WorldWideScience

Sample records for bioenergy industries development

  1. [Reflection on developing bio-energy industry of large oil company].

    Science.gov (United States)

    Sun, Haiyang; Su, Haijia; Tan, Tianwei; Liu, Shumin; Wang, Hui

    2013-03-01

    China's energy supply becomes more serious nowadays and the development of bio-energy becomes a major trend. Large oil companies have superb technology, rich experience and outstanding talent, as well as better sales channels for energy products, which can make full use of their own advantages to achieve the efficient complementary of exist energy and bio-energy. Therefore, large oil companies have the advantages of developing bio-energy. Bio-energy development in China is in the initial stage. There exist some problems such as available land, raw material supply, conversion technologies and policy guarantee, which restrict bio-energy from industrialized development. According to the above key issues, this article proposes suggestions and methods, such as planting energy plant in the marginal barren land to guarantee the supply of bio-energy raw materials, cultivation of professional personnel, building market for bio-energy counting on large oil companies' rich experience and market resources about oil industry, etc, aimed to speed up the industrialized process of bio-energy development in China.

  2. Bioenergy industries development in China. Dilemma and solution

    International Nuclear Information System (INIS)

    Peidong, Zhang; Yanli, Yang; Xutong, Yang; Yonghong, Zheng; Lisheng, Wang; Yongsheng, Tian; Yongkai, Zhang

    2009-01-01

    Having 2.8 x 10 8 -3.0 x 10 8 t/a of wood energy, 4.0 x 10 6 t/a of oil seeds, 7.7 x 10 8 t/a of crops straw, 3.97 x 10 9 t/a of poultry and livestock manure, 1.48 x 10 8 t/a of municipal waste, and 4.37 x 10 10 t/a of organic wastewater, China is in possession of good resource condition for the development of bioenergy industries. Until the end of 2007, China has popularized 2.65 x 10 7 rural household biogas, established 8318 large and middle-scale biogas projects, and produced 1.08 x 10 10 m 3 /a of biogas; the production of bioethanol, biodiesel, biomass briquettes fuel and biomass power generation reached to 1.5 x 10 6 t/a, 3.0 x 10 5 t/a, 6.0 x 10 4 t/a and 6.42 x 10 9 kWh, respectively. In recent years, bioenergy industries developed increasingly fast in China. However, the industrial base was weak with some dilemma existing in raw material supply, technological capability, industry standards, policy and regulation, and follow-up services, etc. From the viewpoint of long-term effective development system for bioenergy industries in China, a series of policy suggestions have been offered, such as strengthening strategy research, improving bioenergy industries development policies and plan, enhancing scientific research input, persisting in technology innovation, establishing product quality standard, improving industrial standard system, opening market and accelerating commercialization, etc. It is expected that the advices mentioned above could be helpful for the improvement of bioenergy industries development. (author)

  3. 2016 Bioenergy Industry Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Kristen L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milbrandt, Anelia R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwab, Amy A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-03-03

    This report provides a snapshot of the bioenergy industry status at the end of 2016. The report compliments other annual market reports from the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy offices and is supported by DOE’s Bioenergy Technologies Office (BETO). The 2016 Bioenergy Industry Status Report focuses on past year data covering multiple dimensions of the bioenergy industry and does not attempt to make future market projections. The report provides a balanced and unbiased assessment of the industry and associated markets. It is openly available to the public and is intended to compliment International Energy Agency and industry reports with a focus on DOE stakeholder needs.

  4. Networking to build a world-class bioenergy industry in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Weedon, M. [BC Bioenergy Network, Vancouver, BC (Canada)

    2009-07-01

    This presentation described the role of the BC Bioenergy Network and its goal of maximizing the value of biomass resources in British Columbia (BC) and developing a world-class bioenergy industry in the province. Established in March 2008 with $25 million in funding from the BC government, the BC Bioenergy Network is an industry-led association that promotes the development of near-term bioenergy technologies and demonstration of new bioenergy technologies that are environmentally appropriate for the province of BC. The following technology areas require funding support: solid wood residues, pulp and paper residues, harvesting and pelleting, agriculture residues, municipal wastewater, municipal landfill waste, municipal solid waste, and community heating-electricity greenhouse systems. This presentation demonstrated that BC is well positioned to become a major player in the global bioenergy sector, as it has one of the largest forested areas in the world, and is a leader in biomass to value-added wood products. The opportunities, challenges, and requirements to build a world class bioenergy industry in British Columbia were discussed along with successful Canadian, US, and European collaborations with industry, research, and government. tabs., figs.

  5. Modeling the development and utilization of bioenergy and exploring the environmental economic benefits

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Higano, Yoshiro; Wang, Xian’en

    2015-01-01

    Highlights: • A complete bioenergy flow is schemed to industrialize bioenergy utilization. • An input–output optimization simulation model is developed. • Energy supply and demand and bioenergy industries’ development are optimized. • Carbon tax and subsidies are endogenously derived by the model. • Environmental economic benefits of bioenergy utilization are explored dynamically. - Abstract: This paper outlines a complete bioenergy flow incorporating bioresource procurement, feedstock supply, conversion technologies and energy consumption to industrialize the development and utilization of bioenergy. An input–output optimization simulation model is developed to introduce bioenergy industries into the regional socioeconomy and energy production and consumption system and dynamically explore the economic, energy and environmental benefits. 16-term simulation from 2010 to 2025 is performed in scenarios preset based on bioenergy industries, carbon tax-subsidization policy and distinct levels of greenhouse gas emission constraints. An empirical study is conducted to validate and apply the model. In the optimal scenario, both industrial development and energy supply and demand are optimized contributing to a 8.41% average gross regional product growth rate and a 39.9% reduction in accumulative greenhouse gas emission compared with the base scenario. By 2025 the consumption ratio of bioenergy in total primary energy could be increased from 0.5% to 8.2%. Energy self-sufficiency rate could be increased from 57.7% to 77.9%. A dynamic carbon tax rate and the extent to which bioenergy industrial development could be promoted are also elaborated. Regional economic development and greenhouse gas mitigation can be potentially promoted simultaneously by bioenergy utilization and a proper greenhouse gas emission constraint. The methodology presented is capable of introducing new industries or policies related to energy planning and detecting the best tradeoffs of

  6. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    International Nuclear Information System (INIS)

    Kathryn Baskin

    2001-01-01

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts

  7. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    International Nuclear Information System (INIS)

    Kathryn Baskin

    2002-01-01

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts

  8. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2005-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  9. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  10. Barriers to and drivers for UK bioenergy development

    Energy Technology Data Exchange (ETDEWEB)

    Adams, P.W.; Mezzullo, W.G. [Department of Mechanical Engineering, Faculty of Engineering and Design, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Hammond, G.P.; McManus, M.C. [Department of Mechanical Engineering, Faculty of Engineering and Design, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Institute for Sustainable Energy and Environment (I.SEE), University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2011-02-15

    Barriers to UK bioenergy development arise from a number of technical, financial, social and other constraints. Likewise, the drivers for using bioenergy are numerous and diverse. A range of these barriers and drivers have been identified through a comprehensive literature and case study review, and then assessed through an online questionnaire, completed by stakeholders from across the UK bioenergy industry: farmers/suppliers, developers/owners of bioenergy projects, primary end-users, and government/policy stakeholders. The results are presented in the form of 'spider web' diagrams. The most critical barriers and drivers relate to economic factors of bioenergy projects. Farmers/suppliers and developers are influenced by production costs and benefits, whilst primary end-users of bioenergy are concerned mainly with the cost of purchasing energy resources. Common drivers for all stakeholders were found to be reducing carbon emissions and the dependency on fossil fuels. In order to satisfy the needs of stakeholders schemes must be both economically attractive and environmentally sustainable for projects to be successful. (author)

  11. Generating opportunity : human resources needs in the bioenergy, biofuels and industrial biotechnology subsectors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Canada has a plentiful resource base and a long history of innovation in bioenergy, biofuels and industrial biotechnology. Success of the industry depends on having the required human resources capacity such as the right number of skilled, job-ready professionals to support companies as they develop and commercialize new solutions. This document presented the results of a human resources survey conducted by BioTalent regarding the national and global bioenergy, biofuels and industrial biotechnology subsectors. It addressed a variety of issues, such as the increasing demand for bioenergy; the near-term perspective; growth factors; and the role of public policy. A subsector snapshot of human resources was also presented, with particular reference to the principal areas of need; types of roles required in the bio-economy; human resources capacity and company size; regional variances; skills gaps; reliance on outsourcing; knowledge, learning and connectedness; recruitment, retention and turnover; and the road ahead. Conclusions and recommendations were also offered. It was concluded that once the economy recovers, demand for bioenergy, biofuels and industrial products and services is expected to increase. 3 tabs., 6 figs.

  12. Importance of rural bioenergy for developing countries

    International Nuclear Information System (INIS)

    Demirbas, Ayse Hilal; Demirbas, Imren

    2007-01-01

    Energy resources will play an important role in the world's future. Rural bioenergy is still the predominant form of energy used by people in the less developed countries, and bioenergy from biomass accounts for about 15% of the world's primary energy consumption and about 38% of the primary energy consumption in developing countries. Furthermore, bioenergy often accounts for more than 90% of the total rural energy supplies in some developing countries. Earth life in rural areas of the world has changed dramatically over time. Industrial development in developing countries, coming at a time of low cost plentiful oil supplies, has resulted in greater reliance on the source of rural bioenergy than is true in the developed countries. In developed countries, there is a growing trend towards employing modern technologies and efficient bioenergy conversion using a range of biofuels, which are becoming cost wise competitive with fossil fuels. Currently, much attention has been a major focus on renewable alternatives in the developing countries. Renewable energy can be particularly appropriate for developing countries. In rural areas, particularly in remote locations, transmission and distribution of energy generated from fossil fuels can be difficult and expensive. Producing renewable energy locally can offer a viable alternative. Renewable energy can facilitate economic and social development in communities but only if the projects are intelligently designed and carefully planned with local input and cooperation. Particularly in poor rural areas, the costs of renewable energy projects will absorb a significant part of participants' small incomes. Bio-fuels are important because they replace petroleum fuels. Biomass and biofuels can be used as a substitute for fossil fuels to generate heat, power and/or chemicals. Generally speaking, biofuels are generally considered as offering many benefits, including sustainability, reduction of greenhouse gas emissions, regional

  13. Participatory approach used to develop a sustainability assessment tool for wood-based bioenergy industry in upper Michigan, USA

    Science.gov (United States)

    Vaidya, Ashma; Mayer, Audrey

    2015-04-01

    Biofuel production has grown significantly in the past few decades as a result of global concern over energy security, climate change implications and unsustainable attributes of fossil fuels. Currently, biofuels produced from food crops (such as corn, sugarcane, soy, etc.) constitute the bulk of global biofuel production. However, purported adverse impacts of direct and indirect land-use changes (such as increased food prices, competition for agricultural land and water, and carbon emissions from land-use change) resulting from large-scale expansion of the crop-based biofuel industry have motivated many nations to further shift their attention to second-generation (non crop-based) biofuel production. Current R&D on second-generation biofuel production is largely focused on exploring prospects of using abandoned/fallow land for growing feedstock (such as Jatropha, short rotation woody coppice, Willow/Poplar species, Micanthus etc.), and on producing fuel that is cost-effective and compatible with existing infrastructures. The bulk of existing research on second-generation biofuel production concentrates on enhancing its technical feasibility and compatibility with existing infrastructure; very few have attempted to qualitatively determine and understand stakeholders' concerns and perception regarding this emergent industry. Stakeholders' decisions regarding land and resource use will play a crucial role in ensuring the social sustainability of any industry. Our research is focused on understanding stakeholders' concerns and perceptions regarding biofuel production in the upper Michigan region, where wood-based bioenergy development is being planned and researched by businesses, government agencies, and the local university. Over a century ago, the region's economy was dependent upon mining and clear-cut logging industries, which left the area once the resources were depleted. Since that time, the region has lost significant population due to the lack of economic

  14. Navigating Bioenergy. Contributing to informed decision making on bioenergy issues

    Energy Technology Data Exchange (ETDEWEB)

    Vis, M.; Reumerman, P.; Frederiks, B. [BTG Biomass Technology Group, Enschede (Netherlands)

    2009-11-15

    In order to further contribute to sustainable global bioenergy development, UNIDO will this year be launching the Bioenergy Capacity Building Programme (BIOCAB), offering a comprehensive training package to policy makers and entrepreneurs aimed at enhancing their engagement in shaping a sustainable bioenergy industry in developing countries. The training package, disseminated through a network of key institutions and certified trainers, will consist of four modules covering the following subjects: Technologies and Processes, Policy, Socio-Economic and Environmental Issues, Financial and Project Development Issues, Industrial Applications for Productive Use. While designing the training package and its modules at a meeting hosted by UNIDO at headquarters in August 2008, experts reiterated a demand, previously expressed by UNIDO clients at various international fora, for an easy-to-read, practical and user-friendly introduction to certain contentious bioenergy issues. The expert meeting selected the most hotly-debated bioenergy issues and came up with the following eight topics: (1) Jatropha, the feedstock of the future?; (2) Biomethane, is it an underestimated energy source?; (3) Energy from Municipal Solid Waste, can this potential be realized?; (4) The Biorefinery Concept, how relevant is it for developing countries?; (5) Competition with Food, what are the facts in the food versus fuel discussion?; (6) Sustainability and Certification of Biomass, what are the benefits?; (7) Clean Development Mechanism, how does it work?; (8) Success Stories.

  15. Stakeholders' perceptions on forest biomass-based bioenergy development in the southern US

    International Nuclear Information System (INIS)

    Dwivedi, Puneet; Alavalapati, Janaki R.R.

    2009-01-01

    This study analyzes perceptions of four stakeholder groups (non-governmental organizations [NGOs], government, industry, and academia) regarding forest biomass-based bioenergy development in the southern US (United States) by combining SWOT (Strength, Weakness, Opportunities, and Threats) framework with AHP (Analytical Hierarchy Process). Results suggest that NGO representatives perceived rural development as an important opportunity. Government stakeholder group noted that less or no competition with food production and promotes energy security were major strength factors. Conversion technologies are still under trial was identified as a major weakness by industry representatives. Representatives of academia felt that the competition from other renewable energy sources could be a major threat. Overall, all stakeholder groups were in favor of forest biomass-based bioenergy development in the southern US.

  16. Bioenergy from agro-industrial residues in the East African region. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    Tanzania has recently developed a comprehensive environmental policy which has put high priority on several specific environmental issues. One of the issues is the quality of waste water. A special priority is given to the pollution from the sisal industry. The East-African agro-industries generate very large quantities of organic residues from production and processing of different crops. These residues form a major contribution to the pollution of air, soil and waterways, but, at the same time they constitute a large potential for production of bioenergy through anaerobic digestion as well as potential substrate for other biological fermentation processes. Generally, these residues are regarded as having no or very little value and the different disposal methods are mainly a matter of getting rid of the waste. The generation of residues are very often concentrated on few large units, which makes the exploitation of these resources feasible in large scale biogas systems. Typically the units will have a potential of a daily methane generation of 1,000-20,000 m{sup 3} CH{sub 4}, equivalent to a potential electricity production of 0.2-3.2 MW. The future utilization of these resources for production of valuable products is described in this report. This report consists of 3 volumes. This summary report including the main objectives and findings from the different project report: Mapping and Quantification of Organic Agro-Industrial Residues in East Africa; Biogas - Bioenergy Potential in East Africa, Seminar Proceedings, Siler Sands, Dar es Salaam 22-23 September 1997; Bioenergy from Sisal residues - Experimental results and Capacity Building Activities. (EG)

  17. Developing a sustainability framework for the assessment of bioenergy systems

    International Nuclear Information System (INIS)

    Elghali, Lucia; Clift, Roland; Sinclair, Philip; Panoutsou, Calliope; Bauen, Ausilio

    2007-01-01

    The potential for biomass to contribute to energy supply in a low-carbon economy is well recognised. However, for the sector to contribute fully to sustainable development in the UK, specific exploitation routes must meet the three sets of criteria usually recognised as representing the tests for sustainability: economic viability in the market and fiscal framework within which the supply chain operates; environmental performance, including, but not limited to, low carbon dioxide emissions over the complete fuel cycle; and social acceptability, with the benefits of using biomass recognised as outweighing any negative social impacts. This paper describes an approach to developing a methodology to establish a sustainability framework for the assessment of bioenergy systems to provide practical advice for policy makers, planners and the bioenergy industry, and thus to support policy development and bioenergy deployment at different scales. The approach uses multi-criteria decision analysis (MCDA) and decision-conferencing, to explore how such a process is able to integrate and reconcile the interests and concerns of diverse stakeholder groups

  18. Re-impact: forest based bioenergy for sustainable development in developing countries

    CSIR Research Space (South Africa)

    Amezaga, JM

    2009-06-01

    Full Text Available for biodiesel and bioethanol. In late 2006, the Draft Biofuels Industrial Strategy compiled by a biofuels task team was released for public comment. This document emphasized that the main focus of the biofuel industry within South Africa is not only... and in schemes for the production of biodiesel from tree borne oilseed (TBO) crops like Jatropha curcas. However, in spite of the high potential of bioenergy as a mechanism for rural development, its sustainability has become an issue of global debate...

  19. Bioenergy Knowledge Discovery Framework Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-07-01

    The Bioenergy Knowledge Discovery Framework (KDF) supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner.

  20. Finnish Bioenergy Association - Finbio

    International Nuclear Information System (INIS)

    Sopo, R.

    1999-01-01

    The Finnish Bioenergy Association, was founded in November 1991 in the city of Jyvaeskylae. In November 1996, the membership of FINBIO consisted of 17 contributing collective members and 75 individual members. Members of the organization include e.g. the Association of Finnish Peat Industries, Wood Energy Association and Finnish Biogas Centre, all of which represent specific bioenergy fields in Finland. The Finnish Bioenergy Association is a private, non-profit organization the objectives of which are to promote and develop harvesting, transportation and processing of biofuels and other biomass (wood-based biofuels, non-food crops, peat, biowaste); to promote the use of biomass in energy production and in other applications, in accordance with environmentally sound and sustainable development. The objectives of FINBIO is to promote the production and application of all forms of bioenergy in Finland. FINBIO acts as a coordinator for AEBIOM (the European Biomass Association) and its member associations, as well as for other international bioenergy-related organizations

  1. Our Commitment to Bioenergy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-18

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and ad- vances environmental, economic, and social benefits. BETO’s Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a result, the area is critical to achieving BETO’s overall goals.

  2. Woody biomass policies and location decisions of the woody bioenergy industry in the southern United States

    International Nuclear Information System (INIS)

    Guo, Zhimei; Hodges, Donald G.; Young, Timothy M.

    2013-01-01

    Woody biomass for bioenergy production has been included in relatively few renewable energy policies since the 1970s. Recently, however, several states have implemented a variety of new woody biomass policies to spur the establishment of new bioenergy industry. Establishing new woody biomass-based facilities in a specific state is affected by a number of factors such as the strength of these new policy incentives, resource availability, business tax climate, and the available labor force. This study employs a conditional logit model (CLM) to explore the effects of woody biomass policies on the siting decisions of new bioenergy projects relative to some of these other state attributes. The CLM results suggest that state government incentives are significantly related to state success in attracting new plants. The results have substantial implications regarding woody biomass policies and the creation of a new bioenergy industry. -- Highlights: •This study explores the effects of state attributes on the siting decisions of new woody bioenergy projects. •Results suggest that state woody biomass policies are significantly related to state success in attracting new plants. •Other factors related to the siting of woody bioenergy facilities include resource availability, taxes, and wage rate

  3. World Bioenergy 2012. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The conference of 2012 had contributions on the following themes: A: World Pellets 2012, B: Market outlook, C: Energy systems, D: Transportation, E: World biorefinery 2012, F: Sustainable bioenergy day. 52 contributions in A - D. A: World Pellets 2012 is an integrated part of World Bioenergy 2012. A three day 'conference in the conference' covering all aspects of pellets: raw material potentials, innovative pellets production systems, torrefaction, new combustion technologies, trade and market development, health and safety aspects, etc. B) Market outlook: Policy and targets for renewable energy to find an alternative to fossil energy are being put in place, increasing the demand for sustainable modern bioenergy. Global trade and improved logistics open up to the markets. To facilitate international trade in bioenergy commodities, new trading places and indexes are needed, as well as generally accepted standards. Supply and demand must meet to guarantee stable prices. In this session you learn all about current market development, including drivers like incentives and policies. C) Energy Systems: Modern bioenergy is a young industry. Therefore, technical development is rapid, with many new innovations. This session focuses on technical development in the whole bioenergy chain, from harvesting of forest residues to combustion technologies and co-firing. Optimal use of biomass through district heating or cooling - small scale and large scale - and CHP technology for electricity production. D) Transportation: Sustainable transports are one of the key challenges of tomorrow. Can we transport biomass as well as other products sustainably and at what costs? Which are the future fuels for transports and when will biofuels be viewed as profitable? Biofuels for transport are under rapid development with new methods, producers and feedstock entering the markets. The future biofuels will be produced in biorefineries, to increase profitability and optimize feed

  4. The position of bioenergy and development possibilities

    International Nuclear Information System (INIS)

    Asplund, D.

    1997-01-01

    This report is a review of bioenergy in energy economy of Finland and generally a review of bioenergy markets in the world. This review concentrates on wood and peat fuels. Municipal wastes, agro biomass and use of biogas in energy production are also considered in this review but in minor aspect. The significant part of this work is an estimation of bioenergy development prospects. The schedule is strategic to the year 2010, partly to the year 2025. The use of bioenergy in Finland has increased 64 % from the year 1980 and was in 1996 almost 7 million toe. The use of peat was 2,1 million toe and the rest consisted mainly of wood and wood based fuels. The share of bioenergy in the primary energy consumption is over 20 %. As far as the resources are concerned the possibilities to increase the use are very good. The main problem is the competitiveness. The competitiveness of forest biomass has improved as a result of technological research and development but it is still potential to maintain more by systematical R and D. A large target setting of increasing the bioenergy use in Finland is included in this review. The target is to increase the bioenergy use 25 % by the year 2005. This equals to 1,5 million toe. The target for the year 2010 is suggested to increase of 3,5 million toe from the 1995 level. Also the possibilities to develop new bioenergy technology for export markets are considered. A large number of concrete actions and long term activities to achieve these targets are presented. (orig.) 24 refs

  5. The development of bioenergy technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Z.; Yin, X.L.; Yuan, Z.H.; Zhou, Z.Q.; Zhuang, X.S. [The Renewable Energy and Gas Hydrate Key Laboratory of CAS, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China)

    2010-11-15

    Among renewable energy resources, bioenergy is one of the fastest growth energy alternatives with tremendous potential in China. The thermal, physical, and biological processes of conversion of biomass yield a number of products and can be obtained as gases, liquids, solid fuels, and electricity as well as a variety of chemicals. Various bioenergy technologies that have been developed are at the fundamental research, demonstration, and commercialization stages. This review concentrates on the processes that are attracting the most attention in China. This paper presents the important roles bioenergy plays in China. Firstly, the application status of bioenergy technologies are introduced, including biogas, fuel ethanol, biodiesel, and power generation at the commercialization stage. Then, the current research progresses are analyzed of ethanol derived from lignocellulose, sweet sorghum and cassava, biodiesel from jatropha, biomass briquetting, synthesized fuels and pyrolysis technologies at the fundamental research and demonstration stages. Finally, it is concluded that the key areas for developing bioenergy for the future are the exploitation of new biomass resources and R and D in biofuels from non-food biomass resources, as well as the development of commercialization methods suitable for developing countries. (author)

  6. Small-scale bioenergy alternatives for industry, farm, and institutions: A user's perspective

    International Nuclear Information System (INIS)

    Folk, R.

    1991-01-01

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases

  7. Critical factors to bioenergy implementation

    International Nuclear Information System (INIS)

    Roos, A.; Hektor, B.; Rakos, C.

    1999-01-01

    Barriers to bioenergy technology implementation have received increased attention in recent years. This paper contributes to the identification and analysis of barriers and drivers behind bioenergy market growth, here labelled c ritical factors . It presents a framework for the analysis of both existing and projected bioenergy market potential, using economic concepts and models from transaction cost theory and industrial organization. The framework can be used for assessments of the potential for market growth of different bioenergy systems by decision makers in administration and industry. The following critical factors are identified: Integration with other economic activity, Scale effects on bioenergy markets, Competition in bioenergy markets, Competition with other business, National policy, Local policy and local opinion. The framework is demonstrated with five cases of real bioenergy markets: Pellet residential heating in USA, bioenergy power in USA, pellet residential heating in Sweden, biomass district heating in Sweden, and biomass district heating in Austria. Different applications of the framework are discussed

  8. Bioenergy Research Programme. Yearbook 1994. Utilization of bioenergy and biomass conversion

    International Nuclear Information System (INIS)

    Alakangas, E.

    1995-01-01

    BIOENERGIA Research Programme is one of energy technology programmes of the Finnish Ministry of Trade and Industry (in 1995 TEKES, Technology Development Center). The aim of Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels and new equipment and methods for production, handling and using of biofuels. The funding for 1994 was nearly 50 million FIM and project numbered 60. The research area of biomass conversion consisted of 8 projects in 1994, and the research area of bioenergy utilization of 13 projects. The results of these projects carried out in 1994 are presented in this publication. The aim of the biomass conversion research is to produce more bio-oils and electric power as well at wood processing industry as at power plants. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. Possibilities to produce agrofibre in investigated at a laboratory study

  9. KLASTER INDUSTRI SEBAGAI STRATEGI PENINGKATAN DAYA SAING AGROINDUSTRI BIOENERGI BERBASIS KELAPA SAWIT

    Directory of Open Access Journals (Sweden)

    Petir Papilo

    2016-06-01

    Full Text Available Kajian ini bertujuan untuk memberikan gambaran tentang dampak dari pelaksanaan program klaster industri terhadap peningkatan daya saing industri bioenergi berbasis kelapa sawit nasional. Melalui pendekatan analisis perbandingan yang merujuk pada berbagai kajian terdahulu, dapat diketahui bahwa penerapan strategi klaster industri memberikan pengaruh positif terhadap tiga klaster agroindustri kelapa sawit nasional yang berada di Provinsi Riau, Sumatra Utara dan Kalimantan Timur. Berdasarkan penilaian terhadap empat elemen daya saing, seperti aglomerasi perusahaan, nilai tambah dan rantai nilai, jejaring kerjasama serta infrastruktur ekonomi, menunjukkan bahwa telah  terjadi peningkatan nilai daya saing dari ketiga klaster industri sebesar masing-masingnya 0,503, 0294 dan 0,232.       Abstract This study aims to provide an overview of the implementation impact of industrial cluster program to increase the competitiveness of the national agro-industry bioenergy based on palm oil. Through a comparative analysis approach that refers to previous studies, it is known that the implementation of the industrial cluster strategy has a positive influence on the three national oil palm agro-industrial clusters that located in the Riau Province, North Sumatra and East Kalimantan. Based on the assessment of the four elements of competitiveness, such as agglomeration company, value-added and value chains, networks and infrastructure, indicate that there has been an increase in the competitiveness value of the three clusters agro-industries by each 0.503, 0294 and 0.232.

  10. Bioenergy for sustainable development: An African context

    Science.gov (United States)

    Mangoyana, Robert Blessing

    This paper assesses the sustainability concerns of bioenergy systems against the prevailing and potential long term conditions in Sub-Saharan Africa with a special attention on agricultural and forestry waste, and cultivated bioenergy sources. Existing knowledge and processes about bioenergy systems are brought into a “sustainability framework” to support debate and decisions about the implementation of bioenergy systems in the region. Bioenergy systems have been recommended based on the potential to (i) meet domestic energy demand and reduce fuel importation (ii) diversify rural economies and create employment (iii) reduce poverty, and (iv) provide net energy gains and positive environmental impacts. However, biofuels will compete with food crops for land, labour, capital and entrepreneurial skills. Moreover the environmental benefits of some feedstocks are questionable. These challenges are, however, surmountable. It is concluded that biomass energy production could be an effective way to achieve sustainable development for bioenergy pathways that (i) are less land intensive, (ii) have positive net energy gains and environmental benefits, and (iii) provide local socio-economic benefits. Feasibility evaluations which put these issues into perspective are vital for sustainable application of agricultural and forest based bioenergy systems in Sub-Saharan Africa. Such evaluations should consider the long run potential of biofuels accounting for demographic, economic and technological changes and the related implications.

  11. The Vermont Bioenergy Initiative: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Chris [Vermont Sustainable Jobs Fund, Montpelier, VT (United States); Sawyer, Scott [Vermont Sustainable Jobs Fund, Montpelier, VT (United States); Kahler, Ellen [Vermont Sustainable Jobs Fund, Montpelier, VT (United States)

    2016-11-30

    The purpose of the Vermont Bioenergy Initiative (VBI) was to foster the development of sustainable, distributed, small-scale biodiesel and grass/mixed fiber industries in Vermont in order to produce bioenergy for local transportation, agricultural, and thermal applications, as a replacement for fossil fuel based energy. The VBI marked the first strategic effort to reduce Vermont’s dependency on petroleum through the development of homegrown alternatives.

  12. Bioenergy Research Programme, Yearbook 1995. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma, vuosikirja 1995. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [ed.

    1996-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Centre TEKES. The aim of the bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The research area of biomass conversion consisted of 8 projects in 1995, and the research area of bioenergy utilization of 14 projects. The results of these projects carried out in 1995 are presented in this publication. The aim of the biomass conversion is to produce more bio-oils and electric power as well as wood processing industry as at power plants than it is possible at present appliances. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel-oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. The main aim of the research in bioenergy utilization is to create the technological potential for increasing the bioenergy use. The aim is further defined as to get into commercial phase 3-4 new techniques or methods and to start several demonstrations, which will have 0.2-0.3 million toe bioenergy utilization potential

  13. Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Folk, Richard [ed.] [Idaho Univ., Moscow, ID (United States). Dept. of Forest Products

    1991-12-31

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

  14. Bioenergy development pathways for Europe. Potentials, costs and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    De Wit, M.P.

    2011-09-26

    Fossil resources dominate the global energy system today which cannot be sustained indefinitely. Bioenergy use can meet a large share of future energy supply sustainably. For example, it can substitute fossil fuels including petroleum, and when sustainably produced, bioenergy avoids greenhouse gas emissions. However, with the recent increase of modern bioenergy use several drawbacks have become apparent that may lead to negative ecological impacts. Europe plays an important role in the further sustainable development of bioenergy due to its ambitious renewable energy policies and its state-of-the-art agricultural sector. The main objective of this thesis is to evaluate development pathways for bioenergy in Europe by assessing preconditions for its development, an economic outlook for such development and an assessment of its environmental implications. The technical European biomass potential has a substantial potential to contribute to Europe's energy consumption. Energy crop production on European croplands and grasslands supplemented with agricultural and forestry residues offers an ultimate technical potential of 27.7 EJ y-1. These findings were based on the assumption that agricultural land needs for future domestic food production decrease as productivities per hectare increase. Central and Eastern Europe pose the more attractive region with relatively high potentials and low costs. In European agriculture, it is possible to combine large-scale biomass production with food production sustained at current levels, without direct or indirect land-use changes and while accomplishing significant net cumulative greenhouse gas emission reductions when both bioenergy and agricultural production are considered. To accomplish this situation two preconditions need to be met: a gradual intensification of food production and implementation of structural improvements to agricultural management. Based on the current economic performance and future prospects for

  15. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    Science.gov (United States)

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  17. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  18. Bioenergy options. Multidisciplinary participatory method for assessing bioenergy options for rural villages in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Kauzeni, A S; Masao, H P; Sawe, E N; Shechambo, F C [Dar Es Salaam Univ. (Tanzania). Inst. of Resource Assessment; Ellegaard, A [Stockholm Environment Inst. (Sweden)

    1999-12-31

    In Tanzania, like in many other developing countries in Southern and Eastern Africa, bioenergy planning has received relatively little attention, compared to planning for `modern` energy sources, although it accounts for about 90% of the country`s energy supply. As a result there is less understanding of the complexity and diversity of bioenergy systems. There is a lack of reliable data and information on bio-resources, their consumption and interaction with social, economic, institutional and environmental factors. This is largely due to lack of adequately developed and easily understood methods of data and information development, analysis and methods of evaluating available bioenergy options. In order to address the above constraints a project was initiated where the general objective was to develop and test a multi-disciplinary research method for identifying bioenergy options that can contribute to satisfying the energy needs of the rural household, agricultural and small scale industrial sectors, promote growth and facilitate sustainable development. The decision on the development and testing of a multidisciplinary research method was based on the fact that in Tanzania several bioenergy programmes have been introduced e.g. tree planting, improved cookstoves, biogas, improved charcoal making kilns etc. for various purposes including combating deforestation; promoting economic growth, substitution of imported petroleum fuels, health improvement, and raising standards of living. However efforts made in introducing these programmes or interventions have met with limited success. This situation prevails because developed bioenergy technologies are not being adopted in adequate numbers by the target groups. There are some indications from the study that some of the real barriers to effective bioenergy interventions or adoption of bioenergy technologies lie at the policy level and not at the project level. After the development and testing of the methodology

  19. Bioenergy options. Multidisciplinary participatory method for assessing bioenergy options for rural villages in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Kauzeni, A.S.; Masao, H.P.; Sawe, E.N.; Shechambo, F.C. [Dar Es Salaam Univ. (Tanzania). Inst. of Resource Assessment; Ellegaard, A. [Stockholm Environment Inst. (Sweden)

    1998-12-31

    In Tanzania, like in many other developing countries in Southern and Eastern Africa, bioenergy planning has received relatively little attention, compared to planning for `modern` energy sources, although it accounts for about 90% of the country`s energy supply. As a result there is less understanding of the complexity and diversity of bioenergy systems. There is a lack of reliable data and information on bio-resources, their consumption and interaction with social, economic, institutional and environmental factors. This is largely due to lack of adequately developed and easily understood methods of data and information development, analysis and methods of evaluating available bioenergy options. In order to address the above constraints a project was initiated where the general objective was to develop and test a multi-disciplinary research method for identifying bioenergy options that can contribute to satisfying the energy needs of the rural household, agricultural and small scale industrial sectors, promote growth and facilitate sustainable development. The decision on the development and testing of a multidisciplinary research method was based on the fact that in Tanzania several bioenergy programmes have been introduced e.g. tree planting, improved cookstoves, biogas, improved charcoal making kilns etc. for various purposes including combating deforestation; promoting economic growth, substitution of imported petroleum fuels, health improvement, and raising standards of living. However efforts made in introducing these programmes or interventions have met with limited success. This situation prevails because developed bioenergy technologies are not being adopted in adequate numbers by the target groups. There are some indications from the study that some of the real barriers to effective bioenergy interventions or adoption of bioenergy technologies lie at the policy level and not at the project level. After the development and testing of the methodology

  20. Proceedings of the CANBIO conference : realizing the bioenergy opportunity

    International Nuclear Information System (INIS)

    2007-01-01

    This conference explored domestic bioenergy options in Canada, including potential for bioenergy trade. As biomass cogeneration proceeds, investments are now being made for exportable biofuels such as wood pellets and BioOil, driven by demand for biomass in Europe. Mill residue surpluses are rapidly diminishing, causing industry and government to look at forest residues. The conference also addressed obstacles to developing bioenergy options in Canada compared to countries with comprehensive bioenergy strategies. An entire session was devoted to Finnish expertise in residue harvesting and bioenergy equipment. Various national and international development opportunities for wood residue and bioenergy products were also explored along with new technologies in bioenergy practices and development in syngas production techniques. The conference sessions were entitled: volumes of economic biomass; costs and logistics of forest biomass; development opportunities; Finnish solutions for biomass; progress in Ontario; policies in Canada and Europe; and, towards a biofuels transportation infrastructure. The conference featured 34 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  1. Chinese academic experts' assessment for forest bio-energy development in China

    International Nuclear Information System (INIS)

    Qu Mei; Ahponen, Pirkkoliisa; Tahvanainen, Liisa; Pelkonen, Paavo

    2010-01-01

    The aim of this study was to assess the current situation of the forest bio-energy development in China. This assessment is based on opinions of Chinese academic experts. Key drivers and uncertainties regarding the implementation, and the strategies for the future practices in the development of forest bio-energy were investigated. In addition, the purpose of this study was also to determine whether there is a consensus among the experts concerning forest bio-energy and if this consensus agrees with policy-makers in China. A thorough assessment was conducted using a two-round Delphi survey of sixty-one bio-energy experts in China. The results revealed the advantages, potential problems, and the experts' recommendations for the future development. Furthermore, the experts agreed that the Chinese government plays a dominant role in the development process of forest bio-energy in the country. The experts recognized that the process of developing forest bio-energy is a challenging task both domestically and globally. At the same time they also highlighted the potential benefits of developing forest bio-energy in China during the next ten years. The outcomes of this study could be used to give advice to policy-makers and to support the implementation of the future forest bio-energy policies in China.

  2. Bioenergy Project Development and Biomass Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Modern biomass, and the resulting useful forms of bioenergy produced from it, are anticipated by many advocates to provide a significant contribution to the global primary energy supply of many IEA member countries during the coming decades. For non-member countries, particularly those wishing to achieve economic growth as well as meet the goals for sustainable development, the deployment of modern bioenergy projects and the growing international trade in biomass-based energy carriers offer potential opportunities.

  3. Critical factors for bioenergy technology implementation. Five case studies of bioenergy markets in the United States, Sweden and Austria

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Anders [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest-Industry-Market Studies

    1998-07-01

    This report analyses the driving forces of, and barriers to, biomass energy technology implementation with the objective of defining the most important factors behind the growth of bioenergy markets and suggesting strategies for policy makers and investors. The approach is to describe the important factors for the development of real bioenergy markets at two levels: (1) Institutional, primarily policy, and (2) market structure. Concepts from economic theory, primarily transaction cost theory and industrial organisation, are used in a qualitative way. The report is based on literature studies and field studies of bioenergy markets in three countries: the United States of America, Austria, and Sweden. It is divided into five sections. After the introduction in section one, literature with relevance for this study is reviewed in section two. In section three the energy policy and energy sectors of each country are described. The descriptions include an overview of the biomass energy sectors. Five cases of developed bioenergy markets in the three countries are presented in section four. The cases are residential heating with wood pellets in New Hampshire, United States, biomass power production in Maine, residential heating with pellets in Sweden, biomass district heating in Sweden, and biomass district heating in Austria. All markets are described in terms of the historical development, technical issues, economics, market structure and local policy influences. In the discussion in section five a number of key factors behind the success or failure of bioenergy are presented. Six factors are most important: (1) Complementaries between the bioenergy operations and another activity (for instance when the bioenergy production uses biomass waste products from another industry); (2) economics of scale within the bioenergy business through larger production series, standards, specialization etc.; (3) a competitive bioenergy market (Many sellers and buyers operate in the

  4. Critical factors for bioenergy technology implementation. Five case studies of bioenergy markets in the United States, Sweden and Austria

    International Nuclear Information System (INIS)

    Roos, Anders

    1998-01-01

    This report analyses the driving forces of, and barriers to, biomass energy technology implementation with the objective of defining the most important factors behind the growth of bioenergy markets and suggesting strategies for policy makers and investors. The approach is to describe the important factors for the development of real bioenergy markets at two levels: (1) Institutional, primarily policy, and (2) market structure. Concepts from economic theory, primarily transaction cost theory and industrial organisation, are used in a qualitative way. The report is based on literature studies and field studies of bioenergy markets in three countries: the United States of America, Austria, and Sweden. It is divided into five sections. After the introduction in section one, literature with relevance for this study is reviewed in section two. In section three the energy policy and energy sectors of each country are described. The descriptions include an overview of the biomass energy sectors. Five cases of developed bioenergy markets in the three countries are presented in section four. The cases are residential heating with wood pellets in New Hampshire, United States, biomass power production in Maine, residential heating with pellets in Sweden, biomass district heating in Sweden, and biomass district heating in Austria. All markets are described in terms of the historical development, technical issues, economics, market structure and local policy influences. In the discussion in section five a number of key factors behind the success or failure of bioenergy are presented. Six factors are most important: (1) Complementaries between the bioenergy operations and another activity (for instance when the bioenergy production uses biomass waste products from another industry); (2) economics of scale within the bioenergy business through larger production series, standards, specialization etc.; (3) a competitive bioenergy market (Many sellers and buyers operate in the

  5. Critical factors for bioenergy technology implementation. Five case studies of bioenergy markets in the United States, Sweden and Austria

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Anders [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest-Industry-Market Studies

    1998-07-01

    This report analyses the driving forces of, and barriers to, biomass energy technology implementation with the objective of defining the most important factors behind the growth of bioenergy markets and suggesting strategies for policy makers and investors. The approach is to describe the important factors for the development of real bioenergy markets at two levels: (1) Institutional, primarily policy, and (2) market structure. Concepts from economic theory, primarily transaction cost theory and industrial organisation, are used in a qualitative way. The report is based on literature studies and field studies of bioenergy markets in three countries: the United States of America, Austria, and Sweden. It is divided into five sections. After the introduction in section one, literature with relevance for this study is reviewed in section two. In section three the energy policy and energy sectors of each country are described. The descriptions include an overview of the biomass energy sectors. Five cases of developed bioenergy markets in the three countries are presented in section four. The cases are residential heating with wood pellets in New Hampshire, United States, biomass power production in Maine, residential heating with pellets in Sweden, biomass district heating in Sweden, and biomass district heating in Austria. All markets are described in terms of the historical development, technical issues, economics, market structure and local policy influences. In the discussion in section five a number of key factors behind the success or failure of bioenergy are presented. Six factors are most important: (1) Complementaries between the bioenergy operations and another activity (for instance when the bioenergy production uses biomass waste products from another industry); (2) economics of scale within the bioenergy business through larger production series, standards, specialization etc.; (3) a competitive bioenergy market (Many sellers and buyers operate in the

  6. Advancing Bioenergy in Europe. Exploring bioenergy systems and socio-political issues

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Kes

    2007-09-15

    This research work explores the implementation of bioenergy systems in Europe focusing on socio-political issues. The purpose is to improve understanding of key drivers and barriers for bioenergy. The author conducted literature reviews, case studies, site visits, stakeholder interviews, industry interactions, and research workshops. The research process also involved extensive fieldwork and the development of 12 case studies from 8 countries in Europe. Combating climate change and enhancing energy security are identified in the literature as key drivers for bioenergy. Promoting regional development is also often mentioned although it is not well explored by empirical studies. This thesis analyses regional development activity associated with the implementation of bioenergy systems in 4 case studies from Sweden. The case studies suggest there are at least 4 benefits that can flow from bioenergy systems. These benefits can be key drivers for local and regional actors. The key drivers include: Distribution and diversification; Partnerships and synergies; Business and employment; Environment and landscape. The key barriers include: Economic conditions; Know-how and institutional capacity; Supply chain co-ordination. The second research objective for this thesis is to investigate and discuss experiences of supportive (and disruptive) policies and actions for the implementation of bioenergy systems in Europe. The main findings include: Bioenergy systems: While there are key barriers hindering bioenergy systems, this research identifies no absolute barriers to realising the targets on bioenergy utilisation defined by the European Union. Interestingly, there are some consistent policies and actions evident in the case studies that are employed to overcome key barriers, including: investment grants; policy measures; pilot projects; local initiatives; local champions; and supply contracts. Not surprisingly, supportive economic policies and partnerships between the public

  7. Bioenergy Potential Based on Vinasse From Ethanol Industrial Waste to Green Energy Sustainability

    Science.gov (United States)

    Harihastuti, Nani; Marlena, Bekti

    2018-02-01

    The waste water from alcohol industry is called vinasse has a high organic content, with BOD5 = 109.038 mg / l, COD = 353.797 mg / l and TSS = 7200 mg / l, pH 4-5 with a temperature of around 40-50ºC. The current treatment of alcohol waste water, most still using facultative anaerobic technology with open ponds that are only covered with HDPE plastics. This technology produces less optimal biogas and has a weakness that is the hydraulic residence time (HRT) for long (40-50 days), wide land needs, low COD reduction efficiency as well as high risk of fire and leakage of biogas release high to trigger the occurrence of greenhouse gas and global warming effects. Development of technology with innovation reactor integration model Fixed Dome-Hybrid Anaerobic Filter aims to expand the contact area between the substrate and microbial with modification of the substrate flow system and the area of the filter and integrate with the gas accumulator. The design of this Fixed Dome-Hybrid Anaerobic filter integration model technology, has the advantage of producing optimal bioenergy with CH4 more than 50% content with decrease of COD more than 85% and hydraulic residence time of about 10 (ten) days, bioenergy result is renewable energy made from raw material vinasse from alcohol industrial waste which can be utilized for fuel substitution on the distillation process or boiler process of the industry in a sustainable and cleaner environment.

  8. Bioenergy Potential Based on Vinasse From Ethanol Industrial Waste to Green Energy Sustainability

    Directory of Open Access Journals (Sweden)

    Harihastuti Nani

    2018-01-01

    Full Text Available The waste water from alcohol industry is called vinasse has a high organic content, with BOD5 = 109.038 mg / l, COD = 353.797 mg / l and TSS = 7200 mg / l, pH 4-5 with a temperature of around 40-50ºC. The current treatment of alcohol waste water, most still using facultative anaerobic technology with open ponds that are only covered with HDPE plastics. This technology produces less optimal biogas and has a weakness that is the hydraulic residence time (HRT for long (40-50 days, wide land needs, low COD reduction efficiency as well as high risk of fire and leakage of biogas release high to trigger the occurrence of greenhouse gas and global warming effects. Development of technology with innovation reactor integration model Fixed Dome-Hybrid Anaerobic Filter aims to expand the contact area between the substrate and microbial with modification of the substrate flow system and the area of the filter and integrate with the gas accumulator. The design of this Fixed Dome-Hybrid Anaerobic filter integration model technology, has the advantage of producing optimal bioenergy with CH4 more than 50% content with decrease of COD more than 85% and hydraulic residence time of about 10 (ten days, bioenergy result is renewable energy made from raw material vinasse from alcohol industrial waste which can be utilized for fuel substitution on the distillation process or boiler process of the industry in a sustainable and cleaner environment.

  9. Developments in international bioenergy trade

    International Nuclear Information System (INIS)

    Junginger, Martin; Faaij, Andre; Wit, Marc de; Bolkesjoe, Torjus; Bradley, Douglas; Dolzan, Paulo; Piacente, Erik; Walter, Arnaldo da Silva; Heinimoe, Jussi; Hektor, Bo; Leistad, Oeyvind; Ling, Erik; Perry, Miles; Rosillo-Calle, Frank; Ryckmans, Yves; Schouwenberg, Peter-Paul; Solberg, Birger; Troemborg, Erik

    2008-01-01

    The aim of this paper is to present a synthesis of the main developments and drivers of international bioenergy trade in IEA Bioenergy Task 40 member countries, based on various country reports written by Task 40 members. Special attention is given to pellet and ethanol trade. In many European countries such as Belgium, Finland, the Netherlands, Sweden and the UK, imported biomass contributes already significantly (between 21% and 43%) to total biomass use. Wood pellets are currently exported by Canada, Finland and (to a small extent) Brazil and Norway, and imported by Sweden, Belgium, the Netherlands, and the UK. In the Netherlands and Belgium, pellet imports nowadays contribute to a major share to total renewable electricity production. Trade in bio-ethanol is another example of a rapidly growing international market. With the EU-wide target of 5.75% biofuels for transportation in 2010 (and 10% in 2020), exports from Brazil and other countries to Europe are likely to rise as well. Major drivers for international bioenergy trade in general are the large resource potentials and relatively low production costs in producing countries such as Canada and Brazil, and high fossil fuel prices and various policy incentives to stimulate biomass use in importing countries. However, the logistic infrastructure both in exporting and importing countries needs to be developed to access larger physical biomass volumes and to reach other (i.e. smaller) end-consumers. It is concluded that international bioenergy trade is growing rapidly, far beyond what was deemed possible only a few years ago, and may in the future in some Task 40 countries surpass domestic biomass use, especially for specific applications (e.g. transport fuels). (author)

  10. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  11. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  12. A study of the development of bio-energy resources and the status of eco-society in China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xia; Huang, Yongmei; Gong, Jirui [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Zhang, Xinshi [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Institute of Botany, CAS, Beijing 100093 (China)

    2010-11-15

    Industrialization of bio-energy relies on the supply of resources on a large scale. The theoretical biomass resources could reach 2.61-3.51 billion tce (tons of coal equivalent)/a in China, while the available feedstock is about 440-640 million tce/a, however, among this only 1.5-2.5% has been transferred into energy at present. Marginal land utilization has great prospects of supplying bio-energy resources in China, with co-benefits, such as carbon sequestration, water/soil conservation, and wind erosion protection. There is a large area of marginal land in China, especially in northern China, including about 263 million ha of desertification land, 173 million ha of sand-land, and 17 million ha of salinizatin land. The plant species suitable to be grown in marginal lands, including some species in Salix, Hippophae, Tamarix, Caragana, and Prunus is also abundant Biomass feedstock in marginal lands would be 100 million tce/a in 2020, and 200 million tce/a in 2050. As a result, a win-win situation of eco-society and bio-energy development could be realized, with an expected 4-5% reduction of total CO{sub 2} emission in China in 2020-2050. Although much progress has been made in the field of bio-energy research in China, yet significant efforts should be taken in the future to fulfill large-scale industrialization of bio-energy. (author)

  13. Proceedings of the 2008 Atlantic bioenergy conference

    International Nuclear Information System (INIS)

    2008-01-01

    A number of new technologies are now being developed to ensure the economic viability of using renewable resources to generate electricity and heat. This conference examined ways of increasing the use of bioenergy resources in the Maritimes region. It provided a forum for industry representatives, researchers, and policy-makers to discuss methods of ensuring the sustainable development of biomass and waste residue resources. The current state of the industry in Atlantic Canada was reviewed on a provincial basis, and government policies related to the use of renewable fuels were outlined. North America's bioenergy resources were assessed and new bio-energy, bio-chemicals, and pyrolysis techniques were reviewed along with newly developed co-products at small-scale ethanol plants. New closed loop biofuels projects and their benefits to rural communities were discussed with reference to air quality issues. New forest bioproducts research was also presented, including highlights from the Canadian Biomass Innovation Network (CBIN). These included innovations in commercial biogas, and new biorefinery and biomass co-firing models. A total of 23 papers were presented at the conference. tabs., figs

  14. ACMECS Bioenergy Network: Implementing a transnational science-based policy network on bioenergy

    Science.gov (United States)

    Bruckman, Viktor J.; Haruthaithanasan, Maliwan; Kraxner, Florian; Brenner, Anna

    2017-04-01

    Despite the currently low prices for fossil energy resulting from a number of geopolitical reasons, intergovernmental efforts are being made towards a transition to a sustainable bio-economy. The main reasons for this include climate change mitigation, decreasing dependencies fossil fuel imports and hence external market fluctuations, diversification of energy generation and feedstock production for industrial processes. Since 2012, the ACMECS bioenergy network initiative leads negotiations and organizes workshops to set up a regional bioenergy network in Indochina, with the aim to promote biomass and -energy markets, technology transfer, rural development and income generation. Policy development is guided by the International Union of Forest Research Institutions (IUFRO) Task Force "Sustainable Forest Bioenergy Network". In this paper, we highlight the achievements so far and present results of a multi-stakeholder questionnaire in combination with a quantitative analysis of the National Bioenergy Development Plans (NBDP's). We found that traditional fuelwood is still the most important resource for generating thermal energy in the region, especially in rural settings, and it will remain an important resource even in 25 years. However, less fuelwood will be sourced from natural forests as compared to today. NBDP's have a focus on market development, technology transfer and funding possibilities of a regional bioenergy strategy, while the responses of the questionnaire favored more altruistic goals, i.e. sustainable resource management, environmental protection and climate change mitigation, generation of rural income and community involvement etc. This is surprising, since a sub-population of the (anonymous) questionnaire respondents was actually responsible drafting the NBDP's. We therefore suggest the following measures to ensure regulations that represent the original aims of the network (climate change mitigation, poverty alleviation, sustainable resource use

  15. 2015 Bioenergy Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-28

    This report is an update to the 2013 report and provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of 2015. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This version features details on the two major bioenergy markets: biofuels and biopower and an overview of bioproducts that enable bioenergy production. The information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets.

  16. Feasibility studies on selected bioenergy concepts producing electricity, heat, and liquid fuel. IEA Bioenergy, Techno-economic analysis activity

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y.; Koljonen, T. [VTT Energy, Espoo (Finland); Podesser, E. [Joanneum Research (Austria); Beckman, D. [Zeton Inc. (Canada); Overend, R. [National Renewable Energy Lab. (United States)

    1999-07-01

    The IEA Bioenergy Techno-Economic Analysis Activity reported here, had the following objectives: To assist companies working with technologies and products related to bioenergy applications in their efforts to demonstrate these; To promote bioenergy technologies, processes and applications; To build and maintain a network for R and D organisations and industry. The objectives were pursued 1995 - 1997 through carrying out site-specific prefeasibility studies in participating countries. Both electricity and liquid fuel applications were studied, utilising gasification, pyrolysis, and combustion technologies. Studies were carried out in collaboration with companies developing new products or services from participating countries (Austria, Canada, Finland, and the United States of America) in the bioenergy field. Cases are: Austria: Power production at a district heating station, Stirling-engine driven by unclean boiler flue gases, 50 kWe; Canada - Bio-oil production for a boiler power plant, Fast pyrolysis of sawmill wastes and bark, 11 MWe; Finland: Co-generation of power and heat at a pulp and paper mill, Pressurised integrated gasification combined-cycle (IGCC) using bark and wood, 34 MWe; Sweden: Bio-oil production for heating fuel, Fast pyrolysis of forest residues, 20 000 t/a; USA - Case 1: Co-firing in a coal boiler, Combustion of plantation willow, 15 MWe; USA - Case 2: Condensing power production, Pressurised IGCC using alfalfa stems, 75 MWe All of the cases studied are at different stages of development. Results from these case studies are reported together with technical uncertainties and future development needs, which are required for all the systems. In general, the results showed that for most of the cases studied economic conditions are possible, through existing subsidies or tax incentives, for feasible industrial operation. Specially designed Stirling engines have a short amortisation time integrated to biomass district heating plants in Austria

  17. Bio-energy in Europe: changing technology choices

    International Nuclear Information System (INIS)

    Faaij, Andre P.C.

    2006-01-01

    Bio-energy is seen as one of the key options to mitigate greenhouse gas emissions and substitute fossil fuels. This is certainly evident in Europe, where a kaleidoscope of activities and programs was and is executed for developing and stimulating bio-energy. Over the past 10-15 years in the European Union, heat and electricity production from biomass increased with some 2% and 9% per year, respectively, between 1990 and 2000 and biofuel production increased about eight-fold in the same period. Biomass contributed some two-thirds of the total renewable energy production in the European Union (EU) (2000 PJ) or 4% of the total energy supply in 1999. Given the targets for heat, power and biofuels, this contribution may rise to some 10% (6000 PJ) in 2010. Over time, the scale at which bio-energy is being used has increased considerably. This is true for electricity and combined heat and power plants, and how biomass markets are developing from purely regional to international markets, with increasing cross-border trade-flows. So far, national policy programs proved to be of vital importance for the success of the development of bio-energy, which led to very specific technological choices in various countries. For the future, a supra-national approach is desired: comprehensive research development, demonstration and deployment trajectories for key options as biomass integrated gasification/combined cycle and advanced biofuel concepts, develop an international biomass market allowing for international trade and an integral policy approach for bio-energy incorporating energy, agricultural, forestry, waste and industrial policies. The Common Agricultural Policy of the (extended) EU should fully incorporate bio-energy and perennial crops in particular

  18. 2013 Bioenergy Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Geiger, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-28

    This report provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of 2013. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets.

  19. The Influence of Local Governance: Effects on the Sustainability of Bioenergy Innovation

    Directory of Open Access Journals (Sweden)

    Bianca Cavicchi

    2017-03-01

    Full Text Available This paper deals with processes and outcomes of sustainable bioenergy development in Emilia Romagna. It draws on an on-going research project concerning inclusive innovation in forest-based bioenergy and biogas in Norway, Sweden, Finland and Italy. The goal is to explore how local governance impacts on inclusive innovation processes and triple bottom sustainability of bioenergy development in Emilia Romagna and, ultimately, to contribute to the debate on the bioeconomy. It thus compares the case of biogas and forest-based bioenergy production. The study adopts an analytical framework called Grounded Innovation (GRIP and the local governance approach. The study uses qualitative methods and particularly semi-structured interviews and governance analysis. The key results show different outcomes on both inclusive innovation and triple bottom-line dimensions. Biogas has not fostered inclusiveness and triple bottom line sustainability benefits, contrary to forest-based bioenergy. The findings indicate that the minor role of local actors, particularly municipalities, in favour of industrial and national interests may jeopardise the sustainability of biobased industries. Besides, policies limited to financial incentives may lead to a land-acquisition rush, unforeseen local environmental effects and exacerbate conflicts.

  20. Developing Switchgrass as a Bioenergy Crop

    Energy Technology Data Exchange (ETDEWEB)

    Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

    1998-11-08

    foreign trade deficit in the U.S. and about 45% of the total annual U.S. oil consumption of 34 quads (1 quad = 1015 Btu, Lynd et al. 1991). The 22 quads of oil consumed by transportation represents approximately 25% of all energy use in the US and excedes total oil imports to the US by about 50%. This oil has environmental and social costs, which go well beyond the purchase price of around $15 per barrel. Renewable energy from biomass has the potential to reduce dependency on fossil fhels, though not to totally replace them. Realizing this potential will require the simultaneous development of high yielding biomass production systems and bioconversion technologies that efficiently convert biomass energy into the forms of energy and chemicals usable by industry. The endpoint criterion for success is economic gain for both agricultural and industrial sectors at reduced environmental cost and reduced political risk. This paper reviews progress made in a program of research aimed at evaluating and developing a perennial forage crop, switchgrass as a regional bioenergy crop. We will highlight here aspects of research progress that most closely relate to the issues that will determine when and how extensively switchgrass is used in commercial bioenergy production.

  1. Dynamic integrated assessment of bioenergy technologies for energy production utilizing agricultural residues: An input–output approach

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Higano, Yoshiro; Wang, Xian’en

    2015-01-01

    Highlights: • A dynamic input–output model is developed with bioenergy technologies complemented. • Availability of agricultural residues for bioenergy technologies is evaluated. • Trends in electricity and biofuel production are simulated dynamically. • Net profit and GHG mitigation contribution of bioenergy technologies are assessed. • Combustion power generation and briquette fuel are more advantageous. - Abstract: In order to facilitate regional agricultural residue utilization for energy production through bioenergy technologies, a dynamic input–output model is developed to estimate and assess the energy, economic and environmental performances of industrialization of five bioenergy technologies within a 15-year time horizon. Electricity and solid, gaseous and liquid biofuels are energy products of bioenergy technologies. Bioenergy technologies are complemented into regional input–output framework and combined with socioeconomic activities aided by their bottom-up economic and energy parameters. The simulation results for the target area indicate that the agricultural residues available for bioenergy technologies could amount to 55.16 million t, facilitating to 8.38 million t coal-equivalent bioenergy production by 2025. A 3.1% net reduction in accumulative greenhouse gas emission compared with the “business as usual” case could be achieved owing to substitution of fossil energy with electricity and biofuels produced by bioenergy technologies. From energy production, economic benefits and greenhouse gas mitigation three aspects integratedly, direct-combustion power generation and briquette fuel are more advantageous in the target area. The quantified energy, economic and environmental performances of bioenergy technologies are expected to give recommendations for their industrial development.

  2. IEA Bioenergy Task 42 - Countries report. IEA Bioenergy Task 42 on biorefineries: Co-production of fuels, chemicals, power and materials from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, F.; Jungmeier, G.; Mandl, M. (Joanneum Research, Graz (Austria)) (and others)

    2010-07-01

    This report has been developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power and Materials from Biomass (www.biorefinery.nl/ieabioenergy-task42). IEA Bioenergy is a collaborative network under the auspices of the International Energy Agency (IEA) to improve international cooperation and information exchange between national bioenergy RD and D programs. IEA Bioenergy Task 42 on Biorefinery covers a new and very broad biomass-related field, with a very large application potential, and deals with a variety of market sectors with many interested stakeholders, a large number of biomass conversion technologies, and integrated concepts of both biochemical and thermochemical processes. This report contains an overview of the biomass, bioenergy and biorefinery situation, and activities, in the Task 42 member countries: Austria, Canada, Denmark, France, Germany, Ireland, and the Netherlands. The overview includes: national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil refineries, biofuels capacity for transport purposes, existing biorefinery industries, pilot and demo plants, and other activities of research and development (such as main national projects and stakeholders). Data are provided by National Task Leaders (NTLs), whose contact details are listed at the end of the report. (author)

  3. Bioenergy resources in forest. Economic potential survey; Bioenergiressurser i skog. Kartlegging av oekonomisk potensial

    Energy Technology Data Exchange (ETDEWEB)

    Bergseng, Even; Eid, Tron; Roerstad, Per Kristian; Troemborg, Erik

    2012-07-01

    Forests constitute the largest resource potential for bioenergy in Norway. Based on simulations of forest development in Norway forward costs in the industry and other specified conditions, this study gives analysis and cost curves for increased recovery of bioenergy from Norwegian forests. (Author)

  4. Potential Bioenergy Options in Developed and Developing Countries

    African Journals Online (AJOL)

    Plant –based energy production (energy crops, forest growth) and residue and waste based fuels can substitute fossil fuels in a sustainable and environmental friendly way. In this study, bioenergy includes bio-resources that can be potentially used for modern energy production. Modern bioenergy options offer significant, ...

  5. Perspectives for RandD in Bioenergy in the Baltic States

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Rurik (Technopolis Group, Stockholm (Sweden) )

    2009-11-15

    This study has identified two almost contradictory trends regarding bioenergy in the Baltic States. On the one hand, RandD performed in bioenergy in the Baltic States is rather limited. This might be somewhat surprising, because on the other hand various forms of bioenergy are either already used on a large scale or are widely assumed to become important in the near future. Bioenergy is explicitly recognized in various policy plans as an important component of the energy system in all the Baltic States. Thus the limited RandD efforts raise a number of questions, which probably lack unequivocal answers, but which would be important to discuss in the Baltic States. In all three Baltic States, bioenergy has a major potential. The present trend with boiler houses using biomass in a district heating systems commenced in the 1990s with significant foreign support. Technology was mainly imported, but in some cases local producers have drawn upon these experiences and become producers in their own right. The result has been that the Baltic States have relatively well developed bioenergy technology in use in district heating. But perhaps more importantly, there is know-how and experience in the Baltic States from the use of bioenergy, which however needs to be constantly upgraded. Regarding interest groups, one question raised by some interviewees was whether the natural gas industry with Russian Gazprom as the key player has a bigger say in the energy policy of the Baltic States than officially admitted. Although this issue remains speculative, the question as such is justified and should not be omitted from the discussion. The interest groups behind bioenergy are relatively weak, at least in comparison with other interest groups in the energy sector. As long as the farmers' organizations are not unambiguously behind bioenergy, the political support for investments in developing new technology is likely to remain lukewarm. Cooperation between the Baltic States in

  6. Bioenergy and African transformation.

    Science.gov (United States)

    Lynd, Lee R; Sow, Mariam; Chimphango, Annie Fa; Cortez, Luis Ab; Brito Cruz, Carlos H; Elmissiry, Mosad; Laser, Mark; Mayaki, Ibrahim A; Moraes, Marcia Afd; Nogueira, Luiz Ah; Wolfaardt, Gideon M; Woods, Jeremy; van Zyl, Willem H

    2015-01-01

    Among the world's continents, Africa has the highest incidence of food insecurity and poverty and the highest rates of population growth. Yet Africa also has the most arable land, the lowest crop yields, and by far the most plentiful land resources relative to energy demand. It is thus of interest to examine the potential of expanded modern bioenergy production in Africa. Here we consider bioenergy as an enabler for development, and provide an overview of modern bioenergy technologies with a comment on application in an Africa context. Experience with bioenergy in Africa offers evidence of social benefits and also some important lessons. In Brazil, social development, agricultural development and food security, and bioenergy development have been synergistic rather than antagonistic. Realizing similar success in African countries will require clear vision, good governance, and adaptation of technologies, knowledge, and business models to myriad local circumstances. Strategies for integrated production of food crops, livestock, and bioenergy are potentially attractive and offer an alternative to an agricultural model featuring specialized land use. If done thoughtfully, there is considerable evidence that food security and economic development in Africa can be addressed more effectively with modern bioenergy than without it. Modern bioenergy can be an agent of African transformation, with potential social benefits accruing to multiple sectors and extending well beyond energy supply per se. Potential negative impacts also cut across sectors. Thus, institutionally inclusive multi-sector legislative structures will be more effective at maximizing the social benefits of bioenergy compared to institutionally exclusive, single-sector structures.

  7. Bioenergy good practice

    Energy Technology Data Exchange (ETDEWEB)

    Birse, J.; Chambers, K.

    2000-07-01

    This report gives details of a project to make the Good Practice Guidelines, which were developed to help the UK Bioenergy industry, the national and local governments, and the public, more widely available. Details concerning the designing of a Good Practice Programme, and the proposed codes of Good Practice programme are given, and general relevant good practice guidance documents are discussed. The stakeholder survey and workshop, and the proposed codes of a Good Practice Programme are presented in Annexes. (UK)

  8. The development of bioenergy in Austria and in the EU

    International Nuclear Information System (INIS)

    Schmidt, A.

    1999-01-01

    Austria is interested in using of biomass for energy because of its energy, environmental, agricultural and social policy. The country imports more than two thirds of the energy (about 350 P J/a). As the energy production using fossils decreases, the dependence of the country on imported energy increases. Compensation of this could be only an increase of hydropower and of bio-energy utilization but about 70% of the domestic hydropower is already used and the use of the remaining 30% is ecologically objected. So this increase relies on bio-energy. It is non exhaustible and very attractive as is neutral to carbon dioxide emissions. With of 46% of its territory wooded and large quantities of by-products, the country has an enormous potential for bio-energy production. Like other European countries there is surplus food and feed production, expressed as about 350 000 ha arable and greenland . The cultivation of new and special crops could reduce the surplus area to 170 000 ha for energy crops. The regional utilization of biomass for energy production would contribute to the creation of new jobs in the undeveloped rural areas. Each MW installed capacity would result to 2-3 new jobs and prevent the migration of 2-3 families from rural to urban regions saving large subsidies. The share of bio-energy is 10.9% of the primary energy consumption or 13.5% of the end energy consumption and is continually increasing. Bio-energy by wood by-product is mainly used for space heating with a total capacity of 2.5 GW: 90% of the furnaces are of less than 100 k W, the rest are of medium capacity (100-1000 k W) and only 364 of a capacity larger than 1MW. Considerable technical progress in decreasing emissions from wood burning was made in recently. About 25% of the bio-fuels are used in industrial installations and about 75% for space heating. The industrial boilers use fluidized-bed technology and co-generation systems using steam. Starting from 2005 3% of the electricity have to be

  9. Bioenergy, its present and future competitiveness

    International Nuclear Information System (INIS)

    Ling, Erik

    1999-01-01

    The thesis deals with aspects of the competitiveness of bioenergy. The central aim is to develop a number of concepts that enables an extended analysis. The thesis is composed of four studies. In study 1 and 2 the emphasis is put on two institutional frameworks within the forest company, i.e. the framework around the forest fuel operations and the framework around the industrial timber operations. Depending on which of the two institutional frameworks that makes up the basis for the understanding of forest fuel operations, the forest fuel operations will be given different roles and different priorities. Different goals and the process of integrating the forest fuel operations into the forest company will therefore be carried out with different means, different feelings and different resources. Study 3 examines the conceptions that the actors of the energy system uphold. The study presents the concept of logic, which is an institutionalised conception of the competitiveness of bioenergy. Logics can be seen as the dominating conceptions within the energy system and are decisive in determining the factors and parameters that state the competitiveness of different forms of energy. Study 4 argues that the strategical work concerning the competitiveness of bioenergy in the long-run to a great extent is about understanding, shaping and utilising the conceptions that affect the bioenergy system. The study problematises strategies that are used to develop bioenergy by introducing the uncertainty of the future into the analysis. The uncertainty of the future is captured in different scenarios

  10. Implications of sustainability constraints on UK bioenergy development: Assessing optimistic and precautionary approaches with UK MARKAL

    International Nuclear Information System (INIS)

    McDowall, Will; Anandarajah, Gabrial; Dodds, Paul E.; Tomei, Julia

    2012-01-01

    Bioenergy is an important renewable energy resource. However, assessments of the future of bioenergy are beset with uncertainty and contested values, suggesting that a precautionary approach to bioenergy resource development may be warranted. This paper uses UK MARKAL to examine the implications of adopting a precautionary approach to bioenergy development in the UK. The paper reports a detailed review of UK bioenergy resources and sustainability constraints, and develops precautionary and optimistic resource scenarios. The paper then examines the implications of these scenarios using the energy systems model MARKAL, finding that a precautionary approach adds to the cost of decarbonisation, but does not significantly alter the optimal technology mix. In particular, biomass and co-firing CCS emerge as optimal technologies across scenarios. The question of UK land availability for bioenergy production is highlighted within the paper. With less land available for bioenergy production, the costs of decarbonisation will rise; whereas if more land is available for bioenergy, then less land is available for either food production or ecosystem conservation. This paper quantifies one side of this trade-off, by estimating the additional costs incurred when UK land availability for bioenergy production is constrained. - Highlights: ► We assess UK bioenergy resources under optimistic and precautionary approaches. ► Using MARKAL, we find that sustainability constraints add to decarbonisation costs. ► Preferred use of bioenergy is similar in optimistic and precautionary cases. ► Best use of bioenergy is heat and power, not transport, if CCS is available. ► The marginal value of additional land availability to the energy system is high.

  11. Bioenergy in Ukraine-Possibilities of rural development and opportunities for local communities

    International Nuclear Information System (INIS)

    Raslavicius, Laurencas; Grzybek, Anna; Dubrovin, Valeriy

    2011-01-01

    This review paper deals with colligated aspects of the BioPlus Project (ERA-ARD) implemented by Institute of Technology and Life Sciences (Poland) and Lithuanian University of Agriculture Institute of Agro-Engineering (Lithuania) in cooperation with National University of Life and Environmental Sciences of Ukraine Institute of Ecobiotechnologies and Bioenergy (Ukraine). The drawn inferences intended to be an auxiliary material for policy makers and can briefly indicate on direction of the regional development of rural Ukraine, focusing on: (i) country's specific and sub-regional assessments of renewable energy potentials and spheres of its application; (ii) identification of major barriers for the expansion of renewable energy technologies and policy guidance to overcome those barriers; (iii) recommendations for future actions and strategies concerning renewable energy in Ukraine. The article concludes that low contribution of bioenergy towards rural development is to a large extent driven by energy policy that inhibits the delivery and use of modern energy sources in rural Ukraine. Consequently, an incentive for achieving bioenergy's future that has greater relevance to development of the Ukraine's regions requires a mix of policy tools and institutional actions, briefly summarized in this paper. - Highlights: → We examine current status and the potentials of bioenergy in Ukraine. → We examine major barriers for the expansion of bioenergy technologies in Ukraine. → Ukraine has the highest potential for renewable energy production in Europe. → Bioenergy sector of UA requires better mix of policy tools and institutional actions. → Cost-competitiveness and financing of technologies and projects are major challenges.

  12. Sustainable Forest Bioenergy Development Strategies in Indochina: Collaborative Effort to Establish Regional Policies

    Directory of Open Access Journals (Sweden)

    Viktor J. Bruckman

    2018-04-01

    Full Text Available We conducted a feasibility study in Indochina (Cambodia, Laos, Myanmar, Thailand, and Vietnam with the aim of promoting biomass and bioenergy markets, technology transfer, rural development, and income generation. Policy development is guided by the International Union of Forest Research Institutions (IUFRO Task Force “Sustainable Forest Bioenergy Network”. In this paper, we highlight the achievements up to now and present results of a multi-stakeholder questionnaire in combination with a quantitative analysis of the National Bioenergy Development Plans (NBDPs. We found a gap between official documents and working group assessments. NBDPs are focused on the market development, technology transfer, and funding possibilities of a regional bioenergy strategy, while the respondents of a questionnaire (working groups favored more altruistic goals, i.e., sustainable resource management, environmental protection and climate change mitigation, generation of rural income, and community involvement, etc. We therefore suggest the following measures to ensure regulations that support the original aims of the network (climate change mitigation, poverty alleviation, sustainable resource use, and diversification of energy generation: (i Consideration of science-based evidence for drafting bioenergy policies, particularly in the field of biomass production and harvesting; (ii invitation of stakeholders representing rural communities to participate in this process; (iii development of sustainability criteria; (iv feedback cycles ensuring more intensive discussion of policy drafts; (v association of an international board of experts to provide scientifically sound feedback and input; and (vi establishment of a local demonstration region, containing various steps in the biomass/bioenergy supply chain including transboundary collaboration in the ACMECS region.

  13. Recent developments of biofuels/bioenergy sustainability certification: A global overview

    International Nuclear Information System (INIS)

    Scarlat, Nicolae; Dallemand, Jean-Francois

    2011-01-01

    The objective of this paper is to provide a review on the latest developments on the main initiatives and approaches for the sustainability certification for biofuels and/or bioenergy. A large number of national and international initiatives lately experienced rapid development in the view of the biofuels and bioenergy targets announced in the European Union, United States and other countries worldwide. The main certification initiatives are analysed in detail, including certification schemes for crops used as feedstock for biofuels, the various initiatives in the European Union, United States and globally, to cover biofuels and/or biofuels production and use. Finally, the possible way forward for biofuel certification is discussed. Certification has the potential to influence positively direct environmental and social impact of bioenergy production. Key recommendations to ensure sustainability of biofuels/bioenergy through certification include the need of an international approach and further harmonisation, combined with additional measures for global monitoring and control. The effects of biofuels/bioenergy production on indirect land use change (ILUC) is still very uncertain; addressing the unwanted ILUC requires sustainable land use planning and adequate monitoring tools such as remote sensing, regardless of the end-use of the product. - Research highlights: → There is little harmonisation between certification initiatives. → Certification alone is probably not able to avoid certain indirect effects. → Sustainability standards should be applied globally to all agricultural commodities. → A critical issue to certification is implementation and verification. → Monitoring and control of land use changes through remote sensing are needed.

  14. Use of bioenergy in the Baltic Sea region. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Barz, M.; Ahlhaus, M. (eds.)

    2006-07-01

    The actual situation in our world can shortly be characterized by growing population and increasing energy demand, mainly covered by fossil fuels. This results in environmental as well as climate change problems. Renewable energies offer many opportunities to overcome these problems - they can provide heat and electricity as well as automotive fuels in environmentally friendly systems and thus contribute to lower the fossil fuels dependency. Biomass as the oldest renewable energy of mankind is still playing a dominant role as an energy carrier in some African and Asian regions, where biofuels are still used in traditional ways - mainly for cooking. On the other hand biomass has a huge potential to become a more important energy resource even in industrialized countries. All over the world the opportunities of biomass are accepted and biomass has become a common term in politics resulting in new strategic analyses, political documents, legislative actions and funding programs. A lot of modern and new high-tech solutions for bioenergy systems are already developed and others are under research. Aims of the actual developments are new bioenergy systems on the basis of regional biomass potentials in rural regions. The Baltic Sea Region offers a high potential to produce biofuels for different applications to fit the growing demand of heat, electricity and fuels. In combination with its industry and engineering skills the Baltic Sea Region is predestinated as a nucleus for further development and demonstration of advanced bioenergy solutions. In the result of the conference ''Contribution of Agriculture to Energy Production'', held in Tallinn, Estonia in October 2005 representatives from policy, economy and science identified a high potential and demand for bioenergy solutions and realized the necessity of establishment of an international network (Baltic Bioenergy Net - BaBEt) for information and know-how transfer between the Baltic States to foster

  15. Use of bioenergy in the Baltic Sea region. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Barz, M; Ahlhaus, M [eds.

    2006-07-01

    The actual situation in our world can shortly be characterized by growing population and increasing energy demand, mainly covered by fossil fuels. This results in environmental as well as climate change problems. Renewable energies offer many opportunities to overcome these problems - they can provide heat and electricity as well as automotive fuels in environmentally friendly systems and thus contribute to lower the fossil fuels dependency. Biomass as the oldest renewable energy of mankind is still playing a dominant role as an energy carrier in some African and Asian regions, where biofuels are still used in traditional ways - mainly for cooking. On the other hand biomass has a huge potential to become a more important energy resource even in industrialized countries. All over the world the opportunities of biomass are accepted and biomass has become a common term in politics resulting in new strategic analyses, political documents, legislative actions and funding programs. A lot of modern and new high-tech solutions for bioenergy systems are already developed and others are under research. Aims of the actual developments are new bioenergy systems on the basis of regional biomass potentials in rural regions. The Baltic Sea Region offers a high potential to produce biofuels for different applications to fit the growing demand of heat, electricity and fuels. In combination with its industry and engineering skills the Baltic Sea Region is predestinated as a nucleus for further development and demonstration of advanced bioenergy solutions. In the result of the conference ''Contribution of Agriculture to Energy Production'', held in Tallinn, Estonia in October 2005 representatives from policy, economy and science identified a high potential and demand for bioenergy solutions and realized the necessity of establishment of an international network (Baltic Bioenergy Net - BaBEt) for information and know-how transfer between the Baltic States to foster the energetic use

  16. Canada report on bioenergy 2008

    International Nuclear Information System (INIS)

    Bradley, D.

    2008-06-01

    Canada is a nation rich in fossil fuel resources. Canada has a large, well-developed forest sector and is one of the world's largest exporters of wood products. Although national bioenergy policies exist, provincial policies regarding forest resources are necessary because 77 per cent of Canada's forests are under provincial jurisdiction. This report presented an update on Canada's bioenergy policy and resources. The report discussed biomass resources such as woody biomass; agricultural residues; and municipal waste. The use of biomass was presented with particular reference to heat and power; biofuels production; pyrolysis oil; wood pellets; and trends in biomass production and consumption. Current biomass users and biomass prices were also examined. Last, the report addressed imports and exports of ethanol, biodiesel, pyrolysis oil, and wood pellets as well as barriers and opportunities to trade. A list of Canadian bioenergy initiatives and programs was also provided. It was concluded that the greatest opportunities for trade are to succeed in research on super-densified pellets; raise ocean shipping capacity to bring down rates; and to establish and entire biomass industry in Newfoundland Labrador. 20 tabs., 8 figs., 1 appendix

  17. Bioenergy production and sustainable development: science base for policymaking remains limited.

    Science.gov (United States)

    Robledo-Abad, Carmenza; Althaus, Hans-Jörg; Berndes, Göran; Bolwig, Simon; Corbera, Esteve; Creutzig, Felix; Garcia-Ulloa, John; Geddes, Anna; Gregg, Jay S; Haberl, Helmut; Hanger, Susanne; Harper, Richard J; Hunsberger, Carol; Larsen, Rasmus K; Lauk, Christian; Leitner, Stefan; Lilliestam, Johan; Lotze-Campen, Hermann; Muys, Bart; Nordborg, Maria; Ölund, Maria; Orlowsky, Boris; Popp, Alexander; Portugal-Pereira, Joana; Reinhard, Jürgen; Scheiffle, Lena; Smith, Pete

    2017-03-01

    The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion of whether and how bioenergy production contributes to sustainable development. We undertook a systematic review of the scientific literature to illuminate this relationship and found a limited scientific basis for policymaking. Our results indicate that knowledge on the sustainable development impacts of bioenergy production is concentrated in a few well-studied countries, focuses on environmental and economic impacts, and mostly relates to dedicated agricultural biomass plantations. The scope and methodological approaches in studies differ widely and only a small share of the studies sufficiently reports on context and/or baseline conditions, which makes it difficult to get a general understanding of the attribution of impacts. Nevertheless, we identified regional patterns of positive or negative impacts for all categories - environmental, economic, institutional, social and technological. In general, economic and technological impacts were more frequently reported as positive, while social and environmental impacts were more frequently reported as negative (with the exception of impacts on direct substitution of GHG emission from fossil fuel). More focused and transparent research is needed to validate these patterns and develop a strong science underpinning for establishing policies and governance agreements that prevent/mitigate negative and promote positive impacts from bioenergy production.

  18. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  19. Developing a sustainability framework for assessing bioenergy projects

    CSIR Research Space (South Africa)

    Harrison, JA

    2009-06-01

    Full Text Available Focusing on the situation relating to bioenergy in India, this paper provides analyses of the currently available methodologies for assessing the varied impacts, both positive and negative, of bioenergy production. This contextual information...

  20. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Peter D. [SRI International, Menlo Park, CA (United States)

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  1. Impacts of Bioenergy Policies on Land-Use Change in Nigeria

    Directory of Open Access Journals (Sweden)

    Stanley U. Okoro

    2018-01-01

    Full Text Available In recent years, bioenergy policies have increased the competition for land as well as the risk of adverse environmental impacts resulting from deforestation and greenhouse gas emissions (GHGs. Primary land-use objectives confronting society today include meeting the growing demand for agricultural products, especially energy crops, preserving essential ecosystem services for human well-being and long-run agrarian production, and contributing to the climate policy target. Here, future agricultural, societal and environmental consequences of bioenergy policies under different global climate and societal development scenarios were assessed using a novel Forest and Agricultural Sector Optimization Model for Nigeria (NGA–FASOM. The results reveal that, in Nigeria, meeting emission reduction requires an implementation of a minimum carbon price of $80/ton within the forest and agricultural sectors. A carbon price alone is not sufficient to preserve the remaining forests and pasture land in Nigeria when bioenergy is subsidized. Furthermore, the result shows that subsidy on bioenergy does not have any significant effect on the total social welfare. The findings in this study provide a guide for policymakers in designing appropriate policies addressing bioenergy industry issues in Nigeria.

  2. Review of Sorghum Production Practices: Applications for Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  3. IEA Bioenergy Countries' Report: Bioenergy policies and status of implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bacovsky, Dina [Bioenergy 2020+ GmbH, Graz (Austria); Ludwiczek, Nikolaus [Bioenergy 2020+ GmbH, Graz (Austria); Pointner, Christian [Bioenergy 2020+ GmbH, Graz (Austria); Verma, Vijay Kumar [Bioenergy 2020+ GmbH, Graz (Austria)

    2016-08-05

    This report was prepared from IEA statistical data, information from IRENA, and IEA Bioenergy Tasks’ country reports, combined with data provided by the IEA Bioenergy Executive Committee. All individual country reports were reviewed by the national delegates to the IEA Bioenergy Executive Committee, who have approved the content. In the first section of each country report, national renewable energy targets are presented (first table in each country report), and the main pieces of national legislation are discussed. In the second section of each country report the total primary energy supply (TPES) by resources and the contribution of bioenergy are presented. All data is taken from IEA statistics for the year 2014. Where 2014 data was not available, 2013 data was used. It is worth noting that data reported in national statistics can differ from the IEA data presented, as the reporting categories and definitions are different. In the third section of each country report, the research focus related to bioenergy is discussed. Relevant funding programs, major research institutes and projects are described. In the fourth section, recent major bioenergy developments are described. Finally, in the fifth section, links to sources of information are provided.

  4. Bioenergy and the potential contribution of agricultural biotechnologies in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Ruane, John [FAO Working Group on Biotechnology, UN Food and Agriculture Organization (FAO), Viale delle Terme di Caracalla, 00153 Rome (Italy); Sonnino, Andrea [FAO Office of Knowledge Exchange, Research and Extension, UN Food and Agriculture Organization (FAO), Viale delle Terme di Caracalla, 00153 Rome (Italy); Agostini, Astrid [FAO Investment Centre, UN Food and Agriculture Organization (FAO), Viale delle Terme di Caracalla, 00153 Rome (Italy)

    2010-10-15

    We provide an overview of the current status of bioenergy development, focusing on first- and second-generation liquid biofuels, considering drivers of growth and risks that have raised concerns over recent years. We also describe the main areas where biotechnologies are being, or can be, applied for production of first- and second-generation biofuels as well as microalgal biodiesel and biogas. Greatest attention is paid to second-generation biofuels in the review because of the large expectations they have created and because of the significant role that biotechnology applications are likely to play in their development. We close with some specific considerations regarding applying biotechnologies for bioenergy development in developing countries. (author)

  5. Risoe energy report 2. New and emerging bioenergy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H; Kossmann, J; Soenderberg Petersen, L [eds.

    2003-11-01

    Three growing concerns - sustainability (particularly in the transport sector), security of energy supply and climate change - have combined to increase interest in bioenergy. The trend towards bioenergy has been further encouraged by technological advances in biomass conversion and significant changes in energy markets. We even have a new term, 'modern bioenergy', to cover those areas of bioenergy technology - traditional as well as emerging - that could expand the role of bioenergy. Besides its potential to be carbon-neutral if produced sustainable, modern bioenergy shows the promise of covering a considerable part of the world's energy needs, increasing the security of energy supply through the use of indigenous resources, and improving local employment and land-use. To make these promises, however, requires further R and D. This report provides a critical examination of modern bioenergy, and describes current trends in both established and emerging bioenergy technologies. As well as examining the implications for the global energy scene, the report draws national conclusions for European and Danish energy supply, industry and energy research. The report presents the status of current R and D in biomass resources, supply systems, end products and conversion methods. A number of traditional and modern bioenergy technologies are assessed to show their current status, future trends and international R and D plans. Recent studies of emerging bioenergy technologies from international organisations and leading research organisations are reviewed. (BA)

  6. A strategy for introducing modern bioenergy into developing Asia to avoid dangerous climate change

    International Nuclear Information System (INIS)

    Takeshita, Takayuki

    2009-01-01

    This paper explores the cost-effective strategy for introducing modern bioenergy into developing Asia through the 21st century under a 400 ppmv CO 2 stabilization constraint using a global energy model that treats the bioenergy sector in detail. The major conclusions are the following. First, under the 400 ppmv CO 2 stabilization constraint, it is cost-effective to use modern bioenergy largely to generate heat and replace direct coal use in developing Asia in the first half of the century, because direct heat generation from modern biomass is efficient and expected to achieve large CO 2 reduction. As second-generation bioenergy conversion technologies (mainly gasification-based technologies) become mature in the second half of the century, it becomes cost-effective to introduce biomass-derived hydrogen, electricity, and Fischer-Tropsch synfuels and bioethanol produced using these technologies into developing Asia instead of modern biomass-derived heat. All biomass gasification-based conversion technologies are combined with CO 2 capture and storage from 2060, which enables negative CO 2 emissions and makes a substantial contribution to achieving the stringent climate stabilization target. Second, due to its small availability of biomass resources, large-scale import of biofuels and wood pellets is inevitable in developing Asia except southeastern Asia under the CO 2 constraint used here. It is shown that this contributes to diversifying liquid fuel import sources and improving energy security in developing Asia. Third, sensitivity analysis shows that these findings are robust to bioenergy-related cost parameters. (author)

  7. Dynamic analysis of policy drivers for bioenergy commodity markets

    International Nuclear Information System (INIS)

    Jeffers, Robert F.; Jacobson, Jacob J.; Searcy, Erin M.

    2013-01-01

    Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from export dominance. - Highlights: ► We model a United States bioenergy feedstock commodity market. ► Three buyers compete for biomass: biopower, biofuels, and foreign exports. ► The presented methodology improves on dynamic economic equilibrium theory. ► With current policy incentives and ignoring exports, biofuels dominates the market. ► Overseas biomass demand could dominate unless a CO 2 -limiting policy is enacted.

  8. Biomass for bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    Across the range of renewable energy resources, bioenergy is probably the most complex, as using biomass to support energy services ties into a number of fields; climate change, food production, rural development, biodiversity and environmental protection. Biomass offer several options...... for displacing fossil resources and is perceived as one of the main pillars of a future low-carbon or no-carbon energy supply. However, biomass, renewable as it is, is for any relevant, time horizon to be considered a finite resource as it replenishes at a finite rate. Conscientious stewardship of this finite...... the undesirable impacts of bioenergy done wrong. However, doing bioenergy right is a significant challenge due to the ties into other fields of society. Fundamentally plant biomass is temporary storage of solar radiation energy and chemically bound energy from nutrients. Bioenergy is a tool to harness solar...

  9. Opportunities and barriers for international bioenergy trade

    International Nuclear Information System (INIS)

    Junginger, Martin; Dam, Jinke van; Zarrilli, Simonetta; Ali Mohamed, Fatin; Marchal, Didier; Faaij, Andre

    2011-01-01

    Recently, the international trade of various bioenergy commodities has grown rapidly, yet this growth is also hampered by some barriers. The aim of this paper is to obtain an overview of what market actors currently perceive as major opportunities and barriers for the development of international bioenergy trade. The work focuses on three bioenergy commodities: bioethanol, biodiesel and wood pellets. Data were collected through an internet-based questionnaire. The majority of the 141 respondents had an industrial background. Geographically, two-thirds were from (mainly Western) Europe, with other minor contributions from all other continents. Results show that import tariffs and the implementation of sustainability certification systems are perceived as (potentially) major barriers for the trade of bioethanol and biodiesel, while logistics are seen mainly as an obstacle for wood pellets. Development of technical standards was deemed more as an opportunity than a barrier for all commodities. Most important drivers were high fossil fuel prices and climate change mitigation policies. Concluding, to overcome some of the barriers, specific actions will be required by market parties and policy makers. Import tariffs for biofuels could be reduced or abolished, linked to multinational trade agreements and harmonization (including provisions on technical standards and sustainability requirements). - Research highlights: → We analyze main barriers for global trade of wood pellets, ethanol and biodiesel. → Import tariffs can be a major barrier for liquid biofuels trade. → Implementation of sustainability certification systems may hamper biofuels trade. → Logistics are seen mainly as an obstacle for the trade of wood pellets. → Development of technical standards are deemed an opportunity for bioenergy trade.

  10. Finnish bioenergy research programme

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    Finland is a leading country in the use of biofuels and has excellent opportunities to increase the use of biofuels by up to 25-30 %. The Finnish Government has set an objective for the promotion of bioenergy. The aim is to increase the use of bioenergy by about 25 % from the present level by 2005, and the increment corresponds to 1.5 million tonnes of oil equivalent (toe) per year. The R and D work has been considered as an important factor to achieve this ambitious goal. Energy research was organised into a series of research programmes in 1988 in accordance with the proposal of Finnish Energy Research Committee. The object of the research programmes is to enhance research activities and to bundle individual projects together into larger research packages. The common target of the Finnish energy research programmes is to proceed from basic and applied research to product development and pilot operation, and after that to the first commercial applications, e.g. demonstrations. As the organisation of energy research to programmes has led to good results, the Finnish Ministry of Trade and Industry decided to go on with this practice by launching new six-year programmes in 1993-1998. One of these programmes is the Bioenergy Research Programme and the co-ordination of this programme is carried out by VTT Energy. Besides VTT Energy the Finnish Forest Research Institute, Work Efficiency Institute, Metsaeteho and University of Joensuu are participating in the programme 7 refs.

  11. Finnish bioenergy research programme

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    Finland is a leading country in the use of biofuels and has excellent opportunities to increase the use of biofuels by up to 25-30 %. The Finnish Government has set an objective for the promotion of bioenergy. The aim is to increase the use of bioenergy by about 25 % from the present level by 2005, and the increment corresponds to 1.5 million tonnes of oil equivalent (toe) per year. The R and D work has been considered as an important factor to achieve this ambitious goal. Energy research was organised into a series of research programmes in 1988 in accordance with the proposal of Finnish Energy Research Committee. The object of the research programmes is to enhance research activities and to bundle individual projects together into larger research packages. The common target of the Finnish energy research programmes is to proceed from basic and applied research to product development and pilot operation, and after that to the first commercial applications, e.g. demonstrations. As the organisation of energy research to programmes has led to good results, the Finnish Ministry of Trade and Industry decided to go on with this practice by launching new six-year programmes in 1993-1998. One of these programmes is the Bioenergy Research Programme and the co-ordination of this programme is carried out by VTT Energy. Besides VTT Energy the Finnish Forest Research Institute, Work Efficiency Institute, Metsaeteho and University of Joensuu are participating in the programme 7 refs.

  12. How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise

    Directory of Open Access Journals (Sweden)

    Anandarajah Gabrial

    2009-07-01

    Full Text Available Abstract Background This work explores the potential contribution of bioenergy technologies to 60% and 80% carbon reductions in the UK energy system by 2050, by outlining the potential for accelerated technological development of bioenergy chains. The investigation was based on insights from MARKAL modelling, detailed literature reviews and expert consultations. Due to the number and complexity of bioenergy pathways and technologies in the model, three chains and two underpinning technologies were selected for detailed investigation: (1 lignocellulosic hydrolysis for the production of bioethanol, (2 gasification technologies for heat and power, (3 fast pyrolysis of biomass for bio-oil production, (4 biotechnological advances for second generation bioenergy crops, and (5 the development of agro-machinery for growing and harvesting bioenergy crops. Detailed literature searches and expert consultations (looking inter alia at research and development needs and economic projections led to the development of an 'accelerated' dataset of modelling parameters for each of the selected bioenergy pathways, which were included in five different scenario runs with UK-MARKAL (MED. The results of the 'accelerated runs' were compared with a low-carbon (LC-Core scenario, which assesses the cheapest way to decarbonise the energy sector. Results Bioenergy was deployed in larger quantities in the bioenergy accelerated technological development scenario compared with the LC-Core scenario. In the electricity sector, solid biomass was highly utilised for energy crop gasification, displacing some deployment of wind power, and nuclear and marine to a lesser extent. Solid biomass was also deployed for heat in the residential sector from 2040 in much higher quantities in the bioenergy accelerated technological development scenario compared with LC-Core. Although lignocellulosic ethanol increased, overall ethanol decreased in the transport sector in the bioenergy

  13. The basis for a Platform Bio-Energy. Combining forces for the Dutch bio-energy business

    International Nuclear Information System (INIS)

    Van Halen, C.J.G.

    1998-02-01

    It appears that there is a need for a community of interests in the field of bio-energy to solve numerous problems and to answer many questions with respect to the development of businesses that are active in the field of bio-energy. The title study was carried out in the third and fourth quarter of 1997 by means of surveys and depth interviews among representatives of bio-energy businesses, interest groups and research institutes. The majority of the respondents supports the foundation of the Platform Bio-Energy and suggests many different activities

  14. Bioenergy Status Document 2012; Statusdocument Bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.; Croezen, H. [CE Delft, Delft (Netherlands)

    2013-05-15

    In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] Het statusdocument bio-energie 2012 geeft de huidige status weer van bio-energie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken in de ontwikkelingen van bio-energie, voor overheden en marktpartijen.

  15. Risoe energy report 2. New and emerging bioenergy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.; Kossmann, J.; Soenderberg Petersen, L. (eds.)

    2003-11-01

    Three growing concerns - sustainability (particularly in the transport sector), security of energy supply and climate change - have combined to increase interest in bioenergy. The trend towards bioenergy has been further encouraged by technological advances in biomass conversion and significant changes in energy markets. We even have a new term, 'modern bioenergy', to cover those areas of bioenergy technology - traditional as well as emerging - that could expand the role of bioenergy. Besides its potential to be carbon-neutral if produced sustainable, modern bioenergy shows the promise of covering a considerable part of the world's energy needs, increasing the security of energy supply through the use of indigenous resources, and improving local employment and land-use. To make these promises, however, requires further R and D. This report provides a critical examination of modern bioenergy, and describes current trends in both established and emerging bioenergy technologies. As well as examining the implications for the global energy scene, the report draws national conclusions for European and Danish energy supply, industry and energy research. The report presents the status of current R and D in biomass resources, supply systems, end products and conversion methods. A number of traditional and modern bioenergy technologies are assessed to show their current status, future trends and international R and D plans. Recent studies of emerging bioenergy technologies from international organisations and leading research organisations are reviewed. (BA)

  16. Bioenergy production and food security in Africa

    African Journals Online (AJOL)

    Ezedom Theresa

    This will in turn, facilitate industrialization in other sectors of economy through provision of affordable ... bioenergy production on food security, land allocation for energy crop production can be regulated. ... bility determines the type of industries, and the cost of ...... African countries, yeast and crude enzyme production.

  17. Efficient and sustainable deployment of bioenergy with carbon capture and storage in mitigation pathways

    Science.gov (United States)

    Kato, E.; Moriyama, R.; Kurosawa, A.

    2016-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise well below 2°C above pre-industrial, which would require net negative carbon emissions at the end of the 21st century. Also, in the Paris agreement from COP21, it is denoted "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century" which could require large scale deployment of negative emissions technologies later in this century. Because of the additional requirement for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of large-scale BECCS. In this study, we present possible development strategies of low carbon scenarios that consider interaction of economically efficient deployment of bioenergy and/or BECCS technologies, biophysical limit of bioenergy productivity, and food production. In the evaluations, detailed bioenergy representations, including bioenergy feedstocks and conversion technologies with and without CCS, are implemented in an integrated assessment model GRAPE. Also, to overcome a general discrepancy about yield development between 'top-down' integrate assessment models and 'bottom-up' estimates, we applied yields changes of food and bioenergy crops consistent with process-based biophysical models; PRYSBI-2 (Process-Based Regional-Scale Yield Simulator with Bayesian Inference) for food crops, and SWAT (Soil and Water Assessment Tool) for bioenergy crops in changing climate conditions. Using the framework, economically viable strategy for implementing sustainable BECCS are evaluated.

  18. The Economic Determinants of Bioenergy Trade Intensity in the EU-28: A Co-Integration Approach

    Directory of Open Access Journals (Sweden)

    Mohd Alsaleh

    2018-02-01

    Full Text Available This paper examines the dynamic effect of the economic determinants on bilateral trade intensity of the European Union (EU region’s bioenergy industry outputs. The authors adopt the panel co-integration model approach to estimate annual trade intensity data of the EU-28 countries’ bioenergy industry outputs from 1990 to 2013. This study investigated the long-term influence of the rate of real exchange, gross domestic product (GDP, and export price on the trade intensity of bioenergy industry applying fully modified oriented least square (FMOLS, dummy oriented least square (DOLS, and pooled mean group (PMG models. In the current study, the findings boost the empirical validity of the panel co-integration model through FMOLS, indicating that depreciation has improved the trade intensity. This study has further investigated, through the causality test, a distinct set of countries. FMOLS estimation does find proof of the long run improvement of trade intensity. Thus, the result shows that the gross domestic product (GDP and the real exchange rate have a positive and noteworthy influence on the EU-28 region trade intensity of the bioenergy industry. Moreover, the export price affects negatively and significantly the trade intensity of the bioenergy industry in the EU-28 countries.

  19. Sustainability constraints on UK bioenergy development

    International Nuclear Information System (INIS)

    Thornley, Patricia; Upham, Paul; Tomei, Julia

    2009-01-01

    Use of bioenergy as a renewable resource is increasing in many parts of the world and can generate significant environmental, economic and social benefits if managed with due regard to sustainability constraints. This work reviews the environmental, social and economic constraints on key feedstocks for UK heat, power and transport fuel. Key sustainability constraints include greenhouse gas savings achieved for different fuels, land availability, air quality impacts and facility siting. Applying those constraints, we estimate that existing technologies would facilitate a sustainability constrained level of medium-term bioenergy/biofuel supply to the UK of 4.9% of total energy demand, broken down into 4.3% of heat demands, 4.3% of electricity, and 5.8% of transport fuel. This suggests that attempts to increase the supply above these levels could have counterproductive sustainability impacts in the absence of compensating technology developments or identification of additional resources. The barriers that currently prevent this level of supply being achieved have been analysed and classified. This suggests that the biggest policy impacts would be in stimulating the market for heat demand in rural areas, supporting feedstock prices in a manner that incentivised efficient use/maximum greenhouse gas savings and targeting investment capital that improves yield and reduces land-take.

  20. BIOENERGIA - Focus on wood in bioenergy research

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [Jyvaeskylae Science Park, Jyvaeskylae (Finland)

    1996-12-31

    The most important area of research on wood fuel production is the development of various methods, machines and systems connected to this area, in order to produce economically competitive fuels. The integrated harvesting methods, which supply both raw material to wood products industry and wood fuel for energy production, have been chosen the main research area because they seem to be most promising. The growing amount of small-sized trees ant the need of their first thinnings have created a demand for new harvesting methods. At the moment the economical aspects restrict the harvesting of the first thinning trees either for industrial use or energy production. Research on peat production focuses on the complete use of a bog and on the development of peat production methods and machines. Development work in this area aims at decreasing production costs and also at reducing the drainage water and other elements in environmental load around the peat production sites. The use of bioenergy research will be focused on the small-scale (<20 MW{sub th},) applications. In the long term, the increase of bioenergy in heating of small houses and farms and buildings, as well as in the production of heat and power has been estimated. Research into the conversion of biomass is concentrated on the production of biomass-based liquid fuels

  1. Bioenergy systems sustainability assessment & management (BIOSSAM) guidance portal for policy, decision and development support of integrated bioenergy supply interventions

    CSIR Research Space (South Africa)

    Stafford, WHL

    2010-08-01

    Full Text Available . There are several new bioenergy interventions (policies, projects, or programmes) that are being considered and these developments must be assessed in terms of their sustainability. Both public and private sector policy makers, decision makers, and technology...

  2. Pest-suppression potential of midwestern landscapes under contrasting bioenergy scenarios.

    Directory of Open Access Journals (Sweden)

    Timothy D Meehan

    Full Text Available Biomass crops grown on marginal soils are expected to fuel an emerging bioenergy industry in the United States. Bioenergy crop choice and position in the landscape could have important impacts on a range of ecosystem services, including natural pest-suppression (biocontrol services provided by predatory arthropods. In this study we use predation rates of three sentinel crop pests to develop a biocontrol index (BCI summarizing pest-suppression potential in corn and perennial grass-based bioenergy crops in southern Wisconsin, lower Michigan, and northern Illinois. We show that BCI is higher in perennial grasslands than in corn, and increases with the amount of perennial grassland in the surrounding landscape. We develop an empirical model for predicting BCI from information on energy crop and landscape characteristics, and use the model in a qualitative assessment of changes in biocontrol services for annual croplands on prime agricultural soils under two contrasting bioenergy scenarios. Our analysis suggests that the expansion of annual energy crops onto 1.2 million ha of existing perennial grasslands on marginal soils could reduce BCI between -10 and -64% for nearly half of the annual cropland in the region. In contrast, replacement of the 1.1 million ha of existing annual crops on marginal land with perennial energy crops could increase BCI by 13 to 205% on over half of the annual cropland in the region. Through comparisons with other independent studies, we find that our biocontrol index is negatively related to insecticide use across the Midwest, suggesting that strategically positioned, perennial bioenergy crops could reduce insect damage and insecticide use on neighboring food and forage crops. We suggest that properly validated environmental indices can be used in decision support systems to facilitate integrated assessments of the environmental and economic impacts of different bioenergy policies.

  3. Bioenergy overview for Portugal

    International Nuclear Information System (INIS)

    Ferreira, Sergio; Moreira, Nuno Afonso; Monteiro, Eliseu

    2009-01-01

    Bioenergy is seen as one of the key options to mitigate greenhouse gas emissions and substitute fossil fuels. Bioenergy is also an atypical energy source due to its diversity and inter-linkages with many other technological and policy areas. The goal of this paper is to analyze the Portuguese possibilities for bioenergy provision from biomass. The potentials of biomass, conversion technologies and legal framework are analysed and discussed. The result of this analysis shows that there are still unused potentials especially from forestry, which can contribute significantly to cover the bioenergy targets. However, the Portuguese experience with conversion technologies is limited to combustion, which is a drawback that must be solved so as to the bioenergy potential can be used. Research and Development projects, as well as demonstration projects are needed in order to improve the efficiency of the technological processes. At political level, Portuguese governments have been following the policies and strategies of the European Commission in the energy sector. However, energy crops market, due to the inter-linkage with agricultural policy, seems to need some additional political push. (author)

  4. Bioenergy overview for Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Sergio [Tecaprod S.A., 5000 Vila Real (Portugal); Moreira, Nuno Afonso; Monteiro, Eliseu [CITAB, University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000 Vila Real (Portugal)

    2009-11-15

    Bioenergy is seen as one of the key options to mitigate greenhouse gas emissions and substitute fossil fuels. Bioenergy is also an atypical energy source due to its diversity and inter-linkages with many other technological and policy areas. The goal of this paper is to analyze the Portuguese possibilities for bioenergy provision from biomass. The potentials of biomass, conversion technologies and legal framework are analysed and discussed. The result of this analysis shows that there are still unused potentials especially from forestry, which can contribute significantly to cover the bioenergy targets. However, the Portuguese experience with conversion technologies is limited to combustion, which is a drawback that must be solved so as to the bioenergy potential can be used. Research and Development projects, as well as demonstration projects are needed in order to improve the efficiency of the technological processes. At political level, Portuguese governments have been following the policies and strategies of the European Commission in the energy sector. However, energy crops market, due to the inter-linkage with agricultural policy, seems to need some additional political push. (author)

  5. An expose of bioenergy and its potential and utilization in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2008-01-01

    Turkey is heavily dependent on expensive imported energy resources (oil, gas and coal) that place a big burden on the economy. Air pollution is also becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's renewable sources are the second largest source for energy production after coal. About two-thirds of the renewable energy produced is obtained from bioenergy, which is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The amount of usable bioenergy potential of Turkey is approximately 17 Mtoe. This article not only presents a review of the potential and utilization of the bioenergy in Turkey but also provides some guidelines for policy makers

  6. Scaling laws and technology development strategies for biorefineries and bioenergy plants.

    Science.gov (United States)

    Jack, Michael W

    2009-12-01

    The economies of scale of larger biorefineries or bioenergy plants compete with the diseconomies of scale of transporting geographically distributed biomass to a central location. This results in an optimum plant size that depends on the scaling parameters of the two contributions. This is a fundamental aspect of biorefineries and bioenergy plants and has important consequences for technology development as "bigger is better" is not necessarily true. In this paper we explore the consequences of these scaling effects via a simplified model of biomass transportation and plant costs. Analysis of this model suggests that there is a need for much more sophisticated technology development strategies to exploit the consequences of these scaling effects. We suggest three potential strategies in terms of the scaling parameters of the system.

  7. Bioenergy sector needs professionals - how to do it?

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, V.; Aeaenismaa, P. (JAMK Univ. of Applied Sciences, Jyvaeskylae (Finland)), Email: varpu.savolainen@jamk.fi, Email: pekka.aanismaa@jamk.fi; Wihersaari, M. (Jyvaeskylae Univ. (Finland). Dept. of Bio-and Environmantal Sciences), Email: margareta.wihersaari@jyu.fi; Lehtonen, M. (Vocational Education Institute of Northern Central Finland (POKE), Tarvaala (Finland)), Email: maija.lehtonen@poke.fi

    2009-07-01

    A model of networking and cooperation in different levels of bio energy education is being developed jointly by Jam University of Applied Sciences (Jam), University of Jyvaeskylae (JYU) and the Vocational Education Institute of Northern Central Finland (POKE). In this three-year project scientific approach will be combined with a pragmatic perspective to ensure the sustainable future of the bioenergy sector in Central Finland. The idea of the project is to identify the educational needs and bottlenecks and to develop new education packages to promote the whole bioenergy sector, to increase the competitiveness of the bioenergy business in the region, to ensure life-long learning and to make round-the-year employment possible. For example, new models of bioenergy entrepreneurship will be determined and tested. The objective is also to increase bioenergy know-how among manufactures of machinery and equipment and, on the other hand, to increase the number of 'bioenergy masters' and 'bioenergy doctors' in Central Finland. The project is a part of the bioenergy cluster programme of Central Finland. (orig.)

  8. Proceedings of the IEA Bioenergy Task 39 conference : biofuels and bioenergy, a changing climate

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of this conference was to showcase the advancements that have been made in bioenergy development. The presentations addressed several issues, including biorefinery integration; thermochemical technologies; biochemical technologies; feedstock harvest, pretreatment and logistics; biomass production and management; policy, strategies and trade; and greenhouse gas and life cycle assessment. Discussions focused on recent innovations in bioenergy and the feasibility of biofuels in the commercial marketplace with the aim to advance bioenergy development and reduce fossil fuel dependency. A two-day forest management and supply chain field trip was organized in conjunction with the conference. The conference featured 152 presentations, of which 30 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  9. The current situation in the bioenergy sector in South Ostrobothnia

    International Nuclear Information System (INIS)

    Lauhanen, R.; Humalamaeki, H.

    2006-01-01

    In March 2006, a research project was launched about bioenergy production and use that serves the South Ostrobothnia Target 2 area. The project is funded by the European Regional Development Fund, the South Ostrobothnia Employment and Economic Centre and Sein j oki University of Applied Sciences. A meeting of experts was held in Aehtaeri during April 2006 to establish the views on the problems, bottlenecks and research needs of the bioenergy sector. The bioenergy trade was seen as regional opportunity and strength. Its domestic content, effect on employment and the regional economy plus the plentiful raw material sources of forests, fields and bogs were identified. Like-wise, the competing position between bioenergy and other forms of energy became evident. Forest owners emphasised the weakness of low energy wood prices and the risks of forest soil nutrient losses. The forest industry was concerned about a foreseen shortage of machine operators. Forest owners, municipalities, researchers and Forest Centre raised the short-sightedness of state subsidy policy. The Forest Centre also brought up the issue of operators who only seek fast profits in a fast growing trade. The issue of emissions trade benefits ending up outside the forest sector was also considered a problem. The core research needs identified were collating fragmented research in-formation for the use of operators in the Target area, mapping the bioenergy potential of the region, logistical calculations and energy wood measurement

  10. Bioenergy potentials from forestry to 2050. Preliminary results

    International Nuclear Information System (INIS)

    Smeets, E.; Faaij, A.; Lewandowski, I.

    2004-05-01

    In this study a bottom-up scenario analysis of the global bioenergy production potential is carried out, with specific attention for the impact of underlying factors, existing outlook studies on demand and supply and gaps in the knowledge base that explain the large range in estimates. Key variables are the demand for industrial roundwood and fuelwood, plantation establishment rates and natural forest growth. Key uncertainties are the supply of wood from trees outside and the impact of sustainable forest management (SFM) of yields. Results show that the world is capable of meeting the future demand for industrial roundwood and fuelwood, without further deforestation. The total potential of bioenergy from surplus forest growth and residues is estimated at 27 to 140 EJy -1 in 2050

  11. Bio-energy in the wood processing industry. Manual for energy production from residual matter for the wood processing industry

    International Nuclear Information System (INIS)

    Van Halen, C.J.G.; Arninkhof, M.J.C.; Rommens, P.J.M.; Karsch, P.

    2000-04-01

    This manual is published within the framework of a project, financed by Novem (EWAB programme) and the European Commission (Altener programme). Similar manuals were drafted in Germany, England and Sweden. The basis of the project was the manual 'Quality manual for small-scale wood incineration and wood gasification', published by Novem in 1998. That quality manual was drafted on the basis of an evaluation of a number of wood combustion and wood gasification projects. The original manual has been improved as a result of comments made by experts in the field of bio-energy. Updated information was added with respect to legislation, financing options and new technology. Also the manual is focused more on the wood processing industry

  12. Bioenergy 93 conference

    International Nuclear Information System (INIS)

    1993-01-01

    In this report the presentations given in the Bioenergy 93 Conference are published. The papers are grouped as follows: Opening addresses, biomass implementation strategies, nordic bioenergy research programs, production, handling and conversion of biofuels, combustion technology of biofuels and bioenergy visions

  13. Scenarios of bioenergy development impacts on regional groundwater withdrawals

    Science.gov (United States)

    Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    Irrigation increases agricultural productivity, but it also stresses water resources (Huffaker and Hamilton 2007). Drought and the potential for drier conditions resulting from climate change could strain water supplies in landscapes where human populations rely on finite groundwater resources for drinking, agriculture, energy, and industry (IPCC 2007). For instance, in the North American Great Plains, rowcrops are utilized for livestock feed, food, and bioenergy production (Cassman and Liska 2007), and a large portion is irrigated with groundwater from the High Plains aquifer system (McGuire 2011). Under projected future climatic conditions, greater crop water use requirements and diminished groundwater recharge rates could make rowcrop irrigation less feasible in some areas (Rosenberg et al. 1999; Sophocleous 2005). The Rainwater Basin region of south central Nebraska, United States, is an intensively farmed and irrigated Great Plains landscape dominated by corn (Zea mays L.) and soybean (Glycine max L.) production (Bishop and Vrtiska 2008). Ten starch-based ethanol plants currently service the region, producing ethanol from corn grain (figure 1). In this study, we explore the potential of switchgrass (Panicum virgatum L.), a drought-tolerant alternative bioenergy feedstock, to impact regional annual groundwater withdrawals for irrigation under warmer and drier future conditions. Although our research context is specific to the Rainwater Basin and surrounding North American Great Plains, we believe the broader research question is internationally pertinent and hope that this study simulates similar research in other areas.

  14. Genomics:GTL Bioenergy Research Centers White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

    2006-08-01

    capabilities, but it is only a first step. Other advances include the growing number of high-throughput techniques for protein production and characterization; a range of new instrumentation for observing proteins and other cell constituents; the rapid growth of commercially available reagents for protein production; a new generation of high-intensity light sources that provide precision imaging on the nanoscale and allow observation of molecular interactions in ultrafast time intervals; major advances in computational capability; and the continually increasing numbers of these instruments and technologies within the national laboratory infrastructure, at universities, and in private industry. All these developments expand our ability to elucidate mechanisms present in living cells, but much more remains to be done. The Centers are designed to accomplish GTL program objectives more rapidly, more effectively, and at reduced cost by concentrating appropriate technologies and scientific expertise, from genome sequence to an integrated systems understanding of the pathways and internal structures of microbes and plants most relevant to developing bioenergy compounds. The Centers will seek to understand the principles underlying the structural and functional design of selected microbial, plant, and molecular systems. This will be accomplished by building technological pathways linking the genome-determined components in an organism with bioenergy-relevant cellular systems that can be characterized sufficiently to generate realistic options for biofuel development. In addition, especially in addressing what are believed to be nearer-term approaches to renewable energy (e.g., producing cellulosic ethanol cost-effectively and energy-efficiently), the Center research team must understand in depth the current industrial-level roadblocks and bottlenecks (see section, GTL's Vision for Biological Energy Alternatives, below). For the Centers, and indeed the entire BER effort, to be

  15. 2010 World bio-energy conference

    International Nuclear Information System (INIS)

    2010-01-01

    After having evoked the bio-energy price awarded to a Brazilian for his works on the use of eucalyptus as energy source, this report proposes a synthesis of the highlights of the conference: discussions about sustainability, bio-energies as an opportunity for developing countries, the success of bio-energies in Sweden, and more particularly some technological advances in the field of biofuels: a bio-LPG by Biofuel-solution AB, catalysis, bio-diesel from different products in a Swedish farm, a second generation ethanol by the Danish company Inbicon, a large scale methanization in Goteborg, a bio-refinery concept in Sweden, bio-gases

  16. Role of community acceptance in sustainable bioenergy projects in India

    International Nuclear Information System (INIS)

    Eswarlal, Vimal Kumar; Vasudevan, Geoffrey; Dey, Prasanta Kumar; Vasudevan, Padma

    2014-01-01

    Community acceptance has been identified as one of the key requirements for a sustainable bioenergy project. However less attention has been paid to this aspect from developing nations and small projects perspective. Therefore this research examines the role of community acceptance for sustainable small scale bioenergy projects in India. While addressing the aim, this work identifies influence of community over bioenergy projects, major concerns of communities regarding bioenergy projects and factors influencing perceptions of communities about bioenergy projects. The empirical research was carried out on four bioenergy companies in India as case studies. It has been identified that communities have significant influence over bioenergy projects in India. Local air pollution, inappropriate storage of by-products and credibility of developer are identified as some of the important concerns. Local energy needs, benefits to community from bioenergy companies, level of trust on company and relationship between company and the community are some of the prime factors which influence community's perception on bioenergy projects. This research sheds light on important aspects related to community acceptance of bioenergy projects, and this information would help practitioners in understanding the community perceptions and take appropriate actions to satisfy them

  17. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  18. Integrating bioenergy into a green economy: identifying opportunities and constraints

    CSIR Research Space (South Africa)

    Von Maltitz, Graham P

    2012-10-01

    Full Text Available .kashan.co.za] BACKGROUND Bioenergy is a renewable energy option that has the potential to contribute to a low-carbon development path and stimulate a green economy. However, since bioenergy uses land and natural resources, it is in competition with the valuable bio... an analytical framework and decision-support tools to assist in assessing, managing and monitoring the sustainability of bioenergy. IMPROVING THE SUSTAINABILITY OF BIOENERGY THROUGH INTEGRATION WITH OTHER BIO-BASED PRODUCTS Since bioenergy production...

  19. Decentralised bioenergy systems: A review of opportunities and threats

    International Nuclear Information System (INIS)

    Mangoyana, Robert B.; Smith, Timothy F.

    2011-01-01

    Decentralised bioenergy systems are receiving increasing attention due to the potential ability to support local development, create local employment, and contribute to climate change mitigation. These issues, along with other bioenergy sustainability issues, are reviewed through eighteen international case studies with the objective of identifying opportunities and threats to decentralised bioenergy systems. The case studies were selected based on feedstock type, bioenergy type, production capacity, synergistic alliances, ownership structure and physical locations. This variation was used to provide a basis for evaluating opportunities and threats from different contexts. Commercial viability remains the primary concern for the sustainability of decentralised bioenergy systems. There are, however, opportunities for compounding benefits through integrating small scale decentralised bioenergy systems with other production systems. Integrated production, including closed loop models, allow waste materials from one process to be used as inputs in other production processes, and thereby increasing economic, social and environmental outcomes. Synergistic opportunities along the bioenergy production chain, which include feedstock production, bioenergy marketing and distribution could also be exploited by communities and other investors to minimise decentralised production risk. - Research Highlights: → Small scale decentralised bioenergy production is a potentially sustainable energy system. →Economic viability limits small scale decentralised bioenergy production. → Synergistic alliances along the bioenergy production chain could enhance viability.

  20. Bioenergy from sisal residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    The main objectives of this report are: To analyse the bioenergy potential of the Tanzanian agro-industries, with special emphasis on the Sisal industry, the largest producer of agro-industrial residues in Tanzania; and to upgrade the human capacity and research potential of the Applied Microbiology Unit at the University of Dar es Salaam, in order to ensure a scientific and technological support for future operation and implementation of biogas facilities and anaerobic water treatment systems. The experimental work on sisal residues contains the following issues: Optimal reactor set-up and performance; Pre-treatment methods for treatment of fibre fraction in order to increase the methane yield; Evaluation of the requirement for nutrient addition; Evaluation of the potential for bioethanol production from sisal bulbs. The processing of sisal leaves into dry fibres (decortication) has traditionally been done by the wet processing method, which consumes considerable quantities of water and produces large quantities of waste water. The Tanzania Sisal Authority (TSA) is now developing a dry decortication method, which consumes less water and produces a waste product with 12-15% TS, which is feasible for treatment in CSTR systems (Continously Stirred Tank Reactors). (EG)

  1. BioenergyKDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Aaron T [ORNL; Movva, Sunil [ORNL; Karthik, Rajasekar [ORNL; Bhaduri, Budhendra L [ORNL; White, Devin A [ORNL; Thomas, Neil [ORNL; Chase, Adrian S Z [ORNL

    2014-01-01

    The Bioenergy Knowledge Discovery Framework (BioenergyKDF) is a scalable, web-based collaborative environment for scientists working on bioenergy related research in which the connections between data, literature, and models can be explored and more clearly understood. The fully-operational and deployed system, built on multiple open source libraries and architectures, stores contributions from the community of practice and makes them easy to find, but that is just its base functionality. The BioenergyKDF provides a national spatiotemporal decision support capability that enables data sharing, analysis, modeling, and visualization as well as fosters the development and management of the U.S. bioenergy infrastructure, which is an essential component of the national energy infrastructure. The BioenergyKDF is built on a flexible, customizable platform that can be extended to support the requirements of any user community especially those that work with spatiotemporal data. While there are several community data-sharing software platforms available, some developed and distributed by national governments, none of them have the full suite of capabilities available in BioenergyKDF. For example, this component-based platform and database independent architecture allows it to be quickly deployed to existing infrastructure and to connect to existing data repositories (spatial or otherwise). As new data, analysis, and features are added; the BioenergyKDF will help lead research and support decisions concerning bioenergy into the future, but will also enable the development and growth of additional communities of practice both inside and outside of the Department of Energy. These communities will be able to leverage the substantial investment the agency has made in the KDF platform to quickly stand up systems that are customized to their data and research needs.

  2. Developing tools to identify marginal lands and assess their potential for bioenergy production

    Science.gov (United States)

    Galatsidas, Spyridon; Gounaris, Nikolaos; Dimitriadis, Elias; Rettenmaier, Nils; Schmidt, Tobias; Vlachaki, Despoina

    2017-04-01

    The term "marginal land" is currently intertwined in discussions about bioenergy although its definition is neither specific nor firm. The uncertainty arising from marginal land classification and quantification is one of the major constraining factors for its potential use. The clarification of political aims, i.e. "what should be supported?" is also an important constraining factor. Many approaches have been developed to identify marginal lands, based on various definitions according to the management goals. Concerns have been frequently raised regarding the impacts of marginal land use on environment, ecosystem services and sustainability. Current tools of soil quality and land potentials assessment fail to meet the needs of marginal land identification and exploitation for biomass production, due to the lack of comprehensive analysis of interrelated land functions and their quantitative evaluation. Land marginality is determined by dynamic characteristics in many cases and may therefore constitute a transitional state, which requires reassessment in due time. Also, marginal land should not be considered simply a dormant natural resource waiting to be used, since it may already provide multiple benefits and services to society relating to wildlife, biodiversity, carbon sequestration, etc. The consequences of cultivating such lands need to be fully addressed to present a balanced view of their sustainable potential for bioenergy. This framework is the basis for the development of the SEEMLA tools, which aim at supporting the identification, assessment, management of marginal lands in Europe and the decision-making for sustainable biomass production of them using appropriate bioenergy crops. The tools comprise two applications, a web-based one (independent of spatial data) and a GIS-based application (land regionalization on the basis of spatial data), which both incorporate: - Land resource characteristics, restricting the cultivation of agricultural crops but

  3. Pathways and pitfalls of implementing the use of woodfuels in Germany's bioenergy sector

    DEFF Research Database (Denmark)

    Plieninger, Tobias; Thiel, Andreas; Bens, Oliver

    2009-01-01

    The paper presents an empirical study on the use of woody biomass for energy supply in Germany and the federal state of Brandenburg. It aims to explain the role forestry enterprises have for bioenergy provision in this area. The 'Institutions of Sustainability' framework is used as an analytical...... tool to investigate the role of private and public actors in these transactions, respectively, in the governance structures they are subject to. Empirical evidence was gathered by in-depth interviews with actors from forestry and bioenergy practice. Triggered by favorable governance structures, i.......e. strong support by national and regional policies, rising prices for fossil energy sources, and co-operation of committed individuals and groups, a new bioenergy industry has been successfully established. However, the forestry sector has so far been just a marginal fuel supplier for this industry...

  4. LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Daniele Cocco

    2014-09-01

    Full Text Available This paper reports outcomes of life cycle assessments (LCAs of three different oleaginous bioenergy chains (oilseed rape, Ethiopian mustard and cardoon under Southern Europe conditions. Accurate data on field practices previously collected during a three-year study at two sites were used. The vegetable oil produced by oleaginous seeds was used for power generation in medium-speed diesel engines while the crop residues were used in steam power plants. For each bioenergy chain, the environmental impact related to cultivation, transportation of agricultural products and industrial conversion for power generation was evaluated by calculating cumulative energy demand, acidification potential and global warming potential. For all three bioenergy chains, the results of the LCA study show a considerable saving of primary energy (from 70 to 86 GJ·ha−1 and greenhouse gas emissions (from 4.1 to 5.2 t CO2·ha−1 in comparison to power generation from fossil fuels, although the acidification potential of these bioenergy chains may be twice that of conventional power generation. In addition, the study highlights that land use changes due to the cultivation of the abovementioned crops reduce soil organic content and therefore worsen and increase greenhouse gas emissions for all three bioenergy chains. The study also demonstrates that the exploitation of crop residues for energy production greatly contributes to managing environmental impact of the three bioenergy chains.

  5. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  6. Pathways and pitfalls of implementing the use of woodfuels in Germany's bioenergy sector

    International Nuclear Information System (INIS)

    Plieninger, Tobias; Thiel, Andreas; Bens, Oliver; Huettl, Reinhard F.

    2009-01-01

    The paper presents an empirical study on the use of woody biomass for energy supply in Germany and the federal state of Brandenburg. It aims to explain the role forestry enterprises have for bioenergy provision in this area. The 'Institutions of Sustainability' framework is used as an analytical tool to investigate the role of private and public actors in these transactions, respectively, in the governance structures they are subject to. Empirical evidence was gathered by in-depth interviews with actors from forestry and bioenergy practice. Triggered by favorable governance structures, i.e. strong support by national and regional policies, rising prices for fossil energy sources, and co-operation of committed individuals and groups, a new bioenergy industry has been successfully established. However, the forestry sector has so far been just a marginal fuel supplier for this industry. The study identifies pitfalls impeding a broad implementation of wood-energy supply in forestry: not cost-covering prices offered by the bioenergy sector, lacking market transparency and security of supply, lacking mobilization of forest wood, and a preference among forest managers to sell products to the wood-processing industry. In terms of the Institutions of Sustainability the properties of transactions (asset specificities, uncertainties, separability), characteristics of actors (values, rationality) and governance structures (long-term contractual obligations elsewhere) are decisive in explaining the current form of transaction. (author)

  7. Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, J.; Badin, J.

    1998-12-31

    As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

  8. BioEnergy Feasibility in South Africa

    Science.gov (United States)

    Hugo, Wim

    2015-04-01

    production, and commercial forestry. The issues include the dispersed nature of some of the waste (increasing costs of transport and reducing economy of scale), and the fact that some of these are already applied in energy generation. (4) Rural firewood use is problematic. This is a significant resource, plays a large role in the energy budget of poor and rural households, and current use means that it will have little impact on the GHG emissions balance. Data availability and quality is poor, and needs improvement. (5) Process technologies are not all mature: We have investigated 52 different process technologies in respect of costs, economy of scale, energy efficiency, greenhouse gas emission and job creation impacts, and maturity of technology. Many attractive options are not mature, and unlikely to be commercially useful in the next decade - essentially excluding them from consideration for medium-term implementation. (6) Solutions are probably 'packages'. One has to balance the diversity of available resource streams and processing technologies against the need to focus resources on development of critical mass (workforce skills, support industries, expertise). Combining feedstocks and aligning with other government initiatives or subsidies can achieve such critical mass more easily. (7) Solutions must be robust in future too. Feasibility studies that focus on the current situation only ignore the fact that future sustainability is strongly dependent on assumptions on relative economic growth (influences household and industrial energy consumption, and the limiting cost for energy), cost of capital and inflation (affects choices of labour- or capital-intensive industries), exchange rates and fossil fuel prices (huge effect on selection of alternatives). (8) The most promising biomass source is medium-term mining and eradication of invasive alien plants, but this source is limited in time and, if exploited as proposed, will not be available after about 20 years. The

  9. Stakeholder engagement in scenario development process - bioenergy production and biodiversity conservation in eastern Finland.

    Science.gov (United States)

    Haatanen, Anniina; den Herder, Michael; Leskinen, Pekka; Lindner, Marcus; Kurttila, Mikko; Salminen, Olli

    2014-03-15

    In this study participatory approaches were used to develop alternative forest resource management scenarios with particular respect to the effects on increased use of forest bioenergy and its effect on biodiversity in Eastern Finland. As technical planning tools, we utilized a forest management planning system (MELA) and the Tool for Sustainability Impact Assessment (ToSIA) to visualize the impacts of the scenarios. We organized a stakeholder workshop where group discussions were used as a participatory method to get the stakeholder preferences and insights concerning forest resource use in the year 2030. Feedback from the workshop was then complemented with a questionnaire. Based on the results of the workshop and a questionnaire we developed three alternative forest resource scenarios: (1) bioenergy 2030 - in which energy production is more centralized and efficient; (2) biodiversity 2030 - in which harvesting methods are more nature friendly and protected forests make up 10% of the total forest area; and (3) mixed bioenergy + biodiversity 2030 scenario - in which wood production, recreation and nature protection are assigned to the most suitable areas. The study showed that stakeholder engagement combined with the MELA and ToSIA tools can be a useful approach in scenario development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Monetization of Environmental Externalities (Emissions from Bioenergy

    Directory of Open Access Journals (Sweden)

    Isabelle BROSE

    2008-01-01

    Full Text Available Bioenergy from agriculture is today in the heart of sustainabledevelopment, integrating its key components: environment and climate change,energy economics and energy supply, agriculture, rural and social development.Each bioenergy production route presents externalities that must be assessed inorder to compare one bioenergy route to another (bioenergy route. The lack ofprimary and reliable data on externalities is, nevertheless, an important nontechnologicalbarrier to the implementation of the best (bioenergy routes. In thisarticle, we want to monetize one environmental externality from bioenergy:emissions (GHG: CO2, CH4, N2O, O3; CO, NOx, SO2, metal, and PM. We have tomonetize emissions on the basis of their effects on health, global warming, and soiland water quality. Emissions will be quantified through Life Cycle Analysis (LCAand ECOINVENT database. Impacts on health will be monetized on the basis ofmortality (number of life expectancy years lost multiplied by Value Of Life Year(VOLY and morbidity (number of ill persons multiplied by Cost Of Illness(COI. Impacts on global warming will be monetized by Benefits Transfers fromthe Stern Review and its critics. Finally, impacts on soil and water quality will bemonetized by Averting Behaviour or Defensive Expenses methods. Monetizationresults will be gathered, weighted, and incorporated in states and firms’ decisionmakingtools. They would enhance capacity of policy makers and managers tochose the best (bioenergy routes.

  11. Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest and Alaska Bioenergy Program (U.S.)

    1991-02-01

    This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

  12. Modeling pollinator community response to contrasting bioenergy scenarios.

    Directory of Open Access Journals (Sweden)

    Ashley B Bennett

    Full Text Available In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation.

  13. Evolutionary algorithms approach for integrated bioenergy supply chains optimization

    International Nuclear Information System (INIS)

    Ayoub, Nasser; Elmoshi, Elsayed; Seki, Hiroya; Naka, Yuji

    2009-01-01

    In this paper, we propose an optimization model and solution approach for designing and evaluating integrated system of bioenergy production supply chains, SC, at the local level. Designing SC that simultaneously utilize a set of bio-resources together is a complicated task, considered here. The complication arises from the different nature and sources of bio-resources used in bioenergy production i.e., wet, dry or agriculture, industrial etc. Moreover, the different concerns that decision makers should take into account, to overcome the tradeoff anxieties of the socialists and investors, i.e., social, environmental and economical factors, was considered through the options of multi-criteria optimization. A first part of this research was introduced in earlier research work explaining the general Bioenergy Decision System gBEDS [Ayoub N, Martins R, Wang K, Seki H, Naka Y. Two levels decision system for efficient planning and implementation of bioenergy production. Energy Convers Manage 2007;48:709-23]. In this paper, brief introduction and emphasize on gBEDS are given; the optimization model is presented and followed by a case study on designing a supply chain of nine bio-resources at Iida city in the middle part of Japan.

  14. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-01

    challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  15. Analysis of the evolution of sustainable development in biofuels industry in Brazil

    Directory of Open Access Journals (Sweden)

    Carmen Rosa Loayza Rollano

    2015-06-01

    Full Text Available This paper presents an evaluation of sustainable development in the biofuel production sector. The Energy Indicators Tool for Sustainable Development (EISD and the Sustainability Indicators Tool Global Association for Bioenergy (GBEP were applied. Performing a comparison of indicators in each performance (economic, social and environmental, it was found that the production of biofuels in Brazil is positive in most of them. Biofuels showed a favorable trend in economic indicators, not only in terms of cost, but also through the use of energy available to the consumer market. Environmental indicators showed an improvement in the efficient use of land, water and energy resources, while pesticide applications are relatively low in relation to the limits. In addition, it appears that the biofuels industries have contributed positively to rural economies, since the social indicators showed a relatively significant and positive increase in labor supply and salary level of the labor market in this sector. Also appears that existing tools are complementary and the results provide a basis for future discussions and the development of sustainability assessments in systems and bioenergy-related projects.

  16. Sustainability and meanings of farm-based bioenergy production in rural Finland

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S.

    2013-06-01

    Rural bioenergy production has accrued interest in recent years. EU pressure for climate change abatement and energy political concerns regarding the availability of fossil fuels, have increased bioenergy production objectives in Finland. In addition, rural regions in Finland have encountered structural changes following EU inclusion, including an emergent interest in auxiliary production lines of which bioenergy production is an example. Local bioenergy production has the potential to increase rural sustainability and provide a model for sustainable rural development and energy production. Focusing on the recent emergence of small-scale farm-related bioenergy production: heat provision from wood fuels and biogas and biodiesel production, this study aims to discover if and how farm-based bioenergy production contributes to sustainable rural development. The study derives from the field of rural studies and evaluates sustainable rural development via the concepts of multifunctionality, embeddedness, ecological modernization and sustainable livelihoods, with a particular focus on social sustainability. The empirical portion of the study is comprised of thematic qualitative interviews of bioenergy producing farmers, and on newspaper and periodical article material. The results demonstrate how rural small-scale bioenergy production can have important positive developmental effects that ameliorate and sustain livelihoods in remote areas. This occurs via the multifunctional benefits of bioenergy production to the producers and local communities. The positive effects include social, economical and environmental aspects and rural bioenergy production can present traits of sustainable rural development, predominantly manifested in the social aspects of increased capabilities and reinforced social networks. There are, however, important differences between the examined production models. As an example of achieving sustainable rural development and livelihoods, heat

  17. Bioenergy. The manifold renewable energy. 4. compl. rev. ed.; Bioenergie. Die vielfaeltige erneuerbare Energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    Bioenergy is the most important renewable energy source in Germany. With about 70 percent bioenergy contributes to the largest share of energy supply from renewable energy sources. This brochure provides an overview of the various possibilities, advantages and opportunities in the use of biomass and bioenergy.

  18. Bioenergy research advances and applications

    CERN Document Server

    Gupta, Vijai G; Kubicek, Christian P; Saddler, Jack; Xu, Feng

    2014-01-01

    Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post...

  19. Large-scale bioenergy production: how to resolve sustainability trade-offs?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Bodirsky, Benjamin Leon; Weindl, Isabelle; Biewald, Anne; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Klein, David; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Stevanovic, Miodrag

    2018-02-01

    Large-scale 2nd generation bioenergy deployment is a key element of 1.5 °C and 2 °C transformation pathways. However, large-scale bioenergy production might have negative sustainability implications and thus may conflict with the Sustainable Development Goal (SDG) agenda. Here, we carry out a multi-criteria sustainability assessment of large-scale bioenergy crop production throughout the 21st century (300 EJ in 2100) using a global land-use model. Our analysis indicates that large-scale bioenergy production without complementary measures results in negative effects on the following sustainability indicators: deforestation, CO2 emissions from land-use change, nitrogen losses, unsustainable water withdrawals and food prices. One of our main findings is that single-sector environmental protection measures next to large-scale bioenergy production are prone to involve trade-offs among these sustainability indicators—at least in the absence of more efficient land or water resource use. For instance, if bioenergy production is accompanied by forest protection, deforestation and associated emissions (SDGs 13 and 15) decline substantially whereas food prices (SDG 2) increase. However, our study also shows that this trade-off strongly depends on the development of future food demand. In contrast to environmental protection measures, we find that agricultural intensification lowers some side-effects of bioenergy production substantially (SDGs 13 and 15) without generating new trade-offs—at least among the sustainability indicators considered here. Moreover, our results indicate that a combination of forest and water protection schemes, improved fertilization efficiency, and agricultural intensification would reduce the side-effects of bioenergy production most comprehensively. However, although our study includes more sustainability indicators than previous studies on bioenergy side-effects, our study represents only a small subset of all indicators relevant for the

  20. Bioenergy

    CERN Document Server

    Wall, Judy; Demain, Arnold L

    2008-01-01

    Given the limited supply of fossil fuels and the devastating effects of ever-increasing greenhouse gases, researchers have been committed to finding alternative fuel sources. Perhaps one of the least explored areas is bioenergy from microbes. In this landmark volume, world-renowned experts explore the possible contributions of microbes to the next generation of fuels. In 31 detailed chapters, Bioenergy provides thorough explanations of the current knowledge and future areas for research on microbial energy conversions. The volume begins with 10 chapters on ethanol production from cellulosic fe

  1. Comparing centralized and decentralized bio-energy systems in rural China

    International Nuclear Information System (INIS)

    He, Guizhen; Bluemling, Bettina; Mol, Arthur P.J.; Zhang, Lei; Lu, Yonglong

    2013-01-01

    Under the dual pressures of an energy crisis and rising greenhouse gas emissions, biomass energy development and utilisation has become part of the national energy strategy in China. The last decade has witnessed a strong promotion of both centralised and decentralised bio-energy systems in rural China. The government seems to have a strong preference for centralised (village-based) bio-energy systems in recent years. However, these government-driven systems have not worked without difficulties, particularly regarding economic and technological viability and maintenance. Studies on the advantages and disadvantages of decentralised and centralised bio-energy systems are rare. This study aims to shed light on the performances of these two systems in terms of social, economic and environmental effects. Through interviewing local officials and village leaders and surveying farmers in 12 villages in Shandong Province, it was found that bio-energy systems should be selected based on the local circumstances. The diversity of the local natural, economic and social situations determines the size, place, technology and organisational model of the bio-energy system. - Highlights: • Biomass energy development has become part of the national energy strategy in China. • The dis-/advantages of decentralized and centralized bio-energy systems are evaluated. • Bio-energy systems should be selected based on the local circumstances

  2. Fossil energy savings potential of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity...... and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...... proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts...

  3. Young citizens' knowledge and perceptions of bioenergy and future policy implications

    International Nuclear Information System (INIS)

    Halder, Pradipta; Pietarinen, Janne; Havu-Nuutinen, Sari; Pelkonen, Paavo

    2010-01-01

    In the past few years extensive discussions on bioenergy has been both positive and negative. In Europe, the image of bioenergy appears to be low with lack of broad public support. Previous studies show that younger people are unsure about many issues surrounding renewable energy. The aim of this study was to investigate the knowledge and perceptions of bioenergy among pupils in North Karelia, Finland. Data drawn from 495 ninth grade students indicate that the majority of them lack in-depth knowledge about different renewable energy sources, including bioenergy. Only a small percentage has a 'high' level of knowledge about bioenergy and the majority indicates critical perceptions of it. Statistically significant gender differences are not apparent. Girls appear to be more knowledgeable than boys. Results also show a clear 'urban' and 'rural' difference in perceptions of bioenergy. Perceptions of urban respondents being more positive than that of their rural counterparts. Developing collaboration between future bioenergy policies and bioenergy education for younger citizens is necessary for their engagement in critical debates on bioenergy.

  4. Information as a key-element for the development and dissemination of bioenergy in Austria

    International Nuclear Information System (INIS)

    Schmidt, J.

    1999-01-01

    As one of the renewable energy sources which have to be developed to replace of CO 2 -intensive energy technologies the utilization of bio-energy has a lot of advantages: it is CO 2 - neutral; it is not dependent on imports and improves security of supply; has enormous potential of job creation for rural areas, in small and medium size enterprises; has an enormous market potential; biomass is a by-product in many industrial processes and its using would solve also the waste problem; biomass is an infinite energy source. Predominant market of the biomass for Europe is that for low temperature heating. Being underestimated this market is not attractive for high tech development and research perhaps because of the difficulties for collecting statistical data. Technologies vary from low efficient logwood boilers to sophisticated district heating plants. The strategy of the European Commission, referring to the White Paper, proposes to install 1mill sophisticated biomass heating systems in Europe till 2003. The low temperature heating market will be the most important for future information programmes and projects. For launching of biomass technologies onto a market it is necessary to inform the customer about it and the way to get it. The distribution systems have to rely on multipurpose equipment i.g. for different kind of bio-fuel. The information has to target the advantages of bio-energy fuels compared to the competing carriers like natural gas and oil. These advantages define the market niche. The information strategies include establishing of national and international networks and collaboration with other renewable energy sources associations and with the agricultural sector. The information related projects of the Austrian Biomass Association include: issuing a magazine, information campaigns, conferences, issuing of teaching materials for schools, information brochures and training programmes for plumbers so to be key-agents in the dissemination of small

  5. Large or small? Rethinking China’s forest bioenergy policies

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Su, Yufang; Tennigkeit, Timm; Yang, Yongping; Xu, Jianchu

    2013-01-01

    China’s forest bioenergy policies are evolving against the backdrop of pressing national energy challenges similar to those faced by OECD countries, and chronic rural energy challenges more characteristic of developing countries. Modern forest bioenergy could contribute to solutions to both of these challenges. However, because of limitations in current technologies and institutions, significant policy and resource commitments would be required to make breakthroughs in either commercializing forest bioenergy or modernizing rural energy systems in China. Given the potential attention, funding, and resource trade-offs between these two goals, we provide an argument for why the focus of China’s forest bioenergy policy should initially be on addressing rural energy challenges. The paper concludes with a discussion on strategies for laying the groundwork for a modern, biomass-based energy infrastructure in rural China. -- Highlights: ► China’s bioenergy policy is at a crossroads. ► Trade-offs exist between forest bioenergy policy for urban and rural users in China. ► There are strong arguments for focusing forest bioenergy policy on rural areas. ► China’s rural energy policy should increasingly support modern energy carriers

  6. Bioenergy '97: Nordic Bioenergy Conference, market, environment and technology

    International Nuclear Information System (INIS)

    1997-01-01

    (Leading abstract). The conference ''Bioenergy '97: Nordic Bioenergy Conference, market, environment and technology'' took place in Oslo, Norway, 7-8 Oct 1997. The conference papers are grouped under three headings: (1) The nordic energy market. 12 papers. (2) Production and sale of biofuels. 8 papers. (3) Conversion and utilization of biofuels. With subsections New technologies, 4 papers, and Power/heat production from biofuels, 4 papers

  7. Bioenergy yield from cultivated land in Denmark - competition between food, bioenergy and fossil fuels under physical and environmental constraints

    Energy Technology Data Exchange (ETDEWEB)

    Callesen, I.; OEstergaard, H. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Biosystems Div., Roskilde (Denmark)); Grohnheit, P.E. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Systems Analysis Div., Roskilde (Denmark))

    2011-07-15

    Globally, bioenergy is emphasized as an important contributor to reach strategic goals of energy security. The commodity markets for energy, bioenergy and food are interdependent and interacting through the energy dependency of agriculture, an increasing demand for both food and energy, and the option to replace fossil energy resources with bioenergy resources. A model for supply of biomass for bioenergy in Denmark was developed using linear programming. The model includes biomass supply from annual crops on arable land, short rotation forestry (willow) and plantation forestry, and minimizes production costs of an energy mix consisting of bioenergy and fossil diesel oil. Here, we analyze the possibilities of substituting domestic bioenergy for fossil energy under the constraint of a given food supply and environmental constraints on land use. Crop area distributions of a total area of 3200 kha were simulated in two sets of scenarios, each examining a range of fossil oil prices. Both scenarios were based on cost and production data of the year 2005. Scenario (a) required a total food and feed energy yield similar to that produced in the year 2005; scenario (b) addressed high prioritization of dedicated bioenergy crops. This was secured by relaxing the food and feed supply to 50% of the 2005 production level. Further, a maximum limit of 25% cultivation area with willow in short rotation was set, and the area reserved for permanent grassland was set to 275 kha (+100 kha compared to 2005). The trade-based animal husbandry sector was excluded from the analysis and the forest area was fixed to 600 kha. The crop area distributions were affected by fossil oil prices varying from oil index 25 to 200. Oil index 100approx9.4 Euro GJ-1 corresponded with a crude oil price of 55$ per barrel in 2005. The woody biofuels, especially high-yielding willow in short rotation, were competitive with fossil oil from around oil index 40 and occupied the maximum allowed area in all crop

  8. Bioenergy in the national forestry programme

    International Nuclear Information System (INIS)

    Heikurainen, M.

    1998-01-01

    The objective of the national forestry programme is to develop the treatment, utilization and protection of forests in order to increase the employment level in the forestry sector as well as enhance the utilization of the forests for recreation purposes. Increment of the utilization of wood energy is one of the means for meeting the objective of the programme. In addition to the silvicultural reasons, one of the main reasons for increasing of the utilization of energy wood is the possibilities of energywood-related small and medium-sized entrepreneurship to employ people. The emission reduction requirements of the Kyoto summit offer also a reason for the increment of the utilization of wood energy, because the carbon dioxide emissions of biofuels are not included in the emission share of the country. The techno-economically viable unutilized wood energy potential of clearcuts has been estimated to 3.7 million m 3 and that of the integrated harvesting of first thinnings 2.3 million m 3 . On the basis of these figures the latest objective of the programme has been set to increase the energy wood harvesting and utilization to 5.0 million m 3 /a up to the year 2010. The main means listed in the programme are: Development of integrated harvesting methods, by which it is possible to produce energy wood economically (price less than 45 FIM/MWh) as a byproduct of commercial timber; The environmental support paid to the forest chips purchasers; Bioenergy capacity developed in the forest industry; Social support for product development and entrepreneurhip in the field of bioenergy; Reduction of the value added taxes of the end users of split firewood and wood briquettes

  9. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    Energy Technology Data Exchange (ETDEWEB)

    Helby, Peter (ed.); Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  10. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    International Nuclear Information System (INIS)

    Helby, Peter; Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  11. Sustainable Biofuels Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kenneth F. [Colorado State Univ., Fort Collins, CO (United States)

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  12. 3. forum bioenergy. Politics, market, finances, marketing and distribution, export. Proceedings 2007; 3. Forum Bioenergie. Politik, Markt, Finanzierung, Marketing and Vertrieb, Export. Tagungsband 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The following lectures were held (selection of topics): The decision to the thermal energy law and EEG from the cabinet meeting at 5th December, 2007 (Heiko Schwarzburger); Comment of the opposition to the cabinet decisions and outline of the political activities of the European policy (Heinz-Josef Fell); The meaning of new systems for utilization of land for soil protection and climatic change (Uwe Schneider); State of the art: laws and terms of references (Lothar Breidenbach); Bioenergy the interface industry - strategic challenges (Hilmar Platz); Actual developments with the promotion of the bioenergy by EEG and thermal energy law (Nicole Pippke); National biomass strategies in the European Union - project BAP DRIVER (Alexandra Lermen); Effects of the trade from biofuels to meet the development extensions of the European Union on area requirements (Enver Doruk Oezdemir); Energy region Rhein-Sieg: Renewable energies in the association - modelling of self-sufficient regions (Rolf Beyer); Potentials of value added in regions - results from the BMU project BioRegio (Georg Wagener Lohse); Posibilities and terms of references for increasing the potentials of biomass (Cornelia Behm); What can bioenergies perform in mix of renewable energies? - Discussion contribution for the limited potential of the bio energies (Susanne Jung); Panel discussion with representatives from the policy: Surface competition - full grain instead of full power; Fermentation gas - economy and experiences from bank view (Joerg-Uwe Fischer); Financing concept of large-scale projects by the example of the biological gas facility in Penkun (Balthasar Schramm); Economy factors for the gas feed - examples from consultant practice (Markus Helm); Stabilization or endangerment agriculture? Realizations from the field study 'biological gas facilities in Bavaria' (Wilfried Zoerner); Bioenergy - chances for investors (Daniel Kellermann); Private Equity within the range of bioenergy (Andrew Murphy

  13. The future of bioenergy in Sweden. Background and summary of outstanding issues

    International Nuclear Information System (INIS)

    Berndes, G.

    2006-01-01

    This report is intended to give a background to discussions about the future of bioenergy in Sweden, to be used by the Swedish Energy Agency in the planning of future efforts in the biofuel supply chain. An overview of the present supply and use of biomass in Sweden is given, and trends and prospects for increased use of bioenergy in Sweden are assessed. Both sources of increased bioenergy demand and possibilities for increased domestic supply are treated. Biomass contributes about 110 TWh, or one fifth of the Swedish energy supply. Biomass is mainly used for energy within the forest industry, in district heating plants, in the residential sector and for electricity production. More than 50% of the heat comes from biomass today. Based on a number of studies it is concluded that there is a potential for a substantial increase in the Swedish biofuel use, by introduction of new forest management practices and a re-orientation of agriculture. Calculations indicate that there is scope for a substantial increase in bioenergy use in Sweden and that the Swedish bioenergy potential is large enough to accommodate such an increase. However, related to the aspirations in the EC biofuel directive and the hopes that Sweden by taking early steps could become a major supplier of liquid biofuels in EU, it is also shown that Sweden to a significant extent would need to rely on imported bioenergy (biomass feedstock at the magnitude 100 TWh) in order to supply a biofuels industry capable of providing for the domestic market and also exporting substantial volumes of liquid biofuels to Europe. The prospects for a large-scale import of biofuels are discussed based on an analysis of the potential global biomass production and use in forestry and agriculture. A number of issues of great importance for increased biomass use are discussed - competitive land uses, availability of water, international trade rules, and international politics. The report also discusses additional and new uses of

  14. Possibilities and limitations for sustainable bioenergy production systems

    International Nuclear Information System (INIS)

    Smeets, Edward Martinus Wilhelmus Utrecht University

    2008-05-01

    The main objective of this thesis is to investigate the possibilities and limitations of sustainable bioenergy production. To this end, the following research questions have been formulated: (1). What is the potential of different world regions to produce biomass for energy generation in the year 2050, taking account of biological and climatological limitations, the use of biomass to produce food, materials and traditional bioenergy, as well as the need to maintain existing forests and thus protect biodiversity?; (2) What are the main bottlenecks to formulating and implementing sustainability criteria for bioenergy production?; (3) To what extent does complying with sustainability criteria have impacts on the costs and potential of bioenergy production?; (4) To what extent do fertilizer- and manure-induced nitrous oxide (N2O) emissions due to energy crop production have an impact on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first-generation biofuels?; (5) In terms of economic and environmental performance, how does Europe's production, storage and transport of miscanthus and switchgrass in 2004 compare to that in 2030? Throughout this thesis, specific attention is paid to knowledge gaps and their potential impact on results, the aim being to identify priorities for future research and development. Another key element of our research is that we evaluate the possibilities and limitations of strategies that are designed to improve the performance of bioenergy production systems and that may be incorporated in bioenergy certification schemes and bioenergy promoting policies

  15. Bioenergy `97: Nordic Bioenergy Conference, market, environment and technology; Bioenergi `97: nordisk bioenergikonferanse, marked, miljoe og teknikk

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    (Leading abstract). The conference ``Bioenergy `97: Nordic Bioenergy Conference, market, environment and technology`` took place in Oslo, Norway, 7-8 Oct 1997. The conference papers are grouped under three headings: (1) The nordic energy market. 12 papers. (2) Production and sale of biofuels. 8 papers. (3) Conversion and utilization of biofuels. With subsections New technologies, 4 papers, and Power/heat production from biofuels, 4 papers

  16. Bioenergy `97: Nordic Bioenergy Conference, market, environment and technology; Bioenergi `97: nordisk bioenergikonferanse, marked, miljoe og teknikk

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    (Leading abstract). The conference ``Bioenergy `97: Nordic Bioenergy Conference, market, environment and technology`` took place in Oslo, Norway, 7-8 Oct 1997. The conference papers are grouped under three headings: (1) The nordic energy market. 12 papers. (2) Production and sale of biofuels. 8 papers. (3) Conversion and utilization of biofuels. With subsections New technologies, 4 papers, and Power/heat production from biofuels, 4 papers

  17. Bioenergy and biodiversity: Key lessons from the Pan American region

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinelli, Fernanda Silva [UFRRJ/Conservation International Brazil, Seropedica (Brazil); Mayer, Audrey L. [Michigan Technological Univ., Houghton, MI (United States); Medeiros, Rodrigo [Federal Rural Univ. of Rio de Janeiro, Rio de Janeiro (Brazil); Oliveira, Camila Ortolan F. [Univ. of Campinas, Campinas (Brazil); Sparovek, Gerd [Univ. of Sao Paulo, Piracicaba (Brazil); Walter, Arnaldo [Univ. of Campinas, Campinas (Brazil); Venier, Lisa A. [Canadian Forest Service, Sault Ste. Marie (Canada). Great Lakes Forestry Centre

    2015-06-24

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. Lastly, we propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  18. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    Science.gov (United States)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  19. 11. Rostock bioenergy forum. Proceedings

    International Nuclear Information System (INIS)

    Nelles, Michael

    2017-01-01

    The seven main focus of the bioenergy forum were: 1. Political regulation and its consequences; 2. Flexible energy supply; 3. Biorefineries for the use of residues from bioenergy production; 4. Process optimization biogas; 5. Alternative substrates for biogas production; 6. Cross-sectoral bioenergy concept; 7. Transport sector (biofuels). Five lectures are separately analyzed for this database. [de

  20. Willow bioenergy plantation research in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    White, E.H.; Abrahamson, L.P.; Kopp, R.F. [SUNY College of Environmental Science and Forestry, Syracuse, NY (United States); Nowak, C.A. [USDA Forest Service, Warren, PA (United States)

    1993-12-31

    Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are now being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.

  1. The availability of biomass for energy in the agricultural industry; De beschikbaarheid van biomassa voor energie in de Agro-industrie

    Energy Technology Data Exchange (ETDEWEB)

    Elbersen, W. [Wageningen UR Food and Biobased Research, Wageningen (Netherlands); Janssens, B. [Wageningen UR LEI, Wageningen (Netherlands); Koppejan, J. [Procede Biomass, Enschede (Netherlands)

    2010-01-15

    The Dutch Agricultural Covenant included a target for sustainable energy of 200 PJ. The agricultural industry is expected to contribute 75 to 125 PJ (bio-energy). The sector is wondering whether this target is realistic. The aim of this project was to map the quality and quantity of residual flows in the agricultural industry that exist and are available or are already deployed for bio-energy (in the Netherlands), both today and in 2020. [Dutch] In het Agroconvenant is een doelstelling opgenomen voor duurzame energie van 200 PJ. Van de agro-industrie wordt een bijdrage van 75 tot 125 PJ (bio-energie) verwacht. De sector vraagt zich af of deze doelstelling wel realistisch is. Het doel van dit project was het in kaart brengen van de kwaliteit en kwantiteit van reststromen uit de agro-industrie die aanwezig of beschikbaar zijn of reeds (in Nederland) ingezet worden voor bio-energie nu en in 2020.

  2. Mobilizing Sustainable Bioenergy Supply Chains

    DEFF Research Database (Denmark)

    Smith, Tat; Lattimore, Brenna; Berndes, Göran

    This report summarizes the results of an IEA Bioenergy inter-Task project involving collaborators from Tasks 37 (Energy from Biogas), 38 (Climate Change Effects of Biomass and Bioenergy Systems), 39 (Commercialising Conventional and Advanced Liquid Biofuels from Biomass), 40 (Sustainable Internat......-scale mobilization of major bioenergy resources through five case studies that determine the factors critical to their sustainable mobilization....

  3. Finnish bioenergy research

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H. [Technical Research Centre of Finland, Jyvaeskylae (Finland)

    1993-12-31

    Finland is one of the leading countries in the use of biofuels. The share of wood derived fuels of the total primary energy requirement was about 14% (ca. 4 million toe) and peat about 5% (1.4 million toe). The possibilities for increasing the use of biofuels in Finland are significant. There is theoretically about 10 million m{sup 3}/a (about 2 million toe/a) of harvestable wood. Areas suitable for fuel peat production (0.5 million ha) could produce ca. 420 million toe of peat. At present rates of use, the peat reserves are adequate for centuries. During the next few years 0.5--1 million hectares of fields withdrawn from farming could be used for biofuel production. The production potential of this field area is estimated to be about 0.2--0.5 million toe. In addition, the use of wastes in energy production could be increased. The aim of the new Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. New economically competitive biofuels, new equipment and methods for production, handling and use of biofuels will also be developed. The main research areas are production of wood fuels, peat production, use of bioenergy and conversion of biomass.

  4. The future of bioenergy; Die Zukunft der Bioenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This volume contains the following five contributions: 1. The impact of the governmental biogas production on agricultural rents in Germany. An econometric study (Hendrik Garvert); 2. Biogas as price drivers on the land and rental market? An Empirical Analysis (Uwe Latacz-Lohmann); 3. Analysis of comparative advantage of bioenergy in electricity and heat production. Greenhouse gas abatement and mitigation costs in Brandenburg (Lukas Scholz); 4. Flexibility potential of biogas and biomethane CHP in the investment portfolio (Matthias Edel); 5. Legal possibilities and limitations of a reform of the system for the promotion of bioenergy (Jose Martinez). [German] Dieser Band enthaelt folgende fuenf Themenbeitraege: 1. Die Auswirkungen der staatlichen Biogasfoerderung auf landwirtschaftliche Pachtpreise in Deutschland. Eine oekonometrische Untersuchung (Hendrik Garvert); 2. Biogas als Preistreiber am Bodenmarkt und Pachtmarkt? Eine empirische Analyse (Uwe Latacz-Lohmann); 3. Analyse komparativer Kostenvorteile von Bioenergielinien in der Strom- und Waermeproduktion Treibhausgasvermeidung und Vermeidungskosten in Brandenburg (Lukas Scholz); 4. Flexibilisierungspotenzial von Biogas- und Biomethan-BHKWs im Anlagenbestand (Matthias Edel); 5. Rechtliche Moeglichkeiten und Grenzen einer Reform des Systems zur Foerderung der Bioenergie (Jose Martinez).

  5. Bioenergy Status Document 2011; Statusdocument Bio-energie 2011

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.

    2011-03-15

    The Dutch status document on bio-energy has been updated with data for the year 2011. This document provides an overview of the amount of energy derived from biomass, a description of the current bio-energy policy framework and a discussion of the extent to which the Netherlands is on track for securing European renewable energy targets. The status document shows there has been a slight increase in the share of bio-energy in overall energy consumption as well as in the total amount of renewable energy generated (which now stands at a little over 4% of gross final consumption). The question, however, is whether this growth is sufficient to meet the European target of 14% renewables in 2020. The limited growth is due partly to the decrease in the amount of energy generated in the category 'other incineration'. In addition, there was a decline in the physical delivery of transport biofuels because certain types of fuel can be 'double-counted' in the records, although they do not contribute to the 14% target. This document provides an overview of the amount of energy derived from biomass, a description of the current bio-energy policy framework and a discussion of the extent to which the Netherlands is on track for securing European renewable energy targets [Dutch] Het statusdocument bio-energie 2011 geeft de huidige status weer van bioenergie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken aan overheden en marktpartijen in de ontwikkelingen van bio-energie. De kabinetsdoelstellingen voor hernieuwbare energie zijn conform de doelstellingen uit de richtlijn voor hernieuwbare energie (2009/28/EG), die is vastgesteld door de EC. In 2020 moet 14% van het nationale bruto finaal eindgebruik afkomstig zijn van hernieuwbare bronnen, de Nederlandse overheid schat dat dat overeenkomt met 300 PJ. Naar schatting is in 2011 ongeveer 88 PJ aan hernieuwbare energie geproduceerd, ongeveer evenveel

  6. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ., Bozeman, MT (United States); Alcorn-Windy Boy, Jessica [Montana State Univ., Bozeman, MT (United States); Abedin, Md. Joynal [Montana State Univ., Bozeman, MT (United States); Maglinao, Randy [Montana State Univ., Bozeman, MT (United States)

    2014-09-30

    MSU-Northern established the Bio-Energy Center (the Center) into a Regional Research Center of Excellence to address the obstacles concerning biofuels, feedstock, quality, conversion process, economic viability and public awareness. The Center built its laboratories and expertise in order to research and support product development and commercialization for the bio-energy industry in our region. The Center wanted to support the regional agricultural based economy by researching biofuels based on feedstock’s that can be grown in our region in an environmentally responsible manner. We were also interested in any technology that will improve the emissions and fuel economy performance of heavy duty diesel engines. The Center had a three step approach to accomplish these goals: 1. Enhance the Center’s research and testing capabilities 2. Develop advanced biofuels from locally grown agricultural crops. 3. Educate and outreach for public understanding and acceptance of new technology. The Center was very successful in completing the tasks as outlined in the project plan. Key successes include discovering and patenting a new chemical conversion process for converting camelina oil to jet fuel, as well as promise in developing a heterogeneous Grubs catalyst to support the new chemical conversion process. The Center also successfully fragmented and deoxygenated naturally occurring lignin with a Ni-NHC catalyst, showing promise for further exploration of using lignin for fuels and fuel additives. This would create another value-added product for lignin that can be sourced from beetle kill trees or waste products from cellulose ethanol fuel facilities.

  7. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ. Northern, Havre, MT (United States); Windy Boy, Jessica [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Maglinao, Randy Latayan [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Abedin, Md. Joynal [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence

    2017-03-02

    The goal of this project was to establish the Bio-Energy Center (the Center) of Montana State University Northern (MSUN) as a Regional Research Center of Excellence in research, product development, and commercialization of non-food biomass for the bio-energy industry. A three-step approach, namely, (1) enhance the Center’s research and testing capabilities, (2) develop advanced biofuels from locally grown agricultural crops, and (3) educate the community through outreach programs for public understanding and acceptance of new technologies was identified to achieve this goal. The research activities aimed to address the obstacles concerning the production of biofuels and other bio-based fuel additives considering feedstock quality, conversion process, economic viability, and public awareness. First and foremost in enhancing the capabilities of the Center is the improvement of its laboratories and other physical facilities for investigating new biomass conversion technologies and the development of its manpower complement with expertise in chemistry, engineering, biology, and energy. MSUN renovated its Auto Diagnostics building and updated its mechanical and electrical systems necessary to house the state-of-the-art 525kW (704 hp) A/C Dynamometer. The newly renovated building was designated as the Advanced Fuels Building. Two laboratories, namely Biomass Conversion lab and Wet Chemistry lab were also added to the Center’s facilities. The Biomass Conversion lab was for research on the production of advanced biofuels including bio-jet fuel and bio-based fuel additives while the Wet Chemistry lab was used to conduct catalyst research. Necessary equipment and machines, such as gas chromatograph-mass spectrometry, were purchased and installed to help in research and testing. With the enhanced capabilities of the Center, research and testing activities were very much facilitated and more precise. New biofuels derived from Camelina sativa (camelina), a locally

  8. Large scale international bioenergy trading. How bioenergy trading can be reliazed under safe and sustainable frame conditions?

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Kirchovas, Simas

    2011-01-01

    Biomass sources as Woodchips – Wood pellets, Straw – Bio pellets, animal manure, farm-by products and new cropping systems are integrated in our society’s needs. The mindset for shifting from fossil fuels based economies into sustainable energy economies already exist. Bioenergy utilization systems...... sustainability criteria. The sustainability criteria agreed internationally could be realized as a tool to secure the positive impacts of bioenergy and to foster the international trade. This study investigates the developments by national and international bodies of biomass standardization and certification...

  9. Energy policy and the role of bioenergy in Poland

    International Nuclear Information System (INIS)

    Nilsson, Lars J.; Pisarek, Marcin; Buriak, Jerzy; Oniszk-Poplawska, Anna; Bucko, Pawel; Ericsson, Karin; Jaworski, Lukasz

    2006-01-01

    Poland, as many other countries, has ambitions to increase the use of renewable energy sources. In this paper, we review the current status of bioenergy in Poland and make a critical assessment of the prospects for increasing the share of bioenergy in energy supply, including policy implications. Bioenergy use was about 4% (165 PJ) of primary energy use (3900 PJ) and 95% of renewable energy use (174 PJ) in 2003, mainly as firewood in the domestic sector. Targets have been set to increase the contribution of renewable energy to 7.5% in 2010, in accordance with the EU accession treaty, and to 14% in 2020. Bioenergy is expected to be the main contributor to reaching those targets. From a resource perspective, the use of bioenergy could at least double in the near term if straw, forestry residues, wood-waste, energy crops, biogas, and used wood were used for energy purposes. The long-term potential, assuming short rotation forestry on potentially available agricultural land is about one-third, or 1400 PJ, of current total primary energy use. However, in the near term, Poland is lacking fundamental driving forces for increasing the use of bioenergy (e.g., for meeting demand increases, improving supply security, or further reducing sulphur or greenhouse gas emissions). There is yet no coherent policy or strategy for supporting bioenergy. Co-firing with coal in large plants is an interesting option for creating demand and facilitating the development of a market for bioenergy. The renewable electricity quota obligation is likely to promote such co-firing but promising applications of bioenergy are also found in small- and medium-scale applications for heat production. Carbon taxes and, or, other financial support schemes targeted also at the heating sector are necessary in the near term in order to reach the 7.5% target. In addition, there is a need to support the development of supply infrastructure, change certain practices in forestry, coordinate RD and D efforts, and

  10. Comparison of Bioenergy Policies in Denmark and Germany

    DEFF Research Database (Denmark)

    Schwarz, Gerald; Noe, Egon; Saggau, Volker

    2012-01-01

    Purpose – This chapter compares bioenergy policy developments in Germany and Denmark to better understand the responses of EU country policy regimes to global shocks; to examine potentially emerging new trends of productivist policy models; and to explore potential land use conflicts in the context...... of a multifunctional EU agricultural policy. Design/methodology/approach – The chapter reviews the bioenergy policy development pathways taken by Germany and Denmark, highlighting key consequences for agricultural land use and rural development. Findings from both case studies are then compared in summary tables...

  11. Current and future competitiveness of bioenergy - Conceptions about competitiveness

    International Nuclear Information System (INIS)

    Ling, E.; Lundgren, K.; Maartensson, Kjell

    1998-01-01

    It is important to visualize the conceptions that guide the behaviour of the actors within the energy system to be able to, in an efficient manner, increase the share of renewable energy in the energy mix. A major issue is to elucidate explicit and implicit presumptions within judgements on the competitiveness of bioenergy. This study focuses on how conceptions of bioenergy in the form of patterns of thinking, influence whether bioenergy can become competitive. The aim of the study is to develop a framework that will enable an increased understanding of the competitiveness of bioenergy today and in the future. The conceptions that the actors of the energy system uphold are studied and analysed. The conceptions of the actors are seen as key factors for the understanding of the function of the energy system and accordingly also for the understanding of the competitiveness of bioenergy. The over-all method perspective in the study is an actor approach. The actors' conceptions have been identified from interviews with 30 significant actors within the energy system. The material from the interviews has been synthesised into nine ideal types of actors. These nine 'model actors' are seen as representing the whole material and form the basis for the further analysis of the competitiveness of bioenergy as depending on patterns of thinking called logics. Three idealized logics are developed. The three logics developed in the study are production logic, market logic and socio-economic logic. (Upholders of the logics rank energy sources after production cost, profitability, and socio-economic legitimacy, respectively.) The logics co-exist within the different parts of the energy system. A single person can even uphold more than one logic. The three logics have however different weight in different organisations and in different parts of the energy system. Finally, the study proposes an enlarged description of the competitiveness of bioenergy in three dimensions: price

  12. Bioenergy Research Programme. Yearbook 1997. Utilization of bioenergy and biomass conversion

    International Nuclear Information System (INIS)

    Nikku, P.

    1998-01-01

    The aim of the research programme is to increase the use of economically profitable and environmentally sound bioenergy, by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels, new equipment and methods for production, handling and using of biofuels. The total funding for 1997 was 33.5 million FIM, and the number of projects 62. The number of projects concerning bioenergy use was 17 and biomass conversion 4. Results from the projects that were going on in 1997 are presented in this publication. The aim of the bioenergy use is to develop and demonstrate at least 3-4 new equipment or methods for handling and use of biofuels. The equipment and/or methods should provide economically competitive and environmentally sound energy production. The second aim is to demonstrate at least 2-3 large-scale biofuel end-use technologies. Each of these should have a potential of 0.2-0.3 million toe per year till the year 2000. The aims have been achieved in the field of fuel handling technologies and small scale combustion concepts, but the large scale demonstration projects before the year 2000 seem to be a very challenging goal. The aim of the biomass conversion is to produce basic information on biomass conversion, to evaluate the quality of products, their usability, environmental effects of the use as well as the total economy of the production. The objective of the biomass conversion is to develop 2-3 new methods, which could be demonstrated, for the production and utilization of liquefied, gasified and other converted biofuels. The production target is 0.2-0.3 million toe per year by 2005 at a competitive price level. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of the storage stability of imported wood oils and their suitability for use in oil-fired boilers and diesel power plants

  13. Bioenergy crop models: Descriptions, data requirements and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Kang, Shujiang [ORNL; Zhang, Xuesong [Pacific Northwest National Laboratory (PNNL); Miguez, Fernando [Iowa State University; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Post, Wilfred M [ORNL; Dietze, Michael [University of Illinois, Urbana-Champaign; Lynd, L. [Dartmouth College; Wullschleger, Stan D [ORNL

    2012-01-01

    Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

  14. A participatory systems approach to modeling social, economic, and ecological components of bioenergy

    International Nuclear Information System (INIS)

    Buchholz, Thomas S.; Volk, Timothy A.; Luzadis, Valerie A.

    2007-01-01

    Availability of and access to useful energy is a crucial factor for maintaining and improving human well-being. Looming scarcities and increasing awareness of environmental, economic, and social impacts of conventional sources of non-renewable energy have focused attention on renewable energy sources, including biomass. The complex interactions of social, economic, and ecological factors among the bioenergy system components of feedstock supply, conversion technology, and energy allocation have been a major obstacle to the broader development of bioenergy systems. For widespread implementation of bioenergy to occur there is a need for an integrated approach to model the social, economic, and ecological interactions associated with bioenergy. Such models can serve as a planning and evaluation tool to help decide when, where, and how bioenergy systems can contribute to development. One approach to integrated modeling is by assessing the sustainability of a bioenergy system. The evolving nature of sustainability can be described by an adaptive systems approach using general systems principles. Discussing these principles reveals that participation of stakeholders in all components of a bioenergy system is a crucial factor for sustainability. Multi-criteria analysis (MCA) is an effective tool to implement this approach. This approach would enable decision-makers to evaluate bioenergy systems for sustainability in a participatory, transparent, timely, and informed manner

  15. Developing a versatile simulation, scheduling and economic model framework for bioenergy production systems

    Directory of Open Access Journals (Sweden)

    Robert Matindi

    2019-01-01

    Full Text Available Modelling is an effective way of designing, understanding, and analysing bio-refinery supply chain systems. The supply chain is a complex process consisting of many systems interacting with each other. It requires the modelling of the processes in the presence of multiple autonomous entities (i.e. biomass producers, bio-processors and transporters, multiple performance measures and multiple objectives, both local and global, which together constitute very complex interaction effects. In this paper, simulation models for recovering biomass from the field of the biorefinery are developed and validated using some industry data and the minimum biomass recovery cost is established based on different strategies employed for recovering biomass. Energy densification techniques are evaluated for their net present worth and the technologies that offer greater returns for the industry are recommended. In addition, a new scheduling algorithm is also developed to enhance the process flow of the management of resources and the flow of biomass. The primary objective is to investigate different strategies to reach the lowest cost delivery of sugarcane harvest residue to a sugar factory through optimally located bio-refineries. A simulation /optimisation solution approach is also developed to tackle the stochastic variables in the bioenergy production system based on different statistical distributions such as Weibull and Pearson distributions. In this approach, a genetic algorithm is integrated with simulation to improve the initial solution and search the near-optimal solution. A case study is conducted to illustrate the results and to validate the applicability for the real world implementation using ExtendSIM Simulation software using some real data from Australian Mills.

  16. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Capareda, Sergio [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; El-Halwagi, Mahmoud [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Hall, Kenneth R. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Searcy, Royce [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; Thompson, Wayne H. [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Baltensperger, David [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Myatt, Robert [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Blumenthal, Jurg [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  17. Bio-energy status document 2012; Statusdocument bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.L.; Van Grinsven, A.H.; Bergsma, G.C.; Croezen, H.C.

    2013-05-15

    In 2012 bio-energy contributed over 71 PJ to the Dutch energy supply, a rise of almost 2 PJ over 2011. This means that 75% of the renewable energy consumed in the Netherlands is now derived from biomass. The growth is due mainly to the increase in the mandatory biotransport fuel percentage from 4.25% to 4.5%. The use of energy from 'other biomass combustion' (incl. paper sludge, green waste and chicken excrement) recovered to the level of 2010, following a marked drop in 2011 due to plant maintenance, termination of the MEP ('Environmental Quality of Power Generation') subsidy scheme and high biomass prices. At large power stations there was a considerable decrease in co-incineration of biomass because of incidents (a fire at the Nijmegen coal-fired plant) and a maintenance backlog (at the Amer power station). These are some of the results reported in the 'Bio-energy status document 2012', prepared by CE Delft for NL Agency. In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] De bijdrage van bio-energie aan de Nederlandse energievoorziening bedroeg in 2012 ruim 71 PJ, een stijging van bijna 2 PJ ten opzichte van 2011. Daarmee is 75% van het verbruik van hernieuwbare energie in Nederland afkomstig van bio-energie. De stijging wordt vooral veroorzaakt door de oplopende bijmengplicht van biotransportbrandstoffen van 4,25% naar 4,5%. Verbruik van energie uit 'overige biomassaverbranding' (o.a. papierslib, groenafval en kippenmest) herstelde zicht tot het niveau van 2010, na een forse daling in 2011 door onderhoud aan installaties, afloop van MEP-subsidies en hoge prijzen van biomassa. Het bij- en meestoken van biomassa in grote elektriciteitscentrales daalde juist aanzienlijk door calamiteiten en uitloop van onderhoud (brand kolencentrale bij Nijmegen

  18. The future of bioenergy in Sweden. Background and summary of outstanding issues

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy and Environment; Magnusson, Leif [EnerGia Konsulterande Ingenjoerer AB, Stockholm (Sweden)

    2006-12-30

    This report is intended to give a background to discussions about the future of bioenergy in Sweden, to be used by the Swedish Energy Agency in the planning of future efforts in the biofuel supply chain. An overview of the present supply and use of biomass in Sweden is given, and trends and prospects for increased use of bioenergy in Sweden are assessed. Both sources of increased bioenergy demand and possibilities for increased domestic supply are treated. Biomass contributes about 110 TWh, or one fifth of the Swedish energy supply. Biomass is mainly used for energy within the forest industry, in district heating plants, in the residential sector and for electricity production. More than 50% of the heat comes from biomass today. Based on a number of studies it is concluded that there is a potential for a substantial increase in the Swedish biofuel use, by introduction of new forest management practices and a re-orientation of agriculture. Calculations indicate that there is scope for a substantial increase in bioenergy use in Sweden and that the Swedish bioenergy potential is large enough to accommodate such an increase. However, related to the aspirations in the EC biofuel directive and the hopes that Sweden by taking early steps could become a major supplier of liquid biofuels in EU, it is also shown that Sweden to a significant extent would need to rely on imported bioenergy (biomass feedstock at the magnitude 100 TWh) in order to supply a biofuels industry capable of providing for the domestic market and also exporting substantial volumes of liquid biofuels to Europe. The prospects for a large-scale import of biofuels are discussed based on an analysis of the potential global biomass production and use in forestry and agriculture. A number of issues of great importance for increased biomass use are discussed - competitive land uses, availability of water, international trade rules, and international politics. The report also discusses additional and new uses of

  19. Research Staff | Bioenergy | NREL

    Science.gov (United States)

    Research Staff Research Staff Photo of Adam Bratis, Ph.D. Adam Bratis Associate Lab Director-Bio research to accomplish the objectives of the Department of Energy's Bioenergy Technologies Office, and to serve as a spokesperson for the bioenergy research effort at NREL, both internally and externally. This

  20. The role of bioenergy in the UK's energy future formulation and modelling of long-term UK bioenergy scenarios

    International Nuclear Information System (INIS)

    Jablonski, Sophie; Bauen, Ausilio; Strachan, Neil; Brand, Christian

    2010-01-01

    This paper explores the prospects and policy implications for bioenergy to contribute to a long-term sustainable UK energy system. The UK MARKAL technology-focused energy systems dynamic cost optimisation model - which has been used to quantify the costs and benefits of alternative energy strategies in UK policy making - is enhanced with detailed representation of bio-energy chains and end-uses. This provides an important advance in linking bioenergy expert-knowledge with a whole system modelling approach, in order to better understand the potential role of bioenergy in an evolving energy system. The new BIOSYS-MARKAL model is used to run four scenarios constructed along the pillars of UK energy policy objectives (low carbon and energy security). The results are analysed in terms of bioenergy resources use and bioenergy pathways penetration in different end use sectors. The main findings suggest that the complexity of different bioenergy pathways may have been overlooked in previous modelling exercises. A range of bioenergy pathways - notably bio-heat and biofuels for transport - may have a much wider potential role to play. The extent to which this potential is fulfilled will be further determined by resources availability, and market segment constraints, as well as policy measures to improve deployment. (author)

  1. Unravelling the argument for bioenergy production in developing countries: A world-economy perspective

    OpenAIRE

    Kuchler, Magdalena

    2010-01-01

    This paper offers a critical look at how energy security-, food and agriculture-, and climate change-oriented international organizations frame biomass energy production in developing countries, in particular, ethanol production in Brazil. Using the world-economy system as a theoretical lens, the paper raises a concern as to whether the way these global institutions frame bioenergy's role in developing regions manifests energy and ecological inequalities between the core and the periphery, as...

  2. Bioenergy Research Programme. Yearbook 1994. Production of wood fuels

    International Nuclear Information System (INIS)

    Alakangas, E.

    1995-01-01

    BIOENERGIA Research Programme is one of energy technology programmes of the Finnish Ministry of Trade and Industry (in 1995 TEKES, Technology Development Center). The aim of Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels and new equipment and methods for production, handling and using of biofuels. The funding for 1994 was nearly 50 million FIM and projects numbered 60. The main goal of the production of wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m 3 ). There were 27 projects in 1994 for research on wood fuel production. This part of the yearbook 1994 presents the main results of these projects. The wood reserves do not limit the obtainability of the target. Research and development work has, however, directed to development of equipment and research on wood fuels production chains. Many devices, designed for both separate and integrated production of wood fuels became ready or were becoming ready for prototyping, to be used for production tests. Results of the biomass harvesting and properties research were obtained for utilization in 1994. According to the results it is possible to obtain the desired targets both in integrated and separated production of wood fuels. (author)

  3. Proceedings of the CANBIO workshop on Canadian bioenergy : export markets vs. domestic business opportunities

    International Nuclear Information System (INIS)

    2006-01-01

    While there is a strong European demand for bioenergy products such as wood pellets, Canadian bioenergy markets remain relatively subdued. Organized by the Canadian Bioenergy Association, this workshop explored various national and international development opportunities for wood residue and bioenergy products. BioOil markets in Europe were considered as a potential market for Canadian bioenergy products. Various European and Canadian incentive programs and research initiatives were outlined. New technologies in bioenergy refinement practices were explored and new development in syngas production techniques were introduced. It was suggested that district heating programs and gasification fuels may provide new domestic markets for bioenergy products. Resource opportunities in the electricity sector were evaluated, and wood residue production trends in Canada were examined. It was noted that the mountain pine beetle (MPB) infestation in British Columbia (BC) has increased wood residue production surpluses in the province, which has resulted in increased sawmill activity. Sixteen presentations were given at this workshop, 4 of which were catalogued separately for inclusion in this database. refs., tabs., figs

  4. Bioenergy Sustainability Analysis | Bioenergy | NREL

    Science.gov (United States)

    large scale since bioenergy coupled with carbon dioxide capture and storage (CCS) could provide negative technologies followed by CCS is illustrated below. Coal and natural gas can reduce emissions with CCS but transport and power generation technologies both with and without CCS. Values are uncertain and depend on

  5. Securing a bioenergy future without imports

    International Nuclear Information System (INIS)

    Welfle, Andrew; Gilbert, Paul; Thornley, Patricia

    2014-01-01

    The UK has legally binding renewable energy and greenhouse gas targets. Energy from biomass is anticipated to make major contributions to these. However there are concerns about the availability and sustainability of biomass for the bioenergy sector. A Biomass Resource Model has been developed that reflects the key biomass supply-chain dynamics and interactions determining resource availability, taking into account climate, food, land and other constraints. The model has been applied to the UK, developing four biomass resource scenarios to analyse resource availability and energy generation potential within different contexts. The model shows that indigenous biomass resources and energy crops could service up to 44% of UK energy demand by 2050 without impacting food systems. The scenarios show, residues from agriculture, forestry and industry provide the most robust resource, potentially providing up to 6.5% of primary energy demand by 2050. Waste resources are found to potentially provide up to 15.4% and specifically grown biomass and energy crops up to 22% of demand. The UK is therefore projected to have significant indigenous biomass resources to meet its targets. However the dominant biomass resource opportunities identified in the paper are not consistent with current UK bioenergy strategies, risking biomass deficit despite resource abundance. - Highlights: • Biomass Resource Model and Scenarios reflect biomass supply-chain dynamics to 2050. • High potential availability of biomass and energy crops without food systems impacts. • UK Indigenous biomass resource could service up to 44% of UK energy demand by 2050. • Robust residue resource from ongoing activities and large potential waste resource. • Indigenous resource abundance and the UK’s path towards increased resource deficit

  6. Perspective: The social science of sustainable bioenergy production in Southeast Asia

    NARCIS (Netherlands)

    Bush, S.R.

    2008-01-01

    The social sciences have made considerable inroads into exploring the politics of environment, land and resources throughout Southeast Asia, yet the social and political character of bioenergy development remains little understood. Current assumptions that bioenergy provides benefits to rural

  7. 8. Rostock bioenergy forum. Proceedings

    International Nuclear Information System (INIS)

    Nelles, Michael

    2014-01-01

    This conference volume contains lectures and poster contributions with the following main topics: integrated biomass utilisation concepts; Solid bioenergy carrier; Bioenergy in the transport sector; Biogas. Seven papers are separately analyzed for this database. [de

  8. Overcoming barriers to increased bio-energy use. Suggestions for a high impact policy

    International Nuclear Information System (INIS)

    Chanakya, H.N.; Ravindranath, N.H.

    1997-01-01

    A few options that are likely to result in a high impact policy towards ensuring increased use of bio-energy in the developing world are discussed. Such options are: Moving towards greater energy security /guarantee, bio-energy technology transfer platforms, documentation in bio-energy businesses, removing risk perceptions in financing, increasing private entrepreneur stakes, etc. (K.A.)

  9. Determination of Indonesian palm-oil-based bioenergy sustainability indicators using fuzzy inference system

    Science.gov (United States)

    Arkeman, Y.; Rizkyanti, R. A.; Hambali, E.

    2017-05-01

    Development of Indonesian palm-oil-based bioenergy faces an international challenge regarding to sustainability issue, indicated by the establishment of standards on sustainable bioenergy. Currently, Indonesia has sustainability standards limited to palm-oil cultivation, while other standards are lacking appropriateness for Indonesian palm-oil-based bioenergy sustainability regarding to real condition in Indonesia. Thus, Indonesia requires sustainability indicators for Indonesian palm-oil-based bioenergy to gain recognition and easiness in marketing it. Determination of sustainability indicators was accomplished through three stages, which were preliminary analysis, indicator assessment (using fuzzy inference system), and system validation. Global Bioenergy partnership (GBEP) was used as the standard for the assessment because of its general for use, internationally accepted, and it contained balanced proportion between environment, economic, and social aspects. Result showed that the number of sustainability indicators using FIS method are 21 indicators. The system developed has an accuracy of 85%.

  10. Role of forest sector and bioenergy in limiting the carbon emissions of Finland

    International Nuclear Information System (INIS)

    Pingoud, Kim; Lehtilae, Antti

    1997-01-01

    The greenhouse impacts of the Finnish forest sector, including the forests biomass, forest industry, forest products in use, foreign trade and waste management are discussed. The main carbon storages and flows are estimated and the greenhouse gas balance both totally and on national level are presented. The history of the greenhouse impact is also estimated and two future scenarios of the forest sector are compared. The present use and potential for additional use of bioenergy is also reviewed, and the impact of expanded bioenergy use on the national CO 2 emissions is illustrated with scenario examples. (author)

  11. From Sustainability-as-usual to Sustainability Excellence in Local Bioenergy Business

    Directory of Open Access Journals (Sweden)

    Heli Kasurinen

    2017-06-01

    Full Text Available Bioenergy business operators can significantly contribute to the sustainability of bioenergy systems. While research has addressed the maturity of corporate responsibility for sustainability, the maturity levels of bioenergy business have not been determined. The objectives of this research were to characterise the maturity levels of bioenergy corporate responsibility for sustainability and outline an approach by which companies can operate at the most mature sustainability excellence level. Literature, three workshops attended by bioenergy experts and a case study on biobutanol production in Brazil were used to develop the maturity model and approach. The results characterise the profitability, acceptability, and sustainability orientation maturity levels through sustainability questions and methods, and list the components of a systemic, holistic approach. Although the shift of business mindset from sustainability-as-usual to sustainability excellence is challenging, a systemic approach is necessary to broadly identify sustainability questions and a multitude of methods by which they can be answered.

  12. Synthesis report: System studies Bioenergy; Syntesrapport Systemstudier bioenergi

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Thore [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Heat and Power Technology; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Dept. of Natural and Environmental Sciences; Hylander, Nippe [Aangpannefoereningen, Stockholm (SE)] (ed.)

    2003-07-01

    The present report marks the end of the research program 'System studies Bioenergy' (1998-2002). The program comprised 17 projects performed at 9 universities or research institutes. All project results were studied in order to identify: contributions to our present knowledge; possible gaps of knowledge, methodology or systems perspective that still exist; and the needs for further research. The projects can be classified into the following groups: Resource potential of forest fuels; Industrial use of biofuels; Potential for synthetic fuels (pellets, bio-oils and transportation fuels); System analysis of efficient use of biofuels; and Socio-economic analyses. The total potential for available biofuel has been estimated to be 125-175 TWh/year (excl. black liquors of paper industry). The potential demand is estimated to about 123 TWh/year, or distributed into the different sectors: Industry: 26 TWh/year, Buildings and services: 35 TWh/year, District heating: 31 TWh/year, and electric power generation (incl. cogeneration in district heating): 31 TWh/year. Further research is needed in the following areas: Systems and methodology of more generic character on optimization of production, refining and use of biofuels in order to substitute fossil fuels directly or indirectly; Heat sinks/district heating in combination with cogeneration vs. other power production in a long term perspective (> 10 years), in the light of new technologies, open markets, economic and political incentives; Energy efficiency in industry, esp. paper and pulp with its unique possibility for process integration, biofuel processing and CO{sub 2} separation; How far should the processing/refinement of biofuels go; Importance of factors of scale; New distributed (small-scale) energy technology; International trade in biofuels; Transport and handling costs for biofuel pellets in Europe; System aspects of implementation and incentives; How are biofuels affected if CO{sub 2} from fossil fuels

  13. Sustainable Palm Oil Production For Bioenergy Supply Chain

    OpenAIRE

    Ng, Wai Kiat

    2009-01-01

    A bioenergy supply chain is formed by many parts which from the raw material, biomass feedstock until the distribution and utilisation. The upstream activity is always managed in a sustainable way in order to be capable enough to support the downstream activity. In this dissertation, the sustainable production of palm oil is focused and researched through problem identification and solving by using the operation management perspective and practices. At first, the global biomass industry is st...

  14. Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework

    International Nuclear Information System (INIS)

    Nikodinoska, Natasha; Buonocore, Elvira; Paletto, Alessandro; Franzese, Pier Paolo

    2017-01-01

    Highlights: • The Sarentino bioenergy value chain (North Italy) was investigated. • A multi-method environmental accounting framework was implemented. • Environmental costs and impacts of a forest bioenergy chain were assessed. • Indicators show a good environmental performance and sustainability. • Linking wood industry and energy production could lower the environmental burden. - Abstract: Using wood biomass for bioenergy production in mountain urban settlements can represent a win–win strategy when it combines a continuous energy provision to households with a sustainable management of local forests, also boosting rural development and stakeholders’ cooperation. In this study, we implemented a multi-method environmental accounting framework aimed at investigating environmental costs and impacts of a bioenergy value chain located in Sarentino Valley (North Italy). This assessment framework encompasses material, energy, and emergy demands as well as main emissions generated at each step of the chain: (1) forestry, (2) logistics, and (3) conversion. The resulting global to local ratios of abiotic material calculated for forestry, logistics, and conversion subsystems show that the global (direct and indirect) consumption of abiotic matter was respectively 3.6, 3.2, and 7.6 times higher than the direct material demand. The Energy Return on Energy Investment (EROI) of wood biomass and wood chips production (37.1 and 22.4) shows a high energy performance of these processes, while the EROI of heat generation (11.35) reflects a higher support of human-driven inputs. The emergy renewable fraction, ranging from 77% to 37% across the value chain, shows a high use of local renewable resources in the bioenergy value chain. The total CO_2 emissions of the bioenergy value chain (4088 t CO_2 yr"−"1) represent only 7.1% of the CO_2 sequestration potential of the Sarentino Valley forest ecosystem, highlighting the capability of the local forests to offset the CO_2

  15. Small-scale bioenergy projects in rural China: Lessons to be learnt

    International Nuclear Information System (INIS)

    Han Jingyi; Mol, Arthur P.J.; Lu Yonglong; Zhang Lei

    2008-01-01

    Large amounts of small-scale bioenergy projects were carried out in China's rural areas in light of its national renewable energy policies. These projects applied pyrolysis gasification as the main technology, which turns biomass waste at low costs into biogas. This paper selects seven bioenergy projects in Shandong Province as a case and assesses these projects in terms of economy, technological performance and effectiveness. Results show that these projects have not achieved a satisfying performance after 10 years experience. Many projects have been discontinued. This failure is attributed to a complex of shortcomings in institutional structure, technical level, financial support and social factors. For a more successful future development of bioenergy in rural areas, China should reform its institutional structure, establish a renewable energy market and enhance the technological level of bioenergy projects

  16. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    . This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and

  17. Land-Use Change and Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  18. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  19. Bioenergy and the Sustainability Transition: from Local Resource to Global Commodity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Francis X.

    2007-07-01

    The looming threat of climate change and the invaluable role of energy in development have complicated the global transition to sustainable energy while also increasing the urgency of the transition. Bioenergy has a key role in this transition due to its unique characteristics among renewable energy sources, the concentration of bioenergy potential in major developing country regions, and the close relationship between biomass resources and carbon management strategies. This paper offers a conceptual model for bioenergy's role in the transition, outlining its key elements and their significance with respect to environment and development. In spite of the globalising economy, the security of energy supply continues to be threatened by geo-political conflicts. Continued expansion of energy consumption is constrained by its environmental impacts. At the same time two billion persons have little or no access to modern energy services. The diversity and flexibility of bioenergy systems offers opportunities to bridge some of the key divisions-technical, political, economic, and environmental-that have complicated international efforts to address climate change and promote equitable development of global resources. The challenge is to take advantage of the heterogeneity of biomass resources to facilitate the most effective use of those resources in the emerging bio-economy. (auth)

  20. Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis

    Directory of Open Access Journals (Sweden)

    Oludunsin Arodudu

    2016-12-01

    Full Text Available In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed the feasibility of bioenergy production under relatively low-intensity conservative, eco-agricultural settings (as opposed to those produced under high-intensity, fossil fuel based industrialized agriculture. Estimates of the net energy gain (NEG and the energy return on energy invested (EROEI obtained from a life cycle inventory of the energy inputs and outputs involved reveal that the energy efficiency of bioenergy produced in low-intensity eco-agricultural systems could be as much as much as 448.5–488.3 GJ·ha−1 of NEG and an EROEI of 5.4–5.9 for maize ethanol production systems, and as much as 155.0–283.9 GJ·ha−1 of NEG and an EROEI of 14.7–22.4 for maize biogas production systems. This is substantially higher than for industrialized agriculture with a NEG of 2.8–52.5 GJ·ha−1 and an EROEI of 1.2–1.7 for maize ethanol production systems, as well as a NEG of 59.3–188.7 GJ·ha−1 and an EROEI of 2.2–10.2 for maize biogas production systems. Bioenergy produced in low-intensity eco-agricultural systems could therefore be an important source of energy with immense net benefits for local and regional end-users, provided a more efficient use of the co-products is ensured.

  1. Bioenergy as a Mitigation Measure

    Science.gov (United States)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these

  2. Bioenergy. A sustainable and reliable energy source. A review of status and prospects. Executive Summary

    International Nuclear Information System (INIS)

    Bauen, A.; Vuille, F.; Berndes, G.; Junginger, M.; Londo, M.

    2009-08-01

    This publication is the Executive Summary of a report prepared for IEA Bioenergy. The full report 'Bioenergy - a Sustainable and Reliable Energy Source' will be available on the website of IEA Bioenergy in digital form and in hard copy in a few months time. The purpose of the project was to produce an authoritative review of the entire bioenergy sector aimed at policy and investment decision makers. The brief to the contractors was to provide a global perspective of the potential for bioenergy, the main opportunities for deployment in the short and medium term and the principal issues and challenges facing the development of the sector.

  3. An approach to computing marginal land use change carbon intensities for bioenergy in policy applications

    International Nuclear Information System (INIS)

    Wise, Marshall; Hodson, Elke L.; Mignone, Bryan K.; Clarke, Leon; Waldhoff, Stephanie; Luckow, Patrick

    2015-01-01

    Accurately characterizing the emissions implications of bioenergy is increasingly important to the design of regional and global greenhouse gas mitigation policies. Market-based policies, in particular, often use information about carbon intensity to adjust relative deployment incentives for different energy sources. However, the carbon intensity of bioenergy is difficult to quantify because carbon emissions can occur when land use changes to expand production of bioenergy crops rather than simply when the fuel is consumed as for fossil fuels. Using a long-term, integrated assessment model, this paper develops an approach for computing the carbon intensity of bioenergy production that isolates the marginal impact of increasing production of a specific bioenergy crop in a specific region, taking into account economic competition among land uses. We explore several factors that affect emissions intensity and explain these results in the context of previous studies that use different approaches. Among the factors explored, our results suggest that the carbon intensity of bioenergy production from land use change (LUC) differs by a factor of two depending on the region in which the bioenergy crop is grown in the United States. Assumptions about international land use policies (such as those related to forest protection) and crop yields also significantly impact carbon intensity. Finally, we develop and demonstrate a generalized method for considering the varying time profile of LUC emissions from bioenergy production, taking into account the time path of future carbon prices, the discount rate and the time horizon. When evaluated in the context of power sector applications, we found electricity from bioenergy crops to be less carbon-intensive than conventional coal-fired electricity generation and often less carbon-intensive than natural-gas fired generation. - Highlights: • Modeling methodology for assessing land use change emissions from bioenergy • Use GCAM

  4. Paving the Way for Heat. Local Government Policies for Developing Bioenergy

    Directory of Open Access Journals (Sweden)

    Bente Johnsen Rygg

    2014-06-01

    Full Text Available Local governments play dual roles in developing renewable energy projects. They are the targets of many goals concerning energy and climate, set by national and international actors, and they are important actors in energy planning, regulation setting, and the development of infrastructure and residential areas. In this paper, I study how local governments’ technology policies affect the actual outcome of project development based on experiences from 14 local governments. Technology policies are studied from the perspective of Sørensen’s [1] four areas of concern: direct support of innovation, infrastructure, regulation (protection and standards and public engagement. I find that local governments use policy instruments within all four areas, and that the way local governments involves in the process of bioenergy development are surprisingly similar despite differences in location and size of both the local government and the project.

  5. Assessment of bioenergy potential on marginal land in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Dafang; Jiang, Dong; Liu, Lei; Huang, Yaohuan [Data Center for Resources and Environmental Sciences, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101 (China)

    2011-02-15

    Bioenergy developed from energy plants will play a more and more important role in future energy supply. Much attention has been paid to energy plants in recent years. As China has fairly limited cultivated land resources, the bioenergy development may mainly rely on the exploitation of marginal land. This study focused on the assessment of marginal land resources and bio-fuel potential in China using newly acquired data and Geographic Information System (GIS) techniques. A multi-factor analysis method was adopted to identify marginal lands for bioenergy development in China, with data of several main types of energy plants on the eco-environmental requirements and natural habits employed. A combined planting zonation strategy was proposed, which was targeted for five species of energy plants including Helianthus tuberous L., Pistacia chinensis, Jatropha curcas L., Cassava and Vernicia fordii. The results indicated that total area of marginal land exploitable for development of energy plants on a large scale was about 43.75 million ha. If 10% of this marginal land was fully utilized for growing the energy plants, the production of bio-fuel would be 13.39 million tons. (author)

  6. Bioenergy: how much can we expect for 2050?

    International Nuclear Information System (INIS)

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Running, Steve; Kolby Smith, W; Searchinger, Timothy D

    2013-01-01

    Estimates of global primary bioenergy potentials in the literature span almost three orders of magnitude. We narrow that range by discussing biophysical constraints on bioenergy potentials resulting from plant growth (NPP) and its current human use. In the last 30 years, terrestrial NPP was almost constant near 54 PgC yr −1 , despite massive efforts to increase yields in agriculture and forestry. The global human appropriation of terrestrial plant production has doubled in the last century. We estimate the maximum physical potential of the world’s total land area outside croplands, infrastructure, wilderness and denser forests to deliver bioenergy at approximately 190 EJ yr −1 . These pasture lands, sparser woodlands, savannas and tundras are already used heavily for grazing and store abundant carbon; they would have to be entirely converted to bioenergy and intensive forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly double the global human biomass harvest, with far-reaching effects on biodiversity, ecosystems and food supply. Identifying sustainable levels of bioenergy and finding ways to integrate bioenergy with food supply and ecological conservation goals remains a huge and pressing scientific challenge. (perspective)

  7. Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy

    Science.gov (United States)

    Booth, Mary S.

    2018-03-01

    Climate mitigation requires emissions to peak then decline within two decades, but many mitigation models include 100 EJ or more of bioenergy, ignoring emissions from biomass oxidation. Treatment of bioenergy as ‘low carbon’ or carbon neutral often assumes fuels are agricultural or forestry residues that will decompose and emit CO2 if not burned for energy. However, for ‘low carbon’ assumptions about residues to be reasonable, two conditions must be met: biomass must genuinely be material left over from some other process; and cumulative net emissions, the additional CO2 emitted by burning biomass compared to its alternative fate, must be low or negligible in a timeframe meaningful for climate mitigation. This study assesses biomass use and net emissions from the US bioenergy and wood pellet manufacturing sectors. It defines the ratio of cumulative net emissions to combustion, manufacturing and transport emissions as the net emissions impact (NEI), and evaluates the NEI at year 10 and beyond for a variety of scenarios. The analysis indicates the US industrial bioenergy sector mostly burns black liquor and has an NEI of 20% at year 10, while the NEI for plants burning forest residues ranges from 41%-95%. Wood pellets have a NEI of 55%-79% at year 10, with net CO2 emissions of 14-20 tonnes for every tonne of pellets; by year 40, the NEI is 26%-54%. Net emissions may be ten times higher at year 40 if whole trees are harvested for feedstock. Projected global pellet use would generate around 1% of world bioenergy with cumulative net emissions of 2 Gt of CO2 by 2050. Using the NEI to weight biogenic CO2 for inclusion in carbon trading programs and to qualify bioenergy for renewable energy subsidies would reduce emissions more effectively than the current assumption of carbon neutrality.

  8. An assessment of international trade related to bioenergy use in Austria—Methodological aspects, recent developments and the relevance of indirect trade

    International Nuclear Information System (INIS)

    Kalt, Gerald; Kranzl, Lukas

    2012-01-01

    Increasing international biomass trade for energy and concerns about sustainability of globally traded biomass have raised interest in assessments of cross-border trade related to bioenergy. Within this paper, approaches to overcome methodological difficulties related to biomass trade are proposed and applied for the case of Austria. Biomass currently has a share of 15.5% in Austria’s primary energy consumption of 1354 PJ (2009). According to energy statistics, the rate of self-sufficiency with biomass for energy (defined as the ratio of domestic production to inland consumption, with both imports and exports taken into account) is 91%. However, feedstock imports for transport fuel production and indirect imports of wood-based fuels (wood processing residues and waste liquor of the paper industry originating from imported wood) are not taken into account in energy statistics, but prove to be of some significance. Imports of agricultural commodities to the amount of 9.7 PJ can be attributed to domestic biofuel production, and indirect imports of wood-based fuels, account for 31 PJ. With these import streams taken into account, the share of domestic fuels in bioenergy use is only 67%, rather than 84%, as official energy statistics suggest. On the other hand, Austria is exporting more than 50% of its production of sawnwood, panelboard and paper products. - Highlights: ► We investigate biomass cross-border trade related to bioenergy use in Austria. ► International biomass trade for energy has increased significantly in recent years. ► A flow wood diagram is derived to identify indirect trade streams of wood fuels. ► Biofuel feedstock imports are about as important as direct biofuel imports. ► 33% of bioenergy in Austria originate from imported biomass (2009).

  9. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.

    Science.gov (United States)

    Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K

    2018-03-01

    Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.

  10. Future bio-energy potential under various natural constraints

    International Nuclear Information System (INIS)

    Vuuren, Detlef P. van; Vliet, Jasper van; Stehfest, Elke

    2009-01-01

    Potentials for bio-energy have been estimated earlier on the basis of estimates of potentially available land, excluding certain types of land use or land cover (land required for food production and forests). In this paper, we explore how such estimates may be influenced by other factors such as land degradation, water scarcity and biodiversity concerns. Our analysis indicates that of the original bio-energy potential estimate of 150, 80 EJ occurs in areas classified as from mild to severe land degradation, water stress, or with high biodiversity value. Yield estimates were also found to have a significant impact on potential estimates. A further 12.5% increase in global yields would lead to an increase in bio-energy potential of about 50%. Changes in bio-energy potential are shown to have a direct impact on bio-energy use in the energy model TIMER, although the relevant factor is the bio-energy potential at different cost levels and not the overall potential.

  11. Better Use of Biomass for Energy. Position Paper of IEA RETD and IEA Bioenergy

    International Nuclear Information System (INIS)

    Fritsche, U.R.; Kampman, B.; Bergsma, G.

    2009-12-01

    Key findings are presented from a joint project on 'Better Use of Biomass for Energy' which identifies opportunities of bioenergy for better greenhouse-gas reduction, and of climate policies for better bioenergy development.

  12. Planning for Increased Bioenergy use - Strategies for Minimising Environmental Impacts and Analysing the Consequences

    International Nuclear Information System (INIS)

    Jonsson, Anna

    2006-08-01

    There are several goals aimed at increasing the use of renewable energy in the Swedish energy system. Bioenergy is one important renewable energy source and there is a potential to increase its use in the future. This thesis aimed to develop and analyse strategies and tools that could be used when planning for conversion to bioenergy-based heating systems and the building of new residential areas with bioenergy-based heating. The goal was to enable the increase of bioenergy and simultaneously minimise the negative health effects caused by emissions associated with the combustion of bioenergy. The thesis consists of two papers. Paper I concerned existing residential areas and conversion from electric heating and individual heating systems, such as firewood and oil boilers, to more modern and low-emitting pellet techniques and small-scale district heating. Paper II concerned new residential areas and how to integrate bioenergy-based heating systems that cause impacts on local air quality into the physical planning process through using Geographical Information Systems (GIS) and a meteorological dispersion model, ALARM. The results from Paper I indicated that it was possible to convert areas currently using electric heating to pellet techniques and small-scale district heating without degrading local air quality. Furthermore, it was possible to decrease high emissions caused by firewood boilers by replacing them with pellet boilers. The results from Paper II highlighted that GIS and ALARM were advantageous for analysing local air quality characteristics when planning for new residential areas and before a residential area is built: thus, avoiding negative impacts caused by bioenergy-based combustion. In conclusion, the work procedures developed in this thesis can be used to counteract negative impacts on local air quality with increasing use of bioenergy in the heating system. Analysis of potentially negative aspects before conversion to bioenergy-based heating

  13. Fostering the Bioeconomic Revolution in Biobased Products and Bioenergy: An Environmental Approach

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2001-01-01

    This document is a product of the Biomass Research and Development Board and presents a high-level summary of the emerging national strategy for biobased products and bioenergy. It provides the first integrated approach to policies and procedures that will promote R&D and demonstration leading to accelerated production of biobased products and bioenergy.

  14. Striving to further harmonization of sustainability criteria for bioenergy in Europe: Recommendations from a stakeholder questionnaire

    International Nuclear Information System (INIS)

    Dam, J. van; Junginger, M.

    2011-01-01

    This questionnaire analyzed the ongoing development of sustainability criteria for solid and liquid bioenergy in the European Union and further actions needed to come to a harmonization of certification systems, based on EU stakeholder views. The questionnaire, online from February to August 2009, received 473 responses collected from 25 EU member countries and 9 non-European countries; 285 could be used for further processing. A large majority of all stakeholders (81%) indicated that a harmonized certification system for biomass and bioenergy is needed, albeit some limitations. Amongst them, there is agreement that (i) a criterion on 'minimization of GHG emissions' should be included in a certification system for biomass and bioenergy, (ii) criteria on optimization of energy and on water conservation are considered of high relevance, (iii) the large variety of geographical areas, crops, residues, production processes and end-uses limits development towards a harmonized certification system for sustainable biomass and bioenergy in Europe, (iv) making better use of existing certification systems and standards improves further development of a harmonized European biomass and bioenergy sustainability certification system and (v) it is important to link a European certification system to international declarations and to expand such a system to other world regions. - Highlights: → The majority of stakeholders agree on the need of a certification system for biomass and bioenergy. → Limitations for harmonizing a European system include the geographical diversity, crops and processes for biomass and bioenergy. → It is important to consider the international declarations when developing a European system.

  15. Effect of Bioenergy Demands and Supply Response on Markets, Carbon, and Land Use

    Science.gov (United States)

    Karen L. Abt; Robert C. Abt; Christopher Galik

    2012-01-01

    An increase in the demand for wood for energy, including liquid fuels, bioelectricity, and pellets, has the potential to affect traditional wood users, forestland uses, management intensities, and, ultimately, carbon sequestration. Recent studies have shown that increases in bioenergy harvests could lead to displacement of traditional wood-using industries in the short...

  16. Global land use patterns and the production of bioenergy to 2050

    International Nuclear Information System (INIS)

    Smeets, E.; Faaij, A.; Lewandowski, I.

    2004-05-01

    The results of a bottom-up analysis of the theoretical global bioenergy production potential are presented and discussed, with specific attention for the impact of underlying factors, existing studies on agriculture and forestry and gaps in the knowledge base that explain ranges in estimates. The impact of various factors is analysed by means of scenario analysis. Results indicate that the key factor for bioenergy production on surplus agricultural land is the type of agricultural management system. Theoretically, 70% of the present agricultural land use can be made available for bioenergy production, without further deforestation or endangering the future supply of food. The bioenergy potential from surplus agricultural land is estimated at 215 EJy -1 to 1471 EJy -1 in 2050. The bulk of this potential comes from the developing regions South America and the Carribean (47-221 EJy -1 ) and sub-Saharan Africa (31-317 EJy -1 ) and the transition economies of the CIS and Baltic States (45-199 EJy -1 )

  17. 10. Rostock bioenergy forum. Proceedings

    International Nuclear Information System (INIS)

    Nelles, Michael

    2016-01-01

    Biomass energy not only contributes to the energy transition, but also for climate and resource protection. The main topics of the conference are: Alternative solid bioenergy sources; Optimizing the use of heat; Prospects for biofuels; Emission reduction through use of biofuels; Alternative biomass for biogas; Optimization and adjustment in the biogas sector; Flexibility of biogas plants; New uses of bioenergy. 12 contributions were recorded separately for the INIS database. [de

  18. Macroeconomic impacts of bioenergy production on surplus agricultural land: a case study of Argentina

    NARCIS (Netherlands)

    Wicke, B.|info:eu-repo/dai/nl/306645955; Smeets, E.M.W.|info:eu-repo/dai/nl/311445217; Tabeau, A.; Hilbert, J.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2009-01-01

    This paper assesses the macroeconomic impacts in terms of GDP, trade balance and employment of large-scale bioenergy production on surplus agricultural land. An input–output model is developed with which the direct, indirect and induced macroeconomic impacts of bioenergy production and agricultural

  19. Macroeconomic impacts of bioenergy production on surplus agricultural land—A case study of Argentina

    NARCIS (Netherlands)

    Wicke, Birka; Smeets, E.; Tabeau, Andrzej; Hilbert, Jorge; Faaij, André

    2009-01-01

    This paper assesses the macroeconomic impacts in terms of GDP, trade balance and employment of large-scale bioenergy production on surplus agricultural land. An input–output model is developed with which the direct, indirect and induced macroeconomic impacts of bioenergy production and agricultural

  20. Optimization of bioenergy yield from cultivated land in Denmark

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Grohnheit, Poul Erik; Østergård, Hanne

    2010-01-01

    A cost minimization model for supply of starch, oil, sugar, grassy and woody biomass for bioenergy in Denmark was developed using linear programming. The model includes biomass supply from annual crops on arable land, short rotation forestry (willow) and plantation forestry. Crop area distributions...... and feed production, or e) on site carbon sequestration. In addition, two oil price levels were considered. The crop area distributions differed between scenarios and were affected by changing fossil oil prices up to index 300 (using 55$ per barrel in 2005 as index = 100). The bioenergy supply (district...... heating, electric power, biogas, RME or bioethanol) varied between 56 PJ in the “2005” scenario at oil index 100 and 158 PJ at oil index 300 in the groundwater scenario. Our simple model demonstrates the effect of prioritizing multiple uses of land resources for food, feed or bioenergy, while maintaining...

  1. Bioenergy in the United States: progress and possibilities

    International Nuclear Information System (INIS)

    Cook, J.; Beyea, J.

    2000-01-01

    Concerns about global climate change and air quality have increased interest in biomass and other energy sources that are potentially CO 2 -neutral and less polluting. Large-scale bioenergy development could indeed bring significant ecological benefits - or equally significant damage - depending on the specific paths taken. In particular, the land requirements for biomass production are potentially immense. Various entities in the United States have performed research; prepared cost-supply assessments, environmental impact assessments, life cycle analyses and externality impact assessments; and engaged in demonstration and development regarding biomass crops and other potential biomass energy feedstocks. These efforts have focused on various biomass wastes, forest management issues, and biomass crops, including both perennial herbaceous crops and fast-growing woody crops. Simultaneously, several regional and national groups of bioenergy stakeholders have issued consensus recommendations and guidelines for sustainable bioenergy development. It is a consistent conclusion from these efforts that displacing annual agricultural crops with native perennial biomass crops could - in addition to reducing fossil fuel use and ameliorating associated ecological problems - also help restore natural ecosystem functions in worked landscapes, and thereby preserve natural biodiversity. Conversely, if forests are managed and harvested more intensively - and/or if biomass crops displace more natural land cover such as forests and wetlands - it is likely that ecosystem functions would be impaired and biodiversity lost. (author)

  2. Two levels decision system for efficient planning and implementation of bioenergy production

    International Nuclear Information System (INIS)

    Ayoub, Nasser; Martins, Ricardo; Wang, Kefeng; Seki, Hiroya; Naka, Yuji

    2007-01-01

    When planning bioenergy production from biomass, planners should take into account each and every stakeholder along the biomass supply chains, e.g. biomass resources suppliers, transportation, conversion and electricity suppliers. Also, the planners have to consider social concerns, environmental and economical impacts related with establishing the biomass systems and the specific difficulties of each country. To overcome these problems in a sustainable manner, a robust decision support system is required. For that purpose, a two levels general Bioenergy Decision System (gBEDS) for bioenergy production planning and implementation was developed. The core part of the gBEDS is the information base, which includes the basic bioenergy information and the detailed decision information. Basic bioenergy information include, for instance, the geographical information system (GIS) database, the biomass materials' database, the biomass logistic database and the biomass conversion database. The detailed decision information considers the parameters' values database with their default values and the variables database, values obtained by simulation and optimization. It also includes a scenario database, which is used for demonstration to new users and also for case based reasoning by planners and executers. Based on the information base, the following modules are included to support decision making: the simulation module with graph interface based on the unit process (UP) definition and the genetic algorithms (GAs) methods for optimal decisions and the Matlab module for applying data mining methods (fuzzy C-means clustering and decision trees) to the biomass collection points, to define the location of storage and bioenergy conversion plants based on the simulation and optimization model developed of the whole life cycle of bioenergy generation. Furthermore, Matlab is used to set up a calculation model with crucial biomass planning parameters (e.g. costs, CO 2 emissions), over

  3. The role of bioenergy in the electricity and heating market; Die Rolle der Bioenergie im Strom-/Waermemarkt

    Energy Technology Data Exchange (ETDEWEB)

    Baur, Frank [IZES gGmbH, Saarbruecken (Germany); Hauser, Eva; Wem, Bernhard

    2014-07-01

    Bioenergy, especially from biomass crops, is today increasingly viewed with criticism on grounds ranging from economic and ecological to sociopolitical, especially when potential competing uses are taken into account. On the other hand, due to characteristics that distinguish it from other renewable energy resources, bioenergy can already today make a significant contribution to the ongoing transformation of the energy supply system. This can occur through existing as well as through new production plants. The present article provides an overview of possible approaches to this end and goes on to assess the future role of bioenergy in the electricity and heating market on this basis.

  4. Sustainability standards for bioenergy-A means to reduce climate change risks?

    International Nuclear Information System (INIS)

    Schubert, Renate; Blasch, Julia

    2010-01-01

    The paper discusses the importance of standards for sustainable bioenergy production. Sustainability of bioenergy production is crucial if bioenergy is supposed to contribute effectively to climate change mitigation. First, a brief overview of current bioenergy policies and of initiatives and legislation for bioenergy sustainability are given. Then, the authors show that under free market conditions undersupply of sustainable bioenergy will prevail. Two types of market failures are identified: information asymmetry and externalities in bioenergy production. Due to these market failures bioenergy is less sustainable than it could be. It is shown that mandatory certification and subsequent labeling can help to overcome the information asymmetry and lead to a more efficient market outcome since consumers can choose products according to their preferences. The authors conclude, however, that the existence of production externalities asks for stronger market intervention, for example in the form of binding minimum standards or taxes. The paper discusses the efficiency and feasibility of such policy measures and shows that mandatory certification combined with binding minimum standards can be an adequate policy choice to regulate the bioenergy market.

  5. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  6. Bioenergy. The Impact of Indirect Land Use Change. Summary and Conclusions from the IEA Bioenergy ExCo63 Workshop

    International Nuclear Information System (INIS)

    Brown, A.; Tustin, J.

    2009-09-01

    This publication provides the summary and conclusions from the title workshop, held in conjunction with he meeting of the Executive Committee of IEA Bioenergy in Rotterdam, Netherlands, on 12 May 2009. The purpose of the workshop was to inform the Executive Committee on the rapidly evolving international debate on bioenergy and land use - particularly the thorny issue of indirect land use change. The aim was to stimulate discussion between the Executive Committee and invited experts and thereby enhance the new policy-oriented work within IEA Bioenergy.

  7. Ethical and legal challenges in bioenergy governance

    DEFF Research Database (Denmark)

    Gamborg, Christian; Anker, Helle Tegner; Sandøe, Peter

    2014-01-01

    of regulatory measures and options). We present ethical and legal analyses of the current stalemate on bioenergy governance in the EU using two illustrative cases: liquid biofuels for transport and solid biomass-based bioenergy. The two cases disclose some similarities between these two factors......, but the remaining differences may partly explain, or justify, contrasting forms of governance. While there seems to be no easy way in which the EU and national governments can deal with the multiple sustainability issues raised by bioenergy, it is argued that failure to deal explicitly with the underlying value...... disagreements, or to make apparent the regulatory complexity, clouds the issue of how to move forward with governance of bioenergy. We suggest that governance should be shaped with greater focus on the role of value disagreements and regulatory complexity. There is a need for more openness and transparency...

  8. Smart bioenergy technologies and concepts for a more flexible bioenergy provision in future energy systems

    CERN Document Server

    2015-01-01

    Biomass is a vital source of renewable energy, because it offers a wide range of established and potential methods for energy generation. It is also an important facet of the progression toward a sustainable energy future. The need for further development in the provision of bioenergy is underlined by challenges affecting the biomass resource base, including rising demand for biomass for food, feed, materials and fuel. This is underlined by significant concerns over factors relating to land, such as soil, nutrients and biodiversity. This book examines and analyzes Germany's decade-long initiative toward implementation of an active policy for the transition of the energy system to make greater use of renewable energy sources, which has resulted in a significant increase in the amount of biomass used for electricity, heat and transport fuel. The book begins with a review of market and resource base issues, and moves on to analyze the technical options for a more integrated bioenergy use. The analysis spans the ...

  9. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  10. Jatropha. A Smallholder Bioenergy Crop. The Potential for Pro-Poor Development

    International Nuclear Information System (INIS)

    Brittaine, R.; Lutaladio, NeBambi

    2010-01-01

    A review is given of the information currently available on jatropha as a bioenergy crop, starting with the papers presented to the April 2008 IFAD/FAO International Consultation on Pro-Poor Jatropha Development held in Rome, Italy (IFAD 2008). This information has been supplemented by consulting various reports, conference papers, and both published and unpublished scientific papers. Based on the output of the International Consultation, the aim of this report is to identify the jatropha production systems that are most sustainable and viable and that can contribute to rural development and alleviate poverty. It also points out the critical areas of needed research, trusting that this information will be useful for decision-makers as well as for those actively involved in jatropha production. This introductory chapter offers general background on liquid biofuels, energy poverty and global jatropha production trends.

  11. Global land-use and market interactions between climate and bioenergy policies

    Science.gov (United States)

    Golub, A.; Hertel, T. W.; Rose, S. K.

    2011-12-01

    Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG

  12. Bioenergy production on degraded and marginal land

    NARCIS (Netherlands)

    Wicke, B.|info:eu-repo/dai/nl/306645955

    2011-01-01

    Current global energy supply is primarily based on fossil fuels and is widely considered to be unsustainable. Bioenergy is considered an important option in making future global energy more sustainable. However, increasing global trade and consumption of bioenergy in industrialised countries has

  13. Mapping and quantification of organic agro-industrial residues in East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    The East-African agro-industries generate very large quantities of organic residues from production and processing of different crops. These residues form a major contribution to the pollution of air, soil and water ways, but, at the same time they constitute a large potential for production of bioenergy through anaerobic digestion as well as potential substrate for other biological fermentation processes. The utilization of these resources for production of valuable products would contribute significantly to: Improvement of the local energy supply, through production of bio-energy; Improvement of the economy of the East African agro-industry; Reduction of the environmental impact from the agro-industrial sector. Except for production of cane sugar, most agro-industrial residues are generated from cash crops, which are produced and processed in the developing countries and where the final products mainly are used for export. In the East-African Region the most important of these crops are: Sisal, coffee, Cashew nuts and Pineapple. In addition significant quantities of organic residues are generated from other food processing activities like breweries, consumption of bananas etc. The total potential methane production of the residues available for use in biomethanization systems in East Africa is 189.61 million m{sup 3} of methane per year. Converted to diesel oil equivalents and including the residues only feasible for combustion systems, the total bioenergy potential of agro-industrial residues in Eastern Africa is 279,176 TOE. If this potential was fully utilized for production of electricity, it would correspond to installed effects of 37,68 and 31 MW in Tanzania, Kenya and Uganda, respectively, equivalent to 10%, 11% and 18% of the currently installed effect is these countries. Residues from sisal and coffee processing constitute the main part of the bioenergy potential, on average approximately 75%, while the remaining 25% of the potential are formed by the

  14. Leading global energy and environmental transformation: Unified ASEAN biomass-based bio-energy system incorporating the clean development mechanism

    International Nuclear Information System (INIS)

    Lim, Steven; Lee, Keat Teong

    2011-01-01

    In recent years, the ten member countries in the Association of Southeast Asia Nations (ASEAN) have experienced high economic growth and, in tandem, a substantial increment in energy usage and demand. Consequently, they are now under intense pressure to secure reliable energy supplies to keep up with their growth rate. Fossil fuels remain the primary source of energy for the ASEAN countries, due to economic and physical considerations. This situation has led to unrestrained emissions of greenhouse gases to the environment and thus effectively contributes to global climate change. The abundant supply of biomass from their tropical environmental conditions offers great potential for ASEAN countries to achieve self-reliance in energy supplies. This fact can simultaneously transform into the main driving force behind combating global climate change, which is associated with the usage of fossil fuels. This research article explores the potential and advantages for ASEAN investment in biomass-based bio-energy supply, processing and distribution network with an emphasis on regional collaborations. It also investigates the implementation and operational challenges in terms of political, economic and technical factors for the cross-border energy scheme. Reliance of ASEAN countries on the clean development mechanism (CDM) to address most of the impediments in developing the project is also under scrutiny. Unified co-operation among ASEAN countries in integrating biomass-based bio-energy systems and utilising the clean development mechanism (CDM) as the common effort could serve as the prime example for regional partnerships in achieving sustainable development for the energy and environmental sector in the future. -- Highlights: →A study that explores feasibility for ASEAN investment in biomass-based bio-energy. →Focus is given on regional supply, processing and distribution network. →Cross-border implementation and operational challenges are discussed thoroughly.

  15. A bioenergy feedstock/vegetable double-cropping system

    Science.gov (United States)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  16. Governance of the emerging bio-energy markets

    International Nuclear Information System (INIS)

    Verdonk, M.; Dieperink, C.; Faaij, A.P.C.

    2007-01-01

    Despite its promising prospects, a growing global bio-energy market may have sustainability risks as well. Governing this market with respect to installing safeguards to ensure sustainable biomass production might reduce these risks. Therefore, proposals for governance systems for bio-energy are discussed in this article. The proposals are based on comparative case study research on the governance of comparable commodities. By assessing the governance system of global coffee trade, fair trade coffee, the global and the EU sugar market and Forest Stewardship Council (FSC) wood, strong and weak points of governance systems for commodities are discerned. FSC is selected as the best performing case study and serves as the proposal's basis. FSC's weaknesses are minimized by, among others, using the lessons learned from the other case studies. This results in a system consisting of two pillars, a bio-energy labelling organization (BLO) and a United Nations Agreement on Bio-energy (UNAB). Although consulted experts in the research process are critical about this system they do suggest several conditions a governance system for bio-energy should meet in order to be effective, such as a facilitative government, professional monitoring and using progressive certification combined with price premiums. These conditions have been taken into account in the final proposal. (author)

  17. Governance of the emerging bio-energy markets

    Energy Technology Data Exchange (ETDEWEB)

    Verdonk, M. [Department of Water and Energy, Grontmij Nederland BV, P.O. Box 203, 3730 AE, De Bilt (Netherlands); Dieperink, C. [Department of Innovation and Environmental Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht (Netherlands); Faaij, A.P.C. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht (Netherlands)

    2007-07-15

    Despite its promising prospects, a growing global bio-energy market may have sustainability risks as well. Governing this market with respect to installing safeguards to ensure sustainable biomass production might reduce these risks. Therefore, proposals for governance systems for bio-energy are discussed in this article. The proposals are based on comparative case study research on the governance of comparable commodities. By assessing the governance system of global coffee trade, fair trade coffee, the global and the EU sugar market and Forest Stewardship Council (FSC) wood, strong and weak points of governance systems for commodities are discerned. FSC is selected as the best performing case study and serves as the proposal's basis. FSC's weaknesses are minimized by, among others, using the lessons learned from the other case studies. This results in a system consisting of two pillars, a bio-energy labelling organization (BLO) and a United Nations Agreement on Bio-energy (UNAB). Although consulted experts in the research process are critical about this system they do suggest several conditions a governance system for bio-energy should meet in order to be effective, such as a facilitative government, professional monitoring and using progressive certification combined with price premiums. These conditions have been taken into account in the final proposal. (author)

  18. Bioenergy Technologies Office Multi-Year Program Plan. March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Amy [Bioenergy Technologies Office, Washington, DC (United States)

    2016-03-01

    The Bioenergy Technologies Office is one of the 10 technology development offices within the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy. This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office (the Office). It identifies the research, development, and demonstration (RD&D), and market transformation and crosscutting activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  19. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications.

    Science.gov (United States)

    Lewin, Gina R; Carlos, Camila; Chevrette, Marc G; Horn, Heidi A; McDonald, Bradon R; Stankey, Robert J; Fox, Brian G; Currie, Cameron R

    2016-09-08

    The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth's ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels.

  20. Bio-energy in China: Content analysis of news articles on Chinese professional internet platforms

    International Nuclear Information System (INIS)

    Qu Mei; Tahvanainen, Liisa; Ahponen, Pirkkoliisa; Pelkonen, Paavo

    2009-01-01

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on (www.Google.cn). A thorough analysis was conducted by focusing on one of them: (www.china5e.com). The news articles on (www.china5e.com) were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future.

  1. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    Science.gov (United States)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  2. Environmental Sustainability Assessment of Integrated Food and Bioenergy Production with Case Studies from Ghana

    DEFF Research Database (Denmark)

    Kamp, Andreas

    technologies appear relatively more attractive. Fruit and cocoa residue‐based biogas production in a fruit processing facility, with return of compost to pineapple farmers also proved to be a viable technology. It is recommended that relevant stakeholders explore the implementation of biogas and nutrient......The use of agricultural residues for the production of bioenergy offers tantalising prospects of reduced pollution and greater food sovereignty. Integrated food and bioenergy systems seek to optimise the joint production of food and energy. Integrated food and bioenergy systems may be evaluated...... and compared with other food and energy systems using Environmental Sustainability Assessment (ESA). This thesis investigates a range of integrated food and residuebased bioenergy production systems and provide methodological developments that are relevant for the assessment of such systems. The methodological...

  3. Sustainable energy equals freedoms and choice: bioenergy and biofuels als energy solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ejigu, M. [Partnership for African Environmental Sustainability (PAES)]|[Foundation for Environmental Security and Sustainability (FESS)

    2006-07-01

    We are gathered here to explore the potential of modern bioenergy and discuss ways and means of promoting its wider production and investment. Our primary goal is the attainment of human development - development that is sustainable and balances economic growth, social equity and environmental protection. Well, Amartya Sen, the Nobel Laureate in Economics, defines development as ''the process of expanding real freedoms people can enjoy.'' Where development has taken place, people have more freedoms. People living in well developed countries enjoy freedoms at the individual and community levels. They can move from place to place, own property, receive education and health services, work at night if they choose to, etc. without any fear or threat. Energy is critical to the survival of human society. It is a means to achieve development, hence freedoms. Higher level of electrification, for example, has always been a vital indicator of industrial development. (orig.)

  4. Bioenergy in Greece: Policies, diffusion framework and stakeholder interactions

    International Nuclear Information System (INIS)

    Panoutsou, Calliope

    2008-01-01

    The paper provides a high-level scene setting analysis to understand the policy context in which the diffusion of bioenergy takes place in Greece and analysis of the perceptions of the key stakeholders at local and national levels. It is divided into six sections. Firstly the framework conditions for biomass heat and electricity generation in Greece are presented. In the second section, the policy context is set in order to identify the key support mechanisms for bioenergy in the country. The third section presents an outline of the diffusion of bioenergy in terms of key groups involved as well as key factors affecting the planning and implementation of a bioenergy scheme at local/regional and national levels. The fourth section reviews the perception of key stakeholders towards bioenergy/biofuels schemes at national level based on national networks. The fifth section focuses on a case study region (Rodopi, northern Greece) and provides an in-depth analysis for the perception of the main local actors (farmers and end users) based on structured questionnaire interviews. The final section provides the main conclusions from the surveys and draws a set of recommendations for the integration of bioenergy schemes into the Greek energy system

  5. Rural development and bioenergy - experiences from 20 years of development in Sweden

    International Nuclear Information System (INIS)

    Hillring, B.

    2002-01-01

    Activities have been going on for a number of decades in Sweden in the field of job creation, rural development and development of local economies through the use of bioenergy. This paper relates the experience of different strategies of rural development projects over a 20-year period based on the rapid development of biofuel use, especially wood fuel use in Sweden. A successful strategy for people and companies involved, has been to specify the products and services opposed to bulky raw material production and to integrate them into the companies operations. Another success factor has been size rationalisation. Systems thinking with respect to the market and in different environmental values in the environmental cycle have also been successful. In the future, there will probably be room for different niche companies that can meet the needs of the market that the strongly rationalised companies cannot. This study calls for new studies of direct employment effects and multipliers. Continued internationalisation of the biofuel market will give greater competitiveness and press down prices among local producers. The strong competition will mean that the survivors will be those who are flexible and have activities and products integrated and apply systems thinking where contact will be with different parts of the chain and not only with the production of the raw material.(author)

  6. Multi-criteria decision analysis for bioenergy in the Centre Region of Portugal

    Science.gov (United States)

    Esteves, T. C. J.; Cabral, P.; Ferreira, A. J. D.; Teixeira, J. C.

    2012-04-01

    With the consumption of fossil fuels, the resources essential to Man's survival are being rapidly contaminated. A sustainable future may be achieved by the use of renewable energies, allowing countries without non-renewable energy resources to guarantee energetic sovereignty. Using bioenergy may mean a steep reduction and/or elimination of the external dependency, enhancing the countries' capital and potentially reducing of the negative effects that outcome from the use of fossil fuels, such as loss of biodiversity, air, water, and soil pollution, … This work's main focus is to increase bioenergy use in the centre region of Portugal by allying R&D to facilitate determination of bioenergy availability and distribution throughout the study area.This analysis is essential, given that nowadays this knowledge is still very limited in the study area. Geographic Information Systems (GIS) was the main tool used to asses this study, due to its unseeingly ability to integrate various types of information (such as alphanumerical, statistical, geographical, …) and various sources of biomass (forest, agricultural, husbandry, municipal and industrial residues, shrublands, used vegetable oil and energy crops) to determine the bioenergy potential of the study area, as well as their spatial distribution. By allying GIS with multi-criteria decision analysis, the initial table-like information of difficult comprehension is transformed into tangible and easy to read results: both intermediate and final results of the created models will facilitate the decision making process. General results show that the major contributors for the bioenergy potential in the Centre Region of Portugal are forest residues, which are mostly located in the inner region of the study area. However, a more detailed analysis should be made to analyze the viability to use energy crops. As a main conclusion, we can say that, although this region may not use only this type of energy to be completely

  7. Climate, economic, and environmental impacts of producing wood for bioenergy

    Science.gov (United States)

    Birdsey, Richard; Duffy, Philip; Smyth, Carolyn; Kurz, Werner A.; Dugan, Alexa J.; Houghton, Richard

    2018-05-01

    Increasing combustion of woody biomass for electricity has raised concerns and produced conflicting statements about impacts on atmospheric greenhouse gas (GHG) concentrations, climate, and other forest values such as timber supply and biodiversity. The purposes of this concise review of current literature are to (1) examine impacts on net GHG emissions and climate from increasing bioenergy production from forests and exporting wood pellets to Europe from North America, (2) develop a set of science-based recommendations about the circumstances that would result in GHG reductions or increases in the atmosphere, and (3) identify economic and environmental impacts of increasing bioenergy use of forests. We find that increasing bioenergy production and pellet exports often increase net emissions of GHGs for decades or longer, depending on source of feedstock and its alternate fate, time horizon of analysis, energy emissions associated with the supply chain and fuel substitution, and impacts on carbon cycling of forest ecosystems. Alternative uses of roundwood often offer larger reductions in GHGs, in particular long-lived wood products that store carbon for longer periods of time and can achieve greater substitution benefits than bioenergy. Other effects of using wood for bioenergy may be considerable including induced land-use change, changes in supplies of wood and other materials for construction, albedo and non-radiative effects of land-cover change on climate, and long-term impacts on soil productivity. Changes in biodiversity and other ecosystem attributes may be strongly affected by increasing biofuel production, depending on source of material and the projected scale of biofuel production increases.

  8. The role of bioenergy in the energy transition. The ''Smart Bioenergy'' concept; Die Rolle der Bioenergie in der Energiewende. Das ''Smart Bioenergy''-Konzept

    Energy Technology Data Exchange (ETDEWEB)

    Thraen, Daniela [Helmholtz-Zentrum fuer Umweltforschung - UFZ, Leipzig (Germany). Dept. Bioenergie (BEN); DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Seitz, Stefanie B.; Wirkner, Ronny; Nelles, Michael [DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig (Germany). Bereich Bioenergiesysteme

    2016-08-01

    The energy system's transformation away from fossil and therefore finite resources and ecological harmful use towards renewable energy sources and sustainable forms of usage proceeds. But even after 35 years, the German energy transition has yet not reached its ambitious goals. Moreover, in the recent years the progress has stagnated in certain areas. This is due to the fact that one of the central challenges of the energy system's changeover to an sole use renewable energy (RE) have not yet mastered: the reliable and stable delivery of RE for all energy dependent sectors starting form electricity via heat to mobility in the face of fluctuating energy sources like sun and wind. Bioenergy with its flexible use of innovative technologies and smart integration in the overall system is therefore vital to grant stability of energy supply. Furthermore, bioenergy can recourse on sustainable resources and may become therefore the backbone of the future bioeconomy. For this purpose an integrative approach is necessary that aligns the aforementioned building blocks in a cohesive whole: the Smart Bioenergy concept - that will be presented here with its elements but also open questions and challenges.

  9. Unravelling the argument for bioenergy production in developing countries. A world-economy perspective

    International Nuclear Information System (INIS)

    Kuchler, Magdalena

    2010-01-01

    This paper offers a critical look at how energy security-, food and agriculture-, and climate change-oriented international organizations frame biomass energy production in developing countries, in particular, ethanol production in Brazil. Using the world-economy system as a theoretical lens, the paper raises a concern as to whether the way these global institutions frame bioenergy's role in developing regions manifests energy and ecological inequalities between the core and the periphery, as well as creates internal contradictions that perpetuate unequal exchange embedded in the system. Simultaneously, these organizations frame Brazil as a semi-peripheral state that, while successful in finding a niche concurring with the core's demand for cheap energy and cost-effective decarbonization strategies, is not necessarily a suitable role model for the periphery's socio-economic development. (author)

  10. Perspectives on bioenergy and biotechnology in Brazil.

    Science.gov (United States)

    Pessoa, Adalberto; Roberto, Inês Conceição; Menossi, Marcelo; dos Santos, Raphael Revert; Filho, Sylvio Ortega; Penna, Thereza Christina Vessoni

    2005-01-01

    Brazil is one of the world's largest producers of alcohol from biomass at low cost and is responsible for more than 1 million direct jobs. In 1973, the Brazilian Program of Alcohol (Proalcool) stimulated the creation of a bioethanol industry that has led to large economic, social, and scientific improvements. In the year 1984, 94.5% of Brazil's cars used bioethanol as fuel. In 2003/2004, 350.3 million of sugarcane produced 24.2 million t of sugar and 14.4 billion L of ethanol for an average 4.3 million cars using ethanol. Since its inception, cumulative investment in Proalcool totals US$11 billion, and Brazil has saved US$27 billion in oil imports. The ethanol production industry from sugarcane gene-rates 152 times more jobs than would have been the case if the same amount of fuel was produced from petroleum, and the use of ethanol as a fuel is advantageous for environmental reasons. In 2003, one of the biggest Brazilian ethanol industries started consuming 50% of the residual sugarcane bagasse to produce electrical energy (60 MW), a new alternative use of bioenergy for the Brazilian market. Other technologies for commercial uses of bagasse are in development, such as in the production of natural fibers, sweeteners (glucose and xylitol), single-cell proteins, lactic acid, microbial enzymes, and many other products based on fermentations (submerged and semisolid). Furthermore, studies aimed at the increase in the biosynthesis of sucrose and, consequently, ethanol productivity are being conducted to understand the genetics of sugarcane. Although, at present, there remain technical obstacles to the economic use of some ethanol industry residues, several research projects have been carried out and useful data generated. Efficient utilization of ethanol industry residues has created new opportunities for new value-added products, especially in Brazil, where they are produced in high quantities.

  11. Macroeconomic impacts of bioenergy production on surplus agricultural land. A case study of Argentina

    International Nuclear Information System (INIS)

    Wicke, Birka; Smeets, Edward; Faaij, Andre; Tabeau, Andrzej; Hilbert, Jorge

    2009-01-01

    This paper assesses the macroeconomic impacts in terms of GDP, trade balance and employment of large-scale bioenergy production on surplus agricultural land. An input-output model is developed with which the direct, indirect and induced macroeconomic impacts of bioenergy production and agricultural intensification, which is needed to make agricultural land become available for bioenergy production, are assessed following a scenario approach. The methodology is applied to a case study of Argentina. The results of this study reveal that large-scale pellet production in 2015 would directly increase GDP by 4%, imports by 10% and employment by 6% over the reference situation in 2001. When accounting for indirect and induced impacts, GDP increases by 18%, imports by 20% and employment by 26% compared to 2001. Agricultural intensification reduces but does not negate these positive impacts of bioenergy production. Accounting for agricultural intensification, the increase in GDP as a result of bioenergy production on surplus agricultural land would amount to 16%, 20% in imports and 16% in employment compared to 2001. (author)

  12. Macroeconomic impacts of bioenergy production on surplus agricultural land. A case study of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Wicke, Birka; Smeets, Edward; Faaij, Andre [Copernicus Institute for Sustainable Development and Innovation - Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Tabeau, Andrzej [Landbouw Economisch Instituut - Wageningen University and Research Centre, Burgermeester Partijnlaan 19, 2585 BE Den Haag (Netherlands); Hilbert, Jorge [Instituto Ingenieria Rural - Instituto Nacional de la Tecnologia Agropecuario, C.C. 25, 1712 Castelar (Buenos Aires) (Argentina)

    2009-12-15

    This paper assesses the macroeconomic impacts in terms of GDP, trade balance and employment of large-scale bioenergy production on surplus agricultural land. An input-output model is developed with which the direct, indirect and induced macroeconomic impacts of bioenergy production and agricultural intensification, which is needed to make agricultural land become available for bioenergy production, are assessed following a scenario approach. The methodology is applied to a case study of Argentina. The results of this study reveal that large-scale pellet production in 2015 would directly increase GDP by 4%, imports by 10% and employment by 6% over the reference situation in 2001. When accounting for indirect and induced impacts, GDP increases by 18%, imports by 20% and employment by 26% compared to 2001. Agricultural intensification reduces but does not negate these positive impacts of bioenergy production. Accounting for agricultural intensification, the increase in GDP as a result of bioenergy production on surplus agricultural land would amount to 16%, 20% in imports and 16% in employment compared to 2001. (author)

  13. Uncertainty in Bioenergy Scenarios for California: Lessons Learned in Communicating with Different Stakeholder Groups

    Science.gov (United States)

    Youngs, H.

    2013-12-01

    Projecting future bioenergy use involves incorporating several critical inter-related parameters with high uncertainty. Among these are: technology adoption, infrastructure and capacity building, investment, political will, and public acceptance. How, when, where, and to what extent the various bioenergy options are implemented has profound effects on the environmental impacts incurred. California serves as an interesting case study for bioenergy implementation because it has very strong competing forces that can influence these critical factors. The state has aggressive greenhouse gas reduction goals, which will require some biofuels, and has invested accordingly on new technology. At the same time, political will and public acceptance of bioenergy has wavered, seriously stalling bioenergy expansion efforts. We have constructed scenarios for bioenergy implementation in California to 2050, in conjunction with efforts to reach AB32 GHG reduction goals of 80% below 1990 emissions. The state has the potential to produce 3 to 10 TJ of biofuels and electricity; however, this potential will be severely limited in some scenarios. This work examines sources of uncertainty in bioenergy implementation, how uncertainty is or is not incorporated into future bioenergy scenarios, and what this means for assessing environmental impacts. How uncertainty is communicated and perceived also affects future scenarios. Often, there is a disconnect between scenarios for widespread implementation and the actual development of individual projects, resulting in "artificial uncertainty" with very real impacts. Bringing stakeholders to the table is only the first step. Strategies to tailor and stage discussions of uncertainty to stakeholder groups is equally important. Lessons learned in the process of communicating the Calfornia's Energy Future biofuels assessment will be discussed.

  14. Environmental and economic suitability of forest biomass-based bioenergy production in the Southern United States

    Science.gov (United States)

    Dwivedi, Puneet

    This study attempts to ascertain the environmental and economic suitability of utilizing forest biomass for cellulosic ethanol production in the Southern United States. The study is divided into six chapters. The first chapter details the background and defines the relevance of the study along with objectives. The second chapter reviews the existing literature to ascertain the present status of various existing conversion technologies. The third chapter assesses the net energy ratio and global warming impact of ethanol produced from slash pine (Pinus elliottii Engelm.) biomass. A life-cycle assessment was applied to achieve the task. The fourth chapter assesses the role of emerging bioenergy and voluntary carbon markets on the profitability of non-industrial private forest (NIPF) landowners by combining the Faustmann and Hartmann models. The fifth chapter assesses perceptions of four stakeholder groups (Non-Government Organization, Academics, Industries, and Government) on the use of forest biomass for bioenergy production in the Southern United States using the SWOT-AHP (Strength, Weakness, Opportunity, and Threat-Analytical Hierarchy Process) technique. Finally, overall conclusions are made in the sixth chapter. Results indicate that currently the production of cellulosic ethanol is limited as the production cost of cellulosic ethanol is higher than the production cost of ethanol derived from corn. However, it is expected that the production cost of cellulosic ethanol will come down in the future from its current level due to ongoing research efforts. The total global warming impact of E85 fuel (production and consumption) was found as 10.44 tons where as global warming impact of an equivalent amount of gasoline (production and consumption) was 21.45 tons. This suggests that the production and use of ethanol derived from slash pine biomass in the form of E85 fuel in an automobile saves about 51% of carbon emissions when compared to gasoline. The net energy ratio

  15. Bioenergy from crops and biomass residues: a consequential life-cycle assessment including land-use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    Biofuels are promising means to reduce fossil fuel depletion and mitigate greenhouse-gas (GHG) emissions. However, recent studies questioned the environmental benefits earlier attributed to biofuels, when these involve land-use changes (direct/indirect, i.e., dLUC/iLUC) (1-5). Yet, second...... to represent the actual environmental impacts. This study quantified the GHG emissions associated with a number of scenarios involving bioenergy production (as combined-heat-and-power, heating, and transport biofuel) from energy crops, industrial/agricultural residues, algae, and the organic fraction...... of municipal solid waste. Four conversion pathways were considered: combustion, fermentation-to-ethanol, fermentation-to-biogas, and thermal gasification. A total of 80 bioenergy scenarios were assessed. Consequential life-cycle assessment (CLCA) was used to quantify the environmental impacts. CLCA aimed...

  16. Linearity between temperature peak and bio-energy CO2 emission rates

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M.; Stromman, Anders H.; Gasser, Thomas; Ciais, Philippe

    2014-01-01

    Many future energy and emission scenarios envisage an increase of bio-energy in the global primary energy mix. In most climate impact assessment models and policies, bio-energy systems are assumed to be carbon neutral, thus ignoring the time lag between CO 2 emissions from biomass combustion and CO 2 uptake by vegetation. Here, we show that the temperature peak caused by CO 2 emissions from bio-energy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR) to fossil fuel emissions is approximately constant, the CCR to bio-energy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bio-energy CO 2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO 2 emissions from bio-energy matters. Under the international agreement to limit global warming to 2 C by 2100, early emissions from bio-energy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bio-energy is sourced from biomass with medium (50-60 years) or long turnover times (100 years). (authors)

  17. Bioenergy Ecosystem Land-Use Modelling and Field Flux Trial

    Science.gov (United States)

    McNamara, Niall; Bottoms, Emily; Donnison, Iain; Dondini, Marta; Farrar, Kerrie; Finch, Jon; Harris, Zoe; Ineson, Phil; Keane, Ben; Massey, Alice; McCalmont, Jon; Morison, James; Perks, Mike; Pogson, Mark; Rowe, Rebecca; Smith, Pete; Sohi, Saran; Tallis, Mat; Taylor, Gail; Yamulki, Sirwan

    2013-04-01

    loss after land use change at 100 fieldsites which encapsulate a range of UK climates and soil types. Our overall objective is to use our measured data to parameterise and validate the models that we will use to predict the implications of bioenergy crop deployment in the UK up to 2050. The resultant output will be a meta-model which will help facilitate decision making on the sustainable development of bioenergy in the UK, with potential deployment in other temperate climates around the world. Here we report on the outcome of the first of three years of work. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). Don et al. (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4, 372-379.

  18. Assessment of abandoned agricultural land resource for bio-energy production in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Kukk, Liia; Astover, Alar; Roostalu, Hugo; Suuster, Elsa; Noormets, Merrit; Sepp, Kalev (Estonian Univ. of Life Sciences, Inst. of Agricultural and Environmental Sciences, Tartu (Estonia)); Muiste, Peeter (Estonian Univ. of Life Sciences, Inst. of Forestry and Rural Engineering, Tartu (Estonia))

    2010-03-15

    The current study locates and quantifies abandoned agricultural areas using the Geographic Information System (GIS) and evaluates the suitability of abandoned fields for bio-energy production in Tartumaa (Tartu County) in Estonia. Soils of abandoned areas are generally of low quality and thereby limited suitability for crop production; as a result soil-crop suitability analyses could form the basis of knowledge-based bio-energy planning. The study estimated suitable areas for bio-energy production using willow (Salix sp), grey alder [Alnus incana (L.) Moench], hybrid aspen (Populus tremuloides Michx.Populus tremula L.), reed canary grass (Phalaris arundinacea L.), and Caucasian goat's rue (Galega orientalis Lam.) in separate plantations. A combined land-use strategy is also presented as these crops are partially suitable to the same areas. Reed canary grass and grey alder have the highest energy potentials and each would re-use more than 80% of the available abandoned agricultural land. Energy grasses and short-rotation forestry in combined land-use strategy represents the opportunity of covering approximately a quarter of county's annual energy demand. The study estimates only agronomic potential, so further bio-energy analysis should take into account technical and economic limitations. Developed framework supports knowledge-based decision-making processes from field to regional scale to achieve sustainable bio-energy production

  19. The role of sustainability requirements in international bioenergy markets

    DEFF Research Database (Denmark)

    Pelkmans, Luc; Goovaerts, Liesbet; Goh, Chun Sheng

    2014-01-01

    As the main driver for bioenergy is to enable society to transform to more sustainable fuel and energy production systems, it is important to safeguard that bioenergy deployment happens within certain sustainability constraints. There is currently a high number of initiatives, including binding...... regulations and several voluntary sustainability standards for biomass, bioenergy and/or biofuels. Within IEA Bioenergy studies were performed to monitor the actual implementation process of sustainability regulations and certification, evaluate how stakeholders are affected and envisage the anticipated......’ of biomass involves different policy arenas and legal settings. Policy pathways should be clear and predictable, and future revisions of sustainability requirements should be open and transparent. Sustainability assurance systems (both through binding regulations and voluntary certification) should take...

  20. IEA Bioenergy task 40. Country report for the Netherlands 2007

    International Nuclear Information System (INIS)

    Sikkema, R.; Junginger, M.; Faaij, A.

    2007-12-01

    Short-term objectives of the IEA Bioenergy Task 40 'Sustainable International Bio-energy Trade: Securing Supply and Demand' are amongst other objectives to present an overview of development of biomass markets in various parts of the world and to identify existing barriers hampering development of a (global) commodity market (e.g. policy framework, ecology, economics). As in most countries biomass is a relatively new (though quickly growing) commodity, relatively little information is available on e.g. the traded volumes and prices of various biomass streams, policies and regulations on biomass use and trade, and existing and perceived barriers. This country report aims to provide an overview of these issues for the Netherlands and is an extended update of previous reports (2005 and 2006)

  1. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Science.gov (United States)

    2010-03-12

    ... Biofuels AGENCY: Rural Business-Cooperative Service (RBS), USDA. ACTION: Notice of Contract for Proposal... Year 2009 for the Bioenergy Program for Advanced Biofuels under criteria established in the prior NOCP... Bioenergy Program for Advanced Biofuels. In response to the previously published NOCP, approximately $14.5...

  2. Analysis of growth dynamics of Mediterranean bioenergy crops

    NARCIS (Netherlands)

    Archontoulis, S.V.

    2011-01-01

    In spite of the rapidly growing bioenergy production worldwide, there is lack of field experience and experimental data on the cultivation of bioenergy crops. This study aims to advance crop management operations and modelling studies by providing essential information on phenology, agronomy and

  3. Possibilities and limitations for sustainable bioenergy production systems

    NARCIS (Netherlands)

    Smeets, E.M.W.

    2008-01-01

    The focus of this thesis is on the possibilities and limitations of sustainable bioenergy production systems. First, the potential contribution of bioenergy to the energy supply in different world regions in the year 2050 from different biomass sources (dedicated woody energy crops, residues and

  4. 76 FR 64839 - Sugar Program; Feedstock Flexibility Program for Bioenergy Producers

    Science.gov (United States)

    2011-10-19

    ... sugar to ethanol and other bioenergy production. Surplus Determination As required by the 2008... with selling sugar for ethanol, if FFP is activated, are significantly lower than if sales could be... eligible sugar buyer, the bioenergy producer must produce bioenergy products, including fuel grade ethanol...

  5. Assessment of renewable bioenergy application

    DEFF Research Database (Denmark)

    Kronborg Jensen, Jesper; Govindan, Kannan

    2014-01-01

    into biogas. In order to validate the proposed options of bioenergy application, we considered a food processing company in Denmark as a case company in a single in-depth case study. In the case studied, the produced biogas is to be utilized in one of two options at a bakery site: To substitute natural gas...... to realize financial benefits in terms of additional profits and cost savings, but that challenging conditions can be problematic from a company perspective and provide challenges for the promotion of bioenergy investments. Specifically, substituting natural gas for processes and boilers is identified...

  6. Bioenergy Research Programme, Yearbook 1995. Peat and field biomass production; Bioenergian tutkimusohjelma, vuosikirja 1995. Turpeen ja peltobiomassojen tuotantotekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [ed.

    1996-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Center TEKES. The aim of the bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The development target for peat production technology is to improve the competitiveness of peat by reducing the production costs by 20 % from the level of 1992 (5-6 FIM/MWh) and to reduce the environmental load. In addition to this, the main parts of the production methods will be demonstrated. In 1995 there were 10 projects going on in the field of peat production. The results of 1995 projects will be presented in this publication. Field biomass research started in the Bioenergy Research Programme in 1994. The number of projects was three, funded mainly by the Finnish Ministry of Agriculture and Forestry. The results of previous researches show that economically most promising possibilities are in the utilization of straw and reed canary grass

  7. BioEnergy transport systems. Life cycle assessment of selected bioenergy systems

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Goeran

    1999-07-01

    Biomass for energy conversion is usually considered as a local resource. With appropriate logistic systems, access to biomass can be improved over a large geographical area. In this study, life cycle assessment (LCA) has been used as method to investigate the environmental impacts of selected bioenergy transport chains. As a case study, chains starting in Sweden and ending in Holland have been investigated. Biomass originates from tree sections or forest residues, the latter upgraded to bales or pellets. The study is concentrated on production of electricity, hot cooling water is considered as a loss. Electricity is, as the main case, produced from solid biomass in the importing country. Electricity can also be produced in the country of origin and exported via the trans-national grid as transportation media. As an alternative, a comparison is made with a coal cycle. The results show that contribution of emissions from long-range transportation is of minor importance. The use of fuels and electricity for operating machines and transportation carriers requires a net energy input in bioenergy systems which amounts to typically 7-9% of delivered electrical energy from the system. Emissions of key substances such as NO{sub x}, CO, S, hydrocarbons, and particles are low. Emissions of CO{sub 2} from biocombustion are considered to be zero since there is approximately no net contribution of carbon to the biosphere in an energy system based on biomass. A method to quantify non-renewability is presented. For coal, the non-renewability factor is calculated to be 110%. For most of the cases with bioenergy, the non-renewability factor is calculated to be between 6 and 11%. Reclamation of biomass results in certain losses of nutrients such as nitrogen, phosphorus and base cations such as K, Ca and Mg. These are balanced by weathering, vitalisation or ash recirculation procedures. Withdrawal of N from the ecological system is approximately 10 times the load from the technical

  8. Legal framework for a sustainable biomass production for bioenergy on Marginal Lands

    Science.gov (United States)

    Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    The EU H2020 funded project SEEMLA is aiming at the sustainable exploitation of biomass for bioenergy from marginal lands in Europe. Partners from Germany, Italy, Ukraine and Greece are involved in this project. Whereas Germany can be considered as well-established and leading country with regard to the production of bioenergy, directly followed by Italy and Greece, Ukraine is doing its first steps in becoming independent from fossil energy resources, also heading for the 2020+ goals. A basic, overarching regulation is the Renewable Energy Directive (RED) which has been amended in 2015; these amendments will be set in force in 2017. A new proposal for the period after 2020, the so called RED II, is under preparation. With cross-compliance and greening, the Common Agricultural Policy (CAP) offers measures for an efficient and ecological concept for a sustainable agriculture in Europe. In country-specific National Renewable Energy Action Plans (NREAP) a concept for 2020 targets is given for practical implementation until 2030 which covers e.g. individual renewable energy targets for electricity, heating and cooling, and transport sectors, the planned mix of different renewables technologies, national policies to develop biomass resources, and measures to ensure that biofuels are used to meet renewable energy targets are in compliance with the EU's sustainability criteria. While most of the NREAP have been submitted in 2010, the Ukrainian NREAP was established in 2014. In addition, the legal framework considering the protection of nature, e.g. Natura 2000, and its compartments soil, water, and atmosphere are presented. The SEEMLA approach will be developed in agreement with this already existing policy framework, following a sustainable principle for growing energy plants on marginal lands (MagL). Secondly, legislation regarding bioenergy and biomass potentials in the EU-28 and partner countries is introduced. For each SEEMLA partner an overview of regulatory

  9. The IEA/bioenergy implementing agreement and other activities

    Energy Technology Data Exchange (ETDEWEB)

    Costello, R [U.S. Department of Energy, Washington D.C. (United States). Biofuels Systems Div.

    1997-12-31

    Implementing Agreements (IAs) are used widely in international collaborative work within the International Energy Agency (IEA). These agreements are meant to be very flexible depending on the nature of the work and the interests of the participating countries. Many IAs are directed at the development of specific technologies, while a number of IAs are primarily used to facilitate information collection and dissemination. There are also a number of agreements that do not deal directly with technology development, but deal with environmental, economic and safety aspects of the technologies under development. The IEA Bioenergy Agreement is a prime example of how Implementing Agreements can be utilised to establish and expand cooperative research for the effective leveraging of technical knowledge and financial resources in finding solutions to the future needs of a growing energy dependent world. As will be illustrated, these activities are important to the commercialisation and deployment of bioenergy technologies, which increasingly are being visualized as one of the few options that can maintain and promote economic and environmental stability

  10. The IEA/bioenergy implementing agreement and other activities

    International Nuclear Information System (INIS)

    Costello, R.

    1996-01-01

    Implementing Agreements (IAs) are used widely in international collaborative work within the International Energy Agency (IEA). These agreements are meant to be very flexible depending on the nature of the work and the interests of the participating countries. Many IAs are directed at the development of specific technologies, while a number of IAs are primarily used to facilitate information collection and dissemination. There are also a number of agreements that do not deal directly with technology development, but deal with environmental, economic and safety aspects of the technologies under development. The IEA Bioenergy Agreement is a prime example of how Implementing Agreements can be utilised to establish and expand cooperative research for the effective leveraging of technical knowledge and financial resources in finding solutions to the future needs of a growing energy dependent world. As will be illustrated, these activities are important to the commercialisation and deployment of bioenergy technologies, which increasingly are being visualized as one of the few options that can maintain and promote economic and environmental stability

  11. The IEA/bioenergy implementing agreement and other activities

    Energy Technology Data Exchange (ETDEWEB)

    Costello, R. [U.S. Department of Energy, Washington D.C. (United States). Biofuels Systems Div.

    1996-12-31

    Implementing Agreements (IAs) are used widely in international collaborative work within the International Energy Agency (IEA). These agreements are meant to be very flexible depending on the nature of the work and the interests of the participating countries. Many IAs are directed at the development of specific technologies, while a number of IAs are primarily used to facilitate information collection and dissemination. There are also a number of agreements that do not deal directly with technology development, but deal with environmental, economic and safety aspects of the technologies under development. The IEA Bioenergy Agreement is a prime example of how Implementing Agreements can be utilised to establish and expand cooperative research for the effective leveraging of technical knowledge and financial resources in finding solutions to the future needs of a growing energy dependent world. As will be illustrated, these activities are important to the commercialisation and deployment of bioenergy technologies, which increasingly are being visualized as one of the few options that can maintain and promote economic and environmental stability

  12. Sustainable forest-based bioenergy in Eurasia

    Directory of Open Access Journals (Sweden)

    F. Kraxner

    2018-02-01

    Full Text Available This study analyzes the Russian forest biomass-based bioenergy sector. It is shown that presently – although given abundant resources – the share of heat and electricity from biomass is very minor. With the help of two IIASA models (G4M and BeWhere, future green-field bioenergy plants are identified in a geographically explicit way. Results indicate that by using 3.78 Mt (or 6.16 M m3, twice as much heat and electricity than is presently available from forest biomass could be generated. This amount corresponds to 3.3 % of the total annual wood removals or 12 % of the annually harvested firewood, or about 11 % of illegal logging. With this amount of wood, it is possible to provide an additional 444 thousand households with heat and 1.8 M households with electricity; and at the same time to replace 2.7 Mt of coal or 1.7 Mt of oil or 1.8 G m3 of natural gas, reducing emissions of greenhouse gases from burning fossil fuels by 716 Mt of CO2-equivalent per year. A multitude of co-benefits can be quantified for the socio-economic sector such as green jobs linked to bioenergy. The sustainable sourcing of woody biomass for bioenergy is possible as shown with the help of an online crowdsourcing tool Geo-Wiki.org for forest certification.

  13. Biofuel and Bioenergy implementation scenarios. Final report of VIEWLS WP5, modelling studies

    International Nuclear Information System (INIS)

    Wakker, A.; Egging, R.; Van Thuijl, E.; Van Tilburg, X.; Deurwaarder, E.P.; De Lange, T.J.; Berndes, G.; Hansson, J.

    2005-11-01

    This report is published within the framework of the European Commission-supported project 'Clear Views on Clean Fuels' or VIEWLS. The overall objectives of this project are to provide structured and clear data on the availability and performance of biofuel and to identify the possibilities and strategies towards large-scale sustainable production, use and trading of biofuels for the transport sector in Europe, including Central and Eastern European Countries (CEEC). This reports constitutes the outcome of the Work Package 5 (WP5) of the VIEWLS project. In WP5 the EU biofuels and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costs of biofuels and on the resulting market structure and supply chains. In a bigger context, where possible, WP5 aims also to provide insight into larger socio-economic impacts of bioenergy trade within Europe. The objective of this research is to develop a cost efficient biofuel strategy for Europe in terms of biofuel production, cost and trade, and to assess its larger impact on bioenergy markets and trade up to 2030. Based on the biomass availability and associated costs within EU25, under different conditions, scenarios for biofuels production and cost can be constructed using quantitative modelling tools. Combining this with (cost) data on biofuel conversion technologies and transport of biomass and biofuels, the lowest cost biofuel supply chain given a certain demand predetermined by the biofuels Directive can be designed. In a broader context, this is supplemented by a design of a sustainable bioenergy supply chain in view of the fact that biomass-heat, biomass-electricity and biofuels are competing for the same biomass resources. In other words, the scarcity of bioenergy crops, as manifested through overall bioenergy demand, is an essential variable in bioenergy scenarios

  14. Beetle-kill to carbon-negative bioenergy in the Rockies: stand, enterprise, and regional-scale perspectives

    Science.gov (United States)

    Field, J.; Paustian, K.

    2016-12-01

    The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional

  15. REMARKS TO THE CURRENT DISCUSSION ABOUT BIOENERGYBIOENERGY FOR THE PUBLIC AND/ OR FOR THE AGRICULTURAL OR RURAL AREAS ONLY ?

    Directory of Open Access Journals (Sweden)

    P. Ruckenbauer

    2008-09-01

    Full Text Available An energy system that is based on the use of renewable energy resources must be service –oriented and should be able to cover the varying energy demands. Moreover it must be flexible and cost effective by using on optimal mix of predominantly renewable energy sources. Agriculture will play an important role in the future if an optimal mix between food/feed production and energy plant production could be found. The present examples in the world to gain agricultural land for energy plants on the expenses of forests is going into the wrong direction. The cost intensive investments at present performed in Europe for biofuel and bioenergy production will certainly influence prices for crops and biomass supply. In this paper, strategies are questioned and discussed if the goals of the EU-commission to replace substantial parts of the fossile energy demands by bioenergy supply is feasible and can be realistic. As an example for a national agricultural situation, Austria, as am member of the PBBA, has elaborated a study about the timely development how much of the arable land can be utilized in the period between 2005 and 2020 for various bioenergy sources .The results demonstrate that, at the maximum , agriculture can only supply about 22 % of the total arable land for additional bioenergy as biofuel and biogas without interfering the national self food/feed supply and the protection of the sensible environment and emission situation. Finally, recent University research studies are presented about new processes to achieve a better and more efficient use of cereal and maize straw for biogas production already performed in the present 358 local biogas plants in Austria.

  16. Bioenergy: Resource efficiency and contributions to energy- and climate policy objectives; Bioenergi: Resurseffektivitet och bidrag till energi- och klimatpolitiska maal

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goeran; Karlsson, Sten [Chalmers Univ. of Technology, SE-412 96 Goeteborg (Sweden). Div. of Physical Resource Theory; Boerjesson, Paal; Rosenqvist, Haakan [Lund Univ., Lund (Sweden). Environmental and Energy Systems Studies

    2008-09-15

    Increasing the use of bioenergy in place of fossil fuels is motivated by a number of energy policy goals. Individual bioenergy systems must be evaluated relative to a particular goal or set of goals. Depending on which specific political goal that is in focus, the attractiveness of different bioenergy systems can vary in relation to even broad objectives such as the resource-efficient use of agricultural and forest land. Furthermore, the outcome of a specific evaluation is sensitive to explicit as well as implicit assumptions and choices regarding, e.g., definition of system boundaries, economic conditions, implementation of policies, byproduct markets, and establishment of new technologies. Several biofuels production chains generate byproducts of value. Energy balance calculations are greatly influenced by how such byproducts are taken into account. Often, the most important factor underlying different results from different energy balance studies is a difference in analytic assumptions, for instance in allocation methods and system borders. Different studies can only be accurately compared if they are based on comparable analytic assumptions. Which methods are justified in a given energy balance study is determined by the current conditions for the specific bioenergy system under analysis. In the future, bioenergy systems may increasingly consist of various generation combinations wherein liquid biofuels may for instance be co-generated with power, heat, and solid biofuels, etc. from a mix of raw biomass. The driving factors are the synergies available with the higher total energy efficiency and resources efficiency obtained by combined approaches, compared to when the energy carriers are produced on their own. These solutions imply that if there is a market for the other energy carriers, and the total net system exchange is high, a lower net value for liquid fuels may be acceptable. The climate efficiency of a bioenergy system also depends on its impact on

  17. determination of bio-energy potential of palm kernel shell

    African Journals Online (AJOL)

    88888888

    2012-11-03

    Nov 3, 2012 ... most viable application in Renewable Energy options such as bioenergy and biomass utilization. Its higher heating ... enable it release volatile matter necessary for bio-energy production. ..... ment and Efficiency. Ministry of ...

  18. Food supply and bioenergy production within the global cropland planetary boundary.

    Science.gov (United States)

    Henry, R C; Engström, K; Olin, S; Alexander, P; Arneth, A; Rounsevell, M D A

    2018-01-01

    Supplying food for the anticipated global population of over 9 billion in 2050 under changing climate conditions is one of the major challenges of the 21st century. Agricultural expansion and intensification contributes to global environmental change and risks the long-term sustainability of the planet. It has been proposed that no more than 15% of the global ice-free land surface should be converted to cropland. Bioenergy production for land-based climate mitigation places additional pressure on limited land resources. Here we test normative targets of food supply and bioenergy production within the cropland planetary boundary using a global land-use model. The results suggest supplying the global population with adequate food is possible without cropland expansion exceeding the planetary boundary. Yet this requires an increase in food production, especially in developing countries, as well as a decrease in global crop yield gaps. However, under current assumptions of future food requirements, it was not possible to also produce significant amounts of first generation bioenergy without cropland expansion. These results suggest that meeting food and bioenergy demands within the planetary boundaries would need a shift away from current trends, for example, requiring major change in the demand-side of the food system or advancing biotechnologies.

  19. Innovations and economic success in Finnish equine and bio-energy enterprises; Innovaatiotoiminta ja taloudellinen menestyminen hevosalan ja bioenergia-alan pienyrityksissae

    Energy Technology Data Exchange (ETDEWEB)

    Tiilikainen, S.

    2009-07-01

    Cluster of industries is the critical mass of industries, which are located into certain geographical areas. In cluster supporting and related industries are linked through vertical and a horizontal relationship. Rural clusters are based on local traditions, resources and knowledge. The key advantage of cluster of industries is the fact that innovations are often created in them. The purpose of this study is to find out how creation of innovations can be improved in rural cluster of industries. The subject of this study is the link between innovations and the financial success of enterprises. The research questions are formulated as: What kinds of innovations take place in equine and bio-energy enterprises? How different factors affect to innovations made in these enterprises? How does competitiveness, the economic success of enterprises relate these innovations? Theoretical background of the study lies on the Schumpeter's' theory of entrepreneurship and innovations are defined broadly as doing new things or doing things already done on a new way. Data were collected by postal survey in August 2008 (n =165), the respondents were equine entrepreneurs from Uusimaa region and bio-energy entrepreneurs in Pohjois-Pohjanmaa region. Data were analysed using multivariate analyses. The study results reveal that, most of the innovations related to services or pricing the services. It was fairly uncommon to develop new business models, which was worrying, because many of the enterprises had enlarged or invested heavily on the capacity. The economic success did relate to innovations; those enterprises who performed poorly had not introduced any innovations or improvements during past three years, whist enterprises with good or average performance had introduced innovations or improvements. (orig.)

  20. Bioenergy transition in rural China: Policy options and co-benefits

    International Nuclear Information System (INIS)

    Gan Lin; Yu Juan

    2008-01-01

    This paper reviews the current situation of bioenergy development in China, particularly on its relationship to sustainable rural development. It argues that the current government strategy, investment policy and industrial interest are over-emphasized on biomass-burning power generation as part of the clean energy development trajectories, which may not lead to the most cost-effective outcomes in terms of investments, resource use and social development objectives. It points out that there are large potentials in developing and disseminating household-based biomass technologies in rural areas, especially with energy-efficient modern biomass stoves, which can produce far more economic, social and environmental benefits than biomass power plants. It is a decentralized solution to use renewable energy resources for meeting multi-objectives. It is suggested that key incentive policies be provided by the government to encourage this technological transition, or the leapfrogging from using traditional household stoves towards modern biomass stoves, which will lead to a win-win situation in global, regional and local environmental protection, sustainable resource management and related social benefits, particularly for the poor in remote communities. Six policy recommendations are made: (1) financial schemes development; (2) preferable tax and carbon tax; (3) regulatory policy reform; (4) service industry support; (5) market research, training and capacity building for key stakeholders; (6) development of methodologies and standards for CDM projects. The potential co-benefits brought up by this massive biomass technology transition will bring new perspectives to realizing Millennium Development Goals (MDGs) and global CO 2 emissions reduction targets in China, and also set an example to other developing countries

  1. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Doust, Andrew, N.

    2011-11-11

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  2. Future Perspectives of International Bioenergy Trade – Summary

    NARCIS (Netherlands)

    Kranzl, L.; Matzenberger, J.; Junginger, H.M.; Daioglou, V.; Tromborg, E.; Keramidas, K.

    2013-01-01

    According to the IEA World Energy Outlook 2012, primary demand for bioenergy will strongly increase up to the year 2035: the demand for biofuels and biomass for electricity is expected to triple. These changes will have an impact on the regional balance of demand and supply of bioenergy leading to

  3. Seasonal energy storage using bioenergy production from abandoned croplands

    International Nuclear Information System (INIS)

    Elliott Campbell, J; Zumkehr, Andrew; Lobell, David B; Genova, Robert C; Field, Christopher B

    2013-01-01

    Bioenergy has the unique potential to provide a dispatchable and carbon-negative component to renewable energy portfolios. However, the sustainability, spatial distribution, and capacity for bioenergy are critically dependent on highly uncertain land-use impacts of biomass agriculture. Biomass cultivation on abandoned agriculture lands is thought to reduce land-use impacts relative to biomass production on currently used croplands. While coarse global estimates of abandoned agriculture lands have been used for large-scale bioenergy assessments, more practical technological and policy applications will require regional, high-resolution information on land availability. Here, we present US county-level estimates of the magnitude and distribution of abandoned cropland and potential bioenergy production on this land using remote sensing data, agriculture inventories, and land-use modeling. These abandoned land estimates are 61% larger than previous estimates for the US, mainly due to the coarse resolution of data applied in previous studies. We apply the land availability results to consider the capacity of biomass electricity to meet the seasonal energy storage requirement in a national energy system that is dominated by wind and solar electricity production. Bioenergy from abandoned croplands can supply most of the seasonal storage needs for a range of energy production scenarios, regions, and biomass yield estimates. These data provide the basis for further down-scaling using models of spatially gridded land-use areas as well as a range of applications for the exploration of bioenergy sustainability. (letter)

  4. Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion

    Science.gov (United States)

    Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.

    2012-12-01

    Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.

  5. Bioenergy knowledge, perceptions, and attitudes among young citizens - from cross-national surveys to conceptual model

    Energy Technology Data Exchange (ETDEWEB)

    Halder, P

    2011-07-01

    Bioenergy is expected to play a significant role in the global energy mix of the next decades, transforming the current fossil fuel-based economy into a low-carbon energy economy. There is a significant research gap in our understanding of the societal aspects of bioenergy and it becomes even limited in the context of evaluating young citizens' awareness of bioenergy from an international perspective. This dissertation has investigated young students' knowledge, perceptions, and attitudes related to bioenergy with the help of cross-national data and used statistical models to explain their intentions to use bioenergy. A self-constructed survey instrument was used in the study to collect data from 15-year-old 1903 school students in Finland, Taiwan, Turkey, and Slovakia. The study found that the majority of the students appeared to have basic level of bioenergy knowledge, whereas only a minority among them demonstrated a higher level of such knowledge. The study did not reveal any statistically significant gender and living area differences related to the students' knowledge of bioenergy. The students appeared to be very critical in their perceptions of forest-based bioenergy production; however, they demonstrated their positive attitudes to bioenergy including their intentions to use it in the future. It became apparent that the students with a higher level of bioenergy-knowledge were more critical in terms of their both perceptions of and attitudes to bioenergy than those with a shallow knowledge of it. The study has found that school, home, and media discussions of bioenergy, as perceived by the Finnish students, have significant effects on their knowledge, perceptions and attitudes related to bioenergy. One of the most significant findings to emerge from this study is the key dimensions of the students' perceptions of and attitudes to bioenergy. The study found three key dimensions from the cross-national data depicting different facets of the students

  6. Public–private partnerships value in bioenergy projects: Economic feasibility analysis based on two case studies

    International Nuclear Information System (INIS)

    Fantozzi, Francesco; Bartocci, Pietro; D'Alessandro, Bruno; Arampatzis, Stratos; Manos, Basil

    2014-01-01

    Greece and Italy are facing serious energy challenges concerning sustainability and greenhouse gas emissions as well as security of supply and the competitiveness of the internal energy market. These challenges require investments by the public sector, while the countries have seen in the last years their debts rising. A solution to promote bioenergy business, without rising public debt, could be the use of PPP (Public–Private Partnership). This paper presents a methodology to develop agro-energy business using PPP in two rural areas: the municipality of Evropos (in Greece) and the municipality of Montefalco (in Italy). At first biomass availability is studied, then the optimal technology is selected. Once technological issues have been analyzed PPP value for money has to be assessed. Conventional methods to evaluate economic viability of a project are not enough and a Public-Sector Comparator (PSC) has to be calculated. Typical risks of bioenergy projects are identified, estimating their probabilities and consequences. This will lead to associate a monetary value to each risk. Then the identified risks are allocated among private and public partners, establishing synergies. The allocation of risks will have consequences on the preparation of PPP contract and on partner selection procedure. - Highlights: • PPPs can control or reduce risks in bioenergy business. • Development of a methodology for risk allocation in bioenergy projects. • Development of a methodology for risk valuing in bioenergy projects. • A Public-Sector Comparator has been realized for an agro-energy PPP. • Risk allocation has to be clearly indicated in PPP contract

  7. Tweak, adapt, or transform: Policy scenarios in response to emerging bioenergy markets in the U.S

    Science.gov (United States)

    Ryan. C. Atwell; Lisa. A. Schulte; Lynne M. Westphal

    2011-01-01

    Emerging bioenergy markets portend both boon and bane for regions of intensive agricultural production worldwide. To understand and guide the effects of bioenergy markets on agricultural landscapes, communities, and economies, we engaged leaders in the Corn Belt state of Iowa in a participatory workshop and follow-up interviews to develop future policy scenarios....

  8. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  9. Bioenergy research programme. Yearbook 1996. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma. Vuosikirja 1996. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Nikku, P [ed.

    1997-12-01

    The aim of the programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels, new equipment and methods for production, handling and utilisation of biofuels. The total funding for 1996 was 27.3 million FIM and the number of projects 63. The number of projects concerning bioenergy use was 10 and biomass conversion 6. Results of the projects carried out in 1996 are presented in this publication. The aim of the bioenergy use is to develop and demonstrate at least 3-4 new equipment or methods for handling and use of biofuels. The equipment and/or methods should provide economically competitive and environmentally sound energy production. The second aim is to demonstrate 2-3 large-scale biofuel end-use technologies. Each of these should have a potential of 0.2- 0.3 million toe/a till the year 2000. The aims have been achieved in the field of fuel handling technologies and small-scale combustion concepts, but large-scale demonstration projects before the year 2000 seems to be a very challenging aim. The aim of the biomass conversion is to produce basic information on biomass conversion, to evaluate the quality of products, their usability, environmental effects of use as well as the total economy of the production. The objective of biomass conversion is to develop 2-3 new methods, which could be demonstrated, for the production and utilisation of liquefied, gasified and other converted biofuels. The production target is 0.2-0.3 million toe/a by the year 2000 at a competitive price level. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of storage stability of imported wood oils and of their suitability for use in oil-fired boilers and diesel power plants

  10. Responses of agricultural bioenergy sectors in Brandenburg (Germany) to climate, economic and legal changes: An application of Holling's adaptive cycle

    International Nuclear Information System (INIS)

    Grundmann, Philipp; Ehlers, Melf-Hinrich; Uckert, Götz

    2012-01-01

    Agricultural bioenergy production is subject to dynamics such as yield fluctuations, volatile prices, resource competition, new regulation and policy, innovation and climate change. This raises questions, to what extent bioenergy production is able to adapt to changes and overcome critical events. These dynamics have important implications for effective policy development. Using a case study method, which draws on various data sources, we investigate in detail how agricultural bioenergy sectors in the German State of Brandenburg adapted to diverse past events. The case analysis rests on the adaptive-cycle concept and the system properties potential, connectedness and resilience as defined by . Our case study concludes that Brandenburg's biogas sector has a low potential and connectedness within the system, and a low resilience against crop failures. The biofuels sector displays similar properties in the short term. In the medium term the potential could increase in both sectors. The properties imply risks and opportunities for biogas production and the possibility to develop towards a stage with a higher potential and a higher connectedness. But adaptive capacity is limited and there are certain barriers for the agricultural bioenergy sectors to overcome potentially critical states. Policy needs to be tailored accordingly. - Highlights: ► Bioenergy sectors respond to climatic, economic and legal changes in different ways. ► Responses to changes expose critical features and bottlenecks of bioenergy sectors. ► Resilience, potential and connectedness are critical features for bioenergy sectors. ► Stages of development of the biogas and biofuel production sectors are identified. ► Effective policy design needs to match the sectors' features and development stages.

  11. International bioenergy transport costs and energy balance

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N.; Suurs, Roald A.A.; Faaij, Andre P.C.

    2005-01-01

    To supply biomass from production areas to energy importing regions, long-distance international transport is necessary, implying additional logistics, costs, energy consumption and material losses compared to local utilisation. A broad variety of bioenergy chains can be envisioned, comprising different biomass feedstock production systems, pre-treatment and conversion operations, and transport of raw and refined solid biomass and liquid bio-derived fuels. A tool was developed to consistently compare the possible bioenergy supply chains and assess the influence of key parameters, such as distance, timing and scale on performance. Chains of European and Latin American bioenergy carriers delivered to Western Europe were analysed using generic data. European biomass residues and crops can be delivered at 90 and 70 euros/tonne dry (4.7 and 3.7 euros/GJ HHV ) when shipped as pellets. South American crops are produced against much lower costs. Despite the long shipping distance, the costs in the receiving harbour can be as low as 40 euros/tonne dry or 2.1 euros/GJ HHV ; the crop's costs account for 25-40% of the delivered costs. The relatively expensive truck transport from production site to gathering point restricts the size of the production area; therefore, a high biomass yield per hectare is vital to enable large-scale systems. In all, 300 MW HHV Latin American biomass in biomass integrated gasification/combined cycle plants may result in cost of electricity as little as 3.5 euros cent/kWh, competitive with fossil electricity. Methanol produced in Latin America and delivered to Europe may cost 8-10 euros/GJ HHV , when the pellets to methanol conversion is done in Europe the delivered methanol costs are higher. The energy requirement to deliver solid biomass from both crops and residues from the different production countries is 1.2-1.3 MJ primary /MJ delivered (coal ∼ 1.1 MJ/MJ). International bioenergy trade is possible against low costs and modest energy loss

  12. Residues of bioenergy production chains as soil amendments: Immediate and temporal phytotoxicity

    NARCIS (Netherlands)

    Gell, K.; Groenigen, van J.W.; Cayuela, M.L.

    2011-01-01

    The current shift towards bioenergy production increases streams of bioenergy rest-products (RPs), which are likely to end-up as soil amendments. However, their impact on soil remains unclear. In this study we evaluated crop phytotoxicity of 15 RPs from common bioenergy chains (biogas, biodiesel,

  13. Bioenergy knowledge, perceptions, and attitudes among young citizens - from cross-national surveys to conceptual model

    Energy Technology Data Exchange (ETDEWEB)

    Halder, P.

    2011-07-01

    Bioenergy is expected to play a significant role in the global energy mix of the next decades, transforming the current fossil fuel-based economy into a low-carbon energy economy. There is a significant research gap in our understanding of the societal aspects of bioenergy and it becomes even limited in the context of evaluating young citizens' awareness of bioenergy from an international perspective. This dissertation has investigated young students' knowledge, perceptions, and attitudes related to bioenergy with the help of cross-national data and used statistical models to explain their intentions to use bioenergy. A self-constructed survey instrument was used in the study to collect data from 15-year-old 1903 school students in Finland, Taiwan, Turkey, and Slovakia. The study found that the majority of the students appeared to have basic level of bioenergy knowledge, whereas only a minority among them demonstrated a higher level of such knowledge. The study did not reveal any statistically significant gender and living area differences related to the students' knowledge of bioenergy. The students appeared to be very critical in their perceptions of forest-based bioenergy production; however, they demonstrated their positive attitudes to bioenergy including their intentions to use it in the future. It became apparent that the students with a higher level of bioenergy-knowledge were more critical in terms of their both perceptions of and attitudes to bioenergy than those with a shallow knowledge of it. The study has found that school, home, and media discussions of bioenergy, as perceived by the Finnish students, have significant effects on their knowledge, perceptions and attitudes related to bioenergy. One of the most significant findings to emerge from this study is the key dimensions of the students' perceptions of and attitudes to bioenergy. The study found three key dimensions from the cross-national data depicting different facets of

  14. Evaluation of Bioenergy Crop Growth and the Impacts Of Bioenergy Crops on Streamflow, Tile Drain Flow and Nutrient Losses Using SWAT

    Science.gov (United States)

    Guo, T.; Raj, C.; Chaubey, I.; Gitau, M. W.; Arnold, J. G.; Srinivasan, R.; Kiniry, J. R.; Engel, B.

    2016-12-01

    Bioenery crops are expected to produce large quantities of biofuel at a national scale to meet US biofuel goals. It is important to study bioenergy crop growth and the impacts on water quantity and quality to identify environment-friendly and productive biofeedstocks. In this study, SWAT2012 with a new tile drainage routine (DRAINMOD routine) and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, total nitrogen, nitrate load in flow, nitrate in tile flow, soluble nitrogen, organic nitrogen, total phosphorus, mineral phosphorus and organic phosphorus under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US. The results showed that simulated annual crop yields matched with observed county level values for corn and soybeans, and were reasonable for Miscanthus, switchgrass and hybrid poplar. Removal of 38% of corn stover (66,439 Mg/yr) with Miscanthus production on highly erodible areas and marginal land (19,039 Mg/yr) provided the highest biofeedstock production. Streamflow, tile flow, erosion and nutrient losses were reduced under bioenergy crop scenarios of Miscanthus, switchgrass, and hybrid poplar on highly erodible areas, marginal land. Corn stover removal did not result in significant water quality changes. The increase in sediment load and nutrient losses under corn stover removal could be offset with production of other bioenergy crops. The study showed that corn stover removal with bioenergy crops both on highly erodible areas and marginal land could provide more biofuel production relative to the baseline, and was beneficial to hydrology and water quality at the watershed scale, providing guidance for further research on evaluation of bioenergy crop scenarios in a typical extensively tile-drained watershed in the Midwestern U.S.

  15. Bio-energy in China: Content analysis of news articles on Chinese professional internet platforms

    Energy Technology Data Exchange (ETDEWEB)

    Qu Mei [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Northwest Agriculture and Forestry University, College of Forestry (China)], E-mail: qu@cc.joensuu.fi; Tahvanainen, Liisa [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Ahponen, Pirkkoliisa [Faculty of Social Sciences and Regional Studies, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Pelkonen, Paavo [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland)

    2009-06-15

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on (www.Google.cn). A thorough analysis was conducted by focusing on one of them: (www.china5e.com). The news articles on (www.china5e.com) were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future.

  16. Bio-energy in China. Content analysis of news articles on Chinese professional internet platforms

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Mei [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Northwest Agriculture and Forestry University, College of Forestry (China); Tahvanainen, Liisa; Pelkonen, Paavo [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Ahponen, Pirkkoliisa [Faculty of Social Sciences and Regional Studies, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland)

    2009-06-15

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on www.Google.cn. A thorough analysis was conducted by focusing on one of them: www.china5e.com. The news articles on www.china5e.com were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future. (author)

  17. Sustainable intensification of agricultural systems in combination with biorefinery processing can produce more biomass for bioenergy without imposing indirect land use change

    DEFF Research Database (Denmark)

    Jørgensen, Uffe; Larsen, S.; Olesen, Jørgen Eivind

    2016-01-01

    EERA Bioenergy Workshops. SP4: Land Use Aspects in Relation to Biomass Development. London, June 2nd, 2016.......EERA Bioenergy Workshops. SP4: Land Use Aspects in Relation to Biomass Development. London, June 2nd, 2016....

  18. Synergistic microbial consortium for bioenergy generation from complex natural energy sources.

    Science.gov (United States)

    Wang, Victor Bochuan; Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say; Yang, Liang

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1:9 (v:v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs.

  19. Biomass production on marginal lands - catalogue of bioenergy crops

    Science.gov (United States)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  20. Greenhouse gas balances of bioenergy systems: Programme and accomplishments of IEA Bioenergy Task XV, 1995-97

    International Nuclear Information System (INIS)

    Spitzer, J.

    1998-01-01

    The goal of IEA Bioenergy Task XV was to investigate all processes involved in using bioenergy systems, on a full fuel-cycle basis, with the aim of establishing overall greenhouse gas (GHG) balances. Task participants have been Austria, Canada, Finland, Sweden and the U.S.A. (Operating Agent: Austria). During its work period (1995-97), Task XV hosted five international workshops. The scientific achievements of the Task are documented in a number of published papers. Also, a bibliography on the research area was compiled. Much work was devoted to the question of carbon accounting in the context of the work of the Intergovernmental Panel on Climate Change (IPCC), and Task XV made contributions to a draft IPCC special report prepared for the IPCC Expert Group on Harvested Wood Products. The technical paper 'Forest harvests and wood products: sources and sinks of atmospheric carbon dioxide' (Forest Science, forthcoming) contrasts two carbon accounting approaches for considering wood products in the IPCC Guidelines (i.e., 'atmospheric-flow' vs. 'stock-change' method) and reports on estimated national carbon source-sink balances for selected countries, regions, and the world. Finally, progress was made in establishing a common analytical framework to compare different bioenergy options. The framework considers on-site carbon storage changes as well as GHG emissions from auxiliary fossil fuels, conversion efficiencies, and emission credits for by-products; comparisons between bioenergy systems and traditional fossil fuel and other energy systems as a reference are allowed, and reference land-uses accounted for. The continuation Task is Task 25 (1998-2000), with New Zealand joining the current partners 9 refs, 2 tabs

  1. The role of bioenergy in the energy transition. The ''Smart Bioenergy'' concept

    International Nuclear Information System (INIS)

    Thraen, Daniela; DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig; Seitz, Stefanie B.; Wirkner, Ronny; Nelles, Michael

    2016-01-01

    The energy system's transformation away from fossil and therefore finite resources and ecological harmful use towards renewable energy sources and sustainable forms of usage proceeds. But even after 35 years, the German energy transition has yet not reached its ambitious goals. Moreover, in the recent years the progress has stagnated in certain areas. This is due to the fact that one of the central challenges of the energy system's changeover to an sole use renewable energy (RE) have not yet mastered: the reliable and stable delivery of RE for all energy dependent sectors starting form electricity via heat to mobility in the face of fluctuating energy sources like sun and wind. Bioenergy with its flexible use of innovative technologies and smart integration in the overall system is therefore vital to grant stability of energy supply. Furthermore, bioenergy can recourse on sustainable resources and may become therefore the backbone of the future bioeconomy. For this purpose an integrative approach is necessary that aligns the aforementioned building blocks in a cohesive whole: the Smart Bioenergy concept - that will be presented here with its elements but also open questions and challenges.

  2. Energy conservation in the industry. Innovators talking; Energiebesparing in de industrie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the industry [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de industrie.

  3. 11. Rostock bioenergy forum. Proceedings; 11. Rostocker Bioenergieforum. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Nelles, Michael (ed.)

    2017-08-01

    The seven main focus of the bioenergy forum were: 1. Political regulation and its consequences; 2. Flexible energy supply; 3. Biorefineries for the use of residues from bioenergy production; 4. Process optimization biogas; 5. Alternative substrates for biogas production; 6. Cross-sectoral bioenergy concept; 7. Transport sector (biofuels). Five lectures are separately analyzed for this database. [German] Die sieben Themenschwerpunkte des Bioenergieforums waren: 1. Politische Regulierung und deren Folgen; 2. Flexible Energiebereitstellung; 3. Bioraffinerie zur Nutzung von Reststoffen der Bioenergiegewinnung; 4. Prozessoptimierung Biogas; 5. Alternative Substrate zur Biogasgewinnung; 6. Sektoruebergreifende regionale Bioenergiekonzept; und 7. Transportsektor (Biokraftstoffe). Fuenf Vortraege wurden fuer diese Datenbank separat aufgenommen.

  4. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  5. Whole system analysis of second generation bioenergy production and Ecosystem Services in Europe

    Science.gov (United States)

    Henner, Dagmar; Smith, Pete; Davies, Christian; McNamara, Niall

    2017-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy that has higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by current climate change. It is important to establish how second generation bioenergy crops (Miscanthus, SRC willow and poplar) can contribute by closing the gap between reducing fossil fuel use and increasing the use of other renewable sources in a sustainable way. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). We will present estimated yields for the above named crops in Europe using the ECOSSE, DayCent, SalixFor and MiscanFor models. These yields will be brought into context with a whole system analysis, detailing trade-offs and synergies for land use change, food security, GHG emissions and soil and water security. Methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be used to estimate and visualise the impacts of increased use of second generation bioenergy crops on the above named ecosystem services. The results will be linked to potential yields to generate "inclusion or exclusion areas" in Europe in order to establish suitable areas for bioenergy crop production and the extent of use possible. Policy is an important factor for using second generation bioenergy crops in a sustainable way. We will present how whole system analysis can be used to create scenarios for countries or on a continental scale. As an

  6. Bio-Energy during Finals: Stress Reduction for a University Community.

    Science.gov (United States)

    Running, Alice; Hildreth, Laura

    2016-01-01

    To re-examine the effectiveness of a bio-energy intervention on self-reported stress for a convenience sample of university students during dead week, a quasi-experimental, single-group pretest-posttest design was used. Thirty-three students participated, serving as their own controls. After participants had consented, a 15-min Healing Touch intervention followed enrollment. Self-reported stress was significantly reduced after the bio-energy (Healing Touch) intervention. Bio-energy therapy has shown to be beneficial in reducing stress for students during dead week, the week before final examinations. Further research is needed.

  7. Opportunities and impediments to the expansion of forest bioenergy in Australia

    International Nuclear Information System (INIS)

    Raison, R.J.

    2006-01-01

    There are significant opportunities for expansion of a forest bioenergy industry in Australia based on distributed electricity generation and production of liquid fuels (ethanol and bio-oil). If the large amounts of forest residues already available annually could be utilized, this would deliver useful greenhouse benefits, assist regeneration of new forests that have increased environmental values, and benefit silvicultural management. Creation of new forests in low rainfall environments for both environmental and commercial reasons will also provide residues in the future that could be used for energy production, thus enhancing overall viability of such ventures. Currently, there are several serious impediments to realising the potential. These include: - Large reserves of accessible coal, and low cost of electricity generated in coal-fired power plants. - Uncertain greenhouse and renewable energy policy (specifically that relating to implementation of the Mandated Renewable Energy Target (MRET)). - Lack of proven efficient small-scale technology to enable distributed electricity generation that would reduce transportation costs for delivery of biofuels. - Controversy over the sustainable use of native forest residues for renewable energy generation. - Lack of markets for environmental credits (carbon, salinity, biodiversity). - Lack of efficient processes for producing ethanol from wood, inadequate commercial products from lignin, and the need for further development before diesel engines can be run on bio-oil for stationary power generation and transport. In Australia, apart from the use of firewood for domestic heating, forest bioenergy has developed only to a very limited extent, despite the existence of significant opportunities. A major impediment to expansion is lack of public acceptance and support, especially for the use of native forest residues which are the main available biomass source. A concerted effort at several levels is needed to address this

  8. A comparison of bioenergy policies and institutional frameworks in the rural areas of Emilia Romagna and Norway

    International Nuclear Information System (INIS)

    Cavicchi, Bianca; Bryden, John M.; Vittuari, Matteo

    2014-01-01

    This paper explores the relationship between bioenergy, rural development and related innovation processes in two case studies (Emilia Romagna in Italy—and Norway), for a better understanding of the impacts of different policy regimes on bioenergy innovation. Regional innovation systems theory is used to explain the results emerging from the case studies and to identify the presence of potential elements for innovation. We used policy and relevant literature analysis and a grounded approach based on semi- structured interviews of relevant actors involved in the local bioenergy system. The main findings show that the case studies present consistent differences in terms of policy instruments and socio-political dynamics. Emilia Romagna has major weaknesses and threats that hinder innovation, but some positive potential elements for the future. Norway presents stronger local elements for innovation within local bioenergy systems, such as the employment of local resources and knowledge, but critical market and policy features that threaten further innovation developments. The conclusion draws on the comparative analysis to discuss policy implications of the study. - Highlights: • We compare policies and institutional frameworks which regulate bioenergy systems. • We use the SWOT analysis to evaluate the results of the case studies. • Emilia Romagna has major systemic weaknesses. • Norway has local elements for innovation but policy weaknesses. • Policies and policy instruments should be decentralised

  9. A simulation-based robust biofuel facility location model for an integrated bio-energy logistics network

    Directory of Open Access Journals (Sweden)

    Jae-Dong Hong

    2014-10-01

    Full Text Available Purpose: The purpose of this paper is to propose a simulation-based robust biofuel facility location model for solving an integrated bio-energy logistics network (IBLN problem, where biomass yield is often uncertain or difficult to determine.Design/methodology/approach: The IBLN considered in this paper consists of four different facilities: farm or harvest site (HS, collection facility (CF, biorefinery (BR, and blending station (BS. Authors propose a mixed integer quadratic modeling approach to simultaneously determine the optimal CF and BR locations and corresponding biomass and bio-energy transportation plans. The authors randomly generate biomass yield of each HS and find the optimal locations of CFs and BRs for each generated biomass yield, and select the robust locations of CFs and BRs to show the effects of biomass yield uncertainty on the optimality of CF and BR locations. Case studies using data from the State of South Carolina in the United State are conducted to demonstrate the developed model’s capability to better handle the impact of uncertainty of biomass yield.Findings: The results illustrate that the robust location model for BRs and CFs works very well in terms of the total logistics costs. The proposed model would help decision-makers find the most robust locations for biorefineries and collection facilities, which usually require huge investments, and would assist potential investors in identifying the least cost or important facilities to invest in the biomass and bio-energy industry.Originality/value: An optimal biofuel facility location model is formulated for the case of deterministic biomass yield. To improve the robustness of the model for cases with probabilistic biomass yield, the model is evaluated by a simulation approach using case studies. The proposed model and robustness concept would be a very useful tool that helps potential biofuel investors minimize their investment risk.

  10. Determining the biomass fraction of mixed waste fuels: A comparison of existing industry and {sup 14}C-based methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Muir, G.K.P., E-mail: Graham.Muir@glasgow.ac.uk [SUERC Radiocarbon Laboratory, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride G75 0QF, Scotland (United Kingdom); Hayward, S. [Stopford Energy and Environment, The Gordon Manley Building, Lancaster University, Lancaster LA1 4YQ, England (United Kingdom); Tripney, B.G.; Cook, G.T.; Naysmith, P. [SUERC Radiocarbon Laboratory, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride G75 0QF, Scotland (United Kingdom); Herbert, B.M.J. [Stopford Energy and Environment, The Gordon Manley Building, Lancaster University, Lancaster LA1 4YQ, England (United Kingdom); Garnett, M.H [NERC Radiocarbon Facility, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride G75 0QF, Scotland (United Kingdom); Wilkinson, M. [Stopford Energy and Environment, The Gordon Manley Building, Lancaster University, Lancaster LA1 4YQ, England (United Kingdom)

    2015-01-15

    Highlights: • Compares industry standard and {sup 14}C methods for determining bioenergy content of MSW. • Differences quantified through study at an operational energy from waste plant. • Manual sort and selective dissolution are unreliable measures of feedstock bioenergy. • {sup 14}C methods (esp. AMS) improve precision and reliability of bioenergy determination. • Implications for electricity generators and regulators for award of bio-incentives. - Abstract: {sup 14}C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were converted to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). {sup 14}C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator.

  11. Synthesis report: System studies Bioenergy

    International Nuclear Information System (INIS)

    Berntsson, Thore

    2003-01-01

    The present report marks the end of the research program 'System studies Bioenergy' (1998-2002). The program comprised 17 projects performed at 9 universities or research institutes. All project results were studied in order to identify: contributions to our present knowledge; possible gaps of knowledge, methodology or systems perspective that still exist; and the needs for further research. The projects can be classified into the following groups: Resource potential of forest fuels; Industrial use of biofuels; Potential for synthetic fuels (pellets, bio-oils and transportation fuels); System analysis of efficient use of biofuels; and Socio-economic analyses. The total potential for available biofuel has been estimated to be 125-175 TWh/year (excl. black liquors of paper industry). The potential demand is estimated to about 123 TWh/year, or distributed into the different sectors: Industry: 26 TWh/year, Buildings and services: 35 TWh/year, District heating: 31 TWh/year, and electric power generation (incl. cogeneration in district heating): 31 TWh/year. Further research is needed in the following areas: Systems and methodology of more generic character on optimization of production, refining and use of biofuels in order to substitute fossil fuels directly or indirectly; Heat sinks/district heating in combination with cogeneration vs. other power production in a long term perspective (> 10 years), in the light of new technologies, open markets, economic and political incentives; Energy efficiency in industry, esp. paper and pulp with its unique possibility for process integration, biofuel processing and CO 2 separation; How far should the processing/refinement of biofuels go; Importance of factors of scale; New distributed (small-scale) energy technology; International trade in biofuels; Transport and handling costs for biofuel pellets in Europe; System aspects of implementation and incentives; How are biofuels affected if CO 2 from fossil fuels can be separated and

  12. Rostock bioenergy forum. Future technologies for bioenergy. Proceedings; 4. Rostocker Bioenergieforum. Zukunftstechnologien fuer Bioenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the 4th Rostock bioenergy forum 'future technologies for bioenergy' at 27th and 28th October, 2010, in Rostock (Federal Republic of Germany) the following lectures were held: (1) Sustainable supply of biomass from the agriculture (Christian Gienapp); (2) Biogas plants in conflict of different legal regulation systems (Michael Kern); (3) Logistics of biomass - Do you know the real costs? (Nadine Doden); (4) Potentials of wooden biomass from the landscape conservation using the Lower Saale valley (Sachsen-Anhalt) as an example (Karen Runge); (5) Value creation with energy wood in rural area - Results of a potential study (Marco Hahs); (6) Soil ecological evaluation of short rotational plantations on farmland (Christel Baum); (7) Development of moulds and dry weight losses in bulk wood chips (Christine Idler); (8) Logistics of pellets during the harvest of short-term rotation areas with a field chopper (Franz Handler); (9) Concepts of combustion of biomass within the scope of the BMU funding program 'Energetic utilization of biomass' (Diana Pfeiffer); (10) Thermoelectric transformer for biogenic heat (Karl-Ernst Schnorr); (11) Emissions of benzene in the combustion f gases from wood in cogeneration plants (Christian Hirschmeier); (12) Utilization of additives in the combustion of miscanthus pellets in a small-scale furnace < 100 kW{sub N}WL (Thomas Zeng); (13) Practical experiences with dust separators for small-scale furnaces (Peter Turowski); (14) Analysis for gaining the minimum goal of 10 % renewable energy in traffic sector (Karin Naumann); (15) New diesel components from glycerine (E. Paetzold); (16) Challenges and possibilities in the utilization of biofuels in customary auxiliary heatings (Hajo Hoffmann); (17) Demands on biofuels for the use in combustion engines (Volker Wichmann); (18) Alternative fuel dimethyl ether (Martin Werner); (19) Long-term investigation of the stability of rapeseed fuel and field study of modern Common Rail

  13. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    Science.gov (United States)

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea mays, L.

    Directory of Open Access Journals (Sweden)

    Davide Savy

    2015-11-01

    Full Text Available The molecular composition of water-soluble lignins isolated from four non-food bioenergy crops (cardoon CAR, eucalyptus EUC, and two black poplars RIP and LIM was characterized in detail, and their potential bioactivity towards maize germination and early growth evaluated. Lignins were found to not affect seed germination rates, but stimulated the maize seedling development, though to a different extent. RIP promoted root elongation, while CAR only stimulated the length of lateral seminal roots and coleoptile, and LIM improved only the coleoptile development. The most significant bioactivity of CAR was related to its large content of aliphatic OH groups, C-O carbons and lowest hydrophobicity, as assessed by 31P-NMR and 13C-CPMAS-NMR spectroscopies. Less bioactive RIP and LIM lignins were similar in composition, but their stimulation of maize seedling was different. This was accounted to their diverse content of aliphatic OH groups and S- and G-type molecules. The poorest bioactivity of the EUC lignin was attributed to its smallest content of aliphatic OH groups and largest hydrophobicity. Both these features may be conducive of a EUC conformational structure tight enough to prevent its alteration by organic acids exuded from vegetal tissues. Conversely the more labile conformational arrangements of the other more hydrophilic lignin extracts promoted their bioactivity by releasing biologically active molecules upon the action of exuded organic acids. Our findings indicate that water-soluble lignins from non-food crops may be effectively used as plant biostimulants, thus contributing to increase the economic and ecological liability of bio-based industries.

  15. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    Science.gov (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  16. Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model

    International Nuclear Information System (INIS)

    Kemausuor, Francis; Nygaard, Ivan; Mackenzie, Gordon

    2015-01-01

    As Ghana's economy grows, the choice of future energy paths and policies in the coming years will have a significant influence on its energy security. A Renewable Energy Act approved in 2011 seeks to encourage the influx of renewable energy sources in Ghana's energy mix. The new legal framework combined with increasing demand for energy has created an opportunity for dramatic changes in the way energy is generated in Ghana. However, the impending changes and their implication remain uncertain. This paper examines the extent to which future energy scenarios in Ghana could rely on energy from biomass sources, through the production of biogas, liquid biofuels and electricity. Analysis was based on moderate and high use of bioenergy for transportation, electricity generation and residential fuel using the LEAP (Long-range Energy Alternatives Planning) model. Results obtained indicate that introducing bioenergy to the energy mix could reduce GHG (greenhouse gas) emissions by about 6 million tonnes CO_2e by 2030, equivalent to a 14% reduction in a business-as-usual scenario. This paper advocates the use of second generation ethanol for transport, to the extent that it is economically exploitable. Resorting to first generation ethanol would require the allocation of over 580,000 ha of agricultural land for ethanol production. - Highlights: • This paper examines modern bioenergy contribution to Ghana's future energy mix. • Three scenarios are developed and analysed. • Opportunities exist for modern bioenergy to replace carbon intensive fuels. • Introducing modern bioenergy to the mix could result in a 14% reduction in GHG.

  17. The Role of Bioenergy in Greenhouse Gas Mitigation

    International Nuclear Information System (INIS)

    Spitzer, J.

    1998-01-01

    Biomass can play a dual role in greenhouse gas mitigation related to the objectives of the UNFCCC, i.e. as an energy source to substitute fossil fuels and as a carbon store. However, compared to the maintenance and enhancement of carbon sinks and reservoirs, it appears that the use of bioenergy has so far received less attenuation as a means of mitigating climate change. Modern bioenergy options offer significant, cost-effective and perpetual opportunities toward meeting emission reduction targets while providing additional ancillary benefits. Moreover, via the sustainable use of the accumulated carbon, bioenergy has the potential for resolving some of the critical issues surrounding long-term maintenance of biotic carbon stocks. < finally, wood products can act as substitutes for more energy-intensive products, can constitute carbon sinks, and can be used as biofuels at the end of their lifetime. (author)

  18. Bio-energy and youth: Analyzing the role of school, home, and media from the future policy perspectives

    International Nuclear Information System (INIS)

    Halder, Pradipta; Havu-Nuutinen, Sari; Pietarinen, Janne; Pelkonen, Paavo

    2011-01-01

    The study investigated the relationships between students' perceived information on bio-energy from school, home and media and their perceptions, attitudes, and knowledge regarding bio-energy. The study also analyzed the scope of future policies to raise awareness among young students about bio-energy. Data drawn from 495 Finnish students studying in ninth grade revealed that the students were more positive in their attitudes towards bio-energy compared to their perceptions of it. They were very positive about learning about bio-energy, while not so eager towards its utilization. It appeared that school, home, and media all had statistically significant effects on students' perceptions, attitudes, and level of knowledge related to bio-energy. Three principal components emerged from students' perceptions and attitudes towards bio-energy viz. 'motivation' revealing students' eagerness to know more about bio-energy; 'considering sustainability' revealing their criticality of forest bio-energy; and 'utilization' revealing their state of interests to use bio-energy. Bio-energy policies to be effective must consider the role of school, home, and media as important means to engage young students in bio-energy related discussions. It is also desirable to establish interactions between energy and educational policies to integrate the modern renewable energy concepts in the school curriculum.

  19. Integrated Model of Bioenergy and Agriculture System

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    Due to increased burden on the environment caused by human activities, focus on industrial ecology designs are gaining more attention. In that perspective an environ- mentally effective integration of bionergy and agriculture systems has significant potential. This work introduces a modeling...... of the overall model. C- TOOL and Yasso07 are used in the carbon balance of agri- culture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for vari- ous impacts assessment methods. The model is success- fully...... approach that builds on Life Cycle Inventory and carries out Life Cycle Impact Assessment for a con- sequential Life Cycle Assessment on integrated bioenergy and agriculture systems. The model framework is built in Python which connects various freely available soft- ware that handle different aspects...

  20. Cellulose factories: advancing bioenergy production from forest trees.

    Science.gov (United States)

    Mizrachi, Eshchar; Mansfield, Shawn D; Myburg, Alexander A

    2012-04-01

    Fast-growing, short-rotation forest trees, such as Populus and Eucalyptus, produce large amounts of cellulose-rich biomass that could be utilized for bioenergy and biopolymer production. Major obstacles need to be overcome before the deployment of these genera as energy crops, including the effective removal of lignin and the subsequent liberation of carbohydrate constituents from wood cell walls. However, significant opportunities exist to both select for and engineer the structure and interaction of cell wall biopolymers, which could afford a means to improve processing and product development. The molecular underpinnings and regulation of cell wall carbohydrate biosynthesis are rapidly being elucidated, and are providing tools to strategically develop and guide the targeted modification required to adapt forest trees for the emerging bioeconomy. Much insight has already been gained from the perturbation of individual genes and pathways, but it is not known to what extent the natural variation in the sequence and expression of these same genes underlies the inherent variation in wood properties of field-grown trees. The integration of data from next-generation genomic technologies applied in natural and experimental populations will enable a systems genetics approach to study cell wall carbohydrate production in trees, and should advance the development of future woody bioenergy and biopolymer crops.

  1. The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems

    International Nuclear Information System (INIS)

    Bagley, Justin E.; Davis, Sarah C.; Georgescu, Matei; Hussain, Mir Zaman; Miller, Jesse; Nesbitt, Stephen W.; VanLoocke, Andy; Bernacchi, Carl J.

    2014-01-01

    Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for bioenergy agroecosystems to provide global-scale climate regulating ecosystem services via biogeochemical processes. Such as those processes associated with carbon uptake, conversion, and storage that have the potential to reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops can also lead to direct biophysical impacts on climate through water regulating services. Perturbations of processes influencing terrestrial energy fluxes can result in impacts on climate and water across a spectrum of spatial and temporal scales. Here, we review the current state of knowledge about biophysical feedbacks between vegetation, water, and climate that would be affected by bioenergy-related land use change. The physical mechanisms involved in biophysical feedbacks are detailed, and interactions at leaf, field, regional, and global spatial scales are described. Locally, impacts on climate of biophysical changes associated with land use change for bioenergy crops can meet or exceed the biogeochemical changes in climate associated with rising GHG's, but these impacts have received far less attention. Realization of the importance of ecosystems in providing services that extend beyond biogeochemical GHG regulation and harvestable yields has led to significant debate regarding the viability of various feedstocks in many locations. The lack of data, and in some cases gaps in knowledge associated with biophysical and biochemical influences on land–atmosphere interactions, can lead to premature policy decisions. - Highlights: • The physical basis for biophysical impacts of expanding bioenergy agroecosystems on climate and water is described. • We

  2. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    Science.gov (United States)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  3. Development of a tool to model European biomass trade : Report for IEA Bioenergy Task 40

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Junginger, H.M.; Resch, G.; Matzenberger, J.; Panzer, C.; Pelkmans, L.

    2011-01-01

    This report investigated the potential of future intra- and inter-European trade of solid biomass for bioenergy purposes taking country to country specific intermodal transport routes into account and matching supply and demand for energy crops, forestry products and residues and agricultural

  4. 10. Rostock bioenergy forum. Proceedings; 10. Rostocker Bioenergieforum. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Nelles, Michael (ed.)

    2016-08-01

    Biomass energy not only contributes to the energy transition, but also for climate and resource protection. The main topics of the conference are: Alternative solid bioenergy sources; Optimizing the use of heat; Prospects for biofuels; Emission reduction through use of biofuels; Alternative biomass for biogas; Optimization and adjustment in the biogas sector; Flexibility of biogas plants; New uses of bioenergy. 12 contributions were recorded separately for the INIS database. [German] Energie aus Biomasse traegt nicht nur zur Energiewende bei, sondern auch zum Klima- und Ressourcenschutz. Die Schwerpunktthemen der Konferenz sind: Alternative feste Bioenergietraeger; Optimierung der Waermenutzung; Perspektiven fuer Biokraftstoffe; Emissionsminderung durch Biokraftstoffnutzung; Alternative Biomassen fuer Biogas; Optimierung und Anpassung im Biogasbereich; Flexibilisierung von Biogasanlagen; Neue Nutzungsmoeglichkeiten der Bioenergie. Fuer die Datenbank INIS wurden 12 Beitraege separat aufgenommen.

  5. Bio-energy and youth: Analyzing the role of school, home, and media from the future policy perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Pradipta; Pelkonen, Paavo [School of Forest Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu (Finland); Havu-Nuutinen, Sari [School of Applied Educational Science and Teacher Education, University of Eastern Finland, P.O. Box 111, 80101 Joensuu (Finland); Pietarinen, Janne [School of Educational Sciences and Psychology, University of Eastern Finland, P.O. Box 111, 80101 Joensuu (Finland)

    2011-04-15

    The study investigated the relationships between students' perceived information on bio-energy from school, home and media and their perceptions, attitudes, and knowledge regarding bio-energy. The study also analyzed the scope of future policies to raise awareness among young students about bio-energy. Data drawn from 495 Finnish students studying in ninth grade revealed that the students were more positive in their attitudes towards bio-energy compared to their perceptions of it. They were very positive about learning about bio-energy, while not so eager towards its utilization. It appeared that school, home, and media all had statistically significant effects on students' perceptions, attitudes, and level of knowledge related to bio-energy. Three principal components emerged from students' perceptions and attitudes towards bio-energy viz. 'motivation' revealing students' eagerness to know more about bio-energy; 'considering sustainability' revealing their criticality of forest bio-energy; and 'utilization' revealing their state of interests to use bio-energy. Bio-energy policies to be effective must consider the role of school, home, and media as important means to engage young students in bio-energy related discussions. It is also desirable to establish interactions between energy and educational policies to integrate the modern renewable energy concepts in the school curriculum. (author)

  6. IEA Bioenergy Task 40 country report for the Netherlands 2011

    NARCIS (Netherlands)

    Goh, C.S.; Junginger, H.M.; Jonker, J.G.G.; Faaij, A.P.C.

    2011-01-01

    This country report was written within the frame of IEA Bioenergy Task 40. In summary, the aims of this country report are: (1) To provide a concise overview of biomass policy, domestic resources, biomass users, biomass prices and biomass trade, and (2) To analyse bioenergy trends, and reasons for

  7. Postharvest residues from grass seed crops for bioenergy

    OpenAIRE

    Simić, Aleksandar; Čolić, Vladislava; Vučković, Savo; Dželetović, Željko; Bijelić, Zorica; Mandić, Violeta

    2016-01-01

    During grass seed production, a large amount of low forage quality biomass has been produced. Tall growing perennial grasses such as tall fescue (Festuca arundinacea L.) and Italian ryegrass (Lolium multiflorum Lam.) can be used as an alternative source for bioenergy production as they can be grown in less cultivated areas, their residues in seed production could be valuable energy source and can be potentially used as a dual purpose crop (bioenergy and forage). In this research, potentials o...

  8. Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada

    Institute of Scientific and Technical Information of China (English)

    Krish Homagain; Chander Shahi; Nancy Luckai; Mahadev Sharma

    2017-01-01

    Background:Replacement of fossil fuel based energy with biochar-based bioenergy production can help reduce greenhouse gas emissions while mitigating the adverse impacts of climate change and global warming.However,the production of biochar-based bioenergy depends on a sustainable supply of biomass.Although,Northwestern Ontario has a rich and sustainable supply of woody biomass,a comprehensive life cycle cost and economic assessment of biochar-based bioenergy production technology has not been done so far in the region.Methods:In this paper,we conducted a thorough life cycle cost assessment (LCCA) of biochar-based bioenergy production and its land application under four different scenarios:1) biochar production with low feedstock availability;2) biochar production with high feedstock availability;3) biochar production with low feedstock availability and its land application;and 4) biochar production with high feedstock availability and its land application-using SimaPro(R),EIOLCA(R) software and spreadsheet modeling.Based on the LCCA results,we further conducted an economic assessment for the break-even and viability of this technology over the project period.Results:It was found that the economic viability of biochar-based bioenergy production system within the life cycle analysis system boundary based on study assumptions is directly dependent on costs of pyrolysis,feedstock processing (drying,grinding and pelletization) and collection on site and the value of total carbon offset provided by the system.Sensitivity analysis of transportation distance and different values of C offset showed that the system is profitable in case of high biomass availability within 200 km and when the cost of carbon sequestration exceeds CAD S60 per tonne of equivalent carbon (CO2e).Conclusions:Biochar-based bioenergy system is economically viable when life cycle costs and environmental assumptions are accounted for.This study provides a medium scale slow-pyrolysis plant scenario and

  9. Towards a more holistic sustainability assessment framework for agro-bioenergy systems — A review

    International Nuclear Information System (INIS)

    Arodudu, Oludunsin; Helming, Katharina; Wiggering, Hubert; Voinov, Alexey

    2017-01-01

    The use of life cycle assessment (LCA) as a sustainability assessment tool for agro-bioenergy system usually has an industrial agriculture bias. Furthermore, LCA generally has often been criticized for being a decision maker tool which may not consider decision takers perceptions. They are lacking in spatial and temporal depth, and unable to assess sufficiently some environmental impact categories such as biodiversity, land use etc. and most economic and social impact categories, e.g. food security, water security, energy security. This study explored tools, methodologies and frameworks that can be deployed individually, as well as in combination with each other for bridging these methodological gaps in application to agro-bioenergy systems. Integrating agronomic options, e.g. alternative farm power, tillage, seed sowing options, fertilizer, pesticide, irrigation into the boundaries of LCAs for agro-bioenergy systems will not only provide an alternative agro-ecological perspective to previous LCAs, but will also lead to the derivation of indicators for assessment of some social and economic impact categories. Deploying life cycle thinking approaches such as energy return on energy invested-EROEI, human appropriation of net primary production-HANPP, net greenhouse gas or carbon balance-NCB, water footprint individually and in combination with each other will also lead to further derivation of indicators suitable for assessing relevant environmental, social and economic impact categories. Also, applying spatio-temporal simulation models has a potential for improving the spatial and temporal depths of LCA analysis.

  10. Towards a more holistic sustainability assessment framework for agro-bioenergy systems — A review

    Energy Technology Data Exchange (ETDEWEB)

    Arodudu, Oludunsin, E-mail: Oludunsin.Arodudu@zalf.de [Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg (Germany); Potsdam University, Institute of Earth and Environmental Sciences, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Golm (Germany); Helming, Katharina [Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg (Germany); Faculty of Landscape Management and Nature Conservation, University for Sustainable Development (HNEE), Schickler Strasse 5, 16225 Eberswalde (Germany); Wiggering, Hubert [Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg (Germany); Potsdam University, Institute of Earth and Environmental Sciences, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Golm (Germany); Voinov, Alexey [ITC, Faculty of Geoinformation and Earth Observation, University of Twente, Hengelosestraat 99, Enschede (Netherlands)

    2017-01-15

    The use of life cycle assessment (LCA) as a sustainability assessment tool for agro-bioenergy system usually has an industrial agriculture bias. Furthermore, LCA generally has often been criticized for being a decision maker tool which may not consider decision takers perceptions. They are lacking in spatial and temporal depth, and unable to assess sufficiently some environmental impact categories such as biodiversity, land use etc. and most economic and social impact categories, e.g. food security, water security, energy security. This study explored tools, methodologies and frameworks that can be deployed individually, as well as in combination with each other for bridging these methodological gaps in application to agro-bioenergy systems. Integrating agronomic options, e.g. alternative farm power, tillage, seed sowing options, fertilizer, pesticide, irrigation into the boundaries of LCAs for agro-bioenergy systems will not only provide an alternative agro-ecological perspective to previous LCAs, but will also lead to the derivation of indicators for assessment of some social and economic impact categories. Deploying life cycle thinking approaches such as energy return on energy invested-EROEI, human appropriation of net primary production-HANPP, net greenhouse gas or carbon balance-NCB, water footprint individually and in combination with each other will also lead to further derivation of indicators suitable for assessing relevant environmental, social and economic impact categories. Also, applying spatio-temporal simulation models has a potential for improving the spatial and temporal depths of LCA analysis.

  11. Systems evolution of waste and by-product management and bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, L.

    2009-07-01

    Evolutionary economic geography provides an inspiring extension to geographical systems analysis. The objective of this dissertation is to apply the systems approach and theory as an integrative framework of sustainable development, and as a capable analytical tool in the analysis of evolutionary resource management and energy production systems in their geographical contexts. The systems investigated are waste and by-product management and bioenergy production systems located in Finland and Scotland. Industrial ecosystem (IE) indicators are constructed for the analysis of waste and by-product management. They present both direct and indirect environmental, economic and social impacts of local waste management operations. The indicators are further applied in scenarios that dynamise the evolution of systems material and energy flows towards the balanced environmental, economic and social development, i.e. the vision of the industrial ecology. The results indicate that the energy use of waste derived fuels in regional cooperation has much potential in the development towards the optimal roundput model of industrial ecosystem. The business opportunities based on local woodfuels are investigated in the context of Scottish forestry policy. The evolution of institutional environments and arrangements of forest management in the Scottish Highlands enables a new type of rural entrepreneurship. The case study of Finnish heat entrepreneurship constructs a heat energy business model, including both the business architecture for product/service flows and the earning logics. Finally, a synthesis of the evolution of natural resource management systems is presented. The evolution process has many geographical contingent conditions, such as resources, technologies, institutions and organisations. Together with general socio-economic mechanisms, they affect the actors in spatial economic processes and interactions. Realisations of the system evolution are structures of economies

  12. Role of arthropod communities in bioenergy crop litter decomposition†.

    Science.gov (United States)

    Zangerl, Arthur R; Miresmailli, Saber; Nabity, Paul; Lawrance, Allen; Yanahan, Alan; Mitchell, Corey A; Anderson-Teixeira, Kristina J; David, Mark B; Berenbaum, May R; DeLucia, Evan H

    2013-10-01

    The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops-miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon-nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod-mediated litter decomposition and nutrient release. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  13. Market survey Slovakia. Bio-energy

    International Nuclear Information System (INIS)

    2008-01-01

    The study presents an overview of Slovakian bioenergy market, its current state and future prospects in terms of size and potentials. In the opening, the basic structure of Slovakian energy sources is presented from IEA energy statistics, then a list of programmes and valid legislation relating to RES follow. Figures from several sources show possible potential accomplishable in biomass utilisation in Slovakia. Some most promising areas containing interesting amounts of unutilised biomass are quoted. Chapter 4 contains overview of programmes supporting the use of RES, examples of already realised projects and some planned projects. In Chapter 5 there is a list of main stakeholders in the bioenergy sector, description of legal requirements and procedures necessary for starting a business in Slovakia and some ways how to promote bioenergy business in Slovakia. As the most promising opportunities identified in Slovakia we can consider projects of biomass utilisation in the form of installation of boilers and creation of distribution channels enabling steady supply of biomass for competitive prices. A lot of waste and other residues from woodworking industries or forestry is available for this purpose. Dutch companies should make maximum use of their technological know-how and try to offer equipment for biomass utilisation. Biogas is produced only on a very limited scale. The reason for that lies in relatively high initial costs that cannot be covered from farming companies and low rentability of realised projects. Still, projects solving disposal of agricultural waste on the one hand and energy production on the other are worth paying attention to. Success stories from the Netherlands could serve as a source of inspiration but doing of thoroughgoing analysis preceding investment itself is of necessity in order to cope with hidden risks and uncertainties. In any case, Dutch companies can offer technological equipment to Slovakian buyers without risks connected with

  14. The availability and economic analyses of using marginal land for bioenergy production in China

    Science.gov (United States)

    Yuqi, Chen; Xudong, Guo; Chunyan, Lv

    2017-04-01

    In recent years, China has witnessed rapid increase in the dependence of foreign oil import. In 2015, the primary energy consumption of China is 543 million tons, of which 328 million tons was imported. The total amount of imported foreign oil increased from 49.8% in 2008 to 60.41% in 2016. To address the national energy security and GHG emission reduction, China has made considerable progress in expanding renewable energy portfolio, especially liquid biofuels. However, under the pressure of high population and vulnerable food security, China's National Development and Reform Commission (NDRC) ruled that bioenergy is only allowed to be produced using non-cereal feedstock. In addition, the energy crops can only be planted on marginal land, which is the land not suitable for growing field crops due to edaphic and/or climatic limitations, and other environmental risks. Although there have been a number of studies about estimating the marginal land for energy plants' cultivation in China, as to the different definition of marginal land and land use data, the results are quite different. Furthermore, even if there is enough marginal land suitable for energy plants' cultivation, economic viability of cultivating energy plants on marginal land is critical. In order to analyze the availability and economic analyses of the marginal land for bioenergy production strategy, firstly, by using of the latest and most authoritative land use data, this study focused on the assessment of marginal land resources and bioenergy potential by planting five species of energy plants including Cassava, Jatropha curcas, Helianthus tuberous L, Pistacia chinensis, Xanthoceras sorbifolia Bunge. The results indicate that there are 289.71 million ha marginal land can be used for these five energy plants' cultivation, which can produce 24.45 million tons bioethanol and 8.77 million tons of biodiesel. Secondly, based on field survey data and literature reviews, we found that, from the farmers

  15. Next steps in determining the overall sustainability of perennial bioenergy crops

    Science.gov (United States)

    Perennial bioenergy crops are being developed and evaluated in the United States to partially offset petroleum transport fuels. Accurate accounting of upstream and downstream greenhouse gas (GHG) emissions is necessary to measure the overall carbon intensity of new biofuel feedstocks. For example, c...

  16. Energy conservation in the industry. Innovators talking; Energiebesparing in de industrie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the industry [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de industrie.

  17. Comparative assessment of national bioenergy strategies and biomass action plans in 12 EU countries. European Best Practice Report. Extended version

    International Nuclear Information System (INIS)

    2009-01-01

    This report is a key output of the EU project 'BAP Driver', an initiative of energy agencies from 8 European key bioenergy nations and the European Biomass Association (AEBIOM). The BAP Driver project aims at identifying ways for improvement of current national policy frameworks for bioenergy in Europe, and at leveraging the process of developing country-specific Biomass Action Plans (BAP). From a strategic perspective, the general approach of this report focuses on four stages, required for setting up national biomass strategies and action plans: Assessment of national biomass resources; Formulation of national bioenergy strategies and biomass action plans; Implementation of national bioenergy policies; Monitoring of national bioenergy markets and policies. Overall the analysis is split into three chapters corresponding to the following logical steps: Chapter B: Country analysis (12 individual country profiles); Chapter C: Benchmark analysis (comparative assessment of 12 countries); Chapter D: Best practice analysis (transnational conclusions across national boundaries)

  18. Comparative assessment of national bioenergy strategies and biomass action plans in 12 EU countries. European Best Practice Report. Executive Summary

    International Nuclear Information System (INIS)

    2009-01-01

    This report is a key output of the EU project 'BAP Driver', an initiative of energy agencies from 8 European key bioenergy nations and the European Biomass Association (AEBIOM). The BAP Driver project aims at identifying ways for improvement of current national policy frameworks for bioenergy in Europe, and at leveraging the process of developing country-specific Biomass Action Plans (BAP). From a strategic perspective, the general approach of this report focuses on four stages, required for setting up national biomass strategies and action plans: Assessment of national biomass resources; Formulation of national bioenergy strategies and biomass action plans; Implementation of national bioenergy policies; Monitoring of national bioenergy markets and policies. Overall the analysis is split into three chapters corresponding to the following logical steps: Chapter B: Country analysis (12 individual country profiles); Chapter C: Benchmark analysis (comparative assessment of 12 countries); Chapter D: Best practice analysis (transnational conclusions across national boundaries)

  19. Watershed scale impacts of bioenergy, landscape changes, and ecosystem response

    Science.gov (United States)

    Chaubey, Indrajeet; Cibin, Raj; Chiang, Li-Chi

    2013-04-01

    loading at watershed outlet were reduced with bioenergy scenarios except for stover removal scenarios with reduction ranging between 2.4% to 30.5%. Based on the simulation results for different bioenergy crop production scenario, we have also developed a multi-level spatial optimization framework (MLSOPT) to optimize production of food and energy crops under various sustainability objective functions. The method works in two levels, first level divides large watershed into small subareas and optimum solutions for individually for these subareas are identified. The second level uses these optimum solutions from the first level to identify watershed scale optimum solutions. The framework is tested with a complex spatial optimization case study designed to maximize crop residue (corn stover) harvest with minimum environmental impacts in a 2000 km2 watershed, located in Indiana, USA. In this presentation, results related to optimize sustainability of bioenergy crops will also be discussed.

  20. The Role of Bioenergy in Enhancing Energy, Food and Ecosystem Sustainability Based on Societal Perceptions and Preferences in Asia

    Directory of Open Access Journals (Sweden)

    Lilibeth A. Acosta

    2016-04-01

    Full Text Available This paper discussed the analysis of the survey on sustainability of bioenergy conducted in the Philippines, India and China. It acquired general perceptions of the people by asking them (a specific questions about their level of familiarity with bioenergy; (b relationship of their work to bioenergy; and (c their opinion on contribution of various feedstock on the economy and impact of bioenergy production on food security. In addition to these questions, we estimated preference weights of various feedstock based on the conjoint choices on bioenergy’s contribution to social stability, social welfare and ecological balance. The estimates revealed significant trade-offs not only among these three dimensions of sustainability but also the relative importance of energy security, food security and ecosystem capacity to other economic, social and environmental objectives. The types of first generation feedstock that are currently used for biofuel production in the respective countries and those that offer alternative household use are perceived as important to the economy and preferred bioenergy feedstock. Based on the results of the study, the preferred role of bioenergy for sustainable development reflects the social and economic concerns in the respective Asian countries, e.g., energy security in China, food security in India, and ecosystem degradation in the Philippines.

  1. Analysis of the Relative Sustainability of Land Devoted to Bioenergy: Comparing Land-Use Alternatives in China

    Directory of Open Access Journals (Sweden)

    Jiashun Huang

    2017-05-01

    Full Text Available When developing land to meet various human needs, conducting assessments of different alternatives regarding their sustainability is critical. Among different alternatives of land-use, devoting land to bioenergy is relatively novel, in high demand, and important for addressing the energy crisis and mitigating carbon emissions. Furthermore, the competition and disputes among limited land-use for bioenergy and the combination of food production and housing are tense. Thus, which alternative of land-use is more sustainable is an important question, yet it is still under-investigated. The main purposes of this study are to investigate the merits and problems of land-use for bioenergy and to compare the relative sustainability of land-use for bioenergy, food production, and housing based on habitants’ perceptions. Multi-criteria analysis is applied to the case study in the context of China, evaluating multiple criteria in economic, environmental, and social dimensions. Therefore, this study presents a comprehensive assessment of different scenarios of land-use designed to be implemented and some implications for optimum land-use policies.

  2. Bioenergy Research Programme, Yearbook 1995. Production of wood fuels; Bioenergian tutkimusohjelma, vuosikirja 1995. Puupolttoaineen tuotantotekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E [ed.

    1997-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Center TEKES. The aim of the Bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The main goal of the wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m{sup 3}). During the year 1995 There were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About ten projects was carried out to promote the wood fuel production from logging residues. Other topics were firewood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. The new machine gives a new logistic solution resulting in high productivity and reasonable operating costs. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 m{sup 3} of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved

  3. Bioenergy Research Programme, Yearbook 1995. Production of wood fuels; Bioenergian tutkimusohjelma, vuosikirja 1995. Puupolttoaineen tuotantotekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [ed.

    1996-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Center TEKES. The aim of the Bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The main goal of the wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m{sup 3}). During the year 1995 There were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About ten projects was carried out to promote the wood fuel production from logging residues. Other topics were firewood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. The new machine gives a new logistic solution resulting in high productivity and reasonable operating costs. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 m{sup 3} of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved

  4. World Bioenergy 2006. Proceedings

    International Nuclear Information System (INIS)

    2006-07-01

    The conference and exhibition had over 1000 participants from 60 different countries. Subject areas covered by the conference were: Conversion, CHP; Innovative Applications; Resources; Logistics and Distribution; Agricultural Energy; Transport Fuels; Gasification; Steering Instruments; Market and Policy; Fuel Production including Refining; Bioenergy in a Sustainable Society. 75 contributions have been separately indexed for the database

  5. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  6. Small-scale bioenergy projects in rural China: Lessons to be learnt

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.; Zhang, L.

    2008-01-01

    Large amounts of small-scale bioenergy projects were carried out in China's rural areas in light of its national renewable energy policies. These projects applied pyrolysis gasification as the main technology, which turns biomass waste at low costs into biogas. This paper selects seven bioenergy

  7. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Barriers for the introduction of bioenergy in the Netherlands

    International Nuclear Information System (INIS)

    Gerlagh, T.; Groenendaal, B.; Van Ree, R.; Dinkelbach, L.; Van Doorn, J.; Hemmes, K.

    2000-01-01

    The use of biomass for energy in the Netherlands is still limited despite the political incentives to make bio-energy a major source of renewable energy. The hesitation of many stake-holders is due to the limited insight into the potential of biomass in the Netherlands and the presence of numerous other barriers. Availability of biomass, emission regulation and waste treatment regulations are considered important barriers. Analyses of their current state show that these barriers are broadly recognised and possibilities to decrease their impact are present. Some barriers with a minor influence so far will be of increasing importance and could be a threat to the development of bio-energy in future. These are the fast liberalising of the energy market and sustainable energy market, the competition with other renewables and the unclear status of the current technology available. Future research should focus on the possibilities to overcome these new barriers. 5 refs

  9. Life Cycle Assessment of Bioenergy from Lignocellulosic Crops Cultivated on Marginal Land in Europe

    Science.gov (United States)

    Rettenmaier, Nils; Schmidt, Tobias; Gärtner, Sven; Reinhardt, Guido

    2017-04-01

    Population growth and changing diets due to economic development lead to an additional demand for land for food and feed production. Slowly but surely turning into a mass market, also the cultivation of non-food biomass crops for fibre (bio-based products) and fuel (biofuels and bioenergy) is increasingly contributing to the pressure on global agricultural land. As a consequence, the already prevailing competition for land might even intensify over the next decades. Against this background, the possibilities of shifting the cultivation of non-food biomass crops to so-called 'marginal lands' are investigated. The EC-funded project 'Sustainable exploitation of biomass for bioenergy from marginal lands in Europe' (SEEMLA) aims at the establishment of suitable innovative land-use strategies for a sustainable production of bioenergy from lignocellulosic crops on marginal lands while improving general ecosystem services. For a complete understanding of the environmental benefits and drawbacks of the envisioned cultivation of bioenergy crops on marginal land, life cycle assessments (LCA) have proven to be a suitable and valuable tool. Thus, embedded into a comprehensive sustainability assessment, a screening LCA is carried out for the entire life cycles of the bioenergy carriers researched in SEEMLA. Investigated systems, on the one hand, include the specific field trials carried out by the SEEMLA partners in Ukraine, Greece and Germany. On the other hand, generic scenarios are investigated in order to derive reliable general statements on the environmental impacts of bioenergy from marginal lands in Europe. Investigated crops include woody and herbaceous species such as black locust, poplar, pine, willow and Miscanthus. Conversion technologies cover the use in a domestic or a district heating plant, power plant, CHP as well as the production of Fischer-Tropsch diesel (FT diesel) and lignocellulosic ethanol. Environmental impacts are compared to conventional reference

  10. Mathematical algorithm to transform digital biomass distribution maps into linear programming networks in order to optimize bio-energy delivery chains

    NARCIS (Netherlands)

    Velazquez-Marti, B.; Annevelink, E.

    2008-01-01

    Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source

  11. Bioenergy systems

    International Nuclear Information System (INIS)

    Mitchell, C.P.

    1997-01-01

    The objective of this paper is to demonstrate that a bioenergy system has to be considered as an integrated process in which each stage or step interacts with other steps in the overall process. There are a number of stages in the supply and conversion of woody biomass for energy. Each step in the chain has implications for the next step and for overall system efficiency. The resource can take many forms and will have varying physical and chemical characteristics which will influence the efficiency and cost of conversion. The point in the supply chain at which size and moisture content is reduced and the manner in which it is done is influential in determining feedstock delivered cost and overall system costs. To illustrate the interactions within the overall system, the influence of the nature, size and moisture content of delivered feedstocks on costs of generating electricity via thermal conversion processes is examined using a model developed to investigate the inter-relationships between the stages in the supply chain. (author)

  12. Global impacts of U.S. bioenergy production and policy: A general equilibrium perspective

    Science.gov (United States)

    Evans, Samuel Garner

    The conversion of biomass to energy represents a promising pathway forward in efforts to reduce fossil fuel use in the transportation and electricity sectors. In addition to potential benefits, such as greenhouse gas reductions and increased energy security, bioenergy production also presents a unique set of challenges. These challenges include tradeoffs between food and fuel production, distortions in energy markets, and terrestrial emissions associated with changing land-use patterns. Each of these challenges arises from market-mediated responses to bioenergy production, and are therefore largely economic in nature. This dissertation directly addresses these opportunities and challenges by evaluating the economic impacts of U.S. bioenergy production and policy, focusing on both existing and future biomass-to-energy pathways. The analysis approaches the issue from a global, economy-wide perspective, reflecting two important facts. First, that large-scale bioenergy production connects multiple sectors of the economy due to the use of agricultural land resources for biomass production, and competition with fossil fuels in energy markets. Second, markets for both agricultural and energy commodities are highly integrated globally, causing domestic policies to have international effects. The reader can think of this work as being comprised of three parts. Part I provides context through an extensive review of the literature on the market-mediated effects of conventional biofuel production (Chapter 2) and develops a general equilibrium modeling framework for assessing the extent to which these phenomenon present a challenge for future bioenergy pathways (Chapter 3). Part II (Chapter 4) explores the economic impacts of the lignocellulosic biofuel production targets set in the U.S. Renewable Fuel Standard on global agricultural and energy commodity markets. Part III (Chapter 5) extends the analysis to consider potential inefficiencies associated with policy

  13. Environmental sustainability assessment of fruit cultivation and processing using fruit and cocoa residues for bioenergy and compost. Case study from Ghana

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne

    2016-01-01

    and electricity production using farming and processing residues and by recycling of nutrients and carbon to soil. Cocoa shells are used as a co-substrate in the biogas production. Estimating the environmental impact of cocoa shell residues exposes the multifunctionality issue, continuously debated in ESA......, particularly concerning bioenergy production. We compare the use of allocation of cocoa production impacts and system expansion that includes cocoa production as possible methods to manage multifunctionality of inputs. Inassessments of residue-based production, we recommend using the latter method. Applying......Agro-industrial businesses often have easy access to agricultural and processing residues with whichthey may reduce costs and pollution by integrating their production with bioenergy production. In regionswith unreliable power supply, on-site electricity generation is a means to secure stable...

  14. Estimating bioenergy potentials of common African agricultural residues

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Kádár, Zsófia; Schmidt, Jens Ejbye

    , North America or Brazil. For that reason, it is difficult to estimate bioenergy potentials in the African region. As a part of an on‐going research collaboration investigating production of 2g biofuels in Ghana, this study have analysed 13 common African agricultural residues: yam peelings, cassava...... peelings, cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches (EFB). This was done to establish detailed compositional mass balances, enabling estimations of accurate bioenergy...

  15. Techno-economic analysis of bioenergy systems; Bioenergiasysteemien teknistaloudellinen analyysi. IEA Bioenergy Agreement Techno-economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y.

    1995-12-31

    The objectives of the IEA Bioenergy Technoeconomic Analysis Activity are: To promote development of thermochemical biomass conversion methods by carrying out selected site specific feasibility studies in participating countries. Both agricultural and woody biomasses will be converted either into electricity or boiler fuels. To compare advanced technologies to commercial alternatives based on techno-economic basis to establish future development needs. To facilitate information exchange between participants on relevant basic process issues. Five countries (Finland, Canada, USA, Norway, Austria) are participating to the Activity. Initially two feasibility studies are planned for each country. Each study has three common elements: site specific, technical, and economic data. The site specific cases are described below in short. Products in the cases are electricity, heat and fuel oil. Total of two cases per country are planned

  16. Techno-economic analysis of bioenergy systems; Bioenergiasysteemien teknistaloudellinen analyysi. IEA Bioenergy Agreement Techno-economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y

    1996-12-31

    The objectives of the IEA Bioenergy Technoeconomic Analysis Activity are: To promote development of thermochemical biomass conversion methods by carrying out selected site specific feasibility studies in participating countries. Both agricultural and woody biomasses will be converted either into electricity or boiler fuels. To compare advanced technologies to commercial alternatives based on techno-economic basis to establish future development needs. To facilitate information exchange between participants on relevant basic process issues. Five countries (Finland, Canada, USA, Norway, Austria) are participating to the Activity. Initially two feasibility studies are planned for each country. Each study has three common elements: site specific, technical, and economic data. The site specific cases are described below in short. Products in the cases are electricity, heat and fuel oil. Total of two cases per country are planned

  17. Past, present, and future industrial biotechnology in China.

    Science.gov (United States)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    2010-01-01

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  18. Synergies between agriculture and bioenergy in Latin American countries: A circular economy strategy for bioenergy production in Ecuador.

    Science.gov (United States)

    Vega-Quezada, Cristhian; Blanco, María; Romero, Hugo

    2017-10-25

    This study quantifies the synergies between agriculture and bioenergy considering biodiesel production as part of a set of systemic initiatives. We present a case study in Ecuador taking into account the recent government measures aimed at developing the bioenergy sector. Four scenarios have been evaluated through a newly designed systemic scheme of circular-economy initiatives. These scenarios encompass three production pathways covering three energy crops: palm oil (PO), microalgae in open ponds (M1) and microalgae in laminar photobioreactors (M2). We have applied Benefit-Cost Analysis (BCA) methodology considering the Net Present Value (NPV) and the Benefit-Cost Ratio (BCR) as the main evaluation criteria. In terms of private investment, biodiesel production from PO is more attractive than from M2. However, regarding efficiency and effectiveness of public funds, M2 is superior to PO because the public BCR and NPV are higher, and the pressure on agricultural land is lower. Moreover, M2 as part of a systemic approach presents a better carbon balance. These findings show that, under a systemic approach based on circular economy, strategies like the one analyzed in this study are economically feasible and may have a promising future. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A systematic review of bioenergy life cycle assessments

    International Nuclear Information System (INIS)

    Muench, Stefan; Guenther, Edeltraud

    2013-01-01

    Highlights: • We conducted a systematic literature review of bioenergy LCAs. • We provide a detailed overview of GWP, AP, and EP for biomass electricity and heat. • We discuss methodological choices that can lead to variations in results. • Relevant choices are functional unit, allocation method, system boundary, and carbon modelling. - Abstract: On a global scale, bioenergy is highly relevant to renewable energy options. Unlike fossil fuels, bioenergy can be carbon neutral and plays an important role in the reduction of greenhouse gas emissions. Biomass electricity and heat contribute 90% of total final biomass energy consumption, and many reviews of biofuel Life Cycle Assessments (LCAs) have been published. However, only a small number of these reviews are concerned with electricity and heat generation from biomass, and these reviews focus on only a few impact categories. No review of biomass electricity and heat LCAs included a detailed quantitative assessment. The failure to consider heat generation, the insufficient consideration of impact categories, and the missing quantitative overview in bioenergy LCA reviews constitute research gaps. The primary goal of the present review was to give an overview of the environmental impact of biomass electricity and heat. A systematic review was chosen as the research method to achieve a comprehensive and minimally biased overview of biomass electricity and heat LCAs. We conducted a quantitative analysis of the environmental impact of biomass electricity and heat. There is a significant variability in results of biomass electricity and heat LCAs. Assumptions regarding the bioenergy system and methodological choices are likely reasons for extreme values. The secondary goal of this review is to discuss influencing methodological choices. No general consensus has been reached regarding the optimal functional unit, the ideal allocation of environmental impact between co-products, the definition of the system boundary

  20. Market survey Czech Republic. Bio-energy

    International Nuclear Information System (INIS)

    2008-01-01

    Basic characteristics of the market for bioenergy (biomass, biogas and biofuels) in the Czech Republic and consequences for business environment are summarized, based on a SWOT analysis. The Czech biomass market is still developing and is segmented and disintegrated to many regional or sector markets where also prices of biomass differ significantly and could be affected by dominant players. There were several attempts to establish a kind of biomass exchange, but were unsuccessful. The biomass trade is done usually on bilateral basis but without clear long-term agreements on contracts which would secure stable supply and prices

  1. Prospects for Hybrid Breeding in Bioenergy Grasses

    DEFF Research Database (Denmark)

    Aguirre, Andrea Arias; Studer, Bruno; Frei, Ursula

    2012-01-01

    , we address crucial topics to implement hybrid breeding, such as the availability and development of heterotic groups, as well as biological mechanisms for hybridization control such as self-incompatibility (SI) and male sterility (MS). Finally, we present potential hybrid breeding schemes based on SI...... of different hybrid breeding schemes to optimally exploit heterosis for biomass yield in perennial ryegrass (Lolium perenne L.) and switchgrass (Panicum virgatum), two perennial model grass species for bioenergy production. Starting with a careful evaluation of current population and synthetic breeding methods...

  2. The South's outlook for sustainable forest bioenergy and biofuels production

    Science.gov (United States)

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  3. Best practices guidelines for managing water in bioenergy feedstock production

    Science.gov (United States)

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  4. Analysis of the potential production and the development of bioenergy in the province of Mendoza - Bio-fuels and biomass - Using geographic information systems

    Energy Technology Data Exchange (ETDEWEB)

    Flores Marco, Noelia; Hilbert, Jorge Antonio [Instituto de Ingenieria Rural, INTA Las Cabanas y Los Reseros s/n, CP: 1712 Castelar, Buenos Aires (Argentina); Silva Colomer, Jorge [INTA EEA Junin Mendoza, Carril Isidoro Busquets s/n CP: 5572 (Argentina); Anschau, Renee Alicia; Carballo, Stella [Instituto de Clima y Agua, INTA. Las Cabanas y Los Reseros s/n, CP:1712 Castelar, Buenos Aires (Argentina)

    2010-06-15

    In this work, the partial results of the potential production of energy, starting from the biomass and the development of the crops, directed to the production of bio-fuels (Colza and Topinamur) in the North irrigation oasis of Mendoza, Argentina within the National Program of Bio-energy developed by INTA is presented. For the evaluation of the bio-energetic potential, derived from the biomass, the WISDOM methodology developed by FAO and implemented by INTA in Argentina was applied with the collaboration of national and provincial governmental entities that contribute local information The study of the potential production and the development of the bio-energetic crops have been carried out with the advising and participation of the experts of INTA of the studied crops. The province of Mendoza has semi-deserted agro-climatic characteristics. The type of soil and type of weather allows the production of great quality fruits and vegetables in the irrigated areas. The four great currents of water conform three oasis; Northeast, Center and South, which occupy the 3.67% of the surface of Mendoza. Today, Mendoza has 267,889 irrigated hectares, but the surface that was farmed by irrigation was near to the 400,000 ha. The climate contingencies, froze and hailstorm precipitations, plus the price instability cause great losses in the productive sector, taking it to the forlornness of the exploitations. The crop setting of these forlornness lands with crops directed to the production of bio-fuels and the utilization of the biomass coming from the agriculture activities and the agro industry (pruning of fruit trees, refuses of olive and vine, remnants of the peach industry, etc.) could assist the access to the energy in the rural areas, stimulating the economical improvement and the development in these communities. (author)

  5. Analysis of the potential production and the development of bioenergy in the province of Mendoza - Bio-fuels and biomass - Using geographic information systems

    International Nuclear Information System (INIS)

    Flores Marco, Noelia; Hilbert, Jorge Antonio; Silva Colomer, Jorge; Anschau, Renee Alicia; Carballo, Stella

    2010-01-01

    In this work, the partial results of the potential production of energy, starting from the biomass and the development of the crops, directed to the production of bio-fuels (Colza and Topinamur) in the North irrigation oasis of Mendoza, Argentina within the National Program of Bio-energy developed by INTA is presented. For the evaluation of the bio-energetic potential, derived from the biomass, the WISDOM methodology developed by FAO and implemented by INTA in Argentina was applied with the collaboration of national and provincial governmental entities that contribute local information The study of the potential production and the development of the bio-energetic crops have been carried out with the advising and participation of the experts of INTA of the studied crops. The province of Mendoza has semi-deserted agro-climatic characteristics. The type of soil and type of weather allows the production of great quality fruits and vegetables in the irrigated areas. The four great currents of water conform three oasis; Northeast, Center and South, which occupy the 3.67% of the surface of Mendoza. Today, Mendoza has 267,889 irrigated hectares, but the surface that was farmed by irrigation was near to the 400,000 ha. The climate contingencies, froze and hailstorm precipitations, plus the price instability cause great losses in the productive sector, taking it to the forlornness of the exploitations. The crop setting of these forlornness lands with crops directed to the production of bio-fuels and the utilization of the biomass coming from the agriculture activities and the agro industry (pruning of fruit trees, refuses of olive and vine, remnants of the peach industry, etc.) could assist the access to the energy in the rural areas, stimulating the economical improvement and the development in these communities. (author)

  6. Sustainability of bioenergy chains. The result is in the details

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, J.M.C.

    2009-05-13

    This thesis investigated how the feasibility and sustainability of large-scale bioenergy production, supply and use for local use or trade can be determined ex ante on a regional level, taking into account the complexities and variabilities of the underlying factors like food demand and land use. Recently, governments, NGOs, companies and international organizations (e.g. Dutch government, Solidaridad, Shell or FAO) have taken initiatives to guarantee the sustainable production and use of biomass. Uncertainties on the feasibility, implementation and costs of international biomass certification systems and the compliance with international laws and agreements have to be resolved. A developed software tool shows that it is possible to allow users from various regions to use one methodology and tool to calculate the GHG balances and cost-effectiveness of biomass energy systems. Core methodological issues are accommodated in the tool. One of the case studies demonstrates e.g. that the allocation procedure should be carefully defined as is shown by the variation in results, which is 35 to 50 kg CO2 eq./GJ delivered in GHG emissions. The technical potentials and cost-supply curves of bioenergy are assessed for Central and Eastern European Countries (CEEC) on a regional level. The more favourable scenarios to 2030 show a highest potential of 11.7 EJ. In most CEEC, bulk of the biomass potential can be produced at costs below 2 euro/GJ. The cost performance of energy carriers supplied from the CEEC is assessed for a set of bioenergy chains. Ethanol can be produced at 12 to 21 euro/GJ if the biomass conversion is performed at selected destinations in Western Europe or at 15 to 18 euro/GJ if biomass to ethanol conversion takes place where the biomass is produced. A case in Argentina shows the potential and economic feasibility of large-scale bioenergy production from soybeans and switchgrass, cultivated in La Pampa province. For the various scenarios to 2030, biodiesel from

  7. Review on Bamboo Utilization as Biocomposites, Pulp and Bioenergy

    Science.gov (United States)

    Yusuf, Sulaeman; Syamani, F. A.; Fatriasari, W.; Subyakto

    2018-03-01

    One of potential non wood bioresources utilized in industrial application is bamboos. Bamboos are include in graminae family which have high biomass productivity, easy and rapid production, wide avability and high holocellulose content. Indonesia has a huge potential of bamboos, more than 162 bamboo species are found however only some of them are planted that have a high economic value. Bamboos have some advantages such as can be harvested at 3 years, straight culm, high strength, easy to be processed, and relatively cheap. Research Center for Biomaterials has developed utilization of bamboo culm for ply bamboo product as alternative of plywood since 1995, using gombong bamboo, tali bamboo, sembilang bamboo, andong bamboo with PF resin as adhesive. Other biocomposite products from bamboos include particle board, cement board and polymer-bamboo fiber composites. In term of processing technique and final product quality, bamboo composites from ply bamboo are the most prospectable material to be utilized in industrial application. Yellow bamboo and betung bamboo have also been developed as pulp and paper. Biopulping using soda and kraft pulping after biological pretreatment using white rot fungi to remove lignin was used as pulping method in this conversion. Biokraft pulping with Trametes versicolor for 45 days with inoculum loading of 10% resulted better pulp quality compared to the other fungi. Betung bamboo had good morphological characteristics and chemical component content to be converted into bioenergy such as bioethanol. Several pretreatment methods have been developed in order to result high sugar yield. Microwave assisted acid hydrolysis was preferedin producing higher yield from the pretreated bamboo compared to enzymatic hydrolysis. By using this method, the bamboo pretreated by biological-microwave pretreatment results higher improvement to increase sugar yield.

  8. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.

    Science.gov (United States)

    El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D

    2018-06-04

    Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.

  9. Bioenergy in Germany. Facts and figures. Solid fuels, biofuels, biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-11

    The brochure under consideration gives statistical information about the bioenergy in Germany: Renewable energies (bioenergy) and solid fuels. For example, the structure of the primary energy consumption in the year 2010, the energy supply from renewables, gross electricity generation, the total sales of renewables, growth in number of installed pellet boilers, wood fuel equivalent prices by energy value or biofuels in comparison with heating oil are presented.

  10. Mathematical algorithm to relate digital maps of distribution of biomass with algorithms of linear programming to optimize bio-energy delivery chains

    NARCIS (Netherlands)

    Velazquez-Marti, B.; Annevelink, E.

    2008-01-01

    Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source

  11. Bioenergy costs and potentials with special attention to implications for the land system

    Science.gov (United States)

    Popp, A.; Lotze-Campen, H.; Dietrich, J.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.

    2011-12-01

    In the coming decades, an increasing competition for global land and water resources can be expected, due to rising demand for agricultural products, goals of nature conservation, and changing production conditions due to climate change. Especially biomass from cellulosic bioenergy crops, such as Miscanthus or poplar, is being proposed to play a substantial role in future energy systems if climate policy aims at stabilizing greenhouse gas (GHG) concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements, land availability for biomass plantations, and implications for the land system. In order to explore the cost-effective contribution of bioenergy to a low carbon transition with special attention to implications for the land system, we present a modeling framework with detailed biophysical and economic representation of the land and energy sector: We have linked the global dynamic vegetation and water balance model LPJmL (Bondeau et al. 2007, Rost et al. 2008), the global land and water use model MAgPIE (Lotze-Campen et al. 2008, Popp et al. 2010), and the global energy-economy-climate model ReMIND (Leimbach et al. 2009). In this modeling framework LPJmL supplies spatially explicit (0.5° resolution) agricultural yields as well as carbon and water stocks and fluxes. Based on this biophysical input MAgPIE delivers cost-optimized land use patterns (0.5° resolution), associated GHG emissions and rates of future yield increases in agricultural production. Moreover, shadow prices are calculated for irrigation water (as an indicator for water scarcity), food commodities, and bioenergy (as an indicator for changes in production costs) under different land use constraints such as forest conservation for climate change mitigation and as a contribution to biodiversity conservation. The energy-economy-climate model ReMIND generates the demand for

  12. Opponent note no. 5b:: Support to Organic Farming and Bio-energy as rural development drivers

    NARCIS (Netherlands)

    Reinhard, A.J.

    2006-01-01

    Given the current competitive strength of North West European agriculture, organic farming and bio-energy production will not expand without subsidies. Technical research shows that high tech agriculture can be viable in the future if it is both efficient with respect to the environment and with

  13. Biochar-based bioenergy and its environmental impact in Northwestern Ontario Canada:A review

    Institute of Scientific and Technical Information of China (English)

    Krish Homagain; Chander Shahi; Nancy Luckai; Mahadev Sharma

    2014-01-01

    Biochar is normally produced as a by-product of bioenergy. However, if biochar is produced as a co-product with bioenergy from sustainably managed forests and used for soil amendment, it could pro-vide a carbon neutral or even carbon negative solution for current envi-ronmental degradation problems. In this paper, we present a comprehen-sive review of biochar production as a co-product of bioenergy and its implications. We focus on biochar production with reference to biomass availability and sustainability and on biochar utilization for its soil amendment and greenhouse gas emissions reduction properties. Past studies confirm that northwestern Ontario has a sustainable and sufficient supply of biomass feedstock that can be used to produce bioenergy, with biochar as a co-product that can replace fossil fuel consumption, increase soil productivity and sequester carbon in the long run. For the next step, we recommend that comprehensive life cycle assessment of bio-char-based bioenergy production, from raw material collection to biochar application, with an extensive economic assessment is necessary for making this technology commercially viable in northwestern Ontario.

  14. Switching to switchgrass: Pathways and consequences of bioenergy switchgrass entering the Midwestern landscape

    Science.gov (United States)

    Krohn, Brian

    The US has the ambitious goal of producing 60 billion liters of cellulosic biofuel by 2022. Researchers and US Federal Agencies have identified switchgrass (Panicum virgatum L.) as a potential feedstock for next generation biofuels to help meet this goal because of its excellent agronomic and environmental characteristics. With national policy supporting the development of a switchgrass to bioenergy industry two key questions arise: 1) Under what economic and political conditions will switchgrass enter the landscape? 2) Where on the landscape will switchgrass be cultivated given varying economic and political conditions? The goal of this dissertation is to answer these questions by analyzing the adoption of switchgrass across the upper Midwestern US at a high spatial resolution (30m) under varying economic conditions. In the first chapter, I model switchgrass yields at a high resolution and find considerable variability in switchgrass yields across space, scale, time, and nitrogen management. Then in the second chapter, I use the spatial results from chapter one to challenge the assumption that low-input (unmanaged) switchgrass systems cannot compete economically with high-input (managed) switchgrass systems. Finally, in the third chapter, I evaluate the economic and land quality conditions required for switchgrass to be competitive with a corn/soy rotation. I find that switchgrass can displace low-yielding corn/soy on environmentally sensitive land but, to be competitive, it requires economic support through payments for ecosystem services equal to 360 ha-1. With a total expenditure of 4.3 billion annually for ecosystem services, switchgrass could displace corn/soy on 12.2 million hectares of environmentally sensitive land and increase ethanol production above that from the existing corn by 20 billion liters. Thus, ecosystem services can be an effective means of meeting both bioenergy and environmental goals. Taking the three chapters in aggregate it is apparent

  15. Bioenergy in the new Finnish energy strategy

    International Nuclear Information System (INIS)

    Vilkamo, S.

    1997-01-01

    As discussed in this conference paper, the goal of Finnish energy strategy is to bring the growth of the total energy consumption to a halt in the next 10-15 years and to speed up the restructuring of the energy economy without hampering economic growth. By 2010 the emission of greenhouse gases should be down to the 1990 level. To reach the goals, various means are available: taxation, subsidies, energy efficiency measures, replacing fossil sources with renewable and low-emission energy sources. By 1999 Finland should be connected to the European gas network. The use of bioenergy, wood fuels and wind power is encouraged. Peat is a competitive fuel in areas where it is locally available. To cut down on CO 2 emission it is necessary to increase the use of bioenergy, and by 2025 the use of wood will have increased considerably from the present level. At present, the wood reserves increase by one percent per year. Public funds will be set aside for energy wood research, for product development and marketing. Peat is an important indigenous energy resource, accounting for about 5% of all energy use. The Government is committed to closely follow up the implementation of its energy strategy. 1 ref., 3 figs

  16. Bioenergy production and forest landscape change in the southeastern United States

    Science.gov (United States)

    Costanza, Jennifer K.; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime A.

    2016-01-01

    Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose-grown woody crops grown on marginal lands. Results reveal trade-offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business-as-usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose-grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose-grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land-use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for

  17. Ethical and legal challenges in bioenergy governance: Coping with value disagreement and regulatory complexity

    International Nuclear Information System (INIS)

    Gamborg, Christian; Anker, Helle Tegner; Sandøe, Peter

    2014-01-01

    The article focuses on the interplay between two factors giving rise to friction in bioenergy governance: profound value disagreements (e.g. the prioritizing of carbon concerns like worries over GHG emissions savings over non-carbon related concerns) and regulatory complexity (in terms of regulatory measures and options). We present ethical and legal analyses of the current stalemate on bioenergy governance in the EU using two illustrative cases: liquid biofuels for transport and solid biomass-based bioenergy. The two cases disclose some similarities between these two factors, but the remaining differences may partly explain, or justify, contrasting forms of governance. While there seems to be no easy way in which the EU and national governments can deal with the multiple sustainability issues raised by bioenergy, it is argued that failure to deal explicitly with the underlying value disagreements, or to make apparent the regulatory complexity, clouds the issue of how to move forward with governance of bioenergy. We suggest that governance should be shaped with greater focus on the role of value disagreements and regulatory complexity. There is a need for more openness and transparency about such factors, and about the inherent trade-offs in bioenergy governance. - Highlights: • Ethical and legal challenges in governance of liquid biofuels and wood pellets. • EU sustainability criteria legal and ethical analysis—EU bioenergy policy options. • Analysis of interplay between carbon and non-carbon concerns and regulatory options. • Governance must cope with value disagreement and regulatory complexity

  18. Correcting a fundamental error in greenhouse gas accounting related to bioenergy

    International Nuclear Information System (INIS)

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K.; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; Hove, Sybille van den

    2012-01-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.

  19. Correcting a fundamental error in greenhouse gas accounting related to bioenergy.

    Science.gov (United States)

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-06-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of 'additional biomass' - biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy - can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.

  20. Market survey Slovak Republic. Bio-energy

    International Nuclear Information System (INIS)

    2008-01-01

    The study presents an overview of Slovakian bioenergy market, its current state and future prospects in terms of size and potentials. In the opening, the basic structure of Slovakian energy sources is presented from IEA energy statistics, then a list of programmes and valid legislation relating to RES follow. Figures from several sources show possible potential accomplishable in biomass utilisation in Slovakia. Some most promising areas containing interesting amounts of unutilised biomass are quoted. Chapter 4 contains overview of programmes supporting the use of RES, examples of already realised projects and some planned projects. In Chapter 5 there is a list of main stakeholders in the bioenergy sector, description of legal requirements and procedures necessary for starting a business in Slovakia and some ways how to promote bioenergy business in Slovakia. As the most promising opportunities identified in Slovakia we can consider projects of biomass utilisation in the form of installation of boilers and creation of distribution channels enabling steady supply of biomass for competitive prices. A lot of waste and other residues from woodworking industries or forestry is available for this purpose. Dutch companies should make maximum use of their technological know-how and try to offer equipment for biomass utilisation. Biogas is produced only on a very limited scale. The reason for that lies in relatively high initial costs that cannot be covered from farming companies and low rentability of realised projects. Still, projects solving disposal of agricultural waste on the one hand and energy production on the other are worth paying attention to. Success stories from the Netherlands could serve as a source of inspiration but doing of thoroughgoing analysis preceding investment itself is of necessity in order to cope with hidden risks and uncertainties. In any case, Dutch companies can offer technological equipment to Slovakian buyers without risks connected with

  1. Robust and sustainable bioenergy: Biomass in the future Danish energy system; Robust og baeredygtig bioenergi: Biomasse i fremtidens danske energisystem

    Energy Technology Data Exchange (ETDEWEB)

    Skoett, T.

    2012-09-15

    The publication is a collection of articles about new, exciting technologies for the production of bioenergy, which received support from Danish research programmes. The green technologies must be sustainable so that future generations' opportunities for bioenergy use is not restricted, and the solutions must be robust in relation to security of supply, costs and energy economy. In this context, research plays a crucial role. Research is especially carried out within the use of residues as bio-waste, straw, wood and manure for energy purposes, but there are also projects on energy crops, as well as research into how algae from the sea can increase the production of biomass. (LN)

  2. Household anaerobic digester for bioenergy production in developing countries: opportunities and challenges.

    Science.gov (United States)

    Surendra, K C; Takara, Devin; Jasinski, Jonas; Khanal, Samir Kumar

    2013-01-01

    Access to clean and affordable energy is vital for advancing development objectives, particularly in rural areas of developing countries. There are some three billion people in these regions, however, who lack consistent access to energy and rely on traditional solid fuels such as firewood, cattle manure, and crop residues for meeting cooking and heating needs. Excessive use of such highly polluting resources creates serious environmental, social and public health issues. In this context, household digesters (which convert readily available feedstocks such as cattle manure, human excreta, and crop residues into biogas) have the potential to play a significant role in supplying methane as a clean, renewable energy resource for remote geographies. In addition to bioenergy production, the slurry generated from anaerobic digestion is rich in nutrients and can improve the physical, chemical, and biological attributes of soil when applied to agricultural land. This type of approach has the potential to significantly reduce greenhouse gas emissions while simultaneously improving the quality of life. Despite a long history of research and innovation for the development and optimization of household digesters, little is known and has been reported for the application of these systems in decentralized communities. The primary purpose of this paper seeks to review the dearth of literature pertaining to small-scale anaerobic digesters in remote geographies and in regions where much of the world's population reside.

  3. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

    Science.gov (United States)

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L.; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-01-01

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.— Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.— Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences

  4. Harmonising bioenergy resource potentials-Methodological lessons from review of state of the art bioenergy potential assessments

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Published estimates of the potential of bioenergy vary widely, mainly due to the heterogeneity of methodologies, assumptions and datasets employed. These discrepancies are confusing for policy and it is thus important to have scientific clarity on the basis of the assessment outcomes. Such clear

  5. Harmonising bioenergy resource potentials - Methodological lessons from review of state of the art bioenergy potential asessments

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Published estimates of the potential of bioenergy vary widely, mainly due to the heterogeneity of methodologies, assumptions and datasets employed. These discrepancies are confusing for policy and it is thus important to have scientific clarity on the basis of the assessment outcomes. Such clear

  6. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    Science.gov (United States)

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime A.; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals

  7. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    Science.gov (United States)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  8. Chapter 10: Research and Deployment of Renewable Bioenergy Production from Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Glasser, Melodie [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-01-01

    Recent progress towards the implementation of renewable bioenergy production has included microalgae, which have potential to significantly contribute to a viable future bioeconomy. In a current challenging energy landscape, where an increased demand for renewable fuels is projected and accompanied by plummeting fossil fuels' prices, economical production of algae-based fuels becomes more challenging. However, in the context of mitigating carbon emissions with the potential of algae to assimilate large quantities of CO2, there is a route to drive carbon sequestration and utilization to support a sustainable and secure global energy future. This chapter places international energy policy in the context of the current and projected energy landscape. The contribution that algae can make, is summarized as both a conceptual contribution as well as an overview of the commercial infrastructure installed globally. Some of the major recent developments and crucial technology innovations are the results of global government support for the development of algae-based bioenergy, biofuels and bioproduct applications, which have been awarded as public private partnerships and are summarized in this chapter.

  9. Gasification potential for process industries in Languedoc-Roussillon

    International Nuclear Information System (INIS)

    2013-06-01

    This study, requested by the French 'BioenergieSud' network, aims at identifying the potentialities of gasification in Languedoc-Roussillon region (France). The goals are: evaluating the degree of information of industrialists with respect to gasification, their present day perception and the different obstacles and levers for the adoption of this technology; estimating the potential market of gasification units in this area through the study of the existing industrial actors; better evaluating the energy needs and expectations of the industrialists from different sectors in order to develop suitable gasification solutions

  10. Metaheuristic Algorithms Applied to Bioenergy Supply Chain Problems: Theory, Review, Challenges, and Future

    Directory of Open Access Journals (Sweden)

    Krystel K. Castillo-Villar

    2014-11-01

    Full Text Available Bioenergy is a new source of energy that accounts for a substantial portion of the renewable energy production in many countries. The production of bioenergy is expected to increase due to its unique advantages, such as no harmful emissions and abundance. Supply-related problems are the main obstacles precluding the increase of use of biomass (which is bulky and has low energy density to produce bioenergy. To overcome this challenge, large-scale optimization models are needed to be solved to enable decision makers to plan, design, and manage bioenergy supply chains. Therefore, the use of effective optimization approaches is of great importance. The traditional mathematical methods (such as linear, integer, and mixed-integer programming frequently fail to find optimal solutions for non-convex and/or large-scale models whereas metaheuristics are efficient approaches for finding near-optimal solutions that use less computational resources. This paper presents a comprehensive review by studying and analyzing the application of metaheuristics to solve bioenergy supply chain models as well as the exclusive challenges of the mathematical problems applied in the bioenergy supply chain field. The reviewed metaheuristics include: (1 population approaches, such as ant colony optimization (ACO, the genetic algorithm (GA, particle swarm optimization (PSO, and bee colony algorithm (BCA; and (2 trajectory approaches, such as the tabu search (TS and simulated annealing (SA. Based on the outcomes of this literature review, the integrated design and planning of bioenergy supply chains problem has been solved primarily by implementing the GA. The production process optimization was addressed primarily by using both the GA and PSO. The supply chain network design problem was treated by utilizing the GA and ACO. The truck and task scheduling problem was solved using the SA and the TS, where the trajectory-based methods proved to outperform the population

  11. Economics of herbaceous bioenergy crops for electricity generation: Implications for greenhouse gas mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, M.; Onal, H.; Dhungana, B.; Wander, M. [University of Illinois Urbana Champaign, Urbana, IL (United States)

    2011-04-15

    This paper examines the optimal land allocation for two perennial crops, switchgrass and miscanthus that can be co-fired with coal for electricity generation. Detailed spatial data at county level is used to determine the costs of producing and transporting biomass to power plants in Illinois over a 15-year period. A supply curve for bioenergy is generated at various levels of bioenergy subsidies and the implications of production for farm income and greenhouse gas (GHG) emissions are analyzed. GHG emissions are estimated using lifecycle analysis and include the soil carbon sequestered by perennial grasses and the carbon emissions displaced by these grasses due to both conversion of land from row crops and co-firing the grasses with coal. We find that the conversion of less than 2% of the cropland to bioenergy crops could produce 5.5% of the electricity generated by coal-fired power plants in Illinois and reduce carbon emissions by 11% over the 15-year period. However, the cost of energy from biomass in Illinois is more than twice as high as that of coal. Costly government subsidies for bioenergy or mandates in the form of Renewable Portfolio Standards would be needed to induce the production and use of bioenergy for electricity generation. Alternatively, a modest price for GHG emissions under a cap-and-trade policy could make bioenergy competitive with coal without imposing a fiscal burden on the government.

  12. 2013 Bioenergy Technologies Office Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2013 U.S. Department of Energy Bioenergy Technologies Office's Peer Review meeting.

  13. Harvesting and transport operations to optimise biomass supply chain and industrial biorefinery processes

    Directory of Open Access Journals (Sweden)

    Robert Matindi

    2018-10-01

    Full Text Available In Australia, Bioenergy plays an important role in modern power systems, where many biomass resources provide greenhouse gas neutral and electricity at a variety of scales. By 2050, the Biomass energy is projected to have a 40-50 % share as an alternative source of energy. In addition to conversion of biomass, barriers and uncertainties in the production, supply may hinder biomass energy development. The sugarcane is an essential ingredient in the production of Bioenergy, across the whole spectrum ranging from the first generation to second generation, e.g., production of energy from the lignocellulosic component of the sugarcane initially regarded as waste (bagasse and cane residue. Sustainable recovery of the Lignocellulosic component of sugarcane from the field through a structured process is largely unknown and associated with high capital outlay that have stifled the growth of bioenergy sector. In this context, this paper develops a new scheduler to optimise the recovery of lignocellulosic component of sugarcane and cane, transport and harvest systems with reducing the associated costs and operational time. An Optimisation Algorithm called Limited Discrepancy Search has been adapted and integrated with the developed scheduling transport algorithms. The developed algorithms are formulated and coded by Optimization Programming Language (OPL to obtain the optimised cane and cane residues transport schedules. Computational experiments demonstrate that high-quality solutions are obtainable for industry-scale instances. To provide insightful decisions, sensitivity analysis is conducted in terms of different scenarios and criteria.

  14. Technical and economic performance of integrated bioenergy systems

    Energy Technology Data Exchange (ETDEWEB)

    Toft, A.J.; Bridgwater, A.V. [Aston Univ. (United Kingdom). Energy Research Group; Mitchell, C.P.; Watters, M.P. [Aberdeen Univ. (United Kingdom). Wood Supply Research Group; Stevens, D.J. [Cascade Research, Inc. (United States)

    1996-12-31

    A comprehensive study of biomass production, conversion and utilisation systems has been carried out to examine complete bioenergy systems from biomass in the forest to electricity delivered to the grid. Spreadsheet models have been derived for all of the key steps in an integrated process and these have been compiled into an overall BioEnergy Assessment Model (BEAM). The model has also been used to investigate both the performance of different technologies and the effect of different configurations of the same basic system by manipulating the interfaces between feed production, feed conversion and electricity generation. Some of the results of these analyses are presented here. (orig.)

  15. Technical and economic performance of integrated bioenergy systems

    Energy Technology Data Exchange (ETDEWEB)

    Toft, A J; Bridgwater, A V [Aston Univ. (United Kingdom). Energy Research Group; Mitchell, C P; Watters, M P [Aberdeen Univ. (United Kingdom). Wood Supply Research Group; Stevens, D J [Cascade Research, Inc. (United States)

    1997-12-31

    A comprehensive study of biomass production, conversion and utilisation systems has been carried out to examine complete bioenergy systems from biomass in the forest to electricity delivered to the grid. Spreadsheet models have been derived for all of the key steps in an integrated process and these have been compiled into an overall BioEnergy Assessment Model (BEAM). The model has also been used to investigate both the performance of different technologies and the effect of different configurations of the same basic system by manipulating the interfaces between feed production, feed conversion and electricity generation. Some of the results of these analyses are presented here. (orig.)

  16. Technical and economic performance of integrated bioenergy systems

    International Nuclear Information System (INIS)

    Toft, A.J.; Bridgwater, A.V.

    1996-01-01

    A comprehensive study of biomass production, conversion and utilisation systems has been carried out to examine complete bioenergy systems from biomass in the forest to electricity delivered to the grid. Spreadsheet models have been derived for all of the key steps in an integrated process and these have been compiled into an overall BioEnergy Assessment Model (BEAM). The model has also been used to investigate both the performance of different technologies and the effect of different configurations of the same basic system by manipulating the interfaces between feed production, feed conversion and electricity generation. Some of the results of these analyses are presented here. (orig.)

  17. Bioenergy from agricultural residues in Ghana

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe

    and biomethane under Ghanaian conditions. Detailed characterisations of thirteen of the most common agricultural residues in Ghana are presented, enabling estimations of theoretical bioenergy potentials and identifying specific residues for future biorefinery applications. When aiming at residue-based ethanol...... to pursue increased implementation of anaerobic digestion in Ghana, as the first bioenergy option, since anaerobic digestion is more flexible than ethanol production with regard to both feedstock and scale of production. If possible, the available manure and municipal liquid waste should be utilised first....... A novel model for estimating BMP from compositional data of lignocellulosic biomasses is derived. The model is based on a statistical method not previously used in this area of research and the best prediction of BMP is: BMP = 347 xC+H+R – 438 xL + 63 DA , where xC+H+R is the combined content of cellulose...

  18. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    International Nuclear Information System (INIS)

    McLaughlin, S.B.

    1995-01-01

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy's Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO 2 emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels

  19. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, S.B.

    1995-12-31

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

  20. Climate effects of wood used for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Ros, Jan P.M.; Van Minnen, Jelle G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Arets, Eric J.M.M. [Alterra, Wageningen University WUR, Wageningen (Netherlands)

    2013-08-15

    of carbon. The same is likely to be true for managed forests in other temperate regions. If wood from additional felling is used, it would be most effective to use it in products that stay in circulation for a long time, only to be used for energy at the end of its service life. An increase in wood demand may lead to an intensification of forest management, which may temporarily increase carbon sequestration rates and biomass yields. This would eventually reduce the payback times. However, it must be noted that it would still take a substantial amount of time for the intensification of forest management to become effective, especially when it includes drastic measures, such as converting natural forests into plantations. Short rotation plantations with fast growing trees on agricultural land may be another option, but in these cases there are similarities with the direct and indirect land-use change effects related to energy crops. Further analysis is required to enable a clear judgment on the impact of these options. Products are not the only place of storing carbon with a beneficial effect on climate change. The combination of bioenergy and carbon capture and storage (CCS) on large industrial sites where biomass is converted into energy carriers, such as transport fuel and electricity, is projected to be beneficial, as well. Even landfill sites may serve as storage of carbon in wood waste, as pieces of wood hardly degrade.

  1. IEA Bioenergy. Annual report 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The report describes the organization and the results of the recently completed and the ongoing tasks. Ongoing tasks 1995 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Waste (Task XIV) and Greenhouse Gas Balances of Bioenergy Systems (Task XV). Lists of publications from the different tasks are given

  2. IEA bioenergy annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report describes the organization and the results of the recently completed and the ongoing tasks. Ongoing tasks 1995 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Waste (Task XIV) and Greenhouse Gas Balances of Bioenergy Systems (Task XV). Lists of publications from the different tasks are given. 151 refs

  3. IEA Bioenergy. Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The report describes the organization and the results of the recently completed and the ongoing tasks. Ongoing tasks 1995 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Waste (Task XIV) and Greenhouse Gas Balances of Bioenergy Systems (Task XV). Lists of publications from the different tasks are given

  4. IEA bioenergy annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The report describes the organization and the results of the recently completed and the ongoing tasks. Ongoing tasks 1995 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Waste (Task XIV) and Greenhouse Gas Balances of Bioenergy Systems (Task XV). Lists of publications from the different tasks are given. 151 refs

  5. Technical/economical analysis of bioenergy systems

    International Nuclear Information System (INIS)

    Solantausta, Y.

    1998-01-01

    The objectives of the IEA Bioenergy Technoeconomic Analysis Activity are: (1) To promote development of thermochemical biomass conversion methods by carrying out selected site specific feasibility studies in participating countries. Both agricultural and woody biomasses will be converted either into electricity or boiler fuels; (2) To compare advanced technologies to commercial alternatives based on technoeconomic basis to establish future development needs, and (3) To facilitate information exchange between participants on relevant basic process issues. Five countries (Finland, Canada, USA, Norway, Austria) are participating to the Activity. Initially two feasibility studies are planned for each country. Each study has three common elements: site specific, technical, and economic data. The site specific cases are described below in short. Products in the cases are electricity, heat and fuel oil. Total of two cases per country are planned. (orig.)

  6. Techno-economic analysis of bioenergy systems

    International Nuclear Information System (INIS)

    Solantausta, Y.

    1995-01-01

    The objectives of the IEA Bioenergy Technoeconomic Analysis Activity are: To promote development of thermochemical biomass conversion methods by carrying out selected site specific feasibility studies in participating countries. Both agricultural and woody biomasses will be converted either into electricity or boiler fuels. To compare advanced technologies to commercial alternatives based on techno-economic basis to establish future development needs. To facilitate information exchange between participants on relevant basic process issues. Five countries (Finland, Canada, USA, Norway, Austria) are participating to the Activity. Initially two feasibility studies are planned for each country. Each study has three common elements: site specific, technical, and economic data. The site specific cases are described below in short. Products in the cases are electricity, heat and fuel oil. Total of two cases per country are planned

  7. Environmental assessment of bioenergy technologies application in Russia, including their impact on the balance of greenhouse gases

    Science.gov (United States)

    Andreeva, Irina; Vasenev, Ivan

    2017-04-01

    into account conditions of the particular type of agricultural landscape, possible changes in the characteristics and structure of land use, direct and indirect effects on the ecosystem components and biodiversity. North-Western, Central and Southern regions of the European part of Russia have great potential to produce biofuels. While there is a clearly expressed zonal agroclimatic potential of growing bio-energy crops (1.5 times increase of PAR in the forest-steppe zone in comparison with the area of the southern taiga) and there is a steady trend of further growth with a parallel increase in the amount of rainfall and the amount of active temperatures for the XXI century forecast. Particular attention should be payed to areas with high population density and industrial production with the possibility of combining the cultivation of oilseed rape for the bio-energy purpose with phytoremediation and soil improving effect of the contaminated and unproductive soils. The increasing potential of atmospheric carbon's temporary binding in the biomass of the bio-energy crops and consequently in the biofuels produced from them can significantly reduce total emissions of greenhouse gases in the conditions of the European part of Russia, but there is the need for more detailed balance calculation for specific soil and climatic conditions and land-use systems.

  8. Policies to Enable Bioenergy Deployment: Key Considerations and Good Practices

    Energy Technology Data Exchange (ETDEWEB)

    Smolinksi, Sharon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Bioenergy is renewable energy generated from biological source materials, and includes electricity, transportation fuels and heating. Source materials are varied types of biomass, including food crops such as corn and sugarcane, non-edible lignocellulosic materials such as agricultural and forestry waste and dedicated crops, and municipal and livestock wastes. Key aspects of policies for bioenergy deployment are presented in this brief as part of the Clean Energy Solutions Center's Clean Energy Policy Brief Series.

  9. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China.

    Science.gov (United States)

    Wang, Wenguo; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Hu, Qichun; He, Mingxiong; Li, Jiatang

    2014-01-01

    Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of "precipitation of the warmest quarter" and "annual mean temperature" were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China.

  10. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China.

    Directory of Open Access Journals (Sweden)

    Wenguo Wang

    Full Text Available Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080 on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of "precipitation of the warmest quarter" and "annual mean temperature" were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China.

  11. Electromagnetic Biostimulation of Living Cultures for Biotechnology, Biofuel and Bioenergy Applications

    Directory of Open Access Journals (Sweden)

    Keshav C. Das

    2009-10-01

    Full Text Available The surge of interest in bioenergy has been marked with increasing efforts in research and development to identify new sources of biomass and to incorporate cutting-edge biotechnology to improve efficiency and increase yields. It is evident that various microorganisms will play an integral role in the development of this newly emerging industry, such as yeast for ethanol and Escherichia coli for fine chemical fermentation. However, it appears that microalgae have become the most promising prospect for biomass production due to their ability to grow fast, produce large quantities of lipids, carbohydrates and proteins, thrive in poor quality waters, sequester and recycle carbon dioxide from industrial flue gases and remove pollutants from industrial, agricultural and municipal wastewaters. In an attempt to better understand and manipulate microorganisms for optimum production capacity, many researchers have investigated alternative methods for stimulating their growth and metabolic behavior. One such novel approach is the use of electromagnetic fields for the stimulation of growth and metabolic cascades and controlling biochemical pathways. An effort has been made in this review to consolidate the information on the current status of biostimulation research to enhance microbial growth and metabolism using electromagnetic fields. It summarizes information on the biostimulatory effects on growth and other biological processes to obtain insight regarding factors and dosages that lead to the stimulation and also what kind of processes have been reportedly affected. Diverse mechanistic theories and explanations for biological effects of electromagnetic fields on intra and extracellular environment have been discussed. The foundations of biophysical interactions such as bioelectromagnetic and biophotonic communication and organization within living systems are expounded with special consideration for spatiotemporal aspects of electromagnetic topology

  12. Determining greenhouse gas balances of biomass fuel cycles. Results to date from task 15 of IEA bio-energy

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Spitzer, J.

    1997-01-01

    Selected activities of IEA Bio-energy Task 15 are described. Task 15 of IEA Bio-energy, entitled 'Greenhouse Gas Balances of Bio-energy Systems', aims at investigating processes involved in the use of bio-energy systems on a full fuel-cycle basis to establish overall greenhouse gas balances. The work of Task 15 includes, among other things, a compilation of existing data on greenhouse gas emissions from various biomass production and conversion processes, a standard methodology for greenhouse gas balances of bio-energy systems, a bibliography, and recommendations for selection of appropriate national strategies for greenhouse gas mitigation. (K.A.)

  13. The limits of bioenergy for mitigating global lifecycle greenhouse gas emissions from fossil fuels.

    OpenAIRE

    Staples, Mark; Malina, Robert; Barrett, Steven

    2017-01-01

    In this Article we quantify the optimal allocation and deployment of global bioenergy resources to offset fossil fuels in 2050. We find that bioenergy could reduce lifecycle emissions attributable to combustion-fired electricity and heat, and liquid transportation fuels, by a maximum of 4.9-38.7 Gt CO2e, or 9-68%, and that offsetting fossil fuel-fired electricity and heat with bioenergy is on average 1.6-3.9 times more effective for emissions mitigation than offsetting fossil fuelderived ...

  14. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    Science.gov (United States)

    Henner, D. N.; Smith, P.; Davies, C.; McNamara, N. P.

    2016-12-01

    Bioenergy crops are an important source of renewable energy and likely to play a major role in transitioning to a lower CO2 energy system. There is, however, uncertainty about the impacts of the growth of bioenergy crops on broader sustainability encompassed by ecosystem services, further enhanced by ongoing climate change. The goal of this project is to develop a comprehensive model that covers ecosystem services at a continental scale including biodiversity and pollination, water and air security, erosion control and soil security, GHG emissions, soil C and cultural services like tourism value. The technical distribution potential and likely yield of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC; willow and poplar) was modelled using ECOSSE, DayCent, SalixFor and MiscanFor models. In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models are utilised. We will present results for synergies and trade-offs between land use change and ecosystem services, impact on food security and land management. Further, we will show modelled yield maps for different cultivars of Miscanthus, willow and poplar in Europe and constraint/opportunity maps based on projected yield and other factors e.g. total economic value, technical potential, current land use, climate change and trade-offs and synergies. It will be essential to include multiple ecosystem services when assessing the potential for bioenergy production/expansion that does not impact other land uses or provisioning services. Considering that the soil GHG balance is dominated by change in soil organic carbon (SOC) and the difference among Miscanthus and SRC is largely determined by yield, an important target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation. This research could inform future policy decisions on bioenergy crops in

  15. Bioenergy for District Bioheating System (DBS) from eucalyptus residues in a European coal-producing region

    International Nuclear Information System (INIS)

    Paredes-Sánchez, José P.; López-Ochoa, Luis M.; López-González, Luis M.; Xiberta-Bernat, Jorge

    2016-01-01

    Highlights: • The paper introduces a combined method to evaluate bioenergy. • Forest biomass needs to be studied as a fuel supplier and carbon sink. • The forests under study produce about 28 kt dry and 0.15 Mt CO 2 per year. • Examined a District Bioheating System (DBS) with the available biomass. - Abstract: Since forest biomass can substitute for CO 2 -emitting fossil fuels in the energy sector, forest management can greatly affect the global carbon cycle. Eucalyptus globulus has adapted very well in the coal region of the Principality of Asturias (Northwestern Spain) and has become highly regarded as a valuable raw material for the pulp and paper industry. In the present work, the Eucalyptus globulus is studied as a key natural energy source in order to improve existing methods and develop new ways of optimizing the evaluation and use of both forest biomass and woody residue in energy systems, in accordance with sustainable forestry industry safety and environmental requirements. The feasibility of utilizing forest biomass instead of natural gas in a District Bioheating System (DBS) has been examined based on an analysis of its economical and environmental impacts.

  16. IEA Bioenergy Task 40 country report for the Netherlands 2011

    OpenAIRE

    Goh, C.S.; Junginger, H.M.; Jonker, J.G.G.; Faaij, A.P.C.

    2011-01-01

    This country report was written within the frame of IEA Bioenergy Task 40. In summary, the aims of this country report are: (1) To provide a concise overview of biomass policy, domestic resources, biomass users, biomass prices and biomass trade, and (2) To analyse bioenergy trends, and reasons for change in the Netherlands and point out barriers & opportunities for trade in detail, and Current biomass user (energy use) Table ES-1 shows the energy use of biomass in the Netherlands in 2010. The...

  17. Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels

    International Nuclear Information System (INIS)

    Berndes, Goeran; Hansson, Julia

    2007-01-01

    Presently, the European Union (EU) is promoting bioenergy. The aim of this paper is to study the prospects for using domestic biomass resources in Europe and specifically to investigate whether different policy objectives underlying the promotion of bioenergy (cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels) agree on which bioenergy options that should be used. We model bioenergy use from a cost-effectiveness perspective with a linear regionalized energy- and transport-system model and perform supplementary analysis. It is found that the different policy objectives do not agree on the order of priority among bioenergy options. Maximizing climate benefits cost-effectively is in conflict with maximizing employment creation. The former perspective proposes the use of lignocellulosic biomass in the stationary sector, while the latter requires biofuels for transport based on traditional agricultural crops. Further, from a security-of-supply perspective, the appeal of a given bioenergy option depends on how oil and gas import dependencies are weighed relative to each other. Consequently, there are tradeoffs that need to be addressed by policymakers promoting the use of bioenergy. Also, the importance of bioenergy in relation to employment creation and fuel import dependency reduction needs to be further addressed

  18. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.

    Science.gov (United States)

    Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus , Alcaligenes latus , Azotobacter vinelandii , Azotobacter chroococcum , Azotobacter beijerincki , methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli , have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas

  19. Site-specific global warming potentials of biogenic CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M; Strømman, Anders H

    2012-01-01

    Production of biomass for bioenergy can alter biogeochemical and biogeophysical mechanisms, thus affecting local and global climate. Recent scientific developments have mainly embraced impacts from land use changes resulting from area-expanded biomass production, with several extensive insights available. Comparably less attention, however, has been given to the assessment of direct land surface–atmosphere climate impacts of bioenergy systems under rotation such as in plantations and forested ecosystems, whereby land use disturbances are only temporary. Here, following IPCC climate metrics, we assess bioenergy systems in light of two important dynamic land use climate factors, namely, the perturbation in atmospheric carbon dioxide (CO 2 ) concentration caused by the timing of biogenic CO 2 fluxes, and temporary perturbations to surface reflectivity (albedo). Existing radiative forcing-based metrics can be adapted to include such dynamic mechanisms, but high spatial and temporal modeling resolution is required. Results show the importance of specifically addressing the climate forcings from biogenic CO 2 fluxes and changes in albedo, especially when biomass is sourced from forested areas affected by seasonal snow cover. The climate performance of bioenergy systems is highly dependent on biomass species, local climate variables, time horizons, and the climate metric considered. Bioenergy climate impact studies and accounting mechanisms should rapidly adapt to cover both biogeochemical and biogeophysical impacts, so that policy makers can rely on scientifically robust analyses and promote the most effective global climate mitigation options. (letter)

  20. Green supply chain management and environmental performance of firms in the bioenergy sector in Brazil: An exploratory survey

    International Nuclear Information System (INIS)

    Stefanelli, Nelson Oliveira; Jabbour, Charbel José Chiappetta; Jabbour, Ana Beatriz Lopes de Sousa

    2014-01-01

    To achieve sustainable development, supply chains must become greener. In this context, the importance of green supply chain management (GSCM) increases because it can contribute to improving firms’ environmental performance (EP). However, little is known about these subjects in the context of firms in the bioenergy sector (sugarcane and ethanol production in Brazil). Thus, the objective of this work is to present the results of a survey conducted on 80 micro-, small-, and medium-sized firms that are suppliers in the Brazilian bioenergy sector (sugarcane and ethanol production). These results indicate that GSCM practices strengthen the EP of firms in the sector. Therefore, this article contributes to the existing literature because it addresses the relationship between GSCM and EP in an understudied sector (sugarcane and ethanol production). - Highlights: • To achieve sustainable development, supply chains must become greener. • Little is known about these subjects in the context of firms in the bioenergy sector. • This research is based on an exploratory survey. • GSCM practices strengthen the EP of firms in the sector

  1. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.

    Science.gov (United States)

    Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M

    2010-10-01

    Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.

  2. Techno-economic accompanying research the national competition ''Bioenergy Regions''. Final report funding measure 2009-2012; Technisch-oekonomische Begleitforschung des Bundeswettbewerbes ''Bioenergie-Regionen''. Endbericht Foerdermassnahme 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Bohnet, Sebastian; Haak, Falko; Gawor, Marek [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Thraen, Daniela [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany)

    2015-07-01

    This final report describes the results of the techno-economic accompanying research of the competition of bioenergy regions. The competition was realized as a three-year funding project of the Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), wherein the DBFZ analyzed the bioenergy development in the project regions and effects for regional development. The aim of the techno-economic accompanying research was to evaluate the project regions regarding the use of bioenergy. To this end, the bioenergy plants and supply chains of bioenergy as well as the raw materials used were the focus of investigations. Hereby the comparison between the regions and classification of the national average should be made possible. It was also necessary to be able to make statements about the climate protection contribution of funding the project. Not least the DBFZ supported the office of competition and the regions in answering technical-economic issues. The report is divided into a theoretical part A and the result Part B. After a summary of the results (chapter 1) and a brief overview of important and higher-level indicators (Chapter 2) the background and objectives of the competition are in Part A, first presented (Chapter 3). This is followed by Chapter 4 of the explanation of the methodological approach. Part B contains the results of the accompanying research project. The individual chapters are based respectively on the specific questions or thematic blocks of techno-economic accompanying research (Section 5-8). The final chapter 9 takes a brief look at the second funding phase from 2012 to 2015. [German] Der vorliegende Endbericht beschreibt die Ergebnisse der technisch-oekonomischen Begleitforschung zum Wettbewerb Bioenergie-Regionen. Der Wettbewerb wurde als dreijaehriges Foerdervorhaben des Bundesministeriums fuer Ernaehrung, Landwirtschaft und Verbraucherschutz (BMELV) realisiert, bei dem das DBFZ die Bioenergieentwicklung in den Projektregionen sowie

  3. Water for bioenergy: A global analysis

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert; van der Meer, Theodorus H.; Gasparatos, A.; Stromberg, P.

    2012-01-01

    Agriculture is by far the largest water user. This chapter reviews studies on the water footprints (WFs) of bioenergy (in the form of bioethanol, biodiesel, and heat and electricity produced from biomass) and compares their results with the WFs of fossil energy and other types of renewables (wind

  4. Interdependencies in the energy-bioenergy-food price systems: A cointegration analysis

    International Nuclear Information System (INIS)

    Ciaian, Pavel; Kancs, d'Artis

    2011-01-01

    The present paper studies the interdependencies between the energy, bioenergy and food prices. We develop a vertically integrated multi-input, multi-output market model with two channels of price transmission: a direct biofuel channel and an indirect input channel. We test the theoretical hypothesis by applying time-series analytical mechanisms to nine major traded agricultural commodity prices, including corn, wheat, rice, sugar, soybeans, cotton, banana, sorghum and tea, along with one weighted average world crude oil price. The data consists of 783 weekly observations extending from January 1994 to December 2008. The empirical findings confirm the theoretical hypothesis that the prices for crude oil and agricultural commodities are interdependent including also commodities not directly used in bioenergy production: an increase in oil price by 1 $/barrel increases the agricultural commodity prices between 0.10 $/tonne and 1.80 $/tonne. Contrary to the theoretical predictions, the indirect input channel of price transmission is found to be small and statistically insignificant. (author)

  5. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    Science.gov (United States)

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  6. MULTIVARIATE TECHNIQUES APPLIED TO EVALUATION OF LIGNOCELLULOSIC RESIDUES FOR BIOENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812361The evaluation of lignocellulosic wastes for bioenergy production demands to consider several characteristicsand properties that may be correlated. This fact demands the use of various multivariate analysis techniquesthat allow the evaluation of relevant energetic factors. This work aimed to apply cluster analysis and principalcomponents analyses for the selection and evaluation of lignocellulosic wastes for bioenergy production.8 types of residual biomass were used, whose the elemental components (C, H, O, N, S content, lignin, totalextractives and ashes contents, basic density and higher and lower heating values were determined. Bothmultivariate techniques applied for evaluation and selection of lignocellulosic wastes were efficient andsimilarities were observed between the biomass groups formed by them. Through the interpretation of thefirst principal component obtained, it was possible to create a global development index for the evaluationof the viability of energetic uses of biomass. The interpretation of the second principal component alloweda contrast between nitrogen and sulfur contents with oxygen content.

  7. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL; Wang, Dali [ORNL; Wullschleger, Stan D [ORNL; Kline, Keith L [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL; Kang, Shujiang [ORNL

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  8. IEA Bioenergy task 40. Country report for the Netherlands

    International Nuclear Information System (INIS)

    Junginger, M.; Faaij, A.

    2005-07-01

    Two of the short-term objectives of the IEA Bioenergy Task 40 are to present an overview of development of biomass markets in various parts of the world and to identify existing barriers hampering development of a (global) commodity market (e.g. policy framework, ecology, economics). As in most countries biomass is a relatively new (though quickly growing) commodity, relatively little information is available on e.g. the traded volumes and prices of various biomass streams, policies and regulations on biomass use and trade, and existing and perceived barriers. This country report aims to provide an overview of these issues for the Netherlands, and also sets the first step to make an inventory of barriers as perceived by various Dutch stakeholders. The report organizes as follows. Section 2 and 3 presents a brief overview of the policy setting on renewable energy and bio-energy in the Netherlands and the policy instruments deployed to stimulate renewable energy market penetration. In section 4, the achievements, the current status and the short-term expectations for the use of biomass energy in the Netherlands are described. Next, in section 5, the biomass market and biomass trade in the Netherlands are discussed, including the major biomass streams involved, conversion technologies, import and export volumes, biomass prices, barriers for further import and biomass certification efforts. Section 6 concludes with a general discussion and conclusions.

  9. Eco-friendly Development Of Industry

    International Nuclear Information System (INIS)

    An, Gi Cheol; Park, Hun; Lee, Dong Jin; Ryu, Sang Hui

    1998-02-01

    This book reports eco-friendly development of industry, which has summary on bring up the issue and research way and system of research. It deals with current state of affairs on eco-friendly development of industry and the case of developed countries such as necessity and meaning of eco-friendly development industry, prospect and change of the tendency, environmental issue by field in Korea like the steel industry, nonferrous metal industry, auto industry, and cement industry and general policy for eco-friendly development of industry.

  10. Socio-economic drivers in implementing bioenergy projects

    International Nuclear Information System (INIS)

    Domac, J.; Richards, K.; Risovic, S.

    2005-01-01

    Within the international community there is considerable interest in the socio-economic implications of moving society towards the more widespread use of renewable energy resources. Such change is seen to be very necessary but is often poorly communicated to people and communities who need to accept such changes. There are pockets of activity across the world looking at various approaches to understand this fundamental matter. Typically, socio-economic implications are measured in terms of economic indices, such as employment and monetary gains, but in effect the analysis relates to a number of aspects which include social, cultural, institutional, and environmental issues. The extremely complex nature of bioenergy, many different technologies involved and a number of different, associated aspects (socio-economics, greenhouse gas mitigation potential, environment, ?) make this whole topic a complex subject. This paper is primarily a descriptive research and review of literature on employment and other socio-economic aspects of bioenergy systems as drivers for implementing bioenergy projects. Due to the limited information, this paper does not provide absolute quantification on the multiplier effects of local and or national incomes of any particular country or region. The paper intends to trigger a more in-depth discussion of data gaps, potentials, opportunities and challenges. An encouraging trend is that in many countries policy makers are beginning to perceive the potential economic benefits of commercial biomass e.g. employment/earnings, regional economic gain, contribution to security of energy supply and all others

  11. Global Wood Pellet Industry and Trade Study 2017

    NARCIS (Netherlands)

    Thrän, D.; Peetz, D.; Schaubach, K.; Mai-Moulin, T.; Junginger, H.M.; Lamers, P.; Visser, L.

    2017-01-01

    The report Global Wood Pellet Industry Market published in 2011 has always been the most downloaded document of IEA Bioenergy Task 40. We have decided to update the report and bring new insights on market trends and trade of the global wood pellets. The global wood pellet market has increased

  12. Effects of bioenergy production on European nature conservation options

    Science.gov (United States)

    Schleupner, C.; Schneider, U. A.

    2009-04-01

    To increase security of energy supply and reduce greenhouse gas (GHG) emissions the European Commission set out a long-term strategy for renewable energy in the European Union (EU). Bioenergy from forestry and agriculture plays a key role for both. Since the last decade a significant increase of biomass energy plantations has been observed in Europe. Concurrently, the EU agreed to halt the loss of biodiversity within its member states. One measure is the Natura2000 network of important nature sites that actually covers about 20% of the EU land surface. However, to fulfil the biodiversity target more nature conservation and restoration sites need to be designated. There are arising concerns that an increased cultivation of bioenergy crops will decrease the land available for nature reserves and for "traditional" agriculture and forestry. In the following the economic and ecological impacts of structural land use changes are demonstrated by two examples. First, a case study of land use changes on the Eiderstedt peninsula in Schleswig-Holstein/Germany evaluates the impacts of grassland conversion into bioenergy plantations under consideration of selected meadow birds. Scenarios indicate not only a quantitative loss of habitats but also a reduction of habitat quality. The second study assesses the role of bioenergy production in light of possible negative impacts on potential wetland conservation sites in Europe. By coupling the spatial wetland distribution model "SWEDI" (cf. SCHLEUPNER 2007) to the European Forest and Agricultural Sector Optimization Model (EUFASOM; cf. SCHNEIDER ET AL. 2008) economic and environmental aspects of land use are evaluated simultaneously. This way the costs and benefits of the appropriate measures and its consequences for agriculture and forestry are investigated. One aim is to find the socially optimal balance between alternative wetland uses by integrating biological benefits - in this case wetlands - and economic opportunities - here

  13. Quantifying the Impact of Feedstock Quality on the Design of Bioenergy Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Krystel K. Castillo-Villar

    2016-03-01

    Full Text Available Logging residues, which refer to the unused portions of trees cut during logging, are important sources of biomass for the emerging biofuel industry and are critical feedstocks for the first-type biofuel facilities (e.g., corn-ethanol facilities. Logging residues are under-utilized sources of biomass for energetic purposes. To support the scaling-up of the bioenergy industry, it is essential to design cost-effective biofuel supply chains that not only minimize costs, but also consider the biomass quality characteristics. The biomass quality is heavily dependent upon the moisture and the ash contents. Ignoring the biomass quality characteristics and its intrinsic costs may yield substantial economic losses that will only be discovered after operations at a biorefinery have begun. This paper proposes a novel bioenergy supply chain network design model that minimizes operational costs and includes the biomass quality-related costs. The proposed model is unique in the sense that it supports decisions where quality is not unrealistically assumed to be perfect. The effectiveness of the proposed methodology is proven by assessing a case study in the state of Tennessee, USA. The results demonstrate that the ash and moisture contents of logging residues affect the performance of the supply chain (in monetary terms. Higher-than-target moisture and ash contents incur in additional quality-related costs. The quality-related costs in the optimal solution (with final ash content of 1% and final moisture of 50% account for 27% of overall supply chain cost. Based on the numeral experimentation, the total supply chain cost increased 7%, on average, for each additional percent in the final ash content.

  14. Potential Air Quality Impacts of Global Bioenergy Crop Cultivation

    Science.gov (United States)

    Porter, W. C.; Rosenstiel, T. N.; Barsanti, K. C.

    2012-12-01

    The use of bioenergy crops as a replacement for traditional coal-powered electricity generation will require large-scale land-use change, and the resulting changes in emissions of biogenic volatile organic compounds (BVOCs) may have negative impacts on local to regional air quality. BVOCs contribute to the formation of both ozone (O3) and fine particulate matter (PM2.5), with magnitudes of specific compound emissions governed largely by plant speciation and land coverage. For this reason, large-scale land-use change has the potential to markedly alter regional O3 and PM2.5 levels, especially if there are large differences between the emission profiles of the replacement bioenergy crops (many of which are high BVOC emitters) and the previous crops or land cover. In this work, replacement areas suitable for the cultivation of the bioenergy crops switchgrass (Panicum virgatum) and giant reed (Arundo donax) were selected based on existing global inventories of under-utilized cropland and local climatological conditions. These two crops are among the most popular current candidates for bioenergy production, and provide contrasting examples of energy densities and emissions profiles. While giant reed has been selected in an ongoing large-scale coal-to-biocharcoal conversion in the Northwestern United States due to its high crop yields and energy density, it is also among the highest biogenic emitters of isoprene. On the other hand, switchgrass produces less biomass per acre, but also emits essentially no isoprene and low total BVOCs. The effects of large-scale conversion to these crops on O3 and PM2.5 were simulated using version 1.1 of the Community Earth System Model (CESM) coupled with version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGAN). By comparing crop replacement scenarios involving A. donax and P. virgatum, the sensitivities of O3 and PM2.5 levels to worldwide increases in bioenergy production were examined, providing an initial

  15. Using corngrass1 to engineer poplar as a bioenergy crop

    Energy Technology Data Exchange (ETDEWEB)

    Meilan, Richard; Rubinelli, Peter Marius; Chuck, George

    2016-05-10

    Embodiments of the present invention relate generally to new bioenergy crops and methods of creating new bioenergy crops. For example, genes encoding microRNAs (miRNAs) are used to create transgenic crops. In some embodiments, over-expression of miRNA is used to produce transgenic perennials, such as trees, with altered lignin content or composition. In some embodiments, the transgenic perennials are Populus spp. In some embodiments, the miRNA is a member of the miR156 family. In some embodiments, the gene is Zea mays Cg1.

  16. Solutions for wood-based bio-energy price discovery

    Energy Technology Data Exchange (ETDEWEB)

    Teraes, Timo [FOEX Indexes Ltd., Helsinki (Finland)], e-mail: timo@foex.fi

    2012-11-01

    Energy prices are highly volatile. This volatility can have serious ill-effects on the profitability of companies engaged in the energy business. There are, however, a number of price risk management tools which can be used to reduce the problems caused by price volatility. International trade of wood pellets and wood chips is rapidly growing. A good price transparency helps in developing the trade further. In order to meet the renewable energy targets within the EU, further growth of volumes is needed, at least within Europe and from overseas supply sources to the European markets. Reliable price indices are a central element in price risk management and in general price discovery. Exchanges have provided, in the past, the most widely known price discovery systems. Since 1990's, an increasing number of price risk management tools has been based on cash settlement concept. Cash settlement requires high quality benchmark price indices. These have been developed by the exchanges themselves, by trade press and by independent price benchmark provider companies. The best known of these benchmarks in forest industry and now also in wood-based bioenergy products are the PIX indices, provided by FOEX Indexes Ltd. This presentation discusses the key requirements for a good price index and the different ways of using the indices. Price relationships between wood chip prices and pellet prices are also discussed as will be the outlook for the future volume growth and trade flows in woodchips and pellets mainly from the European perspective.

  17. Correcting a fundamental error in greenhouse gas accounting related to bioenergy

    DEFF Research Database (Denmark)

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc

    2012-01-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which...... already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants...... and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon...

  18. Chemometric methods and near-infrared spectroscopy applied to bioenergy production

    International Nuclear Information System (INIS)

    Liebmann, B.

    2010-01-01

    The present work examines bioenergy production from different viewpoints. The three main objectives are: (1) to reveal the relation of technology, sustainability and economy in bioenergy processes; (2) to investigate spectroscopic methods as a tool for analytical monitoring of bioenergy processes; and (3) to develop new chemometric methods for advanced analysis of spectroscopic data. At the first stage, this thesis investigates the technological, ecological, and economic features of renewable-resource-based and de-centralized bioenergy production systems. In different scenarios, small-scale bioethanol production is combined with other technologies that provide renewable energy from residuals of the bioethanol process. The general aim is to substitute fossil energy conventionally used within the bioethanol process. The investigated technologies are biogas production and straw incineration. Agricultural aspects are introduced by sustainable crop rotation concepts that reconcile food, feed, and biofuel production. The sustainability of small-scale bioethanol production in the different scenarios is quantified by an ecological footprint method, the sustainable process index, SPI, and compared to conventional fuels. The main findings are: (i) small-scaled bioethanol production can be operated with 100 % renewable energy supply, (ii) the SPI of bioethanol can be reduced up to 92 % compared to conventional fuels, (iii) a complex trade-off between ecology-of-scale and economy-of-scale is necessary. At the second stage, this thesis approaches bioenergy production processes from an analytical perspective, and presents near-infrared spectroscopy (NIR) as promising method for fast process monitoring of bioethanol production and biomass characterization. In addition, new analytical methods are presented for a fast determination of the heating value of solid biomass fuel, based on IR and NIR spectroscopy. The main findings are that NIR spectroscopy and appropriate chemometric

  19. Logistic regression models of factors influencing the location of bioenergy and biofuels plants

    Science.gov (United States)

    T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu

    2011-01-01

    Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...

  20. Forest carbon accounting methods and the consequences of forest bioenergy for national greenhouse gas emissions inventories

    International Nuclear Information System (INIS)

    McKechnie, Jon; Colombo, Steve; MacLean, Heather L.

    2014-01-01

    Highlights: • Forest carbon accounting influences the national GHG inventory impacts of bioenergy. • Current accounting rules may overlook forest carbon trade-offs of bioenergy. • Wood pellet trade risks creating an emissions burden for exporting countries. - Abstract: While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but

  1. Golbal Economic and Environmental Impacts of Increased Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Wallace Tyner

    2012-05-30

    The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

  2. IEA Bioenergy. Annual report 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The report describes the organization and the results of recently completed and ongoing tasks. Ongoing tasks in 1997 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Solid Waste (Task XIV); Greenhouse Gas Balances of Bioenergy Systems (Task XV); and Technology Assessment Studies for the Conversion of Cellulosic Materials to Ethanol in Sweden (Task XVI). Lists of publications from the different tasks are given

  3. IEA Bioenergy. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report describes the organization and the results of recently completed and ongoing tasks. Ongoing tasks in 1997 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Solid Waste (Task XIV); Greenhouse Gas Balances of Bioenergy Systems (Task XV); and Technology Assessment Studies for the Conversion of Cellulosic Materials to Ethanol in Sweden (Task XVI). Lists of publications from the different tasks are given

  4. IEA Bioenergy. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The report describes the organization and the results of recently completed and ongoing tasks. Ongoing tasks in 1997 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Solid Waste (Task XIV); Greenhouse Gas Balances of Bioenergy Systems (Task XV); and Technology Assessment Studies for the Conversion of Cellulosic Materials to Ethanol in Sweden (Task XVI). Lists of publications from the different tasks are given

  5. Non-technical success factors for bioenergy projects—Learning from a multiple case study in Japan

    International Nuclear Information System (INIS)

    Blumer, Yann B.; Stauffacher, Michael; Lang, Daniel J.; Hayashi, Kiyotada; Uchida, Susumu

    2013-01-01

    There is wide agreement in the literature that non-technical factors play a decisive role in the successful implementation of bioenergy projects. One underlying reason is that such projects require the involvement of many stakeholders, such as feedstock producers, engineers, authorities and the concerned public. We analyze the role of bioenergy-specific non-technical factors for the success of bioenergy projects. In a broad literature review we first identify potential success factors belonging to the five dimensions project characteristics, policy framework, regional integration, public perception and stakeholders. Using these factors as conceptual framework, we next analyze six Japanese pilot projects for bioenergy utilization supported by Japans Agriculture, Forestry and Fisheries Research Council. We apply Rough Set Analysis, a data mining method that can be used for small sample sizes to identify patterns in a dataset. We find that, by and large, non-technical factors from all five dimensions – such as the stability of the local policy framework – co-occur with project success. Furthermore, we show that there are diverging interpretations as to what success in a bioenergy project means. This requires tradeoffs between various goals, which should be identified and addressed explicitly at early stages of such a project. - Highlights: • We collect a broad list of non-technical success factors for bioenergy projects. • These are applied to six pilot projects in Japan and shown to be relevant. • We acknowledge different aspects of project success and their potential conflicts

  6. Wood bioenergy and soil productivity research

    Science.gov (United States)

    D. Andrew Scott; Deborah S. Page-Dumroese

    2016-01-01

    Timber harvesting can cause both short- and long-term changes in forest ecosystem functions, and scientists from USDA Forest Service (USDA FS) have been studying these processes for many years. Biomass and bioenergy markets alter the amount, type, and frequency at which material is harvested, which in turn has similar yet specific impacts on sustainable productivity....

  7. Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model

    Science.gov (United States)

    Buongiorno, J.; Raunikar, R.; Zhu, S.

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial roundwood by nearly 30% in 2030. The price of sawnwood and panels would be 15% higher. The price of paper would be 3% higher. Concurrently, the demand for all manufactured wood products would be lower in all countries, but the production would rise in countries with competitive advantage. The global value added in wood processing industries would be 1% lower in 2030. The forest stock would be 2% lower for the world and 4% lower for Asia. These effects varied substantially by country. ?? 2011 Department of Forest Economics, SLU Ume??, Sweden.

  8. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation

    International Nuclear Information System (INIS)

    Volk, T.A.; Abrahamson, L.P.; Nowak, C.A.; White, E.H.; Smart, L.B.; Tharakan, P.J.

    2006-01-01

    Research on willow (Salix spp.) as a locally produced, renewable feedstock for bioenergy and bioproducts began in New York in the mid-1980s in response to growing concerns about environmental impacts associated with fossil fuels and declining rural economies. Simultaneous and integrated activities-including research, large-scale demonstrations, outreach and education, and market development-were initiated in the mid-1990s to facilitate the commercialization of willow biomass crops. Despite technological viability and associated environmental and local economic benefits, the high price of willow biomass relative to coal has been a barrier to wide-scale deployment of this system. The cost of willow biomass is currently $3.00GJ -1 ($57.30odt -1 ) compared to $1.40-1.90GJ -1 for coal. Yield improvements from traditional breeding efforts and increases in harvesting efficiency that are currently being realized promise to reduce the price differential. Recent policy changes at the federal level, including the provision to harvest bioenergy crops from Conservation Reserve Program (CRP) land and a closed-loop biomass tax credit, and state-level initiatives such as Renewable Portfolio Standards (RPS) will help to further reduce the difference and foster markets for willow biomass. Years of work on willow biomass crop research and demonstration projects have increased our understanding of the biology, ecophysiology and management of willow biomass crops. Using an adaptive management model, this information has led to the deployment of willow for other applications such as phytoremediation, living snow fences, and riparian buffers across the northeastern US. (author)

  9. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    Science.gov (United States)

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  10. Economic Impact of Net Carbon Payments and Bioenergy Production in Fertilized and Non-Fertilized Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Prativa Shrestha

    2015-08-01

    Full Text Available Sequestering carbon in forest stands and using woody bioenergy are two potential ways to utilize forests in mitigating emissions of greenhouse gases (GHGs. Such forestry related strategies are, however, greatly influenced by carbon and bioenergy markets. This study investigates the impact of both carbon and woody bioenergy markets on land expectation value (LEV and rotation age of loblolly pine (Pinus taeda L. forests in the southeastern United States for two scenarios—one with thinning and no fertilization and the other with thinning and fertilization. Economic analysis was conducted using a modified Hartman model. The amount of carbon dioxide (CO2 emitted during various activities such as management of stands, harvesting, and product decay was included in the model. Sensitivity analysis was conducted with a range of carbon offset, wood for bioenergy, and forest product prices. The results showed that LEV increased in both management scenarios as the price of carbon and wood for bioenergy increased. However, the results indicated that the management scenario without fertilizer was optimal at low carbon prices and the management scenario with fertilizer was optimal at higher carbon prices for medium and low forest product prices. Carbon payments had a greater impact on LEV than prices for wood utilized for bioenergy. Also, increase in the carbon price increased the optimal rotation age, whereas, wood prices for bioenergy had little impact. The management scenario without fertilizer was found to have longer optimal rotation ages.

  11. Spatio-temporal Eigenvector Filtering: Application on Bioenergy Crop Impacts

    Science.gov (United States)

    Wang, M.; Kamarianakis, Y.; Georgescu, M.

    2017-12-01

    A suite of 10-year ensemble-based simulations was conducted to investigate the hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops across the continental United States. Given the large size of the simulated dataset (about 60Tb), traditional hierarchical spatio-temporal statistical modelling cannot be implemented for the evaluation of physics parameterizations and biofuel impacts. In this work, we propose a filtering algorithm that takes into account the spatio-temporal autocorrelation structure of the data while avoiding spatial confounding. This method is used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations and observational datasets. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.

  12. Energy demands in the 21st century: the role of biofuels in a developing country

    International Nuclear Information System (INIS)

    Quaye, E.C.

    1996-01-01

    In most developing countries more than 25% of total energy use comes from biofuels. In Ghana, the figure is between 70-80%. Bioenergy is mainly used for cooking and heating, and is also important in rural or cottage industries. As a developing country, Ghana's economic growth remains coupled to the availability and supply of energy. About 29% of this energy is obtained through hydropower and imported petroleum. The two hydropower installations generate about 1102 MW annually mainly for domestic and industrial uses. At the current 3.0% average annual population growth rate, a population of about 35 million is expected by 2025. Coupled with the country's efforts to promote industrialization, future energy demand is expected to increase several fold. This paper provides an overview of Ghana's current energy situation and discusses the role of bioenergy in the future energy demand of the country. The paper concludes with a recommendation for a major shift in energy policy to accommodate the conversion of biofuels into versatile energy carriers in a decentralised system to meet the energy requirements of the people and to provide a basis for rural development and employment. (Author)

  13. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  14. Facilitating the financing of bioenergy projects in sub-Saharan Africa

    International Nuclear Information System (INIS)

    Hofmann, Michael; Khatun, Kaysara

    2013-01-01

    The purpose of this paper is to identify and develop potential solutions on how to facilitate the financing of bioenergy projects in Sub-Saharan Africa. We focus on four main areas that have been identified from empirical research in achieving this objective; these are: (i) financing, (ii) markets; (iii) trade and (iv) policy. The sources utilised consist of primary and secondary data compilation and analysis. Of particular relevance are the results of a market survey undertaken on funding opportunities, where the perspectives of both, project developers as well as project financiers are taken into account. Results indicate that the four areas cannot be treated autonomously, as they not only overlap but impact each other. There are a number of difficulties for biofuel ventures, not least the nature of the projects themselves, but also around the financing and political landscape of these enterprises. Common solutions which cross cut the four areas are the need to raise awareness and the skillsets, in areas including, financing opportunities, markets, policy, technical aspects among a range of stakeholders involved in biofuel ventures. There is also a necessity to create a supporting framework for the emerging carbon trading-related activities in Africa. - Highlights: ► We identify and develop potential solutions towards facilitating the financing of bioenergy projects in sub-Saharan Africa. ► We focus on four areas to achieve this objective; these are: (i) financing, (ii) markets; (iii) trade and (iv) policy. ► Common solutions which cross cut the four areas are the need to raise awareness and develop skillsets of stakeholders involved.

  15. Pre-feasibility workbook for bioenergy projects in eastern Ontario : executive summary

    International Nuclear Information System (INIS)

    Rees, C.; Bradley, D.; DeYoe, D.

    2007-03-01

    This summary provided details of a pre-feasibility workbook designed to assist communities and developers in better understanding bioenergy challenges and opportunities in Ontario. The workbook examined issues related to the conversion of biomass through thermal conversion technologies and focused on combined heat and power projects that used forest and agricultural biomass in order to produce up to 10 MW of electricity under the Ontario Renewable Standard Offer Program. As part of the program, new generators of no more than 10 MW are paid a base rate of 11 cents per kWh and an additional 3.52 cents per kWh for on-peak production. The workbook was comprised of a review of biomass supply in the eastern Ontario region and included both forested and abandoned farm lands. A base-line financial analysis was included to assess the feasibility of projects using combustion, pyrolysis, and gasification technologies. Biomass sources in the region included mill residue, harvest waste, biomass mortality from natural events, stand management, and standing timber. Key elements required for parties interested in considering a bioenergy business initiative were also included

  16. Impact of European and Dutch policy on the market introduction of bio-energy in the Netherlands. Report of the workshop at Novem, Utrecht, Netherlands, 21 September 2000

    International Nuclear Information System (INIS)

    2001-04-01

    The report comprises copies of overhead sheets of some of the lectures that were held at the workshop. The subjects of those presentations are: Targets for bio-energy in a financial perspective; Developments in the Dutch renewable energy policy (text and sheets not in this report); Similarities and differences in the Dutch waste policy; Differences in policy for bio-energy in the Netherlands and the European Union; Emission regulations for the combustion of wastes and biomass; Impact of policy on the market introduction of bio-energy in the Netherlands

  17. Potential to expand sustainable bioenergy from sugarcane in southern Africa

    International Nuclear Information System (INIS)

    Watson, Helen K.

    2011-01-01

    The Cane Resources Network for Southern Africa evaluated how bioenergy from sugarcane can support sustainable development and improve global competitiveness in the region. The assessment of six countries with good contemporary potential for expanding sugarcane cultivation described in this paper was part of their analysis. Its principal objective was to identify land where such production will not have detrimental environmental and/or socio-economic impacts. Geographic Information Systems (GIS) was used to interrogate 1 km 2 resolution protected area, land cover, climate, elevation and soil data sets. To avoid detrimental impacts on biodiversity, all categories of protected areas, closed canopy forests and wetlands were excluded. To safeguard food security, all areas under food and/or cash crop production were excluded. Areas unsuitable because of climate, terrain and soil constraints were also excluded. The assessment found that almost 6 million hectares of suitable land is available in these countries, clearly suggesting that 'land' is unlikely to be a limiting factor in harnessing sugarcane's bioenergy potential in the region. However, land identified as such in this study needs to be verified using better resolution, preferably ground, information.

  18. Proceedings of the first meeting of IEA, Bioenergy, Task 17

    Energy Technology Data Exchange (ETDEWEB)

    Christersson, L.; Ledin, S. [eds.

    1999-07-01

    The present proceedings are the result of the first meeting of Task 17 within the frame of IEA, Bioenergy. During the meeting the objectives of Task 17 were discussed and determined to be: * to stimulate the full-scale implementation of energy crops in participating countries; * to strengthen the contacts and co-operation between participating countries, scientists, biomass producers, machine developers, entrepreneurs, and end users; * to select the most urgent research and development areas, and to suggest projects of co-operation; * to deliver Proceedings from the meetings, and * to inform Ex-Co-members. Separate abstracts have been prepared for all the 7 papers presented.

  19. Back to Future Health Blueprint: The Effects of a Brief Bioenergy Economy Program on a Patient with Tethered Cord Syndrome

    Directory of Open Access Journals (Sweden)

    Farzad Goli

    2016-12-01

    Full Text Available Background: The spinal cord congenital abnormalities may prevent normal cephalad movement of the conusmedullaris such as tethered cord. A child or even an adult with these abnormalities may develop progressiveneurological dysfunction due to traction on the cord or nerve roots. As the most problematic technicalconsideration in surgery for the release of the tethered cord is how to preserve functions of neural elementsand rebuild the dural sac to maintain normal cerebrospinal fluid (CSF circulation; the priority is to treat thecondition through less invasive methods. Bioenergy economy (BEE is an integrative healing model which triesto abstract healing modalities and integrate them into a psychosomatic health system. In contrast toreductionistic and pathology-based approach of biomedical treatment, bioenergy healing is a salutogenic,holistic and metadiagnostic approach which creates healing responses from a blueprint of healthy body.Case Report: We report the process of a bioenergy economy intervention in a 10-year-old boy withclinical signs of drop foot, urinary incontinence, urinary reflux, and low back pain who was candidate forsurgeries by neurosurgical and urological criteria. The clinical results indicated that after about two yearsof 12 healing sessions in a brief bioenergy economy package of biofield scanning, biofield attunement,and hand-on self-healing, the patient’s clinical signs remarkably improved to the extent that he returned tonormal activities of his age and followed an athletic lifestyle.Conclusion: From a biosemiotic viewpoint, it can be discussed that bioenergy economy, by focusing onenhancing the pathways of salutogenesis was effective to evoke healing response in the patient’s body.The effect of the bioenergy economy practice may be due to the healing images and intentions flowedthrough patient’s body and healer-healee biofields’ coupling and interactions.

  20. Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment

    International Nuclear Information System (INIS)

    Creutzig, Felix; Corbera, Esteve; Bolwig, Simon; Hunsberger, Carol

    2013-01-01

    Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these models do not consider. Maintaining and enhancing robust livelihoods upon bioenergy deployment is an equally important sustainability goal that warrants greater attention. The social implications of biofuel production are complex, varied and place-specific, difficult to model, operationalize and quantify. However, a rapidly developing body of social science literature is advancing the understanding of these interactions. In this letter we link human geography research on the interaction between biofuel crops and livelihoods in developing countries to integrated assessments on biofuels. We review case-study research focused on first-generation biofuel crops to demonstrate that food, income, land and other assets such as health are key livelihood dimensions that can be impacted by such crops and we highlight how place-specific and global dynamics influence both aggregate and distributional outcomes across these livelihood dimensions. We argue that place-specific production models and land tenure regimes mediate livelihood outcomes, which are also in turn affected by global and regional markets and their resulting equilibrium dynamics. The place-specific perspective suggests that distributional consequences are a crucial complement to aggregate outcomes; this has not been given enough weight in comprehensive assessments to date. By narrowing the gap between place-specific case studies and global models, our discussion offers a route towards integrating livelihood and equity considerations into scenarios of future bioenergy deployment, thus contributing to a key challenge in sustainability sciences. (letter)

  1. Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment

    Science.gov (United States)

    Creutzig, Felix; Corbera, Esteve; Bolwig, Simon; Hunsberger, Carol

    2013-09-01

    Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these models do not consider. Maintaining and enhancing robust livelihoods upon bioenergy deployment is an equally important sustainability goal that warrants greater attention. The social implications of biofuel production are complex, varied and place-specific, difficult to model, operationalize and quantify. However, a rapidly developing body of social science literature is advancing the understanding of these interactions. In this letter we link human geography research on the interaction between biofuel crops and livelihoods in developing countries to integrated assessments on biofuels. We review case-study research focused on first-generation biofuel crops to demonstrate that food, income, land and other assets such as health are key livelihood dimensions that can be impacted by such crops and we highlight how place-specific and global dynamics influence both aggregate and distributional outcomes across these livelihood dimensions. We argue that place-specific production models and land tenure regimes mediate livelihood outcomes, which are also in turn affected by global and regional markets and their resulting equilibrium dynamics. The place-specific perspective suggests that distributional consequences are a crucial complement to aggregate outcomes; this has not been given enough weight in comprehensive assessments to date. By narrowing the gap between place-specific case studies and global models, our discussion offers a route towards integrating livelihood and equity considerations into scenarios of future bioenergy deployment, thus contributing to a key challenge in sustainability sciences.

  2. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system

    International Nuclear Information System (INIS)

    Popp, Alexander; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Klein, David; Bauer, Nico; Krause, Michael; Beringer, Tim; Gerten, Dieter; Edenhofer, Ottmar

    2011-01-01

    Biomass from cellulosic bioenergy crops is expected to play a substantial role in future energy systems, especially if climate policy aims at stabilizing greenhouse gas concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements and land availability for biomass plantations. This letter, by applying a modelling framework with detailed economic representation of the land and energy sector, explores the cost-effective contribution of bioenergy to a low-carbon transition, paying special attention to implications for the land system. In this modelling framework, bioenergy competes directly with other energy technology options on the basis of costs, including implicit costs due to biophysical constraints on land and water availability. As a result, we find that bioenergy from specialized grassy and woody bioenergy crops, such as Miscanthus or poplar, can contribute approximately 100 EJ in 2055 and up to 300 EJ of primary energy in 2095. Protecting natural forests decreases biomass availability for energy production in the medium, but not in the long run. Reducing the land available for agricultural use can partially be compensated for by means of higher rates of technological change in agriculture. In addition, our trade-off analysis indicates that forest protection combined with large-scale cultivation of dedicated bioenergy is likely to affect bioenergy potentials, but also to increase global food prices and increase water scarcity. Therefore, integrated policies for energy, land use and water management are needed.

  3. Advanced Biofuels Processing Development Unit

    Data.gov (United States)

    Federal Laboratory Consortium — The ABPDU at LBNL has a unique mission to partner with industry, National Labs, Bioenergy Research Centers, and academia to optimize, integrate and scale production...

  4. Food Access, Food Subsidy, and Residue-Based Bioenergy ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Food Access, Food Subsidy, and Residue-Based Bioenergy Production in ... The goal is to show how the Indian government can improve access to food ... IDRC has signed a Memorandum of Understanding (MoU) with the Government of ...

  5. Willow and poplar for bioenergy on former cropland

    DEFF Research Database (Denmark)

    Georgiadis, Petros

    and water demands of the trees. The water requirements of SRWCs are generally high, and high evapotranspiration rates in both SRC willow and SRF poplar decreased deep percolation, which along with low N concentrations led to low N leaching. Excessive N leaching was only observed when SRC was fertilized......Climate change is one of the 21st century’s greatest challenges and calls for immediate action through the implementation of mitigation strategies. A shift from fossil fuel to renewable energy is a key factor for reducing greenhouse gas emissions to the atmosphere, with bioenergy being...... the predominant sector of renewables in the current European and global energy markets. Dedicated energy crops, such as short rotation woody crops (SRWC), are promising bioenergy feedstock in southern Scandinavia due to their high yields. Such cropping systems have high demands for land, water, and nutrients...

  6. Algae as a Feedstock for Biofuels. An Assessment of the Current Status and Potential for Algal Biofuels Production. Joint Summary report of IEA-AMF Annex XXXIV-2 and IEA Bioenergy Task 39

    Energy Technology Data Exchange (ETDEWEB)

    O' Conner, D. [S and T2 Consultants, Inc. (Canada)

    2011-09-15

    In 2010, the IEA Advanced Motor Fuels Implementing Agreement and the IEA Bioenergy Task 39 both commissioned reports on the status and potential opportunities for Algal Biofuels. While there were substantial similarities in the findings of the two reports, each report provides unique perspectives on different aspects of the technology and the opportunities. This summary draws on both of those reports. The Task 39 report (Bioenergy Algal Biofuels.pdf) was authored by Al Darzins and Philip Pienkos (NREL, US) and Les Edye (BioIndustry Partners, Australia). The IEA AMF report was prepared by Karen Sikes and Ralph McGill (Sentech, Inc. US) and Martijn Van Walwijk (Independent Researcher).

  7. A methodology and decision support tool for informing state-level bioenergy policymaking: New Jersey biofuels as a case study

    Science.gov (United States)

    Brennan-Tonetta, Margaret

    This dissertation seeks to provide key information and a decision support tool that states can use to support long-term goals of fossil fuel displacement and greenhouse gas reductions. The research yields three outcomes: (1) A methodology that allows for a comprehensive and consistent inventory and assessment of bioenergy feedstocks in terms of type, quantity, and energy potential. Development of a standardized methodology for consistent inventorying of biomass resources fosters research and business development of promising technologies that are compatible with the state's biomass resource base. (2) A unique interactive decision support tool that allows for systematic bioenergy analysis and evaluation of policy alternatives through the generation of biomass inventory and energy potential data for a wide variety of feedstocks and applicable technologies, using New Jersey as a case study. Development of a database that can assess the major components of a bioenergy system in one tool allows for easy evaluation of technology, feedstock and policy options. The methodology and decision support tool is applicable to other states and regions (with location specific modifications), thus contributing to the achievement of state and federal goals of renewable energy utilization. (3) Development of policy recommendations based on the results of the decision support tool that will help to guide New Jersey into a sustainable renewable energy future. The database developed in this research represents the first ever assessment of bioenergy potential for New Jersey. It can serve as a foundation for future research and modifications that could increase its power as a more robust policy analysis tool. As such, the current database is not able to perform analysis of tradeoffs across broad policy objectives such as economic development vs. CO2 emissions, or energy independence vs. source reduction of solid waste. Instead, it operates one level below that with comparisons of kWh or

  8. Preparation of the soil for the energy policy turnaround. With bio-energy for more climate protection and sustainability. Collection of essays with contributions from science, practice and policy; Den Boden bereiten fuer die Energiewende. Mit Bioenergie fuer mehr Klimaschutz und Nachhaltigkeit. Aufsatzsammlung mit Beitraegen aus Wissenschaft, Praxis und Politik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    In order to create acceptance by understanding and in order to support the energy policy turnaround, the Agency for Renewable Energies (Berlin, Federal Republic of Germany) supplies several contributions to the following topics: (1) Bio-energy and the energy policy turnaround; (2) Sustainability by means of bio-energy, but how?; (3) How can energy crops modify the region?; (4) Bio-Energy and the landscape of the future; (5) Isles with green energy: Bio-Energy for decentralized solutions; (6) Bio-energy and organic agriculture; (7) Forest and field in the climate protection.

  9. Regional plan throughout sectional bioenergy of Castilla y Leon (PBCYL)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ayuste, R.; Diez, S.; Munoz, M. (Ente Regional de la Energia de Castilla y Leon, Leon (Spain))

    2009-07-01

    The Bioenergy Action Plan of Castilla y Leon (BAPCyL) is a tool of the Regional Government to set up measures for supporting the bioenergy sector. The plan has been elaborated by experts in energy, agriculture, woodlands, residues and economy from the Junta de castilla y Leon (the region government). The BAPCyL designers for 2020, according to European Union: Mobilize local biomass (1.600 ktep). Reach an electrical power of 260 MWe. provide heating for 250.000 people. Substitution of 10% of fossil fuels used in transport. It proposes a strategy with 50 measures and 100 specific actions, from the raw material to the final consumer: Resources: Plan of Mobilization Wood to increase the offer of the resource. Regional Energy crops Program. Complete the use of biogas from dumps. Improve the management of farmer, agricultures and agroofood residues. Inventory all organic residues available. Boost the associations of biomass producers. Users: Planning big projects. Biomass boilers for public buildings. RTDI in equipment, technology and process. Cross measures: Advising for SMEes and professional training. Biomass handbooks. Promotional campaigns. Standardization of biofuels. Regional Observatory for the bioenergy. (orig.)

  10. Industrial Ecology and Regional Development: Eco-Industrial Development as Cluster Policy

    OpenAIRE

    Deutz, Pauline; Gibbs, David

    2008-01-01

    Abstract Aspects of industrial ecology fit closely with work in regional development investigating clustering, networking, and local economic development. However, there has been limited cross fertilisation between these bodies of literature. This paper uses an empirical focus on eco-industrial developments in the USA to postulate that IS can be viewed as a distinct cluster concept and to consider the implications of this for both IE and RD policies. (Deutz,...

  11. Combining Bioenergy with CCS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a carbon reduction technology that offers permanent net removal of carbon dioxide (CO2) from the atmosphere. This has been termed negative carbon dioxide emissions, and offers a significant advantage over other mitigation alternatives, which only decrease the amount of emissions to the atmosphere. The benefits inherent within this technology are currently receiving increased attention from policy makers. To facilitate the development of appropriate policy incentives, this paper reviews the treatment of negative carbon dioxide emissions under current and planned international carbon accounting frameworks. It finds that, while current frameworks provide limited guidance, proposed and revised guidelines could provide an environmentally sound reporting framework for BECCS. However, the paper also notes that, as they currently stand, new guidelines do not tackle a critical issue that has implications for all biomass energy systems, namely the overall carbon footprint of biomass production and use. It recommends that, to the best extent possible, all carbon impacts of BECCS are fully reflected in carbon reporting and accounting systems under the UNFCCC and Kyoto Protocol.

  12. Assessing hydrological impacts of tree-based bioenergy feedstock

    CSIR Research Space (South Africa)

    Gush, Mark B

    2010-01-01

    Full Text Available This chapter provides a methodology for assessing the hydrological impacts of tree-based bioenergy feedstock. Based on experience gained in South Africa, it discusses the tasks required to reach an understanding of the likely water resource impacts...

  13. Sustainable bioenergy production with little carbon debt in the Loess Plateau of China.

    Science.gov (United States)

    Liu, Wei; Peng, Cheng; Chen, Zhifen; Liu, Yue; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a key strategy for mitigating global climate change, bioenergy production by reducing CO2 emissions plays an important role in ensuring sustainable development. However, land-use change by converting natural ecosystems into energy crop field could create a carbon debt at the beginning. Thus, the potential carbon debt calculation is necessary for determining a promising bioenergy crop production, especially in the region rich of marginal land. Here, we used high-resolution historical land-use data to identify the marginal land available and to evaluate the carbon debt of planting Miscanthus in the Loess Plateau, China. We found that there were 27.6 Mha for energy production and 9.7 Mha for ecological restoration, with total annual production of 0.41 billion tons of biomass. We also found that soil carbon sequestration and total CO2 mitigation were 9.3 Mt C year(-1) and 542 Mt year(-1), respectively. More importantly, the result showed that planting Miscanthus on marginal land in the Loess Plateau only took 0.97 years on average to repay the carbon debt. Our study demonstrated that Miscanthus production in suitable marginal land in the Loess Plateau can offer considerable renewable energy and mitigate climate change with little carbon debt. These results suggested that bioenergy production in the similar arid and semiarid region worldwide would contribute to carbon sequestration in the context of rapid climate change.

  14. Bioenergy in Brazil and Europe: a comparative analysis; Bioenergia no Brasil e na Europa: uma analise comparativa

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Nivalde Jose de [Universidade Federal do Rio de Janeiro (IE/UFRJ), RJ (Brazil). Inst. de Economia], e-mail: nivalde@ie.ufrj.br; Dantas, Guilherme de Azevedo [Universidade Federal do Rio de Janeiro (GESEL/UFRJ), RJ (Brazil). Grupo de Estudos do Setor Eletrico], e-mail: guilhermecrvg@yahoo.com.br

    2008-07-01

    A higher application of bioenergy is one of the existing ways to adequate the necessity of an expansion in the energy supply with the mitigation of global warming. The consumption of biofuel in the transport sector is the most usual and important use of biomass, however, bioenergy may also have a relevant contribution to the world electrical matrix. A comparative analysis shows that Brazil has consolidate the usage of biofuel while Europe is having problems to accomplish the biofuels levels established in the European Union guidelines. However, some european countries are developing their bioelectrical generation potential in a much more efficient way than Brazil. Therefore , brazilian policies to support bioelectricity should observe the successful instruments applied in Europe. (author)

  15. Air-quality and Climatic Consequences of Bioenergy Crop Cultivation

    Science.gov (United States)

    Porter, William Christian

    Bioenergy is expected to play an increasingly significant role in the global energy budget. In addition to the use of liquid energy forms such as ethanol and biodiesel, electricity generation using processed energy crops as a partial or full coal alternative is expected to increase, requiring large-scale conversions of land for the cultivation of bioenergy feedstocks such as cane, grasses, or short rotation coppice. With land-use change identified as a major contributor to changes in the emission of biogenic volatile organic compounds (BVOCs), many of which are known contributors to the pollutants ozone (O 3) and fine particulate matter (PM2.5), careful review of crop emission profiles and local atmospheric chemistry will be necessary to mitigate any unintended air-quality consequences. In this work, the atmospheric consequences of bioenergy crop replacement are examined using both the high-resolution regional chemical transport model WRF/Chem (Weather Research and Forecasting with Chemistry) and the global climate model CESM (Community Earth System Model). Regional sensitivities to several representative crop types are analyzed, and the impacts of each crop on air quality and climate are compared. Overall, the high emitting crops (eucalyptus and giant reed) were found to produce climate and human health costs totaling up to 40% of the value of CO 2 emissions prevented, while the related costs of the lowest-emitting crop (switchgrass) were negligible.

  16. Bioenergy policy and market development in Finland and Sweden

    International Nuclear Information System (INIS)

    Ericsson, Karin; Huttunen, Suvi; Nilsson, L.J.; Svenningsson, Per

    2004-01-01

    The use of biomass in Finland and Sweden has steadily increased over the past 25 years, up to approximately 20% of the primary energy supply in 2001. In both countries most biomass originates from forests. Forest biomass is now an integral part of modern energy systems, although primarily in industry and in the heating sector. For example, biomass accounts for 7.9% and 53% of the fuel mix in district heating in Finland and Sweden, respectively. The general energy policy of both countries has supported biomass for energy over the entire period, although specific policies have changed with time. Research, development and demonstration has been continuously supported, and some subsidy schemes have been applied, in particular, for district heating systems (DHS) and combined heat and power. Heavy taxation of competing fossil fuels seems to have been the most effective policy instrument, although this has been directed mainly at the heat and transportation fuel markets. Electricity taxes are imposed on consumption (industry is largely exempt), and do not discriminate significantly between the sources of electricity. Starting in 2003, Sweden will have a quota-based system, a renewable portfolio standard, which is expected to increase biomass-based electricity production. Both countries possess vast and not fully exploited biomass resources in the form of forests, and have a history of rational and large-scale forestry. Strong actors exist both with regard to forest ownership and the industrial processing of forest products. The user side, in particular, represented by DHS, can also be characterised by strong and professional management. Over time, structures have developed that facilitate an increased use of biomass for energy, for example, the forest industry infrastructure and extensive district heating. Actors within these structures have had the ability to react to policies, resulting in a stable growth in biomass use

  17. Ecological assessment of integrated bioenergy systems using the Sustainable Process Index

    International Nuclear Information System (INIS)

    Krotscheck, C.; Konig, F.; Obernberger, I.

    2000-01-01

    Biomass utilisation for energy production presently faces an uphill battle against fossil fuels. The use of biomass must offer additional benefits to compensate for higher prices: on the basis of a life cycle assessment (using BEAM to evaluate a variety of integrated bioenergy systems in connection with the Sustainable Process Index as a highly aggregated environmental pressure index) it is shown that integrated bioenergy systems are superior to fossil fuel systems in terms of environmental compatibility. The implementation of sustainability measures provides additional valuable information that might help in constructing and optimising integrated bioenergy systems. For a set of reference processes, among them fast pyrolysis, atmospheric gasification, integrated gasification combined cycle (IGCC), combustion and steam cycle (CS) and conventional hydrolysis, a detailed impact assessment is shown. Sensitivity analyses of the most important ecological parameters are calculated, giving an overview of the impacts of various stages in the total life cycle and showing 'what really matters'. Much of the ecological impact of integrated bioenergy systems is induced by feedstock production. It is mainly the use of fossil fuels in cultivation, harvesting and transportation as well as the use of fertilisers in short-rotation coppice production that impose considerable ecological pressure. Concerning electricity generation the most problematic pressures are due to gaseous emissions, most notably the release of NO x . Moreover, a rather complicated process (high amount of grey energy) and the use of fossil pilot fuel (co-combustion) leads to a rather weak ecological performance in contrast to other 100% biomass-based systems. (author)

  18. Sustainable International Bioenergy Trade. Evaluating the impact of sustainability criteria and policy on past and future bioenergy supply and trade

    NARCIS (Netherlands)

    Lamers, Patrick

    2014-01-01

    Within a single decade, bioenergy has shifted from a largely local energy source with marginal trade volumes to a globally traded item. The primary objective of this thesis is to evaluate the links between national renewable energy support and trade policies and market forces on past global

  19. Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Natasha eKhatri

    2013-12-01

    Full Text Available Powered by glucose metabolism, the brain is the most energy-demanding organ in our body, accounting for a quarter of total oxygen consumption. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport and mitochondria translocation. Energy insufficiency will be sensed by the AMP-activated dependent protein kinase (AMPK, a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries.

  20. Long Distance Bioenergy Logistics: An assessment of costs and energy consumption for various biomass transport chains

    NARCIS (Netherlands)

    Suurs, R.A.A.

    2002-01-01

    This study gives an analysis of costs and energy consumption, associated with long distance bioenergy transport systems. In order to create the possibility of obtaining an insight in the system’s key factors, a model has been developed, taking into account different production systems,

  1. Sweet sorghum as a model system for bioenergy crops.

    Science.gov (United States)

    Calviño, Martín; Messing, Joachim

    2012-06-01

    Bioenergy is the reduction of carbon via photosynthesis. Currently, this energy is harvested as liquid fuel through fermentation. A major concern, however, is input cost, in particular use of excess water and nitrogen, derived from an energy-negative process, the Haber-Bosch method. Furthermore, the shortage of arable land creates competition between uses for food and fuel, resulting in increased living expenses. This review seeks to summarize recent knowledge in genetics, genomics, and gene expression of a rising model species for bioenergy applications, sorghum. Its diploid genome has been sequenced, it has favorable low-input cost traits, and genetic crosses between different cultivars can be used to study allelic variations of genes involved in stem sugar metabolism and incremental biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The Controversies over Bioenergy in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Andersen, Bente Hessellund

    2012-01-01

    convert coal fired power plants to biomass in order to sustain the role of these power plants. Their increasing use of imported wood pellets is criticized for increasing greenhouse gas emissions because of fast logging of years of forest growth. A Danish biotech company is developing enzymes...... a prominent role in several Danish climate and energy plans, alongside with wind and solar energy, and energy savings. There are major controversies about targets for bioenergy with respect to acceptable types, sources and amounts of biomass. Strong path dependency is identified. Energy companies in Denmark...... for processing of biomass for biofuels. The alignment with the private car regime is strong, because biofuel enables continuation of fuel-driven vehicles as dominating transportation mode. Danish farmers see manure as important source for biogas while arguing for reduction of climate impact and nuisances from...

  3. Field windbreaks for bioenergy production and carbon sequestration

    Science.gov (United States)

    Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...

  4. Regional carbon dioxide implications of forest bioenergy production

    NARCIS (Netherlands)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-01-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest

  5. Fiscal 1999 survey report. Survey of leading countries' approaches to biomass energy development; 1999 nendo shuyokoku ni okeru biomass energy kaihatsu eno torikumi ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The survey aims to help Japan deliberate its future biomass energy development strategy including the course Japan is to follow in its research and development of biomass energy by clarifying leading countries' approaches to the subject matter and trends of their research and development efforts in this connection. The states of biomass energy development in the U.S. and Europe are reported. In the U.S., President Clinton issued Executive Order 13134 on August 12, 1999, regarding bio-based products and bioenergy development. In this country, bioenergy and bio-based production technologies have developed to reach a stage where business pays, and commercial plants are in service. The U.S. Administration mentions as a strategy the efficient development of the bioenergy industry. In Europe, where resources are versatile and local, it is difficult to assess the economy of scale, and small-scale development efforts are being accumulated. Practical technologies under development mostly involve direct combustion. European measures are similar to U.S. measures in that such political goals as local development and employment promotion are firmly woven into them. (NEDO)

  6. Localisation for industrial development

    CSIR Research Space (South Africa)

    Bhugwandin, Ashley

    2017-10-01

    Full Text Available This presentation focuses on localisation for industrial development, and is presented by Ashley Bhugwandin at The 6th CSIR Conference: Ideas that work for industrial development, 5-6 October 2017, CSIR International Convention Centre, Pretoria...

  7. The role of bioenergy in a renewable energy system - perspectives for bioenergy on the background of the energy system transition in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Scholwin, Frank [Deutsches Biomasseforschungszentrum, Leipzig (Germany); Universitaet Rostock, Rostock (Germany)], e-mail: frank.scholwin@uni-rostock.de; Szarka, Nora [Deutsches Biomasseforschungszentrum, Leipzig (Germany); Nelles, Michael [Universitaet Rostock, Rostock (Germany)

    2012-11-01

    The German Federal Government has set the target of a minimum 80% share of renewable energies in the power consumption and 60% in the final energy consumption by 2050, in order to contribute to the ambitious greenhouse gas reduction target of 80-95% reduction compared to 1990. In such a future energy system the role of biomass must be reviewed and the most intelligent and effective solutions for its conversion and use must be evaluated. On this background this contribution highlights technological possibilities to supply future energy demand in different sectors,, describes possible benefits in terms of security of supply and economic advantages, as well as requirements regarding biomass supply assortments for demand oriented bioenergy supply technologies. The results show technical as well as economic feasibility of demand oriented bioenergy supply under today's conditions.

  8. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small

  9. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.

    Science.gov (United States)

    McKechnie, Jon; Colombo, Steve; Chen, Jiaxin; Mabee, Warren; MacLean, Heather L

    2011-01-15

    The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. We integrate life cycle assessment (LCA) and forest carbon analysis to assess total GHG emissions of forest bioenergy over time. Application of the method to case studies of wood pellet and ethanol production from forest biomass reveals a substantial reduction in forest carbon due to bioenergy production. For all cases, harvest-related forest carbon reductions and associated GHG emissions initially exceed avoided fossil fuel-related emissions, temporarily increasing overall emissions. In the long term, electricity generation from pellets reduces overall emissions relative to coal, although forest carbon losses delay net GHG mitigation by 16-38 years, depending on biomass source (harvest residues/standing trees). Ethanol produced from standing trees increases overall emissions throughout 100 years of continuous production: ethanol from residues achieves reductions after a 74 year delay. Forest carbon more significantly affects bioenergy emissions when biomass is sourced from standing trees compared to residues and when less GHG-intensive fuels are displaced. In all cases, forest carbon dynamics are significant. Although study results are not generalizable to all forests, we suggest the integrated LCA/forest carbon approach be undertaken for bioenergy studies.

  10. Carbon accounting of forest bioenergy: from model calibrations to policy options (Invited)

    Science.gov (United States)

    Lamers, P.

    2013-12-01

    Programs to stimulate biomass use for the production of heating/cooling and electricity have been implemented in many countries as part of their greenhouse gas emission reduction strategies. Critiques claim however that the use of forest biomass, e.g. as a replacement of hard-coal in large-scale power plants or mineral oil fuelled residential heating boilers, countervails carbon saving and thus also climate change mitigation strategies, at least in the short-term, as forest biomass combustion releases previously stored biogenic carbon back into the atmosphere. While there seems general agreement that carbon emitted from bioenergy combustion was and will again be sequestered from the atmosphere given a sustainable biomass management system, there is inherent concern that carbon release and sequestration rates may not be in temporal balance with each other and eventually jeopardize mid-century carbon/temperature/climate targets. So far, biomass carbon accounting systems (including those that are part of regulatory standards) have not incorporated this potential temporal imbalance or ';carbon debt'. The potential carbon debt caused by wood harvest and the resulting time spans needed to reach pre-harvest carbon levels (payback) or those of a reference case (parity) have become important parameters for climate and bioenergy policy developments. The present range of analyses however varies in assumptions, regional scopes, and conclusions. Policy makers are confronted with this portfolio while needing to address the temporal carbon aspect in current regulations. In order to define policies for our carbon constrained world, it is critical to better understand the dimensions and regional differences of these carbon cycles. This paper/presentation discusses to what extent and under which circumstances (i.e. bioenergy systems) a temporal forest carbon imbalance could jeopardize future temperature and eventually climate targets. It further reviews the current state of

  11. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops.

    Directory of Open Access Journals (Sweden)

    Yuejian Mao

    Full Text Available Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR and diversity (barcoded pyrosequencing of key functional genes (nifH, bacterial/archaeal amoA and nosZ and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop, in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA not bacteria (AOB, indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community.

  12. The impact of sustainability criteria on the costs and potentials of bioenergy production. An exploration of the impact of the implementation of sustainability criteria on the costs and potential of bioenergy production, applied for case studies in Brazil and Ukraine

    International Nuclear Information System (INIS)

    Smeets, E.; Faaij, A.; Lewandowski, I.

    2005-02-01

    The goal of this study is to make a first attempt to analyse the impact on the potential (quantity) and the costs (per unit) of bioenergy that the compliance with various sustainability criteria brings along. The nature of this work is exploratory. Because of the broad set of issues covered very little work has been published on which we could build. Ukraine and Brazil are used as case studies, because both regions are identified as promising bioenergy producers. This study is part of the FAIR Biotrade project, which is aimed to identify and quantify the impact of sustainability criteria on the potential of bioenergy. Previous work includes an identification of sustainability criteria relevant for bioenergy, an assessment of the environmental and economic costs of long distance biotrade and an assessment of bioenergy production potentials in 2050 in various world regions. In section 2 the approach is presented which is used to select and quantify the impact of sustainability criteria on bioenergy production. In section 3 the selection of the various sustainability criteria is described in detail, followed by a detailed description of how the various socials, ecological and economical sustainability criteria are operationalised. In section 4 (intermediate) results are presented for each sustainability criterium. In section 5 final results are presented, followed by a discussion and by conclusions (section 6)

  13. Sustainable bioenergy production from Missouri's Ozark forests

    Science.gov (United States)

    Henry E. Stelzer; Chris Barnett; Verel W. Bensen

    2008-01-01

    The main source of wood fiber for energy resides in Missouri's forests. Alternative bioenergy systems that can use forest thinning residues are electrical energy, thermal energy, and liquid bio-fuel. By applying a thinning rule and accounting for wood fiber that could go into higher value wood products to all live biomass data extracted from the U.S. Forest...

  14. Social Aspects of Bioenergy Sustainability Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Luchner, Sarah [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Johnson, Kristen [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Lindauer, Alicia [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); McKinnon, Taryn [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Broad, Max [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-05-30

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office held a workshop on “Social Aspects of Bioenergy” on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The findings and recommendations from the workshop and webinar are compiled in this report.

  15. Fiscal 1999 survey report. Survey of leading countries' approaches to biomass energy development; 1999 nendo shuyokoku ni okeru biomass energy kaihatsu eno torikumi ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The survey aims to help Japan deliberate its future biomass energy development strategy including the course Japan is to follow in its research and development of biomass energy by clarifying leading countries' approaches to the subject matter and trends of their research and development efforts in this connection. The states of biomass energy development in the U.S. and Europe are reported. In the U.S., President Clinton issued Executive Order 13134 on August 12, 1999, regarding bio-based products and bioenergy development. In this country, bioenergy and bio-based production technologies have developed to reach a stage where business pays, and commercial plants are in service. The U.S. Administration mentions as a strategy the efficient development of the bioenergy industry. In Europe, where resources are versatile and local, it is difficult to assess the economy of scale, and small-scale development efforts are being accumulated. Practical technologies under development mostly involve direct combustion. European measures are similar to U.S. measures in that such political goals as local development and employment promotion are firmly woven into them. (NEDO)

  16. The market for bioenergy in Europe

    International Nuclear Information System (INIS)

    Kopetz, H.

    1997-01-01

    Conference paper. The demand for energy in Europe at present amounts to 16 PWh. Of this, 50% is needed for heating, 27% for transportation, 23% for light, communication and power. The European Commission in 1996 proposed that the share of renewables should be doubled to 12% by 2010. It is calculated that 3/4 of the supply of renewables must be supplied by biomass. A comprehensive energy crop programme is needed to guarantee the supply. According to calculations, 77% of the bioenergy supply will be used to deliver heat. For small heating installations financial support is necessary to overcome the investment costs. It is recommended that biomass based district heating grids should be subsidized by a joint programme of the Commission and the national governments. For industrial users little or no subsidies are required. It is suggested that the members of the EU should submit to the commission regional heat concepts, ''heat from biomass'', of a certain specified content. The necessary investment should come from private investors, from public money and from the EU. Green electricity is a way to promote renewable energy resources. As a realistic target for electricity from biomass within 12 years, 80 TWh is proposed. The production of raw materials for the energy sector on set-aside land is unsuccessful because of the changing set-aside rate. Some remedial actions are proposed

  17. The economic, political and social issues, hindering the adoption of bioenergy in Pakistan: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Umair [UCH, Moonoo Chowk, Lahore (Pakistan)], e-mail: Umair@uch.com.pk

    2012-11-01

    The paper will inform the audience about the energy crisis that has crippled Pakistan's economic growth since the last 6 years, and the role that Bioenergy can play in resolving the issue. In order to help ease Pakistan in its effort to curb this crisis and to get useful insights into the role that Bioenergy can play in solving Pakistan's problems, Business planning for a Small or Medium sized enterprise was attempted. The results were not encouraging and shed light onto the financial and technical hindrances involved in creating and running Small or Medium bioenergy businesses in Pakistan. These issues themselves were linked to the more general Social, Economic and Political barriers for the adoption of Bioenergy in the country. The paper concludes by providing suggestions and recommendations, as to what the government, private sector as well as the international community can do in order to overcome the crisis.

  18. Net land-atmosphere flows of biogenic carbon related to bioenergy: towards an understanding of systemic feedbacks.

    Science.gov (United States)

    Haberl, Helmut

    2013-07-01

    The notion that biomass combustion is carbon neutral vis-a-vis the atmosphere because carbon released during biomass combustion is absorbed during plant regrowth is inherent in the greenhouse gas accounting rules in many regulations and conventions. But this 'carbon neutrality' assumption of bioenergy is an oversimplification that can result in major flaws in emission accounting; it may even result in policies that increase, instead of reduce, overall greenhouse gas emissions. This commentary discusses the systemic feedbacks and ecosystem succession/land-use history issues ignored by the carbon neutrality assumption. Based on recent literature, three cases are elaborated which show that the C balance of bioenergy may range from highly beneficial to strongly detrimental, depending on the plants grown, the land used (including its land-use history) as well as the fossil energy replaced. The article concludes by proposing the concept of GHG cost curves of bioenergy as a means for optimizing the climate benefits of bioenergy policies.

  19. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.)

    NARCIS (Netherlands)

    Allwright, Mike Robert; Payne, Adrienne; Emiliani, Giovanni; Milner, Suzanne; Viger, Maud; Rouse, Franchesca; Keurentjes, Joost J.B.; Bérard, Aurélie; Wildhagen, Henning; Faivre-Rampant, Patricia; Polle, Andrea; Morgante, Michele; Taylor, Gail

    2016-01-01

    Background: Second generation (2G) bioenergy from lignocellulosic feedstocks has the potential to develop as a sustainable source of renewable energy; however, significant hurdles still remain for large-scale commercialisation. Populus is considered as a promising 2G feedstock and understanding

  20. Perennial Grass Bioenergy Cropping on Wet Marginal Land

    NARCIS (Netherlands)

    Das, Srabani; Teuffer, Karin; Stoof, Cathelijne R.; Walter, Michael F.; Walter, M.T.; Steenhuis, Tammo S.; Richards, Brian K.

    2018-01-01

    The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate