it to higher bioalcohols like 1-butanol. Several catalysts were screened in isobaric minireactors and the most promising ones were subject to further experiments in a high-pressure autoclave batch-reactor setup. (orig.)

  14. Bioethanol Fuel Production Concept Study: Topline Report

    Energy Technology Data Exchange (ETDEWEB)

    Marketing Horizons, Inc.

    2001-11-19

    The DOE is in the process of developing technologies for converting plant matter other than feed stock, e.g., corn stover, into biofuels. The goal of this research project was to determine what the farming community thinks of ethanol as a fuel source, and specifically what they think of bioethanol produced from corn stover. This project also assessed the image of the DOE and the biofuels program and determined the perceived barriers to ethanol-from-stover production.

  15. Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates

    Science.gov (United States)

    Pasha, Chand; Rao, L. Venkateswar

    No other sustainable option for production of transportation fuels can match ethanol made from lignocellulosic biomass with respect to its dramatic environmental, economic, strategic and infrastructure advantages. Substantial progress has been made in advancing biomass ethanol (bioethanol) production technology to the point that it now has commercial potential, and several firms are engaged in the demanding task of introducing first-of-a-kind technology into the marketplace to make bioethanol a reality in existing fuel-blending markets. In order to lower pollution India has a long-term goal to use biofuels (bioethanol and biodiesel). Ethanol may be used either in pure form, or as a blend in petrol in different proportions. Since the cost of raw materials, which can account up to 50 % of the total production cost, is one of the most significant factors affecting the economy of alcohol, nowadays efforts are more concentrated on using cheap and abundant raw materials. Several forms of biomass resources exist (starch or sugar crops, weeds, oil plants, agricultural, forestry and municipal wastes) but of all biomass cellulosic resources represent the most abundant global source. The lignocellulosic materials include agricultural residues, municipal solid wastes (MSW), pulp mill refuse, switchgrass and lawn, garden wastes. Lignocellulosic materials contain two types of polysaccharides, cellulose and hemicellulose, bound together by a third component lignin. The principal elements of the lignocellulosic research include: i) evaluation and characterization of the waste feedstock; ii) pretreatment including initial clean up or dewatering of the feedstock; and iii) development of effective direct conversion bioprocessing to generate ethanol as an end product. Pre-treatment of lignocellulosic materials is a step in which some of the hemicellulose dissolves in water, either as monomeric sugars or as oligomers and polymers. The cellulose cannot be enzymatically hydrolyzed to

  16. Bio-ethanol production from waste potatoes

    Energy Technology Data Exchange (ETDEWEB)

    Kilpimaa, S.; Kuokkanen, T., Lassi, U. (Univ. of Oulu, Dept. of Chemistry (Finland)). email: toivo.kuokkanen@oulu.fi

    2009-07-01

    Ethanol can be used as an alternative fuel to gasoline. Bio-ethanol can be produced by fermentation from several renewable sources, such as from potatoes and corn. Globally, there is a growing interest for the production of ecologically sustainable bio-fuels. The target in the European Union is to compensate 5.75% of the fossil fuels which is used by traffic with biomass-based fuel by the year 2010 and 20% by the year 2020. The goal of United Nations climate conference in Bali is that industrial countries have to decrease total carbon dioxide effluents 30% by the year 2020. Potato-based bio-ethanol production utilizes waste potatoes as a raw material. Waste potatoes are produced as by-products in potato cultivation. The quality of waste potatoes is high enough for food production but the size is incorrect. In food potato industry a lot of solid potato mash is also formed which can be considered as raw material in bio-ethanol production

  17. Modeling of China's cassava-based bioethanol supply chain operation and coordination

    International Nuclear Information System (INIS)

    Ye, Fei; Li, Yina; Lin, Qiang; Zhan, Yuanzhu

    2017-01-01

    As a useful alternative to petroleum-based fuel, biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. Cassava is viewed as an important and highly attractive nonedible feedstock for the production of biofuels. In this paper, a game-theoretic approach is proposed to explore decision behavior within a cassava-based bioethanol supply chain under the condition of yield uncertainty. In addition, a production cost sharing contract is proposed to overcome the double marginalization effect due to competition between supply chain players. With data from China's cassava-based bioethanol industry, the paper analyzes the effects of the farmer's capacity, risk aversion, yield uncertainty, the conversion ratio, the bioethanol's market price and ethanol plant's operation cost on optimal decisions within the supply chain and its overall performance. In addition, the effectiveness of the proposed production cost sharing contract is tested, and the results show that it can enhance the supply of cassava, increase the utility of the whole supply chain and reduce the level of greenhouse gas (GHG) emissions. The implications are set out for policy makers regarding how to promote the development of the biofuel industry, to guarantee the supply of feedstock, to reduce GHG emissions and to promote rural development. - Highlights: • Decision behavior within the cassava-based bioethanol supply chain is modeled. • Yield uncertainty and farmers' capacity and risk aversion are considered. • A production cost sharing contract is proposed to coordinate the supply chain. • The cassava supply, the utility and reduction on GHG emissions are increased. • Policy implications regarding how to promote biofuel supply chains are set out.

  18. A Method for Producing Bioethanol from the Lignocellulose of Shorea uliginosa Foxw. by Enzymatic Saccharification and Fermentation

    Directory of Open Access Journals (Sweden)

    Wahyu Dwianto

    2014-07-01

    Full Text Available Several papers have reported various technical aspects of lignocellulosic bioethanol production. Recalcitrance to saccharification is a major limitation for conversion of lignocellulosic biomass to ethanol. The biological process for converting lignocellulose to fuel ethanol includes delignification in order to liberate cellulose and hemicelluloses, depolymerization of carbohydrate polymers to produce free sugars, and sugar fermentation to produce ethanol. Access of plant cell wall polysaccharides to chemical, enzymatic and microbial digestion is limited by many factors, including the presence of lignin and hemicellulose that cover cellulose microfibrils. An effort to support the fuel ethanol fermentation industry using the Indonesian woody plant species Shorea uliginosa Foxw., was undertaken with regard to the established efficient bioethanol production process. This paper relates to a method for producing bioethanol from the lignocellulose of S. uliginosa Foxw. by saccharification and fermentation of xylem. A literature study of previous research on cellulose hydrolysis as a method for producing bioethanol was necessary. The objective of this study was to gain a deeper understanding of the degradation mechanisms of cellulose by enzymes through a study of previous research, which were then compared to the new method.

  19. Bioethanol production from date palm fruit waste fermentation using ...

    African Journals Online (AJOL)

    Every year, more than 236,807 tons, equivalent to 30% of date-palm fruits produced in Algeria, is lost during picking, storage, and commercialization processes. Gasification of this huge biomass can generate biogas such as bioethanol, biodiesel, gasoline and other useful substances. Bioethanol is becoming the main ...

  20. Bioethanol sources in Pakistan: A renewable energy resource

    African Journals Online (AJOL)

    ajl yemi

    2011-12-30

    Dec 30, 2011 ... Hemp. Eucalyptus. Figure 1. main sources of bioethanol. yeast, S. cerevisiae, which is also known as baker's yeast, is used especially in baking industry. One hundred grams of glucose will produce 270 ml of ethanol theoretically. However, the actual yield of bioethanol produced is less than 100%; the ...

  1. Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock

    DEFF Research Database (Denmark)

    Seghetta, Michele; Østergård, Hanne; Bastianoni, Simone

    2014-01-01

    of the environmental support comes from local renewable flows being 40% for OL and 88% for KB. The difference between the two case studies is partly due to the contribution of energy from waves, which plays an important role in carrying macroalgae towards the coast in Koge Bay. Energy-wise, one J of fossil energy......-requirement approach as well as with a marginal-requirement approach accounting only what the bioethanol production requires of additional processes, i.e. mainly transportation and conversion of the macroalgae in a biorefinery facility which is assumed to be situated close to an existing industry producing waste heat...

  2. Pretreatment Technologies of Lignocellulosic Materials in Bioethanol Production Process

    Directory of Open Access Journals (Sweden)

    Mohamad Rusdi Hidayat

    2013-06-01

    Full Text Available Bioethanol is one type of biofuel that developed significantly. The utilization of bioethanol is not only limited for fuel, but also could be used as material for various industries such as pharmaceuticals, cosmetics, and food. With wide utilization and relatively simple production technology has made bioethanol as the most favored biofuel currently. The use of lignocellulosic biomass, microalgae, seaweeds, even GMO (Genetically modified organisms as substrates for bioethanol production has been widely tested. Differences in the materials eventually led to change in the production technology used. Pretreatment technology in the bioethanol production using lignocellulosic currently experiencing rapid development. It is a key process and crucial for the whole next steps. Based on the advantages and disadvantages from all methods, steam explotion and liquid hot water methods are the most promising  pretreatment technology available.

  3. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  4. Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Directory of Open Access Journals (Sweden)

    Lili Zhao

    2015-05-01

    Full Text Available Lignocellulosic biomass-based ethanol is categorized as 2nd generation bioethanol in the advanced biofuel portfolio. To make sound incentive policy proposals for the Chinese government and to develop guidance for research and development and industrialization of the technology, the paper reports careful techno-economic and sensitivity analyses performed to estimate the current competitiveness of the bioethanol and identify key components which have the greatest impact on its plant-gate price (PGP. Two models were developed for the research, including the Bioethanol PGP Assessment Model (BPAM and the Feedstock Cost Estimation Model (FCEM. Results show that the PGP of the bioethanol ranges $4.68–$6.05/gal (9,550–12,356 yuan/t. The key components that contribute most to bioethanol PGP include the conversion rate of cellulose to glucose, the ratio of five-carbon sugars converted to ethanol, feedstock cost, and enzyme loading, etc. Lignocellulosic ethanol is currently unable to compete with fossil gasoline, therefore incentive policies are necessary to promote its development. It is suggested that the consumption tax be exempted, the value added tax (VAT be refunded upon collection, and feed-in tariff for excess electricity (byproduct be implemented to facilitate the industrialization of the technology. A minimum direct subsidy of $1.20/gal EtOH (2,500 yuan/t EtOH is also proposed for consideration.

  5. On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of autothermal reforming and steam reforming

    Science.gov (United States)

    Martin, Stefan; Wörner, Antje

    2011-03-01

    In the 21st century biofuels will play an important role as alternative fuels in the transportation sector. In this paper different reforming options (steam reforming (SR) and autothermal reforming (ATR)) for the on-board conversion of bioethanol and biodiesel into a hydrogen-rich gas suitable for high temperature PEM (HTPEM) fuel cells are investigated using the simulation tool Aspen Plus. Special emphasis is placed on thermal heat integration. Methyl-oleate (C19H36O2) is chosen as reference substance for biodiesel. Bioethanol is represented by ethanol (C2H5OH). For the steam reforming concept with heat integration a maximum fuel processing efficiency of 75.6% (76.3%) is obtained for biodiesel (bioethanol) at S/C = 3. For the autothermal reforming concept with heat integration a maximum fuel processing efficiency of 74.1% (75.1%) is obtained for biodiesel (bioethanol) at S/C = 2 and λ = 0.36 (0.35). Taking into account the better dynamic behaviour and lower system complexity of the reforming concept based on ATR, autothermal reforming in combination with a water gas shift reactor is considered as the preferred option for on-board reforming of biodiesel and bioethanol. Based on the simulation results optimum operating conditions for a novel 5 kW biofuel processor are derived.

  6. Optimization of bioethanol production from carbohydrate rich wastes by extreme thermophilic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, A.F.

    2013-05-15

    Second-generation bioethanol is produced from residual biomass such as industrial and municipal waste or agricultural and forestry residues. However, Saccharomyces cerevisiae, the microorganism currently used in industrial first-generation bioethanol production, is not capable of converting all of the carbohydrates present in these complex substrates into ethanol. This is in particular true for pentose sugars such as xylose, generally the second major sugar present in lignocellulosic biomass. The transition of second-generation bioethanol production from pilot to industrial scale is hindered by the recalcitrance of the lignocellulosic biomass, and by the lack of a microorganism capable of converting this feedstock to bioethanol with high yield, efficiency and productivity. In this study, a new extreme thermophilic ethanologenic bacterium was isolated from household waste. When assessed for ethanol production from xylose, an ethanol yield of 1.39 mol mol-1 xylose was obtained. This represents 83 % of the theoretical ethanol yield from xylose and is to date the highest reported value for a native, not genetically modified microorganism. The bacterium was identified as a new member of the genus Thermoanaerobacter, named Thermoanaerobacter pentosaceus and was subsequently used to investigate some of the factors that influence secondgeneration bioethanol production, such as initial substrate concentration and sensitivity to inhibitors. Furthermore, T. pentosaceus was used to develop and optimize bioethanol production from lignocellulosic biomass using a range of different approaches, including combination with other microorganisms and immobilization of the cells. T. pentosaceus could produce ethanol from a wide range of substrates without the addition of nutrients such as yeast extract and vitamins to the medium. It was initially sensitive to concentrations of 10 g l-1 of xylose and 1 % (v/v) ethanol. However, long term repeated batch cultivation showed that the strain

  7. Fuel consumption and emission on fuel mixer low-grade bioethanol fuelled motorcycle

    OpenAIRE

    Abikusna Setia; Sugiarto Bambang; Zulfan Azami

    2017-01-01

    Bioethanol is currently used as an alternative fuel for gasoline substitute (fossil fuel) because it can reduce the dependence on fossil fuel and also emissions produced by fossil fuel which are CO2, HO, NOx. Bioethanol is usually used as a fuel mixed with gasoline with certain comparison. In Indonesia, the usage is still rare. Bioethanol that is commonly used is bioethanol anhydrous 99.5%. In the previous studies, bioethanol was distilled from low to high grade to produce ethanol anhydrous. ...

  8. Early Conversion from Tacrolimus to Belatacept in a Highly Sensitized Renal Allograft Recipient with Calcineurin Inhibitor-Induced de novo Post-Transplant Hemolytic Uremic Syndrome

    Directory of Open Access Journals (Sweden)

    Vasishta S. Tatapudi

    2018-01-01

    Full Text Available Background: Kidney transplantation is the first-line therapy for patients with end-stage renal disease since it offers greater long-term survival and improved quality of life when compared to dialysis. The advent of calcineurin inhibitor (CNI-based maintenance immunosuppression has led to a clinically significant decline in the rate of acute rejection and better short-term graft survival rates. However, these gains have not translated into improvement in long-term graft survival. CNI-related nephrotoxicity and metabolic side effects are thought to be partly responsible for this. Case Presentation: Here, we report the conversion of a highly sensitized renal transplant recipient with pretransplant donor-specific antibodies from tacrolimus to belatacept within 1 week of transplantation. This substitution was necessitated by the diagnosis of CNI-induced de novo post-transplant hemolytic uremic syndrome. Conclusion: Belatacept is a novel costimulation blocker that is devoid of the nephrotoxic properties of CNIs and has been shown to positively impact long-term graft survival and preserve renal allograft function in low-immunologic-risk kidney transplant recipients. Data regarding its use in patients who are broadly sensitized to human leukocyte antigens are scarce, and the increased risk of rejection associated with belatacept has been a deterrent to more widespread use of this immunosuppressive agent. This case serves as an example of a highly sensitized patient that has been successfully converted to a belatacept-based CNI-free regimen.

  9. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    . Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...... content trough liquefaction and SSF, the cellulase and xylanase activity remained at 80% of the initial value. During distillation, the thermostable enzymes were more temperature and ethanol tolerant compared to mesophilic enzymes (chapter 7). For both mixtures it was seen that an increasing ethanol...

  10. Coproduction of bioethanol with other biofuels

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    Large scale transformation of biomass to more versatile energy carriers has most commonly been focused on one product such as ethanol or methane. Due to the nature of the biomass and thermodynamic and biological constraints, this approach is not optimal if the energy content of the biomass is sup...... on conventional corn- or grain-based bioethanol plants, and suggest that petroleum-base refineries and biorefineries appropriately can be coupled during the transition period from a fossil fuel to a renewable fuel economy....

  11. The potential of macroalgae as a source of carbohydrates for use in bioethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, A.N. [School of Earth, Atmospheric and Environmental Sciences, University of Manchester (United Kingdom); Chukwu, M.A. [Department of Sustainable Chemical Engineering, University of Newcastle Upon Tyne (United Kingdom)

    2012-07-01

    and hence the less likely the potentials of synthesizing bioethanol from the sample. Conversely, a larger biomass signified the presence of more sugars, hence the greater the potentials for synthesis of bioethanol from the sample with larger biomass.

  12. Integrated bioethanol and protein production from brown seaweed Laminaria digitata.

    Science.gov (United States)

    Hou, Xiaoru; Hansen, Jonas Høeg; Bjerre, Anne-Belinda

    2015-12-01

    A wild-growing glucose-rich (i.e. 56.7% glucose content) brown seaweed species Laminaria digitata, collected from the North Coast of Denmark in August 2012, was used as the feedstock for an integrated bioethanol and protein production. Glutamic acid and aspartic acid are the two most abundant amino acids in the algal protein, both with proportional content of 10% in crude protein. Only minor pretreatment of milling was used on the biomass to facilitate the subsequent enzymatic hydrolysis and fermentation. The Separate Hydrolysis and Fermentation (SHF) resulted in obviously higher ethanol yield than the Simultaneous Saccharification and Fermentation (SSF). High conversion rate at maximum of 84.1% glucose recovery by enzymatic hydrolysis and overall ethanol yield at maximum of 77.7% theoretical were achieved. Protein content in the solid residues after fermentation was enriched by 2.7 fold, with similar distributions of amino acids, due to the hydrolysis of polymers in the seaweed cell wall matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Use of tropical maize for bioethanol production.

    Science.gov (United States)

    Chen, Ming-Hsu; Kaur, Prabhjot; Dien, Bruce; Below, Frederick; Vincent, Michael L; Singh, Vijay

    2013-08-01

    Tropical maize is an alternative energy crop being considered as a feedstock for bioethanol production in the North Central and Midwest United States. Tropical maize is advantageous because it produces large amounts of soluble sugars in its stalks, creates a large amount of biomass, and requires lower inputs (e.g. nitrogen) than grain corn. Soluble sugars, including sucrose, glucose and fructose were extracted by pressing the stalks at dough stage (R4). The initial extracted syrup fermented faster than the control culture grown on a yeast extract/phosphate/sucrose medium. The syrup was subsequently concentrated 1.25-2.25 times, supplemented with urea, and fermented using Saccharomyces cerevisiae for up to 96 h. The final ethanol concentrations obtained were 8.1 % (v/v) to 15.6 % (v/v), equivalent to 90.3-92.2 % of the theoretical yields. However, fermentation productivity decreased with sugar concentration, suggesting that the yeast might be osmotically stressed at the increased sugar concentrations. These results provide in-depth information for utilizing tropical maize syrup for bioethanol production that will help in tropical maize breeding and development for use as another feedstock for the biofuel industry.

  14. The contribution of bioethanol to sustainable development in Serbia

    Directory of Open Access Journals (Sweden)

    Popov Stevan D.

    2013-01-01

    Full Text Available The pollution caused by the use of fossil fuels for the production of mechanical or electrical energy is one of the most important environmental issues nowa­days. In this respect, biofuels represent a viable source of energy. Bioethanol as a renewable energy source is derived from organic material of plant origin, so-called biomass, thus reducing environmental pollution. The aim of this study was to analyze the potential of bioethanol in meeting future energy demands in the Republic of Serbia. [Projekat Ministarstva nauke Republike SRbije, br. TR31002: The improvement of bioethanol production from sugar beet processing products

  15. Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment.

    Science.gov (United States)

    Kim, Ho Myeong; Choi, Yong-Soo; Lee, Dae-Seok; Kim, Yong-Hwan; Bae, Hyeun-Jong

    2017-07-01

    Nowadays, coffee residue (CR) after roasting is recognized as one of the most useful resources in the world for producing the biofuel and bio-materials. In this study, we evaluated the potential of bio-sugar and bioethanol production from acid-chlorite treated CR. Notably, CR treated three times with acid-chlorite after organic solvent extraction (OSE-3), showed the high monosaccharide content, and the efficient sugar conversion yield compared to the other pretreatment conditions. The OSE-3 (6% substrate loading, w/v) can produce bio-sugar (0.568g/g OSE-3). Also, simultaneous saccharification and fermentation (SSF) produced ethanol (0.266g/g OSE-3), and showed an ethanol conversion yield of 73.8% after a 72-h reaction period. These results suggest that acid-chlorite pretreatment can improve the bio-sugar and bioethanol production of CR by removing the phenolic and brown compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production.

    Science.gov (United States)

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa M; Aguilar, Cristóbal N; Garrote, Gil; Ruiz, Héctor A

    2017-11-01

    This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioethanol from corn stover – a review and technical assessment of alternative biotechnologies

    DEFF Research Database (Denmark)

    Zhao, Yan; Damgaard, Anders; Christensen, Thomas Højlund

    2018-01-01

    , conversion efficiencies and material consumption, we were able to quantify the material flows for each technological configuration and estimate the uncertainty of the flows. The eight technological configurations produced 11–22% ethanol from the dry solid content of the corn stover. Technologies using......Reviewing the literature from the last decade regarding the bioconversion of corn stover into ethanol, 474 references were identified containing 561 datasets. We found 144 datasets which were sufficiently consistent and detailed to address the current state of the art of corn stover conversion...... largely identical in all datasets, albeit a range of operating conditions was reported. The final distillation of the ethanol was very rarely included in the datasets. By parameterising the bioethanol production by 26 parameters, including corn stover compositions, solid loadings, operational conditions...

  18. Bioethanol Production Optimization: A Thermodynamic Analysis

    Science.gov (United States)

    Álvarez, Víctor H.; Rivera, Elmer Ccopa; Costa, Aline C.; Filho, Rubens Maciel; Maciel, Maria Regina Wolf; Aznar, Martín

    In this work, the phase equilibrium of binary mixtures for bioethanol production by continuous extractive process was studied. The process is composed of four interlinked units: fermentor, centrifuge, cell treatment unit, and flash vessel (ethanol-congener separation unit). A proposal for modeling the vapor-liquid equilibrium in binary mixtures found in the flash vessel has been considered. This approach uses the Predictive Soave-Redlich-Kwong equation of state, with original and modified molecular parameters. The congeners considered were acetic acid, acetaldehyde, furfural, methanol, and 1-pentanol. The results show that the introduction of new molecular parameters r and q in the UNIFAC model gives more accurate predictions for the concentration of the congener in the gas phase for binary and ternary systems.

  19. Production of Bioethanol from Waste Potato

    Directory of Open Access Journals (Sweden)

    Merve Duruyurek

    2015-02-01

    Full Text Available Using primary energy sources in World as fossil fuels, causes air pollution and climate change. Because of these reasons, people looking for renewable energy suppliers which has less carbondioxide and less pollution. Carbon in biofuels is producing from photosynthesis. For this, burning biofuels don’t increase carbondioxide in atmosphere. Scientists predict that plants with high carbonhydrate and protein contents are 21. centuries biofuels. Potatoes are producing over 280 million in whole world and Turkey is 6th potato producer. Turkey produces 5250000 tonne of potatoes. Approximately 20% of potatoes are waste in Niğde. Our study aimed to produce bioethanol from Solanum tuberosum by using the yeast Saccharomyces cerevisiae. As a result renewable energy sources can be produced from natural wastes.

  20. A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas

    International Nuclear Information System (INIS)

    Ben Yahmed, Nesrine; Jmel, Mohamed Amine; Ben Alaya, Monia; Bouallagui, Hassib; Marzouki, M. Nejib; Smaali, Issam

    2016-01-01

    Highlights: • Chaetomorpha linum was used as sustainable feedstock for co-production of bioethanol and biomethane. • An eco-friendly process was developed, only generating 0.3 ± 0.01 g/g of waste. • Ethanol yield obtained was 0.41 g/g reducing sugar. • Methane yield obtained was 0.26 ± 0.045 L/gVS. - Abstract: An innovative integrated biorefinery approach using the green macroalgae Chaetomorpha linum was investigated in the present study for the co-production of bioethanol and biogas. Among three pretreatments of C. linum biomass, consisting of acidic, neutral and alkali ones, 3% NaOH pretreatment gave the best result in terms of thallus disintegration, biomass recovery and enzymatic digestibility as demonstrated by scanning electron microscopy and saccharification tests. The hydrolysis of C. linum feedstock with a crude specific enzyme preparation, locally produced from fermentation of Aspergillus awamori, at 45 °C, pH 5 for 30 h gave the maximum yield of fermentable sugar of 0.22 ± 0.02 g/g dry substrate. An ethanol yield of 0.41 g/g reducing sugar corresponding to about 0.093 g/g pretreated algae was obtained after alcoholic fermentation by Saccharomyces cerevisiae. In the integrated proposed process, mycelium issued from the fungal fermentation, liquid issued from alkali pretreatment, residual from the non-hydrolysable biomass and all effluents and co-products represent a heterogeneous substrate that feed an anaerobic digester for biogas production. GC-analysis of this later showed that the biomethane yield reached 0.26 ± 0.045 L/gVS. This study presents therefore an eco-friendly biorefining process, which efficiently coproduce bioethanol and biomethane and generate only a single waste (0.3 ± 0.01 g/g) allowing an almost complete conversion of the algal biomass.

  1. Bioethanol as a major source of energy

    International Nuclear Information System (INIS)

    Anagha, Phani

    2009-01-01

    Full text: Achieving sustainability in agriculture requires taking into account many different factors: global climate, pollution, better use of industrial water, options regarding the use of fertilizers, pesticides, and herbicides, and also economic sustainability in terms of costs, competitiveness, and the number and quality of jobs created. The sugarcane industry is a good example of the integration of such concerns. It also illustrates what can be attained when people in developing countries receive the training they need to develop their own technologies. Bioethanol has taken precedence as Prime Biofuel after lot of controversy erupted on international food shortages and spiraling food prices. In spite of all the controversy Shrouding Biofuels, there has been universal acceptance and understanding that we need to continually look at alternate sources of fuels and feed stock's which are non food and this has seen visible interest for Sugarcane based Bioethanol to wheat, Maize and other food crops. In July 2008 alone, big investments in sugarcane/ethanol production were announced across the globe in sugar producing countries in the order of over 500 million dollars. The preceding months saw planned investment in the billions of dollars in the sector. The International Energy Agency sees world Biofuels production rising from 1.35 million barrels a day in 2008 to 1.95 million barrels a day in 2013- only five years away- and it is a safe bet that most of this increase will come from sugarcane ethanol. Dow Jones notes the sector seems impervious to the liquidity crunch with new investment being announced in Brazil despite high levels of existing debt. Pressure is also mounting on the developed countries to free up current import. (author)

  2. Life Cycle Assessment of second generation bioethanol produced from low-input dedicated crops of Arundo donax L.

    Science.gov (United States)

    Zucaro, Amalia; Forte, Annachiara; Basosi, Riccardo; Fagnano, Massimo; Fierro, Angelo

    2016-11-01

    This work presents a Life Cycle Assessment (LCA) of bioethanol (EtOH) from perennial Arundo donax L. feedstock. A "cradle-to-wheel" approach was applied considering primary data for the cultivation of dedicated crops on hilly marginal lands and innovative "second generation technologies" for feedstock conversion into EtOH. The goals of the study were to: (i) quantify impacts of lignocellulosic EtOH production/use chain, (ii) identify hotspots and (iii) compare the environmental performance of different bioethanol-gasoline vehicles, E10 (10% EtOH and 90% gasoline) and E85 (85% EtOH and 15% gasoline), with a conventional gasoline passenger car. Results for E85 underlined that the feedstock production and the use phase were the prevailing contributors, whilst for E10 the gasoline production phase shared the largest part of impacts. The comparison showed that vehicles using lignocellulosic bioethanol have potentially significant benefits on global warming, ozone depletion, photochemical oxidant formation and fossil depletion in respect to conventional passenger car. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash.

    Science.gov (United States)

    Raghavi, Subbiah; Sindhu, Raveendran; Binod, Parameswaran; Gnansounou, Edgard; Pandey, Ashok

    2016-01-01

    A novel sequential pretreatment strategy using biodiesel industry generated waste glycerol assisted transition metal and alkali pretreatment of sugarcane trash were developed for the production of bioethanol. Various process parameters affecting pretreatment as well as hydrolysis were optimized by adopting a Taguchi design. This novel method was found to be superior when compared to conventional pretreatment strategies like acid and alkali in removing hemicelluloses and lignin and the hydrolyzate is devoid of major fermentation inhibitors like organic acids and furfurals. Physico-chemical changes of the native and the pretreated biomass were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Under optimized hydrolysis conditions 0.796 g of reducing sugar (pentoses and hexoses) per g of dry biomass after saccharification was produced. Fermentation of the non-detoxified hydrolyzate using Saccharomyces cerevisiae produced 31.928 g of bioethanol per g of dry biomass with an efficiency of 78.89%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Application of lignocellulolytic fungi for bioethanol production from renewable biomass

    Directory of Open Access Journals (Sweden)

    Jović Jelena M.

    2015-01-01

    Full Text Available Pretreatment is a necessary step in the process of conversion of lignocellulosic biomass to ethanol; by changing the structure of lignocellulose, enhances enzymatic hydrolysis, but, often, it consumes large amounts of energy and/or needs an application of expensive and toxic chemicals, which makes the process economically and ecologically unfavourable. Application of lignocellulolytic fungi (from the class Ascomycetes, Basidiomycetes and Deuteromycetes is an attractive method for pre-treatment, environmentally friendly and does not require the investment of energy. Fungi produce a wide range of enzymes and chemicals, which, combined in a variety of ways, together successfully degrade lignocellulose, as well as aromatic polymers that share features with lignin. On the basis of material utilization and features of a rotten wood, they are divided in three types of wood-decay fungi: white rot, brown rot and soft rot fungi. White rot fungi are the most efficient lignin degraders in nature and, therefore, have a very important role in carbon recycling from lignified wood. This paper describes fungal mechanisms of lignocellulose degradation. They involve oxidative and hydrolytic mechanisms. Lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase and enzymes able to catalyze formation of hydroxyl radicals (•OH such as glyoxal oxidase, pyranose-2-oxidase and aryl-alcohol oxidase are responsible for oxidative processes, while cellulases and hemicellulases are involved in hydrolytic processes. Throughout the production stages, from pre-treatment to fermentation, the possibility of their application in the technology of bioethanol production is presented. Based on previous research, the advantages and disadvantages of biological pre-treatment are pointed out.

  5. Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate.

    Science.gov (United States)

    Wu, Fang-Chen; Huang, Shu-Sing; Shih, Ing-Lung

    2014-09-01

    A practical process was developed for production of a high quality hydrolysate of waste newspaper that ensured its complete fermentability to bioethanol. After pretreatment with 0.1N NaOH for 12h and sequential acid and enzyme hydrolysis, 10.1g/L of glucose (50.5%), 1.38 g/L of mannose (6.9%) and 0.28 g/L of galactose (1.4%), a total of 11.76 g/L of fermentable sugars was obtained, which accounts for 88.7% of saccharification efficiency. The Saccharomyces cerevisiae BCRC20271 showed excellent co-fermentability of glucose, mannose and galactose in hydrolysate of waste newspaper. After cultivation of the hydrolysate at 24°C in static culture for 48 h, the final ethanol concentration of 5.72 g/L (96% conversion efficiency) was produced. Overall, 1000 kg of waste newspaper will produce 286 kg (362 L) of ethanol by the process developed, which reveals that waste newspaper has higher potential than many other lignocellulosic and seaweed feedstocks for bioethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Preparation and Characterization of Cellulose Nanocrystals from the Bio-ethanol Residuals

    Directory of Open Access Journals (Sweden)

    Lanxing Du

    2017-02-01

    Full Text Available This study was to explore the conversion of low-cost bio-residuals into high value-added cellulose nanocrystals. Two enzymatic hydrolyzed residuals (i.e., HRMMW and HRSPW were collected from two different bio-ethanol producing processes—hydrolyzing medium-milled wood (MMW and hydrolyzing acid sulfite pretreated wood (SPW, respectively. The results showed that both residuals contained over 20 wt % glucan with a crystallinity of about 30%, confirming the existence of cellulose in a well-organized structure in two bio-residuals. The cellulose nanocrystals (CNCs were successfully extracted by first bleaching the hydrolyzed residuals to remove lignin and then hydrolyzing them with sulfuric acid. The resulting CNCs displayed the flow birefringence under two crossed polarizers. Compared with CNCs from microfibrillated cellulose (CNCMCC, HRMMW and its resulted CNC present the smallest particle size and aspect ratio. CNCMCC had the larger particle size, aspect ratio, and higher z-potential value, CNCSPW presented a similar morphology to CNCMCC, and had the largest aspect ratio. The CNCMCC enhanced its high crystallinity to 85.5%. However, CNCMMW and CNCSPW had a better thermal stability and higher activation energy as well as onset temperature and maximum decomposition temperature. As a result, the CNCs from bio-ethanol residuals are valued and promising cellulose nanoparticle resources.

  7. Preparation and Characterization of Cellulose Nanocrystals from the Bio-ethanol Residuals.

    Science.gov (United States)

    Du, Lanxing; Wang, Jinwu; Zhang, Yang; Qi, Chusheng; Wolcott, Michael P; Yu, Zhiming

    2017-02-23

    This study was to explore the conversion of low-cost bio-residuals into high value-added cellulose nanocrystals. Two enzymatic hydrolyzed residuals (i.e., HR MMW and HR SPW ) were collected from two different bio-ethanol producing processes-hydrolyzing medium-milled wood (MMW) and hydrolyzing acid sulfite pretreated wood (SPW), respectively. The results showed that both residuals contained over 20 wt % glucan with a crystallinity of about 30%, confirming the existence of cellulose in a well-organized structure in two bio-residuals. The cellulose nanocrystals (CNCs) were successfully extracted by first bleaching the hydrolyzed residuals to remove lignin and then hydrolyzing them with sulfuric acid. The resulting CNCs displayed the flow birefringence under two crossed polarizers. Compared with CNCs from microfibrillated cellulose (CNC MCC ), HR MMW and its resulted CNC present the smallest particle size and aspect ratio. CNC MCC had the larger particle size, aspect ratio, and higher z-potential value, CNC SPW presented a similar morphology to CNC MCC , and had the largest aspect ratio. The CNC MCC enhanced its high crystallinity to 85.5%. However, CNC MMW and CNC SPW had a better thermal stability and higher activation energy as well as onset temperature and maximum decomposition temperature. As a result, the CNCs from bio-ethanol residuals are valued and promising cellulose nanoparticle resources.

  8. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  9. Production of Bioethanol from Carrot Pomace Using the Thermotolerant Yeast Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Chi-Yang Yu; Bo-Hong Jiang; Kow-Jen Duan [Tatung University, Tapei, Taiwan (China). Department of Bioengineering

    2013-03-15

    Carrot pomace, a major agricultural waste from the juice industry, was used as a feedstock for bioethanol production by fermentation with the thermotolerant yeast Kluyveromyces marxianus. Treatment of the carrot pomace with Accellerase(TM) 1000 and pectinase at 50 °C for 84 h, resulted in conversion of 42% of its mass to fermentable sugars, mainly glucose, fructose, and sucrose. Simultaneous saccharification and fermentation (SSF) at 42 °C was performed on 10% (w/v) carrot pomace; the concentration of ethanol reached 18 g/L and the yield of ethanol from carrot pomace was 0.18 g/g. The highest ethanol concentration of 37 g/L was observed with an additional charge of 10% supplemented to the original 10% of carrot pomace after 12 h; the corresponding yield was 0.185 g/g. Our results clearly demonstrated the potential of combining a SSF process with thermotolerant yeast for the production of bioethanol using carrot pomace as a feedstock.

  10. The effect of cassava-based bioethanol production on above-ground carbon stocks: A case study from Southern Mali

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Birch-Thomsen, Torben; Kristensen, Søren B.P.; Traoré, Oumar

    2012-01-01

    Increasing energy use and the need to mitigate climate change make production of liquid biofuels a high priority. Farmers respond worldwide to this increasing demand by converting forests and grassland into biofuel crops, but whether biofuels offer carbon savings depends on the carbon emissions that occur when land use is changed to biofuel crops. This paper reports the results of a study on cassava-based bioethanol production undertaken in the Sikasso region in Southern Mali. The paper outlines the estimated impacts on above-ground carbon stocks when land use is changed to increase cassava production. The results show that expansion of cassava production for bioethanol will most likely lead to the conversion of fallow areas to cassava. A land use change from fallow to cassava creates a reduction in the above-ground carbon stocks in the order of 4–13 Mg C ha −1 , depending on (a) the age of the fallow, (b) the allometric equation used and (c) whether all trees are removed or the larger, useful trees are preserved. This ‘carbon debt’ associated with the above-ground biomass loss would take 8–25 years to repay if fossil fuels are replaced with cassava-based bioethanol. - Highlights: ► Demands for biofuels make production of cassava-based bioethanol a priority. ► Farmers in Southern Mali are likely to convert fallow areas to cassava production. ► Converting fallow to cassava creates reductions in above-ground carbon stocks. ► Estimates of carbon stock reductions include that farmers preserve useful trees. ► The carbon debt associated with above-ground biomass loss takes 8–25 years to repay.

  11. Potential environmental impact of bioethanol production chain from fiber sorghum to be used in passenger cars.

    Science.gov (United States)

    Forte, Annachiara; Zucaro, Amalia; Fagnano, Massimo; Fierro, Angelo

    2017-11-15

    A life cycle assessment (LCA) was applied to assess the environmental load of a prospective local bioethanol (EtOH) production system in Southern Italy by using lignocellulosic Fiber sorghum (FS) feedstock. A two steps analysis was carried out considering: (i) a "cradle-to-farm gate" LCA to investigate thoroughly the FS cultivation on hilly marginal land and (ii) a "cradle-to-wheels" system boundary encompassing the environmental pressure of the whole EtOH supply-use chain. Primary data related to lignocellulosic biomass production were combined with experimental feedstock conversion processes through advanced second generation technology. The purpose was the evaluation of the environmental performance of different EtOH-gasoline mixtures in midsize passenger cars: E10 (10% of EtOH and 90% of gasoline) and E85 (85% of EtOH and 15% of gasoline). N fertilization appeared as the prevailing contributor of the crop phase. The "cradle-to-wheels" results concerning E10 passenger car disclosed that the main hotspots were represented by the input of low sulphur petrol (66%) and the linked tailpipe emissions (15%), for almost all the impact categories. Otherwise, for E85 flex-fuel vehicle, the major drivers were represented by the feedstock production (46%) and the imported electricity used in the conversion facility (18%). The FS EtOH blends entailed potential environmental benefits compared with the fossil counterpart (gasoline) for climate change, ozone and fossil depletions. Otherwise, they evidenced a worse profile in terms of acidification, eutrophication and particulate matter formation. Within the context of a the prospective territorial bio-refinery network, the comparison of the annual FS bioethanol based systems with similar EtOH scenarios from giant reed perennial crops highlighted: (i) the importance to optimize the N-management for FS feedstock cultivation and (ii) the need to increase the use of the renewable energy carriers along the industrial conversion

  12. Production of 2nd generation Bioethanol from Lucerne - Optimization of Hydrothermal Pretreatment

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Jensen, Morten; Schmidt, Jens Ejbye

    2012-01-01

    improves enzymatic convertibility, providing sufficient enzymatic conversion of carbohydrate to simple sugars for ethanol production. The HTT process was optimised for lucerne hay, and the pretreated biomass was assessed by carbohydrate analysis, inhibitor characterisation of liquid phases...

  13. Proteins for breaking barriers in lignocellulosic bioethanol production.

    Science.gov (United States)

    Ulaganathan, Kandasamy; Goud, Burragoni S; Reddy, Mettu M; Kumar, Vanaparthi P; Balsingh, Jatoth; Radhakrishna, Surabhi

    2015-01-01

    Reduction in fossil fuel consumption by using alternate sources of energy is a major challenge facing mankind in the coming decades. Bioethanol production using lignocellulosic biomass is the most viable option for addressing this challenge. Industrial bioconversion of lignocellulosic biomass, though possible now, is not economically viable due to presence of barriers that escalate the cost of production. As cellulose and hemicellulose are the major constituents of terrestrial biomass, which is available in massive quantities, hydrolysis of cellulose and hemicellulose by the microorganisms are the most prominent biochemical processes happening in the earth. Microorganisms possess different categories of proteins associated with different stages of bioethanol production and a number of them are already found and characterized. Many more of these proteins need to be identified which suit the specificities needed for the bioethanol production process. Discovery of proteins with novel specificities and application of genetic engineering technologies to harvest the synergies existing between them with the aim to develop consolidated bioprocess is the major direction of research in the future. In this review, we discuss the different categories of proteins used for bioethanol production in the context of breaking the barriers existing for the economically feasible lignocellulosic bioethanol production.

  14. Diversity of lactic acid bacteria of the bioethanol process

    Directory of Open Access Journals (Sweden)

    Azevedo Vasco

    2010-11-01

    Full Text Available Abstract Background Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB present in the bioethanol industrial processes in different distilleries of Brazil. Results A total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 105 and 8.9 × 108 CFUs/mL. Crude sugar cane juice contained 7.4 × 107 to 6.0 × 108 LAB CFUs. Most of the LAB isolates belonged to the genus Lactobacillus according to rRNA operon enzyme restriction profiles. A variety of Lactobacillus species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were L. fermentum and L. vini. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species L. fermentum and L. vini, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process. Conclusions This study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process.

  15. Sustainable low cost production of lignocellulosic bioethanol - "The carbon slaughterhouse". A process concept developed by BioGasol

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Langvad, Niels Bo

    2008-01-01

    BioGasol is a combined biotechnology and engineering company in the field of renewable energy. The core competences lie in the development and design of process technologies for the production of bioethanol and other energy products from lignocellulosic biomasses. BioGasol has developed proprietary...... in the region. BioGasol has a partnership with Tate & Lyle on the conversion of residual corn fibres into more ethanol. Furthermore in collaboration with Pacific Ethanol BioGasol will build a 2.7 mn Gallon cellulosic ethanol plant co-located with an existing corn to ethanol plant on the US North West Coast....

  16. Evaluation on Microalgae Biomass for Bioethanol Production

    Science.gov (United States)

    Chng, L. M.; Lee, K. T.; Chan, D. C. J.

    2017-06-01

    The depletion of energy resources has triggered worldwide concern for alternative sources, especially renewable energy. Microalgae biomass offers the most promising feedstock for renewable energy because of their impressive efficient growing characteristics and valuable composition. Simple cell structure of the microalgae would simplify the pretreatment technology thus increase the cost-effectiveness of biofuel production. Scenedesmus dimorphus is a carbohydrate-rich microalgae that has potential as biomass for bioethanol. The cultivation of Scenedesmus dimorphus under aeration of carbon dioxide enriched air resulted 1.47 g/L of dry biomass with composition of 12 w/w total lipid, 53.7 w/w carbohydrate and 17.4 protein. Prior to ethanolic fermentation with Saccharomyces cerevisiae, various pre-treatment methods were investigated to release and degrade the complex carbohydrate in cell biomass thus obtaining the maximal amount of digestible sugar for ethanolic yeast. In this study, sulfuric acid was used as hydrolysis agent while amyloglucosidase as enzymatic agent. Dried biomass via hydrothermal acidic hydrolysis yielded sugar which is about 89 of total carbohydrate at reaction temperature of 125 °C and acid concentration of 4 v/v. While combination of organosolv treatment (mixture of methanol and chloroform) with enzymatic hydrolysis yielded comparable amount of sugar with 0.568 g glucose/g treated-biomass. In this study, the significant information in pre-treatment process ensures the sustainability of the biofuel produced.

  17. Bioethanol production from coconut husk fiber

    Directory of Open Access Journals (Sweden)

    Mirelle Márcio Santos Cabral

    Full Text Available ABSTRACT: Population growth and the increasing search for healthy foods have led to a major consumption of coconut water and, hence, to an environmental impact caused by the inappropriate disposal of green coconut husks. This lignocellulosic biomass has deserved attention of researchers concerning the seeking of new usages, as, for example, in renewable fuels production technologies. This study examines the potential of green coconut husk fibers as a feedstock for the production of bioethanol. The coconut fibers were pretreated through an alkaline method, hydrolyzed enzymatically and submitted to ethanol fermentation with commercial yeasts of Saccharomyces cerevisiae. Despite the significant loss of cellulose (4.42% in relation to the fiber and 17.9% concerning the original cellulose content, the alkaline pretreatment promoted an efficient solubilization of lignin (80%, turning the coconut fibers into a feasible raw material for 2G ethanol production studies. Enzymatic hydrolysis converted 87% of the sugars and the ethanolic fermentation consumed 81% of the substrate in the hydrolyzate, leading to a sugar to ethanol convertion efficiency of 59.6%. These results points out that green coconut husks are a promising alternative to the production of renewable energy.

  18. Design of nanocatalysts for green hydrogen production from bioethanol.

    Science.gov (United States)

    Bion, Nicolas; Duprez, Daniel; Epron, Florence

    2012-01-09

    Bioethanol is an interesting feedstock that may be used for hydrogen production by steam or autothermal reforming. However, the impurities (heavy alcohols, esters, acids, N compounds) contained in the raw feedstock require a costly purification, as they have a dramatic impact on catalyst activity and stability. Thus, a method that can utilize the raw feedstock without severe degradation of the catalyst would be desirable. In this Minireview, the composition of bioethanol from first and second generation biomass, the reactions involved in the catalytic ethanol steam reforming process and the design of catalysts adapted for hydrogen production from a real bioethanol feed are surveyed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    International Nuclear Information System (INIS)

    Nongthombam, Grihalakshmi D.; Labala, Rajendra K.; Das, Sudripta; Handique, Pratap J.; Talukdar, Narayan C.

    2017-01-01

    Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB) sources; namely, sugarcane bagasse (BG), cassava aerial parts (CS), ficus fruits (Ficus cunia) (FF), “phumdi” (floating biomass), rice straw (RS), and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL) to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64%) was significantly higher compared with their native counterparts (0.81–17.97%). Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum) resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  20. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Nongthombam, Grihalakshmi D., E-mail: griha789@gmail.com; Labala, Rajendra K.; Das, Sudripta [Institute of Bioresources and Sustainable Development (IBSD), Imphal (India); Handique, Pratap J. [Department of Biotechnology, Gauhati University, Guwahati (India); Talukdar, Narayan C., E-mail: griha789@gmail.com [Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati (India)

    2017-07-11

    Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB) sources; namely, sugarcane bagasse (BG), cassava aerial parts (CS), ficus fruits (Ficus cunia) (FF), “phumdi” (floating biomass), rice straw (RS), and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL) to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64%) was significantly higher compared with their native counterparts (0.81–17.97%). Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum) resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  1. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyeun Jong; Wi, Seung Gon; Lee, Yoon Gyo; Kim, Ho Myung; Kim, Su Bae [Chonnam National University, Gwangju (Korea, Republic of)

    2011-10-15

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. The 2nd year Research scope includes: 1) Optimization of pre-treatment conditions for enzymatic hydrolysis of lignocellulosic biomass and 2) Demonstration of enzymatic hydrolysis by recombinant enzymes. To optimize the pretreatment, we applied two processes: a wet process (wet milling + popping), and dry process (popping + dry milling). Out of these, the wet process presented the best glucose yield with a 93.1% conversion, while the dry process yielded 69.6%, and the unpretreated process yielded <20%. The recombinant cellulolytic enzymes showed very high specific activity, about 80-1000 times on CMC and 13-70 times on filter paper at pH 3.5 and 55 .deg. C

  2. Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling.

    Science.gov (United States)

    Gomes, Daniel; Domingues, Lucília; Gama, Miguel

    2016-09-01

    The feasibility of cellulase recycling in the scope of bioethanol production from recycled paper sludge (RPS), an inexpensive byproduct with around 39% of carbohydrates, is analyzed. RPS was easily converted and fermented by enzymes and cells, respectively. Final enzyme partition between solid and liquid phases was investigated, the solid-bound enzymes being efficiently recovered by alkaline washing. RPS hydrolysis and fermentation was conducted over four rounds, recycling the cellulases present in both fractions. A great overall enzyme stability was observed: 71, 64 and 100% of the initial Cel7A, Cel7B and β-glucosidase activities, respectively, were recovered. Even with only 30% of fresh enzymes added on the subsequent rounds, solid conversions of 92, 83 and 71% were achieved for the round 2, 3 and 4, respectively. This strategy enabled an enzyme saving around 53-60%, while can equally contribute to a 40% reduction in RPS disposal costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Liquid Biofuels: Vegetable Oils and Bioethanol; Biocombustibles Liquidos: aceites Vegetales y Bioetanol

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.; Ballesteros, I.; Oliva, J.M.; Navarro, A.A.

    1998-12-01

    The European energy policy has defined clear objectives to reduce the high dependency on fossil petroleum imports, and to increase the security of sustainable energy supply for the transport sector. Moreover, the European environmental policy is requesting clean fuels that reduce environmental risks. Liquid Biofuels (vegetable oils and bioethanol) appear to be in a good position to contribute to achieve these goals expressed by the established objective of European Union to reach for biofuels a market share of 5% of motor vehicle consumption. This work presents the current state and perspectives of the production and utilisation of liquid fuels from agricultural sources by reviewing agricultural feedstocks for energy sector, conversion technologies and different ways to use biofuels. Environmental and economical aspects are also briefly analysed. (Author) 10 refs.

  4. Review of China's bioethanol development and a case study of fuel supply, demand and distribution of bioethanol expansion by national application of E10

    International Nuclear Information System (INIS)

    Tao, Jing; Yu, Suiran; Wu, Tianxing

    2011-01-01

    The increasing dependence on imported oil and tremendous greenhouse gases (GHG) emission is making the diversification of primary fuel such as petroleum a critical vital energy and environmental issue in China. China is promoting bioethanol by mandatory use in nine provinces and the expansion is on agenda. This paper first reviews China's bioethanol development. Next, suitable feedstock crops for expanded ethanol production are discussed. Particularly, bioethanol expansion by national application of E10 is investigated from perspectives of potential in bioethanol supply, projected ethanol demand, and the possible cost-effective bioethanol distribution system. It is calculated that by making use of un-used land for feedstock planting and introduction of improved feedstock varieties, potential bioethanol production capacity in China will be up to 25.33 million tons per year. Ethanol demand for national application of E10 is projected to be around 7 million tons per year. A linear optimization model is used to consider the economic costs of distributing bioethanol in China. The optimization result suggests that development of bioethanol industry may focus on Henan, Jilin, Anhui, Jiangxi and Sichuan basin. It also estimates 53.79 RMB per ton of bioethanol for downstream rail or truck transportation remain a relatively small fraction of total fuel cost. Thanks to the well developed railway network in China, more bioethanol can be distributed at a relatively modest premium distribution costs and with low environmental influences. -- Highlights: → China's bioethanol development is reviewed. → Ethanol potential, projected demand and efficient distribution system are studied. → We find that nationwide bioethanol application can be commercially viable. → Impacts of oil and feedstock prices on ethanol expansion are discussed. → Ecological impacts of large scale feedstock crop plantation should be inspected.

  5. ELEVATE: an innovative study design to assess the efficacy, safety, and evolution of cardiovascular parameters in de novo kidney transplant recipients after early conversion from a calcineurin inhibitor to everolimus

    Directory of Open Access Journals (Sweden)

    van der Giet M

    2014-03-01

    Full Text Available Markus van der Giet,1 Josep M Cruzado,2 Johan W de Fijter,3 Hallvard Holdaas,4 Zailong Wang,5 Antonio Speziale,6 Guido Junge61Department of Nephrology, Campus Benjamin Franklin, Charite'-Universitätsmedizin, Berlin, Germany; 2Department of Nephrology, University Hospital of Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; 3Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; 4Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; 5Biometrics and Statistical Science, Novartis Pharmaceuticals, East Hanover, NJ, USA; 6Research and Development, Novartis Pharma AG, Basel, SwitzerlandAbstract: Progressive decline in allograft function and cardiovascular mortality after kidney transplantation remain major clinical challenges that can potentially be addressed by the mammalian target of rapamycin (mTOR inhibitors, everolimus and sirolimus. mTOR inhibitors maintain immunosuppressive efficacy after minimization of calcineurin inhibitor (CNI therapy and can achieve significant long-term improvements in renal function. Recently, data have accumulated that suggest mTOR inhibitors may offer cardioprotective effects. In animal models, inhibition of mTOR leads to regression of cardiac hypertrophy, and the limited data consistently point to a remodeling benefit following heart transplantation. Experimentally, mTOR inhibitors restrict atherogenesis, confirmed clinically by intravascular ultrasound data demonstrating lower rates of transplant vasculopathy in heart transplant recipients on everolimus. Lastly, mTOR inhibitors appear to ameliorate arterial stiffness, a known risk factor for post-transplant cardiovascular events, but data remain sparse. The ELEVATE study will examine the renal effect of early conversion from CNI therapy to everolimus after kidney transplantation. Key secondary endpoints include the change in left ventricular mass index, the first time

  6. Bioethanol production from forestry residues: A comparative techno-economic analysis

    International Nuclear Information System (INIS)

    Frankó, Balázs; Galbe, Mats; Wallberg, Ola

    2016-01-01

    Highlights: • A proposed cellulosic ethanol biorefinery in Sweden was simulated with Aspen Plus. • Forestry residues with different bark contents were evaluated as raw materials. • The bark content negatively influenced the minimum ethanol selling price. • Sensitivity analyses were performed to assess the influence of raw material cost. - Abstract: A techno-economic analysis was conducted to assess the feasibility of using forestry residues with different bark contents for bioethanol production. A proposed cellulosic ethanol biorefinery in Sweden was simulated with Aspen Plus. The plant was assumed to convert different forestry assortments (sawdust and shavings, fuel logs, early thinnings, tops and branches, hog fuel and pulpwood) to ethanol, pellets, biogas and electricity. The intention was not to obtain absolute ethanol production costs for future facilities, but to assess and compare the future potential of utilizing different forestry residues for bioethanol production. The same plant design and operating conditions were assumed in all cases, and the effect of including bark on the whole conversion process, especially how it influenced the ethanol production cost, was studied. While the energy efficiency (not including district heating) obtained for the whole process was between 67 and 69% regardless of the raw material used, the ethanol production cost differed considerably; the minimum ethanol selling price ranging from 0.77 to 1.52 USD/L. Under the basic assumptions, all the forestry residues apart from sawdust and shavings exhibited a negative net present value at current market prices. The profitability decreased with increasing bark content of the raw material. Sensitivity analyses showed that, at current market prices, the utilization of bark-containing forestry residues will not provide significant cost improvement compared with pulpwood unless the conversion of cellulose and hemicellulose to monomeric sugars is improved.

  7. Microwave pretreatment of switchgrass for bioethanol production

    Science.gov (United States)

    Keshwani, Deepak Radhakrishin

    Lignocellulosic materials are promising alternative feedstocks for bioethanol production. These materials include agricultural residues, cellulosic waste such as newsprint and office paper, logging residues, and herbaceous and woody crops. However, the recalcitrant nature of lignocellulosic biomass necessitates a pretreatment step to improve the yield of fermentable sugars. The overall goal of this dissertation is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass. Existing research on bioenergy and value-added applications of switchgrass is reviewed in Chapter 2. Switchgrass is an herbaceous energy crop native to North America and has high biomass productivity, potentially low requirements for agricultural inputs and positive environmental impacts. Based on results from test plots, yields in excess of 20 Mg/ha have been reported. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from run-off, soil remediation and provision of habitats for grassland birds. Published research on pretreatment of switchgrass reported glucose yields ranging from 70-90% and xylose yields ranging from 70-100% after hydrolysis and ethanol yields ranging from 72-92% after fermentation. Other potential value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Research on microwave-based pretreatment of switchgrass and coastal bermudagrass is presented in Chapter 3. Pretreatments were carried out by immersing the biomass in dilute chemical reagents and exposing the slurry to microwave radiation at 250 watts for residence times ranging from 5 to 20 minutes. Preliminary experiments identified alkalis as suitable chemical reagents for microwave-based pretreatment. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent. Under optimum pretreatment

  8. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against the major chemical classes of inhibitors derived from lignocellulosic biomass conversion

    Science.gov (United States)

    Scientists at ARS developed tolerant industrial yeast that is able to reduce major chemical classes of inhibitors into less toxic or none toxic compounds while producing ethanol. Using genomic studies, we defined mechanisms of in situ detoxification involved in novel gene functions, vital cofactor r...

  9. The water footprint of sweeteners and bio-ethanol

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2012-01-01

    An increasing demand for food together with a growing demand for energy crops result in an increasing demand for and competition over water. Sugar cane, sugar beet and maize are not only essential food crops, but also important feedstock for bio-ethanol. Crop growth requires water, a scarce

  10. Evaluation and Modification of Processes for Bioethanol Separation and Production

    Directory of Open Access Journals (Sweden)

    Johnner P Sitompul

    2012-04-01

    Full Text Available This paper concerns on process evaluation and modification for bioethanol separation and production by applying pinch technology. Further, the paper is also focused on obtaining a most energy-efficient process among several processes. Three basic process configurations of bioethanol separation and production were selected for this study. The three separations and production systems are Othmer process, Barbet process and a separation process that operates under vacuum condition. Basically, each process is combination of Danish Distilleries process with a separation system yielding 95% (v/v bioethanol. The production capacity of the plant is estimated about 4 x 107 litre of bioethanol 95% (v/v per year. The result of the studies shows that the most energy efficient process among the three processes evaluated is the Othmer process, followed by the Barbet process and the process involving vacuum operation. The evaluation also shows that further energy saving can be carried for Barbet and Othmer process configuration when Tmin = 10oC for heat exchange possible.

  11. Integrated decision making for the optimal bioethanol supply chain

    International Nuclear Information System (INIS)

    Corsano, Gabriela; Fumero, Yanina; Montagna, Jorge M.

    2014-01-01

    Highlights: • Optimal allocation, design and production planning of integrated ethanol plants is considered. • Mixed Integer Programming model is presented for solving the integration problem. • Different tradeoffs can be assessed and analyzed. • The modeling framework represents an useful tool for guiding decision making. - Abstract: Bioethanol production poses different challenges that require an integrated approach. Usually previous works have focused on specific perspectives of the global problem. On the contrary, bioethanol, in particular, and biofuels, in general, requires an integrated decision making framework that takes into account the needs and concerns of the different members involved in its supply chain. In this work, a Mixed Integer Linear Programming (MILP) model for the optimal allocation, design and production planning of integrated ethanol/yeast plants is considered. The proposed formulation addresses the relations between different aspects of the bioethanol supply chain and provides an efficient tool to assess the global operation of the supply chain taking into account different points of view. The model proposed in this work simultaneously determines the structure of a three-echelon supply chain (raw material sites, production facilities and customer zones), the design of each installed plant and operational considerations through production campaigns. Yeast production is considered in order to reduce the negative environmental impact caused by bioethanol residues. Several cases are presented in order to assess the approach capabilities and to evaluate the tradeoffs among all the decisions

  12. Water and energy saving bioprocess for bioethanol production from ...

    African Journals Online (AJOL)

    Water and energy saving bioprocess for bioethanol production from corn grain applying stillage liquid part recirculation. ... from corn constitutes the way which could significantly reduce the water and energy consumption, what essentially reduce whole general production costs without ethanol efficiency decreasing.

  13. Selection of yeast strains for bioethanol production from UK seaweeds.

    Science.gov (United States)

    Kostas, Emily T; White, Daniel A; Du, Chenyu; Cook, David J

    Macroalgae (seaweeds) are a promising feedstock for the production of third generation bioethanol, since they have high carbohydrate contents, contain little or no lignin and are available in abundance. However, seaweeds typically contain a more diverse array of monomeric sugars than are commonly present in feedstocks derived from lignocellulosic material which are currently used for bioethanol production. Hence, identification of a suitable fermentative microorganism that can utilise the principal sugars released from the hydrolysis of macroalgae remains a major objective. The present study used a phenotypic microarray technique to screen 24 different yeast strains for their ability to metabolise individual monosaccharides commonly found in seaweeds, as well as hydrolysates following an acid pre-treatment of five native UK seaweed species ( Laminaria digitata , Fucus serratus , Chondrus crispus , Palmaria palmata and Ulva lactuca ). Five strains of yeast (three Saccharomyces spp, one Pichia sp and one Candida sp) were selected and subsequently evaluated for bioethanol production during fermentation of the hydrolysates. Four out of the five selected strains converted these monomeric sugars into bioethanol, with the highest ethanol yield (13 g L -1 ) resulting from a fermentation using C. crispus hydrolysate with Saccharomyces cerevisiae YPS128. This study demonstrated the novel application of a phenotypic microarray technique to screen for yeast capable of metabolising sugars present in seaweed hydrolysates; however, metabolic activity did not always imply fermentative production of ethanol.

  14. The potential for second generation bio-ethanol production from ...

    African Journals Online (AJOL)

    A review of possible bio-sources that can be used for bioethanol production with emphasis on those that have potential of replacing conventional fuels with little or minor modification of existing biomass production capacity and trend is presented. Data analysis indicates that the straw from maize, sorghum and wheat can ...

  15. Bioethanol production from date palm fruit waste fermentation using ...

    African Journals Online (AJOL)

    Lenovo

    2016-07-27

    Jul 27, 2016 ... Bioethanol production from date palm fruit waste fermentation using solar energy. Ahmed Boulal1, Mabrouk Kihal2, Cherif Khelifi1* and Boudjemâa Benali1. 1Unité de Recherche en Energie Renouvelables en Milieu Saharien, URERMS, Centre de Développement des Energies. Renouvelables, CDER ...

  16. Steam reforming of technical bioethanol for hydrogen production

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Johansson, Roger; Møller, Martin Hulbek

    2008-01-01

    distillation fractions of technical 2nd generation bioethanol, produced in a pilot plant, influence the performance of nickel- and ruthenium-based catalysts during steam reforming, and we discuss what is required to obtain high activity and long catalyst lifetime. We conclude that the use of technical...

  17. Bioethanol production from cassava peels using different microbial ...

    African Journals Online (AJOL)

    collynz

    2016-07-27

    Jul 27, 2016 ... economy by increasing demand and prices for agricultural products (Balat 2009). There is thus an increasing demand for bioethanol as alternative source of energy and Nigeria currently depends on ... measuring cylinder and expressed as quantity of ethanol produced in g/cm3 by multiplying the volume of ...

  18. Alkaline pretreatment of Mexican pine residues for bioethanol ...

    African Journals Online (AJOL)

    Alkaline pretreatment of Mexican pine residues for bioethanol production. Claudia Elena Soto Alvarez, Javier López Miranda, Gustavo Pérez Verdín, Mario A. Rodríguez Pérez, Isaías Chairez Hernández ...

  19. Sugar beet genotype effect on potential of bioethanol production ...

    African Journals Online (AJOL)

    Variation on ethanol production were intensively related to the chemical composition of root, especially sugar content, potassium impurity, syrup purity and some characteristics such as root dry matter and root length. Bioethanol production was enhanced by increasing the sugar content and root yield in sugar beet. Sugar ...

  20. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Bartošová Alica

    2017-06-01

    Full Text Available Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI, and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  1. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Science.gov (United States)

    Bartošová, Alica; Blinová, Lenka

    2017-06-01

    Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI) was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI), and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  2. Microalgal biomass pretreatment for bioethanol production: a review

    Directory of Open Access Journals (Sweden)

    Jesús Velazquez-Lucio

    2018-03-01

    Full Text Available Biofuels derived from microalgae biomass have received a great deal of attention owing to their high potentials as sustainable alternatives to fossil fuels. Microalgae have a high capacity of CO2 fixation and depending on their growth conditions, they can accumulate different quantities of lipids, proteins, and carbohydrates. Microalgal biomass can, therefore, represent a rich source of fermentable sugars for third generation bioethanol production. The utilization of microalgal carbohydrates for bioethanol production follows three main stages: i pretreatment, ii saccharification, and iii fermentation. One of the most important stages is the pretreatment, which is carried out to increase the accessibility to intracellular sugars, and thus plays an important role in improving the overall efficiency of the bioethanol production process. Diverse types of pretreatments are currently used including chemical, thermal, mechanical, biological, and their combinations, which can promote cell disruption, facilitate extraction, and result in the modification the structure of carbohydrates as well as the production of fermentable sugars. In this review, the different pretreatments used on microalgae biomass for bioethanol production are presented and discussed. Moreover, the methods used for starch and total carbohydrates quantification in microalgae biomass are also briefly presented and compared.

  3. Sustainable Process Design of Biofuels: Bioethanol Production from Cassava rhizome

    DEFF Research Database (Denmark)

    Mangnimit, S.; Malakul, P.; Gani, Rafiqul

    2013-01-01

    .. Also, simultaneously with sustainability analysis, the life cycle impact on environment associated with bioethanol production is performed. Finally, candidate alternative designs are generated and compared with the base case design in terms of LCA, economics, waste, energy usage and enviromental impact...

  4. Bioprocess systems applied for the production of bioethanol from ...

    African Journals Online (AJOL)

    Petroleum, in addition to being the main source of transportation energy, has also been the mainstay of the Nigeria economy up to date. This feedstock is, however, not sustainable since it is not renewable over the period of time over which we use them. Present technologies to produce bioethanol largely depend on ...

  5. Recent Advances on Bioethanol Dehydration using Zeolite Membrane

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-07-01

    Renewable energy has gained increasing attention throughout the world. Bioethanol has the potential to replace existing fossil fuel usage without much modification in existing facilities. Bioethanol which generally produced from fermentation route produces low ethanol concentration. However, fuel grade ethanol requires low water content to avoid engine stall. Dehydration process has been increasingly important in fuel grade ethanol production. Among all dehydration processes, pervaporation is considered as the most promising technology. Zeolite possesses high potential in pervaporation of bioethanol into fuel grade ethanol. Zeolite membrane can either remove organic (ethanol) from aqueous mixture or water from the mixture, depending on the framework used. Hydrophilic zeolite membrane, e.g. LTA, can easily remove water from the mixture leaving high ethanol concentration. On the other hand, hydrophobic zeolite membrane, e.g. silicate-1, can remove ethanol from aqueous solution. This review presents the concept of bioethanol dehydration using zeolite membrane. Special attention is given to the performance of selected pathway related to framework selection.

  6. Bioethanol production from Curcubita pepo and Opilia amentacea ...

    African Journals Online (AJOL)

    Subsequently, the highest outputs of 60.72 ± 0.68 and 50.93 ± 1.61 g ethanol/kg were obtained respectively with O. amentacea and C. pepo. In the same time, 460.97 ± 8.66 g ethanol/kg were got as maximum output from sucrose (NG). Keywords: Fruit juices, enrichment, Saccharomyces cerevisiae, fermentation, bioethanol

  7. All rights reserved Optimization of bioethanol production from ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: In this study, bioethanol production from the simultaneous saccharification and fermentation (SSF) of pineapple peels using cellulase and Saccharomyces cerevisiae was investigated. A three-factor Box-behnken design. (BBD) and response surface methodology (RSM) were employed to study the effect of ...

  8. Bioethanol production from finger millet ( Eleusine coracana ) straw ...

    African Journals Online (AJOL)

    The possibility of producing bioethanol from the biomass of finger millet straw was studied. The effects of temperature, acid concentration, hydrolysis time, and substrate concentration were investigated. The result showed that a maximum sugar content of 79.04 and 82.01 %w/w was achieved using phenol-sulfuric acid and ...

  9. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  10. Comparison of four types of energy grasses as lignocellulosic feedstock for the production of bio-ethanol.

    Science.gov (United States)

    Kou, Linfeng; Song, Yanliang; Zhang, Xu; Tan, Tianwei

    2017-10-01

    In order to utilize energy grasses as substrates for production of biofuels and expand the diversity of lignocellulosic feedstocks, this work developed an evaluation system considering 16 kinds of parameters related to the contents of three main compositions (cellulose, hemicellulose and lignin), inhibitors generated from the pretreatment, the extent of enzymatic hydrolysis and microbial fermentation. Giant reed, corn stalks, switch grass, pennisetum and silvergrass were investigated. Comprehensive utilization indexes of giant reed (55.0) and corn stalks (40.6) revealed that giant reed had the potential for producing biofuels but corn stalks, widely used in bio-ethanol and xylitol production, possessed high contents of inhibitors which were harmful to microbial fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. FOOD VS. FUEL – A TURNING POINT FOR BIOETHANOL?

    Directory of Open Access Journals (Sweden)

    Katharina Harlander

    2008-09-01

    Full Text Available Recently concerns have been raised that biofuels would affect food prices. Bioethanol is made from sugar or starch containing plants that are also used in food production. In public perception this led to an emotional resistance against biofuels that in real terms is not substantiated. Generally, biofuels are a political product. Triggered by the oil crisis in the early 1970ies national fuel ethanol programmes were first launched in Brazil and in the United States. Concerns regarding energy security and sustainability together with the option of new markets for surplus agricultural production in recent years led to similar policy measures in the European Union and in numerous countries around the globe. Accordingly the industry invested heavily in new bioethanol plants - especially in the US – and created an additional demand for corn and wheat with some record-breaking prices noted in late 2007. A look back into statistics shows a drastic decline of real prices for decades and by now they are only back at the level of 30 years ago. One important detail is the real portion of grain used for bioethanol, which is still only 1.6 percent in the EU and therefore unlikely to be the real driver for the price development. Moreover the share of raw material is up to 70% of bioethanol production cost that makes the bioethanol industry itself a victim of price increases. Subsequently investor interest in this field slowed down, a development also watched in the US. The prospects of the agricultural markets of the European Commission conclude that Europe can do both, nutrition and biofuels.

  12. Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist.

    Science.gov (United States)

    Courter, Joel R; Madani, Navid; Sodroski, Joseph; Schön, Arne; Freire, Ernesto; Kwong, Peter D; Hendrickson, Wayne A; Chaiken, Irwin M; LaLonde, Judith M; Smith, Amos B

    2014-04-15

    This Account provides an overview of a multidisciplinary consortium focused on structure-based strategies to devise small molecule antagonists of HIV-1 entry into human T-cells, which if successful would hold considerable promise for the development of prophylactic modalities to prevent HIV transmission and thereby alter the course of the AIDS pandemic. Entry of the human immunodeficiency virus (HIV) into target T-cells entails an interaction between CD4 on the host T-cell and gp120, a component of the trimeric envelope glycoprotein spike on the virion surface. The resultant interaction initiates a series of conformational changes within the envelope spike that permits binding to a chemokine receptor, formation of the gp41 fusion complex, and cell entry. A hydrophobic cavity at the CD4-gp120 interface, defined by X-ray crystallography, provided an initial site for small molecule antagonist design. This site however has evolved to facilitate viral entry. As such, the binding of prospective small molecule inhibitors within this gp120 cavity can inadvertently trigger an allosteric entry signal. Structural characterization of the CD4-gp120 interface, which provided the foundation for small molecule structure-based inhibitor design, will be presented first. An integrated approach combining biochemical, virological, structural, computational, and synthetic studies, along with a detailed analysis of ligand binding energetics, revealed that modestly active small molecule inhibitors of HIV entry can also promote viral entry into cells lacking the CD4 receptor protein; these competitive inhibitors were termed small molecule CD4 mimetics. Related congeners were subsequently identified with both improved binding affinity and more potent viral entry inhibition. Further assessment of the affinity-enhanced small molecule CD4 mimetics demonstrated that premature initiation of conformational change within the viral envelope spike, prior to cell encounter, can lead to irreversible

  13. White paper on perspectives of biofuels in Denmark - with focus on 2nd generation bioethanol; Hvidbog om perspektiver for biobraendstoffer i Danmark - med fokus paa 2. generations bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gy.; Foghmar, J.

    2009-11-15

    The white paper presents the perspectives - both options and barriers - for a Danish focus on production and use of biomass, including sustainable 2nd generation bioethanol, for transport. The white paper presents the current knowledge of biofuels and bioethanol and recommendations for a Danish strategy. (ln)

  14. Energy Balance of Bio-ethanol - A Review; Energibalans foer bioetanol - en kunskapsoeversikt

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2006-03-15

    This review presents a synthesis of various Swedish and international studies on the bio-ethanol energy balance, and an analysis of how and why their results differ. Other methods, such as exergy- and emergy analysis, are discussed and compared with the energy analysis method. Finally, potential improvements of the energy efficiency in bio-ethanol production are discussed. The energy balance is here expressed as the ratio of the energy content of the fuel to the primary energy input for the entire production cycle of the fuel. The energy balance of ethanol from cereals is, on average, 1.6, and varies between 0.7 and 2.8. Corresponding average figures for ethanol from corn, sugar beets and lignocellulosic biomass (e.g. energy forest) are 1.4, 1.8 and 3.2, respectively. There are several reasons why the energy balances differ between the different studies, even where the feedstock is identical. The sources of differences can be divided between those related to differences in local and geographical conditions, and those related to differences in the methodological approach applied. Depending on the definition of the system that is studied (systems boundaries), and how the energy input is divided between the ethanol and the by-products generated in the process (allocation methods), the energy balance may differ by a factor of 5. Thus, it is impossible to make reliable and fair comparisons between different studies unless all assumptions are clearly presented and defined. Results from exergy- and emergy analysis of bio-ethanol often show significantly different results from those presented in energy analyses. It is, however, not useful to compare these different results since the various methods have different focuses and are answering different questions. The energy balance of cereal-based ethanol can be improved by more efficient cultivation methods, but mainly by improved conversion processes. One possibility is by using bio-refineries where not only ethanol but also

  15. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yoo, Chang Geun [Oak Ridge National Laboratory; Dumitrache, Alexandru [Oak Ridge National Laboratory; Muchero, Wellington [Oak Ridge National Laboratory; Natzke, Jace [Oak Ridge National Laboratory; Akinosho, Hannah [Georgia Institute of Technology; Li, Mi [Oak Ridge National Laboratory; Brown, Steven D. [Oak Ridge National Laboratory; Davison, Brian [Oak Ridge National Laboratory; Tuskan, Gerald A. [Oak Ridge National Laboratory; Pu, Yunqiao [Oak Ridge National Laboratory; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee

    2017-12-11

    Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoate (PB) and ..beta..-5 linkage contents, while it had positive ones with ..beta..-O-4 linkage, lignin molecular weight, and ethanol production. This study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.

  16. Mixtures of bioethanol and gasoline as a fuel for SI engines

    Directory of Open Access Journals (Sweden)

    Stojiljković Dragoslava D.

    2009-01-01

    Full Text Available The importance of alternative fuels, especially bioethanol and biodiesel, rises due to the limited oil sources, secure supply, prices changes, and environment pollution. Bioethanol is an alternative fuel which will be important in future, as a fuel produced from different crops and lignocelluloses materials. The quality of bioethanol has significant influence on the characteristics of mixtures with gasoline and engine performance. The investigations were performed with the bioethanol obtained as by-product from sugar industry, which is not denaturated and produced according the requests prescribed by standards for ethanol used in mixtures with gasoline. Main target was to examine the possibility of utilisation of bioethanol obtained as by-product and without additional technologies for purification and additional costs. The results of standard and non-standard investigations and engine tests of bioethanol and gasoline mixtures are presented.

  17. Produksi bioethanol dari jerami padi (Oryza sativa melalui hidrolisis asan dan fermentasi dengan Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    SRI KUSUMASTUTI HAYUNINGTYAS

    2014-05-01

    Full Text Available Hayuningtyas SK, Sunarto, Sari SLA. 2013. The production of bioethanol from rice straw (Oryza sativa by acid hydrolysis and fermentation with Saccharomyces cerevisiae. Bioteknologi 11: 1-4. Bioethanol is one of the alternative fuels that are considered more environmentally friendly. Bioethanol can be obtained from material that contains cellulose, such as rice straw. This study aimed to determine the optimum fermentation time to product bioethanol from rice straw hydrolysis and measured of bioethanol product from rice straw by acid hydrolysis and Saccharomyces cerevisiae fermentation. The results showed that rice straw hydrolysis by sulfuric acid catalyst produced higher reducing sugar: 21.7 g/100 g rice straw. The optimum fermentation time was 5 days which produced of 8.96% bioethanol.

  18. Life cycle assessment of an advanced bioethanol technology in the perspective of constrained biomass availability.

    Science.gov (United States)

    Hedegaard, Karsten; Thyø, Kathrine A; Wenzel, Henrik

    2008-11-01

    Among the existing environmental assessments of bioethanol, the studies suggesting an environmental benefit of bioethanol all ignore the constraints on the availability of biomass resources and the implications competition for biomass has on the assessment We show that toward 2030, regardless of whether a global or European perspective is applied, the amount of biomass, which can become available for bioethanol or other energy uses, will be physically and economically constrained. This implies that use of biomass or land for bioethanol production will most likely happen at the expense of alternative uses. In this perspective, we show that for the case of a new advanced bioethanol technology, in terms of reducing greenhouse emissions and fossil fuel dependency, more is lost than gained when prioritizing biomass or land for bioethanol. Technology pathways involving heat and power production and/or biogas, natural gas or electricity for transport are advantageous.

  19. Effects of bioethanol ultrasonic generated aerosols application on diesel engine performances

    Directory of Open Access Journals (Sweden)

    Mariasiu Florin

    2015-01-01

    Full Text Available In this paper the effects of an experimental bioethanol fumigation application using an experimental ultrasound device on performance and emissions of a single cylinder diesel engine have been experimentally investigated. Engine performance and pollutant emissions variations were considered for three different types of fuels (biodiesel, biodiesel-bioethanol blend and biodiesel and fumigated bioethanol. Reductions in brake specific fuel consumption and NOx pollutant emissions are correlated with the use of ultrasonic fumigation of bioethanol fuel, comparative to use of biodiesel-bioethanol blend. Considering the fuel consumption as diesel engine’s main performance parameter, the proposed bioethanol’s fumigation method, offers the possibility to use more efficient renewable biofuels (bioethanol, with immediate effects on environmental protection.

  20. Bacterial Community Structure and Dynamics During Corn-Based Bioethanol Fermentation.

    Science.gov (United States)

    Li, Qing; Heist, E Patrick; Moe, Luke A

    2016-02-01

    Corn-based fuel ethanol facilities mix enzymatically treated, gelatinized corn starch with water to generate a "mash" that is used as the substrate in large-scale (∼500,000 gallon) yeast-based fermentations. In contrast to other food and beverage fermentations (e.g., cheese, wine), bioethanol production is presumed to be optimal when bacteria are absent from the fermentation-thus maximizing conversion of glucose to ethanol-yet the facilities are not sterilized. Culture-based analysis has suggested that lactic acid bacteria occupy this niche and, under certain circumstances, can outcompete the dedicated fermentation yeast for nutrients. Here, we use 16S rRNA gene amplicon sequencing to probe bacterial community structure during bioethanol fermentation. Nineteen total batches from five corn-based fuel ethanol fermentation facilities were analyzed. From each batch, five samples were taken. This includes the contents of the yeast propagation tank at inoculation, three samples taken at intervals during the fermentation, and a sample taken at the end of fermentation. Bacterial community structure was compared with time, between facility, between fermentor, between batches from the same fermentor, and against environmental variables within each fermentation. Communities were dominated by members of the Firmicutes and Proteobacteria phyla, with lactic acid bacteria dominating the communities in two of the five facilities. In the other facilities, Proteobacteria (largely members of the Pseudomonas and Escherichia-Shigella genera) outcompete the lactic acid bacteria. In most cases, the yeast propagation tank inoculum imparted a rich bacterial community, but the batches vary regarding whether this inoculum was the primary driver of the fermentation community structure.

  1. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Novel two-stage fermentation process for bioethanol production using Saccharomyces pastorianus.

    Science.gov (United States)

    Gowtham, Yogender Kumar; Miller, Kristen P; Hodge, David B; Henson, J Michael; Harcum, Sarah W

    2014-01-01

    Bioethanol produced from lignocellulosic materials has the potential to be economically feasible, if both glucose and xylose released from cellulose and hemicellulose can be efficiently converted to ethanol. Saccharomyces spp. can efficiently convert glucose to ethanol; however, xylose conversion to ethanol is a major hurdle due to lack of xylose-metabolizing pathways. In this study, a novel two-stage fermentation process was investigated to improve bioethanol productivity. In this process, xylose is converted into biomass via non-Saccharomyces microorganism and coupled to a glucose-utilizing Saccharomyces fermentation. Escherichia coli was determined to efficiently convert xylose to biomass, which was then killed to produce E. coli extract. Since earlier studies with Saccharomyces pastorianus demonstrated that xylose isomerase increased ethanol productivities on pure sugars, the addition of both E. coli extract and xylose isomerase to S. pastorianus fermentations on pure sugars and corn stover hydrolysates were investigated. It was determined that the xylose isomerase addition increased ethanol productivities on pure sugars but was not as effective alone on the corn stover hydrolysates. It was observed that the E. coli extract addition increased ethanol productivities on both corn stover hydrolysates and pure sugars. The ethanol productivities observed on the corn stover hydrolysates with the E. coli extract addition was the same as observed on pure sugars with both E. coli extract and xylose isomerase additions. These results indicate that the two-stage fermentation process has the capability to be a competitive alternative to recombinant Saccharomyces cerevisiae-based fermentations. © 2013 American Institute of Chemical Engineers.

  3. Effects of different acid hydrolyses on the conversion of sweet sorghum bagasse into C5 and C6 sugars and yeast inhibitors using response surface methodology.

    Science.gov (United States)

    Heredia-Olea, Erick; Pérez-Carrillo, Esther; Serna-Saldívar, Sergio O

    2012-09-01

    Two different diluted acid pretreatments (sulfuric and hydrochloric acid) and one mixture of these acids were tested in sweet sorghum bagasse and analyzed through surface response methodologies. The response variables were C5 and C6 sugars and inhibitors (acetic acid, 5-hydroxymethylfurfural, and furfural). Results indicated that the three different pretreatments yielded similar amounts of total potentially fermentable sugars. The proposed acid hydrolysis schemes liberated 56-57% of total sugars available in the sweet sorghum bagasse (390-415 mg sugar/g bagasse) and 44-61 mg total inhibitors/g bagasse. A mild detoxification was effectively used in the optimized hydrolysates, but did not have effect an effect in the HCl/H(2)SO(4) mixture. The acetic acid and HMF significantly decreased in the HCl and H(2)SO(4) detoxified hydrolysates without any significant degradation of sugars. The HCl treatment was a good alternative due to its relatively lower hydrolysis time and adequate generation of C5 and C6 fermentable sugars. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Wirtschaftlichkeit von Bioethanol – Produktion und Produktionskosten im nationalen und internationalen Vergleich

    OpenAIRE

    Henniges, Oliver

    2007-01-01

    In this article the profitability of the bioethanol production in Germany is analysed under consideration of the international competition. Therefore, the production costs of bioethanol from wheat and beet in Germany as well as from sugar cane and corn in other representative countries are compared. Based on this, the competitiveness of imported as well as domestic bioethanol against gasoline on the German market are analyzed and the maximum payable feedstock price for sugar beet is calculate...

  5. Sustainable bioethanol production combining biorefinery principles and intercropping strategies

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, M.H.; Haugaard-Nielsen, H.; Petersson, A.; Thomsen, A.B.; Jensen, E.S. [Risoe National Lab., DTU, Biosystems Dept., Roskilde (Denmark)

    2007-05-15

    species interactions as a response to the actual growing conditions observed which is not achieved with sole cropping of one species/cultivar. It is also concluded that when growing pea as a sole cropping available soil mineral N reduce N{sub 2} fixation and the full potential of symbiotic nitrogen fixation is not exploited which is regarded as an overall inefficient use of N sources. Using clover-grass intercropping raw materials, as another potential species combination with equivalent field responses to e.g. pea-wheat intercropping, conversion yields obtained in laboratory experiments show that wet oxidation is an efficient method for fractionating clover, grass, and clover-grass mixtures into a convertible solid cellulose fraction and a soluble hemicellulose fraction. The highest yield of fermentable sugars after enzymatic hydrolysis is achieved in clover-grass (mixed 1:1) pretreated at 195 deg. C for 10 minutes using 12 bar oxygen. The optimum pretreatment conditions for clover, grass, and clover-grass mixtures is not significantly different from that of wheat, which indicates that wheat straw and clover-grass (from intercropping) could be pretreated in one step. The produced sugars were converted into ethanol by Mucor indicus giving good ethanol yields Y{sub E/TS,Aerobic} = 0.37 and Y{sub E/TS,oxygen} {sub li} It is also concluded that fructans from unheated clover-grass juice can be co-converted into ethanol by natural enzymes and yeast increasing the ethanol production significantly. Using field data and biomass conversion yields obtained in laboratory experiments a decentralized biorefinery concept for co-production of bioethanol and biogas is described with strong emphasis on sustainability, localness and recycling principles. (au)

  6. Hydrogen production from raw bioethanol steam reforming: optimization of catalyst composition with improved stability against various impurities

    International Nuclear Information System (INIS)

    Le Valant, A.; Can, F.; Bion, N.; Epron, F.; Duprez, D.

    2009-01-01

    Usually, ethanol steam reforming is performed using pure ethanol, whereas the use of raw bioethanol is of major importance for a cost effective industrial application. Raw bioethanol contains higher alcohols as the main impurities and also aldehydes, amines, acids and esters. The effect of these impurities on the catalytic performances for ethanol steam reforming (ESR) has been studied, using a reference catalyst, Rh/MgAl 2 O 4 . It was shown that the aldehyde, the amine and methanol has no negative effect on the catalytic performances, contrary to the ester, acid and higher alcohols. The deactivation is mainly explained by coke formation favored by the presence of these impurities in the feed. In order to improve the stability of the catalyst and its performances in the presence of these deactivating impurities, the catalyst formulation, i.e. the composition of the support and of the metallic phase, was modified. The addition of rare earth elements instead of magnesium to the alumina support leads to a decrease of the strong and medium acid sites and to an increase of the basicity. On these modified supports, the dehydration reaction, leading to olefins, which are coke precursors, is disfavored, the ethanol conversion and the hydrogen yield are increased. The best catalytic performances were obtained with Rh/Y-Al 2 O 3 . Then, the metallic phase was also modified by adding a second metal (Ni, Pt or Pd). The Rh-Ni/Y-Al 2 O 3 catalyst leads to the highest hydrogen yield. This catalyst, tested in the presence of raw bioethanol during 24h was very stable compared to the reference catalyst Rh/MgAl 2 O 4 , which was strongly deactivated after 2h of time-on-stream. (author)

  7. Bioethanol Production From Cellulose by Candida tropicalis, as An Alternative Microbial Agent to Produce Ethanol from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Hermansyah

    2016-04-01

    Full Text Available Abstract: Candida tropicalis isolated from Tuak is a potentially useful microorganism for the ethanol production from lignocellulosic biomass and it can be alterbative agent replacing Saccharomyces cerevisae for fermentation process. Although C.tropicalis could not convert all carbohydrates content of lignocellulosic into bioethanol, however it is able to grow on medium in the presence of either xylose or arabinose as carbon source. Our result showed that fermentation of 10 % (w/v cellulosic as sole carbon source produced 2.88% (v/v ethanol by C.tropicalis. This ethanol production was lower than usage of 10% (w/v dextrose as sole carbon source medium which producing 5.51% (v/v ethanol. Based upon our expreiment indicated that C.tropicalis is able to conduct two main process in converting of cellulosic material- to ethanol which is hydrolysis the degradation of cellulose into glucose, and fermentation the process the conversion glucose into bioethanol. Keywords : Candida tropicalis, bioethanol, fermentation, cellulosic Abstrak (Indonesian: Candida tropicalis yang diisiolasi dari Tuak adalah agen yang berpotensi dalam produksi etanol dari biomasa lignoselulosa dan dapat dijadikan agen alternatif menggantikan Saccharomyces cerevisiae pada proses fernentasi. Walaupun C.tropicalis tidak dapat mengkonversi semua kandungan karbohidrat lignoselulosamenjadi etanol, akan tetapi C.tropicalis mampu tumbuh pada media dengan xilosa atau arabinosa sebagaisumber karbon. Hasil kami menunjukkan bahwa dengan mengguankan C.tropicalis fermentasi 10% (w/v selulosa sebagai satu-satunya sumber karbon menghasilkan 2,88% (v/v etanol, Produksi etanol ini lebih rendah jika menggunakan 10% (w/v dekstrosa sebagai satu satunya sumber karbon yang menghasilkan 5,51% (v/v etanol. Berdasarkan percobaan menunjukkan bahwa C.tropicalis mampu melakukan dua proses utama dalam mengkonversi material selulosa menjadi etanol yaitu hidrolisis degradasi selulosa menjadi glukosa, dan

  8. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir; Vakili, H.; Amini, R.

    2015-02-01

    Highlights: • Room temperature zinc phosphate coating was applied on the surface of steel sample. • Poly(vinyl) alcohol was added to the phosphating bath as a green corrosion inhibitor. • The adhesion and anticorrosion properties of the epoxy coating were investigated. • PVA decreased the phosphate crystal size and porosity. • PVA enhanced the corrosion protection and adhesion properties of the epoxy coating. - Abstract: Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  9. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    International Nuclear Information System (INIS)

    Ramezanzadeh, B.; Vakili, H.; Amini, R.

    2015-01-01

    Highlights: • Room temperature zinc phosphate coating was applied on the surface of steel sample. • Poly(vinyl) alcohol was added to the phosphating bath as a green corrosion inhibitor. • The adhesion and anticorrosion properties of the epoxy coating were investigated. • PVA decreased the phosphate crystal size and porosity. • PVA enhanced the corrosion protection and adhesion properties of the epoxy coating. - Abstract: Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly

  10. Preparation and Characterization of Zeolite Membrane for Bioethanol Purification

    Directory of Open Access Journals (Sweden)

    Aprilina Purbasari

    2013-06-01

    Full Text Available The use of bioethanol as an alternative fuel with a purity of more than 99.5% wt has prompted research on bioethanol purification. One of the promising methods used for bioethanol purification is pervaporation membrane. This research is aimed to prepare and characterize zeolite membranes for pervaporation membrane. The membrane preparation consisted of two stages, namely support preparation and zeolite deposition on the support. In support preparation, α- alumina and kaolin with specific composition (50:30; 40:40; 50:30 was mixed with additives and water. After pugging and aging process, the mixture became paste and extruded into tubular shape. The tube was then calcined at temperature of 1250 °C for 3 hours. After that, zeolite 4A was deposited on the tubes using clear solution made of 10 %wt zeolite and 90 %wt water and heated at temperature of 80 °C for 3 hours. Furthermore, the resulting zeolite membranes was washed with deionized water for 5 minutes and dried in oven at temperature of 100 °C for 24 hours. Characterization of zeolite membranes included mechanical strength test, XRD, and SEM. In the mechanical strength test, the membrane sample with α- alumina:kaolin = 50:30 (membrane A has the highest mechanical strength of 46.65 N/mm2. Result of XRD analysis for the membrane A indicated that mullite and corundum phases were formed, which mullite phase was more dominant. Meanwhile the result of SEM analysis shows that zeolite crystals have been formed and covered the pores support, but the deposition of zeolite has not been optimal yet. The performance examination for bioethanol purification showed that the membrane could increase the purity of bioethanol from 95% to 98.5% wt. © 2013 BCREC UNDIP. All rights reservedReceived: 23rd October 2012; Revised: 15th February 2013; Accepted: 16th February 2013[How to Cite: Purbasari, A., Istirokhatun, T., Devi, A.M., Mahsunnah, L. , Susanto, H. (2013. Preparation and Characterization of Zeolite

  11. The Bioethanol Industry in Sub-Saharan Africa: History, Challenges, and Prospects

    Directory of Open Access Journals (Sweden)

    Evanie Devi Deenanath

    2012-01-01

    Full Text Available Recently, interest in using bioethanol as an alternative to petroleum fuel has been escalating due to decrease in the availability of crude oil. The application of bioethanol in the motor-fuel industry can contribute to reduction in the use of fossil fuels and in turn to decreased carbon emissions and stress of the rapid decline in crude oil availability. Bioethanol production methods are numerous and vary with the types of feedstock used. Feedstocks can be cereal grains (first generation feedstock, lignocellulose (second generation feedstock, or algae (third generation feedstock feedstocks. To date, USA and Brazil are the leading contributors to global bioethanol production. In sub-Saharan Africa, bioethanol production is stagnant. During the 1980s, bioethanol production has been successful in several countries including Zimbabwe, Malawi, and Kenya. However, because of numerous challenges such as food security, land availability, and government policies, achieving sustainability was a major hurdle. This paper examines the history and challenges of bioethanol production in sub-Saharan Africa (SSA and demonstrates the bioethanol production potential in SSA with a focus on using bitter sorghum and cashew apple juice as unconventional feedstocks for bioethanol production.

  12. The bioethanol industry in sub-Saharan Africa: history, challenges, and prospects.

    Science.gov (United States)

    Deenanath, Evanie Devi; Iyuke, Sunny; Rumbold, Karl

    2012-01-01

    Recently, interest in using bioethanol as an alternative to petroleum fuel has been escalating due to decrease in the availability of crude oil. The application of bioethanol in the motor-fuel industry can contribute to reduction in the use of fossil fuels and in turn to decreased carbon emissions and stress of the rapid decline in crude oil availability. Bioethanol production methods are numerous and vary with the types of feedstock used. Feedstocks can be cereal grains (first generation feedstock), lignocellulose (second generation feedstock), or algae (third generation feedstock) feedstocks. To date, USA and Brazil are the leading contributors to global bioethanol production. In sub-Saharan Africa, bioethanol production is stagnant. During the 1980s, bioethanol production has been successful in several countries including Zimbabwe, Malawi, and Kenya. However, because of numerous challenges such as food security, land availability, and government policies, achieving sustainability was a major hurdle. This paper examines the history and challenges of bioethanol production in sub-Saharan Africa (SSA) and demonstrates the bioethanol production potential in SSA with a focus on using bitter sorghum and cashew apple juice as unconventional feedstocks for bioethanol production.

  13. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Kathrine Anker; Wenzel, Henrik

    2008-01-01

    of whether a global or European perspective is applied, the amount of biomass, which can become available for bioethanol or other energy uses, will be physically and economically constrained. This implies that use of biomass or land for bioethanol production will most likely happen at the expense...... of alternative uses. In this perspective, we show that for the case of a new advanced bioethanol technology, in terms of reducing greenhouse emissions and fossil fuel dependency, more is lost than gained when prioritizing biomass or land for bioethanol. Technology pathways involving heat and power production and....../or biogas, natural gas or electricity for transport are advantageous....

  14. Steam pretreatment of Saccharum officinarum L. bagasse by adding of impregnating agents for advanced bioethanol production.

    Science.gov (United States)

    Verardi, A; Blasi, A; De Bari, I; Calabrò, V

    2016-12-01

    The main byproduct of the sugarcane industry, Saccharum officinarum L. bagasse (sugarcane bagasse, SCB), is widely used as lignocellulose biomass for bio-ethanol (EtOH) production. In this research study, SCB was pretreated by steam explosion (SE) method using two different impregnating agents: sulfur dioxide (SD) and hydrogen peroxide (HP). As matter of fact, the use of impregnating agents improves the performance of SE method, increasing the concentrations of fermentable sugars after enzymatic saccharification, and decreasing the inhibitor compounds produced during the steam pretreatment step. The aim of this study was to investigate and compare the use of the two impregnating agents in various SE-conditions in order to optimize pretreatment parameters. For every pretreatment condition, it has been evaluated: concentration of fermentable sugars, glucose and xylose yields, and the effects of the inhibitor compounds on enzymatic hydrolysis step. The obtained results allow to improve the efficiency of the whole process of bio-EtOH synthesis enhancing the amount of fermentable sugars produced and the eco-sustainability of the whole process. Indeed, the optimization of steam pretreatment leads to a reduction of energy requirements and to a lower environmental impact. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process.

    Science.gov (United States)

    Macrelli, Stefano; Mogensen, Johan; Zacchi, Guido

    2012-04-13

    Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the sale of excess electricity and

  16. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2012-04-01

    Full Text Available Abstract Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves, i.e. second generation (2G bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G, as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the

  17. Glucagon-Like Peptide-1 Mediates the Protective Effect of the Dipeptidyl Peptidase IV Inhibitor on Renal Fibrosis via Reducing the Phenotypic Conversion of Renal Microvascular Cells in Monocrotaline-Treated Rats

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2018-01-01

    Full Text Available Chronic kidney diseases are characterized by renal fibrosis with excessive matrix deposition, leading to a progressive loss of functional renal parenchyma and, eventually, renal failure. Renal microcirculation lesions, including the phenotypic conversion of vascular cells, contribute to renal fibrosis. Here, renal microcirculation lesions were established with monocrotaline (MCT, 60 mg/kg. Sitagliptin (40 mg/kg/d, a classical dipeptidyl peptidase-4 (DPP-4 inhibitor, attenuated the renal microcirculation lesions by inhibiting glomerular tuft hypertrophy, glomerular mesangial expansion, and microvascular thrombosis. These effects of sitagliptin were mediated by glucagon-like peptide-1 receptor (GLP-1R, since they were blocked by the GLP-1R antagonist exendin-3 (Ex-3, 40 ug/kg/d. The GLP-1R agonist liraglutide showed a similar renal protective effect in a dose-independent manner. In addition, sitagliptin, as well as liraglutide, alleviated the MCT-induced apoptosis of renal cells by increasing the expression of survival factor glucose-regulated protein 78 (GRP78, which was abolished by the GLP-1R antagonist Ex-3. Sitagliptin and liraglutide also effectively ameliorated the conversion of vascular smooth muscle cells (SMCs from a synthetic phenotype to contractile phenotype. Moreover, sitagliptin and liraglutide inhibited endothelial-mesenchymal transition (EndMT via downregulating transforming growth factor-β1 (TGF-β1. Collectively, these findings suggest that DPP-4 inhibition can reduce microcirculation lesion-induced renal fibrosis in a GLP-1-dependent manner.

  18. Microalgae for economic applications: advantages and perspectives for bioethanol.

    Science.gov (United States)

    Simas-Rodrigues, Cíntia; Villela, Helena D M; Martins, Aline P; Marques, Luiza G; Colepicolo, Pio; Tonon, Angela P

    2015-07-01

    Renewable energy has attracted significant interest in recent years as a result of sustainability, environmental impact, and socio-economic considerations. Given existing technological knowledge and based on projections relating to biofuels derived from microalgae, microalgal feedstock is considered to be one of the most important renewable energy sources potentially available for industrial production. Therefore, this review examines microalgal bioethanol technology, which converts biomass from microalgae to fuel, the chemical processes involved, and possible ways of increasing the bioethanol yield, such as abiotic factors and genetic manipulation of fermenting organisms. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Bioethanol production from sweet potato using Saccharomyces diastaticus

    Science.gov (United States)

    Abdullah, Suryani, Irma; Pradia Paundradewa, J.

    2015-12-01

    Sweet potato contains about 16 to 40% dry matter and about 70-90% of the dry matter is a carbohydrate made up of starch, sugar, cellulose, hemicellulose and pectin so suitable for used as raw material for bioethanol. In this study focused on the manufacture of bioethanol with changes in temperature and concentration variations of yeast with sweet potato raw materials used yeast Saccharomyces diastaticus. Operating variables used are at a temperature of 30°C; 31,475°C; 35°C; 38,525°C; and 40°C with a yeast concentration of 25.9%; 30%; 40%; 50% and 54.1%. The experimental results obtained, the optimum conditions of ethanol fermentation with yeast Saccharomyces diastaticus on 36,67 °C temperature and yeast concentration of 43,43 % v / v.

  20. Possible use of the carbohydrates present in tomato pomace and in byproducts of the supercritical carbon dioxide lycopene extraction process as biomass for bioethanol production.

    Science.gov (United States)

    Lenucci, Marcello S; Durante, Miriana; Anna, Montefusco; Dalessandro, Giuseppe; Piro, Gabriella

    2013-04-17

    This study provides information about the carbohydrate present in tomato pomace (skins, seeds, and vascular tissues) as well as in the byproducts of the lycopene supercritical carbon dioxide extraction (SC-CO₂) such as tomato serum and exhausted matrix and reports their conversion into bioethanol. The pomace, constituting approximately 4% of the tomato fruit fresh weight, and the SC-CO₂-exhausted matrix were enzyme saccharified with 0.1% Driselase leading to sugar yields of ~383 and ~301 mg/g dw, respectively. Aliquots of the hydrolysates and of the serum (80% tomato sauce fw) were fermented by Saccharomyces cerevisiae . The bioethanol produced from each waste was usually >50% of the calculated theoretical amount, with the exception of the exhausted matrix hydolysate, where a sugar concentration >52.8 g/L inhibited the fermentation process. Furthermore, no differences in the chemical solubility of cell wall polysaccharides were evidenced between the SC-CO₂-lycopene extracted and unextracted matrices. The deduced glycosyl linkage composition and the calculated amount of cell wall polysaccharides remained similar in both matrices, indicating that the SC-CO₂ extraction technology does not affect their structure. Therefore, tomato wastes may well be considered as potential alternatives and low-cost feedstock for bioethanol production.

  1. Bioethanol production from rice straw residues

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  2. Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.

    Science.gov (United States)

    Scordia, Danilo; Cosentino, Salvatore L; Jeffries, Thomas W

    2010-07-01

    Saccharum (Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.), is a rapidly growing, wide ranging high-yield perennial, suitable for second generation bioethanol production. This study evaluated oxalic acid as a pretreatment for bioconversion. Overall sugar yields, sugar degradation products, enzymatic glucan hydrolysis and ethanol production were studied as effects of temperature (150-190 degrees C), reaction time (10-40 min) and oxalic acid concentration 2-8% (w/w). Time and temperature were combined into a single parameter, Severity Factor (SF) [Log(R(0))], and related to oxalic acid using a response surface methodology. Maximum total sugar yield was attained at a SF of 2.93 and 6.79% (w/w) oxalic acid, while maximum formation of sugar degradation products was observed at the highest SF (4.05) and 5% (w/w) oxalic acid. These were also the conditions for maximum simultaneous saccharification and fermentation (SSF) of the residual solids. Commercial cellulases and Saccharomyces cerevisiae attained 89.9% glucan conversion and 17.8 g/l ethanol. Pichia stipitis CBS 6054 fermented hemicellulosic hydrolysates from less severe conditions to ethanol with a yield of 0.35 (g(e)/g(s)). Maximal product yields were 69% of theoretical value and 90% of the SSF conversion efficiency for hydrolysate fermentation and SSF, respectively. Published by Elsevier Ltd.

  3. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile.

    Science.gov (United States)

    Trivedi, Nitin; Gupta, Vishal; Reddy, C R K; Jha, Bhavanath

    2013-12-01

    The green seaweed Ulva which proliferates fast and occurs abundantly worldwide was used as a feedstock for production of ethanol following enzymatic hydrolysis. Among the different cellulases investigated for efficient saccharification, cellulase 22119 showed the highest conversion efficiency of biomass into reducing sugars than Viscozyme L, Cellulase 22086 and 22128. Pre-heat treatment of biomass in aqueous medium at 120°C for 1h followed by incubation in 2% (v/v) enzyme for 36 h at 45°C gave a maximum yield of sugar 206.82±14.96 mg/g. The fermentation of hydrolysate gave ethanol yield of 0.45 g/g reducing sugar accounting for 88.2% conversion efficiency. These values are substantially higher than those of reported so far for both agarophytes and carrageenophytes. It was also confirmed that enzyme can be used twice without compromising on the saccharification efficiency. The findings of this study reveal that Ulva can be a potential feedstock for bioethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Evaluation of sweet potato for fuel bioethanol production: hydrolysis and fermentation.

    Science.gov (United States)

    Lareo, Claudia; Ferrari, Mario Daniel; Guigou, Mairan; Fajardo, Lucía; Larnaudie, Valeria; Ramírez, María Belén; Martínez-Garreiro, Jorge

    2013-01-01

    The enzymatic starch hydrolysis and bioethanol production from a variety of sweet potato developed for bioenergy purposes (K 9807.1) on the basis of its high starch yields, was studied. Drying at 55°C and 95°C of sweet potato neither affected the sugar content nor the starch enzymatic hydrolysis efficiency. Simultaneous saccharification and ethanol fermentations for dry matter ratio of sweet potato to water from 1:8 to 1:2 (w/v) were studied. Fresh sweet potato and dried at 55°C (flour) were assayed. At ratios of 1:8, similar results for fresh sweet potato and flour in terms of ethanol concentration (38-45 g/L), fermentation time (16 h) and sugar conversion (~ 100%) were found. At higher dry matter content, faster full conversion were observed using flour. A higher ratio than that for fresh sweet potato (1:2.2) did not improve the final ethanol concentration (100 g/L) and yields. High ethanol yields were found for VHG (very high gravity) conditions. The sweet potato used is an attractive raw matter for fuel ethanol, since up to 4800 L ethanol per hectare can be obtained.

  5. Biorefinery concept in organic agriculture: combined bioethanol and biogas production

    OpenAIRE

    Kádár, Zsófia; Oleskowicz-Popiel, Piotr; Schmidt, Jens Ejbye; Thomsen, Anne Belinda

    2009-01-01

    Organic agriculture is one sustainable alternative to avoid the negative environmental effects often caused by conventional agriculture. BioConcens is an interdisciplinary project aims at developing new biorefinery concept and processes for co-production of bioethanol, biogas and animal feed based on resources from organic agriculture (clover grass, straw) and associated food processing (whey). Bioenergy produced in organic agriculture can reduce its dependency of fossil fuels and decrease gr...

  6. Biomass to Bioethanol: Initiatives of the Future for Lignin

    OpenAIRE

    Brosse, Nicolas; Mohamad Ibrahim, Mohamad Nasir; Abdul Rahim, Afidah

    2011-01-01

    Lignin, which is one of the most abundant natural materials, represents a vastly underutilized natural polymer. With the emerging necessity to develop alternative sustainable transportation fuels, bioethanol produced from lignocellulosic biomass is considered as a viable option to petroleum-derived fuels. The effective utilization of biomass feedstock necessitates the development of cost-effective pretreatment technologies that are necessary to separate the three main biopolymers (cellulose, ...

  7. Production of bioethanol from agricultural waste | Braide | Journal of ...

    African Journals Online (AJOL)

    Maximum yields of ethanol were obtained at pH 3.60, 3.82, 4.00, 3.64 and 3.65. These findings show/prove that ethanol can be made from the named agricultural waste and the process is recommended as a means of generating wealth from waste. Keywords: bioethanol; fermentation; agro waste; Zea mays; sugar cane ...

  8. Validation of some engine combustion and emission parameters of a bioethanol fuelled DI diesel engine using theoretical modelling

    OpenAIRE

    Sivalingam, Murugan; Mahapatra, Subranshu Sekhar; Hansdah, Dulari; Horák, Bohumil

    2015-01-01

    Earlier reports indicate that ethanol/bioethanol can replace conventional diesel fuel by 15%, when it is emulsified with diesel and used as an alternative fuel in a compression ignition (CI) engine. In this study, initially BMDE15, a bioethanol emulsion containing 15% bioethanol, 84% diesel and 1% surfactant was characterised for its fuel properties and compared with those of diesel fuel properties. The numerical value indicates the percentage of bioethanol in the BMDE15 emulsion. For the inv...

  9. Design and optimization of a fixed - bed reactor for hydrogen production via bio-ethanol steam reforming

    International Nuclear Information System (INIS)

    Maria A Goula; Olga A Bereketidou; Costas G Economopoulos; Olga A Bereketidou; Costas G Economopoulos

    2006-01-01

    Global climate changes caused by CO 2 emissions are currently debated around the world. Renewable sources of energy are being sought as alternatives to replace fossil fuels. Hydrogen is theoretically the best fuel, environmentally friendly and its combustion reaction leads only to the production of water. Bio-ethanol has been proven to be effective in the production of hydrogen via steam reforming reaction. In this research the steam reforming reaction of bio-ethanol is studied at low temperatures over 15,3 % Ni/La 2 O 3 catalyst. The reaction and kinetic analysis takes place in a fixed - bed reactor in 130 - 250 C in atmospheric pressure. This study lays emphasis on the design and the optimization of the fixed - bed reactor, including the total volume of the reactor, the number and length of the tubes and the degree of ethanol conversion. Finally, it is represented an approach of the total cost of the reactor, according to the design characteristics and the materials that can be used for its construction. (authors)

  10. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach.

    Science.gov (United States)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten; Djomo, Sylvestre Njakou; Corona, Andrea; Dalgaard, Tommy

    2017-11-15

    This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJ EtOH +1kg LA ", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP 100 ), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C 5 sugar to boost bioethanol yield and that the use of residual streams in the energy

  11. Evaluation and Selection of Potential Biomass Sources of North-East India towards Sustainable Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Grihalakshmi D. Nongthombam

    2017-07-01

    Full Text Available Vegetation biomass production in North-East India within Indo-Burma biodiversity hotspot is luxuriant and available from April to October to consider their potential for bioethanol production. Potential of six lignocellulosic biomass (LCB sources; namely, sugarcane bagasse (BG, cassava aerial parts (CS, ficus fruits (Ficus cunia (FF, “phumdi” (floating biomass, rice straw (RS, and sawdust were investigated for bioethanol production using standard techniques. Morphological and chemical changes were evaluated by Scanning electron microscopy and Fourier transform infrared spectroscopy and quantity of sugars and inhibitors in LCB were determined by High performance liquid chromatography. Hydrothermally treated BG, CS, and FF released 954.54, 1,354.33, and 1,347.94 mg/L glucose and 779.31, 612.27, and 1,570.11 mg/L of xylose, respectively. Inhibitors produced due to effect of hydrothermal pretreatment ranged from 42.8 to 145.78 mg/L acetic acid, below detection level (BDL to 17.7 µg/L 5-hydroxymethylfurfural, and BDL to 56.78 µg/L furfural. The saccharification efficiency of hydrothermally treated LCB (1.35–28.64% was significantly higher compared with their native counterparts (0.81–17.97%. Consolidated bioprocessing of the LCB using MTCC 1755 (Fusarium oxysporum resulted in maximum ethanol concentration of 0.85 g/L and corresponded to 42 mg ethanol per gram of hydrothermally treated BG in 120 h followed by 0.83 g/L corresponding to 41.5 mg/g of untreated CS in 144 h. These ethanol concentrations corresponded to 23.43 and 21.54% of theoretical ethanol yield, respectively. LCB of CS and FF emerged as a suitable material to be subjected to test for enhanced ethanol production in future experiments through efficient fermentative microbial strains, appropriate enzyme loadings, and standardization of other fermentation parameters.

  12. Engineering a wild-type diploidSaccharomyces cerevisiaestrain for second-generation bioethanol production.

    Science.gov (United States)

    Li, Hongxing; Shen, Yu; Wu, Meiling; Hou, Jin; Jiao, Chunlei; Li, Zailu; Liu, Xinli; Bao, Xiaoming

    2016-01-01

    The cost-effective production of second-generation bioethanol, which is made from lignocellulosic materials, has to face the following two problems: co-fermenting xylose with glucose and enhancing the strain's tolerance to lignocellulosic inhibitors. Based on our previous study, the wild-type diploid Saccharomyces cerevisiae strain BSIF with robustness and good xylose metabolism genetic background was used as a chassis for constructing efficient xylose-fermenting industrial strains. The performance of the resulting strains in the fermentation of media with sugars and hydrolysates was investigated. The following two novel heterologous genes were integrated into the genome of the chassis cell: the mutant MGT05196 N360F , which encodes a xylose-specific, glucose-insensitive transporter and is derived from the Meyerozyma guilliermondii transporter gene MGT05196 , and Ru- xylA (where Ru represents the rumen), which encodes a xylose isomerase (XI) with higher activity in S. cerevisiae . Additionally, endogenous modifications were also performed, including the overproduction of the xylulokinase Xks1p and the non-oxidative PPP (pentose phosphate pathway), and the inactivation of the aldose reductase Gre3p and the alkaline phosphatase Pho13p. These rationally designed genetic modifications, combined with alternating adaptive evolutions in xylose and SECS liquor (the leach liquor of steam-exploding corn stover), resulted in a final strain, LF1, with excellent xylose fermentation and enhanced inhibitor resistance. The specific xylose consumption rate of LF1 reached as high as 1.089 g g -1 h -1 with xylose as the sole carbon source. Moreover, its highly synchronized utilization of xylose and glucose was particularly significant; 77.6% of xylose was consumed along with glucose within 12 h, and the ethanol yield was 0.475 g g -1 , which is more than 93% of the theoretical yield. Additionally, LF1 performed well in fermentations with two different lignocellulosic

  13. Conversion disorder

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000954.htm Conversion disorder To use the sharing features on this page, please enable JavaScript. Conversion disorder is a mental condition in which a person ...

  14. Efficient Catalytic Conversion of Ethanol to 1-Butanol via the Guerbet Reaction over Copper- and Nickel-Doped Porous

    NARCIS (Netherlands)

    Sun, Zhuohua; Vasconcelos, Anais Couto; Bottari, Giovanni; Stuart, Marc C. A.; Bonura, Giuseppe; Cannilla, Catia; Frusteri, Francesco; Barta, Katalin

    The direct conversion of ethanol to higher value 1-butanol is a catalytic transformation of great interest in light of the expected wide availability of bioethanol originating from the fermentation of renewable resources. In this contribution we describe several novel compositions of porous metal

  15. Build Your Own Second-Generation Bioethanol Plant in the Classroom!

    NARCIS (Netherlands)

    Seters, van J.R.; Sijbers, J.P.J.; Denis, M.; Tramper, J.

    2011-01-01

    The production of bioethanol from cellulosic waste is described. The experiment is suitable for students in secondary school classroom settings and leads to bioethanol in a concentration high enough to burn the liquid. The experiment consists of three steps: (i) the cellulose of the waste material

  16. Fuel consumption and emission on fuel mixer low-grade bioethanol fuelled motorcycle

    Directory of Open Access Journals (Sweden)

    Abikusna Setia

    2017-01-01

    Full Text Available Bioethanol is currently used as an alternative fuel for gasoline substitute (fossil fuel because it can reduce the dependence on fossil fuel and also emissions produced by fossil fuel which are CO2, HO, NOx. Bioethanol is usually used as a fuel mixed with gasoline with certain comparison. In Indonesia, the usage is still rare. Bioethanol that is commonly used is bioethanol anhydrous 99.5%. In the previous studies, bioethanol was distilled from low to high grade to produce ethanol anhydrous. But the result is only able to reach 95% or ethanol hydrous. This study is objected to design a simple mechanism in the mixing of bioethanol hydrous with the gasoline using a fuel mixer mechanism. By this mechanism, the fuel consumption and the resulting emissions from combustion engine can be analyzed. The fuel blend composition is prepared as E5, E10, and E15/E20, the result of fuel consumption and emission will be compared with pure gasoline. The using of bioethanol hydrous as a fuel mixture was tended to produce more stable bioethanol fuel consumption. However, the utilization of the mixture was found able to reduce the exhaust emissions (CO, HC, and NOx.

  17. From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals?

    NARCIS (Netherlands)

    Weusthuis, R.A.; Aarts, J.M.M.J.G.; Sanders, J.P.M.

    2011-01-01

    The first pilot-scale factories for the production of bioethanol from lignocellulose have been installed, indicating that we are on the brink of overcoming most hurdles for an economically feasible process. When bioethanol is competitive as biofuel with fuels originating from petrochemical

  18. Life cycle analysis for bioethanol production from sugar beet crops in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Foteinis, Spyros; Kouloumpis, Victor [Department of Environmental Engineering, Technical University of Crete, GR 73100 Chania (Greece); Tsoutsos, Theocharis, E-mail: theocharis.tsoutsos@enveng.tuc.gr [Department of Environmental Engineering, Technical University of Crete, GR 73100 Chania (Greece)

    2011-09-15

    The main aim of this study is to evaluate whether the potential transformation of the existing sugar plants of Northern Greece to modern bioethanol plants, using the existing cultivations of sugar beet, would be an environmentally sustainable decision. Using Life Cycle Inventory and Impact Assessment, all processes for bioethanol production from sugar beets were analyzed, quantitative data were collected and the environmental loads of the final product (bioethanol) and of each process were estimated. The final results of the environmental impact assessment are encouraging since bioethanol production gives better results than sugar production for the use of the same quantity of sugar beets. If the old sugar plants were transformed into modern bioethanol plants, the total reduction of the environmental load would be, at least, 32.6% and a reduction of more than 2 tons of CO{sub 2}e/sugar beet of ha cultivation could be reached. Moreover bioethanol production was compared to conventional fuel (gasoline), as well as to other types of biofuels (biodiesel from Greek cultivations). - Highlights: > Bioethanol production gives better results than sugar production from sugar beets. > In most cases, sugar beets, as an already industrialized plant has organizational virtues. > Bioethanol could be a sustainable independent way of energy production, alternative to biodiesel.

  19. Life cycle analysis for bioethanol production from sugar beet crops in Greece

    International Nuclear Information System (INIS)

    Foteinis, Spyros; Kouloumpis, Victor; Tsoutsos, Theocharis

    2011-01-01

    The main aim of this study is to evaluate whether the potential transformation of the existing sugar plants of Northern Greece to modern bioethanol plants, using the existing cultivations of sugar beet, would be an environmentally sustainable decision. Using Life Cycle Inventory and Impact Assessment, all processes for bioethanol production from sugar beets were analyzed, quantitative data were collected and the environmental loads of the final product (bioethanol) and of each process were estimated. The final results of the environmental impact assessment are encouraging since bioethanol production gives better results than sugar production for the use of the same quantity of sugar beets. If the old sugar plants were transformed into modern bioethanol plants, the total reduction of the environmental load would be, at least, 32.6% and a reduction of more than 2 tons of CO 2 e/sugar beet of ha cultivation could be reached. Moreover bioethanol production was compared to conventional fuel (gasoline), as well as to other types of biofuels (biodiesel from Greek cultivations). - Highlights: → Bioethanol production gives better results than sugar production from sugar beets. → In most cases, sugar beets, as an already industrialized plant has organizational virtues. → Bioethanol could be a sustainable independent way of energy production, alternative to biodiesel.

  20. Pengaruh Waktu Fermentasi dan Persentase Starter pada Nira Aren (Arenga Pinnata) terhadap Bioethanol yang Dihasilkan

    OpenAIRE

    Syauqiah, Isna

    2015-01-01

    Bioethanol can be produced from the fermentation of sugar-containing materials such as cassava, corn and sugar palm juice. This study aims to determine the effect of fermentation using Saccharomyces sp at various percentages starter towards substrate ability to produce bioethanol. Variation of fermentation time used are 25, 50 and 75 hours.

  1. UTILIZATION OF OIL PALM EMPTY FRUIT BUNCH (OPEFB FOR BIOETHANOL PRODUCTION THROUGH ALKALI AND DILUTE ACID PRETREATMENT AND SIMULTANEOUS SACCHARIFICATION AND FERMENTATION

    Directory of Open Access Journals (Sweden)

    Yanni Sudiyani

    2010-07-01

    Full Text Available Lignocellulosic biomass is a potential alternative source of bioethanol for energy. The lignocellulosics are abundantly available in Indonesia. Most of them are wastes of agriculture, plantation and forestry. Among those wastes, oil palm empty fruit bunch (OP EFB is one of a potential lignocellulosics to be converted to bioethanol. This EFB, which is wastes in oil palm factories, is quite abundant (around 25 million tons/year and also has high content of cellulose (41-47%. The conversion of OPEFB to ethanol basically consists of three steps which are pretreatment, hydrolysis of cellulose and hemicellulose to simple sugars (hexoses and pentoses, and fermentation of simple sugars to ethanol. Acid and alkali pretreatments are considered the simplest methods and are potentially could be applied in the next couple of years. However, there are still some problems that have to be overcome to make the methods economically feasible. The high price of cellulose enzyme that is needed in the hydrolysis step is one of factors that cause the cost of EFB conversion is still high. Thus, the search of potential local microbes that could produce cellulase is crucial. Besides that, it is also important to explore fermenting microbes that could ferment six carbon sugars from cellulose as well as five carbon sugars from hemicellulose, so that the conversion of lignocellulosics, particularly EFB, would be more efficient. Keywords: OPEFB, lignocellulosics, pretreatment, fermentation, ethanol

  2. State of the art on bioethanol production

    International Nuclear Information System (INIS)

    Barisano, D.; De Bari, I.; Viola, E.; Zimbardi, F.; Braccio, G.; Cantarella, M.; Gallifuoco, A.

    2001-01-01

    The state of the art, deals with the ethanol production from current processes based on the use of sugar and starch as feedstock and those under development based on lignocellulosic biomass. In the first section are reported the commercially available processes together with hints to the newest technologies. As regard the ethanol production from lignocellulosics, it has been collected data on the biomass availability in Europe as energy crops, industrial crops, agricultural residues and domestic waste. It is provided a bibliographic study on the technologies and processes under development worldwide for the conversion of lignocellulosics into ethanol. Finally, a brief discussion on the economics highlights the near term viability of producing ethanol by this way [it

  3. Immobilised Sarawak Malaysia yeast cells for production of bioethanol.

    Science.gov (United States)

    Zain, Masniroszaime Mohd; Kofli, Noorhisham Tan; Rozaimah, Siti; Abdullah, Sheikh

    2011-05-01

    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.

  4. Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment

    International Nuclear Information System (INIS)

    Osmani, Atif; Zhang, Jun

    2014-01-01

    Highlights: • 2-Stage stochastic MILP model for optimizing the performance of a sustainable lignocellulosic-based biofuel supply chain. • Multiple uncertainties in biomass supply, purchase price of biomass, bioethanol demand, and sale price of bioethanol. • Stochastic parameters significantly impact the allocation of biomass processing capacities of biorefineries. • Location of biorefineries and choice of conversion technology is found to be insensitive to the stochastic environment. • Use of Sample Average Approximation (SAA) algorithm as a decomposition technique. - Abstract: This work proposes a two-stage stochastic optimization model to maximize the expected profit and simultaneously minimize carbon emissions of a dual-feedstock lignocellulosic-based bioethanol supply chain (LBSC) under uncertainties in supply, demand and prices. The model decides the optimal first-stage decisions and the expected values of the second-stage decisions. A case study based on a 4-state Midwestern region in the US demonstrates the effectiveness of the proposed stochastic model over a deterministic model under uncertainties. Two regional modes are considered for the geographic scale of the LBSC. Under co-operation mode the 4 states are considered as a combined region while under stand-alone mode each of the 4 states is considered as an individual region. Each state under co-operation mode gives better financial and environmental outcomes when compared to stand-alone mode. Uncertainty has a significant impact on the biomass processing capacity of biorefineries. While the location and the choice of conversion technology for biorefineries i.e. biochemical vs. thermochemical, are insensitive to the stochastic environment. As variability of the stochastic parameters increases, the financial and environmental performance is degraded. Sensitivity analysis shows that levels of tax credit and carbon price have a major impact on the choice of conversion technology for a selected

  5. Feasibility of Hydrothermal Pretreatment on Maize Silage for Bioethanol Production

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    The potential of maize silage as a feedstock to produce bioethanol was evaluated in the present study. The hydrothermal pretreatment with five different pretreatment severity factors (PSF) was employed to pretreat the maize silage and compared in terms of sugar recovery, toxic test, and ethanol...... the liquors from the five conditions were not toxic to the Baker’s yeast. Pretreatment under 195°C for 7 min had the similar PSF with that of 185°C for 15 min, and both gave the higher ethanol concentration of 19.92 and 19.98 g/L, respectively. The ethanol concentration from untreated maize silage was only 7...

  6. Use of extremophilic bacteria for second generation bioethanol production

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    . The recalcitrance of these materials and their diverse sugar composition make the industrial yeast strains currently used unsuitable for a second generation bioethanol production process. One of the alternative strategies is the use of extreme thermophilic microorganisms. Currently, selected members from the genera...... production from food crops, such as corn (starch) or sugar cane (sucrose) is already an established process, with the USA and Brazil supplying 86% of the market. The major challenge remains in the use of different waste sources – agricultural, forestry, animal and household waste - as a feedstock...

  7. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass

    Science.gov (United States)

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors [such as furfural and 5-hydroxymethylfurfural (HMF)] to less toxic corresponding alcohols. However, the...

  8. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol.

    Science.gov (United States)

    Menezes, Evandro G T; do Carmo, Juliana R; Alves, José Guilherme L F; Menezes, Aline G T; Guimarães, Isabela C; Queiroz, Fabiana; Pimenta, Carlos J

    2014-01-01

    The use of lignocellulosic raw materials in bioethanol production has been intensively investigated in recent years. However, for efficient conversion to ethanol, many pretreatment steps are required prior to hydrolysis and fermentation. Coffee stands out as the most important agricultural product in Brazil and wastes such as pulp and coffee husk are generated during the wet and dry processing to obtain green grains, respectively. This work focused on the optimization of alkaline pretreatment of coffee pulp with the aim of making its use in the alcoholic fermentation. A central composite rotatable design was used with three independent variables: sodium hydroxide and calcium hydroxide concentrations and alkaline pretreatment time, totaling 17 experiments. After alkaline pretreatment the concentration of cellulose, hemicellulose, and lignin remaining in the material, the subsequent hydrolysis of the cellulose component and its fermentation of substrate were evaluated. The results indicated that pretreatment using 4% (w/v) sodium hydroxide solution, with no calcium hydroxide, and 25 min treatment time gave the best results (69.18% cellulose remaining, 44.15% hemicelluloses remaining, 25.19% lignin remaining, 38.13 g/L of reducing sugars, and 27.02 g/L of glucose) and produced 13.66 g/L of ethanol with a yield of 0.4 g ethanol/g glucose. © 2013 American Institute of Chemical Engineers.

  9. Characteristics of the products of hydrothermal liquefaction combined with cellulosic bio-ethanol process

    International Nuclear Information System (INIS)

    Li, Rundong; Xie, Yinghui; Yang, Tianhua; Li, Bingshuo; Zhang, Yang; Kai, Xingping

    2016-01-01

    The integration utilization of fermentation residues from cellulosic bio-ethanol has attracted a great deal of attention to balance the total cost of bio-ethanol production while simultaneously dealing with bio-ethanol wastewater. A process of hydrothermal liquefaction (HTL) of intact materials from cellulosic bio-ethanol in a batch reactor was proposed. The effects of the reaction temperature and time on the liquefaction characteristics were examined. The optimum condition for liquefaction fermentation residues was 370 °C (21.25 MPa) and 30 min with a bio-oil yield of 40.79 wt%. GC-MS results indicated that the major chemical species in the bio-oil were phenols, ketones, long-chain hydrocarbons and fatty acids. Supercritical conditions (375 °C, 23.50 MPa) was favored for the low-molecular-weight species formation compared to subcritical conditions (370 °C, 21.25 MPa), as some long-chain species decreased. This work thus can provide a novel idea for bio-oil production from HTL of cellulosic bio-ethanol fermentation residues. - Highlights: • Bio-oil production via HTL combined with cellulosic bio-ethanol process was proposed. • Optimum condition for HTL of materials from cellulosic bio-ethanol was 370 °C and 30 min. • Bio-oil contained higher content of hydrocarbons and lower contents of organic acids.

  10. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  11. Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Van de Velde, Miet; Foulquié-Moreno, Maria R; Kerstens, Dorien; Sels, Bert F; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2017-11-01

    The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Second-generation bioethanol from eucalypt sulphite spent liquor.

    Science.gov (United States)

    Xavier, Ana M R B; Correia, Mariana F; Pereira, Susana R; Evtuguin, Dmitry V

    2010-04-01

    The spent liquor from acidic sulphite pulping of Eucalyptus globulus (HSSL) is the side product from sulphite pulp production and besides sulphonated lignin contains sugars from degraded hemicelluloses, mainly pentoses. Pichia stipitis fermentation of these sugars for bioethanol production was the primary goal of this work. The increasing of HSSL proportion in fermentation media affected negatively the ethanol yield. Thus with 20% of HSSL (v/v) attained maximum ethanol yield was 0.15 g of ethanol by g of sugar consumed (g(e) g(s)(-1)) and with 60% (v/v) only 0.08 g(e) g(s)(-1). Biological removal of acetic acid from HSSL improved fermentation though the complete removal of acetic acid and polyphenolics (including sulphonated species) by treatment with ion-exchange resins was required for highly successful bioethanol production. Accordingly, the fermentative metabolic pathway of P. stipitis has been promoted allowing fair ethanol productivity and yield (Yp/s = 0.49 g(e) g(s)(-1)) at relatively low maximum of cell growth rate (micro(max) = 0.21 h(-1)). Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Energy from whey - comparison of the biogas and bioethanol processes

    International Nuclear Information System (INIS)

    Fruteau de Laclos, H.; Membrez, Y.

    2004-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project which investigated how energy could be generated from the whey produced in the cheese-making process. The first part of the project aimed to validate a concept for on-site production and use of biogas at a medium-sized cheese factory. The results of the first step, an experimental study carried out using a down-flow fixed-film bio-reactor, are discussed. This allowed the determination of the optimal working parameters as well as providing an estimate of the performance of the process. The second part of the project aimed to compare the bio-ethanol and biogas production processes. It was carried out in collaboration with AlcoSuisse and the Energy Systems Laboratory at the Swiss Federal Institute of Technology (EPFL) in Lausanne. The results of a life-cycle assessment (LCA) are discussed, which compared the two processes from an environmental point of view. Here, two impacts were considered: fossil fuel consumption and greenhouse effect. The replacement of fuel-oil with biogas for heat production and the replacement of conventional petrol with mixture including 5% bio-ethanol were examined. The results are presented that show that there was no significant difference between the two processes. According to the authors, the treatment of one cubic meter of cheese-whey allows savings of more than 20 litres of oil equivalent and 60 kg of CO 2 emissions

  14. MICROALGAE AS AN ALTERNATIVE TO BIOFUELS PRODUCTION. PART 1: BIOETHANOL

    Directory of Open Access Journals (Sweden)

    Maiara Priscilla de Souza

    2013-02-01

    Full Text Available The demand from the energy sector is one of the culminating factors to do researches that enable innovations in the biotechnology sector and to boost biofuel production. The variability of the existing feedstocks provides benefits to energy production, however, we must choose the ones that present plausible characteristics depending on the type of product that we want to obtained. In this context, it is noted that the microalgae have suitable characteristics to producing different types of fuels, depending on the type of treatment are subjected, the species being analyzed as well as the biochemical composition of the biomass. Bioethanol production from microalgae is a promising and growing energy alternative under a view that biomass of these microorganisms has an enormous biodiversity and contain high levels of carbohydrates, an indispensable factor for the bioconversion of microalgae in ethanol. Due to these factors, there is a constant search for more viable methods for pretreatment of biomass, hydrolysis and fermentation, having as one of the major aspects the approach of effectives methodologies in the ambit of quality and yield of ethanol. Therefore, we have to search to increase the interest in the developing of biofuels reconciling with the importance of using microalgae, analyzing whether these micro-organisms are capable of being used in bioethanol production.

  15. Microbial conversion of lignocellulose-derived carbohydrates into bioethanol and lactic acid

    NARCIS (Netherlands)

    Maas, R.H.W.

    2008-01-01

    Houtachtige biomassa (rest)stromen kan één van de duurzame alternatieven gaan worden voor aardolie omdat het kan dienen als grondstof voor de productie van biobrandstoffen en bulkchemicaliën. Belangrijk voordeel van deze technologie is dat er geen gebruik hoeft te worden gemaakt van plantaardige

  16. Starch conversion of ganyong (Canna edulis Ker. to bioethanol using acid hydrolysis and fermentation

    Directory of Open Access Journals (Sweden)

    LILY SURAYYA EKA PUTRI

    2008-04-01

    Full Text Available Starch of ganyong is one of the sources of ethanol which is able to be produced by acid hydrolysis and fermentation process. It had high concentration of carbohydrate that is 80%, so it could produce glucose highly within acid hydrolysis process. The result showed that the optimal amount of reducing sugar had been produced by nitrate acid 7% (dextrose equivalent, DE = 28.4. Nevertheless, type and concentration of acid had no significantly correlation to reducing sugar yielded. The total amount of glucose had correlation to amount of ethanol, in fermentation process. The optimal amount of ethanol was yielded from 4.81% of glucose and it produced about 4.84% ethanol. The more amount of glucose was yielded the more ethanol was produced. Controlling pH every 12 hours did not affected to production of ethanol significantly.

  17. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production.

    Science.gov (United States)

    Ko, Ja Kyong; Lee, Sun-Mi

    2018-04-01

    Cellulosic fuels are expected to have great potential industrial applications in the near future, but they still face technical challenges to become cost-competitive fuels, thus presenting many opportunities for improvement. The economical production of viable biofuels requires metabolic engineering of microbial platforms to convert cellulosic biomass into biofuels with high titers and yields. Fortunately, integrating traditional and novel engineering strategies with advanced engineering toolboxes has allowed the development of more robust microbial platforms, thus expanding substrate ranges. This review highlights recent trends in the metabolic engineering of microbial platforms, such as the industrial yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, for the production of renewable fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector

    International Nuclear Information System (INIS)

    Park, Su Han; Kim, Hyung Jun; Suh, Hyun Kyu; Lee, Chang Sik

    2009-01-01

    The focus of this study was to investigate the spray characteristics and atomization performance of gasoline fuel (G100), bioethanol fuel (E100), and bioethanol blended gasoline fuel (E85) in a direct injection gasoline injector in a gasoline engine. The overall spray and atomization characteristics such as an axial spray tip penetration, spray width, and overall SMD were measured experimentally and predicted by using KIVA-3V code. The development process and the appearance timing of the vortices in the test fuels were very similar. In addition, the numerical results accurately described the experimentally observed spray development pattern and shape, the beginning position of the vortex, and the spray breakup on the spray surface. Moreover, the increased injection pressure induced the occurrence of a clear circular shape in the downstream spray and a uniform mixture between the injected spray droplets and ambient air. The axial spray tip penetrations of the test fuels were similar, while the spray width and spray cone angle of E100 were slightly larger than the other fuels. In terms of atomization performance, the E100 fuel among the tested fuels had the largest droplet size because E100 has a high kinematic viscosity and surface tension.

  19. Conversion frequence

    International Nuclear Information System (INIS)

    Sauteret, C.

    1987-03-01

    The experimental evidence of short wavelength for laser inertial confinement has strongly increased the interest in high efficiency harmonic conversion of powerful Nd: glass lasers. This work describes our high power harmonic conversion experiments performed using the same laser apparatus for doubling, tripling the three high power 1064 nm P102, OCTAL and PHEBUS lasers. In addition to the understanding the physics of harmonic conversion, this work includes the basic concepts allows us to improve the technique such as non colinear schemes, to extend this method to other frequencies (fourth generation) and to predict some physical limits [fr

  20. Energia alternativa de biomassa: bioetanol a partir da casca e da polpa de banana Alternative energy from biomass: bioethanol from banana pulp and peels

    Directory of Open Access Journals (Sweden)

    Ozair Souza

    2012-08-01

    Full Text Available A conversão de biomassas agroindustriais em bioetanol com consequente valorização de rejeitos e resíduos, tem sido objeto de estudos de várias pesquisas realizadas no Brasil e no mundo. Neste trabalho foi avaliada a potencialidade do uso da polpa e da casca da banana (Musa cavendishii , tanto in natura como previamente hidrolisada por ácido e enzimas, como substrato da fermentação alcoólica. Os rendimentos médios em bioetanol (em base úmida de biomassa obtidos com a polpa (0,48 ± 0,05 g g-1 e com a casca (0,34 ± 0,11 g g-1, ambos in natura, possibilitaram a eficiência do processo de conversão, da ordem de 95% do rendimento teórico. A produtividade máxima alcançada em bioetanol foi de 3,0 ± 0,7 g L-1 h-1 com o uso da polpa e de 1,32 ± 0,03 g L-1 h-1 com a casca. Nas condições operacionais avaliadas o pretratamento dos resíduos com ácido sulfúrico não é recomendado para a produção de bioetanol.The conversion of agroindustrial biomasses in bioethanol with consequent enrichment of wastes has been the object of various research projects conducted in Brazil and around the world. This study evaluated the potential of the Musa cavendishii banana pulp and peels using in natural state and also waste previously hydrolyzed by acid and enzimes, as substrate of alcoholic fermentation. The mean bioethanol yields (on wet biomass base, obtained with the pulp (0.48 ± 0.05 g g-1 and with the peels (0.34 ± 0.11 g g-1, both in natural state, enabled a conversion process efficiency to the order of 95% of theoretical yield. Maximum value reached in bioethanol was 3.0 ± 0.7 g L-1 h-1 with pulp and 1.32 ± 0.03 g L-1 h-1 with peels. Under the evaluated operating conditions, the pre-treatment of wastes with sulfuric acid is not recommended for bioethanol production.

  1. SIMULATION OF THE FERMENTATION PROCESS TO OBTAIN BIOETHANOL FROM RICE RESIDUES

    Directory of Open Access Journals (Sweden)

    Verónica Capdevila

    2015-06-01

    Full Text Available In this paper presents a simulation model of the fermentation/separation process of bioethanol from hydrolyzed pretreated rice husk, using Aspen HYSYS simulator. Sensitivity studies performed on the developed model indicated levels for selected variables: biomass/water ratio of 1:2,89 ; biomass flow of 50 t/h and inlet temperature separator of 30°C, leading to maximize the yield of bioethanol. From these variables, a bioethanol production of 8,81 t/h with a purity of 65,51% w/w is obtained, corresponding to a flow of hydrolyzed treated biomass of 50 t/h. This work represents an advance in the development of the simulation model of the complete process to obtain second generation of bioethanol from rice husks.

  2. Municipal Solid Waste Management in a Low Income Economy Through Biogas and Bioethanol Production

    DEFF Research Database (Denmark)

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia

    2017-01-01

    The biodegradable fraction of municipal solid wastes generated from households in Ghana has favourable characteristics worth considering for bioenergy production. The suitability of this biodegradable portion for biogas and bioethanol production was assessed in this study. The assessment was perf...

  3. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Katrine; Wenzel, Henrik

    of alternative uses. Since natural gas and coal will be used as fuels for heat and power production at least within this time frame, the lost alternatives include substitution of natural gas or coal in the heat and power sector. In a case study, we investigate the environmental feasibility of using advanced...... fermentation based bioethanol for transport, when held up against the consequence of losing alternative biomass utilizations. The biomass feedstock considered is an energy whole-crop in the form of whole-crop maize and the bioethanol technology considered includes fermentation of lignocellulosic biomass. We...... show that for the case of this advanced bioethanol technology, in terms of reducing greenhouse emissions and fossil fuel dependency, more is lost than gained when prioritizing biomass or land for bioethanol. Technology pathways involving heat and power production and/or biogas, natural gas...

  4. Strategic conversation

    Directory of Open Access Journals (Sweden)

    Nicholas Asher

    2013-08-01

    Full Text Available Models of conversation that rely on a strong notion of cooperation don’t apply to strategic conversation — that is, to conversation where the agents’ motives don’t align, such as courtroom cross examination and political debate. We provide a game-theoretic framework that provides an analysis of both cooperative and strategic conversation. Our analysis features a new notion of safety that applies to implicatures: an implicature is safe when it can be reliably treated as a matter of public record. We explore the safety of implicatures within cooperative and non cooperative settings. We then provide a symbolic model enabling us (i to prove a correspondence result between a characterisation of conversation in terms of an alignment of players’ preferences and one where Gricean principles of cooperative conversation like Sincerity hold, and (ii to show when an implicature is safe and when it is not. http://dx.doi.org/10.3765/sp.6.2 BibTeX info

  5. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia

    OpenAIRE

    M. Hanif; T.M.I. Mahlia; H.B. Aditiya; M.S. Abu Bakar

    2017-01-01

    According to the Malaysia’s biofuel policy, renewable fuels are crucial for energy sustainability in the transportation sector in the future. This study was aimed to evaluate the potential of bioethanol production from Sri Kanji 1 cassava in Malaysia in terms of energy efficiency and renewability, as well to estimate the potential greenhouse gas (GHG) emissions reduction in CO2 equivalent. Bioethanol production process from cassava includes cassava farming, ethanol production, and transportat...

  6. Exergy and CO2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production

    Directory of Open Access Journals (Sweden)

    Qian Kang

    2016-01-01

    Full Text Available The background of bioethanol as an alternative to conventional fuels is analyzed with the aim of examining the efficiency of bioethanol production by first (sugar-based and second (cellulose-based generation processes. Energy integration is of paramount importance for a complete recovery of the processes’ exergy potential. Based upon literature data and our own findings, exergy analysis is shown to be an important tool in analyzing integrated ethanol production from an efficiency and cost perspective.

  7. Study on Bioethanol Production Using Red Seaweed Eucheuma Cottonii From Bontang Sea Water

    OpenAIRE

    Candra, Krishna Purnawan; Sarwono; Sarinah

    2011-01-01

    The increasing of energy demand for public transport and a rise of oil prices lead to intense of using green fuel for sustainable future. Red-seaweed polysaccharide consists of carrageenan can be used for production of bio-etahanol, as it supplies monosacharides. In this study, the possibility of bioethanol production using red-seaweed as raw material was examined. The purpose of this research was to determine the method of bioethanol production using red-seaweed. Two separate anaerobic ferme...

  8. Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements

    OpenAIRE

    Borja Velazquez-Marti; Sergio Pérez-Pacheco; Juan Gaibor-Chávez; Paola Wilcaso

    2016-01-01

    Bioethanol production from sugarcane represents an opportunity for urban-agricultural development in small communities of Ecuador. Despite the fact that the industry for bioethanol production from sugarcane in Brazil is fully developed, it is still considered expensive as a small rural business. In order to be able to reduce the costs of monitoring the production process, and avoid the application of expensive sensors, the aim of this research was modeling the kinetics of production of bioeth...

  9. Safety, health, and environmental assessment of bioethanol production from sugarcane, corn, and corn stover

    OpenAIRE

    Banimostafa, Alireza; Nguyen, Thuy Thi Hong; Kikuchi, Yasunori; Papadokonstantakis, Stavros; Sugiyama, Hirokazu; Hirao, Masahiko; Hungerbühler, Konrad

    2017-01-01

    Biofuels as renewable resources are one of the options to meet the challenges of fossil fuel resource depletion and atmospheric pollution. Several studies have focused on the technical, economic, and environmental footprint of biofuels, particularly bioethanol production. However, there has been little effort to incorporate the environmental, health, and safety (EHS) hazards in an inclusive sustainability assessment of bioethanol production alternatives. This study focuses on these sustainabi...

  10. Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties

    International Nuclear Information System (INIS)

    Osmani, Atif; Zhang, Jun

    2013-01-01

    An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that “mean” value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation. - Highlights: • Two-stage stochastic MILP model for maximizing profit of a multi-feedstock lignocellulosic-based bioethanol supply chain. • Multiple uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand, and bioethanol sale price. • Proposed stochastic model outperforms the traditional deterministic model under uncertainties. • Stochastic parameters significantly affect marginal land allocation for switchgrass cultivation and bioethanol production. • Location of biorefineries is found to be insensitive to the stochastic environment

  11. Improved Bioethanol Production Using Activated Carbon-treated Acid Hydrolysate from Corn Hull in Pachysolen tannophilus

    OpenAIRE

    Seo, Hyeon-Beom; Kim, Seungseop; Lee, Hyeon-Yong; Jung, Kyung-Hwan

    2009-01-01

    To optimally convert corn hull, a byproduct from corn processing, into bioethanol using Pachysolen tannophlius, we investigated the optimal conditions for hydrolysis and removal of toxic substances in the hydrolysate via activated carbon treatment as well as the effects of this detoxification process on the kinetic parameters of bioethanol production. Maximum monosaccharide concentrations were obtained in hydrolysates in which 20 g of corn hull was hydrolyzed in 4% (v/v) H2SO4. Activated carb...

  12. The addition of zeolite adsorbents and calcium oxide on purification of bioethanol from sugar palm (arenga pinnata merr)

    Science.gov (United States)

    Herlina, Netti; Siska Dewi Harahap, Ici

    2018-03-01

    Bioethanol (C2H5OH) is a biochemical liquid produced by microorganisms through fermentation process on sugar molecules from carbohydrates. Bioethanol is a fuel of vegetable oil that has similar properties to premium. With its main product of palm juice, Sugar palm (Arenga pinnata) is a potential source of sugar and carbohydrate for bioethanol production. Production of palm juice can reach up to 12-14 liters/tree/day with total sugar content in palm juice ranges from 12-15%. The purpose of this research was to produce highly-concentrated bioethanol from palm juice through fermentation proccess to subtitude fossil fuel. This study was conducted with three stages of treatment, namely: the fermentation of palm juice, distillation of bioethanol, and purification of bioethanol with the addition of adsorbent zeolite and calcium oxide.

  13. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  14. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  15. Severe burn injuries caused by bioethanol-design fireplaces-an overview on recreational fire threats.

    Science.gov (United States)

    Kraemer, Robert; Knobloch, Karsten; Lorenzen, Johan; Breuing, Karl H; Koennecker, Soeren; Rennekampff, Hans-Oliver; Vogt, Peter M

    2011-01-01

    Commercially available bioethanol-fueled fireplaces have become increasingly popular additions for interior home decoration in Europe and more recently in the United States. These fireplaces are advertised as smokeless, ecologically friendly, and do not require professional installation, formal gas lines, or venting. Although manufacturers and businesses promote their safety, recent presentations of injuries have alerted the authors to the relevant danger bioethanol fireplaces can pose for the incautious user. Are bioethanol fireplaces going to become the future threat in domestic burn accidents beside common barbeque burns? A Medline literature search on barbeque and domestic fireplace accidents was performed to compare and stratify the injury patterns reported and to identify a risk profile for contemporary bioethanol-fueled fireplaces. To exemplify, two representative clinical cases of severe burn accidents caused by bioethanol-fueled fireplaces, both treated in the burn unit of the authors, are being presented. Design fireplaces are being recognized as an increasing source of fuel and fire-related danger in the home. This risk may be underestimated by the uninformed customer, resulting in severe burn injuries. Because bioethanol-fueled fireplaces have become more commonplace, they may overtake barbecue-related injury as the most common domestic burn injury.

  16. Challenges in bioethanol production: Utilization of cotton fabrics as a feedstock

    Directory of Open Access Journals (Sweden)

    Nikolić Svetlana

    2016-01-01

    Full Text Available Bioethanol, as a clean and renewable fuel with its major environmental benefits, represents a promising biofuel today which is mostly used in combination with gasoline. It can be produced from different kinds of renewable feedstocks. Whereas the first generation of processes (saccharide-based have been well documented and are largely applied, the second and third generation of bioethanol processes (cellulose- or algae-based need further research and development since bioethanol yields are still too low to be economically viable. In this study, the possibilities of bioethanol production from cotton fabrics as valuable cellulosic raw material were investigated and presented. Potential lignocellulosic biomass for bioethanol production and their characteristics, especially cotton-based materials, were analyzed. Available lignocellulosic biomass, the production of textile and clothing and potential for sustainable bioethanol production in Serbia is presented. The progress possibilities are discussed in the domain of different pretreatment methods, optimization of enzymatic hydrolysis and different ethanol fermentation process modes. [Projekat Ministarstva nauke Republike Srbije, br. 31017

  17. Improving the stability of bioethanol / gas oil emulsions by a new additive

    Energy Technology Data Exchange (ETDEWEB)

    Hancsok, J.; Marsi, G.; Nagy, G. (Univ. of Pannonia, Veszprem (Hungary). Dept. of Hydrocarbon and Coal Processing), Email: hancsokj@almos.uni-pannon.hu

    2009-07-01

    The limit of application of bioethanol / gas oil emulsions is derived from their stability problems, which is effected by numerous factors (hydrocarbon composition of base gas oil, temperature, water content of bioethanol, presence of co-solvent and quality and quantity of applied additive). Therefore the aim of our research work was to prepare bioethanol / gas oil emulsions which are stable at low temperature (-15 deg C) and in presence of water (3.0-5.0 v / v %) by the application of originally structured additives, and co-solvents (fatty acid alkyl esters and different carbon number bioalcohols). We found that the application of 5 v / v % fatty-acid-methyl-ester as co-solvent bioethanol / gas oil emulsion containing 6 v / v % bioethanol could be produced which was stable at -15 deg C. By the application of originally structured additive (polyisobutene-succinic-acid based additives contained fatty-acid-methyl-ester as molecule-component) the emulsion was stable even when water content of the applied bioethanol was 5 v / v %. (orig.)

  18. The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience

    Science.gov (United States)

    Jäger, Alexander; Ortner, Tina; Kahr, Heike

    2015-04-01

    The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.

  19. Design and Modelling of Sustainable Bioethanol Supply Chain by Minimizing the Total Ecological Footprint in Life Cycle Perspective

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Toniolo, Sara

    2013-01-01

    The purpose of this paper is to develop a model for designing the most sustainable bioethanol supply chain. Taking into consideration of the possibility of multiple-feedstock, multiple transportation modes, multiple alternative technologies, multiple transport patterns and multiple waste disposal...... manners in bioethanol systems, this study developed a model for designing the most sustainable bioethanol supply chain by minimizing the total ecological footprint under some prerequisite constraints including satisfying the goal of the stakeholders', the limitation of resources and energy, the capacity...

  20. Enzymatic conversion of lignin into renewable chemicals.

    Science.gov (United States)

    Bugg, Timothy D H; Rahmanpour, Rahman

    2015-12-01

    The aromatic heteropolymer lignin is a major component of plant cell walls, and is produced industrially from paper/pulp manufacture and cellulosic bioethanol production. Conversion of lignin into renewable chemicals is a major unsolved problem in the development of a biomass-based biorefinery. The review describes recent developments in the understanding of bacterial enzymes for lignin breakdown, such as DyP peroxidases, bacterial laccases, and beta-etherase enzymes. The use of pathway engineering methods to construct genetically modified microbes to convert lignin to renewable chemicals (e.g. vanillin, adipic acid) via fermentation is discussed, and the search for novel applications for lignin (e.g. carbon fibre). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  2. Direct Conversion of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R

    1964-01-01

    Topics include: direct versus dynamic energy conversion; laws governing energy conversion; thermoelectricity; thermionic conversion; magnetohydrodynamic conversion; chemical batteries; the fuel cell; solar cells; nuclear batteries; and advanced concepts including ferroelectric conversion and thermomagnetic conversion.

  3. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015)

    Science.gov (United States)

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-01-01

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish. PMID:26907306

  4. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015

    Directory of Open Access Journals (Sweden)

    Chao-Chen Chung

    2016-02-01

    Full Text Available This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS. Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1 fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2 comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  5. Subcritical and supercritical technology for the production of second generation bioethanol.

    Science.gov (United States)

    Rostagno, Mauricio A; Prado, Juliana M; Mudhoo, Ackmez; Santos, Diego T; Forster-Carneiro, Tânia; Meireles, M Angela A

    2015-01-01

    There is increased interest in reducing our reliance on fossil fuels and increasing the share of renewable raw materials in our energy supply chain due to environmental and economic concerns. Ethanol is emerging as a potential alternative to liquid fuels due to its eco-friendly characteristics and relatively low production costs. As ethanol is currently produced from commodities also used for human and animal consumption, there is an urgent need of identifying renewable raw materials that do not pose a competitive problem. Lignocellulosic agricultural residues are an ideal choice since they can be effectively hydrolyzed to fermentable sugars and integrated in the context of a biorefinery without competing with the food supply chain. However, the conventional hydrolysis methods still have major issues that need to be addressed. These issues are related to the processing rate and generation of fermentation inhibitors, which can compromise the quality of the product and the cost of the process. As the knowledge of the processes taking place during hydrolysis of agricultural residues is increasing, new techniques are being exploited to overcome these drawbacks. This review gives an overview of the state-of-the-art of hydrolysis with subcritical and supercritical water in the context of reusing agricultural residues for the production of suitable substrates to be processed during the fermentative production of bioethanol. Presently, subcritical and/or supercritical water hydrolysis has been found to yield low sugar contents mainly due to concurrent competing degradation of sugars during the hydrothermal processes. In this line of thinking, the present review also revisits the recent applications and advances to provide an insight of future research trends to optimize on the subcritical and supercritical process kinetics.

  6. Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa-Serra, J.F.; Chica, A. [Instituto de Tecnolgia Quimica (UPV-CSIC), Universidad Politecnica de Valencia, Consejo Superior de Investigaciones Cientificas, Avenida de los naranjos s/n, 46022 Valencia (Spain); Guil-Lopez, R. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain)

    2010-07-15

    Renewable hydrogen production from steam reforming of bioethanol is an interesting approach to produce sustainable hydrogen. However, simultaneous competitive reactions can occur, decreasing the hydrogen production yield. To overcome this problem, modifications in the steam reforming catalysts are being studied. Ni and Co active phases supported over modified ZnO have been widely studied in hydrogen production from steam reforming of bioethanol. However, the influence of the morphology and particle size of ZnO supports on the catalytic behaviour of the supported Ni and Co has not been reported. In the present work, we show how the morphology, shape, and size of ZnO support particles can control the impregnation process of the metal active centres, which manages the properties of active metallic particles. It has been found that nanorod particles of ZnO, obtained by calcination of Zn acetate, favour the metal-support interactions, decreasing the metallic particle sizes and avoiding metal (Co or Ni) sinterization during the calcination of metal precursors. Small metallic particle sizes lead to high values of active metal exposure surface, increasing the bioethanol conversion and hydrogen production. (author)

  7. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment.

    Science.gov (United States)

    Yuan, Zhaoyang; Wen, Yangbing; Li, Guodong

    2018-07-01

    An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H 2 O 2 )/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Tungsten effect over co-hydrotalcite catalysts to produce hydrogen from bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J.L.; Ortiz, M.A.; Luna, R.; Nuno, L. [Univ. Autonoma Metropolitana-Azcapozalco, Mexico City (Mexico). Dept. de Energia; Fuentes, G.A. [Univ. Autonoma Metropolitana-Iztapalapa, Mexico City (Mexico). Dept. de IPH; Salmones, J.; Zeifert, B. [Inst. Politecnico Nacional, Mexico City (Mexico); Vazquez, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico)

    2010-07-15

    The use of bioethanol has been considered for generating hydrogen via catalytic reforming. The reaction of ethanol with stream is strongly endothermic and produces hydrogen (H{sub 2}) and carbon dioxide (CO{sub 2}). However, undesirable products such as carbon monoxide (CO) and methane (CH{sub 4}) may also form during the reaction. This paper reported on the newly found stabilization effect of tungsten over the Co-hydrotalcite catalysts to produce H{sub 2} from ethanol in steam reforming. The catalysts were characterized by nitrogen (N{sub 2}) physisorption (BET area), X-ray diffraction, Infrared, Raman and UV-vis spectroscopies. Catalytic evaluations were determined using a fixed bed reactor with a water/ethanol mol ratio of 4 at 450 degrees C. The tungsten concentration studied was from 0.5 to 3 wt percent. The intensity of crystalline reflections of the Co-hydrotalcite catalysts decreased as tungsten concentration increased. Infrared spectroscopy was used to determine the superficial chemical groups, notably -OH, H{sub 2}O, Al-OH, Mg-OH, W-O-W and CO{sub 3}{sup 2.} The highest H{sub 2} production and the best catalytic stability was found in catalysts with low tungsten. The smallest pore volume of this catalyst could be related with long residence times of ethanol in the pores. Tungsten promoted the conversion for the Co-hydrotalcite catalysts. The reaction products were H{sub 2}, CO{sub 2}, CH{sub 3}CHO, CH{sub 4} and C{sub 2}H{sub 4} and the catalysts did not produce CO. 33 refs., 2 tabs., 10 figs.

  9. Recovery of Glucose from Residual Starch of Sago Hampas for Bioethanol Production

    Science.gov (United States)

    Awg-Adeni, D. S.; Bujang, K. B.; Hassan, M. A.; Abd-Aziz, S.

    2013-01-01

    Lower concentration of glucose was often obtained from enzymatic hydrolysis process of agricultural residue due to complexity of the biomass structure and properties. High substrate load feed into the hydrolysis system might solve this problem but has several other drawbacks such as low rate of reaction. In the present study, we have attempted to enhance glucose recovery from agricultural waste, namely, “sago hampas,” through three cycles of enzymatic hydrolysis process. The substrate load at 7% (w/v) was seen to be suitable for the hydrolysis process with respect to the gelatinization reaction as well as sufficient mixture of the suspension for saccharification process. However, this study was focused on hydrolyzing starch of sago hampas, and thus to enhance concentration of glucose from 7% substrate load would be impossible. Thus, an alternative method termed as cycles I, II, and III which involved reusing the hydrolysate for subsequent enzymatic hydrolysis process was introduced. Greater improvement of glucose concentration (138.45 g/L) and better conversion yield (52.72%) were achieved with the completion of three cycles of hydrolysis. In comparison, cycle I and cycle II had glucose concentration of 27.79 g/L and 73.00 g/L, respectively. The glucose obtained was subsequently tested as substrate for bioethanol production using commercial baker's yeast. The fermentation process produced 40.30 g/L of ethanol after 16 h, which was equivalent to 93.29% of theoretical yield based on total glucose existing in fermentation media. PMID:23509813

  10. Techno-economic and environmental assessment of bioethanol production from high starch and root yield Sri Kanji 1 cassava in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Hanif

    2016-11-01

    Full Text Available Transportation played a significant role in energy consumption and pollution subsequently. Caused by the intense growth of greenhouse gas emission, efficient and sustainable improvement of the transportation sector has elevated the concern in many nations including Malaysia. Bioethanol is an alternative and renewable energy that has a great potential to substitute for fossil gasoline in internal combustion engine (ICE. Although bioethanol has been widely utilized in road transport worldwide, the production and application of bioethanol in Malaysia is yet to be considered. Presently there is comprehensive diversity of bioethanol research on distillation, performance and emission analysis available worldwide. Yet, the study on techno-economic and feasibility of bioethanol fuel in Malaysia condition is unavailable. Thus, this study is concentrated on bioethanol production and techno-economic analysis of cassava bioethanol as an alternative fuel in Malaysia. Furthermore, the current study attempts to determine the effect of bioethanol employment towards the energy scenario, environmental and economy. From the economic analysis, determined that the life cycle cost for 54 ktons cassava bioethanol production plant with a project life time of 20 years is $132 million USD, which is equivalent to $0.11 USD per litre of bioethanol. Furthermore, substituting 5 % of gasoline fuel with bioethanol fuel in road transport can reduce the CO2 emissions up to 2,038 ktons in year 2036. In case to repay the carbon debt from converting natural forest to cassava cropland, cassava bioethanol required about 5.4 years. The cassava bioethanol is much cheaper than gasoline fuel even when 20 % taxation is subjected to bioethanol at current production cost. Thus, this study serves as a guideline for further investigation and research on bioethanol production, subsidy cost and other limitation factors before the extensive application of bioethanol can be implemented in

  11. Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: Current perspectives and future prospectives

    International Nuclear Information System (INIS)

    Zhao, Lili; Ou, Xunmin; Chang, Shiyan

    2016-01-01

    In this study, a life cycle analysis (LCA) of bioethanol production from corn stover is carried out under Chinese context. Three scenarios were developed and assessed based on current and future technology levels of the ethanol conversion process. Well-to-pump (WTP) and well-to-wheels (WTW) results are presented in this paper via functional units of 1 MJ of ethanol produced, 1 MJ of E100 produced and used, and 1 km of distance driven by a light-duty vehicle on E10 fuel, respectively. It was calculated that for 1 MJ of E100, the WTW Greenhouse gas (GHG) emission reduction relative to gasoline reaches 52%–55%, and the savings of fossil fuel and petroleum fuel reach 72%–76% and 74%–85%, respectively. For 1 MJ of ethanol produced, GHG emissions occurred in ethanol conversion process account for 51%–55%, and the contribution of chemical inputs reaches 36%–37% of the total life cycle GHG emissions. Furthermore, the life cycle results were found to be highly sensitive to allocation methods. - Highlights: • The study is focused on 2 G bioethanol derived from corn stover in Chinese context. • LCA is based on both current and future technology levels for ethanol conversion. • The life cycle GHG emission reduction of E100 relative to gasoline reaches 52%–55%. • Contributions of chemicals account for 36%–37% of life cycle GHG emissions. • E100 saves 74%–85% of petroleum fuel during its life cycle production and use.

  12. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    Science.gov (United States)

    Endo, Ayako; Nakamura, Toshihide; Shima, Jun

    2009-10-01

    A vanillin-tolerant strain of Saccharomyces cerevisiae was screened and its intracellular ergosterol levels were compared with several laboratory yeast strains to study the potential relationship between ergosterol content and vanillin tolerance. Saccharomyces cerevisiae NBRC1950 was selected as a vanillin-tolerant strain. Its ergosterol content was higher than those of the laboratory strains. The results of DNA microarray and quantitative reverse transcriptase-polymerase chain reaction analysis showed that five genes involved in ergosterol biosynthesis (ERG28, HMG1, MCR1, ERG5, and ERG7) were upregulated in NBRC 1950 compared with strain X2180, suggesting that high expression of genes involved in ergosterol biosynthesis may cause high ergosterol content in strain NBRC 1950. The S. cerevisiae HX strain, which was a high-ergosterol-containing strain derived from X2180, was more tolerant to vanillin than the parental strain, suggesting that high ergosterol content may, in part, be responsible for vanillin tolerance. These findings provide a biotechnological basis for the molecular engineering of S. cerevisiae with increased tolerance to vanillin. © 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Conversion Disorder

    Directory of Open Access Journals (Sweden)

    Yacov Rofé

    2013-11-01

    Full Text Available Conversion disorder remains a mystery that has only become more complicated with the decline of the scientific status of psychoanalysis (e.g., Piper, Lillevik, & Kritzer, 2008; Rofé, 2008 and recent neurological findings suggest that this behavior is controlled by biological mechanisms (van Beilen, Vogt, & Leenders, 2010. Moreover, existing theories have difficulty explaining the efficacy of various interventions, such as psychoanalysis, behavior therapy, drug therapy and religious therapy. This article reviews research and clinical evidence pertaining to both the development and treatment of conversion disorder and shows that this seemingly incompatible evidence can be integrated within a new theory, the Rational-Choice Theory of Neurosis (RCTN; Rofé, 2010. Despite the striking differences, RCTN continues Freud's framework of thinking as it employs a new concept of repression and replaces the unconscious with self-deception. Moreover, it incorporates Freud's idea, implicitly expressed in his theory, that neurotic disorders are, in fact, rational behaviors.

  14. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    Highlights: • Different composition of diesel fuel, biodiesel and bioethanol emulsions were examined. • The fuels were tested in a direct injection diesel engine and parameters were evaluated. • Engine power, torque, exhaust gas temperature & fuel consumptions were compared. • Emulsions fuels emitted lower CO and CO 2 than fossil diesel. • Lower NOx emission was observed at medium engine speeds and loads for emulsion fuels. - Abstract: In this research work, the experimental investigation of the effect of diesel-biodiesel-bioethanol emulsion fuels on combustion, performance and emission of a direct injection (DI) diesel engine are reported. Four kind of emulsion fuels were employed: B (diesel-80%, biodiesel-20% by volume), C (diesel-80%, biodiesel-15%, bioethanol-5%), D (diesel-80%, biodiesel-10%, bioethanol-10%) and E (diesel-80%, biodiesel-5%, bioethanol-15%) to compare its’ performance with the conventional diesel, A. These emulsion fuels were prepared by mechanical homogenizer machine with the help of Tween 80 (1% v/v) and Span 80 (0.5% v/v) as surfactants. The emulsion characteristics were determined by optical electron microscope, emulsification stability test, FTIR, and the physiochemical properties of the emulsion fuels which were all done by following ASTM test methods. The prepared emulsion fuels were then tested in diesel engine test bed to obtain engine performance and exhaust emissions. All the engine experiments were conducted with engine speeds varying from 1600 to 2400 rpm. The results showed the heating value and density of the emulsion fuels decrease as the bioethanol content in the blend increases. The total heating value of the diesel-biodiesel-bioethanol fuels were averagely 21% higher than the total heating value of the pure biodiesel and slightly lower (2%) than diesel fuel. The engine power, torque and exhaust gas temperature were reduced when using emulsion fuels. The brake specific fuel consumption (BSFC) for the emulsion fuels

  15. Conversational sensemaking

    Science.gov (United States)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  16. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  17. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland

    Science.gov (United States)

    The recent emphasis on corn production to meet the increasing demand for bioethanol has resulted in trepidation regarding the sustainability of the global food supply. To assess the potential of alternative crops as sources of bioethanol production, we grew sweet potato (Ipomoea batatas) and cassav...

  18. Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Khaled A. Selim

    2018-03-01

    Full Text Available Scarcity of the non-renewable energy sources, global warming, environmental pollution, and raising the cost of petroleum are the motive for the development of renewable, eco-friendly fuels production with low costs. Bioethanol production is one of the promising materials that can subrogate the petroleum oil, and it is considered recently as a clean liquid fuel or a neutral carbon. Diverse microorganisms such as yeasts and bacteria are able to produce bioethanol on a large scale, which can satisfy our daily needs with cheap and applicable methods. Saccharomyces cerevisiae and Pichia stipitis are two of the pioneer yeasts in ethanol production due to their abilities to produce a high amount of ethanol. The recent focus is directed towards lignocellulosic biomass that contains 30–50% cellulose and 20–40% hemicellulose, and can be transformed into glucose and fundamentally xylose after enzymatic hydrolysis. For this purpose, a number of various approaches have been used to engineer different pathways for improving the bioethanol production with simultaneous fermentation of pentose and hexoses sugars in the yeasts. These approaches include metabolic and flux analysis, modeling and expression analysis, followed by targeted deletions or the overexpression of key genes. In this review, we highlight and discuss the current status of yeasts genetic engineering for enhancing bioethanol production, and the conditions that influence bioethanol production.

  19. Improved Bioethanol Production Using Activated Carbon-treated Acid Hydrolysate from Corn Hull in Pachysolen tannophilus.

    Science.gov (United States)

    Seo, Hyeon-Beom; Kim, Seungseop; Lee, Hyeon-Yong; Jung, Kyung-Hwan

    2009-06-01

    To optimally convert corn hull, a byproduct from corn processing, into bioethanol using Pachysolen tannophlius, we investigated the optimal conditions for hydrolysis and removal of toxic substances in the hydrolysate via activated carbon treatment as well as the effects of this detoxification process on the kinetic parameters of bioethanol production. Maximum monosaccharide concentrations were obtained in hydrolysates in which 20 g of corn hull was hydrolyzed in 4% (v/v) H2SO4. Activated carbon treatment removed 92.3% of phenolic compounds from the hydrolysate. When untreated hydrolysate was used, the monosaccharides were not completely consumed, even at 480 h of culture. When activated carbon-treated hydrolysate was used, the monosaccharides were mostly consumed at 192 h of culture. In particular, when activated carbon-treated hydrolysate was used, bioethanol productivity (P) and specific bioethanol production rate (Qp) were 2.4 times and 3.4 times greater, respectively, compared to untreated hydrolysate. This was due to sustained bioethanol production during the period of xylose/arabinose utilization, which occurred only when activated carbon-treated hydrolysate was used.

  20. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    NARCIS (Netherlands)

    Maas, R.H.W.; Bakker, R.R.C.; Boersma, A.R.; Bisschops, I.; Pels, J.R.; Jong, de E.; Weusthuis, R.A.; Reith, H.

    2008-01-01

    The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of

  1. Effect of bio-ethanol on the performance and emission of a biodiesel fueled compression ignition engine

    Directory of Open Access Journals (Sweden)

    Bhat Shrivathsa Nelly

    2018-01-01

    Full Text Available In the present study investigates the effect of bio-ethanol on the performance and emissions of a biodiesel blend fueled compression ignition engine. The experiments are conducted using pongamia biodiesel blend B20 (20% pongamia biodiesel +80% diesel with 5, 7.5 and 10% (v/v of bio-ethanol on a four stroke single cylinder diesel engine. The tests are conducted at different load conditions. Performance and emissions characteristics are investigated for different bio-ethanol compositions. The results show that the brake thermal efficiency is maximum for B20E7.5 blend with a minimum brake specific fuel consumption. Carbon monoxide emission is minimum for B20E7.5 blend and NOx emission decreases as the bio-ethanol percentage is increased from 5 to 7.5%. The study reveals that 7.5% bio-ethanol with B20 pongamia biodiesel blend results better performance and emission characteristics.

  2. Production of bioethanol using agricultural waste: banana pseudo stem

    Directory of Open Access Journals (Sweden)

    Snehal Ingale

    2014-09-01

    Full Text Available India is amongst the largest banana (Musa acuminata producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g% gave maximum ethanol (17.1 g/L with yield (84% and productivity (0.024 g%/h after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production.

  3. Energy and Environmental Performance of Bioethanol from Different Lignocelluloses

    Directory of Open Access Journals (Sweden)

    Lin Luo

    2010-01-01

    Full Text Available Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. The use of lignocellulosic biomass together with cellulosic processing technology provides opportunities to produce fuel ethanol with less competition with food and nature. Many studies on energy analysis and life cycle assessment of second-generation bioethanol have been conducted. However, due to the different methodology used and different system boundary definition, it is difficult to compare their results. To permit a direct comparison of fuel ethanol from different lignocelluloses in terms of energy use and environmental impact, seven studies conducted in our group were summarized in this paper, where the same technologies were used to convert biomass to ethanol, the same system boundaries were defined, and the same allocation procedures were followed. A complete set of environmental impacts ranging from global warming potential to toxicity aspects is used. The results provide an overview on the energy efficiency and environmental performance of using fuel ethanol derived from different feedstocks in comparison with gasoline.

  4. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Julián Mario Peña-Castro

    2017-01-01

    Full Text Available The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize or proposed species (large grass families. The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.

  5. Bioethanol from lignocelluloses: Status and perspectives in Brazil.

    Science.gov (United States)

    Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Medeiros, Adriane Bianchi Pedroni; Karp, Susan Grace; Buckeridge, Marcos; Ramos, Luiz Pereira; Pitarelo, Ana Paula; Ferreira-Leitão, Viridiana; Gottschalk, Leda Maria Fortes; Ferrara, Maria Antonieta; da Silva Bon, Elba Pinto; de Moraes, Lidia Maria Pepe; Araújo, Juliana de Amorim; Torres, Fernando Araripe Gonçalves

    2010-07-01

    The National Alcohol Program--PróAlcool, created by the government of Brazil in 1975 resulted less dependency on fossil fuels. The addition of 25% ethanol to gasoline reduced the import of 550 million barrels oil and also reduced the emission CO(2) by 110 million tons. Today, 44% of the Brazilian energy matrix is renewable and 13.5% is derived from sugarcane. Brazil has a land area of 851 million hectares, of which 54% are preserved, including the Amazon forest (350 million hectares). From the land available for agriculture (340 million hectares), only 0.9% is occupied by sugarcane as energy crop, showing a great expansion potential. Studies have shown that in the coming years, ethanol yield per hectare of sugarcane, which presently is 6000 L/ha, could reach 10,000 L/ha, if 50% of the produced bagasse would be converted to ethanol. This article describes the efforts of different Brazilian institutions and research groups on second generation bioethanol production, especially from sugarcane bagasse. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Integrated bioconversion of syngas into bioethanol and biopolymers.

    Science.gov (United States)

    Lagoa-Costa, Borja; Abubackar, Haris Nalakath; Fernández-Romasanta, María; Kennes, Christian; Veiga, María C

    2017-09-01

    Syngas bioconversion is a promising method for bioethanol production, but some VFA remains at the end of fermentation. A two-stage process was set-up, including syngas fermentation as first stage under strict anaerobic conditions using C. autoethanogenum as inoculum, with syngas (CO/CO 2 /H 2 /N 2 , 30/10/20/40) as gaseous substrate. The second stage consisted in various fed-batch assays using a highly enriched PHA accumulating biomass as inoculum, where the potential for biopolymer production from the remaining acetic acid at the end of the syngas fermentation was evaluated. All of the acetic acid was consumed and accumulated as biopolymer, while ethanol and 2,3-butanediol remained basically unused. It can be concluded that a high C/N ratio in the effluent from the syngas fermentation stage was responsible for non-consumption of alcohols. A maximum PHA content of 24% was reached at the end of the assay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Assessing protein availability of different bioethanol coproducts in dairy cattle.

    Science.gov (United States)

    Azarfar, A; Jonker, A; Yu, P

    2013-02-01

    Bioethanol production has led to the production of considerable quantities of different coproducts. Variation in nutrient profiles as well as nutrient availability among these coproducts may lead to an imbalance in the formulation of diets. The objectives of this study were to fractionate protein and carbohydrates by an in situ approach, to determine ruminal availability of nutrients for microbial protein synthesis and to determine protein availability to dairy cattle for three types of dried distiller's grains with solubles (DDGS; 100% wheat DDGS (WDDGS); DDGS blend1 (BDDGS1, corn to wheat ratio 30 : 70); DDGS blend2 (BDDGS2, corn to wheat ratio 50 : 50)) and for different batches within DDGS type using the 2010 DVE/OEB protein evaluation system. The results indicated that all DDGS types are quantitatively good sources of true protein digested and absorbed in the small intestine (DVE values; 177, 184 and 170 g/kg dry matter (DM) for WDDGS, BDDGS1 and BDDGS2, respectively). Rumen degraded protein balances (OEB) values were 159, 82, 65 g/kg DM in WDDGS, BDDGS1 and BDDGS2, respectively. Despite the differences in ruminal availability of nutrients among the different batches of DDGS, the DVE values only differed between the batches of BDDGS1 (194 v. 176 g/kg DM). In conclusion, when DDGS is included in the rations of dairy cattle, variation in its protein value due to factors such as DDGS batch should be taken into consideration.

  8. Recycling of cellulases in a continuous process for production of bioethanol

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard

    The focus of the work presented in this thesis is recycling of commercial enzymes in a continuous process for production of bioethanol from biomass. To get a deeper understanding of the factors affecting the potential for enzyme recycling, the interactions between enzymes and biomass, the adsorpt......The focus of the work presented in this thesis is recycling of commercial enzymes in a continuous process for production of bioethanol from biomass. To get a deeper understanding of the factors affecting the potential for enzyme recycling, the interactions between enzymes and biomass......, the adsorption and desorption as well as stability and recovery of activity was investigated. More knowledge on these factors have enabled a process adapted for enzyme recycling. The driver being that enzyme consumption remains a major cost when producing bioethanol from lignocellulosic biomass. Unlike previous...

  9. Pressurized liquidextraction of ginger (Zingiber officinale Roscoe) with bioethanol

    DEFF Research Database (Denmark)

    Hu, Jiajin; Guo, Zheng; Glasius, Marianne

    2011-01-01

    To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquidextraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction approaches......, in addition to reduced time/solvent cost, the extract of PLE showed a distinct constituent profile from that of Soxhlet extraction, with significantly improved recovery of diarylheptanoids, etc. Among the pure solvents tested for PLE, bioethanol yield the highest efficiency for recovering most constituents...... of gingerol-related compounds; while for a broad concentration spectrum of ethanol aqueous solutions, 70% ethanol gave the best performance in terms of yield of total extract, complete constituent profile and recovery of most gingerol-related components. PLE with 70% bioethanol operated at 1500 psi and 100 °C...

  10. Comparison of hydrophilic variation and bioethanol production of furfural residues after delignification pretreatment.

    Science.gov (United States)

    Bu, Lingxi; Tang, Yong; Xing, Yang; Zhang, Weiming; Shang, Xinhui; Jiang, Jianxin

    2014-01-01

    Furfural residue (FR) is a waste lignocellulosic material with enormous potential for bioethanol production. In this study, bioethanol production from FR after delignification was compared. Hydrophilic variation was measured by conductometric titration to detect the relationship between hydrophilicity and bioethanol production. It was found that ethanol yield increased as delignification enhanced, and it reached up to 75.6% of theoretical yield for samples with 8.7% lignin. The amount of by-products decreased as delignification increased. New inflection points appeared in conductometric titration curves of samples that were partially delignified, but they vanished in the curves of the highly delignified samples. Total charges and carboxyl levels increased after slight delignification, and they decreased upon further delignification. These phenomena suggested some new hydrophilic groups were formed during pretreated delignification, which would be beneficial to enzymatic hydrolysis. However, some newly formed groups may act as toxicant to the yeast during simultaneous saccharification and fermentation.

  11. Influence of maize hybrid on bioethanol yield and quality of dried distillers' grains

    Directory of Open Access Journals (Sweden)

    Semenčenko Valentina

    2015-01-01

    Full Text Available Maize (Zea mays L. is one of the most important cereal crops. and one of the most significant renewable raw materials for the production of energy and many different products. Bioethanol is a biofuel that is mostly used as a replacement for fossil fuels worldwide. Major by­product that arises from the fermentation process of corn is dried distillers' grains (DDG. Due to its high feeding value it represents an excellent component for livestock feed mixtures. The main goal of this study was to determine the technological quality of maize grain and the influence of maize hybrid on bioethanol yield and quality of this process' by-product, dried distillers' grains. Five maize hybrids developed at the Maize Research Institute, Zemun Polje, were investigated in this study. The lowest concentration of bioethanol in the fermentation medium after 44h of alcoholic fermentation (8.64% w/w was obtained by hybrid ZP 560, and the highest (9.10% w/w by hybrid ZP 600, while compared to the maximum theoretical bioethanol yield, the highest scoring hybrid was ZP 606 (93.59% and the lowest ZP 505 (87.33%. The highest in vitro dry matter digestibility of DDG was determined in a sample obtained from hybrid ZP 505 (82.41% and the lowest (77.12% in the DDG sample of ZP 606. The chemical composition and physical characteristics of the grain, as well as other parameters of the production process have influenced the overall bioethanol yield. Hybrids created in the Maize Research Institute represent unique starting material for research of the possibilities of bioethanol, starch, food and animal feed production.

  12. Sugar beet for bioethanol production: An approach based on environmental agricultural outputs

    International Nuclear Information System (INIS)

    Salazar-Ordóñez, Melania; Pérez-Hernández, Pedro P.; Martín-Lozano, José M.

    2013-01-01

    The EU imports both bioethanol and the raw material needed to produce it. Thirty percent of bioethanol is produced from sugar beets in the EU. However, sugar beet cultivated area and yields have fallen due to the 2006 sugar regime reform. Given the potential uncertainty about the future for sugar beet farmers, biofuels may represent an alternative market. This paper analyses potential contribution to the efficiency, in terms of environmental output, of the sugar beet crop both when production is oriented toward bioethanol and regarding the use of input. An empirical application is performed in Spain by Data Envelopment Analysis (DEA). The results show that 4% of farms have full technical efficiency, while the rest have an average efficiency of 55.9%. The figures show that inputs can be reduced over 40%, and also show the low average level of input-use efficiency. In addition, it cannot be said that there is a relationship between efficiency and farm scale. The consideration of aspects such as the environmental advantages of using sugar beet production for bioethanol can open new lines of action to support this crop in the EU. In addition, boosting sugar beet production may reduce potential dependency on importation. - Highlights: ► Analysing environmental outputs from agricultural input use and production orientation to bioethanol. ► DEA is applied to model farms’ efficiency in GHG emission and nitrous oxides emissions. ► A very low level of efficiency is found in sugar beet farms. ► Efficiency increase should be supported to reduce fertilizers and pesticides. ► Environmental advantages of addressing sugar beet to bioethanol open new lines to support crops

  13. Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage.

    Science.gov (United States)

    Khan, Nurul H; Kang, Tae Sun; Grahame, Douglas A S; Haakensen, Monique C; Ratanapariyanuch, Kornsulee; Reaney, Martin J; Korber, Darren R; Tanaka, Takuji

    2013-01-01

    Conversion of glycerol to 1,3-propanediol (1,3-PDO) is an attractive option to increase the economic efficiency of the biofuel industry. A bacterial strain that produced 1,3-PDO in the presence of glycerol was isolated from thin stillage, the fermentation residue of bioethanol production. This 1,3-PDO-producing organism was identified as Lactobacillus panis through biochemical characteristics and by 16S rRNA sequencing. Characterization of the L. panis strain hereafter designated as PM1 revealed it was an aerotolerant acidophilic anaerobe able to grow over a wide range of temperatures; tolerant to high concentrations of sodium chloride, ethanol, acetic acid, and lactic acid; and resistant to many common antibiotics. L. panis PM1 could utilize glucose, lactose, galactose, maltose, xylose, and arabinose, but could not grow on sucrose or fructose. Production of 1,3-PDO by L. panis PM1 occurred only when glucose was available as the carbon source in the absence of oxygen. These metabolic characteristics strongly suggested NADH recycling for glucose metabolism is achieved through 1,3-PDO production by this strain. These characteristics classified L. panis PM1 within the group III heterofermentative lactic acid bacteria, which includes the well-characterized 1,3-PDO-producing strain, Lactobacillus reuteri. Metabolite production profiles showed that L. panis PM1 produced considerable amounts of succinic acid (~11-12 mM) from normal MRS medium, which distinguishes this strain from L. reuteri strains.

  14. Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects

    International Nuclear Information System (INIS)

    Walter, Arnaldo; Dolzan, Paulo; Quilodran, Oscar; Oliveira, Janaina G. de; Silva, Cinthia da; Piacente, Fabricio; Segerstedt, Anna

    2011-01-01

    Three sustainability aspects of bioethanol production in Brazil were considered in this paper. Results show that the recent expansion of sugarcane has mostly occurred at the expense of pasturelands and other temporary crops, and that the hypothesis of induced deforestation is not confirmed. Avoided greenhouse gas emissions due to the use of anhydrous ethanol blended with gasoline in Brazil (E25) were estimated as 78%, while this figure would be 70% in case of its use in Europe (E10). Conversely, considering the direct impacts of land use change, the avoided emissions (e.g., ethanol consumed in Europe) would vary from -2.2% (i.e., emissions slightly higher than gasoline) to 164.8% (a remarkable carbon capture effect) depending on the management practices employed previous to land use change and also along sugarcane cropping. In addition, it was shown that where the bulk of sugarcane production takes place, in state of Sao Paulo, positive socio-economic aspects are observed. The general conclusion is that a significant share of ethanol production in Brazil can be considered sustainable, in particular regarding the three aspects assessed. However, as production conditions are extremely heterogeneous, a generalization of results is not possible.

  15. Saccharification of Sugarcane Bagasse by Enzymatic Treatment for bioethanol production

    Directory of Open Access Journals (Sweden)

    Ahmed, F. M.

    2012-06-01

    Full Text Available Aims: The escalating demands for traditional fossil fuels with unsecured deliverance and issues of climate change compel the researchers to develop alternative fuels like bioethanol. This study examines the prospect of biofuel production from high carbohydrate containing lignocellulosic material, e.g. sugarcane bagasse through biological means. Methodology and Results: Cellulolytic enzymes were collected from the culture filtrate of thermotolerant Trichodermaviride grown on variously pre-treated sugarcane bagasse. CMCase and FPase enzyme activities were determined as a measure of suitable substrate pre-treatment and optimum condition for cellulolytic enzyme production. The highest CMCase and FPase activity was found to be 1.217 U/ml and 0.109 U/ml respectively under the production conditions of 200 rpm, pH 4.0 and 50 °C using steamed NaOH treated bagasse as substrate. SEM was carried out to compare and confirm the activity of cellulolytic enzymes on sugarcane bagasse. Saccharification of pre-treated bagasse was carried out with crude enzymes together using a two-factor experimental design. Under optimized conditions the pre-treated bagasse was saccharified up to 42.7 % in 24 h. The hydrolysate was concentrated by heating to suitable concentration and then used for fermentation by an indigenous isolate of Saccharomyces cerevisiae. With 50 and 80 % brix containing liquor the concentration of alcohol was 0.579 % and 1.15 % respectively. Conclusion, significance and impact of study: This is the first report in Bangladesh for the production of cellulosicethanol using local isolates. Though the rate of alcohol production was very low, a great impetus in this field can maximize the production thereby meet the demand for fuel in future.

  16. Fuel-cycle assessment of selected bioethanol production

    International Nuclear Information System (INIS)

    Wu, M.; Wang, M.; Hong, H.

    2007-01-01

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO 2 ], nitrous oxide [N 2 O], and methane [CH 4 ]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO x ], sulfur oxide [SO x ], and particulate matter with diameters smaller than 10 micrometers [PM 10 ]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most

  17. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass

    Directory of Open Access Journals (Sweden)

    Koppram Rakesh

    2012-05-01

    Full Text Available Abstract Background One of the crucial factors for a sustainable and economical production of lignocellulosic based bioethanol is the availability of a robust fermenting microorganism with high tolerance to inhibitors generated during the pretreatment of lignocellulosic raw materials, since these inhibitors are known to severely hinder growth and fermentation. Results A long-term adaptation in repetitive batch cultures in shake flasks using a cocktail of 12 different inhibitors and a long-term chemostat adaptation using spruce hydrolysate were used as evolutionary engineering strategies to improve the inhibitor tolerance in the metabolically engineered xylose utilizing Saccharomyces cerevisiae strain, TMB3400. The yeast was evolved for a period of 429 and 97 generations in repetitive batch cultures and chemostat cultivation, respectively. During the evolutionary engineering in repetitive batch cultures the maximum specific growth rate increased from 0.18 h-1 to 0.33 h-1 and the time of lag phase was decreased from 48 h to 24 h. In the chemostat adaptation, after 97 generations, the specific conversion rates of HMF and furfural were found to be 3.5 and 4 folds higher respectively, compared to rates after three generations. Two evolved strains (RK60-5, RKU90-3 and one evolved strain (KE1-17 were isolated from evolutionary engineering in repetitive batches and chemostat cultivation, respectively. The strains displayed significantly improved growth performance over TMB3400 when cultivated in spruce hydrolysate under anaerobic conditions, the evolved strains exhibited 25 to 38% increase in specific consumption rate of sugars and 32 to 50% increased specific ethanol productivity compared to TMB3400. The evolved strains RK60-5 and RKU90-3 were unable to consume xylose under anaerobic conditions, whereas, KE1-17 was found to consume xylose at similar rates as TMB3400. Conclusion Using evolutionary engineering strategies in batch and chemostat

  18. 1st or 2nd generation bioethanol-impacts of technology integration & on feed production and land use

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Felby, Claus

    2009-01-01

    "1st or 2nd generation bioethanol-impacts of technology integration & on feed production and land use" Liquid bio fuels are perceived as a means of mitigating CO2 emissions from transport and thus climate change, but much concern has been raised to the energy consumption from refining biomass...... to liquid fuels. Integrating technologies such that waste stream can be used will reduce energy consumption in the production of bioethanol from wheat. We show that the integration of bio refining and combined heat an power generation reduces process energy requirements with 30-40 % and makes bioethanol...

  19. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance.

    Science.gov (United States)

    Akinosho, Hannah; Rydzak, Thomas; Borole, Abhijeet; Ragauskas, Arthur; Close, Dan

    2015-12-01

    Bioethanol production output has increased steadily over the last two decades and is now beginning to become competitive with traditional liquid transportation fuels due to advances in engineering, the identification of new production host organisms, and the development of novel biodesign strategies. A significant portion of these efforts has been dedicated to mitigating the toxicological challenges encountered across the bioethanol production process. From the release of potentially cytotoxic or inhibitory compounds from input feedstocks, through the metabolic co-synthesis of ethanol and potentially detrimental byproducts, and to the potential cytotoxicity of ethanol itself, each stage of bioethanol production requires the application of genetic or engineering controls that ensure the host organisms remain healthy and productive to meet the necessary economies required for large scale production. In addition, as production levels continue to increase, there is an escalating focus on the detoxification of the resulting waste streams to minimize their environmental impact. This review will present the major toxicological challenges encountered throughout each stage of the bioethanol production process and the commonly employed strategies for reducing or eliminating potential toxic effects.

  20. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Hanif

    2017-03-01

    Full Text Available According to the Malaysia’s biofuel policy, renewable fuels are crucial for energy sustainability in the transportation sector in the future. This study was aimed to evaluate the potential of bioethanol production from Sri Kanji 1 cassava in Malaysia in terms of energy efficiency and renewability, as well to estimate the potential greenhouse gas (GHG emissions reduction in CO2 equivalent. Bioethanol production process from cassava includes cassava farming, ethanol production, and transportation in which the primary energy consumption was considered. The Net Energy Balance (NEB and Net Energy Ratio (NER of 25.68 MJ/L and 3.98, respectively, indicated that bioethanol production from Sri Kanji 1 cassava in Malaysia was energy efficient. From the environmental perspective, the GHG balance results revealed that the production and distribution of 1 L of Cassava Fuel Ethanol (CFE could reduce GHG emissions by 73.2%. Although found promising in the present study, Sri Kanji 1 cassava as bioethanol feedstock should be further investigated by constructing an actual ethanol plant to obtain real life data.

  1. Life cycle environmental impacts of bioethanol production from sugarcane molasses in Iran.

    Science.gov (United States)

    Farahani, Saeid Shahvarooghi; Asoodar, Mohammad Amin

    2017-10-01

    In recent years, bioethanol from sugarcane molasses has been produced on an industrial scale in Iran. The aim of this study was to evaluate molasses-based bioethanol production from an environmental point of view. Data were collected from Debel Khazai agro-industry situated in southern region of Iran by using face-to-face interviews and annual statistics of 2010 to 2016 (6-year life cycle of sugarcane cultivation). Ten impact categories including abiotic depletion (AD), acidification (AC), eutrophication (EP), global warming potential (GWP), ozone layer depletion (OLD), human toxicity (HT), freshwater aquatic ecotoxicity (FE), marine aquatic ecotoxicity (ME), terrestrial ecotoxicity (TE), and photochemical oxidation (PO) were selected based on CML methodology. Inventory data for production of the inputs were taken from Ecoinvent, BUWAL 250, and IDMAT 2001 databases. The results revealed that in sugarcane cultivation process, electricity and trash burning were the most important contributors to all impact categories except OLD and TE. In industrial phase, natural gas had the highest contribution to the most impact categories. Greenhouse gas (GHG) emission for production of 1000 L molasses-based bioethanol was 1322.78 kg CO 2  eq. By comparing total GHG emissions from 1000 L bioethanol to gasoline, the net avoided GHG emissions came out at 503.17 kg CO 2  eq. According to results, it is clear that with increasing irrigation efficiency and improving performance of heating systems in industrial phase, environmental burdens would be significantly reduced.

  2. Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements

    Directory of Open Access Journals (Sweden)

    Borja Velazquez-Marti

    2016-04-01

    Full Text Available Bioethanol production from sugarcane represents an opportunity for urban-agricultural development in small communities of Ecuador. Despite the fact that the industry for bioethanol production from sugarcane in Brazil is fully developed, it is still considered expensive as a small rural business. In order to be able to reduce the costs of monitoring the production process, and avoid the application of expensive sensors, the aim of this research was modeling the kinetics of production of bioethanol based on direct measurements of Brix grades, instead of the concentration of alcohol, during the process of cane juice bio-fermentation with Saccharomyces cerevisiae. This avoids the application of expensive sensors that increase the investment costs. Fermentation experiments with three concentrations of yeast and two temperatures were carried out in a laboratory reactor. In each case Brix grades, amount of ethanol and alcoholic degree were measured. A mathematical model to predict the quality and production of bioethanol was developed from Brix grade measurements, obtaining an adjusted coefficient of determination of 0.97. The model was validated in a pilot plant.

  3. Modeling Separation Dynamics in a Multi-Tray Bio-Ethanol Distillation Column

    DEFF Research Database (Denmark)

    Løhndorf, Petar Durdevic; Pedersen, Simon; Yang, Zhenyu

    2015-01-01

    the product quality and energy consumption in a typical bio-ethanol distillation column is proposed in this paper. The proposed model is derived based on mass and energy balance principles, with an empirical model of the evaporation dynamics of liquids on column trays. The model parameters are identified...

  4. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  5. Second-generation bioethanol from industrial wood waste of South American species

    Directory of Open Access Journals (Sweden)

    María E. Vallejos

    2017-09-01

    Full Text Available There is a global interest in replacing fossil fuels with renewable sources of energy. The present review evaluates the significance of South-American wood industrial wastes for bioethanol production. Four countries have been chosen for this review, i.e., Argentina, Brazil, Chile, and Uruguay, based on their current or potential forestry industry. It should be noted that although Brazil has a global bioethanol market share of 25%, its production is mainly first-generation bioethanol from sugarcane. The situation in the other countries is even worse, in spite of the fact that they have regulatory frameworks in place already allowing the substitution of a percentage of gasoline by ethanol. Pines and eucalyptus are the usually forested plants in these countries, and their industrial wastes, as chips and sawdust, could serve as promising raw materials to produce second-generation bioethanol in the context of a forest biorefinery. The process to convert woody biomass involves three stages: pretreatment, enzymatic saccharification, and fermentation. The operational conditions of the pretreatment method used are generally defined according to the physical and chemical characteristics of the raw materials and subsequently determine the characteristics of the treated substrates. This article also reviews and discusses the available pretreatment technologies for eucalyptus and pines applicable to South-American industrial wood wastes, their enzymatic hydrolysis yields, and the feasibility of implementing such processes in the mentioned countries in the frame of a biorefinery.

  6. Potential contribution of bioethanol fuel to the transport sector of Vojvodina

    International Nuclear Information System (INIS)

    Dodic, Sinisa N.; Popov, Stevan D.; Dodic, Jelena M.; Rankovic, Jovana A.; Zavargo, Zoltan Z.

    2009-01-01

    The Autonomous Province of Vojvodina is an Autonomous Province in Serbia and it is an energy-deficient country. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is a serious strain on the country's economy and has been deteriorating the balance of payments situation. The country has become increasingly more dependent on fossil fuels and its energy security hangs on the fragile supply of imported oil that is subject to disruptions and price volatility. The transport sector has a 26% share in the total commercial energy consumption in Vojvodina. About 0.62 million tons of gasoline were consumed by this sector in 2008. Gasoline consumption in the transport sector is also a major source of environmental degradation especially in urban areas. Consequently, Vojvodina needs to develop indigenous, environment-friendly energy resources, such as bioethanol, to meet its transport sector's energy needs. Vojvodina produces about 3 million tons of sugar beet every year. There is a vast potential for bioethanol production from molasses of sugar beet in the country. Bioethanol can be used in transport sector after blending with gasoline, in order to minimize gasoline consumption and associated economical and environmental impacts. This paper presents the assessment of the potential contribution of bioethanol in the transport sector of Vojvodina. It is concluded that 20% of annual gasoline consumption in transport sector could be met from ethanol by the year 2026. (author)

  7. Design and control of an alternative distillation sequence for bioethanol purification

    DEFF Research Database (Denmark)

    Errico, Massimiliano; Ramírez-Márquez, César; Torres Ortega, Carlo Edgar

    2015-01-01

    BACKGROUND: Bioethanol is a green fuel considered to be a sustainable alternative to petro-derived gasoline. The transport sector contributes significantly to carbon dioxide emission and consequently has a negative impact on the air quality and is responsible for the increase of the greenhouse...

  8. Production of bio-ethanol from corncobs using Aspergillus niger and ...

    African Journals Online (AJOL)

    Maize is the most abundant cereal grown in Ghana and is accompanied by enormous amount of agrowastes of which corncobs form 30%. This agrowaste which is currently under utilized was used to produce bio-ethanol. Aspergillus niger isolated from soil sampled from Ejura farms was used to hydrolyze the corncobs into ...

  9. Production of 2nd generation bioethanol from lucerne - Optimization of hydrothermal pretreatment

    DEFF Research Database (Denmark)

    Thomsen, Sune T.; Jensen, Morten; Schmidt, Jens E.

    2012-01-01

    Lucerne (Medicago sativa) has many qualities associated with sustainable agriculture such as nitrogen fixation and high biomass yield. Therefore, there is interest in whether lucerne is a suitable biomass substrate for bioethanol production, and if hydrothermal pretreatment (HTT) of lucerne impro...

  10. Bioethanol combustion in an industrial gas turbine combustor: simulations and experiments

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.; Pozarlik, Artur Krzysztof; Beran, Martin; Axelsson, L.; Brem, Gerrit

    2014-01-01

    Combustion tests with bioethanol and diesel as a reference have been performed in OPRA's 2 MWe class OP16 gas turbine combustor. The main purposes of this work are to investigate the combustion quality of ethanol with respect to diesel and to validate the developed CFD model for ethanol spray

  11. BIO-ETHANOL FUELS: SHORT-TERM SOLUTIONS, LONG-TERM DISASTERS

    Science.gov (United States)

    Ethanol derived from bio-mass is often advocated as a significant contributor to possible solutions to our need for a sustainable transportation fuel. Substituting bio-ethanol for conventional fuel immediately addresses the issue of reducing our use of non-renewable resources (f...

  12. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    NARCIS (Netherlands)

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm

  13. Sustainability of bioethanol production from wheat with recycled residues as evaluated by Emergy assessment

    DEFF Research Database (Denmark)

    Coppola, F.; Bastianoni, S.; Østergård, Hanne

    2009-01-01

    , were considered. Material and energy flows were assessed to evaluate the bioethanol yield, the production efficiency in terms of Emergy used compared to energy produced (transformity), and the environmental load (ELR) in terms of use of non-renewable resources. These three indicators varied among...

  14. Bioethanol production by inherent enzymes from rye and wheat with addition of organic farming cheese whey

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Christensen, Anne Deen; Thomsen, Mette Hedegaard

    2011-01-01

    . Throughout our studies, wheat and rye grain was used as raw material in bioethanol production with the purpose of producing in situ enzymes (during germination) for the hydrolysis of starch in the grains and compared with commercial amylase enzyme preparations. Whey permeate was incorporated into the grain...

  15. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2009-01-01

    Sugar cane and sugar beet are used for sugar for human consumption. In the US, maize is used, amongst others, for the sweetener High Fructose Maize Syrup (HFMS). Sugar cane, sugar beet and maize are also important for bio-ethanol production. The growth of crops requires water, a scarce resource. The

  16. Generation of bioethanol from common date by- products, “Teggaza ...

    African Journals Online (AJOL)

    Lenovo

    2017-01-04

    Jan 4, 2017 ... using date waste biomass abundant in Algerian Sahara. Key words: Algerian Sahara, alcoholic fermentation, bioethanol, bakery yeast, dates by-product, distillation. INTRODUCTION. Due to the variability in ... national program from 2011 to 2030 to promote concrete- actions in the fields of energy efficiency ...

  17. Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.

    Science.gov (United States)

    Danilo Scordia; Salvatore L. Consentino; Thomas W. Jeffries

    2010-01-01

    Saccharum (Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.), is a rapidly growing, wide ranging high-yield perennial, suitable for second generation bioethanol production. This study evaluated oxalic acid as a pretreatment for bioconversion. Overall sugar yields, sugar degradation products, enzymatic glucan hydrolysis and ethanol production were studied as...

  18. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia.

    Science.gov (United States)

    Goh, Chun Sheng; Tan, Kok Tat; Lee, Keat Teong; Bhatia, Subhash

    2010-07-01

    The present study reveals the perspective and challenges of bio-ethanol production from lignocellulosic materials in Malaysia. Malaysia has a large quantity of lignocellulosic biomass from agriculture waste, forest residues and municipal solid waste. In this work, the current status in Malaysia was laconically elucidated, including an estimation of biomass availability with a total amount of 47,402 dry kton/year. Total capacity and domestic demand of second-generation bio-ethanol production in Malaysia were computed to be 26,161 ton/day and 6677 ton/day, respectively. Hence, it was proven that the country's energy demand can be fulfilled with bio-ethanol if lignocellulosic biomass were fully converted into bio-ethanol and 19% of the total CO(2) emissions in Malaysia could be avoided. Apart from that, an integrated national supply network was proposed together with the collection, storage and transportation of raw materials and products. Finally, challenges and obstacles in legal context and policies implementation were elaborated, as well as infrastructures shortage and technology availabilities. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. LIFE CYCLE BASED STUDIES ON BIOETHANOL FUEL FOR SUSTAINABLE TRANSPORTATION: A LITERATURE REVIEW

    Science.gov (United States)

    A literature search was conducted and revealed 45 publications (1996-2005) that compare bio-ethanol systems to conventional fuel on a life-cycle basis, or using life cycle assessment. Feedstocks, such as sugar beets, wheat, potato, sugar cane, and corn, have been investigated in...

  20. Bioethanol production from starchy biomass by direct fermentation using saccharomyces diastaticus in batch free and immobilized cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Kilonzo, P.M.; Margaritis, A. [University of Western Ontario, London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Yu, J.; Ye, Q. [East China Univ. of Science and Technology, Shanghai (China). Biochemical Engineering Research Inst. and State Key Lab

    2006-07-01

    The feasibility of using amylolytic yeasts for the direct fermentation of starchy biomass to ethanol was discussed. Although amylolytic yeasts such as Saccharomycopsis, Lipomyces, and Schwaniomyces secrete both {alpha}-amylase and glucoamylase enzymes that synergistically enhance starch degradation, they are not suitable for industrial bio-ethanol production because of low tolerance for ethanol and slow fermentation rate. For that reason, this study examined the direct ethanol fermentation of soluble starch or dextrin with the amylolytic yeast Saccharomyces diastaticus in batch free and immobilized cells systems. Saccharomyces diastaticus secretes glucoamylase and can therefore assimilate and ferment starch and starch-like biomass. The main focus of the study was on parameters leading to higher ethanol yields from high concentration of dextrin and soluble starch using batch cultures. A natural attachment method was proposed in which polyurethane foam sheets were used as the carrier for amylolytic yeasts immobilization in ethanol fermentations. The support was chosen because it was inexpensive, autoclavable, pliable and could be tailored to suit process requirements regarding net surface charge, shape and size. It was found that Saccharomyces diastaticus was very efficient in terms of fermentation of high initial concentrations of dextrin or soluble starch. Higher concentrations of ethanol were produced. In batch fermentations, the cells fermented high dextrin concentrations more efficiently. In particular, in batch fermentation, more than 92 g-L of ethanol was produced from 240 g-L of dextrin, at conversion efficiency of 90 per cent. The conversion efficiency decreased to 60 per cent but a higher final ethanol concentration of 147 g/L was attained with a medium containing 500 g/L of dextrin. In an immobilized cell bioreactor, Saccharomyces diastaticus produced 83 g/L of ethanol from 240 g/L of dextrin, corresponding to ethanol volumetric productivity of 9.1 g

  1. Switchgrass-Based Bioethanol Productivity and Potential Environmental Impact from Marginal Lands in China

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2017-02-01

    Full Text Available Switchgrass displays an excellent potential to serve as a non-food bioenergy feedstock for bioethanol production in China due to its high potential yield on marginal lands. However, few studies have been conducted on the spatial distribution of switchgrass-based bioethanol production potential in China. This study created a land surface process model (Environmental Policy Integrated Climate GIS (Geographic Information System-based (GEPIC model coupled with a life cycle analysis (LCA to explore the spatial distribution of potential bioethanol production and present a comprehensive analysis of energy efficiency and environmental impacts throughout its whole life cycle. It provides a new approach to study the bioethanol productivity and potential environmental impact from marginal lands based on the high spatial resolution GIS data, and this applies not only to China, but also to other regions and to other types of energy plant. The results indicate that approximately 59 million ha of marginal land in China are suitable for planting switchgrass, and 22 million tons of ethanol can be produced from this land. Additionally, a potential net energy gain (NEG of 1.75 x 106 million MJ will be achieved if all of the marginal land can be used in China, and Yunnan Province offers the most significant one that accounts for 35% of the total. Finally, this study obtained that the total environmental effect index of switchgrass-based bioethanol is the equivalent of a population of approximately 20,300, and a reduction in the global warming potential (GWP is the most significant environmental impact.

  2. Domestic bioethanol-fireplaces--a new source of severe burn accidents.

    Science.gov (United States)

    Neubrech, Florian; Kiefer, Jurij; Schmidt, Volker J; Bigdeli, Amir K; Hernekamp, J Frederick; Kremer, Thomas; Kneser, Ulrich; Radu, Christian Andreas

    2016-02-01

    Bioethanol-fueled fireplaces are popular interior home decoration accessories. Although their safety is promoted frequently, actual presentations of severe burn injuries in our burn intensive care unit (ICU) have focused the authors on safety problems with these devices. In this article we want to explore the mechanisms for these accidents and state our experiences with this increasingly relevant risk for severe burn injuries. The computerized medical records of all burn intensive care patients in our burn unit between 2000 and 2014 were studied. Since 2010, 12 patients with bioethanol associated burn injuries were identified. Their data was compared to the values of all patients, except the ones injured by bioethanol fireplaces that presented themselves to our burn ICU between the years 2010 and 2014. At time of admission the bioethanol patients had a mean ABSI-score of 4.8 (+/- 2.2 standard deviation (SD)). A mean of 17 percent (+/- 9.1 SD) body surface area was burned. Involvement of face and hands was very common. An operative treatment was needed in 8 cases. A median of 20 days of hospitalization (range 3-121) and a median of 4.5 days on the ICU (range 1-64) were necessary. No patient died. In most cases the injuries happened while refilling or while starting the fire, even though safety instructions were followed. In the control group, consisting of 748 patients, the mean ABSI-score was 5.6 (+/- 2.7 SD). A mean of 16.5 percent (+/- 10.1 SD) body surface area was burned. Treatment required a median of 3 days on the burn ICU (range 1-120). Regarding these parameters, the burden of disease was comparable in both groups. Bioethanol-fueled fireplaces for interior home decoration are a potential source for severe burn accidents even by intended use. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  3. Comparism of the Properties and Yield of Bioethanol from Mango and Orange Waste

    Directory of Open Access Journals (Sweden)

    M. B. Maina

    2017-12-01

    Full Text Available The excessive consumption of fossil fuel particularly in urban areas due to transportation and industrial activities has greatly contributed to generation of high levels of pollution; therefore, a renewable eco-friendly energy source is required. The production of bioethanol from sugar extracted from waste fruit peels as an energy supply is renewable as the non-fossil carbon source used is readily replenished. Laboratory experiments were conducted to evaluate the chemical composition of fruit wastes of orange and Mango in order to explore their potential application in bio-ethanol production. Experimental production of Bioethanol from waste fruits of mango and orange was carried out after dilute acid pretreatment followed by enzymatic saccharification using saccharomyces cerevisiae for the fermentation process. Three samples of (mango waste fruit, orange waste fruit and mixture of mango and orange waste fruit 100g each was used for the same method of bio-ethanol extraction. A one factor factorial design involving fruit type was used to statistically analyze the fuel properties of the ethanol produced from the fruits waste. Analysis of variance (ANOVA shows that the observed difference were not significant for all the properties except that of the flash point which showed that the flash point of the produced bioethanol differ from that of the standard ethanol, which may be due to percentage of moisture present in the samples used. The highest yield of ethanol from sample A (mango waste was 19.98%, sample B (orange waste produced 19.17% while least yield of ethanol was from sample C (mango and orange waste which produced 17.38%.

  4. Fuel-cycle assessment of selected bioethanol production.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil

  5. Feasibility Study for Bioethanol Co-Location with a Coal Fired Power Plant: 29 November 2001--28 July 2002

    Energy Technology Data Exchange (ETDEWEB)

    2002-12-01

    This study looks at the feasibility of co-locating 30, 50, and 70 million gallon per year bioethanol facilities with coal fired power plants in Indiana and Nebraska. Corn stover is the feedstock for ethanol production in both cases.

  6. Thermodynamic and economic analysis of integrating lignocellulosic bioethanol production in a Danish combined heat and power unit

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    Integrating lignocellulosic bioethanol production with combined heat and power (CHP) production in polygeneration systems is considered an efficient and competitive way to produce a sustainable fuel for the transportation sector. This study assessed the energy economy of integrating lignocellulosic...

  7. Assessment of bioethanol yield by S. cerevisiae grown on oil palm residues: Monte Carlo simulation and sensitivity analysis.

    Science.gov (United States)

    Samsudin, Mohd Dinie Muhaimin; Mat Don, Mashitah

    2015-01-01

    Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Design and modeling of sustainable bioethanol supply chain by minimizing the total ecological footprint in life cycle perspective.

    Science.gov (United States)

    Ren, Jingzheng; Manzardo, Alessandro; Toniolo, Sara; Scipioni, Antonio; Tan, Shiyu; Dong, Lichun; Gao, Suzhao

    2013-10-01

    The purpose of this paper is to develop a model for designing the most sustainable bioethanol supply chain. Taking into consideration of the possibility of multiple-feedstock, multiple transportation modes, multiple alternative technologies, multiple transport patterns and multiple waste disposal manners in bioethanol systems, this study developed a model for designing the most sustainable bioethanol supply chain by minimizing the total ecological footprint under some prerequisite constraints including satisfying the goal of the stakeholders', the limitation of resources and energy, the capacity of warehouses, the market demand and some technological constraints. And an illustrative case of multiple-feedstock bioethanol system has been studied by the proposed method, and a global best solution by which the total ecological footprint is the minimal has been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Importance of plasminogen activator inhibitor type 1 (PAI-1) for preventing single chain urokinase plasminogen activator (scu-PA) conversion into two chain urokinase plasminogen activator (tcu-PA) in plasma in vitro.

    Science.gov (United States)

    Dosne, A M; Dubor, F; Samama, M

    1991-09-01

    We have studied the effects of PAI-1 on the conversion of scu-PA into tcu-PA in vitro in plasma containing or not a 125I-fibrin clot by determining tcu-PA activity on S2444. Two preparations of PAI-1 have been used, a fraction of medium conditioned with the monkey Vero cells (Vero-Prep), the antiurokinase activity of which is inhibited at 83% by anti PAI-1 IgG, or purified human PAI-1 from HT 1080 fibrosarcoma cells. Scu-PA purified from human kidney cells has been treated with diisopropylfluorophosphate before use. In plasma, conversion of scu-PA into the tc form is accelerated by addition of anti PAI-1 IgG. In plasma containing a clot, generation of tcu-PA, is considerably delayed after addition of the Vero-Prep or human PAI-1. Clot lysis is also decreased but to a lesser extent than it would be expected from the level of tcu-PA activity. Addition of anti PAI-1 antibodies shortens the lag phase before tcu-PA appears and moderatly accelerates clot lysis. These results demonstrate the importance of PAI-1 for the stability of scu-PA in plasma in vitro by delaying its conversion into tcu-PA.

  10. Performance and emission analysis of single cylinder SI engine using bioethanol-gasoline blend produced from Salvinia Molesta

    Science.gov (United States)

    Gupta, Priyank; Protim Das, Partha; Mubarak, M.; Shaija, A.

    2018-01-01

    Rapid depletion of world’s crude oil reserve, rising global energy demand and concerns about greenhouse gases emission have led to the high-level interest in biofuels. The biofuel, bioethanol is found as an alternative fuel for SI engines as it has similar properties those of gasoline. Higher areal productivity with fast growth rate of microalgae and aquatic weeds makes them promising alternative feedstocks for bioethanol production. In this study, bioethanol produced from S.molesta (aquatic weed) using combined pre-treatment and hydrolysis followed by fermentation with yeast was used to make bioethanol-gasoline blend. The quantity of bioethanol produced from S.molesta was 99.12% pure. The physical properties such as density and heating value of bioethanol were 792.2 kg/m3 and 26.12 MJ/kg, respectively. In this work, the effects of bioethanol-gasoline (E5) fuel blends on the performance and combustion characteristics of a spark ignition (SI) engine were investigated. In the experiments, a single-cylinder, four-stroke SI engine was used. The tests were performed using electric dynamometer while running the engine at the speed (3200 rpm), and seven different load (0, 0.5, 1, 1.5, 2, 2.5 and 3 kW). The results obtained from the use of bioethanol-gasoline fuel blends were compared to those of gasoline fuel. The test results showed an increase of 0.3% in brake thermal efficiency for E5. From the emission analysis, reduced emissions of 39 ppm unburned hydrocarbon, 1.55% carbon monoxide and 2% smoke opacity, respectively was observed with E5 at full load. An increase in CO2 by 0.17% and NOx by 86.7 ppm was observed for E5 at full load.

  11. Evaluation of the use of bioethanol fuelled buses based on ambient air pollution screening and on-road measurements

    International Nuclear Information System (INIS)

    López-Aparicio, S.; Hak, C.

    2013-01-01

    Mitigation measures to reduce greenhouse gas emissions may have adverse effects on urban air quality and human exposure to harmful pollutants. The use of bioethanol fuelled vehicles is increasing worldwide and may create new undesired pollution effects. Different measurement campaigns were performed in a pilot study to contribute to the understanding of the consequences associated with the use of bioethanol blended fuel (E95) on a series of pollutants. Ambient screening measurements of NO 2 , O 3 , acetic acid, formaldehyde and acetaldehyde were performed at different urban locations, exposed and not exposed to the circulation of bioethanol buses. In addition, volatile organic compounds were measured at the exhaust pipe of a bioethanol fuelled bus, both under idling conditions (carbonyls; DNPH cartridge) and under on-road driving conditions applying online monitoring (PTR-TOF). Higher ambient acetaldehyde values were measured at locations exposed to bioethanol fuelled buses than at locations not exposed, and very high acetaldehyde and acetic acid values were measured from the exhaust pipe during driving conditions (acetaldehyde > 150 ppm; acetic acid ≈ 20–30 ppm) and modelled at close distance to the bioethanol bus. Human exposure to high concentration of acetaldehyde is expected, and it may involve a significantly increased chance in developing cancer. The high concentration of acetic acid will involve odour annoyance and significant material degradation or corrosion. - Highlights: ► Acetaldehyde levels above 150 ppm were measured from the bioethanol bus. ► High acetic acid levels (20–30 ppm) were measured from the bioethanol bus. ► Demonstrated usefulness of PTR-MS to evaluate non-criteria pollutants ► High levels of acetaldehyde and acetic acid are estimated in the dispersion plume. ► Climate mitigation measures may have adverse impact on air quality

  12. Metabolic engineering of a glycerol-oxidative pathway in Lactobacillus panis PM1 for utilization of bioethanol thin stillage: potential to produce platform chemicals from glycerol.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-12-01

    Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method

    Science.gov (United States)

    Arif, A. R.; Natsir, H.; Rohani, H.; Karim, A.

    2018-03-01

    Bioethanol is one of the alternative energy sourced from natural products containing carbohydrates through hydrolysis and fermentation process. Jackfruit seeds is one of the feedstock that contain high carbohydrate content but less utilized. The aims of this study to determine the effect of pH hydrolysis in the process of production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis (SHF) method. The hydrolysis process uses H2SO4 as a hydrolyzing agent. The fermentation process used Saccharomyces cereviceae as a fermentor with a variation of pH 2,3 4 and 5 for 70 hours. The results showed that glucose content of 75% and pH 3 was the optimum pH of fermentation with the content of bioethanol 57.94%. The fermentation stage has an important role in increasing the levels of glucose and bioethanol in linear. The content of glucose and bioethanol of jackfruit seeds showed a great potential for development as the feedstock in bioethanol production.

  14. Evaluation of the use of bioethanol fuelled buses based on ambient air pollution screening and on-road measurements.

    Science.gov (United States)

    López-Aparicio, S; Hak, C

    2013-05-01

    Mitigation measures to reduce greenhouse gas emissions may have adverse effects on urban air quality and human exposure to harmful pollutants. The use of bioethanol fuelled vehicles is increasing worldwide and may create new undesired pollution effects. Different measurement campaigns were performed in a pilot study to contribute to the understanding of the consequences associated with the use of bioethanol blended fuel (E95) on a series of pollutants. Ambient screening measurements of NO2, O3, acetic acid, formaldehyde and acetaldehyde were performed at different urban locations, exposed and not exposed to the circulation of bioethanol buses. In addition, volatile organic compounds were measured at the exhaust pipe of a bioethanol fuelled bus, both under idling conditions (carbonyls; DNPH cartridge) and under on-road driving conditions applying online monitoring (PTR-TOF). Higher ambient acetaldehyde values were measured at locations exposed to bioethanol fuelled buses than at locations not exposed, and very high acetaldehyde and acetic acid values were measured from the exhaust pipe during driving conditions (acetaldehyde>150 ppm; acetic acid ≈ 20-30 ppm) and modelled at close distance to the bioethanol bus. Human exposure to high concentration of acetaldehyde is expected, and it may involve a significantly increased chance in developing cancer. The high concentration of acetic acid will involve odour annoyance and significant material degradation or corrosion. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Suitability of some selected maize hybrids from Serbia for the production of bioethanol and dried distillers' grains with solubles.

    Science.gov (United States)

    Semenčenko, Valentina V; Mojović, Ljiljana V; Dukić-Vuković, Aleksandra P; Radosavljević, Milica M; Terzić, Dušanka R; Milašinović Šeremešić, Marija S

    2013-03-15

    Bioethanol is mostly produced from starchy parts of the corn grain kernel leaving significant amounts of valuable by-products such as dried distillers' grains with solubles (DDGS) which can be used as a substitute for traditional feedstuff. The suitability of six maize hybrids from Serbia was investigated for bioethanol and DDGS production. The correlation between physical and chemical characteristics of the grain, bioethanol yield and quality of the corresponding DDGS was assessed. All hybrids had very different chemical composition and physical characteristics which could allow various applications. The highest bioethanol yield (94.5% of theoretical) and volumetric productivity (2.01 g l(-1) h(-1)) were obtained with hybrid ZP 434 and the lowest with ZP 611k. Regarding chemical composition, all DDGS samples manifested good properties as feed components. Their protein content was higher compared to the kernel. In addition, the samples showed high digestibility and high mineral content, especially of calcium and phosphorus. A hybrid ZP 434 was selected as the most promising bioethanol producer. This property is attributed to the highest level of soft endosperm which is more susceptible to starch-hydrolysing enzymes. A high yield potential per hectare makes it the best candidate for commercial bioethanol production. © 2012 Society of Chemical Industry.

  16. Protein molecular structures and protein fraction profiles of new coproducts from BioEthanol production: a novel approach.

    Science.gov (United States)

    Yu, Peiqiang; Niu, Zhiyuan; Damiran, Daalkhaijav

    2010-03-24

    The objectives of this study were to determine the protein molecular structures of the new coproducts from bioethanol production, quantify protein structure amide I to II and alpha-helix to beta-sheet spectral peak intensity ratio, and illustrate multivariate molecular spectral analyses as a novel research tool for rapid characterization of protein molecular structures in bioethonal bioproducts. The study demonstrated that the grains had a significantly higher ratio of alpha-helix to beta-sheet in the protein structure than their coproducts produced from bioethanol processing (1.38 vs 1.03, P corn (1.47 vs 1.29, P corn DDGS (1.04 vs 1.03, P > 0.05). The grains had a significantly higher ratio of protein amide I to II in the protein structure than their coproducts produced from bioethanol processing (4.58 vs 2.84, P corn (4.61 vs 4.56, P > 0.05), but there were significant differences between wheat DDGS and corn DDGS (3.08 vs 2.21, P bioethanol processing changes protein molecular structures, compared with original grains. Further study is needed with a large set of the new bioethanol coproducts to quantify protein molecular structures (alpha-helix to beta-sheet ratio; amide I to II ratio) of the bioethanol coproducts in relation to nutrient supply and availability in animals.

  17. Water and energy saving bioprocess for bioethanol production from ...

    African Journals Online (AJOL)

    UP

    2013-10-02

    Oct 2, 2013 ... In order to define the ethanol production efficiency in fermentation, using 75% stillage liquid part instead of process water for recirculation, there were 28 cycles conducted. Starch saccharification in sweet mashes reached average 84.96% what demonstrated good starch conversion to reducing sugars for ...

  18. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Science.gov (United States)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  19. Environmental sustainability analysis of UK whole-wheat bioethanol and CHP systems

    International Nuclear Information System (INIS)

    Martinez-Hernandez, Elias; Ibrahim, Muhammad H.; Leach, Matthew; Sinclair, Phillip; Campbell, Grant M.; Sadhukhan, Jhuma

    2013-01-01

    The UK whole-wheat bioethanol and straw and DDGS-based combined heat and power (CHP) generation systems were assessed for environmental sustainability using a range of impact categories or characterisations (IC): cumulative primary fossil energy (CPE), land use, life cycle global warming potential over 100 years (GWP 100 ), acidification potential (AP), eutrophication potential (EP) and abiotic resources use (ARU). The European Union (EU) Renewable Energy Directive's target of greenhouse gas (GHG) emission saving of 60% in comparison to an equivalent fossil-based system by 2020 seems to be very challenging for stand-alone wheat bioethanol system. However, the whole-wheat integrated system, wherein the CHP from the excess straw grown in the same season and from the same land is utilised in the wheat bioethanol plant, can be demonstrated for potential sustainability improvement, achieving 85% emission reduction and 97% CPE saving compared to reference fossil systems. The net bioenergy from this system and from 172,370 ha of grade 3 land is 12.1 PJ y −1 providing land to energy yield of 70 GJ ha −1 y −1 . The use of DDGS as an animal feed replacing soy meal incurs environmental emission credit, whilst its use in heat or CHP generation saves CPE. The hot spots in whole system identified under each impact category are as follows: bioethanol plant and wheat cultivation for CPE (50% and 48%), as well as for ARU (46% and 52%). EP and GWP 100 are distributed among wheat cultivation (49% and 37%), CHP plant (26% and 30%) and bioethanol plant (25%, and 33%), respectively. -- Highlights: ► UK whole-wheat energy system can achieve 85% GHG emission reduction. ► UK whole-wheat energy system can achieve 97% primary energy saving. ► The land to energy yield of the UK whole-wheat system is 70 GJ ha −1 y −1 . ► Fertiliser production is the hotspot. ► DDGS and straw-based CHP system integration to wheat bioethanol is feasible

  20. The Role of Systems Modeling for Sustainable Development Policy Analysis: the Case of Bio-Ethanol

    Directory of Open Access Journals (Sweden)

    Albert W. Chan

    2004-12-01

    Full Text Available A dynamic systems modeling technique has been developed to assess technologies according to the criterion of sustainability. In a case study, the potential contribution of bio-ethanol toward achieving Canada's commitment to the Kyoto targets for greenhouse gas reductions is analyzed. The analysis concludes that, although bio-ethanol may help reduce greenhouse gas emissions, the technology by itself is insufficient to meet the Kyoto target. Applying the systems modeling approach to analyze sustainability helps highlight those policy issues that warrant more in-depth study. Although the systems model may not provide definitive answers, it raises relevant questions about physical constraints that might be encountered and estimates the extent to which sustainability targets may be met under various scenarios.

  1. Enzymatic hydrolysis of eucalyptus biomass for bioethanol production: a bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Renan Amorim Margon

    2018-04-01

    Full Text Available The energy matrix in the Brazilian and world scenarios has undergone significant changes during the last decades. Due to oscillations in the price of the oil barrel and its derivatives, the study of alternative energies has been intensifying. In this context, the production of second generation bioethanol has been considered as a way to meet this demand. Besides being able to partially solve the dependence of the use of fossil fuels, this technology stands out for utilizing lignocellulosic industries residues, adding value to this material. This article consists of a bibliometric review of this application, giving an overview of the advances made to date. A quantitative analysis of the articles found in the Web of Science database was carried out, followed by a qualitative analysis. Subsequently, the convergences and divergences between the articles were identified. The results demonstrate that some improvements are still needed in the process, however the technique is feasible and advantageous in the production of bioethanol.

  2. Performance Assessment of SOFC Systems Integrated with Bio-Ethanol Production and Purification Processes

    Directory of Open Access Journals (Sweden)

    Sumittra Charojrochkul

    2010-03-01

    Full Text Available The overall electrical efficiencies of the integrated systems of solid oxide fuel cell (SOFC and bio-ethanol production with purification processes at different heat integration levels were investigated. The simulation studies were based on the condition with zero net energy. It was found that the most suitable operating voltage is between 0.7 and 0.85 V and the operating temperature is in the range from 973 to 1173 K. For the effect of percent ethanol recovery, the optimum percent ethanol recovery is at 95%. The most efficient case is the system with full heat integration between SOFC and bio-ethanol production and purification processes with biogas reformed for producing extra hydrogen feed for SOFC which has the overall electrical efficiency = 36.17%. However more equipment such as reformer and heat exchangers are required and this leads to increased investment cost.

  3. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda

    2009-01-01

    The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent....... Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus......, multiple biofuels production from wheat straw can increase the efficiency for material and energy and can presumably be more economical process for biomass utilization. (C) 2008 Elsevier Ltd. All rights reserved....

  4. Integrated furfural and first generation bioethanol production: process simulation and techno-economic analysis

    Directory of Open Access Journals (Sweden)

    J. F. L. Silva

    Full Text Available Abstract Furfural is a base chemical with a wide range of applications and with a great opportunity for market growth in the near term. Derived from biomass, its production may be incorporated to the Brazilian chemical industry using sugarcane bagasse as feedstock. In this context, the integration of a furfural plant to a first generation bioethanol facility, within the biorefinery concept, was simulated considering different scenarios compared to an autonomous bioethanol distillery. The economic analysis of the different scenarios showed that the revenues from furfural commercialization increase the internal rate of return of the project for maximum furfural production (22.0% in comparison to a conventional ethanol distillery (13.5%, despite the decrease in electricity output. Moreover, the economic analysis of the results pointed out the possibility of lowering furfural prices to levels that could lead to its use as a precursor for biofuels.

  5. Process Engineering App lied to the Production of Bioethanol Using Banana Rejection Urabá

    Directory of Open Access Journals (Sweden)

    Daniel Flórez Alvarado

    2012-06-01

    Full Text Available Most countries either financially or in advanced stages of development are faced with the problem of disposal and treatment of waste and organic waste; these can be treated in different ways, for example by reducing its volume or processing any useful substance using physicochemical transformation processesbananas in bioethanol and analyzing environmental impacts to meet sanitary standards.The objective of this study was to evaluate the potential for ethanol production from banana and the study and application of process engineering in ethanol production using banana rejection as feedstock in the region of Urabá.Bioethanol is obtained by fermentation and distillation of rejected bananas where the results are reflected in the operational controls and leaf pattern obtained in the standardization process.

  6. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes.

    Science.gov (United States)

    Pereira, Francisco B; Guimarães, Pedro M R; Teixeira, José A; Domingues, Lucília

    2010-11-01

    An optimized very high gravity (VHG) glucose medium supplemented with low cost nutrient sources was used to evaluate bio-ethanol production by 11 Saccharomyces cerevisiae strains. The industrial strains PE-2 and CA1185 exhibited the best overall fermentation performance, producing an ethanol titre of 19.2% (v/v) corresponding to a batch productivity of 2.5 g l(-1) h(-1), while the best laboratory strain (CEN.PK 113-7D) produced 17.5% (v/v) ethanol with a productivity of 1.7 g l(-1) h(-1). The results presented here emphasize the biodiversity found within S. cerevisiae species and that naturally adapted strains, such as PE-2 and CA1185, are likely to play a key role in facilitating the transition from laboratory technological breakthroughs to industrial-scale bio-ethanol fermentations.

  7. Development and perspective of promising energy plants for bioethanol production in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sin-Yie; Lin, Chien-Yih [Agricultural Research Institute, COA, No. 189, Jhongjheng Road, Wufong, Taichung 41301 (China)

    2009-08-15

    The global energy crisis and continual soaring prices of fossil fuels force people to seek the new and recycled alternative energy sources hard. Biodiesel oil as well as bioethanol fuel, as two new and clean fuels for environmental protection, have already been approved as substitutes for fuel or fuel additive. Some common bottlenecks for production of biodiesel crops have been found. However, developing bioethanol crops in Taiwan has many benefits. Four most promising alcohol crops in Taiwan, i.e., sweet potato, maize, sugarcane, and sweet sorghum have been discussed. Sweet sorghum can be strongly recommended as a key alcohol crop in Taiwan, because of its short growing period, low water requirement, large amount of biomass and alcohol produced, and greater income obtained from sweet sorghum cultivation. (author)

  8. Development and perspective of promising energy plants for bioethanol production in Taiwan

    International Nuclear Information System (INIS)

    Liu, Sin-Yie; Lin, Chien-Yih

    2009-01-01

    The global energy crisis and continual soaring prices of fossil fuels force people to seek the new and recycled alternative energy sources hard. Biodiesel oil as well as bioethanol fuel, as two new and clean fuels for environmental protection, have already been approved as substitutes for fuel or fuel additive. Some common bottlenecks for production of biodiesel crops have been found. However, developing bioethanol crops in Taiwan has many benefits. Four most promising alcohol crops in Taiwan, i.e., sweet potato, maize, sugarcane, and sweet sorghum have been discussed. Sweet sorghum can be strongly recommended as a key alcohol crop in Taiwan, because of its short growing period, low water requirement, large amount of biomass and alcohol produced, and greater income obtained from sweet sorghum cultivation. (author)

  9. Upgrading of lignocellulosic biorefinery to value-added chemicals: Sustainability and economics of bioethanol-derivatives

    DEFF Research Database (Denmark)

    Cheali, Peam; Posada, John A.; Gernaey, Krist

    2015-01-01

    of operating profit for biorefineries producing bioethanol-derived chemicals (247 MM$/a and 241 MM$/a for diethyl ether and 1,3-butadiene, respectively). Second, the optimal designs for upgrading bioethanol (i.e. production of 1,3-butadiene and diethyl ether) performed also better with respect...... and 1,3-butadiene, respectively). The multi-product biorefinery presented a more robust and risk-aware upgrading strategy considering the uncertainties that are typical for a long-term investment horizon.......In this study, several strategies to upgrade lignocellulosic biorefineries for production of value-added chemicals are systematically generated and evaluated with respect to economic and sustainability objectives. A superstructure-based process synthesis approach under uncertainty integrated...

  10. A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock.

    Science.gov (United States)

    Schell, Daniel J; Riley, Cynthia J; Dowe, Nancy; Farmer, Jody; Ibsen, Kelly N; Ruth, Mark F; Toon, Susan T; Lumpkin, Robert E

    2004-01-01

    Interest in bioethanol production from lignocellulosic feedstocks for use as an alternative fuel is increasing, but near-term commercialization will require a low cost feedstock. One such feedstock, corn fiber, was tested in the US Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) bioethanol pilot plant for the purpose of testing integrated equipment operation and generating performance data. During initial runs in 1995, the plant was operated for two runs lasting 10 and 15 days each and utilized unit operations for feedstock handling, pretreatment by dilute sulfuric-acid hydrolysis, yeast inoculum production, and simultaneous saccharification and fermentation using a commercially available cellulase enzyme. Although significant operational problems were encountered, as would be expected with the startup of any new plant, operating experience was gained and preliminary data were generated on corn fiber pretreatment and subsequent fermentation of the pretreated material. Bacterial contamination was a significant problem during these fermentations.

  11. Integrated bioethanol production from mixtures of corn and corn stover.

    Science.gov (United States)

    Chen, Sitong; Xu, Zhaoxian; Li, Xiujuan; Yu, Jianming; Cai, Mufeng; Jin, Mingjie

    2018-02-27

    Conversion of lignocellulosic biomass, such as corn stover (CS), to ethanol has encountered issues of inhibition from degradation products, low ethanol titer and low ethanol productivity. This work integrated CS into corn ethanol process for effective conversion. CS was pretreated using either dilute alkali or dilute acid pretreatment. The pretreated CS was enzymatically hydrolyzed and then mixed with liquefied corn for ethanol fermentation. Fermentation strains, substrate mixing ratios and fed-batch strategy were investigated. The mixture of alkali pretreated CS and corn at solids loadings of 10% and 20%, respectively, resulted in 92.30 g/L ethanol. Ethanol titer was further improved to 96.43 g/L with a fed-batch strategy. The mixture of dilute acid pretreated CS and corn achieved a better performance, leading to 104.9 g/L ethanol with 80.47% ethanol yield and a productivity as high as 2.19 g/L/h. This work demonstrated effective conversion of CS and corn together to ethanol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Chang Geun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dumitrache, Alexandru [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Muchero, Wellington [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Natzke, Jace [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Akinosho, Hannah [Georgia Inst. of Technology, Atlanta, GA (United States); Li, Mi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sykes, Robert W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brown, Steven D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davison, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuskan, Gerald A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pu, Yunqiao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ragauskas, Arthur J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-12-11

    Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoate (PB) and β–5 linkage contents, while it had positive ones with β-O-4 linkage, lignin molecular weight, and ethanol production. In conclusion, this study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.

  13. Technology Evaluation of Process Configurations for Second Generation Bioethanol Production using Dynamic Model-based Simulations

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    against the following benchmark criteria, yield (kg ethanol/kg dry-biomass), final product concentration and number of unit operations required in the different process configurations. The results has shown the process configuration for simultaneous saccharification and co-fermentation (SSCF) operating...... in continuous mode with a recycle of the SSCF reactor effluent, results in the best productivity of bioethanol among the proposed process configurations, with a yield of 0.18 kg ethanol /kg dry-biomass....

  14. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil

    International Nuclear Information System (INIS)

    Luo, Lin; Van der Voet, Ester; Huppes, Gjalt

    2009-01-01

    Brazil has always been the pioneer in the application of bioethanol as a main fuel for automobiles, hence environmental and economic analyses of the Brazilian ethanol industries are of crucial importance. This study presents a comparative life cycle assessment (LCA) on gasoline and ethanol as fuels, and with two types of blends of gasoline with bioethanol, all used in a midsize car. The focus is on a main application in Brazil, sugarcane based ethanol. The results of two cases are presented: base case - bioethanol production from sugarcane and electricity generation from bagasse; future case - bioethanol production from both sugarcane and bagasse and electricity generation from wastes. In both cases sugar is co-produced. The life cycles of fuels include gasoline production, agricultural production of sugarcane, ethanol production, sugar and electricity co-production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85%), and finally the use of gasoline, E10, E85 and pure ethanol. Furthermore, a life cycle costing (LCC) was conducted to give an indication on fuel economy in both cases. The results show that in the base case less GHG is emitted; while the overall evaluation of these fuel options depends on the importance attached to different impacts. The future case is certainly more economically attractive, which has been the driving force for development in the ethanol industry in Brazil. Nevertheless, the outcomes depend very much on the assumed price for crude oil. In LCC a steady-state cost model was used and only the production cost was taken into account. In the real market the prices of fuels are very much dependent on the taxes and subsidies. Technological development can help in lowering both the environmental impact and the prices of the ethanol fuels. (author)

  15. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    International Nuclear Information System (INIS)

    Cha, Kyung Soo; Bae, Jeong Hwan

    2011-01-01

    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. - Research highlights: → World economy experienced 'dual shocks', which were caused by skyrocketed oil prices and grain prices between 2007 and 2008. → Sharp increases in ethanol production in response to high oil prices were considered as a major driving force to 'ag-flation' in the United States. → Applying a time series econometric tool, called the 'structural vector auto-regression model', we evaluated relationship between ethanol production and corn prices. → The result shows that ethanol production affects corn prices in the short run, while corn prices are lowered as other corn demands (feed for livestock or export demand) decline in the long run.

  16. The impact of yeast temperature pre-treatment on bioethanol from corn mash fermentation

    OpenAIRE

    Ho, Dac Hai Nam

    2013-01-01

    For commercial corn mash to ethanol production it is known that increasing temperature can maximize ethanol yield, although care must be taken to avoid causing heat shock resulting in the death of the yeast culture. Despite the potentially negative effects of high temperature, short sub-lethal stress has been reported to procure a benefit to yeast cells. However, the effect of such yeast pre-treatment on bioethanol fermentations has not previously been investigated. In order to understand ...

  17. Bioethanol Production:Characterisation of a Bifunctional Alcohol Dehydrogenase from Geobacillus thermoglucosidasius

    OpenAIRE

    Extance, Jonathan

    2012-01-01

    Unlike first generation biofuels, those produced from ligno-cellulosic waste material (second generation) have the potential to offer sustainable fuel production without competition for food products, whilst making significant savings in terms of greenhouse gas emissions. Second generation bioethanol has the potential to offer a stop-gap between current vehicle fuelling technologies and future solutions such as biohydrogen.TMO Renewables Ltd, a leading developer of the second-generation conve...

  18. Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach

    OpenAIRE

    Wilkinson, Stuart; Smart, Katherine A.; James, Sue; Cook, David J.

    2017-01-01

    Production of bioethanol from brewers spent grains (BSG) using consolidated bioprocessing (CBP) is reported. Each CBP system consists of a primary filamentous fungal species, which secretes the enzymes required to deconstruct biomass, paired with a secondary yeast species to ferment liberated sugars to ethanol. Interestingly, although several pairings of fungi were investigated, the sake fermentation system (A.oryzae and S.cerevisiae NCYC479) was found to yield the highest concentrations of e...

  19. Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens

    OpenAIRE

    Saliu, Bolanle Kudirat; Sani, Alhassan

    2012-01-01

    Corn cob is a major component of agricultural and domestic waste in many parts of the world. It is composed mainly of cellulose which can be converted to energy in form of bioethanol as an efficient and effective means of waste management. Production of cellulolytic enzymes were induced in the fungi Aspergillus niger and Penicillium decumbens by growing them in mineral salt medium containing alkali pre-treated and untreated corn cobs. The cellulases were characterized and partially purified. ...

  20. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, R.; McDonnell, K.; Devlin, G. [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin, Belfield (Ireland)

    2009-07-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  1. Potential Bioethanol Feedstock Availability Around Nine Locations in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Rory Deverell

    2009-03-01

    Full Text Available The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland’s distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks.

  2. Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol

    International Nuclear Information System (INIS)

    Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2008-01-01

    Renewable energy has been in the limelight ever since the price of crude petroleum oil increases to the unprecedented height of US$96 per barrel recently. This is due to the diminishing oil reserves in the world and political instabilities in some oil-exporting countries. The advantages of renewable energy compared to fossil fuels are enormous in terms of environment and availability. Biofuels like bioethanol and biodiesel are currently being produced from agricultural products such as sugarcane and rapeseed oil, respectively. Collectively, these biofuels from food sources are known as first-generation biofuels. Although first-generation biofuels have the potential to replace fossil fuels as the main source of energy supply, its production is surrounded by certain issues like tropical forests' destruction. Instead, second-generation bioethanol, which utilizes non-edible sources such as lignocellulose biomass to produce ethanol, has been shown to be more suitable as the source of renewable energy. However, there are challenges and obstacles such as cost, technology and environmental issues that need to be overcome. Hence, the introduction of energy policy is crucial in promoting and implementing second-generation bioethanol effectively and subsequently become a major source of renewable energy

  3. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation

    Science.gov (United States)

    Oshoma, Cyprian E.; Greetham, Darren; Louis, Edward J.; Smart, Katherine A.; Phister, Trevor G.; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid. PMID:26284784

  4. Optimization and analysis of a bioethanol agro-industrial system from sweet sorghum

    International Nuclear Information System (INIS)

    Guo, Ying; Hu, Shan-ying; Li, You-run; Chen, Ding-jiang; Zhu, Bing; Smith, Karl M.

    2010-01-01

    The use of non-food crops for bioethanol production represents an important trend for renewable energy in China. In this paper, a bioethanol agro-industrial system with distributed fermentation plants from sweet sorghum is presented. The system consists of the following processes: sweet sorghum cultivation, crude ethanol production, ethanol refining and by-product utilization. The plant capacities of crude ethanol and pure ethanol, in different fractions of useful land, are optimized. Assuming a minimum cost of investment, transport, operation and so on, the optimum capacity of the pure ethanol factory is 50,000 tonnes/year. Moreover, this bioethanol system, which requires ca. 13,300 ha (hectares) of non-cultivated land to supply the raw materials, can provide 26,000 jobs for rural workers. The income from the sale of the crops is approximately 71 million RMB Yuan and the ethanol production income is approximately 94 million RMB Yuan. The potential savings in CO 2 emissions are ca. 423,000 tonnes/year and clear economic, social and environmental benefits can be realized. (author)

  5. Bioethanol production from sugarcane bagasse by simultaneous sacarification and fermentation using Saccharomyces cerevisiae

    Science.gov (United States)

    Hernawan, Maryana, R.; Pratiwi, D.; Wahono, S. K.; Darsih, C.; Hayati, S. N.; Poeloengasih, C. D.; Nisa, K.; Indrianingsih, A. W.; Prasetyo, D. J.; Jatmiko, T. H.; Kismurtono, M.; Rosyida, V. T.

    2017-03-01

    Sugarcane bagasse (SCB) is most abundant agricultural wastes in the world. It is an attractive feedstock for the large-scale biological production of bioethanol. However, the limitation in bagase use is its high degree of complexity because of its mixed composition of extremely inhomogeneous fibers. Therefore, ethanol production from bagase is often complex, with three main steps, i.e pretreatment, sacharification, and fermentation. Here we used alkali pretreatment using delignification reactor with NaOH 1N and 1.5 bar for 2 hours. Followed by Simultaneous Sacarification and Fermentation (SSF) using Saccharomyces cerevisiae in addition of cellulase and β-glucosidase enzyme. We found that the alkaline pretreatment can decrease cellulose crystallinity, decrease lignin content up to 84.83% and increased cellulose content up to 74.29%. SSF using cellulase enzymes and combination of cellulase enzymes and β-glucosidase derived bioethanol levels respectively 5.87±0.78% and 6.83±0.07%. In conclusion these results strongly suggest that addition of β-glucosidase enzyme on alkali-pretreated bagasse increased the bioethanol production.

  6. Production of D-tagatose and bioethanol from onion waste by an intergrating bioprocess.

    Science.gov (United States)

    Kim, Ho Myeong; Song, Younho; Wi, Seung Gon; Bae, Hyeun-Jong

    2017-10-20

    The rapid increase of agricultural waste is becoming a burgeoning problem and considerable efforts are being made by numerous researchers to convert it into a high-value resource material. Onion waste is one of the biggest issues in a world of dwindling resource. In this study, the potential of onion juice residue (OJR) for producing valuable rare sugar or bioethanol was evaluated. Purified Paenibacillus polymyxaL-arabinose isomerase (PPAI) has a molecular weight of approximately 53kDa, and exhibits maximal activity at 30°C and pH 7.5 in the presence of 0.8mM Mn 2+ . PPAI can produce 0.99g D-tagatose from 10g OJR. In order to present another application for OJR, we produced 1.56g bioethanol from 10g OJR through a bioconversion and fermentation process. These results indicate that PPAI can be used for producing rare sugars in an industrial setting, and OJR can be converted to D-tagatose and bioethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Viability assessment of regional biomass pre-processing center based bioethanol value chains

    Science.gov (United States)

    Carolan, Joseph E.

    Petroleum accounts for 94% of all liquid fuels and 36% of the total of all energy consumed in the United States. Petroleum dependence is problematic because global petroleum reserves are estimated to last only for 40 to 60 years at current consumption rates; global supplies are often located in politically unstable or unfriendly regions; and fossil fuels have negative environmental footprints. Domestic policies have aimed at promoting alternative, renewable liquid fuels, specifically bio-fuels derived from organic matter. Cellulosic bio-ethanol is one promising alternative fuel that has featured prominently in federal bio-fuel mandates under the Energy Independence and Security Act, 2007. However, the cellulosic bio-ethanol industry faces several technical, physical and industrial organization challenges. This dissertation examines the concept of a network of regional biomass pre-treatment centers (RBPC) that form an extended biomass supply chain feeding into a simplified biorefinery as a way to overcome these challenges. The analyses conducted address the structural and transactional issues facing bio-ethanol value chain establishment; the technical and financial feasibility of a stand alone pre-treatment center (RBPC); the impact of distributed pre-treatment on biomass transport costs; a comparative systems cost evaluation of the performance of the RBPC chain versus a fully integrated biorefinery (gIBRh), followed by application of the analytical framework to three case study regions.

  8. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Misri Gozan

    2017-04-01

    Full Text Available High purity of Bioethanol is required in biofuel mixing with gasoline (EXX. In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption method. Data from previous lab experiments and some literatures were used. The results showed that distillation-adsorption method is more economical compared to vapor permeation technology. Payback period of the simulation is 3.9 years and 4.3 years to distillation adsorption and vapor permeation respectively with each IRR value is 20.23% and 17.89%. Initial investment value of vapor permeation is 9.6% higher than distillation method. Significant difference observed in operating costs, since more units involved in vapor permeation require more labors to operate.

  9. Polyhydroxy glucose functionalized silica for the dehydration of bio-ethanol distillate.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Row, Kyung Ho

    2014-07-01

    Although most of the water in a bio-ethanol fermentation broth can be removed by distillation, a small amount of water remains in the bio-ethanol distillate as the water-ethanol azeotrope. To improve the use of ethanol as a fuel, glucose-modified silica, as an adsorbent, was prepared using a facile method and applied to the dehydration of bio-ethanol distillate. The factors affecting the adsorption capacity of the adsorbent, such as the particle size, initial concentration of water in the samples, adsorption temperature and adsorbent dose, were examined by measuring the adsorption kinetics and equilibrium. The Langmuir, Freundlich and Temkin isotherms were used to evaluate the adsorption efficiency. Of these, the Freundlich and Temkin isotherms showed a good correlation with the experimental data. The Langmuir isotherm showed some deviation from the experimental results, and indicated that adsorption in this case was not a simple monolayer adsorption. The property of the adsorbent was attributed to functionalized silica with many hydroxyl groups on its surface. An examination of the separation factors of water/ethanol revealed the modified silica to have preferential selectivity for water. Compared to activated carbon and silica, glucose-modified silica exhibited higher adsorption capacity for water under the same adsorption conditions. In addition, the glucose-modified silica adsorbent exhibited a relatively constant adsorption capacity for five adsorption/desorption cycles.

  10. Emerging bio-ethanol projects in Nigeria. Their opportunities and challenges

    International Nuclear Information System (INIS)

    Ohimain, Elijah I.

    2010-01-01

    Despite being a major petroleum producing and exporting country, Nigeria has for a long time imported refined petroleum products for domestic consumption. The country has recently made an entrance into the bio-energy sector by seeding the market with imported ethanol until enough capability exists for the domestic production of ethanol. The Nigerian Biofuel Policy was released in 2007 calling for the domestic production of bio-ethanol to meet the national demand of 5.14 billion litres/year. Some investors have responded by investing over $3.86 billion for the construction of 19 ethanol bio-refineries, 10,000 units of mini-refineries and feedstock plantations for the production of over 2.66 billion litres of fuel grade ethanol per annum. Also, another 14 new projects are in the offing. Of the 20 pioneer projects, 4 are at the conception phase, 8 are in the planning phase, and 7 are under construction with only 1 operational. The potential benefits of the emerging bio-ethanol projects include investment in the economy, employment, energy security and boost rural infrastructure, while the major challenge is land take (859,561 ha). This is the first time an attempt is been made to document the emerging bio-ethanol projects in Nigeria. (author)

  11. Practicability of Lignocellulosic Waste Composite in Controlling Air Pollution from Leaves Litter through Bioethanol Production

    Science.gov (United States)

    Tarrsini, Mahadevan; Teoh, Yi Peng; Ng, Qi Hwa; Kunasundari, Balakrishnan; Xian Ooi, Zhong; Siew Shuit, Hoong; Hoo, Peng Yong

    2018-03-01

    Environmental degradation through greenhouse emission have spurred nation’s interest on feedstock-based fuel. Yet, development of this clean biofuel is obstructed by the expensive feedstock which takes up most of the production cost. Therefore, as an alternative, utilization of widely available lignocellulosic residues with relatively no commercial significance has been considered. This present work emphasizes on mango (Mangifera indica) leaves one of the most abundant lignocellulosic waste in Malaysia. Through implementation of this biomass for bioethanol production, continuous allowance of air pollution with a deleterious impact to the country’s environment could be reduced. The high concentration of sugar (16-18%w/v) in the form of cellulose and hemicellulose is ultimately the reason behind the selection of these leaves as a substrate for bioethanol production. Hence, in this study, a comparison of biomass composition in Harum Manis, Sunshine and Chokanan mango leaves were conducted to detect the most suitable substrate source to produce biofuel. At the end of the biomass evaluation, Harum Manis mango leaves turned out to be the most competitive bioethanol crop as these leaves reported to be made up of 34.71% cellulose and 44.02% hemicellulose which summed up to give highest fermentable sugar source with a lignin content of 19.45%.

  12. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants.

    Science.gov (United States)

    Drosg, B; Fuchs, W; Meixner, K; Waltenberger, R; Kirchmayr, R; Braun, R; Bochmann, G

    2013-01-01

    Stillage processing can require more than one third of the thermal energy demand of a dry-grind bioethanol production plant. Therefore, for every stillage fraction occurring in stillage processing the potential of energy recovery by anaerobic digestion (AD) was estimated. In the case of whole stillage up to 128% of the thermal energy demand in the process can be provided, so even an energetically self-sufficient bioethanol production process is possible. For wet cake the recovery potential of thermal energy is 57%, for thin stillage 41%, for syrup 40% and for the evaporation condensate 2.5%. Specific issues for establishing AD of stillage fractions are evaluated in detail; these are high nitrogen concentrations, digestate treatment and trace element supply. If animal feed is co-produced at the bioethanol plant and digestate fractions are to be reused as process water, a sufficient quality is necessary. Most interesting stillage fractions as substrates for AD are whole stillage, thin stillage and the evaporation condensate. For these fractions process details are presented.

  13. Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Dimitris Georgakakis

    2013-08-01

    Full Text Available In the present study the potential of bioethanol production using carbohydrate-enriched biomass of the cyanobacterium Arthrospira platensis was studied. For the saccharification of the carbohydrate-enriched biomass, four acids (H2SO4, HNO3, HCl and H3PO4 were investigated. Each acid were used at four concentrations, 2.5 N, 1 N, 0.5 N and 0.25 N, and for each acid concentration the saccharification was conducted under four temperatures (40 °C, 60 °C, 80 °C and 100 °C. Higher acid concentrations gave in general higher reducing sugars (RS yields (%, gRS/gTotal sugars with higher rates, while the increase in temperature lead to higher rates at lower acid concentration. The hydrolysates then were used as substrate for ethanolic fermentation by a salt stress-adapted Saccharomyces cerevisiae strain. The bioethanol yield (%, gEtOH/gBiomass was significantly affected by the acid concentration used for the saccharification of the carbohydrates. The highest bioethanol yields of 16.32% ± 0.90% (gEtOH/gBiomass and 16.27% ± 0.97% (gEtOH/gBiomass were obtained in hydrolysates produced with HNO3 0.5 N and H2SO4 0.5 N, respectively.

  14. Feasibility of bioethanol production from tubers of Dioscorea sansibarensis and Pyrenacantha kaurabassana.

    Science.gov (United States)

    Moshi, Anselm P; Nyandele, Jane P; Ndossi, Humphrey P; Eva, Sosovele M; Hosea, Ken M

    2015-11-01

    Inedible tubers from Dioscorea sansibarensis (DS) and Pyrenacantha kaurabassana (PK) were found to be suitable feedstock for bioethanol production. Important composition parameters for bioethanol production for DS and PK are dry matter (% fresh tubers) ca. 20 and 6, total carbohydrates % dry weight base (db) ca. 68 and 47 and total protein (% db) ca. 16 and 10, respectively. DS and PK were found to contain inulin and galactomannan as principal polysaccharides (% of total carbohydrate) ca. 90 and 70, respectively. Diluted acid hydrolysis yielded ca. 100% of total reducing sugars. Ethanol yield ca. 56 and 35g/L was obtained at high efficiency through batch fermentation of acid hydrolysate (25% w/v) of DS and PK, respectively. A simple technique of recording and monitoring ethanol through CO2 generated during fermentation correlated strongly with HPLC measurement R(2)=0.99. Thus, tubers from these plants are potential feedstocks for bioethanol production with no competing uses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Technical Feasibility and Comprehensive Sustainability Assessment of Sweet Sorghum for Bioethanol Production in China

    Directory of Open Access Journals (Sweden)

    Xiaolin Yang

    2018-03-01

    Full Text Available Under dual pressures of energy and environmental security, sweet sorghum is becoming one of the most promising feedstocks for biofuel production. In the present study, the technical feasibility of sweet sorghum production was assessed in eight agricultural regions in China using the Sweet Sorghum Production Technique Maturity Model. Three top typical agricultural zones were then selected for further sustainability assessment of sweet sorghum production: Northeast China (NEC, Huang-Huai-Hai Basin (HHHB and Ganxin Region (GX. Assessment results demonstrated that NEC exhibited the best sustainable production of sweet sorghum, with a degree of technical maturity value of 0.8066, followed by HHHB and GX, with corresponding values of 0.7531 and 0.6594, respectively. Prospective economic profitability analysis indicated that bioethanol production from sweet sorghum was not feasible using current technologies in China. More efforts are needed to dramatically improve feedstock mechanization logistics while developing new bioethanol productive technology to reduce the total cost. This study provides insight and information to guide further technological development toward profitable industrialization and large-scale sweet sorghum bioethanol production.

  16. Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass.

    Science.gov (United States)

    Papa, G; Rodriguez, S; George, A; Schievano, A; Orzi, V; Sale, K L; Singh, S; Adani, F; Simmons, B A

    2015-05-01

    In this study the efficiency of mild ionic liquid (IL) pretreatment and pressurized hot water (PHW) is evaluated and compared in terms of bioethanol and biomethane yields, with corn stover (CS) and switchgrass (SG) as model bioenergy crops. Both feedstocks pretreated with the IL 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] at 100°C for 3h exhibited lower glucose yield that those treated with harsher pretreatment conditions previously used. Compared to PHW, IL pretreatment demonstrated higher bioethanol yields; moreover IL pretreatment enhanced biomethane production. Taking into consideration both bioethanol and biomethane productions, results indicated that when using IL pretreatment, the total energy produced per kg of total solids was higher compared to untreated biomasses. Specifically energy produced from CS and SG was +18.6% and +34.5% respectively, as compared to those obtained by hot water treatment, i.e. +2.3% and +23.4% for CS and SG, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Energy from whey - comparison of the biogas and bioethanol processes; Energie a partir de petit-lait : comparaison des filieres biogaz et bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Fruteau de Laclos, H.; Membrez, Y. [Erep SA, Aclens (Switzerland)

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project which investigated how energy could be generated from the whey produced in the cheese-making process. The first part of the project aimed to validate a concept for on-site production and use of biogas at a medium-sized cheese factory. The results of the first step, an experimental study carried out using a down-flow fixed-film bio-reactor, are discussed. This allowed the determination of the optimal working parameters as well as providing an estimate of the performance of the process. The second part of the project aimed to compare the bio-ethanol and biogas production processes. It was carried out in collaboration with AlcoSuisse and the Energy Systems Laboratory at the Swiss Federal Institute of Technology (EPFL) in Lausanne. The results of a life-cycle assessment (LCA) are discussed, which compared the two processes from an environmental point of view. Here, two impacts were considered: fossil fuel consumption and greenhouse effect. The replacement of fuel-oil with biogas for heat production and the replacement of conventional petrol with mixture including 5% bio-ethanol were examined. The results are presented that show that there was no significant difference between the two processes. According to the authors, the treatment of one cubic meter of cheese-whey allows savings of more than 20 litres of oil equivalent and 60 kg of CO{sub 2} emissions.

  18. Determination of total acidity index in bioethanol by automated potentiometric titration; Determinacao do indice de acidez total em bioetanol por titulacao potenciometrica automatizada

    Energy Technology Data Exchange (ETDEWEB)

    Sobral, Sidney Pereira; Ribeiro, Carla de Matos; Fraga, Isabel Cristina Serta; Goncalves, Mary Ane [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (DIMCI/INMETRO), Duque de Caxias, RJ (Brazil). Diretoria de Metrologia Cientifica e Industrial], E-mail: spsobral@inmetro.gov.br

    2009-07-01

    This paper determines the total acidity index of bioethanol by volumetric titration with potentiometric detection. Also, viewing the optimization of the method, studies are exhibited related to the repeatable, besides the comparison with the colorimetric method with the objective to contribute to the certification of bioethanol reference materials.

  19. Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods.

    Science.gov (United States)

    Dias, Marina O S; da Cunha, Marcelo Pereira; Maciel Filho, Rubens; Bonomi, Antonio; Jesus, Charles D F; Rossell, Carlos E V

    2011-08-01

    Sugarcane bagasse is used as a fuel in conventional bioethanol production, providing heat and power for the plant; therefore, the amount of surplus bagasse available for use as raw material for second generation bioethanol production is related to the energy consumption of the bioethanol production process. Pentoses and lignin, byproducts of the second generation bioethanol production process, may be used as fuels, increasing the amount of surplus bagasse. In this work, simulations of the integrated bioethanol production process from sugarcane, surplus bagasse and trash were carried out. Selected pre-treatment methods followed, or not, by a delignification step were evaluated. The amount of lignocellulosic materials available for hydrolysis in each configuration was calculated assuming that 50% of sugarcane trash is recovered from the field. An economic risk analysis was carried out; the best results for the integrated first and second generation ethanol production process were obtained for steam explosion pretreatment, high solids loading for hydrolysis and 24-48 h hydrolysis. The second generation ethanol production process must be improved (e.g., decreasing required investment, improving yields and developing pentose fermentation to ethanol) in order for the integrated process to be more economically competitive.

  20. Validation of some engine combustion and emission parameters of a bioethanol fuelled DI diesel engine using theoretical modelling

    Directory of Open Access Journals (Sweden)

    Murugan Sivalingam

    2015-12-01

    Full Text Available Earlier reports indicate that ethanol/bioethanol can replace conventional diesel fuel by 15%, when it is emulsified with diesel and used as an alternative fuel in a compression ignition (CI engine. In this study, initially BMDE15, a bioethanol emulsion containing 15% bioethanol, 84% diesel and 1% surfactant was characterised for its fuel properties and compared with those of diesel fuel properties. The numerical value indicates the percentage of bioethanol in the BMDE15 emulsion. For the investigation, bioethanol was obtained from the Mahua Indica flower which was collected from the Madhuca Indica tree, and it was produced from fermentation process using Saccharomyces cerevisiae. Further, the BMDE15 emulsion was tested in a single cylinder, four stroke, air cooled, DI diesel engine developing a power of 4.4 kW at a rated speed of 1500 rpm. Two important combustion parameters: cylinder pressure and ignition delay, and two important emission parameters: nitric oxide (NO and smoke emissions were determined and compared with those of diesel operation at all loads. The experimental results were validated using mathematical modelling, and the analysis of the results is presented in this paper.

  1. Improvement of bioethanol productivity of immobilized Saccharomyces bayanus with using sodium alginate-graft-poly(N-vinyl-2-pyrrolidone) matrix.

    Science.gov (United States)

    İnal, Murat; Yiğitoğlu, Mustafa

    2012-09-01

    In this study, immobilization conditions and bioethanol production characteristics of immobilized Saccharomyces bayanus were investigated into sodium alginate-graft-poly(N-vinyl-2-pyrrolidone; NaAlg-g-PVP) matrix. The matrix that crosslinked with calcium clorid was used for immobilization of S. bayanus. Bioethanol productivity of the NaAlg-g-PVP matrix was found to increase from 4.21 to 4.84 gL(-1) h(-1) when compared with the convential sodium alginate matrix. The production of bioethanol was affected by initial glucose concentration and percentage of immobilized cell beads in fermentation medium. Bioethanol productivity was increased from 3.62 to 4.84 gL(-1) h(-1) while the glucose concentration increasing from 50 to 100 gL(-1). Due to the increase in percentage from 10 to 20 % of immobilized cell beads in the fermentation medium, bioethanol productivity was increased from 4.84 to 8.68 gL(-1) h(-1). The cell immobilized NaAlg-g-PVP beads were protected 92 % of initial activity after six repeated fermentation.

  2. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... was cross-linked by glutaraldehyde. (3) Validation and modification of a semimechanistic model, which was done during 2010 ~ 2012. A number of cellulosic hydrolysis kinetic models were proposed. Among the models, a simple and usful mathamatical model proposed by Kadam et al. (2004) has potential......, and different product inhibitors such as glucose, cellobiose and xylose) to test the hydrolysis and product inhibition mechanism of the model. Nonlinear least squares methodwas used to identify the model and estimate kinetic parameters based on the experimental data. The analysis showed that transglycosylation...

  3. Enhanced enzymatic conversion with freeze pretreatment of rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ken-Lin; Thitikorn-amorn, Jitladda; Ou, Bay-Ming; Chen, Shan-He; Huang, Po-Jung [Institute of Biological Chemistry and Genomics Research Center Academia Sinica, Nankang, Taipei 115 (China); Hsieh, Jung-Feng [Department of Food Science, Fu Jen Catholic University, Xin Zhuang, Taipei 242 (China); Ratanakhanokchai, Khanok [School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, Bangkok 10150 (Thailand); Chen, Shui-Tein [Institute of Biological Chemistry and Genomics Research Center Academia Sinica, Nankang, Taipei 115 (China); Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106 (China)

    2011-01-15

    Production of bioethanol by the conversion of lignocellulosic waste has attracted much interest in recent years, because of its low cost and great potential availability. The pretreatment process is important for increasing the enzymatic digestibility of lignocellulosic materials. Enzymatic conversion with freeze pretreatment of rice straw was evaluated in this study. The freeze pretreatment was found to significantly increase the enzyme digestibility of rice straw from 48% to 84%. According to the results, enzymatic hydrolysis of unpretreated rice straw with 150 U cellulase and 100 U xylanase for 48 h yielded 226.77 g kg{sup -1} and 93.84 g kg{sup -1} substrate-reducing sugars respectively. However, the reducing sugar yields from freeze pretreatment under the same conditions were 417.27 g kg{sup -1} and 138.77 g kg{sup -1} substrate, respectively. In addition, hydrolyzates analysis showed that the highest glucose yield obtained during the enzymatic hydrolysis step in the present study was 371.91 g kg{sup -1} of dry rice straw, following pretreatment. Therefore, the enhanced enzymatic conversion with freeze pretreatment of rice straw was observed in this study. This indicated that freeze pretreatment was highly effective for enzymatic hydrolysis and low environmental impact. (author)

  4. Strategy for Adapting Wine Yeasts for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Kevin R. Lankford

    2009-01-01

    Full Text Available The Saccharomyces cerevisiae wine yeast strains 71B-1122 and K1-V1116 were used to derive strains that could tolerate and produce higher ethanol yields. Respiratory-deficient mutants resistant to 500 mg/mL lycorine were isolated. Two mutants, 71B-1122 YEBr L3 and K1-V1116 YEBr L4, were shown to achieve about 10% and 18% improvement in their glucose-to-ethanol conversion efficiency compared to their respective parent strains. The K1-V1116 YEBr L4 in particular can tolerate an ethanol yield of 18.8 ± 0.8% at 3.5 weeks of fermentation and continued to consume most of the sugar until less than 1% glucose was left.

  5. Characterization of normal and waxy corn starch for bioethanol production.

    Science.gov (United States)

    Yangcheng, Hanyu; Jiang, Hongxin; Blanco, Michael; Jane, Jay-lin

    2013-01-16

    Objectives of this study were to compare ethanol production between normal and waxy corn using a cold fermentation process and to understand effects of starch structures and properties on ethanol production. Ethanol yields positively correlated (p starch contents of kernels of the normal and waxy corn. The average starch-ethanol conversion efficiency of waxy corn (93.0%) was substantially greater than that of normal corn (88.2%). Waxy corn starch consisted of very little amylose and mostly amylopectin that had a shorter average branch chain length than normal corn amylopectin. Regression analyses showed that average amylopectin branch chain lengths and percentage of long branch chains (DP > 37) of waxy corn starch negatively correlated with the starch hydrolysis rate and the ethanol yield. These results indicated that starch structures and properties of the normal and waxy corn had significant effects on the ethanol yield using a cold fermentation process.

  6. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  7. Hydrogen Permeability of Palladium Membrane for Steam-Reforming of Bio-Ethanol Using the Membrane Reactor

    Science.gov (United States)

    Kinouchi, Kouji; Katoh, Masahiro; Horikawa, Toshihide; Yoshikawa, Takushi; Wada, Mamoru

    A Palladium membrane was prepared by electro-less plating method on porous stainless steel. The catalytic hydrogen production by steam-reforming of biomass-derived ethanol (bio-ethanol) using a Pd membrane was analyzed by comparing it with those for the reaction using reagent ethanol (the reference sample). And the hydrogen permeability of the palladium membrane was investigated using the same palladium membrane (H2/He selectivity = 249, at ΔP = 0.10 MPa, 873 K). As a result, for bio-ethanol, deposited carbon had a negative influence on the hydrogen-permeability of the palladium membrane and hydrogen purity. The sulfur content in the bio-ethanol may have promoted carbon deposition. By using a palladium membrane, it was confirmed that H2 yield (%) was increased. It can be attributed that methane was converted from ethanol and produced more hydrogen by steam reforming, due to the in situ removal of hydrogen from the reaction location.

  8. Samfunds- og selskabsøkonomisk analyse af bioethanol-produktion i Danmark i samproduktion med kraftvarme. Fase I

    DEFF Research Database (Denmark)

    Nielsen, Lars Henrik; van Maarschalkerweerd, Christian

    and compared based on the same input biomass materials. The present project information concerns phase I of the total project, and comprises the socio-economic and corporate-economic analysis of bioethanol production co-produced with CHP (IBUS concept). Due to difficulties in achieving data, consistency......Aims of the project are to carry out combined socio-economic and corporate-economic analyses of concepts for bioethanol production in Denmark. The project is split into two phases and will in total analyze 3 different plant concepts for bioethanol production based on biomass inputs comprising straw...... in data, and consensus on data as expected and agreed in the project outline among project partners the project unfortunately could not be carried out to its original intention. As consequence only the limited project reporting from phase I of the project is available. The project report from October 2007...

  9. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  10. Innovation subject to sustainability: the European policy on biofuels and its effects on innovation in the Brazilian bioethanol industry

    Directory of Open Access Journals (Sweden)

    Henrique Pacini

    2012-08-01

    Full Text Available Biofuels are a suitable complement for fossil energy in the transport sector and bioethanol is the main biofuel traded worldwide. Based on the assumption that innovation can be influenced by regulation, the Brazilian bioethanol industry is facing new requirements from external actors while reaching for international markets. Until 2010, national environmental laws were the main sustainability instrument that the biofuel industry faced. With the introduction of sustainability criteria for biofuels in the European Fuels Quality Directive (FQD and Renewable Energy Directive (RED of 2009, bioethanol producers have been pressured to innovate in respect of the requirements of future markets. Here, the aim is to analyse the case of Brazil, given the potential exports of sugarcane-based ethanol from this country to the EU. Brazil provides an interesting overview of how a bioethanol industry innovated while facing sustainability requirements in the past. A comparison between the European requirements and the industry´s status quo is then explored. The EU criteria are likely to have effects on the Brazilian bioethanol industry and incremental improvements in sustainability levels might take place based on the sustainability requirements. In addition, the industry could follow two other paths, namely risk diversification by engaging in multi-output models; and market leakage towards less-regulated markets. At the same time, an environmental overregulation of the biofuel market may make it more difficult for emerging biofuel industries in other countries, especially in Africa, by creating a barrier rather than contributing to its expansion. The results of this analysis show the main challenges to be addressed and the potential positive and negative impacts of the European Union biofuels policy on the Brazilian bioethanol industry.

  11. Energy and Exergy Analyses of a Diesel Engine Fuelled with Biodiesel-Diesel Blends Containing 5% Bioethanol

    Directory of Open Access Journals (Sweden)

    Bahar Sayin Kul

    2016-10-01

    Full Text Available In this study, energy and exergy analysis were performed for a single cylinder, water-cooled diesel engine using biodiesel, diesel and bioethanol blends. Each experiment was performed at twelve different engine speeds between 1000 and 3000 rev/min at intervals of 200 rev/min for four different fuel blends. The fuel blends, prepared by mixing biodiesel and diesel in different proportions fuel with 5% bioethanol, are identified as D92B3E5 (92% diesel, 3% biodiesel and 5% bioethanol, D85B10E5 (85% diesel, 10% biodiesel and 5% bioethanol, D80B15E5(80% diesel, 15% biodiesel and 5% bioethanol and D75B20E5 (75% diesel, 20% biodiesel and 5% bioethanol. The effect of blends on energy and exergy analysis was investigated for the different engine speeds and all the results were compared with effect of D100 reference fuel. The maximum thermal efficiencies obtained were 31.42% at 1500 rev/min for D100 and 31.42%, 28.68%, 28.1%, 28% and 27.18% at 1400 rev/min, respectively, for D92B3E5, D85B10E5, D80B15E5, D75B20E5. Maximum exergetic efficiencies were also obtained as 29.38%, 26.8%, 26.33%, 26.15% and 25.38%, respectively, for the abovementioned fuels. As a result of our analyses, it was determined that D100 fuel has a slightly higher thermal and exergetic efficiency than other fuel blends and all the results are quite close to each other.

  12. A Model for Conversation

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...

  13. Physics of energy conversion

    International Nuclear Information System (INIS)

    Rax, Jean-Marcel

    2015-01-01

    This book gathers courses on the physics of energy conversion proposed in France and abroad, and mainly in the Orsay Faculty of Science and in the Ecole Polytechnique. It more particularly addresses the study of concepts and methods related to the physics of irreversible processes, within a perspective of identification and analysis of mechanisms of entropy production, and the description and physical analysis of principles and limitations of magneto-hydrodynamic, thermoelectric, thermo-ionic, photovoltaic and electrochemical generators. The chapters address the following issues and themes: conversion and dissipation (conservation and conversion, collisions, fluctuations and transport), energy and entropy (conservation and evolution, Boltzmann and Gibbs factors), Markovian evolutions (Markovian processes, energy conversion and transitions, Boltzmann and Fokker-Planck kinetic equations), dissipative flows (thermodynamic flows and forces, energy conversion and linear transport), heat and chemical engines (Carnot heat engine, Van't Hoff heat engine, endo-reversible heat engines), magneto hydrodynamic conversion (electro-hydrodynamic conversion, Alfven-Saha plasma model, magneto-hydrodynamic coupling, Hall and Faraday converters), thermo-ionic conversion (Lorentz-Sommerfeld models of metals, Richardson-Dushman relationship, Langmuir and Schottky diodes), thermo-electric conversion (conventional semiconductor model, thermo-electric effects, thermo-electric engines), photovoltaic conversion (Planck model of heat radiation, photovoltaic conversion, photovoltaic P-N junction), and electrochemical conversion (Nernst model of redox equilibrium, over-voltage and polarizations, fuel cells)

  14. Sugarcane bioethanol and the sustainable development; Alcool combustivel derivado da cana-de-acucar e o desenvolvimento sustentavel

    Energy Technology Data Exchange (ETDEWEB)

    Leme, Rodrigo Marcelo [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Programa de Pos-graduacao em Planejamento de Sistemas Energeticos

    2004-07-01

    The use of the sugarcane bioethanol in Brazil was strongly boosted during the 1970 's and 1980 's, with the advent of the National Alcohol Programme (PROALCOOL). Following this period a decade of uncertainties came up, when the decline in the Program results were noticeable. Nowadays, it seems that new and good perspectives arise, due to the emergent external and internal markets. In this paper the evolution of the sugarcane bioethanol use in Brazil is addressed, stressing the importance and legacy of the PROALCOOL. The future perspectives of the alcohol are also discussed. (author)

  15. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    Science.gov (United States)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  16. Implications of corn prices on water footprints of bioethanol.

    Science.gov (United States)

    Suh, Kyo; Suh, Sangwon; Smith, Timothy

    2011-04-01

    Previously reported water footprints (WFPs) of corn ethanol have been estimated based on the assumption that corn ethanol feedstock could be supplied by the same states where the corn is grown. However, ethanol conversion facilities may choose out-of-state feedstock suppliers depending on the total price of feedstock they have to pay including both the corn price and transportation costs. The purpose of this study is to evaluate the WFPs and total water use (TWU) of corn ethanol considering an optimal allocation of corn with heterogeneous corn feedstock prices across states. The results show that the WFPs of corn ethanol are less than 100 l of water per liter of ethanol (Lw/Le) for all ethanol-producing states based on both the 2008 corn price and transportation costs for rail and truck. Results also reveal that WFPs are very sensitive to the market price of corn and that additional greenhouse gas emissions due to corn trade between states are not significant. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Varieties of sweet sorghum Super-1 and Super-2 and its equipment for bioethanol in Indonesia

    Science.gov (United States)

    Pabendon, M. B.; Efendi, R.; Santoso, S. B.; Prastowo, B.

    2017-05-01

    The demands for alternative sources of energy are currently growing because people now are more aware of the many negative impacts fossil fuel gives to the environment. Plant based renewable energy provides potential sources of energy with advantages of cleaner fuel effect and capability of integration with food crop production. Sorghum have been considered to be a highly potential source of food, feed and fuel, especially sweet stalk sorghum that posses both functions as source of food from its grain and fuel made from its stalk juice. Sorghum varieties are well known to have excellent adaptability in marginal areas, especially drought prone areas where other food crops are unable to thrive. The current paper aimed to share ongoing research on many functional uses of sweet stalk sorghum varieties released at Indonesian Cereals Research Institute (ICERI). Among many varieties that had been released were two sweet stalk sorghum varieties SUPER-1 and SUPER-2 released in 2013 that stands out in biomass yield and bioethanol production. Based on various researches conducted at different location and planting season, yield potential of biomass ranged at 30 - 40 t/ha with higher yield occurred during dry season. Stalk juice sugar content in brix were found to be higher in dry season ranged at 13.6 % to 18.4 %, and the amount of juice stalk was obtained at about 30-50 % from total biomass yield. Furthermore, bioethanol production from stalk juice after fermentation was at the range of 8 to 10 % from total stalk juice volume. Modification of processing equipment of bioethanol have also been carried out and was able to increased the concentration of ethanol being distilled from 85% -92% to 90% -95%. Another result obtained was able to decreased fermentation time from 14-21 days to 6-10 days. Furthermore, the yield of ethanol from juice was also from an average of 4.95% to 6.75%.

  18. Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Shanavas, S.; Padmaja, G.; Moorthy, S.N.; Sajeev, M.S.; Sheriff, J.T. [Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram, 695 017 Kerala (India)

    2011-02-15

    Although cassava (Manihot esculenta Crantz) is a potential bioethanol crop, high operational costs resulted in a negative energy balance in the earlier processes. The present study aimed at optimizing the bioethanol production from cassava starch using new enzymes like Spezyme {sup registered} Xtra and Stargen trademark 001. The liquefying enzyme Spezyme was optimally active at 90 C and pH 5.5 on a 10% (w/v) starch slurry at levels of 20.0 mg (280 Amylase Activity Units) for 30 min. Stargen levels of 100 mg (45.6 Granular Starch Hydrolyzing Units) were sufficient to almost completely hydrolyze 10% (w/v) starch at room temperature (30 {+-} 1 C). Ethanol yield and fermentation efficiency were very high (533 g/kg and 94.0% respectively) in the Stargen + yeast process with 10% (w/v) starch for 48 h. Raising Spezyme and Stargen levels to 560 AAU and 91.2 GSHU respectively for a two step loading [initial 20% (w/v) followed by 20% starch after Spezyme thinning]/initial higher loading of starch (40% w/v) resulted in poor fermentation efficiency. Upscaling experiments using 1.0 kg starch showed that Stargen to starch ratio of 1:100 (w/w) could yield around 558 g ethanol/kg starch, with a high fermentation efficiency of 98.4%. The study showed that Spezyme level beyond 20.0 mg for a 10% (w/v) starch slurry was not critical for optimizing bioethanol yield from cassava starch, although an initial thinning of starch for 30 min by Spezyme facilitated rapid saccharification-fermentation by Stargen + yeast system. The specific advantage of the new process was that the reaction could be completed within 48.5 h at 30 {+-} 1 C. (author)

  19. Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis

    International Nuclear Information System (INIS)

    Liu, Jin’e; Lin, Bin-Le; Sagisaka, Masayuki

    2012-01-01

    To promote the reduction of greenhouse gas emissions, research and development of bioethanol technologies are encouraged in Japan and a plan to utilize untilled fields to develop rice for bioethanol production as a substitute for petroleum fuel is being devised. This study applies emergy methods to compare the sustainability of petroleum fuel production and two Japanese rice-to-ethanol production scenarios: (a) ethanol from rice grain, while straw and chaff are burned as energy and (b) ethanol from rice+straw+chaff. The major emergy indices, Emergy Yield Ratio (EYR), Environmental Loading Ratio (ELR), Emergy Investment Ratio (EIR), Emergy Sustainability Index (ESI), Environmental Impacts Ratio (EVR) and system transformity (Tr), are analyzed to assess the production processes. The results show that (1) petroleum fuel production presents higher ELR, EIR, EVR and lower EYR, ESI, Tr than rice-to-ethanol production, indicating rice-to-ethanol production makes sense for reduction of greenhouse gases (GHG); (2) scenario (a) performs similarly on major indicators (EYR, ESI, ELR, EIR and EVR) to scenario (b), yet the system efficiency indicator (Tr) of scenario (a, 7.572×10 5 semj/J) is much higher than (b, 4.573×10 5 semj/J), and therefore (b) is a better alternative for policy decisions; (3) both petroleum fuel production and rice-to-ethanol processes are mainly driven by purchased resources and are unsustainable and nonrenewable in the long run. - Highlights: ► We compare petrol fuel and rice-to-ethanol production using emergy indices. ► Rice-to-ethanol reduces green house gas emissions as a substitute for petrol fuel. ► Rice-to-ethanol production has better sustainability than that of petrol fuel. ► Neither petrol fuel nor biofuel production are sustainable in the long term. ► Bioethanol is not a renewable fuel.

  20. Iterated multidimensional wave conversion

    International Nuclear Information System (INIS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-01-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  1. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  2. Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds

    DEFF Research Database (Denmark)

    Burniol Figols, Anna; Cenian, Katarzyna; Skiadas, Ioannis V.

    2016-01-01

    Spent coffee grounds (SCG) are an abundant by-product of the coffee industry with a complex composition that makes them a promising feedstock for a biorefinery. The objective of this study was to evaluate SCG as a substrate for combined chlorogenic acid and bioethanol production after dilute acid...... hydrolysis. The effect of phenolics extraction on the downstream process was evaluated exhibiting no loss of sugars and an increase in the sugar release efficiency during the dilute acid hydrolysis. In order to suggest an economically feasible process, phenolics extraction and dilute acid hydrolysis prior...

  3. Evaluation of the parameters effects on the bio-ethanol production process from Ricotta Cheese Whey

    DEFF Research Database (Denmark)

    Sansonetti, Sascha; Curcio, Stefano; Calabrò, Vincenza

    2010-01-01

    The work consists of an experimental analysis to evaluate the effects of the variables temperature (T), pH, agitation rate (K) and initial lactose concentration (L) on the batch fermentation process of Ricotta Cheese Whey (RCW) into bio-ethanol by using the yeast Kluyveromyces marxianus. A central...... composite design, constituted by 26 runs, has been carried out, and the effects of the parameters have been evaluated. Eventually, once eliminated the negligible effects, Response Surface Methodology (RSM) has been applied to optimize the four parameters values in RCW fermentation process. After...

  4. Numerical of Bioethanol Production from Liquid Waste of Rise Flour by Distillation Process

    Directory of Open Access Journals (Sweden)

    Ni Ketut Sari

    2016-01-01

    The results obtained experimentally study the composition of bioethanol a maximum of 95% to 96%, the results of experiments and simulations EWI ternary system form the temperature profile, the profile of the composition of liquid and vapor composition profile dimensionless time functions both at the bottom and in the distillate shows the results of the same approach. The simulation results before used reference in experiments performed the validation beforehand, so that the ternary system simulation EWI after validation of reference can be used in experiments.

  5. Technology Evaluation of Process Configurations for Second Generation Bioethanol Production using Dynamic Model-based Simulations

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    against the following benchmark criteria, yield (kg ethanol/kg dry-biomass), final product concentration and number of unit operations required in the different process configurations. The results has shown the process configuration for simultaneous saccharification and co-fermentation (SSCF) operating......An assessment of a number of different process flowsheets for bioethanol production was performed using dynamic model-based simulations. The evaluation employed diverse operational scenarios such as, fed-batch, continuous and continuous with recycle configurations. Each configuration was evaluated...

  6. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp....... Results obtained in this study clearly document the potential of industrial hemp for a biorefinery....

  7. Antibiotic resistance among cultured bacterial isolates from bioethanol fermentation facilities across the United States.

    Science.gov (United States)

    Murphree, Colin A; Heist, E Patrick; Moe, Luke A

    2014-09-01

    Bacterial contamination of fuel ethanol fermentations by lactic acid bacteria (LAB) can have crippling effects on bioethanol production. Producers have had success controlling bacterial growth through prophylactic addition of antibiotics to fermentors, yet concerns have arisen about antibiotic resistance among the LAB. Here, we report on mechanisms used by 32 LAB isolates from eight different US bioethanol facilities to persist under conditions of antibiotic stress. Minimum inhibitory concentration assays with penicillin, erythromycin, and virginiamycin revealed broad resistance to each of the antibiotics as well as high levels of resistance to individual antibiotics. Phenotypic assays revealed that antibiotic inactivation mechanisms contributed to the high levels of individual resistances among the isolates, especially to erythromycin and virginiamycin, yet none of the isolates appeared to use a β-lactamase. Biofilm formation was noted among the majority of the isolates and may contribute to persistence under low levels of antibiotics. Nearly all of the isolates carried at least one canonical antibiotic resistance gene and many carried more than one. The erythromycin ribosomal methyltransferase (erm) gene class was found in 19 of 32 isolates, yet a number of these isolates exhibit little to no resistance to erythromycin. The erm genes were present in 15 isolates that encoded more than one antibiotic resistance mechanism, suggestive of potential genetic linkages.

  8. The bioethanol from bagasse with the approach of discontinuous systems and the delay phenomena

    International Nuclear Information System (INIS)

    Albernas Carvajal, Yailet; Gonzalez Cortes, Meilyn; Mesa Garriga, Leyanis; Pedraza Garciga, Julio; Gonzalez Suarez, Erenio

    2011-01-01

    In this paper was analyzed the Bioethanol technology from bagasse considering discontinuous systems' and the delay phenomena. This technology have two stages that are key to succeed in obtaining the fermentable sugars, they are the pretreatment stage and enzymatic hydrolysis for subsequent fermentation. The great obstacle of the two latter stages, is that for best results, need long residence times (and this is where the delay phenomena it appears). For that reason the analysis require a study on how to carry out to ensure that the process global continuous. The enzymatic hydrolysis stage last an average of 24 h, while fermentation stage is accomplishes in 12 h. In this paper, the bioethanol technology was studied taking into account the basic concepts of discontinuous systems. Different technological configurations were studied, obtaining the best configuration: the presaccharification process, according to technical and economics criterions. The process profitability is achieved considering the total process as a bio refinery, which allows the production of high added value by-products such as furfural. (author)

  9. Microbial interactions during sugar cane must fermentation for bioethanol production: does quorum sensing play a role?

    Science.gov (United States)

    Brexó, Ramon Peres; Sant'Ana, Anderson de Souza

    2018-03-01

    Microbial interactions represent important modulatory role in the dynamics of biological processes. During bioethanol production from sugar cane must, the presence of lactic acid bacteria (LAB) and wild yeasts is inevitable as they originate from the raw material and industrial environment. Increasing the concentration of ethanol, organic acids, and other extracellular metabolites in the fermentation must are revealed as wise strategies for survival by certain microorganisms. Despite this, the co-existence of LAB and yeasts in the fermentation vat and production of compounds such as organic acids and other extracellular metabolites result in reduction in the final yield of the bioethanol production process. In addition to the competition for nutrients, reduction of cellular viability of yeast strain responsible for fermentation, flocculation, biofilm formation, and changes in cell morphology are listed as important factors for reductions in productivity. Although these consequences are scientifically well established, there is still a gap about the physiological and molecular mechanisms governing these interactions. This review aims to discuss the potential occurrence of quorum sensing mechanisms between bacteria (mainly LAB) and yeasts and to highlight how the understanding of such mechanisms can result in very relevant and useful tools to benefit the biofuels industry and other sectors of biotechnology in which bacteria and yeast may co-exist in fermentation processes.

  10. Production of bioethanol from pre-treated cotton fabrics and waste cotton materials.

    Science.gov (United States)

    Nikolić, Svetlana; Lazić, Vesna; Veljović, Đorđe; Mojović, Ljiljana

    2017-05-15

    This study highlights the potential of cotton fabric as a promising feedstock for the production of bioethanol as renewable biofuel. The effect of corona pre-treatment of non-mercerized and mercerized cotton fabrics on glucose and ethanol yield is discussed. Fermentation kinetics for ethanol production and the basic process parameters were assessed and compared. Corona pre-treatment of cotton fabrics led to an increase in the glucose yield (compared to control sample) during enzymatic hydrolysis, and consequently the ethanol yield during fermentation by yeast Saccharomyces cerevisiae var. ellipsoideus. The system with mercerized cotton fabric was found to be superior obtaining an ethanol productivity of 0.900g/Lh and ethanol yield of 0.94g/g (based on glucose) after 6h of fermentation time. The similar results were obtained during processing of waste cotton materials performed under the same process conditions. The obtained results showed that cotton fabric could become an alternative feedstock for the bioethanol production. For potential industrial implementation the waste mercerized cotton scraps would be the materials of choice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Microsatellite marker-based assessment of the biodiversity of native bioethanol yeast strains.

    Science.gov (United States)

    Antonangelo, Ana Teresa B F; Alonso, Diego P; Ribolla, Paulo E M; Colombi, Débora

    2013-08-01

    Although many Brazilian sugar mills initiate the fermentation process by inoculating selected commercial Saccharomyces cerevisiae strains, the unsterile conditions of the industrial sugar cane ethanol fermentation process permit the constant entry of native yeast strains. Certain of those native strains are better adapted and tend to predominate over the initial strain, which may cause problems during fermentation. In the industrial fermentation process, yeast cells are often exposed to stressful environmental conditions, including prolonged cell recycling, ethanol toxicity and osmotic, oxidative or temperature stress. Little is known about these S. cerevisiae strains, although recent studies have demonstrated that heterogeneous genome architecture is exhibited by some selected well-adapted Brazilian indigenous yeast strains that display high performance in bioethanol fermentation. In this study, 11 microsatellite markers were used to assess the genetic diversity and population structure of the native autochthonous S. cerevisiae strains in various Brazilian sugar mills. The resulting multilocus data were used to build a similarity-based phenetic tree and to perform a Bayesian population structure analysis. The tree revealed the presence of great genetic diversity among the strains, which were arranged according to the place of origin and the collection year. The population structure analysis revealed genotypic differences among populations; in certain populations, these genotypic differences are combined to yield notably genotypically diverse individuals. The high yeast diversity observed among native S. cerevisiae strains provides new insights on the use of autochthonous high-fitness strains with industrial characteristics as starter cultures at bioethanol plants. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production.

    Science.gov (United States)

    Cheng, Ningning; Koda, Keiichi; Tamai, Yutaka; Yamamoto, Yoko; Takasuka, Taichi E; Uraki, Yasumitsu

    2017-05-01

    Amphipathic lignin derivatives (A-LDs) prepared from the black liquor of soda pulping of Japanese cedar are strong accelerators for bioethanol production under a fed-batch simultaneous enzymatic saccharification and fermentation (SSF) process. To improve the bioethanol production concentration, conditions such as reaction temperature, stirring program, and A-LDs loadings were optimized in both small scale and large scale fed-batch SSF. The fed-batch SSF in the presence of 3.0g/L A-LDs at 38°C gave the maximum ethanol production and a high enzyme recovery rate. Furthermore, a jar-fermenter equipped with a powerful mechanical stirrer was designed for 1.5L-scale fed-batch SSF to achieve rigorous mixing during high substrate loading. Finally, the 1.5L fed-batch SSF with a substrate loading of 30% (w/v) produced a high ethanol concentration of 87.9g/L in the presence of A-LDs under optimized conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Two-steps microwave-assisted treatment on acid hydrolysis of sago pith for bioethanol production

    Science.gov (United States)

    Sunarti, T. C.; Yanti, S. D.; Ruriani, E.

    2017-05-01

    Sago is a genus of palm that can be utilized to produce fermentable sugars as substrate for bioethanol. Sago pith is a heterogeneous substrate consists of starch and fiber. Acid hydrolysis by microwave heating radiation can break down starch and fibers together in a very short time, so it is considered to be very efficient process. The use of microwave energy (as power level) and variation of heating time can produce fermentable sugar with certain characteristics. This study included the preparation and analysis of sago pith flour; process of acid hydrolysis (0.3 M and 0.5 M H2SO4) using two steps microwave heating, first with power level 30% (1, 2 and 3 min) and second with power level 70% (3 min); and ethanol production. The conventional treatment (autoclaving at 121°C for 15 min) was carried for the comparison. The highest fermentable sugar (105.7 g/l) was resulted from microwave heating with power level 30% for 2 min followed by the power level 70% for 3 min. This hydrolyzate then used as substrate for bioethanol fermentation and partially neutralized (pH 3, 4, 5) by using yeast Issatchenkia orientalis, and the highest ethanol (2.8 g/l) was produced in pH 5.

  14. Enhanced Bioethanol Production from Potato Peel Waste Via Consolidated Bioprocessing with Statistically Optimized Medium.

    Science.gov (United States)

    Hossain, Tahmina; Miah, Abdul Bathen; Mahmud, Siraje Arif; Mahin, Abdullah-Al-

    2018-04-12

    In this study, an extensive screening was undertaken to isolate some amylolytic microorganisms capable of producing bioethanol from starchy biomass through Consolidated Bioprocessing (CBP). A total of 28 amylolytic microorganisms were isolated, from which 5 isolates were selected based on high α-amylase and glucoamylase activities and identified as Candida wangnamkhiaoensis, Hyphopichia pseudoburtonii (2 isolates), Wickerhamia sp., and Streptomyces drozdowiczii based on 26S rDNA and 16S rDNA sequencing. Wickerhamia sp. showed the highest ethanol production (30.4 g/L) with fermentation yield of 0.3 g ethanol/g starch. Then, a low cost starchy waste, potato peel waste (PPW) was used as a carbon source to produce ethanol by Wickerhamia sp. Finally, in order to obtain maximum ethanol production from PPW, a fermentation medium was statistically designed. The effect of various medium ingredients was evaluated initially by Plackett-Burman design (PBD), where malt extracts, tryptone, and KH 2 PO 4 showed significantly positive effect (p value < 0.05). Using Response Surface Modeling (RSM), 40 g/L (dry basis) PPW and 25 g/L malt extract were found optimum and yielded 21.7 g/L ethanol. This study strongly suggests Wickerhamia sp. as a promising candidate for bioethanol production from starchy biomass, in particular, PPW through CBP.

  15. Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives.

    Science.gov (United States)

    Lee, Soo Jung; Kim, Hyun Joo; Cho, Eun Jin; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Lignin was isolated from the residue of bioethanol production with oak wood via alkaline and catalyzed organosolv treatments at ambient temperature to improve the purity of lignin for the materials application. The isolated lignins were analyzed for their chemical composition by nitrobenzene oxidation method and their functionality was characterized via wet chemistry method, element analysis, (1)H NMR, GPC and FTIR-ATR. The isolated lignin by acid catalyzed organosolv treatment (Acid-OSL) contained a higher lignin content, aromatic proton, phenolic hydroxyl group and a lower nitrogen content that is more reactive towards chemical modification. The lignin-based adhesives were prepared and the bond strength was measured to evaluate the enhanced reactivity of lignin by the isolation. Two steps of phenolation and methylolation were applied for the modification of the isolated lignins and their tensile strengths were evaluated for the use as an adhesive. The acid catalyzed organosolv lignin-based adhesives had comparable bond strength to phenol-formaldehyde adhesives. The analysis of lignin-based adhesives by FTIR-ATR and TGA showed structural similarity to phenol adhesive. The results demonstrate that the reactivity of lignin was enhanced by isolation from hardwood bioethanol production residues at ambient temperature and it could be used in a value-added application to produce lignin-based adhesives. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    Science.gov (United States)

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  17. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    Science.gov (United States)

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Optimising the (Microwave Hydrothermal Pretreatment of Brewers Spent Grains for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Stuart Wilkinson

    2015-01-01

    Full Text Available For the production of bioethanol from lignocellulosic biomass, it is important to optimise the thermochemical pretreatment which is required to facilitate subsequent liberation of monomeric sugars. Here, we report optimisation of pretreatment conditions for brewers spent grains (BSG with the main objectives of (1 working at commercially relevant high solids content, (2 minimising energy and chemical inputs, and (3 maximising downstream sugar yields. Studies indicated there to be a play-off between pretreatment solids content, the usage of an acid catalyst, and pretreatment temperature. For example, yields of 80–90% theoretical glucose could be obtained following pretreatment at 35% w/v solids and 200°C, or at 140–160°C with addition of 1% HCl. However, at very high solids loadings (40–50% w/v temperatures of 180–200°C were necessary to attain comparable sugar yields, even with an acid catalyst. The feasibility of producing bioethanol from feedstocks generated using these protocols was demonstrated (but not optimised at laboratory scale.

  19. Fenton process combined with coagulation for the treatment of black liquor from bioethanol wastewater

    Science.gov (United States)

    Muryanto, Muryanto; Hanifah, Ummu; Amriani, Feni; Ibadurrahman, Ahmad Faiz; Sari, Ajeng Arum

    2017-11-01

    High amounts of black liquor are generated from bioethanol production by using oil palm empty fruit bunches. The black liquor is waste from alkaline pretreatment, it contains high amount of an alkaline solution (NaOH). The black liquor wastewater was highly contaminated with organic materials, and quite toxic for aquatic ecosystems if discharged directly into waters. This study aimed to determine ability of Fenton process combined with coagulation to treat black liquor. The addition 5% of polyaluminium chloride (PAC) could decolorized black liquor, degraded lignin, and produced sludge 70.64%, 68.28%, and 2.76 gram, respectively. Decolorization of black liquor was in line with degradation of black liquor because lignin is the main compound in black liquor. SEM images after addition of PAC of 5% indicated fragmentation of structure. Fenton reagent consist of 0.7 M FeSO4+ 3M H2O2 has able to decolorize black liquor, degrade lignin, and produce sludge 51.67% and 25.44%, and 0.44 gram, respectively. It was concluded that black liquor wastewater from bioethanol can be treated by using Fenton process combined with coagulation. However, these methods still need improvement to obtain the higher degradation rate, and coagulation sludge needs further consideration.

  20. Tannin extraction pretreatment and very high gravity fermentation of acorn starch for bioethanol production.

    Science.gov (United States)

    Chao, Bin; Liu, Ruiliang; Zhang, Xueling; Zhang, Xu; Tan, Tianwei

    2017-10-01

    The bioethanol production from a novel non-grain feedstock, acorn starch, was studied in this work. The inhibition of tannin in strain growth was investigated, and the effect of tannin was negligible when the tannin concentration was lower than 1g/L in medium. Therefore, the extraction of tannin was performed using 40% (v/v) ethanol-water solution as the solvent for three times under the conditions of solid/liquid ratio 1:20, 60°C, 3h, by which more than 80% of tannin in acorn was extracted and the content of tannin in acorn decreased from 7.4% (w/w) to 1.5% (w/w). Very high gravity (VHG) fermentation technology was subsequently carried out to achieve a high ethanol concentration at 86.4g/L. A comprehensive process for bioethanol production from acorn starch was designed and a preliminary economic assessment was then performed revealing that this process appeared technically and economically justified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Tong, Mengmeng; Gao, Kehui; Di, Yanan; Wang, Pinmei; Zhang, Chunfang; Wu, Xuechang; Zheng, Daoqiong

    2015-02-01

    Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.

  2. Investigation of Bioethanol Productivity from Sargassum sp. (Brown Seaweed) by Pressure Cooker and Steam Cooker Pretreatments

    International Nuclear Information System (INIS)

    Yu Yu Wah; Kyaw Nyein Aye; Tint Tint Kyaw; Moe Moe Kyaw

    2011-12-01

    Production of biothanol from Sargassum sp. (Brown seaweed) is more suitable than using any other raw materials because it can easily collect on Chaung Tha Beach in Myanmar without any environmental damages. In this regard an attempt for bioethanol production from sargassum sp. by separation hydrolysis and fermentation (SHF) with saccharomyces cerevisiae was made. Sargassum sp. was pretreated with steam cooker at 120 C and 1 bar for 30 min and pressure cooker at 65 C for 2 hour. The pretreated sargassum sp. was liquefied with the crude enzyme from Trichoderma sp. at the temperature of 50 C and pH of 4 for the first liquefaction step and 95 C, pH of 5 and enzyme of SPEZYME FERD were employed for the second liquefaction step. OPTIDEX L-400 was used as saccharified enzyme with the temperature of 65 C and pH of 4.5 at saccharification step. The process of fermentation was followed by distillation at 78 C for alcohol extraction. Concentrations of crude ethanol were about 1.8% by using steam cooker and 2% for pressure cooker treatment with enzyme mediated saccharification followed by yeast fermentation. Yields of bioethanol were 23% for pressure cooker treatment and 21% for steam cooker treatment at SHF process.

  3. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  4. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  5. [Surface display of phytase on Saccharomyces cerevisiae for efficient bioethanol production from corn starch].

    Science.gov (United States)

    Xiao, Yan; Chen, Xianzhong; Shen, Wei; Yang, Haiquan; Fan, You

    2015-12-01

    Production of bioethanol using starch as raw material has become a very prominent technology. However, phytate in the raw material not only decreases ethanol production efficiency, but also increases phosphorus discharge. In this study, to decrease phytate content in an ethanol fermentationprocess, Saccharomyces cerevisiae was engineered forheterologous expression of phytase on the cell surface. The phy gene encoding phytase gene was fused with the C-terminal-half region of α-agglutinin and then inserted downstream of the secretion signal gene, to produce a yeast surface-display expression vector pMGK-AG-phy, which was then transformed into S. cerevisiae. The recombinant yeast strain, PHY, successfully displayed phytase on the surface of cells producing 6.4 U/g wet cells and its properties were further characterized. The growthrate and ethanol production of the PHY strain were faster than the parent S. cerevisiae strain in the fermentation medium by simultaneous saccharification and fermentation. Moreover, the phytate concentration decreased by 91% in dry vinasse compared to the control. In summary, we constructed recombinant S. cerevisiae strain displaying phytase on the cell surface, which could effectively reduce the content of phytate, improve the utilization value of vinasse and reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate.

  6. Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens.

    Science.gov (United States)

    Saliu, Bolanle Kudirat; Sani, Alhassan

    2012-01-01

    Corn cob is a major component of agricultural and domestic waste in many parts of the world. It is composed mainly of cellulose which can be converted to energy in form of bioethanol as an efficient and effective means of waste management. Production of cellulolytic enzymes were induced in the fungi Aspergillus niger and Penicillium decumbens by growing them in mineral salt medium containing alkali pre-treated and untreated corn cobs. The cellulases were characterized and partially purified. Alkali pre-treated corn cobs were hydrolysed with the partially purified cellulases and the product of hydrolysis was fermented using the yeast saccharomyces cerevisae to ethanol. Cellulases of A. niger produced higher endoglucanase and exoglucanase activity (0.1698 IU ml(-1) and 0.0461 FPU ml(-1)) compared to that produced by P. decumbens (0.1111 IU ml(-1) and 0.153 FPU ml(-1)). Alkali pre-treated corn cob hydrolysed by cellulases of A. niger yielded 7.63 mg ml(-1) sugar which produced 2.67 % (v/v) ethanol on fermentation. Ethanol yield of the hydrolysates of corn cob by cellulases of P. decumbens was much lower at 0.56 % (v/v). Alkali pre-treated corn cob, hydrolysed with cellulases of A. niger is established as suitable feedstock for bioethanol production.

  7. LCA of second generation bioethanol : A review and some issues to be resolved for good LCA practice

    NARCIS (Netherlands)

    Wiloso, Edi Iswanto; Heijungs, Reinout; De Snoo, Geert R.

    This paper aims at reviewing the life cycle assessment (LCA) literature on second generation bioethanol based on lignocellulosic biomass and at identifying issues to be resolved for good LCA practice. Reviews are carried out on respective LCA studies published over the last six years. We use the

  8. Batch fermentation options for high titer bioethanol production from a SPORL pretreated Douglas-Fir forest residue without detoxification

    Science.gov (United States)

    Mingyan Yang; Hairui Ji; Junyong Zhu

    2016-01-01

    This study evaluated batch fermentation modes, namely, separate hydrolysis and fermentation (SHF), quasi-simultaneous saccharification and fermentation (Q-SSF), and simultaneous saccharification and fermentation (SSF), and fermentation conditions, i.e., enzyme and yeast loadings, nutrient supplementation and sterilization, on high titer bioethanol production from SPORL...

  9. Wheat straw, household waste and hay as a source of lignocellulosic biomass for bioethanol and biogas production

    DEFF Research Database (Denmark)

    Tomczak, Anna; Bruch, Magdalena; Holm-Nielsen, Jens Bo

    2010-01-01

    To meet the increasing need for bioenergy three lignocellulosic materials: raw hay, pretreated wheat straw and pretreated household waste were considered for the production of bioethanol and biogas. Several mixtures of household waste supplemented with different fractions of wheat straw and hay...

  10. An integral analysis for second generation bioethanol production via a dynamic model-based simulation approach: stochastic nonlinear optimisation

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    of cellulose, co-fermentation of sugars and downstream processes for purification and recovery of most value-added products. The dynamic model involves both the mass and energy balances coupled with constitutive dynamic equations to assess the process yield and energy efficiency of different bioethanol...

  11. Dissenting in Reflective Conversations

    DEFF Research Database (Denmark)

    Bjørn, Pernille; Boulus, Nina

    2011-01-01

    a methodological reflective approach that provides space for taking seriously uncertainties experienced in the field as these can be a catalyst for learning and sharpening our theoretical and empirical skills as action researchers. Through first-person inquiry, we investigate how our reflective conversations...... gradually evolved into second-person inquiry. We argue that enacting second-person reflective conversations renders alternative strategies for handling uncertainties through articulation of the tacit assumptions within particular empirical situations. Finally, we argue that reflective conversations should...

  12. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  13. Kinetic studies of adsorption in the bioethanol dehydration using polyvinyl alcohol, zeolite and activated carbon as adsorbent

    Science.gov (United States)

    Laksmono, J. A.; Pratiwi, I. M.; Sudibandriyo, M.; Haryono, A.; Saputra, A. H.

    2017-11-01

    Bioethanol is considered as the most promising alternative fuel in the future due to its abundant renewable sources. However, the result of bioethanol production process using fermentation contains 70% v/v, and it still needs simultaneous purification process. One of the most energy-efficient purification methods is adsorption. Specifically, the rate of adsorption is an important factor for evaluating adsorption performance. In this work, we have conducted an adsorption using polyvinyl alcohol (PVA), zeolite and activated carbon as promising adsorbents in the bioethanol dehydration. This research aims to prove that PVA, zeolite, activated carbon is suitable to be used as adsorbent in bioethanol dehydration process through kinetics study and water adsorption selectivity performance. According to the results, PVA, zeolite and activated carbon are the potential materials as adsorbents in the bioethanol dehydration process. The kinetics study shows that 30°C temperature gave the optimum adsorption kinetics rate for PVA, zeolite, and activated carbon adsorbents which were 0.4911 min-1; 0.5 min-1; and 1.1272 min-1 respectively. In addition, it also shows that the activated carbon performed as a more potential adsorbent due to its higher pore volume and specific surface area properties. Based on the Arrhenius equation, the PVA works in the chemisorption mechanism, meanwhile zeolite and activated carbon work in the physisorption system as shown in the value of the activation energy which are 51.43 kJ/mole; 8.16 kJ/mole; and 20.30 kJ/mole. Whereas the water to ethanol selectivity study, we discover that zeolite is an impressive adsorbent compared to the others due to the molecular sieving characteristic of the material.

  14. Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    Directory of Open Access Journals (Sweden)

    Ghahremani Amirreza

    2017-01-01

    Full Text Available One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new non-dimensional number namely atomization index. This number determines the atomization level of the spray. Applying quasi-steady jet theory, air entrainment and fuel-air mixing studies have been performed. The spray atomization behaviors such as atomization index number, Ohnesorge number, and Sauter mean diameter have been investigated employing atomization model. The influences of injection and ambient conditions on spray properties of different blends of modified bio-ethanol and gasoline fuels have been investigated performing high-speed visualization technique. Results indicate that decreasing the difference of injection and ambient pressures increases spray cone angle and projected area, and decreases spray tip penetration length. As expected, increasing injection pressure improves atomization behaviors of the spray. Increasing percentage of modified bio-ethanol in the blend, increases spray tip penetration and decreases the projected area as well.

  15. Conversation et Television (Conversation and Television)

    Science.gov (United States)

    Vadde, Jean-Pierre

    1977-01-01

    Czechosovakian television has just presented a series of French Conversation Classes using audiovisual techniques and starring Czech actors and actresses. The setting of each dialog is in Czechoslovakia, and the situations are those in which a Czech would use French in his or her native land. (Text is in French.) (AMH)

  16. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  17. Conversations in African Philosophy

    African Journals Online (AJOL)

    JONATHAN

    Conversational philosophy is articulated by Jonathan O. Chimakonam as the new wave of philosophical practice both in “place” and in “space”. This journal adopts and promotes this approach to philosophizing for African philosophy. Readers are encouraged to submit their conversational piece (maximum of 2000 words) ...

  18. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  19. The Conversation Class

    Science.gov (United States)

    Jackson, Acy L.

    2012-01-01

    The conversation class occupies a unique place in the process of learning English as a second or foreign language. From the author's own experience in conducting special conversation classes with Persian-speaking adults, he has drawn up a number of simple but important guidelines, some of which he hopes may provide helpful suggestions for the…

  20. Introduction: perspectives of bioethanol at the market of liquid fuels for light vehicles; Introducao: perspectivas do bioetanol no mercado de combustiveis liquidos para veiculos leves

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    A significant expansion of the bioethanol production in Brazil could be a national developing project. As a matter of fact, aiming to reduce the dependence upon the fossil fuels, various countries have been incremented the use of bioethanol in their energetic matrix, not only to add directly to the gasoline but also to the fabrication of carburan. Many countries programs are specially highlighted, which have fixed goals of participation of biofuels in their matrixes to terms less than 20 years. In this book, the necessary conditions will be examined in order the Brazil to attend to sugar cane bioethanol world demand for replacing approximately 10% of the gasoline global consumption in the year 2025, which could correspond to a production of 205 billions of bioethanol liters per year, requiring an additional area of 24 Mha for the sugar cane cultivation.

  1. Political conversations on Facebook

    DEFF Research Database (Denmark)

    Sørensen, Mads P.

    2016-01-01

    Political conversations are according to theories on deliberative democracy essential to well-functioning democracies. Traditionally these conversations have taken place in face-to-face settings, in e.g. party meetings and town meetings. However, social media such as Facebook and Twitter offers new...... possibilities for online political conversations between citizens and politicians. This paper examines the presence on Facebook and Twitter of Members of the Danish national Parliament, the Folketing, and focusses on a quantitative mapping of the political conversation activities taking place in the threads...... following Facebook posts from Danish Members of Parliament (MPs). The paper shows that, in comparison with previous findings from other countries, Danish MPs have a relatively high degree of engagement in political conversations with citizens on Facebook – and that a large number of citizens follow MPs...

  2. Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    OpenAIRE

    Zhao, Lili; Zhang, Xiliang; Xu, Jie; Ou, Xunmin; Chang, Shiyan; Wu, Maorong

    2015-01-01

    Lignocellulosic biomass-based ethanol is categorized as 2 nd generation bioethanol in the advanced biofuel portfolio. To make sound incentive policy proposals for the Chinese government and to develop guidance for research and development and industrialization of the technology, the paper reports careful techno-economic and sensitivity analyses performed to estimate the current competitiveness of the bioethanol and identify key components which have the greatest impact on its plant-gate price...

  3. Studies on the Production of Bio-Ethanol from Brown Guinea Corn (Sorghum Bicolor L.), Pearl Millet (Penisetum Typhoides) and Sweet Potato (Ipomea Batatas) Using Modified Method

    OpenAIRE

    Ubwa, Simon Terver; Abah, J.; Igbum, O.G.; Nwadinigwe, C.A.

    2016-01-01

    This study determined mean volume distillate, percentage purity and specific gravity of bio-ethanol produced by the modification of the methods of Benue Brewery Limited (BBL), Makurdi and that of Mathewson using guinea corn, pearl millet and sweet potato as feedstocks. The modified reaction pathway yielded bio-ethanol of significantly (P < 0.01) higher mean volume distillate and percentage purity. Pearl millet feedstock yielded the highest mean volume distillate (98.00cm3) while gu...

  4. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.

    Science.gov (United States)

    Wang, Lei; Templer, Richard; Murphy, Richard J

    2012-09-01

    This study uses Life Cycle Assessment (LCA) to assess the environmental profiles and greenhouse gas (GHG) emissions for bioethanol production from waste papers and to compare them with the alternative waste management options of recycling or incineration with energy recovery. Bioethanol production scenarios both with and without pre-treatments were conducted. It was found that an oxidative lime pre-treatment reduced GHG emissions and overall environmental burdens for a newspaper-to-bioethanol process whereas a dilute acid pre-treatment raised GHG emissions and overall environmental impacts for an office paper-to-bioethanol process. In the comparison of bioethanol production systems with alternative management of waste papers by different technologies, it was found that the environmental profiles of each system vary significantly and this variation affects the outcomes of the specific comparisons made. Overall, a number of configurations of bioethanol production from waste papers offer environmentally favourable or neutral profiles when compared with recycling or incineration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  6. Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production.

    Science.gov (United States)

    Vargas, Fátima; Domínguez, Elena; Vila, Carlos; Rodríguez, Alejandro; Garrote, Gil

    2015-09-01

    In the present work, the hydrothermal valorization of an abundant agricultural residue has been studied in order to look for high added value applications by means of hydrothermal pretreatment followed by fed-batch simultaneous saccharification and fermentation, to obtain oligomers and sugars from autohydrolysis liquors and bioethanol from the solid phase. Non-isothermal autohydrolysis was applied to barley straw, leading to a solid phase with about a 90% of glucan and lignin and a liquid phase with up to 168 g kg(-1) raw material valuable hemicellulose-derived compounds. The solid phase showed a high enzymatic susceptibility (up to 95%). It was employed in the optimization study of the fed-batch simultaneous saccharification and fermentation, carried out at high solids loading, led up to 52 g ethanol/L (6.5% v/v). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock

    DEFF Research Database (Denmark)

    Seghetta, Michele; Østergård, Hanne; Bastianoni, Simone

    2014-01-01

    Eutrophication is an environmental problem in a majority of shallow water basins all over the world. The undesired macroalgae has been proposed as a biomass resource for bioethanol production and we have analysed the environmental sustainability of two case studies: Orbetello Lagoon (OL), Italy......, and Koge Bay (KB), Denmark. Today, macroalgae are collected and stored in landfills to provide a solution for the excess production. An emergy assessment revealed that the main environmental support for macroalgae growth relates to water in both case studies. In OL, rain represents 51% of the emergy use...... of the environmental support comes from local renewable flows being 40% for OL and 88% for KB. The difference between the two case studies is partly due to the contribution of energy from waves, which plays an important role in carrying macroalgae towards the coast in Koge Bay. Energy-wise, one J of fossil energy...

  8. Boosting biogas yield of anaerobic digesters by utilizing concentrated molasses from 2nd generation bioethanol plant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Shiplu [Department of Renewable Energy, Faculty of Engineering and Science, University of Agder, Grimstad-4879 (Norway); Moeller, Henrik Bjarne [Department of Biosystems Engineering, Faculty of Science and Technology, Aarhus University, Research center Foulum, Blichers Alle, Post Box 50, Tjele-8830 (Denmark)

    2013-07-01

    Concentrated molasses (C5 molasses) from 2nd generation bioethanol plant has been investigated for enhancing productivity of manure based digesters. A batch study at mesophilic condition (35+- 1 deg C) showed the maximum methane yield from molasses as 286 LCH4/kgVS which was approximately 63% of the calculated theoretical yield. In addition to the batch study, co-digestion of molasses with cattle manure in a semi-continuously stirred reactor at thermophilic temperature (50+- 1 deg C) was also performed with a stepwise increase in molasses concentration. The results from this experiment revealed the maximum average biogas yield of 1.89 L/L/day when 23% VSmolasses was co-digested with cattle manure. However, digesters fed with more than 32% VSmolasses and with short adaptation period resulted in VFA accumulation and reduced methane productivity indicating that when using molasses as biogas booster this level should not be exceeded.

  9. Bioethanol production from intermediate products of sugar beet processing with different types of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    J. Ranković

    2009-01-01

    Full Text Available The use of biofuels as an alternative to fossil fuels has expanded in the last few decades. The aim of this study was to examine the application of different strains and forms of Saccharomyces cerevisiae for raw, thin and thick juice fermentation in order to produce bioethanol. According to the obtained results the strain applied in the form of pressed blocks with 70 % w/w moisture, attained higher value of the specific growth rate and lower value of ethanol yield in comparison with strains applied in dried form. In all culture media attained efficiency of sugar utilization was at least from 98-99 % w/w. Maximum productivity was achieved around 30th hour of fermentation and amounted ≈1.8 g l-1 h-1 for all applied yeast strains. Therefore, optimal duration of the process in technical and economic terms should be considered.

  10. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    Science.gov (United States)

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Analysis of the potential for sustainable, cassava-based bioethanol production in Mali

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; Bruun, Thilde Bech; Birch-Thomsen, Torben

    ) at the Technical University of Denmark (DTU) and conducted in cooperation with Direction Nationale de l’Energie (DNE) and Centre National de l’Energie Solaire et des Energies Renouvelables (CNESOLER) in Mali. The subcontracted institutions comprise Geographic Resource Analysis & Science A/S (GRAS), Department......The present project is covered in five main reports: 1) Analyses of the potential for sustainable, cassava-based bio-ethanol production in Mali 2) Agricultural residues for energy production in Mali 3) Pre-feasibility study for an electric power plant based on rice straw 4) Estimation of wind...... and solar resources in Mali 5) Screening of feasible applications of wind and solar energy in Mali: Assessment using the wind and solar maps for Mali The project is being carried out by a group of university departments, research institutions and consultants led by the UNEP Risø Centre (URC...

  12. Environmental Assessment of 2nd Generation Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    30% of the fossil fuel consumption, and including economic aspects it is much less. Moreover, an economic analysis shows that biomass will not be able compete in a liberal fuel market, i.e. we will need to subsidise it in one way or the other - and money is a limited resource as well. Therefore......, there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  13. A Model-Based Methodology for Simultaneous Design and Control of a Bioethanol Production Process

    DEFF Research Database (Denmark)

    Alvarado-Morales, Merlin; Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan

    2010-01-01

    In this work, a framework for the simultaneous solution of design and control problems is presented. Within this framework, two methodologies are presented, the integrated process design and controller design (IPDC) methodology and the process-group contribution (PGC) methodology. The concepts...... of attainable region (AR), driving force (DF), process-group (PG) and reverse simulation are used within these methodologies. The IPDC methodology is used to find the optimal design-control strategy of a process by locating the maximum point in the AR and DF diagrams for reactor and separator, respectively....... The PGC methodology is used to generate more efficient separation designs in terms of energy consumption by targeting the separation task at the largest DF. Both methodologies are highlighted through the application of two case studies, a bioethanol production process and a succinic acid production...

  14. Modelling and L1 Adaptive Control of pH in Bioethanol Enzymatic Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Sin, Gürkan

    2013-01-01

    The enzymatic process is a key step in second generation bioethanol production. Pretreated biomass fibers are liquefied with the help of enzymes to facilitate fermentation. Enzymes are very sensitive to pH and temperature and the main control challenge in the nonlinear process is to ensure minimum...... deviations from the optimal pH level. This article develops a mathematical model for the pH, which has not been reported earlier for this particular process. The new model embeds flow dynamics and pH calculations and serves both for simulation and control design. Two control strategies are then formulated...... function is formulated and tailored to this type of processes and is used to monitor the performances of the process in closed loop. The L1 design is found to outperform the PI controller in all tests....

  15. Bioethanol production from grape and sugar beet pomaces by solid-state fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L.A.; Toro, M.E.; Vazquez, F.; Correa-Daneri, M.L.; Gouiric, S.C.; Vallejo, M.D. [Biotechnology Institute, Engineering Faculty, National University of San Juan, Av. San Martin 1109 (Oeste), 5400 San Juan (Argentina)

    2010-06-15

    A suitable alternative to replace fossil fuels is the production of bioethanol from agroindustrial waste. Grape pomace is the most abundant residue in San Juan and sugar beet pomace could be important in the region. Solid-State Fermentation (SSF) is a technology that allows transforming agroindustrial waste into many valuable bioproducts, like ethanol. This work reports a laboratory scale SSF to obtain alcohol from grape and sugar beet pomace by means of Saccharomyces cerevisiae yeasts. The initial conditions of the culture medium were: sugars 16.5% (p/p); pH 4.5; humidity 68% (p/p). Cultures were inoculated with 10{sup 8} cells/g of pomace, and incubated in anaerobic environment, at 28 C, during 96 h. SSF showed ethanol maximum concentrations at 48 h and ethanol yield on sugars consumed was more than 82%. Yield attained creates expectation about the use of SSF to obtain fuel alcohol. (author)

  16. The sustainability of cassava-based bioethanol production in southern Mali

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; Birch-Thomsen, Torben; Bruun, Thilde Bech

    2015-01-01

    production 10 years ago, the carbon stocks will increase. However, if compared to the current situation, where considerable carbon stocks have accumulated in fallow fields, the loss of carbon will be substantial. Increased cassava production will create greater incomes and better temporal distribution...... of labour input. Analysis of the significance of current cassava production for food security shows that bioethanol production should be based on the attiéké variety of cassava, thereby avoiding interference with the important role of the bonouma in assuring food security in northern Mali. The key factor...... determining the economic feasibility is whether local farmers will be willing to supply cassava at a realistic price. The results indicate that this is likely to be the case...

  17. Decolorization of black liquor from bioethanol G2 production using iron oxide coating sands

    Science.gov (United States)

    Barlianti, Vera; Triwahyuni, Eka; Waluyo, Joko; Sari, Ajeng Arum

    2017-01-01

    Bioethanol G2 production using oil palm empty fruit bunch as raw material consists of four steps, namely pretreatment, hydrolysis, fermentation, and purification process. Pretreatment process generates black liquor that causes serious environmental pollution if it is released to the environment. The objective of this research is studying the ability of iron oxide coating sands to adsorb the color of black liquor. The iron oxide coating sands were synthesized from FeCl3.6H2O with quartz sands as support material. This research was conducted on batch mode using black liquor in various pH values. Result obtained that kind of iron oxide on quartz sands's surface was goethite. The result also indicated decreasing of color intensity of black liquor after adsorption process. This research supports local material utilization in environmental technology development to solve some environmental problems.

  18. Price determination for hydrogen produced from bio-ethanol in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Gregorini, V.A.; Pasquevich, D. [Instituto de Energia y Desarrollo Sustentable - CNEA, Av. Del Libertador 8250, Buenos Aires (Argentina); Laborde, M. [Facultad de Ingenieria - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires (Argentina)

    2010-06-15

    A massive penetration for hydrogen as a fuel vector requires a price reduction against fossil fuels (up to lower or at less equal to current prices). That is why it is important to calculate the current prices, so that we can determinate the gap between them and work in reducing them. In order to follow properly prices evolution it is necessary been able to compare data generated by Universities, Laboratories and Industries. So that, DOE creates in 2003 a tool (H2A) to determine prices for hydrogen, with some assumptions and pre defined values, to facilitate transparency and consistency of data. In this work we will use the H2A tool to calculate de price of hydrogen produced in a bio-ethanol semi-industrial Plant in Argentina, and we will compare it with the prices of USA studies. (author)

  19. Price determination for hydrogen produced from bio-ethanol in Argentina

    International Nuclear Information System (INIS)

    Gregorini, V.A.; Pasquevich, D.; Laborde, M.

    2010-01-01

    A massive penetration for hydrogen as a fuel vector requires a price reduction against fossil fuels (up to lower or at less equal to current prices). That is why it is important to calculate the current prices, so that we can determinate the gap between them and work in reducing them. In order to follow properly prices evolution it is necessary been able to compare data generated by Universities, Laboratories and Industries. So that, DOE creates in 2003 a tool (H2A) to determine prices for hydrogen, with some assumptions and pre defined values, to facilitate transparency and consistency of data. In this work we will use the H2A tool to calculate de price of hydrogen produced in a bio-ethanol semi-industrial Plant in Argentina, and we will compare it with the prices of USA studies. (author)

  20. Optimization of bioethanol production from carbohydrate rich wastes by extreme thermophilic microorganisms

    DEFF Research Database (Denmark)

    Tomás, Ana Faria

    on the sugar composition of the rapeseed straw. This was 50 % and 14 % higher than the yield obtained with the bacteria or the yeast alone, respectively. When T. pentosaceus was immobilized in rapeseed straw, an improvement of 11 % in ethanol production was observed in batch mode. In continuous mode...... of the carbohydrates present in these complex substrates into ethanol. This is in particular true for pentose sugars such as xylose, generally the second major sugar present in lignocellulosic biomass. The transition of second-generation bioethanol production from pilot to industrial scale is hindered......, it was shown that hydraulic retention time (HRT) affected ethanol yield, and a dramatic shift from ethanol to acetate and lactate production occurred at an HRT of 6 h. The maximum ethanol yield and concentration, 1.50 mol mol-1 consumed sugars and 12.4 g l-1, were obtained with an HRT of 12 h. The latter...

  1. Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production.

    Science.gov (United States)

    Cheng, Ningning; Yamamoto, Yoko; Koda, Keiichi; Tamai, Yutaka; Uraki, Yasumitsu

    2014-12-01

    Amphipathic lignin derivatives (A-LDs) were already demonstrated to improve enzymatic saccharification of lignocellulose. Based on this knowledge, two kinds of A-LDs prepared from black liquor of soda pulping of Japanese cedar were applied to a fed-batch simultaneous saccharification and fermentation (SSF) process for unbleached soda pulp of Japanese cedar to produce bioethanol. Both lignin derivatives slightly accelerated yeast fermentation of glucose but not inhibited it. In addition, ethanol yields based on the theoretical maximum ethanol production in the fed-batch SSF process was increased from 49% without A-LDs to 64% in the presence of A-LDs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin D.

    2015-01-01

    Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling a...... broth also opens up the possibility of lowering the dry matter content in hydrolysis and fermentation while still maintaining high ethanol concentrations....... at demonstration scale using industrial process conditions (high dry matter content and low enzyme dosage) for a period of eight days. The experiment was performed at the Inbicon demonstration plant (Kalundborg, Denmark) capable of converting four tonnes of wheat straw per hour. 20% of the fermentation broth...... was recycled to the hydrolysis reactor while enzyme dosage was reduced by 5%. The results demonstrate that recycling enzymes by this method can reduce overall enzyme consumption and may also increase the ethanol concentrations in the fermentation broth. Our results further show that recycling fermentation...

  3. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes.

    Science.gov (United States)

    Sponholz, Peter; Mellmann, Dörthe; Cordes, Christoph; Alsabeh, Pamela G; Li, Bin; Li, Yang; Nielsen, Martin; Junge, Henrik; Dixneuf, Pierre; Beller, Matthias

    2014-09-01

    Catalytic generation of hydrogen from aqueous ethanol solution proceeds in the presence of pincer-type transition metal catalysts. Optimal results are obtained applying a [Ru(H)(Cl)(CO)(iPr2PEtN(H)EtPiPr2)] complex (catalyst TON 80,000) in the presence of water and base. This dehydrogenation reaction provides up to 70% acetic acid in a selective manner. For the first time, it is shown that bioethanol obtained from fermentation processes can be used directly in this protocol without the need for water removal. The produced hydrogen can be directly utilized in proton exchange membrane (PEM) fuel cells, since very low amounts of CO are formed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Wu, Xuechang; Zhang, Lijie; Jin, Xinna; Fang, Yahong; Zhang, Ke; Qi, Lei; Zheng, Daoqiong

    2016-07-01

    To improve tolerance to acetic acid that is present in lignocellulosic hydrolysates and affects bioethanol production by Saccharomyces cerevisiae. Saccharomyces cerevisiae strains with improved tolerance to acetic acid were obtained through deletion of the JJJ1 gene. The lag phase of the JJJ1 deletion mutant BYΔJJJ1 was ~16 h shorter than that of the parent strain, BY4741, when the fermentation medium contained 4.5 g acetic acid/l. Additionally, the specific ethanol production rate of BYΔJJJ1 was increased (0.057 g/g h) compared to that of the parent strain (0.051 g/g h). Comparative transcription and physiological analyses revealed higher long chain fatty acid, trehalose, and catalase contents might be critical factors responsible for the acetic acid resistance of JJJ1 knockout strains. JJJ1 deletion improves acetic acid tolerance and ethanol fermentation performance of S. cerevisiae.

  5. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    DEFF Research Database (Denmark)

    Möllers, K Benedikt; Canella, D.; Jørgensen, Henning

    2014-01-01

    cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. Results: The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic...... hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that p......-1) even in the absence of any other nutrient additions to the fermentation medium. Conclusions: Cyanobacterial biomass was hydrolyzed using a simple enzymatic treatment and fermented into ethanol more rapidly and to higher concentrations than previously reported for similar approaches using...

  6. BEST Project: bioethanol for sustainable transportation; Projeto BEST: bioetanol para o transporte sustentavel

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, J.R.; Velazquez, S.M.S.G.; Apolinario, S.M.; Melo, E.H.; Elmadjian, P.H. [Universidade de Sao Paulo (IEE/CENBIO/USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Centro Nacional de Referencia em Biomassa

    2008-07-01

    The BEST Project BioEthanol for Sustainable Transport aims to promote the ethanol usage, replacing diesel, in the urban public transport in Brazil and worldwide. Apart from Sao Paulo, leading city in the Americas, another eight cities located in Europe and Asia takes part in the project. One of the Brazilian project's goals is to evaluate ethanol usage as diesel fuel replacement in public transport buses by comparatively following the operational output of the experimental fleet, taking as reference an equivalent diesel bus. The utilized test vehicles will be evaluated and monitored to demonstrate ethanol energetic efficiency and, after the results the BEST project and the European Union will set a blue print for public policies to incentive ethanol usage in the urban public transport. The results will allow identifying technical and economical barriers that will eventually overlap the viability process of this technology in the Brazilian public transport. (author)

  7. Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites.

    Science.gov (United States)

    Bajwa, Dilpreet S; Wang, Xinnan; Sitz, Evan; Loll, Tyler; Bhattacharjee, Sujal

    2016-08-01

    Lignin is the most abundant of renewable polymers next to cellulose with a global annual production of 70million tons, largely produced from pulping and second generation biofuel industries. Low value of industrial lignin makes it an attractive biomaterial for wide range of applications. The study investigated the application of wheat straw and corn stover based lignin derived from ethanol production for use in thermoset biocomposites. The biocomposite matrix constituted a two component low viscosity Araldite(®)LY 8601/Aradur(®) 8602 epoxy resin system and the lignin content varied from 0 to 25% by weight fraction. The analysis of the physical and mechanical properties of the biocomposites show bioethanol derived lignin can improve selective properties such as impact strength, and thermal stability without compromising the modulus and strength attributes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  9. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  10. Postoperative conversion disorder.

    Science.gov (United States)

    Afolabi, Kola; Ali, Sameer; Gahtan, Vivian; Gorji, Reza; Li, Fenghua; Nussmeier, Nancy A

    2016-05-01

    Conversion disorder is a psychiatric disorder in which psychological stress causes neurologic deficits. A 28-year-old female surgical patient had uneventful general anesthesia and emergence but developed conversion disorder 1 hour postoperatively. She reported difficulty speaking, right-hand numbness and weakness, and right-leg paralysis. Neurologic examination and imaging revealed no neuronal damage, herniation, hemorrhage, or stroke. The patient mentioned failing examinations the day before surgery and discontinuing her prescribed antidepressant medication, leading us to diagnose conversion disorder, with eventual confirmation by neuroimaging and follow-up examinations. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A Model for Conversation

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...... of design. Three distinctions are drawn through which to develop this discussion of models in an architectural context. An examination of these distinctions serves to nuance particular characteristics and roles of models, the modelling activity itself and those engaged in it....

  12. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  13. Uranium conversion wastes

    International Nuclear Information System (INIS)

    Vicente, R.; Dellamano, J.C.

    1989-12-01

    A set of mathematical equations was developed and used to estimate the radiological significance of each radionuclide potentially present in the uranium refining industry effluents. The equations described the evolution in time of the radionuclides activities in the uranium fuel cycle, from mining and milling, through the yellowcake, till the conversion effluents. Some radionuclides that are not usually monitored in conversion effluents (e.g. Pa-231 and Ac-227) were found to be potentially relevant from the radiological point of view in conversion facilities, and are certainly relevant in mining and milling industry, at least in a few waste streams. (author) [pt

  14. Lean hydrous and anhydrous bioethanol combustion in spark ignition engine at idle

    International Nuclear Information System (INIS)

    Chuepeng, Sathaporn; Srisuwan, Sudecha; Tongroon, Manida

    2016-01-01

    Highlights: • Anhydrous ethanol burns fastest in uncalibrated engine at equal equivalence ratio. • The leaner hydrous ethanol combustion tends to elevate the COV in imep. • Hydrous ethanol consumption was 10% greater than anhydrous ethanol at ϕ = 0.67 limit. • Optimizing alternative fuel engine at idle for stability and emission is suggested. - Abstract: The applications of anhydrous bioethanol to substitute or replace gasoline fuel have shown to attain benefits in terms of engine thermal efficiency, power output and exhaust emissions from spark ignition engines. A hydrous bioethanol has also been gained more attention due to its energy and cost effectiveness. The main aim of this work is to minimize fuel quantity injected to the intake ports of a four-cylinder engine under idle condition. The engine running with hydrous ethanol undergoes within lean-burn condition as its combustion stability is analyzed using an engine indicating system. Coefficient of variation in indicated mean effective pressure is an indicator for combustion stability with hydrocarbon and carbon monoxide emission monitoring as a supplement. Anhydrous ethanol burns faster than hydrous ethanol and gasoline in the uncalibrated engine at the same fuel-to-air equivalence ratio under idle condition. The leaner hydrous ethanol combustion tends to elevate the coefficient of variation in indicated mean effective pressure. The experimental results have found that the engine consumes greater hydrous ethanol by 10% on mass basis compared with those of anhydrous ethanol at the lean limit of fuel-to-air equivalence ratio of 0.67. The results of exhaust gas analysis were compared with those predicted by chemical equilibrium analysis of the fuel-air combustion; the resemble trends were found. Calibrating the alternative fueled engine for fuel injection quantity should be accomplished at idle with combustion stability and emissions optimization.

  15. Bio-ethanol production from wet coffee processing waste in Ethiopia.

    Science.gov (United States)

    Woldesenbet, Asrat Gebremariam; Woldeyes, Belay; Chandravanshi, Bhagwan Singh

    2016-01-01

    Large amounts of coffee residues are generated from coffee processing plants in Ethiopia. These residues are toxic and possess serious environmental problems following the direct discharge into the nearby water bodies which cause serious environmental and health problems. This study was aimed to quantify wet coffee processing waste and estimate its bio-ethanol production. The study showed that the wastes are potential environmental problems and cause water pollution due to high organic component and acidic nature. The waste was hydrolyzed by dilute H 2 SO 4 (0.2, 0.4, 0.6, 0.8 and 1 M) and distilled water. Total sugar content of the sample was determined titrimetrically and refractometry. Maximum value (90%) was obtained from hydrolysis by 0.4 M H 2 SO 4 . Ethanol production was monitored by gas chromatography. The optimum yield of ethanol (78%) was obtained from the sample hydrolyzed by 0.4 M H 2 SO 4 for 1 h at hydrolysis temperature of 100 °C and after fermentation for 24 h and initial pH of 4.5. Based on the data, it was concluded that reuse of the main coffee industry wastes is of significant importance from environmental and economical view points. In conclusion, this study has proposed to utilize the wet coffee processing waste to produce bio-ethanol which provides the alternative energy source from waste biomass and solves the environmental waste disposal as well as human health problem.

  16. Conversational flow promotes solidarity.

    Science.gov (United States)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  17. Direct energy conversion

    International Nuclear Information System (INIS)

    Chalupa, Z.; Kramar, J.

    1975-01-01

    The current state of research of direct energy conversion is briefly discussed and a more detailed description is given of MHD and thermionic energy conversion. Current and prospective values of characteristic variables of various energy conversion methods are listed. MHD generators produce terminal voltage of the same order as turbogenerators while other generators for direct energy conversion only produce voltages of 0.1 to 1.5 V so that the respective elements must be parallel-connected. From the point of view of current density, thermionic conversion having the emitter surface value in the order of 10 A/cm 2 ranks first. As for MHD generators, main attention is devoted to open-cycle generators with combustion products as the working medium. It is envisaged that after 1980 MHD power plants will be commissioned having an electric output of up to 500 MW. By 1990, the construction should be started of basic MHD power plants with a total thermal efficiency of about 55%. The research of thermionic conversion focused on practical applications has mainly been concentrated on nuclear power converters. Nuclear or isotope converters have already been built and used in a number of specific applications as low-power sources, e.g., in space exploration, etc. Preparations are under way for applying high-power sources in telecommunication satellites (USSR, USA). (Z.S.)

  18. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    NARCIS (Netherlands)

    Luque, L.; Westerhof, Roel Johannes Maria; van Rossum, G.; Oudenhoven, Stijn; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the

  19. Second-generation bio-ethanol (SGB) from Malaysian palm empty fruit bunch: energy and exergy analyses.

    Science.gov (United States)

    Tan, Hui Teng; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-07-01

    Recently, second-generation bio-ethanol (SGB), which utilizes readily available lignocellulosic biomass has received much interest as another potential source of liquid biofuel comparable to biodiesel. Thus the aim of this paper is to determine the exergy efficiency and to compare the effectiveness of SGB and palm methyl ester (PME) processes. It was found that the production of bio-ethanol is more thermodynamically sustainable than that of biodiesel as the net exergy value (NExV) of SGB is 10% higher than that of PME. Contrarily, the former has a net energy value (NEV) which is 9% lower than the latter. Despite this, SGB is still strongly recommended as a potential biofuel because SGB production can help mitigate several detrimental impacts on the environment. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Effects of reflux ratio and feed conditions for the purification of bioethanol in a continuous distillation column

    Science.gov (United States)

    Dasan, Y. K.; Abdullah, M. A.; Bhat, A. H.

    2014-10-01

    Continuous distillation column was used for the purification of bioethanol from fermentation of molasses using Saccharomyces cerevisia. Bioethanol produced was at 8.32% (v/v) level. The efficiency of continuous distillation process was evaluated based on reflux ratio, and feed condition. The lab results were validated using COFE simulation Software. The analyses showed that both reflux ratio and feed condition had significant effects on the distillation process. Stages increased from 1.79 to 2.26 as the reflux ratio was decreased from 90% to 45% and the saturated feed produced lower mole fraction of desired product. We concluded that the lower reflux ratio with cold feed condition was suitable for higher mole fraction of top product.