WorldWideScience

Sample records for bioenergy feedstock supply

  1. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  2. Quantifying the Impact of Feedstock Quality on the Design of Bioenergy Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Krystel K. Castillo-Villar

    2016-03-01

    Full Text Available Logging residues, which refer to the unused portions of trees cut during logging, are important sources of biomass for the emerging biofuel industry and are critical feedstocks for the first-type biofuel facilities (e.g., corn-ethanol facilities. Logging residues are under-utilized sources of biomass for energetic purposes. To support the scaling-up of the bioenergy industry, it is essential to design cost-effective biofuel supply chains that not only minimize costs, but also consider the biomass quality characteristics. The biomass quality is heavily dependent upon the moisture and the ash contents. Ignoring the biomass quality characteristics and its intrinsic costs may yield substantial economic losses that will only be discovered after operations at a biorefinery have begun. This paper proposes a novel bioenergy supply chain network design model that minimizes operational costs and includes the biomass quality-related costs. The proposed model is unique in the sense that it supports decisions where quality is not unrealistically assumed to be perfect. The effectiveness of the proposed methodology is proven by assessing a case study in the state of Tennessee, USA. The results demonstrate that the ash and moisture contents of logging residues affect the performance of the supply chain (in monetary terms. Higher-than-target moisture and ash contents incur in additional quality-related costs. The quality-related costs in the optimal solution (with final ash content of 1% and final moisture of 50% account for 27% of overall supply chain cost. Based on the numeral experimentation, the total supply chain cost increased 7%, on average, for each additional percent in the final ash content.

  3. Mobilizing Sustainable Bioenergy Supply Chains

    DEFF Research Database (Denmark)

    Smith, Tat; Lattimore, Brenna; Berndes, Göran

    International Bioenergy Trade: Securing Supply and Demand), 42 (Biorefining – Sustainable Processing of Biomass into a Spectrum of Marketable Bio-based Products and Bioenergy), and 43 (Biomass Feedstocks for Energy Markets). The purpose of the collaboration has been to analyze prospects for large...

  4. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show how these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of nature’s diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain

  5. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  6. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    Science.gov (United States)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification

  7. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    Energy Technology Data Exchange (ETDEWEB)

    Perlack, R.D.

    2005-12-15

    whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  8. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  9. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply

    Energy Technology Data Exchange (ETDEWEB)

    Perlack, Robert D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wright, Lynn L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Turhollow, Anthony F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Graham, Robin L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stokes, Bryce J. [U.S. Department of Agriculture, Washington, D.C. (United States); Erbach, Donald C. [U.S. Department of Agriculture, Washington, D.C. (United States)

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of the country's present petroleum consumption.

  10. Selecting Metrics for Sustainable Bioenergy Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Mulholland, Patrick J [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL; Wright, Lynn L [ORNL

    2009-01-01

    Key decisions about land-use practices and dynamics in biofuel systems affect the long-term sustainability of biofuels. Choices about what crops are grown and how are they planted, fertilized, and harvested determine the effects of biofuels on native plant diversity, competition with food crops, and water and air quality. Those decisions also affect economic viability since the distance that biofuels must be transported has a large effect on the market cost of biofuels. The components of a landscape approach include environmental and socioeconomic conditions and the bioenergy features [type of fuel, plants species, management practices (e.g., fertilizer and pesticide applications), type and location of production facilities] and ecological and biogeochemical feedbacks. Significantly, while water (availability and quality) emerges as one of the most limiting factors to sustainability of bioenergy feedstocks, the linkage between water and bioenergy choices for land use and management on medium and large scales is poorly quantified. Metrics that quantify environmental and socioeconomic changes in land use and landscape dynamics provide a way to measure and communicate the influence of alternative bioenergy choices on water quality and other components of the environment. Cultivation of switchgrass could have both positive and negative environmental effects, depending on where it is planted and what vegetation it replaces. Among the most important environmental effects are changes in the flow regimes of streams (peak storm flows, base flows during the growing season) and changes in stream water quality (sediment, nutrients, and pesticides). Unfortunately, there have been few controlled studies that provide sufficient data to evaluate the hydrological and water quality impacts of conversion to switchgrass. In particular, there is a need for experimental studies that use the small watershed approach to evaluate the effects of growing a perennial plant as a biomass crop

  11. Feedstock Supply and Logistics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Providing biomass for conversion into high-quality biofuels, biopower, and bioproducts represents an economic opportunity for communities across the nation. The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) and its partners are developing the technologies and systems needed to sustainably and economically deliver a diverse range of biomass in formats that enable efficient use in biorefineries.

  12. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, April 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country’s present petroleum consumption – the goal set by the Biomass R&D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  14. Interfacing feedstock logistics with bioenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  15. Designing selection criteria for reed canarygrass as a bioenergy feedstock

    Science.gov (United States)

    Reed canarygrass (Phalaris arundinacea L.) is a perennial C3 grass with a circumglobal distribution in the northern hemisphere and adaptation to a wide range of environmental conditions. This species is currently under development as a bioenergy feedstock in both North America and Europe. Thus, the ...

  16. Utilization of summer legumes as bioenergy feedstocks

    Science.gov (United States)

    Sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer legume—cowpeas (Vigna unguiculata), sunn hemp was superior in biomass yield and subsequent energy yield. S...

  17. Utilization of summer legumes as bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Keri B.; Bauer, Philip J.; Ro, Kyoung S. [United States Department of Agriculture, ARS, Coastal Plains Soil, Water, and Plant Research Center, 2611 W. Lucas St. Florence, SC 29501 (United States)

    2010-12-15

    Sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer legume - cowpeas (Vigna unguiculata), sunn hemp was superior in biomass yield (kg ha{sup -1}) and subsequent energy yield (GJ ha{sup -1}). In one year of the study after 12 weeks of growth, sunn hemp had 10.7 Mg ha{sup -1} of biomass with an energy content of 19.0 Mg ha{sup -1}. This resulted in an energy yield of 204 GJ ha{sup -1}. The energy content was 6% greater than that of cowpeas. Eventhough sunn hemp had a greater amount of ash, plant mineral concentrations were lower in some cases of minerals (K, Ca, Mg, S) known to reduce thermochemical conversion process efficiency. Pyrolytic degradation of both legumes revealed that sunn hemp began to degrade at higher temperatures as well as release greater amounts of volatile matter at a faster rate. (author)

  18. Sustainable Palm Oil Production For Bioenergy Supply Chain

    OpenAIRE

    Ng, Wai Kiat

    2009-01-01

    A bioenergy supply chain is formed by many parts which from the raw material, biomass feedstock until the distribution and utilisation. The upstream activity is always managed in a sustainable way in order to be capable enough to support the downstream activity. In this dissertation, the sustainable production of palm oil is focused and researched through problem identification and solving by using the operation management perspective and practices. At first, the global biomass industry is st...

  19. Bioenergy Project Development and Biomass Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Modern biomass, and the resulting useful forms of bioenergy produced from it, are anticipated by many advocates to provide a significant contribution to the global primary energy supply of many IEA member countries during the coming decades. For non-member countries, particularly those wishing to achieve economic growth as well as meet the goals for sustainable development, the deployment of modern bioenergy projects and the growing international trade in biomass-based energy carriers offer potential opportunities.

  20. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  1. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.

    Science.gov (United States)

    Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K

    2018-03-01

    Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.

  2. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products.

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-04-06

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.

  3. A Landscape Vision for Sustainable Bioenergy Feedstock Production

    Science.gov (United States)

    Feedstock production for biofuel and other bioproducts is poised to rejuvenate rural economies, but may lead to long-term degradation of soil resources or other adverse and unintended environmental consequences if the practices are not developed in a sustainable manner. This presentation will examin...

  4. Bio-energy feedstock yields and their water quality benefits in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Parajuli, Prem B.

    2011-08-10

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  5. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  6. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-01-01

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops. PMID:22482032

  7. Prospects for Bioenergy in Europe. Supply, Demand and Trade

    International Nuclear Information System (INIS)

    Ericsson, Karin

    2006-11-01

    Renewable energy sources (RES), such as biomass, can be used to address two important issues in Europe: climate change and energy security. If biomass is produced sustainably and used efficiently, bioenergy contributes very little to CO 2 emissions. The overall objective of the work presented in this thesis is to provide a scientific basis describing how bioenergy can play a fundamental role in the transition to more sustainable energy systems. For this purpose, an assessment of the potential biomass supply was made. This assessment shows that the long-term biomass supply could amount to up to 16 EJ/y in the EU27, i.e. 21% of the current primary energy supply, taking environmental and land-use restrictions into account. The greater part of this potential biomass supply consists of perennial energy crops. Thus, if biomass is to play a major role in the future energy supply, large-scale perennial energy crop production is required. The analysis of the economics of growing willow, a perennial energy crop, indicates that it can be equally viable for the farmer as that of cereal crops if subsidies and the cost of risk are excluded. In a strategy to reduce the cost of risk, a central issue is to create opportunities for a long-term demand for bioenergy. In Sweden and Finland, two of the leading bioenergy-using countries in Europe, energy and CO 2 taxes have been the key instruments in increasing the use of bioenergy. Creating opportunities for bioenergy in general will not immediately or necessarily stimulate perennial crop production since production costs are at the high end of the biomass cost range. In a strategy to stimulate perennial crop production, large coal-fired power and combined heat and power (CHP) plants can play an important role. Co-firing of biofuels in these plants is a low-risk bioenergy strategy for energy companies. The continuous and, compared to other continents in the world, more intense promotion of bioenergy in Europe is likely to increase

  8. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  9. Bioenergy

    CERN Document Server

    Wall, Judy; Demain, Arnold L

    2008-01-01

    Given the limited supply of fossil fuels and the devastating effects of ever-increasing greenhouse gases, researchers have been committed to finding alternative fuel sources. Perhaps one of the least explored areas is bioenergy from microbes. In this landmark volume, world-renowned experts explore the possible contributions of microbes to the next generation of fuels. In 31 detailed chapters, Bioenergy provides thorough explanations of the current knowledge and future areas for research on microbial energy conversions. The volume begins with 10 chapters on ethanol production from cellulosic fe

  10. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be

  11. IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014—United States

    Energy Technology Data Exchange (ETDEWEB)

    Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heath, Brendi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long

  12. Bioenergy and Food Supply: A Spatial-Agent Dynamic Model of Agricultural Land Use for Jiangsu Province in China

    Directory of Open Access Journals (Sweden)

    Kesheng Shu

    2015-11-01

    Full Text Available In this paper we develop an agent-based model to explore a feasible way of simultaneously providing sufficient food and bioenergy feedstocks in China. Concerns over the competition for agricultural land resources between food and bioenergy supply hinder the further development of bioenergy, especially in China, the country that needs to feed the world’s largest population. Prior research has suggested the introduction of energy crops and reviewed the resulting agricultural land use change in China. However, there is a lack of quantitative studies which estimate the value, contribution, and impact of bioenergy for specific conditions at the county level and provide adequate information to guide local practices. To fill this gap, we choose the Jiangsu Province in China as a case study, build up a spatial-agent dynamic model of agricultural land use, and perform a sensitivity analysis for important parameters. The simulation results show that straw from conventional crops generally dominates Jiangsu’s biomass supply with a contribution above 85%. The sensitivity analyses reveal severe consequences of bioenergy targets for local land use. For Jiangsu Province, reclaimed mudflats, an alternative to arable lands for energy crop plantation, help to secure the local biomass supply and to alleviate the land use conflict between food and biomass production.

  13. Evolutionary algorithms approach for integrated bioenergy supply chains optimization

    International Nuclear Information System (INIS)

    Ayoub, Nasser; Elmoshi, Elsayed; Seki, Hiroya; Naka, Yuji

    2009-01-01

    In this paper, we propose an optimization model and solution approach for designing and evaluating integrated system of bioenergy production supply chains, SC, at the local level. Designing SC that simultaneously utilize a set of bio-resources together is a complicated task, considered here. The complication arises from the different nature and sources of bio-resources used in bioenergy production i.e., wet, dry or agriculture, industrial etc. Moreover, the different concerns that decision makers should take into account, to overcome the tradeoff anxieties of the socialists and investors, i.e., social, environmental and economical factors, was considered through the options of multi-criteria optimization. A first part of this research was introduced in earlier research work explaining the general Bioenergy Decision System gBEDS [Ayoub N, Martins R, Wang K, Seki H, Naka Y. Two levels decision system for efficient planning and implementation of bioenergy production. Energy Convers Manage 2007;48:709-23]. In this paper, brief introduction and emphasize on gBEDS are given; the optimization model is presented and followed by a case study on designing a supply chain of nine bio-resources at Iida city in the middle part of Japan.

  14. Lignocellulosic feedstock supply systems with intermodal and overseas transportation

    NARCIS (Netherlands)

    Hoefnagels, Ric; Searcy, E.; Kafferty, K.; Cornelissen, T.; Junginger, Martin; Jacobson, J.; Faaij, André

    2014-01-01

    With growing demand for internationally traded biomass, the logistic operations required to economically move biomass from the field or forest to end- users have become increasingly complex. To design cost effective and sustainable feedstock supply chains, it is important to understand the

  15. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    Science.gov (United States)

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  16. Demand and supply of hydrogen as chemical feedstock in USA

    Science.gov (United States)

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  17. The thin green line: sustainable bioenergy feedstocks or invaders in waiting

    Directory of Open Access Journals (Sweden)

    Larissa L. Smith

    2015-04-01

    Full Text Available Numerous fast growing and highly competitive exotic crops are being selected for production of renewable bioenergy. Tolerance of poor growing conditions with minimal inputs are ideal characteristics for bioenergy feedstocks, but have attracted concern for their potential to become invasive. Miscanthus × giganteus is one of the most promising bioenergy crops in the US, but grower adoption is hindered by high establishment costs due to sterility. Newly developed fertile tetraploid M. × giganteus may streamline cultivation while reducing establishment costs. However, fertile seed dramatically increases the potential propagule pressure, and thus probability of off-site plant establishment. To empirically evaluate the invasive potential of fertile M. × giganteus in the Southeastern US, we compared fitness and spread potential relative to ten grass species comprising 19 accessions under both high and low levels of competition and disturbance. We chose species known to be invasive in the US (positive controls: Arundo donax, naturalized M. sinensis, M. sacchariflorus, Phalaris arundinacea, Sorghum halepense and non-invasive (negative controls; Andropogon gerardii, ornamental M. sinensis, Panicum virgatum, Sorghum bicolor, Saccharum spp.. This novel design allows us to make relative comparisons of risk among species with varying invasiveness. After three years of establishment and growth in Blacksburg, Virginia, neither aboveground disturbance nor interspecific weed competition influenced fitness for fertile M. × giganteus or our positive and negative control groups. Fertile M. × giganteus produced 346% and 283% greater aboveground biomass than our positive and negative species, respectively. However, fertile M. × giganteus produced 74% fewer inflorescences m-2 than our positive controls and 7% and 51% fewer spikelets inflorescence-1 than the positive and negative control species. After 18 months of growth, we observed the vegetative and seedling

  18. Hydrologic Impacts of Developing Forest-based Bioenergy Feedstock in Wisconsin, USA and Entre Rios, Argentina Watersheds

    Science.gov (United States)

    Heidari, A.; Mayer, A. S.; Watkins, D. W., Jr.

    2017-12-01

    Growing demand for biomass-derived fuels has resulted in an increase in bioenergy projects across the Americas in recent years, a trend that is expected to continue. However, the expansion of bioenergy feedstock production might cause unintended environmental consequences. Accordingly, the goal of this research is to investigate how forest-based bioenergy development across the Americas may affect hydrological systems on a watershed scale. This study focuses on biofuel feedstock production with hybrid poplar cultivation in a snow-dominated watershed in northern Wisconsin, USA, and eucalyptus cultivation in a warm and temperate watershed in Entre Rios, Argentina. The Soil and Water Assessment Tool (SWAT), calibrated and validated for the two watersheds, is used to evaluate the effects of land use change corresponding to a range of biofuel development scenarios. The land use change scenarios include rules for limiting the location of the biofuel feedstock, and rotation time. These variables in turn impact the magnitude and timing of runoff and evapotranspiration. In Wisconsin, long term daily streamflow simulations indicate that planting poplar will increase evapotranspiration and decrease water yield, primarily through reduced baseflow contributions to streamflow. Results are also presented in terms of changes in flow relative to biomass production, to understand the sensitivity of potential biofuel generation to hydrologic impacts, and vice versa. In the end, alternative management practices were evaluated to mitigate the impacts. Keywords: Biofuel; Soil and Water Assessment Tool; Poplar; Baseflow; Evapotranspiration

  19. Effects of forest-based bioenergy feedstock production on shallow groundwater quality of a drained forest soil.

    Science.gov (United States)

    Cacho, Julian F; Youssef, Mohamed A; Chescheir, George M; Wayne Skaggs, R; Appelboom, Timothy W; Leggett, Zakiya H; Sucre, Eric B; Nettles, Jami E; Arellano, Consuelo

    2018-03-05

    Managed forests in southern U.S. are a potential source of lignocellulosic biomass for biofuel production. Changes in management practices to optimize biomass production may impact the quality of waters draining to nutrient-sensitive waters in coastal plain regions. We investigated shallow groundwater quality effects of intercropping switchgrass (Panicum virgatum L.) with managed loblolly pine (Pinus taeda L.) to produce bioenergy feedstock and quality sawtimber in a poorly drained soil of eastern North Carolina, U.S.A. Treatments included PINE (traditional pine production), PSWITCH (pine-switchgrass intercropped), SWITCH (switchgrass monoculture) and REF (mature loblolly pine stand). Each treatment was replicated three times on 0.8ha plots drained by parallel-open ditches, 1.0-1.2m deep and 100m apart. Water samples were collected monthly or more frequently after fertilizer application. Water samples were analyzed for organic nitrogen (ON), ammonium N (NH 4 + - N), and nitrite+nitrate N (NO 3 - + NO 2 - - N), ortohophosphate phosphorus (OP), and total organic carbon (TOC). Overall, PSWITCH did not significantly affect shallow groundwater quality relative to PINE and SWITCH. ON, NO 3 - + NO 2 - - N, and TOC concentrations in PSWITCH, PINE and SWITCH were substantially elevated during the two years after tree harvest and site establishment. The elevated nutrient concentrations at the beginning of the study were likely caused by a combination of rapid organic matter decomposition of the abundant supply of post-harvest residues, warming of exposed soil surfaces and reduction of plant nutrient uptake that can occur after harvesting, and pre-plant fertilization. Nutrient concentrations returned to background levels observed in REF during the third year after harvest. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Feedstock quality : an important consideration in forest biomass supply

    Energy Technology Data Exchange (ETDEWEB)

    Ryans, M. [FP Innovations, Vancouver, BC (Canada). FERIC

    2009-07-01

    The move to forest-based sources of biomass requires an emphasis on the quality of forest residues. Customers set the feedstock requirements, and demand homogeneous and predictable quality. The top quality factors are appropriate moisture content, consistent particle size, chlorine content, and clean material. The seasonal variability of the resource means that suppliers must determine how to deliver a year-round supply with appropriate moisture content. Methods such as pre-piling and covering with a tarp are being tested. Although mills tailored for biomass deliveries have modernized boilers capable of burning a variety of biomass feedstocks at varying moisture contents, a 10 per cent reduction in moisture content can offer a good return on investment because suppliers could transports more energy content and less water per tonne of biomass. This presentation also discussed the range of equipment choices available for delivering the right-sized biomass, and outlined the right and wrong practices that influence biomass quality along the supply chain. figs.

  1. Comparative feedstock analysis in Setaria viridis L. as a model for C4 bioenergy grasses and Panicoid crop species

    Directory of Open Access Journals (Sweden)

    Carloalberto ePetti

    2013-06-01

    Full Text Available Second generation feedstocks for bioethanol will likely include a sizable proportion of perennial C4 grasses, principally in the Panicoideae clade. The Panicoideae contain agronomically important annual grasses including Zea mays L. (maize, Sorghum bicolor (L. Moench (sorghum, and Saccharum officinarum L. (sugar cane as well as promising second generation perennial feedstocks including Miscanthus x giganteus and Panicum virgatum L. (switchgrass. The underlying complexity of these polyploid grass genomes is a major limitation for their direct manipulation and thus driving a need for rapidly cycling comparative model. Setaria viridis (green millet is a rapid cycling C4 Panicoid grass with a relatively small and sequenced diploid genome and abundant seed production. Stable, transient and protoplast transformation technologies have also been developed for S. viridis making it a potentially excellent model for other C4 bioenergy grasses. Here, the lignocellulosic feedstock composition, cellulose biosynthesis inhibitor (CBI response and saccharification dynamics of S. viridis are compared with the annual s00orghum and maize and the perennial switchgrass bioenergy crops as a baseline study into the applicability for translational research. A genome-wide systematic investigation of the cellulose synthase-A (CesA genes was performed identifying eight candidate sequences. Two-developmental stages; a metabolically active young tissue and b metabolically plateaued (mature material are examined to compare biomass performance metrics.

  2. The water footprint of second-generation bioenergy: A comparison of biomass feedstocks and conversion techniques

    NARCIS (Netherlands)

    Mathioudakis, Vassias; Gerbens-Leenes, P.W.; van der Meer, Theo; Hoekstra, Arjen Y.

    2017-01-01

    Bioenergy is the most widely used type of renewable energy. A drawback of crops applied for bioenergy is that they compete with food and use the same natural resources like water. From a natural resources perspective, it would be more efficient to apply the large potential of available crop

  3. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.

    Science.gov (United States)

    Röder, Mirjam; Thornley, Patricia

    2018-04-01

    Considering the urgent need to shift to low carbon energy carriers, waste wood resources could provide an alternative energy feedstock and at the same time reduce emissions from landfill. This research examines the climate change impacts and related emission uncertainties of waste wood based energy. For this, different grades of waste wood and energy application have been investigated using lifecycle assessment. Sensitivity analysis has then been applied for supply chain processes and feedstock properties for the main emission contributing categories: transport, processing, pelletizing, urea resin fraction and related N 2 O formation. The results show, depending on the waste wood grade, the conversion option, scale and the related reference case, that emission reductions of up to 91% are possible for non-treated wood waste. Compared to this, energy from treated wood waste with low contamination can achieve up to 83% emission savings, similar to untreated waste wood pellets, but in some cases emissions from waste wood based energy can exceed the ones of the fossil fuel reference - in the worst case by 126%. Emission reductions from highly contaminated feedstocks are largest when replacing electricity from large-scale coal and landfill. The highest emission uncertainties are related to the wood's resin fraction and N 2 O formation during combustion and, pelletizing. Comparing wood processing with diesel and electricity powered equipment also generated high variations in the results, while emission variations related to transport are relatively small. Using treated waste wood as a bioenergy feedstock can be a valid option to reduce emissions from energy production but this is only realisable if coal and landfill gas are replaced. To achieve meaningful emission reduction in line with national and international climate change targets, pre-treatment of waste wood would be required to reduce components that form N 2 O during the energy conversion. Copyright © 2017

  4. Bioenergy

    NARCIS (Netherlands)

    Chum, H.; Faaij, A.P.C.; Moreira, J.R.; Junginger, H.M.

    2011-01-01

    Bioenergy has a significant greenhouse gas (GHG) mitigation potential, provided that the resources are developed sustainably and that efficient bioenergy systems are used. Certain current systems and key future options including perennial cropping systems, use of biomass residues and wastes and

  5. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  6. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  7. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Science.gov (United States)

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  8. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production

    NARCIS (Netherlands)

    Jonker, J.G.G.; Faaij, A.P.C.

    2013-01-01

    This paper determines the energy consumption ratio and overall bio-energy production costs of microalgae cultivation, harvesting and conversion to secondary energy carriers, thus helping to clarify future perspectives of micro-algae production for energy purposes. A limitation growth model is

  9. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  10. Metaheuristic Algorithms Applied to Bioenergy Supply Chain Problems: Theory, Review, Challenges, and Future

    Directory of Open Access Journals (Sweden)

    Krystel K. Castillo-Villar

    2014-11-01

    Full Text Available Bioenergy is a new source of energy that accounts for a substantial portion of the renewable energy production in many countries. The production of bioenergy is expected to increase due to its unique advantages, such as no harmful emissions and abundance. Supply-related problems are the main obstacles precluding the increase of use of biomass (which is bulky and has low energy density to produce bioenergy. To overcome this challenge, large-scale optimization models are needed to be solved to enable decision makers to plan, design, and manage bioenergy supply chains. Therefore, the use of effective optimization approaches is of great importance. The traditional mathematical methods (such as linear, integer, and mixed-integer programming frequently fail to find optimal solutions for non-convex and/or large-scale models whereas metaheuristics are efficient approaches for finding near-optimal solutions that use less computational resources. This paper presents a comprehensive review by studying and analyzing the application of metaheuristics to solve bioenergy supply chain models as well as the exclusive challenges of the mathematical problems applied in the bioenergy supply chain field. The reviewed metaheuristics include: (1 population approaches, such as ant colony optimization (ACO, the genetic algorithm (GA, particle swarm optimization (PSO, and bee colony algorithm (BCA; and (2 trajectory approaches, such as the tabu search (TS and simulated annealing (SA. Based on the outcomes of this literature review, the integrated design and planning of bioenergy supply chains problem has been solved primarily by implementing the GA. The production process optimization was addressed primarily by using both the GA and PSO. The supply chain network design problem was treated by utilizing the GA and ACO. The truck and task scheduling problem was solved using the SA and the TS, where the trajectory-based methods proved to outperform the population

  11. Ecological sustainability of alternative biomass feedstock production for environmental benefits and bioenergy

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Jill A. Zalesny; Edmund O. Bauer

    2007-01-01

    The incorporation of intensive forestry with waste management fills a much-needed niche throughout numerous phytotechnology applications. There is a growing opportunity to incorporate sustainable recycling of waste waters as irrigation and fertilization for alternative biomass feedstock production systems. However, the success of short rotation woody crops is largely...

  12. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion.

    Science.gov (United States)

    Adams, J M M; Ross, A B; Anastasakis, K; Hodgson, E M; Gallagher, J A; Jones, J M; Donnison, I S

    2011-01-01

    To avoid negative impacts on food production, novel non-food biofuel feedstocks need to be identified and utilised. One option is to utilise marine biomass, notably fast-growing, large marine 'plants' such as the macroalgal kelps. This paper reports on the changing composition of Laminaria digitata throughout it growth cycle as determined by new technologies. The potential of Laminaria sp. as a feedstock for biofuel production and future biorefining possibilities was assessed through proximate and ultimate analysis, initial pyrolysis rates using thermo-gravimetric analysis (TGA), metals content and pyrolysis gas chromatography-mass spectrometry. Samples harvested in March contained the lowest proportion of carbohydrate and the highest ash and alkali metal content, whereas samples harvested in July contained the highest proportions of carbohydrate, lowest alkali metals and ash content. July was therefore considered the most suitable month for harvesting kelp biomass for thermochemical conversion to biofuels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Çetinkol, Özgül Persil; Smith-Moritz, Andreia M.; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A.; Heazlewood, Joshua L.; Holmes, Bradley M.; Zabotina, Olga A.

    2012-12-28

    Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.

  14. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks.

    Science.gov (United States)

    Cetinkol, Özgül Persil; Smith-Moritz, Andreia M; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A; Heazlewood, Joshua L; Holmes, Bradley M

    2012-01-01

    Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.

  15. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks.

    Directory of Open Access Journals (Sweden)

    Özgül Persil Cetinkol

    Full Text Available Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR, X-ray diffraction (XRD and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.

  16. Food supply and bioenergy production within the global cropland planetary boundary.

    Science.gov (United States)

    Henry, R C; Engström, K; Olin, S; Alexander, P; Arneth, A; Rounsevell, M D A

    2018-01-01

    Supplying food for the anticipated global population of over 9 billion in 2050 under changing climate conditions is one of the major challenges of the 21st century. Agricultural expansion and intensification contributes to global environmental change and risks the long-term sustainability of the planet. It has been proposed that no more than 15% of the global ice-free land surface should be converted to cropland. Bioenergy production for land-based climate mitigation places additional pressure on limited land resources. Here we test normative targets of food supply and bioenergy production within the cropland planetary boundary using a global land-use model. The results suggest supplying the global population with adequate food is possible without cropland expansion exceeding the planetary boundary. Yet this requires an increase in food production, especially in developing countries, as well as a decrease in global crop yield gaps. However, under current assumptions of future food requirements, it was not possible to also produce significant amounts of first generation bioenergy without cropland expansion. These results suggest that meeting food and bioenergy demands within the planetary boundaries would need a shift away from current trends, for example, requiring major change in the demand-side of the food system or advancing biotechnologies.

  17. Bioenergy systems

    International Nuclear Information System (INIS)

    Mitchell, C.P.

    1997-01-01

    The objective of this paper is to demonstrate that a bioenergy system has to be considered as an integrated process in which each stage or step interacts with other steps in the overall process. There are a number of stages in the supply and conversion of woody biomass for energy. Each step in the chain has implications for the next step and for overall system efficiency. The resource can take many forms and will have varying physical and chemical characteristics which will influence the efficiency and cost of conversion. The point in the supply chain at which size and moisture content is reduced and the manner in which it is done is influential in determining feedstock delivered cost and overall system costs. To illustrate the interactions within the overall system, the influence of the nature, size and moisture content of delivered feedstocks on costs of generating electricity via thermal conversion processes is examined using a model developed to investigate the inter-relationships between the stages in the supply chain. (author)

  18. Productivity and water use efficiency of Agave americana in the first field trial as bioenergy feedstock on arid lands

    Science.gov (United States)

    Agave species are known as high-yielding crassulacean acid metabolism (CAM) plants, some of which have been grown commercially in the past and are recognized as potential bioenergy species for dry regions of the world. This study is the first field trial of Agave species for bioenergy in the United ...

  19. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small

  20. Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions

    Directory of Open Access Journals (Sweden)

    Zhixue Liu

    2017-11-01

    Full Text Available While biomass has been recognized as an important renewable energy source which has a range of positive impacts on the economy, environment, and society, the existence of feedstock seasonality and risk of service disruptions at collection facilities potentially compromises the efficiency and reliability of the energy supply system. In this paper, we consider reliable supply chain design for biomass collection against feedstock seasonality and time-varying disruption risks. We optimize facility location, inventory, biomass quantity, and shipment decisions in a multi-period planning horizon setting. A real-world case in Hubei, China is studied to offer managerial insights. Our computational results show that: (1 the disruption risk significantly affects both the optimal facility locations and the supply chain cost; (2 no matter how the failure probability changes, setting backup facilities can significantly decrease the total cost; and (3 the feedstock seasonality does not affect locations of the collection facilities, but it affects the allocations of collection facilities and brings higher inventory cost for the biomass supply chain.

  1. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    Directory of Open Access Journals (Sweden)

    Long Nguyen

    2014-11-01

    Full Text Available To meet Energy Independence and Security Act (EISA cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-controlled biomass feedstocks at preprocessing “depots”. Preprocessing depots densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The logistics of biomass commodity supply chains could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG emissions of corn stover logistics within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. The first scenario sited four preprocessing depots evenly across the state of Kansas but within the vicinity of counties having high biomass supply density. The second scenario located five depots based on the shortest depot-to-biorefinery rail distance and biomass availability. The logistics supply chain consists of corn stover harvest, collection and storage, feedstock transport from field to biomass preprocessing depot, preprocessing depot operations, and commodity transport from the biomass preprocessing depot to the biorefinery. Monte Carlo simulation was used to estimate the spatial uncertainty in the feedstock logistics gate-to-gate sequence. Within the logistics supply chain GHG emissions are most sensitive to the

  2. Insight on Biomass Supply and Feedstock Definition for Fischer-Tropsch Based BTL Processes

    International Nuclear Information System (INIS)

    Coignac, Julien

    2013-01-01

    Process chains of thermo chemical conversion of lignocellulosic biomass through gasification and Fischer-Tropsch synthesis (known as BTL) represent promising alternatives for biofuels production. Since biomass is heterogeneous and not homogeneously spread over territories, one of the major technological stakes of the project is to develop a flexible industrial chain capable of co-treating the widest possible range of biomass and fossil fuel feedstock. The present study aims at characterizing biomass diversity (availability and potentials by area, cost and mineral composition) by carrying out a state of the art, as a preliminary step in order to define a series of biomass to be tested in the demonstration plant and therefore define specifications for the process. Fifty different biomass were considered for their bio-energy application potential and were finally classified into four categories: agricultural by-products, dedicated energy crops, (Very) Short Rotation Coppice ((V)SRC) and forestry biomass. Biomass availability and potentials were investigated by the mean of a literature review of past and current projects (e.g. RENEW project, Biomass Energy Europe Project, etc.) and scientific articles. Most collected data are technical potentials, meaning that they take into account biophysical limits of crops and forests, technological possibilities, competition with other land uses and ecological constraints (e.g. natural reserves). Results show various emerging markets: North and South America have considerable amounts of agricultural by-products, forest residues, and large land areas which could be dedicated to energy crops; Africa shows relevant possibilities to grow Short Rotation Forestry (SRF) and energy crops; Russia has large available quantities of agricultural by-products and forest residues, as well as little valuable land where energy crops and SRC could be grown, and Asia shows relevant amounts of forest residues and possibilities of growing SRC, as well

  3. Bioenergy systems sustainability assessment & management (BIOSSAM) guidance portal for policy, decision and development support of integrated bioenergy supply interventions

    CSIR Research Space (South Africa)

    Stafford, WHL

    2010-08-01

    Full Text Available . There are several new bioenergy interventions (policies, projects, or programmes) that are being considered and these developments must be assessed in terms of their sustainability. Both public and private sector policy makers, decision makers, and technology...

  4. Comparing bioenergy production sites in the Southeastern US regarding ecosystem service supply and demand.

    Directory of Open Access Journals (Sweden)

    Markus A Meyer

    Full Text Available Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS. This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification

  5. Comparing bioenergy production sites in the Southeastern US regarding ecosystem service supply and demand.

    Science.gov (United States)

    Meyer, Markus A; Chand, Tanzila; Priess, Joerg A

    2015-01-01

    Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS). This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification schemes are governance

  6. A novel bioenergy feedstock in Latin America? Cultivation potential of Acrocomia aculeata under current and future climate conditions

    NARCIS (Netherlands)

    Plath, Mirco; Moser, Christine; Bailis, Rob; Brandt, Patric; Hirsch, Heidi; Klein, Alexandra Maria; Walmsley, David; Wehrden, von Henrik

    2016-01-01

    Plant oil is a key commodity in the global economy, particularly for food and bioenergy markets. However, current production practices often impair smallholder livelihoods, cause land use changes, and compete for food production. The neotropical palm Acrocomia aculeata is currently being promoted

  7. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  8. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  9. Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Timothy C. [Antares Group Inc., Lanham, MD (United States); Comer, Kevin S. [Antares Group Inc., Lanham, MD (United States); Belden, Jr., William S. [Antares Group Inc., Lanham, MD (United States)

    2016-04-30

    This three-year project developed and demonstrated four innovative, first-of-their-kind pieces of equipment that are aimed at significantly reducing the cost of delivered herbaceous biomass. This equipment included a Self-Propelled Baler (SPB), a Bale Picking Truck (BPT), a Self-Loading Trailer (SLT), and a Heavy Crop Header for harvesting high yielding energy crops. This equipment was designed and fabricated during the first two years of the project and demonstrated on available crops (corn stover, wheat straw, and warm season grasses) across the nation, as available. Operational performance and cost data was collected and analyzed throughout the project to measure the costs of baseline harvesting (using conventional harvesting equipment) and advanced harvesting with the newly developed equipment. This data revealed that the project met its original goal of developing equipment that is realistically capable of reducing the cost of delivered biomass by $13 per dry ton. Each machine was tested after fabrication and put to the test in one or more commercial harvesting seasons. During these tests, operational flaws were found and fixed through upgrades and improvements. The first new SPB, BPT, and two new SLTs were ready for use during the 2013 harvest season. Since then, over 40 SLTs have been ordered and are currently under fabrication. All of the equipment will be commercially available to the industry as demand increases.

  10. Sustainable International Bioenergy Trade. Evaluating the impact of sustainability criteria and policy on past and future bioenergy supply and trade

    NARCIS (Netherlands)

    Lamers, Patrick

    2014-01-01

    Within a single decade, bioenergy has shifted from a largely local energy source with marginal trade volumes to a globally traded item. The primary objective of this thesis is to evaluate the links between national renewable energy support and trade policies and market forces on past global

  11. Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties

    International Nuclear Information System (INIS)

    Osmani, Atif; Zhang, Jun

    2013-01-01

    An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that “mean” value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation. - Highlights: • Two-stage stochastic MILP model for maximizing profit of a multi-feedstock lignocellulosic-based bioethanol supply chain. • Multiple uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand, and bioethanol sale price. • Proposed stochastic model outperforms the traditional deterministic model under uncertainties. • Stochastic parameters significantly affect marginal land allocation for switchgrass cultivation and bioethanol production. • Location of biorefineries is found to be insensitive to the stochastic environment

  12. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.

    Science.gov (United States)

    Bauen, A W; Dunnett, A J; Richter, G M; Dailey, A G; Aylott, M; Casella, E; Taylor, G

    2010-11-01

    Biomass from lignocellulosic energy crops can contribute to primary energy supply in the short term in heat and electricity applications and in the longer term in transport fuel applications. This paper estimates the optimal feedstock allocation of herbaceous and woody lignocellulosic energy crops for England and Wales based on empirical productivity models. Yield maps for Miscanthus, willow and poplar, constrained by climatic, soil and land use factors, are used to estimate the potential resource. An energy crop supply-cost curve is estimated based on the resource distribution and associated production costs. The spatial resource model is then used to inform the supply of biomass to geographically distributed demand centres, with co-firing plants used as an illustration. Finally, the potential contribution of energy crops to UK primary energy and renewable energy targets is discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Biomass supply chain management in North Carolina (part 2: biomass feedstock logistical optimization

    Directory of Open Access Journals (Sweden)

    Kevin Caffrey

    2016-03-01

    Full Text Available Biomass logistics operations account for a major portion of the feedstock cost of running a biorefinery, and make up a significant portion of total system operational costs. Biomass is a bulky perishable commodity that is required in large quantities year round for optimal biorefinery operations. As a proof of concept for a decision making tool for biomass production and delivery, a heuristic was developed to determine biorefinery location, considering city size, agricultural density, and regional demographics. Switchgrass and sorghum (with winter canola were selected to examine as viable biomass feedstocks based on positive economic results determined using a predictive model for cropland conversion potential. Biomass harvest systems were evaluated to examine interrelationships of biomass logistical networks and the least cost production system, with results demonstrating a need to shift to maximize supply-driven production harvest operations and limit storage requirements. For this supply-driven production harvest operations approach a harvest window from September until March was selected for producing big square bales of switchgrass for storage until use, forage chopped sorghum from September to December, and forage chopped switchgrass from December to March. A case study of the three major regions of North Carolina (Mountains, Piedmont, and Coastal Plain was used to assess logistical optimization of the proposed supply-driven production harvest system. Potential biomass production fields were determined within a hundred mile radius of the proposed biorefinery location, with individual fields designated for crop and harvest system by lowest transportation cost. From these selected fields, crops and harvest system regional storage locations were determined using an alternate location-allocation heuristic with set storage capacity per site. Model results showed that the supply-driven production harvest system greatly reduced system complexity

  14. Dedicated energy crops and crop residues for bioenergy feedstocks in the Central and Eastern U.S.A.

    Science.gov (United States)

    Dedicated energy crops and crop residues will meet herbaceous feedstock demands for the new bioeconomy in the Central and Eastern USA. Perennial warm-season grasses and corn stover are well-suited to the eastern half of the USA and provide opportunities for expanding agricultural operations in the r...

  15. Feeding a sustainable chemical industry: do we have the bioproducts cart before the feedstocks horse?

    Science.gov (United States)

    Dale, Bruce E

    2017-09-21

    A sustainable chemical industry cannot exist at scale without both sustainable feedstocks and feedstock supply chains to provide the raw materials. However, most current research focus is on producing the sustainable chemicals and materials. Little attention is given to how and by whom sustainable feedstocks will be supplied. In effect, we have put the bioproducts cart before the sustainable feedstocks horse. For example, bulky, unstable, non-commodity feedstocks such as crop residues probably cannot supply a large-scale sustainable industry. Likewise, those who manage land to produce feedstocks must benefit significantly from feedstock production, otherwise they will not participate in this industry and it will never grow. However, given real markets that properly reward farmers, demand for sustainable bioproducts and bioenergy can drive the adoption of more sustainable agricultural and forestry practices, providing many societal "win-win" opportunities. Three case studies are presented to show how this "win-win" process might unfold.

  16. Sustainability assessment of two chains of biomass supply from field to bioenergy

    DEFF Research Database (Denmark)

    Morandi, Fabiana; Østergård, Hanne

    2014-01-01

    LogistEC, “Logistics for Energy Crops biomass”, is an FP7 Project aiming at developing new or improvedtechnologies of the biomass logistics chains (http://www.logistecproject.eu/). Sustainability assessment of different biomasses is being performed by studying the environmental, economic and social...... impacts, based on the supply chain of two existing bioenergy plants, located in France (Bourgogne) and Spain (Extramadura), respectively. Our contribution to the project is part of the environmental impacts analysis and it is divided into two steps: 1) sustainability assessment of the systems by using...... emergy analysis, a method that accounts for all forms of energy, resources and human services that contribute to the system; 2) combination of all assessment results (coming from emergy, LCA, economic and social evaluations) in a Sustainability Multicriteria Multi-scale Assessment (SUMMA) framework. We...

  17. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    Directory of Open Access Journals (Sweden)

    Lantian Ren

    2015-06-01

    Full Text Available This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.

  18. The Impact of Field Size on the Environment and Energy Crop Production Efficiency for a Sustainable Indigenous Bioenergy Supply Chain in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Rory Deverell

    2009-11-01

    Full Text Available This paper investigates, using the GIS platform, the potential impacts of meeting national bioenergy targets using only indigenous sources of feedstock on the habitats and carbon stores that exist within Ireland’s field boundaries. A survey of the Republic of Irelands field was conducted in order to estimate and map the size and geographic distribution of the Republic of Ireland’s field boundaries. The planting and harvesting costs associated with possible bioenergy crop production systems were determined using the relationship between the seasonal operating efficiency and the average field size. The results indicate that Ireland will need a large proportion of its current agricultural area (at least 16.5% in order to its meet national bioenergy targets by 2020. The demand cannot be met by the current area that both has suitable soil type for growing the bioenergy crops and is large enough for the required operating efficiency. The results of this study indicate that implementing and meeting national bioenergy targets using only indigenous feedstock will likely impact the country’s field boundary resources negatively, as crop producers seek to improve production efficiency through field consolidation and field boundary removal. It was found that such boundary removal results in a loss of up to 6 tC/km2 and 0.7 ha/km of previously permanent habitat where average field size is small. The impact of field consolidation on these resources reduces substantially as larger fields become consolidated.

  19. Green supply chain management and environmental performance of firms in the bioenergy sector in Brazil: An exploratory survey

    International Nuclear Information System (INIS)

    Stefanelli, Nelson Oliveira; Jabbour, Charbel José Chiappetta; Jabbour, Ana Beatriz Lopes de Sousa

    2014-01-01

    To achieve sustainable development, supply chains must become greener. In this context, the importance of green supply chain management (GSCM) increases because it can contribute to improving firms’ environmental performance (EP). However, little is known about these subjects in the context of firms in the bioenergy sector (sugarcane and ethanol production in Brazil). Thus, the objective of this work is to present the results of a survey conducted on 80 micro-, small-, and medium-sized firms that are suppliers in the Brazilian bioenergy sector (sugarcane and ethanol production). These results indicate that GSCM practices strengthen the EP of firms in the sector. Therefore, this article contributes to the existing literature because it addresses the relationship between GSCM and EP in an understudied sector (sugarcane and ethanol production). - Highlights: • To achieve sustainable development, supply chains must become greener. • Little is known about these subjects in the context of firms in the bioenergy sector. • This research is based on an exploratory survey. • GSCM practices strengthen the EP of firms in the sector

  20. IEA Bioenergy Annual Report 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-31

    The report describes the work in the Executive Committee and includes short reports from the four tasks which have been in operation 1992-94: Task VIII - Efficient and Environmentally-Sound Biomass Production Systems; Task IX - Harvesting and Supply of Woody Biomass for Energy; Task X - Biomass Utilization; Task XI - The Conversion of Municipal Solid Waste Feedstocks to Energy. The three new tasks (XII-XIV) for the period 1995-97 approved during 1994 are presented in the report. At the end of 1994 there were sixteen Contracting Parties to the IEA Bioenergy Agreement - Fifteen countries plus the European Commission. 164 refs

  1. IEA Bioenergy Annual Report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The report describes the work in the Executive Committee and includes short reports from the four tasks which have been in operation 1992-94: Task VIII - Efficient and Environmentally-Sound Biomass Production Systems; Task IX - Harvesting and Supply of Woody Biomass for Energy; Task X - Biomass Utilization; Task XI - The Conversion of Municipal Solid Waste Feedstocks to Energy. The three new tasks (XII-XIV) for the period 1995-97 approved during 1994 are presented in the report. At the end of 1994 there were sixteen Contracting Parties to the IEA Bioenergy Agreement - Fifteen countries plus the European Commission. 164 refs

  2. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications.

    Science.gov (United States)

    Srinivasan, Prakash; Sarmah, Ajit K; Smernik, Ron; Das, Oisik; Farid, Mohammed; Gao, Wei

    2015-04-15

    In this study, we pyrolysed six waste derived biomass: pine sawdust (PSD), paunch grass (PG), broiler litter (BL), sewage sludge (SS), dewatered pond sludge (DWP), and dissolved air-floatation sludge (DAF) into biochar. Biochars were characterized using scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, Fourier transform infrared spectroscopy, inductively-coupled plasma mass spectrometry, (13)C-solid-state nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy to evaluate their feasibility for potential agronomic and environmental applications. Syngas produced during the pyrolysis process was also analyzed to determine the energy values. Results show that PSD biochar has the utmost potential for carbon sequestration and contaminant remediation due to its high surface area, aromaticity and carbon content. Additionally given its low ash content, PSD biochar could also potentially be used as filler in wood plastic biocomposites. Low levels of heavy metals (Cr, Cu, Zn, As, Cd, Hg, and Pb) in all biochars suggest that biochars are also applicable for land application according to the United States Environmental Protection Agency regulation 40 CFR part 503. The composition of syngas evolved during the pyrolysis of feedstocks showed little difference in the calorific values, ranging from 12-16 MJ/dsm with PSD having the maximum calorific value of 16 MJ/dsm. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications

    International Nuclear Information System (INIS)

    Srinivasan, Prakash; Sarmah, Ajit K.; Smernik, Ron; Das, Oisik; Farid, Mohammed; Gao, Wei

    2015-01-01

    In this study, we pyrolysed six waste derived biomass: pine sawdust (PSD), paunch grass (PG), broiler litter (BL), sewage sludge (SS), dewatered pond sludge (DWP), and dissolved air-floatation sludge (DAF) into biochar. Biochars were characterized using scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, Fourier transform infrared spectroscopy, inductively-coupled plasma mass spectrometry, 13 C-solid-state nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy to evaluate their feasibility for potential agronomic and environmental applications. Syngas produced during the pyrolysis process was also analyzed to determine the energy values. Results show that PSD biochar has the utmost potential for carbon sequestration and contaminant remediation due to its high surface area, aromaticity and carbon content. Additionally given its low ash content, PSD biochar could also potentially be used as filler in wood plastic biocomposites. Low levels of heavy metals (Cr, Cu, Zn, As, Cd, Hg, and Pb) in all biochars suggest that biochars are also applicable for land application according to the United States Environmental Protection Agency regulation 40 CFR part 503. The composition of syngas evolved during the pyrolysis of feedstocks showed little difference in the calorific values, ranging from 12–16 MJ/dsm with PSD having the maximum calorific value of 16 MJ/dsm. - Highlights: • PSD biochar was found to have the highest surface, carbon content and lowest ash content. • PSD biochar is suitable for carbon sequestration, remediation and biocomposite construction. • Syngas from PSD and PG pyrolysis yielded syngas having highest calorific values (15-16 MJ/dsm). • BL, PG and SS derived biochars have potential as liming agents due to their high ash content

  4. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Prakash [Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Smernik, Ron [School of Earth and Environmental Sciences, The University of Adelaide, Adelaide 5005 (Australia); Das, Oisik [Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Farid, Mohammed; Gao, Wei [Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, 20 Symonds Street, Auckland (New Zealand)

    2015-04-15

    In this study, we pyrolysed six waste derived biomass: pine sawdust (PSD), paunch grass (PG), broiler litter (BL), sewage sludge (SS), dewatered pond sludge (DWP), and dissolved air-floatation sludge (DAF) into biochar. Biochars were characterized using scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, Fourier transform infrared spectroscopy, inductively-coupled plasma mass spectrometry, {sup 13}C-solid-state nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy to evaluate their feasibility for potential agronomic and environmental applications. Syngas produced during the pyrolysis process was also analyzed to determine the energy values. Results show that PSD biochar has the utmost potential for carbon sequestration and contaminant remediation due to its high surface area, aromaticity and carbon content. Additionally given its low ash content, PSD biochar could also potentially be used as filler in wood plastic biocomposites. Low levels of heavy metals (Cr, Cu, Zn, As, Cd, Hg, and Pb) in all biochars suggest that biochars are also applicable for land application according to the United States Environmental Protection Agency regulation 40 CFR part 503. The composition of syngas evolved during the pyrolysis of feedstocks showed little difference in the calorific values, ranging from 12–16 MJ/dsm with PSD having the maximum calorific value of 16 MJ/dsm. - Highlights: • PSD biochar was found to have the highest surface, carbon content and lowest ash content. • PSD biochar is suitable for carbon sequestration, remediation and biocomposite construction. • Syngas from PSD and PG pyrolysis yielded syngas having highest calorific values (15-16 MJ/dsm). • BL, PG and SS derived biochars have potential as liming agents due to their high ash content.

  5. Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue.

    Science.gov (United States)

    Shao, Xiongjun; DiMarco, Kay; Richard, Tom L; Lynd, Lee R

    2015-01-01

    Winter annual crops such as winter rye (Secale cereale L) can produce biomass feedstock on seasonally fallow land that continues to provide high-value food and feed from summer annuals such as corn and soybeans. As energy double crops, winter grasses are likely to be harvested while still immature and thus structurally different from the fully senesced plant material typically used for biofuels. This study investigates the dynamic trends in biomass yield, composition, and biological solubilization over the course of a spring harvest season. The water soluble fraction decreased with increasing maturity while total carbohydrate content stayed roughly constant at about 65%. The protein mass fraction decreased with increasing maturity, but was counterbalanced by increasing harvest yield resulting in similar total protein across harvest dates. Winter rye was ground and autoclaved then fermented at 15 g/L total solids by either (1) Clostridium thermocellum or (2) simultaneous saccharification and cofermentation (SSCF) using commercial cellulases (CTec2 and HTec2) and a xylose-fermenting Saccharomyces cerevisiae strain. Solubilization of total carbohydrate dropped significantly as winter rye matured for both C. thermocellum (from approximately 80% to approximately 50%) and SSCF (from approximately 60% to approximately 30%). C. thermocellum achieved total solubilization 33% higher than that of SSCF for the earliest harvest date and 50% higher for the latest harvest date. Potential revenue from protein and bioethanol was stable over a range of different harvest dates, with most of the revenue due to ethanol. In a crop rotation with soybean, recovery of the soluble protein from winter rye could increase per hectare protein production by 20 to 35%. Double-cropping winter rye can produce significant biomass for biofuel production and feed protein as coproduct without competing with the main summer crop. During a 24-day harvest window, the total carbohydrate content remained

  6. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  7. Candidate perennial bioenergy grasses have a higher albedo than annual row crops in the Midwestern US

    Science.gov (United States)

    The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observati...

  8. Transpiration and biomass production of the bioenergy crop Giant Knotweed Igniscum under various supplies of water and nutrients

    Directory of Open Access Journals (Sweden)

    Mantovani Dario

    2014-12-01

    Full Text Available Soil water availability, nutrient supply and climatic conditions are key factors for plant production. For a sustainable integration of bioenergy plants into agricultural systems, detailed studies on their water uses and growth performances are needed. The new bioenergy plant Igniscum Candy is a cultivar of the Sakhalin Knotweed (Fallopia sachalinensis, which is characterized by a high annual biomass production. For the determination of transpiration-yield relations at the whole plant level we used wicked lysimeters at multiple irrigation levels associated with the soil water availability (25, 35, 70, 100% and nitrogen fertilization (0, 50, 100, 150 kg N ha-1. Leaf transpiration and net photosynthesis were determined with a portable minicuvette system. The maximum mean transpiration rate was 10.6 mmol m-2 s-1 for well-watered plants, while the mean net photosynthesis was 9.1 μmol m-2 s-1. The cumulative transpiration of the plants during the growing seasons varied between 49 l (drought stressed and 141 l (well-watered per plant. The calculated transpiration coefficient for Fallopia over all of the treatments applied was 485.6 l kg-1. The transpiration-yield relation of Igniscum is comparable to rye and barley. Its growth performance making Fallopia a potentially good second generation bioenergy crop.

  9. Proceedings of the IEA Bioenergy Task 39 conference : biofuels and bioenergy, a changing climate

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of this conference was to showcase the advancements that have been made in bioenergy development. The presentations addressed several issues, including biorefinery integration; thermochemical technologies; biochemical technologies; feedstock harvest, pretreatment and logistics; biomass production and management; policy, strategies and trade; and greenhouse gas and life cycle assessment. Discussions focused on recent innovations in bioenergy and the feasibility of biofuels in the commercial marketplace with the aim to advance bioenergy development and reduce fossil fuel dependency. A two-day forest management and supply chain field trip was organized in conjunction with the conference. The conference featured 152 presentations, of which 30 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  10. Effect of Bioenergy Demands and Supply Response on Markets, Carbon, and Land Use

    Science.gov (United States)

    Karen L. Abt; Robert C. Abt; Christopher Galik

    2012-01-01

    An increase in the demand for wood for energy, including liquid fuels, bioelectricity, and pellets, has the potential to affect traditional wood users, forestland uses, management intensities, and, ultimately, carbon sequestration. Recent studies have shown that increases in bioenergy harvests could lead to displacement of traditional wood-using industries in the short...

  11. Balancing limiting factors and economic drivers for sustainable midwestern U.S. agricultural residue feedstock supplies

    Science.gov (United States)

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading the soil and other natural resources. This review examine...

  12. Bibliography on Biomass Feedstock Research: 1978-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  13. Design of Sustainable Biomass Value Chains – Optimising the supply logistics and use of biomass over time

    NARCIS (Netherlands)

    Batidzirai, B.

    2013-01-01

    Modern bioenergy systems have significant potential to cost-effectively substitute fossil energy carriers with substantial GHG emissions reduction benefits. To mobilise large-scale biomass supplies, large volumes of biomass feedstock need to be secured, and competitive feedstock value chains need to

  14. Review of Sorghum Production Practices: Applications for Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  15. Landscape management for sustainable supplies of bio energy feedstock and enhanced soil quality

    International Nuclear Information System (INIS)

    Douglas, K.; Muth, D.

    2013-01-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. Our objective is to present a landscape management concept as an approach for integrating multiple bio energy feedstock sources into current crop production systems. This is done to show how multiple, increasing global challenges can be met in a sustainable manner. We discuss how collaborative research among Usda-Agricultural Research Service (ARS), US Department of Energy (DOE) Idaho National Laboratory (INL), several university extension and research partners, and industry representatives [known as the Renewable Energy Assessment Project (Reap) team] has led to the development of computer-based decision aids for guiding sustainable bio energy feedstock production. The decision aids, known initially as the Corn Stover Tool and more recently as the Landscape Environmental Assessment Framework (Leaf) are tools designed to recognize the importance of nature s diversity and can therefore be used to guide sustainable feedstock production without having negative impacts on critical ecosystem services. Using a 57 ha farm site in central Iowa, USA, we show how producer decisions regarding corn (Zea mays L.) stover harvest within the US Corn Belt can be made in a more sustainable manner. This example also supports Reap team conclusions that stover should not be harvested if average grain yields are less than 11 Mg ha-1 unless more balanced landscape management practices are implemented. The tools also illustrate the importance of sub-field management and site-specific stover harvest strategies

  16. Proceedings. Feedstock preparation and quality 1997 workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Jan Erik [ed.

    1998-06-01

    The IEA Bioenergy Feedstock Preparation and Quality 1997 Workshop dealt with fuel feedstock quality improvement and methods to determine feedstock properties. It was arranged by the Swedish Univ. of Agricultural Sciences on behalf of the IEA Bioenergy Task XII Activity 4.1 Feedstock Preparation and Quality. This Activity is a 3-year cooperation 1995-1997 between Denmark, Sweden and the USA, mainly based on information exchange. The workshop had two sections: presentations by invited experts, and country reports on recent development in feedstock preparation and quality in the three participating countries. Separate abstracts have been prepared for four of the six papers presented

  17. Comparing the life cycle costs of using harvest residue as feedstock for small- and large-scale bioenergy systems (part II)

    International Nuclear Information System (INIS)

    Cleary, Julian; Wolf, Derek P.; Caspersen, John P.

    2015-01-01

    In part II of our two-part study, we estimate the nominal electricity generation and GHG (greenhouse gas) mitigation costs of using harvest residue from a hardwood forest in Ontario, Canada to fuel (1) a small-scale (250 kW e ) combined heat and power wood chip gasification unit and (2) a large-scale (211 MW e ) coal-fired generating station retrofitted to combust wood pellets. Under favorable operational and regulatory conditions, generation costs are similar: 14.1 and 14.9 cents per kWh (c/kWh) for the small- and large-scale facilities, respectively. However, GHG mitigation costs are considerably higher for the large-scale system: $159/tonne of CO 2 eq., compared to $111 for the small-scale counterpart. Generation costs increase substantially under existing conditions, reaching: (1) 25.5 c/kWh for the small-scale system, due to a regulation mandating the continual presence of an operating engineer; and (2) 22.5 c/kWh for the large-scale system due to insufficient biomass supply, which reduces plant capacity factor from 34% to 8%. Limited inflation adjustment (50%) of feed-in tariff rates boosts these costs by 7% to 11%. Results indicate that policy generalizations based on scale require careful consideration of the range of operational/regulatory conditions in the jurisdiction of interest. Further, if GHG mitigation is prioritized, small-scale systems may be more cost-effective. - Highlights: • Generation costs for two forest bioenergy systems of different scales are estimated. • Nominal electricity costs are 14.1–28.3 cents/kWh for the small-scale plant. • Nominal electricity costs are 14.9–24.2 cents/kWh for the large-scale plant. • GHG mitigation costs from displacing coal and LPG are $111-$281/tonne of CO 2 eq. • High sensitivity to cap. factor (large-scale) and labor requirements (small-scale)

  18. Spatial Analysis of Biomass Resources within a Socio-Ecologically Heterogeneous Region: Identifying Opportunities for a Mixed Feedstock Stream

    Directory of Open Access Journals (Sweden)

    Kirby Calvert

    2014-02-01

    Full Text Available Local bioenergy will play a crucial role in national and regional sustainable energy strategies. Effective siting and feedstock procurement strategies are critical to the development and implementation of bioenergy systems. This paper aims to improve spatial decision-support in this domain by shifting focus from homogenous (forestry or agricultural regions toward heterogeneous regions—i.e., areas with a presence of both forestry and agricultural activities; in this case, eastern Ontario, Canada. Multiple land-cover and resource map series are integrated in order to produce a spatially distributed GIS-based model of resource availability. These data are soft-linked with spreadsheet-based linear models in order to estimate and compare the quantity and supply-cost of the full range of non-food bioenergy feedstock available to a prospective developer, and to assess the merits of a mixed feedstock stream relative to a homogenous feedstock stream. The method is applied to estimate bioenergy production potentials and biomass supply-cost curves for a number of cities in the study region. Comparisons of biomass catchment areas; supply-cost curves; resource density maps; and resource flow charts demonstrate considerable strategic and operational advantages to locating a facility within the region’s “transition zone” between forestry and agricultural activities. Existing and emerging bioenergy technologies that are feedstock agnostic and therefore capable of accepting a mixed-feedstock stream are reviewed with emphasis on “intermediates” such as wood pellets; biogas; and bio-oils, as well as bio-industrial clusters.

  19. Dynamic analysis of policy drivers for bioenergy commodity markets

    International Nuclear Information System (INIS)

    Jeffers, Robert F.; Jacobson, Jacob J.; Searcy, Erin M.

    2013-01-01

    Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from export dominance. - Highlights: ► We model a United States bioenergy feedstock commodity market. ► Three buyers compete for biomass: biopower, biofuels, and foreign exports. ► The presented methodology improves on dynamic economic equilibrium theory. ► With current policy incentives and ignoring exports, biofuels dominates the market. ► Overseas biomass demand could dominate unless a CO 2 -limiting policy is enacted.

  20. 11. Rostock bioenergy forum. Proceedings

    International Nuclear Information System (INIS)

    Nelles, Michael

    2017-01-01

    The seven main focus of the bioenergy forum were: 1. Political regulation and its consequences; 2. Flexible energy supply; 3. Biorefineries for the use of residues from bioenergy production; 4. Process optimization biogas; 5. Alternative substrates for biogas production; 6. Cross-sectoral bioenergy concept; 7. Transport sector (biofuels). Five lectures are separately analyzed for this database. [de

  1. ASSERT FY16 Analysis of Feedstock Companion Markets

    International Nuclear Information System (INIS)

    Lamers, Patrick; Hansen, Jason; Jacobson, Jacob J.; Nguyen, Thuy; Nair, Shyam; Searcy, Erin; Hess, J. Richard

    2016-01-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  2. ASSERT FY16 Analysis of Feedstock Companion Markets

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nguyen, Thuy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nair, Shyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  3. Sustainability constraints on UK bioenergy development

    International Nuclear Information System (INIS)

    Thornley, Patricia; Upham, Paul; Tomei, Julia

    2009-01-01

    Use of bioenergy as a renewable resource is increasing in many parts of the world and can generate significant environmental, economic and social benefits if managed with due regard to sustainability constraints. This work reviews the environmental, social and economic constraints on key feedstocks for UK heat, power and transport fuel. Key sustainability constraints include greenhouse gas savings achieved for different fuels, land availability, air quality impacts and facility siting. Applying those constraints, we estimate that existing technologies would facilitate a sustainability constrained level of medium-term bioenergy/biofuel supply to the UK of 4.9% of total energy demand, broken down into 4.3% of heat demands, 4.3% of electricity, and 5.8% of transport fuel. This suggests that attempts to increase the supply above these levels could have counterproductive sustainability impacts in the absence of compensating technology developments or identification of additional resources. The barriers that currently prevent this level of supply being achieved have been analysed and classified. This suggests that the biggest policy impacts would be in stimulating the market for heat demand in rural areas, supporting feedstock prices in a manner that incentivised efficient use/maximum greenhouse gas savings and targeting investment capital that improves yield and reduces land-take. (author)

  4. A participatory systems approach to modeling social, economic, and ecological components of bioenergy

    International Nuclear Information System (INIS)

    Buchholz, Thomas S.; Volk, Timothy A.; Luzadis, Valerie A.

    2007-01-01

    Availability of and access to useful energy is a crucial factor for maintaining and improving human well-being. Looming scarcities and increasing awareness of environmental, economic, and social impacts of conventional sources of non-renewable energy have focused attention on renewable energy sources, including biomass. The complex interactions of social, economic, and ecological factors among the bioenergy system components of feedstock supply, conversion technology, and energy allocation have been a major obstacle to the broader development of bioenergy systems. For widespread implementation of bioenergy to occur there is a need for an integrated approach to model the social, economic, and ecological interactions associated with bioenergy. Such models can serve as a planning and evaluation tool to help decide when, where, and how bioenergy systems can contribute to development. One approach to integrated modeling is by assessing the sustainability of a bioenergy system. The evolving nature of sustainability can be described by an adaptive systems approach using general systems principles. Discussing these principles reveals that participation of stakeholders in all components of a bioenergy system is a crucial factor for sustainability. Multi-criteria analysis (MCA) is an effective tool to implement this approach. This approach would enable decision-makers to evaluate bioenergy systems for sustainability in a participatory, transparent, timely, and informed manner

  5. Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Krish Homagain

    2016-09-01

    Full Text Available Background Replacement of fossil fuel based energy with biochar-based bioenergy production can help reduce greenhouse gas emissions while mitigating the adverse impacts of climate change and global warming. However, the production of biochar-based bioenergy depends on a sustainable supply of biomass. Although, Northwestern Ontario has a rich and sustainable supply of woody biomass, a comprehensive life cycle cost and economic assessment of biochar-based bioenergy production technology has not been done so far in the region. Methods In this paper, we conducted a thorough life cycle cost assessment (LCCA of biochar-based bioenergy production and its land application under four different scenarios: 1 biochar production with low feedstock availability; 2 biochar production with high feedstock availability; 3 biochar production with low feedstock availability and its land application; and 4 biochar production with high feedstock availability and its land application- using SimaPro®, EIOLCA® software and spreadsheet modeling. Based on the LCCA results, we further conducted an economic assessment for the break-even and viability of this technology over the project period. Results It was found that the economic viability of biochar-based bioenergy production system within the life cycle analysis system boundary based on study assumptions is directly dependent on costs of pyrolysis, feedstock processing (drying, grinding and pelletization and collection on site and the value of total carbon offset provided by the system. Sensitivity analysis of transportation distance and different values of C offset showed that the system is profitable in case of high biomass availability within 200 km and when the cost of carbon sequestration exceeds CAD $60 per tonne of equivalent carbon (CO2e. Conclusions Biochar-based bioenergy system is economically viable when life cycle costs and environmental assumptions are accounted for. This study provides a medium scale

  6. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance N. [South Dakota State Univ., Brookings, SD (United States). North Central Sun Grant Center; Karlen, Douglas L. [Dept. of Agriculture Agricultural Research Service, Ames, IA (United States). National Lab. for Agriculture and the Environment; Lacey, Jeffrey A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Process Science and Technology Division

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  7. Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach

    Directory of Open Access Journals (Sweden)

    Luis Puigjaner

    2015-06-01

    Full Text Available The electricity generation sector needs to reduce its environmental impact and dependence on fossil fuel, mainly from coal. Biomass is one of the most promising future options to produce electricity, given its potential contribution to climate change mitigation. Even though biomass is an old source of energy, it is not yet a well-established commodity. The use of biomass in large centralised systems requires the establishment of delivery channels to provide the desired feedstock with the necessary attributes, at the right time and place. In terms of time to deployment and cost of the solution, co-combustion/co-gasification of biomass and coal are presented as transition and short-medium term alternatives towards a carbon-neutral energy sector. Hence, there is a need to assess an effective introduction of co-combustion/co-gasification projects in the current electricity production share. The purpose of this work is to review recent steps in Process Systems Engineering towards bringing into reality individualised and ad-hoc solutions, by building a common but adjustable design platform to tailored approaches of biomass-based supply chains. Current solutions and the latest developments are presented and future needs under study are also identified.

  8. An introduction to BIOSSAM: the South African BIOenergy systems sustainability assessment and management portal

    CSIR Research Space (South Africa)

    Stafford, W

    2010-11-01

    Full Text Available The global bioenergy industry is advancing rapidly. New technologies and potential feedstocks are being proposed that aim for bioenergy to contribute to a wider range of economic, social, and environmental objectives. However, these advancements all...

  9. A study of the development of bio-energy resources and the status of eco-society in China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xia; Huang, Yongmei; Gong, Jirui [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Zhang, Xinshi [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Institute of Botany, CAS, Beijing 100093 (China)

    2010-11-15

    Industrialization of bio-energy relies on the supply of resources on a large scale. The theoretical biomass resources could reach 2.61-3.51 billion tce (tons of coal equivalent)/a in China, while the available feedstock is about 440-640 million tce/a, however, among this only 1.5-2.5% has been transferred into energy at present. Marginal land utilization has great prospects of supplying bio-energy resources in China, with co-benefits, such as carbon sequestration, water/soil conservation, and wind erosion protection. There is a large area of marginal land in China, especially in northern China, including about 263 million ha of desertification land, 173 million ha of sand-land, and 17 million ha of salinizatin land. The plant species suitable to be grown in marginal lands, including some species in Salix, Hippophae, Tamarix, Caragana, and Prunus is also abundant Biomass feedstock in marginal lands would be 100 million tce/a in 2020, and 200 million tce/a in 2050. As a result, a win-win situation of eco-society and bio-energy development could be realized, with an expected 4-5% reduction of total CO{sub 2} emission in China in 2020-2050. Although much progress has been made in the field of bio-energy research in China, yet significant efforts should be taken in the future to fulfill large-scale industrialization of bio-energy. (author)

  10. Ecobalances of technical options for the supply and utilization of bioenergy; Oekobilanzen technischer Optionen zur Bioenergiebereitstellung und -nutzung

    Energy Technology Data Exchange (ETDEWEB)

    Dunkelberg, Elisa; Aretz, Astrid

    2013-05-15

    In Germany bioenergy production and consumption are promoted and encouraged by means of the Renewable Energy Law, which has as its objectives transforming the energy system and preventing climate change. In recent years several forms of bioenergy have been criticized as leading to ecological and socioeconomic risks. This study presents life cycle assessments (LCA) for existing bioenergy processes. The LCAs were conducted as a part of the Project ''Renewable Energy Regions: Socio-Ecology of Self-Sufficiency''; the objective was to assess the ecological impact of the selected bioenergy processes in order to calculate the overall ecological impact of existing bioenergy plants. The results prove that the usage of agricultural biomass such as corn and wheat for biogas production leads to negative ecological impacts such as eutrophication and acidification. If greenhouse gas emissions from land-use change are included, the net effect in comparison to the usage of fossil energies will only be small or even negative; however, when residues such as manure or materials from landscape management are used as substrates for biogas production they lead to several positive ecological impacts. Residual forest wood or wood from short-rotation coppices used in co-generation show the highest greenhouse gas reduction potential among the investigated processes. It must, however, be assumed that the potential of residual forest wood in Germany is already largely being tapped. Regions that have made bioenergy a priority thus should limit the usage of agricultural biomass for energy production to specific crops such as short-rotation coppices and floral and herbaceous perennials. Additionally, future challenges will require strategies to improve cascade utilization and gathering and efficient usage of residues.

  11. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  12. Strategies for 2nd generation biofuels in EU - Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goeran; Hansson, Julia; Egeskog, Andrea [Department of Energy and Environment, Division of Physical Resource Theory, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Johnsson, Filip [Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2010-02-15

    The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction from lignocellulose based 2nd generation biofuels - and also from biomass use for heat and electricity - by keeping farmers' attention and significant investments focusing on first generation biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal, generates high-efficiency biomass electricity and reduces CO{sub 2} emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets is judged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies. (author)

  13. Strategies for 2nd generation biofuels in EU - Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness

    International Nuclear Information System (INIS)

    Berndes, Goeran; Hansson, Julia; Egeskog, Andrea; Johnsson, Filip

    2010-01-01

    The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction from lignocellulose based 2nd generation biofuels - and also from biomass use for heat and electricity - by keeping farmers' attention and significant investments focusing on first generation biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal, generates high-efficiency biomass electricity and reduces CO 2 emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets is judged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies. (author)

  14. Bioenergy market competition for biomass: A system dynamics review of current policies

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  15. Strategy for increased development of bio-energy; Strategi for oekt utbygging av bioenergi

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    The goal for the bio-energy strategy is to secure goal-oriented and coordinated effort towards increased development of bio-energy by 14 TWh within 2020. The increase in development of bio-energy is important because it reduces greenhouse gases, contribute to industrial and commercial development and strengthen the reliability of energy supply

  16. Bioenergy. The manifold renewable energy. 4. compl. rev. ed.; Bioenergie. Die vielfaeltige erneuerbare Energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    Bioenergy is the most important renewable energy source in Germany. With about 70 percent bioenergy contributes to the largest share of energy supply from renewable energy sources. This brochure provides an overview of the various possibilities, advantages and opportunities in the use of biomass and bioenergy.

  17. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  18. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  19. ACMECS Bioenergy Network: Implementing a transnational science-based policy network on bioenergy

    Science.gov (United States)

    Bruckman, Viktor J.; Haruthaithanasan, Maliwan; Kraxner, Florian; Brenner, Anna

    2017-04-01

    Despite the currently low prices for fossil energy resulting from a number of geopolitical reasons, intergovernmental efforts are being made towards a transition to a sustainable bio-economy. The main reasons for this include climate change mitigation, decreasing dependencies fossil fuel imports and hence external market fluctuations, diversification of energy generation and feedstock production for industrial processes. Since 2012, the ACMECS bioenergy network initiative leads negotiations and organizes workshops to set up a regional bioenergy network in Indochina, with the aim to promote biomass and -energy markets, technology transfer, rural development and income generation. Policy development is guided by the International Union of Forest Research Institutions (IUFRO) Task Force "Sustainable Forest Bioenergy Network". In this paper, we highlight the achievements so far and present results of a multi-stakeholder questionnaire in combination with a quantitative analysis of the National Bioenergy Development Plans (NBDP's). We found that traditional fuelwood is still the most important resource for generating thermal energy in the region, especially in rural settings, and it will remain an important resource even in 25 years. However, less fuelwood will be sourced from natural forests as compared to today. NBDP's have a focus on market development, technology transfer and funding possibilities of a regional bioenergy strategy, while the responses of the questionnaire favored more altruistic goals, i.e. sustainable resource management, environmental protection and climate change mitigation, generation of rural income and community involvement etc. This is surprising, since a sub-population of the (anonymous) questionnaire respondents was actually responsible drafting the NBDP's. We therefore suggest the following measures to ensure regulations that represent the original aims of the network (climate change mitigation, poverty alleviation, sustainable resource use

  20. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Capareda, Sergio [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; El-Halwagi, Mahmoud [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Hall, Kenneth R. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Searcy, Royce [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; Thompson, Wayne H. [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Baltensperger, David [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Myatt, Robert [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Blumenthal, Jurg [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  1. Pectins, Endopolygalacturonases, and Bioenergy

    Science.gov (United States)

    Latarullo, Mariana B. G.; Tavares, Eveline Q. P.; Padilla, Gabriel; Leite, Débora C. C.; Buckeridge, Marcos S.

    2016-01-01

    The precise disassembly of the extracellular matrix of some plant species used as feedstocks for bioenergy production continues to be a major barrier to reach reasonable cost effective bioethanol production. One solution has been the use of pretreatments, which can be effective, but increase even more the cost of processing and also lead to loss of cell wall materials that could otherwise be used in industry. Although pectins are known to account for a relatively low proportion of walls of grasses, their role in recalcitrance to hydrolysis has been shown to be important. In this mini-review, we examine the importance of pectins for cell wall hydrolysis highlighting the work associated with bioenergy. Here we focus on the importance of endopolygalacturonases (EPGs) discovered to date. The EPGs cataloged by CAZy were screened, revealing that most sequences, as well as the scarce structural work performed with EPGs, are from fungi (mostly Aspergillus niger). The comparisons among the EPG from different microorganisms, suggests that EPGs from bacteria and grasses display higher similarity than each of them with fungi. This compilation strongly suggests that structural and functional studies of EPGs, mainly from plants and bacteria, should be a priority of research regarding the use of pectinases for bioenergy production purposes. PMID:27703463

  2. Pectins, Endopolygalacturonases, and Bioenergy

    Directory of Open Access Journals (Sweden)

    Mariana B. G. Latarullo

    2016-09-01

    Full Text Available The precise disassembly of the extracellular matrix of some plant species used as feedstocks for bioenergy production continues to be a major barrier to reach reasonable cost effective bioethanol production. One solution has been the use of pretreatments, which can be effective, but increase even more the cost of processing and also lead to loss of cell wall materials that could otherwise be used in industry. Although pectins are known to account for a relatively low proportion of walls of grasses, their role in recalcitrance to hydrolysis has been shown to be important. In this mini-review, we examine the importance of pectins for cell wall hydrolysis highlighting the work associated with bioenergy. Here we focus on the importance of endopolygalacturonases (EPGs discovered to date. The EPGs cataloged by CAZy were screened, revealing that most sequences, as well as the scarce structural work performed with EPGs, are from fungi (mostly Aspergillus niger. The comparisons among the EPG from different microorganisms, suggests that EPGs from bacteria and grasses display higher similarity than each of them with fungi. This compilation strongly suggests that structural and functional studies of EPGs, mainly from plants and bacteria, should be a priority of research regarding the use of pectinases for bioenergy production purposes.

  3. Forest based biomass for energy in Uganda: Stakeholder dynamics in feedstock production

    International Nuclear Information System (INIS)

    Hazelton, Jennifer A.; Windhorst, Kai; Amezaga, Jaime M.

    2013-01-01

    Insufficient energy supply and low levels of development are closely linked. Both are major issues in Uganda where growing demand cannot be met by overstretched infrastructure and the majority still rely on traditional biomass use. Uganda's renewable energy policy focuses on decentralised sources including modern biomass. In this paper, stakeholder dynamics and potential socio-economic impacts of eight modern bioenergy feedstock production models in Uganda are considered, and key considerations for future planning provided. For these models the main distinctions were land ownership (communal or private) and feedstock type (by-product or plantation). Key social issues varied by value chain (corporate, government or farmer/NGO), and what production arrangement was in place (produced for own use or sale). Small, privately owned production models can be profitable but are unlikely to benefit landless poor and, if repeated without strategic planning, could result in resource depletion. Larger projects can have greater financial benefits, though may have longer term natural resource impacts felt by adjacent communities. Bioenergy initiatives which allow the rural poor to participate through having a collaborative stake, rather than receiving information, and provide opportunities for the landless are most likely to result in socio-economic rural development to meet policy goals. The structured approach to understanding stakeholder dynamics used was found to be robust and sufficiently adaptable to provide meaningful analysis. In conclusion; local, context-specific planning and assessment for bioenergy projects, where all stakeholders have the opportunity to be collaborators in the process throughout its full lifecycle, is required to achieve rural development objectives. -- Highlights: • Stakeholder dynamics and socio-economics in 8 Ugandan bioenergy projects considered. • Key distinctions were ownership, feedstock, value chain and production arrangement. • Small

  4. International bioenergy transport costs and energy balance

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N.; Suurs, Roald A.A.; Faaij, Andre P.C.

    2005-01-01

    To supply biomass from production areas to energy importing regions, long-distance international transport is necessary, implying additional logistics, costs, energy consumption and material losses compared to local utilisation. A broad variety of bioenergy chains can be envisioned, comprising different biomass feedstock production systems, pre-treatment and conversion operations, and transport of raw and refined solid biomass and liquid bio-derived fuels. A tool was developed to consistently compare the possible bioenergy supply chains and assess the influence of key parameters, such as distance, timing and scale on performance. Chains of European and Latin American bioenergy carriers delivered to Western Europe were analysed using generic data. European biomass residues and crops can be delivered at 90 and 70 euros/tonne dry (4.7 and 3.7 euros/GJ HHV ) when shipped as pellets. South American crops are produced against much lower costs. Despite the long shipping distance, the costs in the receiving harbour can be as low as 40 euros/tonne dry or 2.1 euros/GJ HHV ; the crop's costs account for 25-40% of the delivered costs. The relatively expensive truck transport from production site to gathering point restricts the size of the production area; therefore, a high biomass yield per hectare is vital to enable large-scale systems. In all, 300 MW HHV Latin American biomass in biomass integrated gasification/combined cycle plants may result in cost of electricity as little as 3.5 euros cent/kWh, competitive with fossil electricity. Methanol produced in Latin America and delivered to Europe may cost 8-10 euros/GJ HHV , when the pellets to methanol conversion is done in Europe the delivered methanol costs are higher. The energy requirement to deliver solid biomass from both crops and residues from the different production countries is 1.2-1.3 MJ primary /MJ delivered (coal ∼ 1.1 MJ/MJ). International bioenergy trade is possible against low costs and modest energy loss

  5. Bioenergy in the United States: progress and possibilities

    International Nuclear Information System (INIS)

    Cook, J.; Beyea, J.

    2000-01-01

    Concerns about global climate change and air quality have increased interest in biomass and other energy sources that are potentially CO 2 -neutral and less polluting. Large-scale bioenergy development could indeed bring significant ecological benefits - or equally significant damage - depending on the specific paths taken. In particular, the land requirements for biomass production are potentially immense. Various entities in the United States have performed research; prepared cost-supply assessments, environmental impact assessments, life cycle analyses and externality impact assessments; and engaged in demonstration and development regarding biomass crops and other potential biomass energy feedstocks. These efforts have focused on various biomass wastes, forest management issues, and biomass crops, including both perennial herbaceous crops and fast-growing woody crops. Simultaneously, several regional and national groups of bioenergy stakeholders have issued consensus recommendations and guidelines for sustainable bioenergy development. It is a consistent conclusion from these efforts that displacing annual agricultural crops with native perennial biomass crops could - in addition to reducing fossil fuel use and ameliorating associated ecological problems - also help restore natural ecosystem functions in worked landscapes, and thereby preserve natural biodiversity. Conversely, if forests are managed and harvested more intensively - and/or if biomass crops displace more natural land cover such as forests and wetlands - it is likely that ecosystem functions would be impaired and biodiversity lost. (author)

  6. Navigating Bioenergy. Contributing to informed decision making on bioenergy issues

    Energy Technology Data Exchange (ETDEWEB)

    Vis, M.; Reumerman, P.; Frederiks, B. [BTG Biomass Technology Group, Enschede (Netherlands)

    2009-11-15

    In order to further contribute to sustainable global bioenergy development, UNIDO will this year be launching the Bioenergy Capacity Building Programme (BIOCAB), offering a comprehensive training package to policy makers and entrepreneurs aimed at enhancing their engagement in shaping a sustainable bioenergy industry in developing countries. The training package, disseminated through a network of key institutions and certified trainers, will consist of four modules covering the following subjects: Technologies and Processes, Policy, Socio-Economic and Environmental Issues, Financial and Project Development Issues, Industrial Applications for Productive Use. While designing the training package and its modules at a meeting hosted by UNIDO at headquarters in August 2008, experts reiterated a demand, previously expressed by UNIDO clients at various international fora, for an easy-to-read, practical and user-friendly introduction to certain contentious bioenergy issues. The expert meeting selected the most hotly-debated bioenergy issues and came up with the following eight topics: (1) Jatropha, the feedstock of the future?; (2) Biomethane, is it an underestimated energy source?; (3) Energy from Municipal Solid Waste, can this potential be realized?; (4) The Biorefinery Concept, how relevant is it for developing countries?; (5) Competition with Food, what are the facts in the food versus fuel discussion?; (6) Sustainability and Certification of Biomass, what are the benefits?; (7) Clean Development Mechanism, how does it work?; (8) Success Stories.

  7. Indicators of bioenergy-related certification schemes – An analysis of the quality and comprehensiveness for assessing local/regional environmental impacts

    International Nuclear Information System (INIS)

    Meyer, Markus A.; Priess, Joerg A.

    2014-01-01

    Bioenergy is receiving increasing attention because it may reduce greenhouse gas emissions, secure and diversify energy supplies and stimulate rural development. The environmental sustainability of bioenergy production systems is often determined through life-cycle assessments that focus on global environmental effects, such as the emission of greenhouse gases or air pollutants. Local/regional environmental impacts, e.g., the impacts on soil or on biodiversity, require site-specific and flexible options for the assessment of environmental sustainability, such as the criteria and indicators used in bioenergy certification schemes. In this study, we compared certification schemes and assessed the indicator quality through the environmental impact categories, using a standardized rating scale to evaluate the indicators. Current certification schemes have limitations in their representation of the environmental systems affected by feedstock production. For example, these schemes predominantly use feasible causal indicators, instead of more reliable but less feasible effect indicators. Furthermore, the comprehensiveness of the depicted environmental systems and the causal links between human land use activities and biophysical processes in these systems have been assessed. Bioenergy certification schemes seem to demonstrate compliance with underlying legislation, such as the EU Renewable Energy Directive, rather than ensure environmental sustainability. Beyond, certification schemes often lack a methodology or thresholds for sustainable biomass use. Lacking thresholds, imprecise causal links and incomplete indicator sets may hamper comparisons of the environmental performances of different feedstocks. To enhance existing certification schemes, we propose combining the strengths of several certification schemes with research-based indicators, to increase the reliability of environmental assessments. - Highlights: • Certification schemes for bioenergy feedstocks are

  8. Decreasing Fertilizer use by Optimizing Plant-microbe Interactions for Sustainable Supply of Nitrogen for Bioenergy Crops

    Science.gov (United States)

    Schicklberger, M. F.; Huang, J.; Felix, P.; Pettenato, A.; Chakraborty, R.

    2013-12-01

    Nitrogen (N) is an essential component of DNA and proteins and consequently a key element of life. N often is limited in plants, affecting plant growth and productivity. To alleviate this problem, tremendous amounts of N-fertilizer is used, which comes at a high economic price and heavy energy demand. In addition, N-fertilizer also significantly contributes to rising atmospheric greenhouse gas concentrations. Therefore, the addition of fertilizer to overcome N limitation is highly undesirable. To explore reduction in fertilizer use our research focuses on optimizing the interaction between plants and diazotrophic bacteria, which could provide adequate amounts of N to the host-plant. Therefore we investigated the diversity of microbes associated with Tobacco (Nicotiana tabacum) and Switchgrass (Panicum virgatum), considered as potential energy crop for bioenergy production. Several bacterial isolates with representatives from Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes and Bacilli were obtained from the roots, leaves, rhizoplane and rhizosphere of these plants. Majority of these isolates grew best with simple sugars and small organic acids. As shown by PCR amplification of nifH, several of these isolates are potential N2-fixing bacteria. We investigated diazotrophs for their response to elevated temperature and salinity (two common climate change induced stresses found on marginal lands), their N2-fixing ability, and their response to root exudates (which drive microbial colonization of the plant). Together this understanding is necessary for the development of eco-friendly, economically sustainable energy crops by decreasing their dependency on fertilizer.

  9. Algae as a Feedstock for Biofuels. An Assessment of the Current Status and Potential for Algal Biofuels Production. Joint Summary report of IEA-AMF Annex XXXIV-2 and IEA Bioenergy Task 39

    Energy Technology Data Exchange (ETDEWEB)

    O' Conner, D. [S and T2 Consultants, Inc. (Canada)

    2011-09-15

    In 2010, the IEA Advanced Motor Fuels Implementing Agreement and the IEA Bioenergy Task 39 both commissioned reports on the status and potential opportunities for Algal Biofuels. While there were substantial similarities in the findings of the two reports, each report provides unique perspectives on different aspects of the technology and the opportunities. This summary draws on both of those reports. The Task 39 report (Bioenergy Algal Biofuels.pdf) was authored by Al Darzins and Philip Pienkos (NREL, US) and Les Edye (BioIndustry Partners, Australia). The IEA AMF report was prepared by Karen Sikes and Ralph McGill (Sentech, Inc. US) and Martijn Van Walwijk (Independent Researcher).

  10. Approaches to raw sugar quality improvement as a route to sustaining a reliable supply of purified industrial sugar feedstocks

    Science.gov (United States)

    Energy costs in the sugar industry are outstripping costs of manufacture, particularly in refineries. This, as well as increasing transportation costs and the need to meet manufacturers’ tight specifications, has increased the demand for a sustainable supply of purified, raw sugar. Agricultural com...

  11. Paths to bioenergy villages. A guideline for a independent supply of heat and electricity based on biomass in rural area. 3. ed.; Wege zum Bioenergiedorf. Leitfaden fuer eine eigenstaendige Waerme- und Stromversrogung auf Basis von Biomasse im laendlichen Raum

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Hans; Eigner-Thiel, Swantje; Girschner, Walter; Karpenstein-Machan, Marianne; Roland, Folker; Ruwisch, Volker; Sauer, Benedikt; Schmuck, Peter

    2010-12-15

    Bioenergy villages are one component for the sustainable energy supply in rural areas. The guideline under consideration is intended to encourage people in villages to switch their heat supply and electricity supply on the bases of biomass. The focus of this process-oriented guideline is on: (1) A presentation of the social feasibility, especially the involvement, motivation and encouragement of the population; (2) The presentation of concepts for a nature-friendly cultivation of the required biomass; (3) The treatment of economic and legal issues from the perspective of the people involved.

  12. Expected international demand for woody and herbaceous feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  13. Fostering sustainable feedstock production for advanced biofuels on underutilised land in Europe

    Science.gov (United States)

    Mergner, Rita; Janssen, Rainer; Rutz, Dominik; Knoche, Dirk; Köhler, Raul; Colangeli, Marco; Gyuris, Peter

    2017-04-01

    Background In context of growing competition between land uses, bioenergy development is often seen as one of possible contributors to such competition. However, the potential of underutilized land (contaminated, abandoned, marginal, fallow land etc.) which is not used or cannot be used for productive activities is not exhausted and offers an attractive alternative for sustainable production of different biomass feedstocks in Europe. Depending on biomass feedstocks, different remediation activities can be carried out in addition. Bioenergy crops have the potential to be grown profitably on underutilized land and can therefore offer an attractive source of income on the local level contributing to achieving the targets of the Renewable Energy Directive (EC/2009). The FORBIO project The FORBIO project demonstrates the viability of using underutilised land in EU Member States for sustainable bioenergy feedstock production that does not affect the supply of food, feed and land currently used for recreational or conservation purposes. Project activities will serve to build up and strengthen local bioenergy value chains that are competitive and that meet the highest sustainability standards, thus contributing to the market uptake of sustainable bioenergy in the EU. Presented results The FORBIO project will develop a methodology to assess the sustainable bioenergy production potential on available underutilized lands in Europe at local, site-specific level. Based on this methodology, the project will produce multiple feasibility studies in three selected case study locations: Germany (lignite mining and sewage irrigation fields in the metropolis region of Berlin and Brandenburg), Italy (contaminated land from industrial activities in Sulcis, Portoscuso) and Ukraine (underutilised marginal agricultural land in the North of Kiev). The focus of the presentation will be on the agronomic and techno-economic feasibility studies in Germany, Italy and Ukraine. Agronomic

  14. Nutrient supply to reed canary grass as a bioenergy crop. Intercropping and fertilization with ash or sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lindvall, Eva

    2012-07-01

    Production of renewable energy from herbaceous crops on agricultural land is of great interest since fossil fuels need to be replaced with sustainable energy sources. Reed canary grass (RCG), Phalaris arundinacea L. is an interesting species for this purpose. The aim of this thesis was to study different approaches to reduce the requirement of mineral fertilizers in RCG production for bioenergy purposes. Paper I describes a study where fertilization effects and risk of heavy metal enrichment were studied, using annual applications of ash for seven years. Ash from co-combustion of RCG and municipal wastes (mixed ash), pure RCG ash and commercial fertilizers were compared. The experiment was harvested each spring. Paper II describes an ongoing study in which the effects of intercropping RCG in mixture with nitrogen-fixing perennial legumes are examined in two experiments, in combination with various fertilization treatments. Three fertilization treatments were applied: high N, low N (half of the high N) and low N + RCG ash/sewage sludge. A delayed harvest method was used; cutting the biomass in late autumn and harvesting in spring. Besides dry matter yield, the N-fixation rate was estimated. The results from paper I showed no differences between treatments in the dry matter yields or in the heavy metal concentrations in the biomass. Soil samples, taken when the experiment was finished, showed differences between treatments for Cd, Pb and Zn only in the uppermost soil level, highest levels for the mixed ash treatment. The results in paper II showed that at one site the legume proportion in the mixtures was low and did not affect RCG growth negatively. The high N treatment gave a higher spring yield than the low N treatments. Mean rates of N2-fixation in the first production year were 12-28, 33-40 and 55 kg N ha-1 kg for goat's rue (Galega orientalis Lam.), red clover (Trifolium pratense L.), and alsike clover (Trifolium hybridum L.), plots, respectively. At the

  15. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  16. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  17. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Steef V. [Radboud Univ., Nijmegen (Netherlands). Dept. of Environmental Science, Faculty of Science; Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Duden, Anna S. [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Junginger, Martin [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Dale, Virginia H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division, Center for BioEnergy Sustainability; van der Hilst, Floor [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences

    2016-12-29

    Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth, and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues, and mill residues. Per feedstock, the GHG balance of wood-pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock material, such as in-forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood-pellet electricity equals that of alternative scenarios within 0 to 21 years (the GHG parity time), after which wood-pellet electricity has sustained climate benefits. Parity times increase by a maximum of twelve years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood-pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0-6 years) and fastest GHG benefits from wood-pellet electricity. Here, we find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land

  18. Halophytes as Bioenergy Crops

    Directory of Open Access Journals (Sweden)

    Rita Sharma

    2016-09-01

    Full Text Available Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops.

  19. Bioenergy for sustainable development: An African context

    Science.gov (United States)

    Mangoyana, Robert Blessing

    This paper assesses the sustainability concerns of bioenergy systems against the prevailing and potential long term conditions in Sub-Saharan Africa with a special attention on agricultural and forestry waste, and cultivated bioenergy sources. Existing knowledge and processes about bioenergy systems are brought into a “sustainability framework” to support debate and decisions about the implementation of bioenergy systems in the region. Bioenergy systems have been recommended based on the potential to (i) meet domestic energy demand and reduce fuel importation (ii) diversify rural economies and create employment (iii) reduce poverty, and (iv) provide net energy gains and positive environmental impacts. However, biofuels will compete with food crops for land, labour, capital and entrepreneurial skills. Moreover the environmental benefits of some feedstocks are questionable. These challenges are, however, surmountable. It is concluded that biomass energy production could be an effective way to achieve sustainable development for bioenergy pathways that (i) are less land intensive, (ii) have positive net energy gains and environmental benefits, and (iii) provide local socio-economic benefits. Feasibility evaluations which put these issues into perspective are vital for sustainable application of agricultural and forest based bioenergy systems in Sub-Saharan Africa. Such evaluations should consider the long run potential of biofuels accounting for demographic, economic and technological changes and the related implications.

  20. Watershed scale impacts of bioenergy, landscape changes, and ecosystem response

    Science.gov (United States)

    Chaubey, Indrajeet; Cibin, Raj; Chiang, Li-Chi

    2013-04-01

    In recent years, high US gasoline prices and national security concerns have prompted a renewed interest in alternative fuel sources to meet increasing energy demands, particularly by the transportation sector. Food and animal feed crops, such as corn and soybean, sugarcane, residue from these crops, and cellulosic perennial crops grown specifically to produce bioenergy (e.g. switchgrass, Miscanthus, mixed grasses), and fast growing trees (e.g. hybrid poplar) are expected to provide the majority of the biofeedstock for energy production. One of the grand challenges in supplying large quantities of grain-based and lignocellulosic materials for the production of biofuels is ensuring that they are produced in environmentally sustainable and economically viable manner. Feedstock selection will vary geographically based on regional adaptability, productivity, and reliability. Changes in land use and management practices related to biofeedstock production may have potential impacts on water quantity and quality, sediments, and pesticides and nutrient losses, and these impacts may be exacerbated by climate variability and change. We have made many improvements in the currently available biophysical models (e.g. Soil and Water Assessment Tool or SWAT model) to evaluate sustainability of energy crop production. We have utilized the improved model to evaluate impacts of both annual (e.g. corn) and perennial bioenergy crops (e.g. Miscanthus and switchgrass at) on hydrology and water quality under the following plausible bioenergy crop production scenarios: (1) at highly erodible areas; (2) at agriculturally marginal areas; (3) at pasture areas; (4) crop residue (corn stover) removal; and (5) combinations of above scenarios. Overall results indicated improvement in water quality with introduction of perennial energy crops. Stream flow at the watershed outlet was reduced under energy crop production scenarios and ranged between 0.3% and 5% across scenarios. Erosion and sediment

  1. Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment

    International Nuclear Information System (INIS)

    Osmani, Atif; Zhang, Jun

    2014-01-01

    Highlights: • 2-Stage stochastic MILP model for optimizing the performance of a sustainable lignocellulosic-based biofuel supply chain. • Multiple uncertainties in biomass supply, purchase price of biomass, bioethanol demand, and sale price of bioethanol. • Stochastic parameters significantly impact the allocation of biomass processing capacities of biorefineries. • Location of biorefineries and choice of conversion technology is found to be insensitive to the stochastic environment. • Use of Sample Average Approximation (SAA) algorithm as a decomposition technique. - Abstract: This work proposes a two-stage stochastic optimization model to maximize the expected profit and simultaneously minimize carbon emissions of a dual-feedstock lignocellulosic-based bioethanol supply chain (LBSC) under uncertainties in supply, demand and prices. The model decides the optimal first-stage decisions and the expected values of the second-stage decisions. A case study based on a 4-state Midwestern region in the US demonstrates the effectiveness of the proposed stochastic model over a deterministic model under uncertainties. Two regional modes are considered for the geographic scale of the LBSC. Under co-operation mode the 4 states are considered as a combined region while under stand-alone mode each of the 4 states is considered as an individual region. Each state under co-operation mode gives better financial and environmental outcomes when compared to stand-alone mode. Uncertainty has a significant impact on the biomass processing capacity of biorefineries. While the location and the choice of conversion technology for biorefineries i.e. biochemical vs. thermochemical, are insensitive to the stochastic environment. As variability of the stochastic parameters increases, the financial and environmental performance is degraded. Sensitivity analysis shows that levels of tax credit and carbon price have a major impact on the choice of conversion technology for a selected

  2. IEA bioenergy annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report describes the organization and the results of the recently completed and the ongoing tasks. Ongoing tasks 1995 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Waste (Task XIV) and Greenhouse Gas Balances of Bioenergy Systems (Task XV). Lists of publications from the different tasks are given. 151 refs

  3. IEA Bioenergy. Annual report 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The report describes the organization and the results of the recently completed and the ongoing tasks. Ongoing tasks 1995 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Waste (Task XIV) and Greenhouse Gas Balances of Bioenergy Systems (Task XV). Lists of publications from the different tasks are given

  4. IEA bioenergy annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The report describes the organization and the results of the recently completed and the ongoing tasks. Ongoing tasks 1995 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Waste (Task XIV) and Greenhouse Gas Balances of Bioenergy Systems (Task XV). Lists of publications from the different tasks are given. 151 refs

  5. Maize feedstocks with improved digestibility reduce the costs and environmental impacts of biomass pretreatment and saccharification

    NARCIS (Netherlands)

    Torres Salvador, A.F.; Slegers, Ellen; Noordam-Boot, C.M.M.; Dolstra, O.; Vlaswinkel, L.; Boxtel, van A.J.B.; Visser, R.G.F.; Trindade, L.M.

    2016-01-01

    Background - Despite the recognition that feedstock composition influences biomass conversion efficiency, limited information exists as to how bioenergy crops with reduced recalcitrance can improve the economics and sustainability of cellulosic fuel conversion platforms. We have compared the

  6. The future of bioenergy in Sweden. Background and summary of outstanding issues

    International Nuclear Information System (INIS)

    Berndes, G.

    2006-01-01

    This report is intended to give a background to discussions about the future of bioenergy in Sweden, to be used by the Swedish Energy Agency in the planning of future efforts in the biofuel supply chain. An overview of the present supply and use of biomass in Sweden is given, and trends and prospects for increased use of bioenergy in Sweden are assessed. Both sources of increased bioenergy demand and possibilities for increased domestic supply are treated. Biomass contributes about 110 TWh, or one fifth of the Swedish energy supply. Biomass is mainly used for energy within the forest industry, in district heating plants, in the residential sector and for electricity production. More than 50% of the heat comes from biomass today. Based on a number of studies it is concluded that there is a potential for a substantial increase in the Swedish biofuel use, by introduction of new forest management practices and a re-orientation of agriculture. Calculations indicate that there is scope for a substantial increase in bioenergy use in Sweden and that the Swedish bioenergy potential is large enough to accommodate such an increase. However, related to the aspirations in the EC biofuel directive and the hopes that Sweden by taking early steps could become a major supplier of liquid biofuels in EU, it is also shown that Sweden to a significant extent would need to rely on imported bioenergy (biomass feedstock at the magnitude 100 TWh) in order to supply a biofuels industry capable of providing for the domestic market and also exporting substantial volumes of liquid biofuels to Europe. The prospects for a large-scale import of biofuels are discussed based on an analysis of the potential global biomass production and use in forestry and agriculture. A number of issues of great importance for increased biomass use are discussed - competitive land uses, availability of water, international trade rules, and international politics. The report also discusses additional and new uses of

  7. The future of bioenergy in Sweden. Background and summary of outstanding issues

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy and Environment; Magnusson, Leif [EnerGia Konsulterande Ingenjoerer AB, Stockholm (Sweden)

    2006-12-30

    This report is intended to give a background to discussions about the future of bioenergy in Sweden, to be used by the Swedish Energy Agency in the planning of future efforts in the biofuel supply chain. An overview of the present supply and use of biomass in Sweden is given, and trends and prospects for increased use of bioenergy in Sweden are assessed. Both sources of increased bioenergy demand and possibilities for increased domestic supply are treated. Biomass contributes about 110 TWh, or one fifth of the Swedish energy supply. Biomass is mainly used for energy within the forest industry, in district heating plants, in the residential sector and for electricity production. More than 50% of the heat comes from biomass today. Based on a number of studies it is concluded that there is a potential for a substantial increase in the Swedish biofuel use, by introduction of new forest management practices and a re-orientation of agriculture. Calculations indicate that there is scope for a substantial increase in bioenergy use in Sweden and that the Swedish bioenergy potential is large enough to accommodate such an increase. However, related to the aspirations in the EC biofuel directive and the hopes that Sweden by taking early steps could become a major supplier of liquid biofuels in EU, it is also shown that Sweden to a significant extent would need to rely on imported bioenergy (biomass feedstock at the magnitude 100 TWh) in order to supply a biofuels industry capable of providing for the domestic market and also exporting substantial volumes of liquid biofuels to Europe. The prospects for a large-scale import of biofuels are discussed based on an analysis of the potential global biomass production and use in forestry and agriculture. A number of issues of great importance for increased biomass use are discussed - competitive land uses, availability of water, international trade rules, and international politics. The report also discusses additional and new uses of

  8. Model feedstock supply processing plants

    Directory of Open Access Journals (Sweden)

    V. M. Bautin

    2013-01-01

    Full Text Available The model of raw providing the processing enterprises entering into vertically integrated structure on production and processing of dairy raw materials, differing by an orientation on achievement of cumulative effect by the integrated structure acting as criterion function which maximizing is reached by optimization of capacities, volumes of deliveries of raw materials and its qualitative characteristics, costs of industrial processing of raw materials and demand for dairy production is developed.

  9. Risoe energy report 2. New and emerging bioenergy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.; Kossmann, J.; Soenderberg Petersen, L. (eds.)

    2003-11-01

    Three growing concerns - sustainability (particularly in the transport sector), security of energy supply and climate change - have combined to increase interest in bioenergy. The trend towards bioenergy has been further encouraged by technological advances in biomass conversion and significant changes in energy markets. We even have a new term, 'modern bioenergy', to cover those areas of bioenergy technology - traditional as well as emerging - that could expand the role of bioenergy. Besides its potential to be carbon-neutral if produced sustainable, modern bioenergy shows the promise of covering a considerable part of the world's energy needs, increasing the security of energy supply through the use of indigenous resources, and improving local employment and land-use. To make these promises, however, requires further R and D. This report provides a critical examination of modern bioenergy, and describes current trends in both established and emerging bioenergy technologies. As well as examining the implications for the global energy scene, the report draws national conclusions for European and Danish energy supply, industry and energy research. The report presents the status of current R and D in biomass resources, supply systems, end products and conversion methods. A number of traditional and modern bioenergy technologies are assessed to show their current status, future trends and international R and D plans. Recent studies of emerging bioenergy technologies from international organisations and leading research organisations are reviewed. (BA)

  10. Scenarios of bioenergy development impacts on regional groundwater withdrawals

    Science.gov (United States)

    Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    Irrigation increases agricultural productivity, but it also stresses water resources (Huffaker and Hamilton 2007). Drought and the potential for drier conditions resulting from climate change could strain water supplies in landscapes where human populations rely on finite groundwater resources for drinking, agriculture, energy, and industry (IPCC 2007). For instance, in the North American Great Plains, rowcrops are utilized for livestock feed, food, and bioenergy production (Cassman and Liska 2007), and a large portion is irrigated with groundwater from the High Plains aquifer system (McGuire 2011). Under projected future climatic conditions, greater crop water use requirements and diminished groundwater recharge rates could make rowcrop irrigation less feasible in some areas (Rosenberg et al. 1999; Sophocleous 2005). The Rainwater Basin region of south central Nebraska, United States, is an intensively farmed and irrigated Great Plains landscape dominated by corn (Zea mays L.) and soybean (Glycine max L.) production (Bishop and Vrtiska 2008). Ten starch-based ethanol plants currently service the region, producing ethanol from corn grain (figure 1). In this study, we explore the potential of switchgrass (Panicum virgatum L.), a drought-tolerant alternative bioenergy feedstock, to impact regional annual groundwater withdrawals for irrigation under warmer and drier future conditions. Although our research context is specific to the Rainwater Basin and surrounding North American Great Plains, we believe the broader research question is internationally pertinent and hope that this study simulates similar research in other areas.

  11. Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, Annika [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Inman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carpenter Petri, Alberta C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Heath, Garvin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hettinger, Dylan J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-29

    Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA's MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).

  12. The availability and economic analyses of using marginal land for bioenergy production in China

    Science.gov (United States)

    Yuqi, Chen; Xudong, Guo; Chunyan, Lv

    2017-04-01

    ' perspective, low income led to none incentive of energy plants' cultivation. From the bioenergy plants' perspective, unstable supply and high cost of feedstock constrained the normal operation. In China, both energy crop' s cultivation and bioenergy production depend too much on government subsidies. It was impossible to develop bioenergy based on marginal land if only rely on the market at present.

  13. Bioenergy and climate change mitigation: an assessment

    DEFF Research Database (Denmark)

    Creutzig, Felix; Ravindranath, N. H.; Berndes, Göran

    2015-01-01

    Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation......: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects......-scale deployment (>200 EJ), together with BECCS, could help to keep global warming below 2° degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration...

  14. The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert; van der Meer, Theodorus H.

    2009-01-01

    This paper assesses the water footprint (WF) of different primary energy carriers derived from biomass expressed as the amount of water consumed to produce a unit of energy (m3/GJ). The paper observes large differences among the WFs for specific types of primary bio-energy carriers. The WF depends

  15. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  16. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  17. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic

  18. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Science.gov (United States)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  19. 2015 Bioenergy Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-28

    This report is an update to the 2013 report and provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of 2015. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This version features details on the two major bioenergy markets: biofuels and biopower and an overview of bioproducts that enable bioenergy production. The information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets.

  20. Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction: Update of the 2016 State-of-Technology Cases and Design Cases

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States; Dunn, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States; Pegallapati, Ambica [Argonne National Lab. (ANL), Argonne, IL (United States; Li, Qianfeng [Argonne National Lab. (ANL), Argonne, IL (United States; Canter, Christina [Argonne National Lab. (ANL), Argonne, IL (United States; Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meyer, Pimphan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2016). BETO and its national laboratory teams conduct in-depth technoeconomic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels, and life-cycle analysis of overall system sustainability.

  1. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  2. Monetization of Environmental Externalities (Emissions from Bioenergy

    Directory of Open Access Journals (Sweden)

    Isabelle BROSE

    2008-01-01

    Full Text Available Bioenergy from agriculture is today in the heart of sustainabledevelopment, integrating its key components: environment and climate change,energy economics and energy supply, agriculture, rural and social development.Each bioenergy production route presents externalities that must be assessed inorder to compare one bioenergy route to another (bioenergy route. The lack ofprimary and reliable data on externalities is, nevertheless, an important nontechnologicalbarrier to the implementation of the best (bioenergy routes. In thisarticle, we want to monetize one environmental externality from bioenergy:emissions (GHG: CO2, CH4, N2O, O3; CO, NOx, SO2, metal, and PM. We have tomonetize emissions on the basis of their effects on health, global warming, and soiland water quality. Emissions will be quantified through Life Cycle Analysis (LCAand ECOINVENT database. Impacts on health will be monetized on the basis ofmortality (number of life expectancy years lost multiplied by Value Of Life Year(VOLY and morbidity (number of ill persons multiplied by Cost Of Illness(COI. Impacts on global warming will be monetized by Benefits Transfers fromthe Stern Review and its critics. Finally, impacts on soil and water quality will bemonetized by Averting Behaviour or Defensive Expenses methods. Monetizationresults will be gathered, weighted, and incorporated in states and firms’ decisionmakingtools. They would enhance capacity of policy makers and managers tochose the best (bioenergy routes.

  3. IEA Bioenergy. Annual report 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The report describes the organization and the results of recently completed and ongoing tasks. Ongoing tasks in 1997 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Solid Waste (Task XIV); Greenhouse Gas Balances of Bioenergy Systems (Task XV); and Technology Assessment Studies for the Conversion of Cellulosic Materials to Ethanol in Sweden (Task XVI). Lists of publications from the different tasks are given

  4. IEA Bioenergy. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report describes the organization and the results of recently completed and ongoing tasks. Ongoing tasks in 1997 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Solid Waste (Task XIV); Greenhouse Gas Balances of Bioenergy Systems (Task XV); and Technology Assessment Studies for the Conversion of Cellulosic Materials to Ethanol in Sweden (Task XVI). Lists of publications from the different tasks are given

  5. How can land-use modelling tools inform bioenergy policies?

    Science.gov (United States)

    Davis, Sarah C.; House, Joanna I.; Diaz-Chavez, Rocio A.; Molnar, Andras; Valin, Hugo; DeLucia, Evan H.

    2011-01-01

    Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished. PMID

  6. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations

  7. 2013 Bioenergy Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Geiger, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-28

    This report provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of 2013. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets.

  8. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  9. Bioenergy 93 conference

    International Nuclear Information System (INIS)

    1993-01-01

    In this report the presentations given in the Bioenergy 93 Conference are published. The papers are grouped as follows: Opening addresses, biomass implementation strategies, nordic bioenergy research programs, production, handling and conversion of biofuels, combustion technology of biofuels and bioenergy visions

  10. Developments in international bio-energy markets and trade

    NARCIS (Netherlands)

    Faaij, A.P.C.

    2008-01-01

    A reliable and sustainable supply of biomass is vital to any market activity aimed at bioenergy production. Given the high expectations for bioenergy on a global scale and of many nations, the pressure on available biomass resources is increasing rapidly. Due to high prices for fossil fuels

  11. Possibilities and limitations for sustainable bioenergy production systems

    NARCIS (Netherlands)

    Smeets, E.M.W.|info:eu-repo/dai/nl/311445217

    2008-01-01

    The focus of this thesis is on the possibilities and limitations of sustainable bioenergy production systems. First, the potential contribution of bioenergy to the energy supply in different world regions in the year 2050 from different biomass sources (dedicated woody energy crops, residues and

  12. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  13. Biomass Cost Index: mapping biomass-to-biohydrogen feedstock costs by a new approach.

    Science.gov (United States)

    Diamantopoulou, L K; Karaoglanoglou, L S; Koukios, E G

    2011-02-01

    Making decisions and developing policy in the field of biofuel and bioenergy is complex because of the large number and potential arrangements of feedstocks, technologies and supply chain options. Although, the technical optimisation and sustainability of any biomass to biofuel production chain is of major importance, the overall chain cost is still considered as the key for their market deployment. A significant percentage of this cost is attributed to primary generation, transportation/handling and pretreatment of the biomass. The separation of the system into smaller semi-independent sub-systems and dealing with their interfaces, provides the pathway to map this complex landscape. The main scope of this work is to present a tool, which was developed for the comparison of diverse biomass-to-biofuel systems, in order to facilitate the cost-wise decision making on this field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Developing Switchgrass as a Bioenergy Crop

    Energy Technology Data Exchange (ETDEWEB)

    Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

    1998-11-08

    The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the

  15. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Peoples, Mark B.; Boddey, Robert M.

    2012-01-01

    it is the high fossil energy use in the synthesis, transport, and application of N fertilizers that often negates much of the net C benefits of many other bioenergy sources. The use of legume biomass for biorefineries needs careful thought as there will be significant trade-offs with the current role of legumes...... of climate change by reducing fossil fuel use or by providing feedstock for the emerging biobased economies where fossil sources of energy and industrial raw materials are replaced in part by sustainable and renewable biomass resources. The aim of this review was to collate the current knowledge regarding...... for energy in the face of dwindling reserves of fossil energy and uncertainties about future reliability of supply. Legumes deliver several important services to societies. They provide important sources of oil, fiber, and protein-rich food and feed while supplying nitrogen (N) to agro-ecosystems via...

  16. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    Energy Technology Data Exchange (ETDEWEB)

    Helby, Peter (ed.); Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  17. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    International Nuclear Information System (INIS)

    Helby, Peter; Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  18. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  19. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  20. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  1. Bioenergy from agricultural residues in Ghana

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe

    and biomethane under Ghanaian conditions. Detailed characterisations of thirteen of the most common agricultural residues in Ghana are presented, enabling estimations of theoretical bioenergy potentials and identifying specific residues for future biorefinery applications. When aiming at residue-based ethanol...... to pursue increased implementation of anaerobic digestion in Ghana, as the first bioenergy option, since anaerobic digestion is more flexible than ethanol production with regard to both feedstock and scale of production. If possible, the available manure and municipal liquid waste should be utilised first....... A novel model for estimating BMP from compositional data of lignocellulosic biomasses is derived. The model is based on a statistical method not previously used in this area of research and the best prediction of BMP is: BMP = 347 xC+H+R – 438 xL + 63 DA , where xC+H+R is the combined content of cellulose...

  2. Present and prospective role of bioenergy in regional energy system

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, T.V.; Joshi, N.V.; Subramanian, D.K. [Indian Inst. of Science, Center for Ecological Sciences, Bangalore (India)

    2000-12-01

    Bioenergy is the energy released from the reaction of organic carbon material with oxygen. The organic material derived from plants and animals is also referred to as biomass. Biomass is a flexible feedstock capable of conversion into solid, liquid and gaseous fuels by chemical and biological processes. These intermediate biofuels (such as methane gas, ethanol, charcoal) can be substituted for fossil based fuels. Wood and charcoal are important as household fuels and for small scale industries such as brick making, cashew processing etc. The scarcity of biofuels has far reaching implications on the environment. Hence, expansion of bioenergy systems could be influential in bettering both the socioeconomic condition and the environment of the region. This paper examines the present role of biomass in the region's (Uttara Kannada District, Karnataka State, India) energy supply and calculates the potential for future biomass provision and scope for conversion to both modern and traditional fuels. Based on the detailed investigation of biomass resource availability and demand, we can categorise the Uttara Kannada District into two zones (a) Biomass surplus zone consisting of Taluks mainly from hilly area (b) Biomass deficit zone, consisting of thickly populated coastal Taluks such as Bhatkal, Kumta, Ankola, Honnavar and Karwar. Fuel wood is mainly used for cooking and horticulture residues from coconut, arecanut trees are used for water heating purposes. Most of the households in this region still use traditional stoves where efficiency is less than 10%. The present inefficient fuel consumption could be brought down by the usage of fuel efficient stoves (a saving of the order of 27%). Availability of animal residues for biogas generation in Sirsi, Siddapur, Yellapur Taluks gives a viable alternative for cooking, lighting fuel and a useful fertiliser. However to support the present livestock population, fodder from agricultural residues is insufficient in these

  3. Bird communities and biomass yields in potential bioenergy grasslands.

    Science.gov (United States)

    Blank, Peter J; Sample, David W; Williams, Carol L; Turner, Monica G

    2014-01-01

    Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  4. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  5. IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE)

    OpenAIRE

    Gabrielle, Benoit; Gagnaire, Nathalie; Massad, Raia Silvia; Prieur, Vincent

    2012-01-01

    Rapport de projet; Controversy is brewing about the potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy sources by bioenergy, which mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions from arable soils occuring during feedstock production. The life-cycle GHG budget of bioenergy pathways are indeed strongly conditioned by these emissions, which are related to fertilizer nitrogen input rates but largely controlled by soil and cl...

  6. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    Science.gov (United States)

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will

  7. Beetle-kill to carbon-negative bioenergy in the Rockies: stand, enterprise, and regional-scale perspectives

    Science.gov (United States)

    Field, J.; Paustian, K.

    2016-12-01

    The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional

  8. IEA Bioenergy Countries' Report: Bioenergy policies and status of implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bacovsky, Dina [Bioenergy 2020+ GmbH, Graz (Austria); Ludwiczek, Nikolaus [Bioenergy 2020+ GmbH, Graz (Austria); Pointner, Christian [Bioenergy 2020+ GmbH, Graz (Austria); Verma, Vijay Kumar [Bioenergy 2020+ GmbH, Graz (Austria)

    2016-08-05

    This report was prepared from IEA statistical data, information from IRENA, and IEA Bioenergy Tasks’ country reports, combined with data provided by the IEA Bioenergy Executive Committee. All individual country reports were reviewed by the national delegates to the IEA Bioenergy Executive Committee, who have approved the content. In the first section of each country report, national renewable energy targets are presented (first table in each country report), and the main pieces of national legislation are discussed. In the second section of each country report the total primary energy supply (TPES) by resources and the contribution of bioenergy are presented. All data is taken from IEA statistics for the year 2014. Where 2014 data was not available, 2013 data was used. It is worth noting that data reported in national statistics can differ from the IEA data presented, as the reporting categories and definitions are different. In the third section of each country report, the research focus related to bioenergy is discussed. Relevant funding programs, major research institutes and projects are described. In the fourth section, recent major bioenergy developments are described. Finally, in the fifth section, links to sources of information are provided.

  9. Electrochemical evaluation of sweet sorghum fermentable sugar bioenergy feedstock

    Science.gov (United States)

    Redox active constituents of sorghum, e.g., anthocyanin, flavonoids, and aconitic acid, putatively contribute to its pest resistance. Electrochemical reactivity of sweet sorghum stem juice was evaluated using cyclic voltammetry (CV) for five male (Atlas, Chinese, Dale, Isidomba, N98) and three fema...

  10. Assessing hydrological impacts of tree-based bioenergy feedstock

    CSIR Research Space (South Africa)

    Gush, Mark B

    2010-01-01

    Full Text Available include ACRU (Schulze 1995) and the Pitman model (Pitman 1973). There are numerous other hydrological models developed internationally, which have also been applied in South Africa, including SWAT (Arnold et al. 1999), FAO56 (Allen et al. 2004) and WAVES... Paper, 56: 1-300 Arnold, J.G.; Williams, J.R.; Srinivasen, R.; King, K.W. (1999) ?SWAT: Soil and Water Assessment Tool-Model Documentation?. In USDA Agricultural Research Service, Texas, USA Bosch, J.M.; Hewlett, J.D. (1982) ?A review of catchment...

  11. LANL capabilities towards bioenergy and biofuels programs

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Jose A [Los Alamos National Laboratory; Park, Min S [Los Alamos National Laboratory; Unkefer, Clifford J [Los Alamos National Laboratory; Bradbury, Andrew M [Los Alamos National Laboratory; Waldo, Geoffrey S [Los Alamos National Laboratory

    2009-01-01

    LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and

  12. Perennial Forages as Second Generation Bioenergy Crops

    Directory of Open Access Journals (Sweden)

    Paul R. Adler

    2008-05-01

    Full Text Available The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L., reed canarygrass (Phalaris arundinacea L., and alfalfa (Medicago sativa L.. An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production.

  13. Perennial Forages as Second Generation Bioenergy Crops

    Science.gov (United States)

    Sanderson, Matt A.; Adler, Paul R.

    2008-01-01

    The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa (Medicago sativa L.). An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production. PMID:19325783

  14. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  15. 11. Rostock bioenergy forum. Proceedings; 11. Rostocker Bioenergieforum. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Nelles, Michael (ed.)

    2017-08-01

    The seven main focus of the bioenergy forum were: 1. Political regulation and its consequences; 2. Flexible energy supply; 3. Biorefineries for the use of residues from bioenergy production; 4. Process optimization biogas; 5. Alternative substrates for biogas production; 6. Cross-sectoral bioenergy concept; 7. Transport sector (biofuels). Five lectures are separately analyzed for this database. [German] Die sieben Themenschwerpunkte des Bioenergieforums waren: 1. Politische Regulierung und deren Folgen; 2. Flexible Energiebereitstellung; 3. Bioraffinerie zur Nutzung von Reststoffen der Bioenergiegewinnung; 4. Prozessoptimierung Biogas; 5. Alternative Substrate zur Biogasgewinnung; 6. Sektoruebergreifende regionale Bioenergiekonzept; und 7. Transportsektor (Biokraftstoffe). Fuenf Vortraege wurden fuer diese Datenbank separat aufgenommen.

  16. Importance of rural bioenergy for developing countries

    International Nuclear Information System (INIS)

    Demirbas, Ayse Hilal; Demirbas, Imren

    2007-01-01

    Energy resources will play an important role in the world's future. Rural bioenergy is still the predominant form of energy used by people in the less developed countries, and bioenergy from biomass accounts for about 15% of the world's primary energy consumption and about 38% of the primary energy consumption in developing countries. Furthermore, bioenergy often accounts for more than 90% of the total rural energy supplies in some developing countries. Earth life in rural areas of the world has changed dramatically over time. Industrial development in developing countries, coming at a time of low cost plentiful oil supplies, has resulted in greater reliance on the source of rural bioenergy than is true in the developed countries. In developed countries, there is a growing trend towards employing modern technologies and efficient bioenergy conversion using a range of biofuels, which are becoming cost wise competitive with fossil fuels. Currently, much attention has been a major focus on renewable alternatives in the developing countries. Renewable energy can be particularly appropriate for developing countries. In rural areas, particularly in remote locations, transmission and distribution of energy generated from fossil fuels can be difficult and expensive. Producing renewable energy locally can offer a viable alternative. Renewable energy can facilitate economic and social development in communities but only if the projects are intelligently designed and carefully planned with local input and cooperation. Particularly in poor rural areas, the costs of renewable energy projects will absorb a significant part of participants' small incomes. Bio-fuels are important because they replace petroleum fuels. Biomass and biofuels can be used as a substitute for fossil fuels to generate heat, power and/or chemicals. Generally speaking, biofuels are generally considered as offering many benefits, including sustainability, reduction of greenhouse gas emissions, regional

  17. The Role of Bioenergy in Enhancing Energy, Food and Ecosystem Sustainability Based on Societal Perceptions and Preferences in Asia

    Directory of Open Access Journals (Sweden)

    Lilibeth A. Acosta

    2016-04-01

    Full Text Available This paper discussed the analysis of the survey on sustainability of bioenergy conducted in the Philippines, India and China. It acquired general perceptions of the people by asking them (a specific questions about their level of familiarity with bioenergy; (b relationship of their work to bioenergy; and (c their opinion on contribution of various feedstock on the economy and impact of bioenergy production on food security. In addition to these questions, we estimated preference weights of various feedstock based on the conjoint choices on bioenergy’s contribution to social stability, social welfare and ecological balance. The estimates revealed significant trade-offs not only among these three dimensions of sustainability but also the relative importance of energy security, food security and ecosystem capacity to other economic, social and environmental objectives. The types of first generation feedstock that are currently used for biofuel production in the respective countries and those that offer alternative household use are perceived as important to the economy and preferred bioenergy feedstock. Based on the results of the study, the preferred role of bioenergy for sustainable development reflects the social and economic concerns in the respective Asian countries, e.g., energy security in China, food security in India, and ecosystem degradation in the Philippines.

  18. Stump torrefaction for bioenergy application

    International Nuclear Information System (INIS)

    Tran, Khanh-Quang; Luo, Xun; Seisenbaeva, Gulaim; Jirjis, Raida

    2013-01-01

    Highlights: ► First study on torrefaction of stump for bioenergy application. ► Stump can achieve higher energy densification factors. ► Torrefied stump requires longer grinding time than torrefied wood. - Abstract: A fixed bed reactor has been developed for study of biomass torrefaction, followed by thermogravimetric (TG) analyses. Norway spruce stump was used as feedstock. Two other types of biomass, poplar and fuel chips were also included in the study for comparison. Effects of feedstock types and process parameters such as torrefaction temperature and reaction time on fuel properties of torrefied solid product were investigated. The study has demonstrated that fuel properties, including heating values and grindability of the investigated biomasses were improved by torrefaction. Both torrefaction temperature and reaction time had strong effects on the torrefaction process, but temperature effects are stronger than effects of reaction time. At the same torrefaction temperature, the longer reaction time, the better fuel qualities for the solid product were obtained. However, too long reaction times and/or too higher torrefaction temperatures would decrease the solid product yield. The torrefaction conditions of 300 °C for 35 min resulted in the energy densification factor of 1.219 for the stump, which is higher than that of 1.162 for the poplar wood samples and 1.145 for the fuel chips. It appears that torrefied stump requires much longer time for grinding, while its particle size distribution is only slightly better than the others. In addition, the TG analyses have shown that untreated biomass was more reactive than its torrefaction products. The stump has less hemicelluloses than the two other biomass types. SEM analyses indicated that the wood surface structure was broken and destroyed by torrefaction process

  19. Bioenergy in Germany. Facts and figures. Solid fuels, biofuels, biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-11

    The brochure under consideration gives statistical information about the bioenergy in Germany: Renewable energies (bioenergy) and solid fuels. For example, the structure of the primary energy consumption in the year 2010, the energy supply from renewables, gross electricity generation, the total sales of renewables, growth in number of installed pellet boilers, wood fuel equivalent prices by energy value or biofuels in comparison with heating oil are presented.

  20. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    Science.gov (United States)

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime A.; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals

  1. Setting up fuel supply strategies for large-scale bio-energy projects using agricultural and forest residues. A methodology for developing countries

    International Nuclear Information System (INIS)

    Junginger, M.

    2000-08-01

    The objective of this paper is to develop a coherent methodology to set up fuel supply strategies for large-scale biomass-conversion units. This method will explicitly take risks and uncertainties regarding availability and costs in relation to time into account. This paper aims at providing general guidelines, which are not country-specific. These guidelines cannot provide 'perfect fit'-solutions, but aim to give general help to overcome barriers and to set up supply strategies. It will mainly focus on residues from the agricultural and forestry sector. This study focuses on electricity or both electricity and heat production (CHP) with plant scales between 1040 MWe. This range is chosen due to rules of economies of scale. In large-scale plants the benefits of increased efficiency outweigh increased transportation costs, allowing a lower price per kWh which in turn may allow higher biomass costs. However, fuel-supply risks tend to get higher with increasing plant size, which makes it more important to assess them for large(r) conversion plants. Although the methodology does not focus on a specific conversion technology, it should be stressed that the technology must be able to handle a wide variety of biomass fuels with different characteristics because many biomass residues are not available the year round and various fuels are needed for a constant supply. The methodology allows for comparing different technologies (with known investment and operational and maintenance costs from literature) and evaluation for different fuel supply scenarios. In order to demonstrate the methodology, a case study was carried out for the north-eastern part of Thailand (Isaan), an agricultural region. The research was conducted in collaboration with the Regional Wood Energy Development Programme in Asia (RWEDP), a project of the UN Food and Agricultural Organization (FAO) in Bangkok, Thailand. In Section 2 of this paper the methodology will be presented. In Section 3 the economic

  2. Optimization of bioenergy yield from cultivated land in Denmark

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Grohnheit, Poul Erik; Østergård, Hanne

    2010-01-01

    A cost minimization model for supply of starch, oil, sugar, grassy and woody biomass for bioenergy in Denmark was developed using linear programming. The model includes biomass supply from annual crops on arable land, short rotation forestry (willow) and plantation forestry. Crop area distributions...... and feed production, or e) on site carbon sequestration. In addition, two oil price levels were considered. The crop area distributions differed between scenarios and were affected by changing fossil oil prices up to index 300 (using 55$ per barrel in 2005 as index = 100). The bioenergy supply (district...... a low nitrogen load to the environment. In conclusion, even after drastic landuse changes the bioenergy supply as final energy will not exceed 184 PJ annually (including 26 PJ processed biowaste sources) by far lower than the annual domestic total energy consumption ranging between 800 and 850 PJ yr−1....

  3. Impact of an increasing supply of bioenergy sources on the sustainability of agricul-tural enterprises, evaluated with the Criteria System for Sustainable Agriculture (CSSA); Folgenabschaetzung einer zunehmenden Bereitstellung von Bioenergietraegern auf die Nachhaltigkeit landwirtschaftlicher Unternehmen, bewertet mit dem Kriteriensystem Nachhaltige Landwirtschaft (KSNL)

    Energy Technology Data Exchange (ETDEWEB)

    Breitschuh, Thorsten; Eckert, Hans; Maier, Uta; Gernand, Ulrich; Mueller, Anja [Thueringer Landesanstalt fuer Landwirtschaft (TLL), Jena (Germany); Verband fuer Agrarforschung und Bildung Thueringen e.V., Jena (Germany)

    2009-07-15

    The report investigates how an increasing supply of bioenergy sources affects the sustainability situation of farms at different sites and with different structures. The ''Criteria System for Sustainable Agriculture'' (CSSA) was used as analysis and assessment criteria system. The CSSA is based on 34 selected criteria in the field of economy, environment and social conditions. Each criterion indicates a defined pres-sure or state and evaluates the results on the basis of defined tolerance ranges. In the study short-term scenarios of an increasing provision of bioenergy based on real data from agricultural farms were evaluated with the CSSA system. Altogether, 30 scenarios were analysed. As a result the most sustainable scenario for the supply of bioenergy was identified for each farm considered. Using this approach, the most important adaptation reactions of agricultural enterprises were determined and evaluated. Potential applications of the explained procedure are the ex-ante simulation and ex- ante evaluation of agricultural processes and the creation and evaluation of sup-port programmes. (orig.)

  4. Bioenergy options. Multidisciplinary participatory method for assessing bioenergy options for rural villages in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Kauzeni, A.S.; Masao, H.P.; Sawe, E.N.; Shechambo, F.C. [Dar Es Salaam Univ. (Tanzania). Inst. of Resource Assessment; Ellegaard, A. [Stockholm Environment Inst. (Sweden)

    1998-12-31

    In Tanzania, like in many other developing countries in Southern and Eastern Africa, bioenergy planning has received relatively little attention, compared to planning for `modern` energy sources, although it accounts for about 90% of the country`s energy supply. As a result there is less understanding of the complexity and diversity of bioenergy systems. There is a lack of reliable data and information on bio-resources, their consumption and interaction with social, economic, institutional and environmental factors. This is largely due to lack of adequately developed and easily understood methods of data and information development, analysis and methods of evaluating available bioenergy options. In order to address the above constraints a project was initiated where the general objective was to develop and test a multi-disciplinary research method for identifying bioenergy options that can contribute to satisfying the energy needs of the rural household, agricultural and small scale industrial sectors, promote growth and facilitate sustainable development. The decision on the development and testing of a multidisciplinary research method was based on the fact that in Tanzania several bioenergy programmes have been introduced e.g. tree planting, improved cookstoves, biogas, improved charcoal making kilns etc. for various purposes including combating deforestation; promoting economic growth, substitution of imported petroleum fuels, health improvement, and raising standards of living. However efforts made in introducing these programmes or interventions have met with limited success. This situation prevails because developed bioenergy technologies are not being adopted in adequate numbers by the target groups. There are some indications from the study that some of the real barriers to effective bioenergy interventions or adoption of bioenergy technologies lie at the policy level and not at the project level. After the development and testing of the methodology

  5. Bioenergy Status Document 2012; Statusdocument Bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.; Croezen, H. [CE Delft, Delft (Netherlands)

    2013-05-15

    In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] Het statusdocument bio-energie 2012 geeft de huidige status weer van bio-energie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken in de ontwikkelingen van bio-energie, voor overheden en marktpartijen.

  6. Impacts of managing perennial grasses in the northern Midwest United States for bioenergy on soil organic C and nitrous oxide emission

    Science.gov (United States)

    In the USA perennial grasses [e.g., switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman)] are proposed as cellulosic feedstock. Perennial grasses are often touted as being low input and as having a C-neutral foot print, but managing them as bioenergy feedstock means addin...

  7. Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Thakur Upadhyay

    2012-12-01

    Full Text Available Efficient procurement and utilization of woody biomass for bioenergy production requires a good understanding of biomass supply chains. In this paper, a dynamic optimization model has been developed and applied to estimate monthly supply and procurement costs of woody biomass required for the Atikokan Generating Station (AGS in northwestern Ontario, based on its monthly electricity production schedule. The decision variables in the model are monthly harvest levels of two types of woody biomass, forest harvest residues and unutilized biomass, from 19,315 forest depletion cells (each 1 km2 for a one year planning horizon. Sixteen scenarios are tested to examine the sensitivity of the cost minimization model to changing economic and technological parameters. Reduction in moisture content and improvement of conversion efficiency showed relatively higher reductions in monthly and total costs of woody biomass feedstock for the AGS. The results of this study help in understanding and designing decision support systems for optimal biomass supply chains under dynamic operational frameworks.

  8. 8. Rostock bioenergy forum. Proceedings

    International Nuclear Information System (INIS)

    Nelles, Michael

    2014-01-01

    This conference volume contains lectures and poster contributions with the following main topics: integrated biomass utilisation concepts; Solid bioenergy carrier; Bioenergy in the transport sector; Biogas. Seven papers are separately analyzed for this database. [de

  9. The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems

    International Nuclear Information System (INIS)

    Bagley, Justin E.; Davis, Sarah C.; Georgescu, Matei; Hussain, Mir Zaman; Miller, Jesse; Nesbitt, Stephen W.; VanLoocke, Andy; Bernacchi, Carl J.

    2014-01-01

    Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for bioenergy agroecosystems to provide global-scale climate regulating ecosystem services via biogeochemical processes. Such as those processes associated with carbon uptake, conversion, and storage that have the potential to reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops can also lead to direct biophysical impacts on climate through water regulating services. Perturbations of processes influencing terrestrial energy fluxes can result in impacts on climate and water across a spectrum of spatial and temporal scales. Here, we review the current state of knowledge about biophysical feedbacks between vegetation, water, and climate that would be affected by bioenergy-related land use change. The physical mechanisms involved in biophysical feedbacks are detailed, and interactions at leaf, field, regional, and global spatial scales are described. Locally, impacts on climate of biophysical changes associated with land use change for bioenergy crops can meet or exceed the biogeochemical changes in climate associated with rising GHG's, but these impacts have received far less attention. Realization of the importance of ecosystems in providing services that extend beyond biogeochemical GHG regulation and harvestable yields has led to significant debate regarding the viability of various feedstocks in many locations. The lack of data, and in some cases gaps in knowledge associated with biophysical and biochemical influences on land–atmosphere interactions, can lead to premature policy decisions. - Highlights: • The physical basis for biophysical impacts of expanding bioenergy agroecosystems on climate and water is described. • We

  10. Modelling the socio-economic impacts of modern bioenergy in rural communities in Ghana

    DEFF Research Database (Denmark)

    Kemausuor, Francis; Bolwig, Simon; Miller, Shelie

    2016-01-01

    This study analyses ex-ante socio-economic impacts of biogas systems using a remote rural community in Ghana as a case study. An analysis was performed for a 300 m3 bio-digester that relies on crop residue and animal manure as feedstock to produce methane gas for cooking using selected bioenergy ...

  11. Next steps in determining the overall sustainability of perennial bioenergy crops

    Science.gov (United States)

    Perennial bioenergy crops are being developed and evaluated in the United States to partially offset petroleum transport fuels. Accurate accounting of upstream and downstream greenhouse gas (GHG) emissions is necessary to measure the overall carbon intensity of new biofuel feedstocks. For example, c...

  12. Design of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks

    Science.gov (United States)

    Trueba, Isidoro

    Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers significant potential to mitigate climate change by reducing life-cycle greenhouse gas emissions relative to fossil fuels. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. This thesis is motivated by the urgent need of advancing knowledge and understanding of the highly complex biofuel supply chain. While corn ethanol production has increased fast enough to keep up with the energy mandates, production of biofuels from different types of feedstocks has also been incremented. A number of pilot and demonstration scale advanced biofuel facilities have been set up, but commercial scale facilities are yet to become operational. Scaling up this new biofuel sector poses significant economic and logistical challenges for regional planners and biofuel entrepreneurs in terms of feedstock supply assurance, supply chain development, biorefinery establishment, and setting up transport, storage and distribution infrastructure. The literature also shows that the larger cost in the production of biomass to ethanol originates from the logistics operation therefore it is essential that an optimal logistics system is designed in order to keep low the costs of producing ethanol and make possible the shift from

  13. Tradeoffs in ecosystem services of prairies managed for bioenergy production

    Science.gov (United States)

    Jarchow, Meghann Elizabeth

    The use of perennial plant materials as a renewable source of energy may constitute an important opportunity to improve the environmental sustainability of managed land. Currently, the production of energy from agricultural products is primarily in the form of ethanol from corn grain, which used more than 45% of the domestic U.S. corn crop in 2011. Concomitantly, using corn grain to produce ethanol has promoted landscape simplification and homogenization through conversion of Conservation Reserve Program grasslands to annual row crops, and has been implicated in increasing environmental damage, such as increased nitrate leaching into water bodies and increased rates of soil erosion. In contrast, perennial prairie vegetation has the potential to be used as a bioenergy feedstock that produces a substantial amount of biomass as well as numerous ecosystem services. Reincorporating prairies to diversify the landscape of the Midwestern U.S. at strategic locations could provide more habitat for animals, including beneficial insects, and decrease nitrogen, phosphorus, and sediment movement into water bodies. In this dissertation, I present data from two field experiments that examine (1) how managing prairies for bioenergy production affects prairie ecology and agronomic performance and (2) how these prairie systems differ from corn systems managed for bioenergy production. Results of this work show that there are tradeoffs among prairie systems and between corn and prairie systems with respect to the amount of harvested biomass, root production, nutrient export, feedstock characteristics, growing season utilization, and species and functional group diversity. These results emphasize the need for a multifaceted approach to fully evaluate bioenergy feedstock production systems.

  14. A stochastic programming approach towards optimization of biofuel supply chain

    International Nuclear Information System (INIS)

    Azadeh, Ali; Vafa Arani, Hamed; Dashti, Hossein

    2014-01-01

    Bioenergy has been recognized as an important source of energy that will reduce dependency on petroleum. It would have a positive impact on the economy, environment, and society. Production of bioenergy is expected to increase. As a result, we foresee an increase in the number of biorefineries in the near future. This paper analyzes challenges with supplying biomass to a biorefinery and shipping biofuel to demand centers. A stochastic linear programming model is proposed within a multi-period planning framework to maximize the expected profit. The model deals with a time-staged, multi-commodity, production/distribution system, facility locations and capacities, technologies, and material flows. We illustrate the model outputs and discuss the results through numerical examples considering disruptions in biofuel supply chain. Finally, sensitivity analyses are performed to gain managerial insights on how profit changes due to existing uncertainties. - Highlights: • A robust model of biofuel SC is proposed and a sensitivity analysis implemented. • Demand of products is a function of price and GBM (Geometric Brownian Motion) is used for prices of biofuels. • Uncertainties in SC network are captured through defining probabilistic scenarios. • Both traditional feedstock and lignocellulosic biomass are considered for biofuel production. • Developed model is applicable to any related biofuel supply chain regardless of region

  15. More valuable as petrochemical feedstock

    International Nuclear Information System (INIS)

    Ramachandran, R.

    2005-01-01

    The problems facing the North American petrochemical industry were discussed with particular reference to the fact that high North American prices present a challenge to competitiveness in a globally traded market. A background of Dow Canada was provided, including details of its upgrading of natural gas liquids that would otherwise be combusted for electrical power generation. The value of the petrochemical industry was outlined, with details of employment, manufacturing output and exports. Alberta's relationship to the natural gas industry was reviewed. The role of petrochemicals as a nexus for bridging the resource sector with manufacturing, retail and transportation was discussed. The historic correlation between world Gross Domestic Product (GDP) and ethylene demand was presented. It was noted that the petrochemical industry currently competes with power generators for smaller volumes of natural gas liquids. As a highly energy intensive industry, inequities in gas pipeline haul charges and even small increases in gas prices has compromised the success of the petrochemical industry. It was noted that while crude oil is a globally traded commodity, natural gas liquids are generally traded at a more localized level, and factors that helped build the petrochemical industry and are now inhibiting growth. Ethane is the primary feedstock in the petrochemical industry. High natural gas prices affected the industry on two levels: volatility in a weakening industry and higher prices on primary feedstocks. It was estimated that changes in current trends were likely to take place in 5 to 10 years, following Northern gas developments. It was estimated that more than 50 per cent of new capacity investment in ethylene plants would take place in the Middle East in the next 5 years. No new plants are planned in Canada. It was concluded that low-cost feedstock advantages, as well as alternative feedstocks and the sustainment of a healthy industry are necessary for the

  16. Evaluating the effects of woody biomass production for bioenergy on water quality and hydrology in the southeastern United States

    Science.gov (United States)

    Natalie Griffiths; C. Rhett Jackson; Menberu Bitew; Enhao Du; Kellie Vache' Jeffrey J. McDonnell; Julian Klaus; Benjamin M. Rau

    2016-01-01

    Forestry is a dominant industry in the southeastern United States, and there is interest in sustainably growing woody feedstocks for bioenergy in this region. Our project is evaluating the environmental sustainability (water quality, quantity) of growing and managing short-rotation (10-12 yrs) loblolly pine for bioenergy using watershed-scale experimental and modeling ...

  17. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    Science.gov (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  18. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    Science.gov (United States)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  19. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review

    Directory of Open Access Journals (Sweden)

    Maurício Roberto Cherubin

    Full Text Available ABSTRACT: The use of crop residues as a bioenergy feedstock is considered a potential strategy to mitigate greenhouse gas (GHG emissions. However, indiscriminate harvesting of crop residues can induce deleterious effects on soil functioning, plant growth and other ecosystem services. Here, we have summarized the information available in the literature to identify and discuss the main trade-offs and synergisms involved in crop residue management for bioenergy production. The data consistently showed that crop residue harvest and the consequent lower input of organic matter into the soil led to C storage depletions over time, reducing cycling, supply and availability of soil nutrients, directly affecting the soil biota. Although the biota regulates key functions in the soil, crop residue can also cause proliferation of some important agricultural pests. In addition, crop residues act as physical barriers that protect the soil against raindrop impact and temperature variations. Therefore, intensive crop residue harvest can cause soil structure degradation, leading to soil compaction and increased risks of erosion. With regard to GHG emissions, there is no consensus about the potential impact of management of crop residue harvest. In general, residue harvest decreases CO2 and N2O emissions from the decomposition process, but it has no significant effect on CH4 emissions. Plant growth responses to soil and microclimate changes due to crop residue harvest are site and crop specific. Adoption of the best management practices can mitigate the adverse impacts of crop residue harvest. Longterm experiments within strategic production regions are essential to understand and monitor the impact of integrated agricultural systems and propose customized solutions for sustainable crop residue management in each region or landscape. Furthermore, private and public investments/cooperations are necessary for a better understanding of the potential environmental

  20. [Reflection on developing bio-energy industry of large oil company].

    Science.gov (United States)

    Sun, Haiyang; Su, Haijia; Tan, Tianwei; Liu, Shumin; Wang, Hui

    2013-03-01

    China's energy supply becomes more serious nowadays and the development of bio-energy becomes a major trend. Large oil companies have superb technology, rich experience and outstanding talent, as well as better sales channels for energy products, which can make full use of their own advantages to achieve the efficient complementary of exist energy and bio-energy. Therefore, large oil companies have the advantages of developing bio-energy. Bio-energy development in China is in the initial stage. There exist some problems such as available land, raw material supply, conversion technologies and policy guarantee, which restrict bio-energy from industrialized development. According to the above key issues, this article proposes suggestions and methods, such as planting energy plant in the marginal barren land to guarantee the supply of bio-energy raw materials, cultivation of professional personnel, building market for bio-energy counting on large oil companies' rich experience and market resources about oil industry, etc, aimed to speed up the industrialized process of bio-energy development in China.

  1. Biomass feedstock production systems: economic and environmental benefits

    Science.gov (United States)

    Mark D. Coleman; John A. Stanturf

    2006-01-01

    The time is ripe for expanding bioenergy production capacity and developing a bio-based economy. Modern society has created unprecedented demands for energy and chemical products that are predominately based on geologic sources. However, there is a growing consensus that constraints on the supply of petroleum and the negative environmental consequences of burning...

  2. Bio-energy trade. Possibilities and constraints on short and longer term

    International Nuclear Information System (INIS)

    Agterberg, A.E.; Faaij, A.P.C.

    1998-12-01

    In order to get more in-depth insight in matters concerning trading biomass, the so called Biotrade project was initiated in 1996 when the Netherlands began to consider biomass import as a serious CO2 mitigation option after initial and relatively promising studies had been carried out. Sweden on the other side, with a well developed infrastructure for both biomass supply and utilisation, showed interest to supply biomass to the Dutch energy system. This resulted into a Dutch-Swedish project team financed by the ALTENER programme of DG-12 of the European Commission and co-financed by Novem (Netherlands Organisation for Energy and Environment) and NUTEK (Swedish National board for Industrial and Technical Development). The main objectives of the Biotrade project were: (a) to provide insight m the various possibilities for trade in bio-energy by evaluation of the (micro- and macro) economics and energy balances of various options by a standardised methodology; (b) working out bio-energy trade between Sweden and The Netherlands and for comparison export from the Baltic region and one of the FACE countries (FACE is the foundation of the Dutch electric power generation board Sep, involved in forestation projects for CO2 mitigation); (c) Comparison of the bio-energy trade options to domestic use of the biomass in the exporting country and to afforestation; and (d) Provide policy recommendations. Countries considered for export of energy from biomass to the Netherlands are Sweden, Estonia, and Ecuador. The following import options were considered: (a) Import of woody biomass and conversion to electricity of this biomass in the Netherlands; (b) Conversion to electricity of biomass in the exporting country and import of this electricity by the Netherlands; and (c) Use of the biomass as feedstock for methanol production in the exporting country and import of this methanol by the Netherlands. The following aspects are included in the analysis: (1) Costs of electricity or

  3. Wide Spread Exploitations of Bioenergy

    OpenAIRE

    Rahman, Md. Mizanur; Paatero, Jukka V.; Lahdelma, Risto

    2016-01-01

    The recoverable proven reserves of fossil fuel sources are projected to be exhausted by the end of this century. In response to the exhaustion of fossil resources, there is a serious need to find alternative fuel sources. Bioenergy is one of the potential candidates to counteract the fossil-fuel depletion challenge. Despite bioenergy sources appear to be renewable and net-zero GHG emitting, bioenergy undergoes competition with food, feed and other crucial applications. Since earth’s eco syste...

  4. Landscape and species diversity: optimizing the use of land and biomass species for biofuel feedstock production systems

    Science.gov (United States)

    Biomass crops have the potential to produce a variety of products for use in the expanding bioeconomy. Numerous perennial plant species have been identified to serve as dedicated and custom-tailored feedstocks for the production of bioenergy and bioproducts, while also providing numerous positive en...

  5. Finnish bioenergy research programme

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    Finland is a leading country in the use of biofuels and has excellent opportunities to increase the use of biofuels by up to 25-30 %. The Finnish Government has set an objective for the promotion of bioenergy. The aim is to increase the use of bioenergy by about 25 % from the present level by 2005, and the increment corresponds to 1.5 million tonnes of oil equivalent (toe) per year. The R and D work has been considered as an important factor to achieve this ambitious goal. Energy research was organised into a series of research programmes in 1988 in accordance with the proposal of Finnish Energy Research Committee. The object of the research programmes is to enhance research activities and to bundle individual projects together into larger research packages. The common target of the Finnish energy research programmes is to proceed from basic and applied research to product development and pilot operation, and after that to the first commercial applications, e.g. demonstrations. As the organisation of energy research to programmes has led to good results, the Finnish Ministry of Trade and Industry decided to go on with this practice by launching new six-year programmes in 1993-1998. One of these programmes is the Bioenergy Research Programme and the co-ordination of this programme is carried out by VTT Energy. Besides VTT Energy the Finnish Forest Research Institute, Work Efficiency Institute, Metsaeteho and University of Joensuu are participating in the programme 7 refs.

  6. Finnish bioenergy research

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H. [Technical Research Centre of Finland, Jyvaeskylae (Finland)

    1993-12-31

    Finland is one of the leading countries in the use of biofuels. The share of wood derived fuels of the total primary energy requirement was about 14% (ca. 4 million toe) and peat about 5% (1.4 million toe). The possibilities for increasing the use of biofuels in Finland are significant. There is theoretically about 10 million m{sup 3}/a (about 2 million toe/a) of harvestable wood. Areas suitable for fuel peat production (0.5 million ha) could produce ca. 420 million toe of peat. At present rates of use, the peat reserves are adequate for centuries. During the next few years 0.5--1 million hectares of fields withdrawn from farming could be used for biofuel production. The production potential of this field area is estimated to be about 0.2--0.5 million toe. In addition, the use of wastes in energy production could be increased. The aim of the new Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. New economically competitive biofuels, new equipment and methods for production, handling and use of biofuels will also be developed. The main research areas are production of wood fuels, peat production, use of bioenergy and conversion of biomass.

  7. Sustainability of bioenergy chains: the result is in the details

    NARCIS (Netherlands)

    van Dam, J.M.C.

    2009-01-01

    This thesis investigated how the feasibility and sustainability of large-scale bioenergy production, supply and use for local use or trade can be determined ex ante on a regional level, taking into account the complexities and variabilities of the underlying factors like food demand and land use.

  8. Energy policy and the role of bioenergy in Poland

    International Nuclear Information System (INIS)

    Nilsson, Lars J.; Pisarek, Marcin; Buriak, Jerzy; Oniszk-Poplawska, Anna; Bucko, Pawel; Ericsson, Karin; Jaworski, Lukasz

    2006-01-01

    Poland, as many other countries, has ambitions to increase the use of renewable energy sources. In this paper, we review the current status of bioenergy in Poland and make a critical assessment of the prospects for increasing the share of bioenergy in energy supply, including policy implications. Bioenergy use was about 4% (165 PJ) of primary energy use (3900 PJ) and 95% of renewable energy use (174 PJ) in 2003, mainly as firewood in the domestic sector. Targets have been set to increase the contribution of renewable energy to 7.5% in 2010, in accordance with the EU accession treaty, and to 14% in 2020. Bioenergy is expected to be the main contributor to reaching those targets. From a resource perspective, the use of bioenergy could at least double in the near term if straw, forestry residues, wood-waste, energy crops, biogas, and used wood were used for energy purposes. The long-term potential, assuming short rotation forestry on potentially available agricultural land is about one-third, or 1400 PJ, of current total primary energy use. However, in the near term, Poland is lacking fundamental driving forces for increasing the use of bioenergy (e.g., for meeting demand increases, improving supply security, or further reducing sulphur or greenhouse gas emissions). There is yet no coherent policy or strategy for supporting bioenergy. Co-firing with coal in large plants is an interesting option for creating demand and facilitating the development of a market for bioenergy. The renewable electricity quota obligation is likely to promote such co-firing but promising applications of bioenergy are also found in small- and medium-scale applications for heat production. Carbon taxes and, or, other financial support schemes targeted also at the heating sector are necessary in the near term in order to reach the 7.5% target. In addition, there is a need to support the development of supply infrastructure, change certain practices in forestry, coordinate RD and D efforts, and

  9. The bio-energies development: the role of biofuels and the CO{sub 2} price

    Energy Technology Data Exchange (ETDEWEB)

    Jouvet, Pierre-Andre [Universite Paris Ouest Nanterre La Defense, Climate Economics Chair (France); Lantz, Frederic [IFP Energies nouvelles, 1-4, avenue de Bois-Preau, 92852 Rueil-Malmaison Cedex (France); Le Cadre, Elodie [IFPEN, INRA, Universite Paris Ouest Nanterre La Defense (France)

    2012-07-01

    Reduction in energy dependency and emissions of CO{sub 2} via renewable energies targeted in the European Union energy mix and taxation system, might trigger the production of bio-energy production and competition for biomass utilization. Torrefied biomass could be used to produce second generation biofuels to replace some of the fuels used in transportation and is also suitable as feedstock to produce electricity in large quantities. This paper examines how the CO{sub 2} price affects demand of torrefied biomass in the power sector and its consequences on the profitability of second generation biofuel units (Biomass to Liquid units). Indeed, the profitability of the BtL units which are supplied only by torrefied biomass is related to the competitive demand of the power sector driven by the CO{sub 2} price and feed-in tariffs. We propose a linear dynamic model of supply and demand. On the supply side, a profit-maximizing torrefied biomass sector is modelled. The model aims to represent the transformation of biomass into torrefied biomass which could be sold to the refinery sector and the power sector. A two-sided (demanders and supplier) bidding process led us to arrive at the equilibrium price for torrefied biomass. The French case is used as an example. Our results suggest that the higher the CO{sub 2} price, the more stable and important the power sector demand. It also makes the torrefied biomass production less vulnerable to uncertainty on demand coming from the refining sector. The torrefied biomass co-firing with coal can offer a near-term market for the torrefied biomass for a CO{sub 2} emission price lower than 20 euros/tCO{sub 2}, which can stimulate development of biomass supply systems. Beyond 2020, the demand for torrefied biomass from the power sector could be substituted by the refining sector if the oil price goes up whatever the CO{sub 2} price. (authors)

  10. The bio-energies development: the role of biofuels and the CO2 price

    International Nuclear Information System (INIS)

    Jouvet, Pierre-Andre; Lantz, Frederic; Le Cadre, Elodie

    2012-01-01

    Reduction in energy dependency and emissions of CO 2 via renewable energies targeted in the European Union energy mix and taxation system, might trigger the production of bio-energy production and competition for biomass utilization. Torrefied biomass could be used to produce second generation biofuels to replace some of the fuels used in transportation and is also suitable as feedstock to produce electricity in large quantities. This paper examines how the CO 2 price affects demand of torrefied biomass in the power sector and its consequences on the profitability of second generation biofuel units (Biomass to Liquid units). Indeed, the profitability of the BtL units which are supplied only by torrefied biomass is related to the competitive demand of the power sector driven by the CO 2 price and feed-in tariffs. We propose a linear dynamic model of supply and demand. On the supply side, a profit-maximizing torrefied biomass sector is modelled. The model aims to represent the transformation of biomass into torrefied biomass which could be sold to the refinery sector and the power sector. A two-sided (demanders and supplier) bidding process led us to arrive at the equilibrium price for torrefied biomass. The French case is used as an example. Our results suggest that the higher the CO 2 price, the more stable and important the power sector demand. It also makes the torrefied biomass production less vulnerable to uncertainty on demand coming from the refining sector. The torrefied biomass co-firing with coal can offer a near-term market for the torrefied biomass for a CO 2 emission price lower than 20 euros/tCO 2 , which can stimulate development of biomass supply systems. Beyond 2020, the demand for torrefied biomass from the power sector could be substituted by the refining sector if the oil price goes up whatever the CO 2 price. (authors)

  11. Field-based estimates of global warming potential in bioenergy systems of Hawaii: Crop choice and deficit irrigation

    Science.gov (United States)

    Replacing fossil fuel with biofuel is environmentally viable only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level bal...

  12. Technoeconomic and policy drivers of project performance for bioenergy alternatives using biomass from beetle-killed trees

    Science.gov (United States)

    Robert M. Campbell; Nathaniel M. Anderson; Daren E. Daugaard; Helen T. Naughton

    2018-01-01

    As a result of widespread mortality from beetle infestation in the forests of the western United States, there are substantial stocks of biomass suitable as a feedstock for energy production. This study explored the financial viability of four production pathway scenarios for the conversion of beetle-killed pine to bioenergy and bioproducts in the Rocky Mountains....

  13. Greenhouse gas fluxes and root productivity in a switchgrass and loblolly pine intercropping system for bioenergy production

    Science.gov (United States)

    Paliza Shrestha; John R. Seiler; Brian D. Strahm; Eric B. Sucre; Zakiya H. Leggett

    2015-01-01

    This study is part of a larger collaborative effort to determine the overall environmental sustainability of intercropping pine (Pinus taeda L.) and switchgrass (Panicum virgatum L.), both of which are promising feedstock for bioenergy production in the Lower Coastal Plain in North Carolina.

  14. Market survey Czech Republic. Bio-energy

    International Nuclear Information System (INIS)

    2008-01-01

    Basic characteristics of the market for bioenergy (biomass, biogas and biofuels) in the Czech Republic and consequences for business environment are summarized, based on a SWOT analysis. The Czech biomass market is still developing and is segmented and disintegrated to many regional or sector markets where also prices of biomass differ significantly and could be affected by dominant players. There were several attempts to establish a kind of biomass exchange, but were unsuccessful. The biomass trade is done usually on bilateral basis but without clear long-term agreements on contracts which would secure stable supply and prices

  15. Comparing Effects of Feedstock and Run Conditions on Pyrolysis Products Produced at Pilot-Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Timothy C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Esther [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-19

    Fast pyrolysis is a promising pathway for mass production of liquid transportable biofuels. The Thermochemical Process Development Unit (TCPDU) pilot plant at NREL is conducting research to support the Bioenergy Technologies Office's 2017 goal of a $3 per gallon biofuel. In preparation for down select of feedstock and run conditions, four different feedstocks were run at three different run conditions. The products produced were characterized extensively. Hot pyrolysis vapors and light gasses were analyzed on a slip stream, and oil and char samples were characterized post run.

  16. European greenhouse gas fluxes from land use: the impact of expanding the use of dedicated bioenergy crops.

    Science.gov (United States)

    Hastings, Astley; Böttcher, Hannes; Clifton-Brown, John; Fuchs, Richard; Hillier, Jon; Jones, Ed; Obersteiner, Michael; Pogson, Mark; Richards, Mark; Smith, Pete

    2013-04-01

    Bioenergy derived from vegetation cycles carbon to and from the atmosphere using the chemical energy fixed by the plants by photosynthesis using solar energy. However bioenergy is not carbon neutral as energy is used and greenhouse gasses (GHG) are emitted in the process of growing bioenergy feeedstocks and processing them into a usable fuel, whether it is biomass or liquid fuel such as biodiesel or bioethanol. Using bio instead of fossil fuels replaces greenhouse gas emissions from coal, oil and gas by those of the biofuel. To estimate the impact on European greenhouse gas fluxes of expanding the use of bioenergy, it is necessary to quantify the difference between the GHG emissions associated with producing and using the biofuel and the fossil fuel it replaces, and to take into account any emissions associated with the change from the original land use to that of growing the bioenergy feedstock. This involves estimating any displacement of food, fibre and timber production to other geographical areas. Here we report on a study of the GHG emissions from the potential increasing use of a variety of biofuels produced from feedstocks grown in the EU countries. The GHG emissions of the historical land use of EU27 have been modelled using ECOSSE on a 1 km grid to estimate the impact the agriculture intensification and land use change of the last 50 years and the associated crop yield gains. The excess land made available from the yield gains is considered to be available for use for bioenergy, and the yields of potential bioenergy feedstocks are estimated from EUROSTAT data or modelled using the bioenergy crop growth model MISCANFOR. These yields are used to calculate the energy used and GHG emissions associated with the use of the resulting biofuel using a life cycle analysis, and to estimate the organic matter input into the soil. The ECOSSE model is then used to estimate the soil carbon change and GHG emissions associated with the land use change to growing the

  17. Robust and sustainable bioenergy: Biomass in the future Danish energy system; Robust og baeredygtig bioenergi: Biomasse i fremtidens danske energisystem

    Energy Technology Data Exchange (ETDEWEB)

    Skoett, T.

    2012-09-15

    The publication is a collection of articles about new, exciting technologies for the production of bioenergy, which received support from Danish research programmes. The green technologies must be sustainable so that future generations' opportunities for bioenergy use is not restricted, and the solutions must be robust in relation to security of supply, costs and energy economy. In this context, research plays a crucial role. Research is especially carried out within the use of residues as bio-waste, straw, wood and manure for energy purposes, but there are also projects on energy crops, as well as research into how algae from the sea can increase the production of biomass. (LN)

  18. The feasibility of producing adequate feedstock for year–round cellulosic ethanol production in an intensive agricultural fuelshed

    Science.gov (United States)

    Uden, Daniel R.; Mitchell, Rob B.; Allen, Craig R.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ∼14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ∼132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.

  19. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also...... be used as a versatile feedstock in the chemical industry. Currently the production of carbon-containing commodity chemicals is dependent on fossil resources, and more than 95% of these chemicals are produced from non-renewable carbon resources. The question is: what will be the optimal use of bioethanol...

  20. Chemical Preconversion: Application of Low-Severity Pretreatment Chemistries for Commoditization of Lignocellulosic Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson; Timothy Campbell; Bryan Bals; Troy Runge; Farzaneh Teymouri

    2013-05-01

    Securing biofuels project financing is challenging, in part because of risks in feedstock supply. Commoditization of the feedstock and decoupling its supply from the biorefinery will promote greater economies of scale, reduce feedstock supply risk and reduce the need for overdesign of biorefinery pretreatment technologies. We present benefits and detractions of applying low-severity chemical treatments or ‘chemical preconversion treatments’ to enable this approach through feedstock modification and densification early in the supply chain. General structural modifications to biomass that support cost-effective densification and transportation are presented, followed by available chemistries to achieve these modifications with minimal yield loss and the potential for harvesting value in local economies. A brief review of existing biomass pretreatment technologies for cellulolytic hydrolysis at biorefineries is presented, followed by a discussion toward economically applying the underlying chemistries at reduced severity in light of capital and operational limitations of small-scale feedstock depots.

  1. Investigation on the effect of blending ratio and airflow rate on syngas profile produced from co-gasification of blended feedstock

    Directory of Open Access Journals (Sweden)

    Inayat Muddasser

    2017-01-01

    Full Text Available Shortages of feedstock supply due to seasonal availability, high transportation costs, and lack of biomass market are creating serious problems in continues operation of bioenergy industry. Aiming at this problem, utilization of blended feedstock is proposed. In this work blends of two different biomasses (wood and coconut shells were co-gasified using externally heated downdraft gasifier. The effects of varying biomass blending ratio and airflow rate on gaseous components of syngas and its heating value were investigated. The results obtained from the experiments revealed that W20:CS80 blend yielded higher values for H2 (20 Vol.% and HHV (18 MJ/Nm3 as compared to the other blends. The higher airflow rate has a negative effect on syngas profile and heating value. The CO and CH4 were observed higher at the start of the process, however, CO was observed decreasing afterward, and the CH4 dropped to 5.0 Vol.%. The maximum H2 and CH4 were obtained at 2.5 LPM airflow rate. The process was noticed more stable at low air flow rates. The HHV was observed higher at the start of process at low airflow rate. It is concluded that low airflow rate and a higher ratio of coconut shells can improve the syngas quality during co-gasification.

  2. Functional genomics of bio-energy plants and related patent activities.

    Science.gov (United States)

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2013-04-01

    With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.

  3. Preparation of the soil for the energy policy turnaround. With bio-energy for more climate protection and sustainability. Collection of essays with contributions from science, practice and policy; Den Boden bereiten fuer die Energiewende. Mit Bioenergie fuer mehr Klimaschutz und Nachhaltigkeit. Aufsatzsammlung mit Beitraegen aus Wissenschaft, Praxis und Politik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    In order to create acceptance by understanding and in order to support the energy policy turnaround, the Agency for Renewable Energies (Berlin, Federal Republic of Germany) supplies several contributions to the following topics: (1) Bio-energy and the energy policy turnaround; (2) Sustainability by means of bio-energy, but how?; (3) How can energy crops modify the region?; (4) Bio-Energy and the landscape of the future; (5) Isles with green energy: Bio-Energy for decentralized solutions; (6) Bio-energy and organic agriculture; (7) Forest and field in the climate protection.

  4. Our Commitment to Bioenergy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-18

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and ad- vances environmental, economic, and social benefits. BETO’s Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a result, the area is critical to achieving BETO’s overall goals.

  5. The global technical potential of bio-energy in 2050 considering sustainability constraints.

    Science.gov (United States)

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-12-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows.

  6. Bioenergy '97: Nordic Bioenergy Conference, market, environment and technology

    International Nuclear Information System (INIS)

    1997-01-01

    (Leading abstract). The conference ''Bioenergy '97: Nordic Bioenergy Conference, market, environment and technology'' took place in Oslo, Norway, 7-8 Oct 1997. The conference papers are grouped under three headings: (1) The nordic energy market. 12 papers. (2) Production and sale of biofuels. 8 papers. (3) Conversion and utilization of biofuels. With subsections New technologies, 4 papers, and Power/heat production from biofuels, 4 papers

  7. The Impact of Water Scarcity on Food, Bioenergy and Deforestation

    Science.gov (United States)

    Winchester, N.; Ledvina, K.; Strzepek, K. M.; Reilly, J. M.

    2016-12-01

    We evaluate the impact of explicitly representing irrigated land and water scarcity in an economy-wide model on food prices, bioenergy production and deforestation both with and without a global carbon policy. The analysis develops supply functions of irrigable land from a water resource model resolved at 282 river basins and applies them within a global economy-wide model of energy and food production, land-use change and greenhouse gas emissions. The irrigable land supply curves are built on basin-level estimates of water availability, and the costs of improving irrigation efficiency and increasing water storage, and include other water requirements within each basin. The analysis reveals two key findings. First, explicitly representing irrigated land at has a small impact on food, bioenergy and deforestation outcomes. This is because this modification allows more flexibility in the expansion of crop land (i.e. irrigated and rainfed land can expand in different proportions) relative to when a single type of crop land is represented, which counters the effect of rising marginal costs for the expansion of irrigated land. Second, due to endogenous irrigation and storage responses, changes in water availability have small impacts on food prices, bioenergy production, land-use change and the overall economy, even with large scale ( 150 exajoules) bioenergy production.

  8. 2016 Bioenergy Industry Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Kristen L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milbrandt, Anelia R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwab, Amy A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-03-03

    This report provides a snapshot of the bioenergy industry status at the end of 2016. The report compliments other annual market reports from the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy offices and is supported by DOE’s Bioenergy Technologies Office (BETO). The 2016 Bioenergy Industry Status Report focuses on past year data covering multiple dimensions of the bioenergy industry and does not attempt to make future market projections. The report provides a balanced and unbiased assessment of the industry and associated markets. It is openly available to the public and is intended to compliment International Energy Agency and industry reports with a focus on DOE stakeholder needs.

  9. Biomass for bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    sources of biomass for energy purposes in the European Union. Estimation of European biomass resources is associated with significant uncertainty, and it is not sure if the European Union can meet its 2020 energy policy targets with biomass produced in the EU, although some countries hold sway over...... a total production of residues from these six crops of ~3.7 billion tonnes dry matter annually. North and South America; Eastern, South-Eastern and Southern Asia and Eastern Europe each produce more than 200 million tonnes dry matter annually. The theoretical energy potential from the selected crop......, where bio-ethanol production is integrated with combined heat and power production may improve the energy balance with about 30 % point and reach energy efficiencies almost comparable to those seen for conversion of petroleum into gasoline. Minimisation of GHG emissions from bioenergy production...

  10. 10. Rostock bioenergy forum. Proceedings

    International Nuclear Information System (INIS)

    Nelles, Michael

    2016-01-01

    Biomass energy not only contributes to the energy transition, but also for climate and resource protection. The main topics of the conference are: Alternative solid bioenergy sources; Optimizing the use of heat; Prospects for biofuels; Emission reduction through use of biofuels; Alternative biomass for biogas; Optimization and adjustment in the biogas sector; Flexibility of biogas plants; New uses of bioenergy. 12 contributions were recorded separately for the INIS database. [de

  11. Bio-energy in Europe: changing technology choices

    International Nuclear Information System (INIS)

    Faaij, Andre P.C.

    2006-01-01

    Bio-energy is seen as one of the key options to mitigate greenhouse gas emissions and substitute fossil fuels. This is certainly evident in Europe, where a kaleidoscope of activities and programs was and is executed for developing and stimulating bio-energy. Over the past 10-15 years in the European Union, heat and electricity production from biomass increased with some 2% and 9% per year, respectively, between 1990 and 2000 and biofuel production increased about eight-fold in the same period. Biomass contributed some two-thirds of the total renewable energy production in the European Union (EU) (2000 PJ) or 4% of the total energy supply in 1999. Given the targets for heat, power and biofuels, this contribution may rise to some 10% (6000 PJ) in 2010. Over time, the scale at which bio-energy is being used has increased considerably. This is true for electricity and combined heat and power plants, and how biomass markets are developing from purely regional to international markets, with increasing cross-border trade-flows. So far, national policy programs proved to be of vital importance for the success of the development of bio-energy, which led to very specific technological choices in various countries. For the future, a supra-national approach is desired: comprehensive research development, demonstration and deployment trajectories for key options as biomass integrated gasification/combined cycle and advanced biofuel concepts, develop an international biomass market allowing for international trade and an integral policy approach for bio-energy incorporating energy, agricultural, forestry, waste and industrial policies. The Common Agricultural Policy of the (extended) EU should fully incorporate bio-energy and perennial crops in particular

  12. Bioenergy Sustainability in China: Potential and Impacts

    Science.gov (United States)

    Zhuang, Jie; Gentry, Randall W.; Yu, Gui-Rui; Sayler, Gary S.; Bickham, John W.

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China’s bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  13. Recent developments of biofuels/bioenergy sustainability certification: A global overview

    International Nuclear Information System (INIS)

    Scarlat, Nicolae; Dallemand, Jean-Francois

    2011-01-01

    The objective of this paper is to provide a review on the latest developments on the main initiatives and approaches for the sustainability certification for biofuels and/or bioenergy. A large number of national and international initiatives lately experienced rapid development in the view of the biofuels and bioenergy targets announced in the European Union, United States and other countries worldwide. The main certification initiatives are analysed in detail, including certification schemes for crops used as feedstock for biofuels, the various initiatives in the European Union, United States and globally, to cover biofuels and/or biofuels production and use. Finally, the possible way forward for biofuel certification is discussed. Certification has the potential to influence positively direct environmental and social impact of bioenergy production. Key recommendations to ensure sustainability of biofuels/bioenergy through certification include the need of an international approach and further harmonisation, combined with additional measures for global monitoring and control. The effects of biofuels/bioenergy production on indirect land use change (ILUC) is still very uncertain; addressing the unwanted ILUC requires sustainable land use planning and adequate monitoring tools such as remote sensing, regardless of the end-use of the product. - Research highlights: → There is little harmonisation between certification initiatives. → Certification alone is probably not able to avoid certain indirect effects. → Sustainability standards should be applied globally to all agricultural commodities. → A critical issue to certification is implementation and verification. → Monitoring and control of land use changes through remote sensing are needed.

  14. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas.

    Science.gov (United States)

    Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  15. BioEnergy Feasibility in South Africa

    Science.gov (United States)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural

  16. Bioenergy potentials from forestry to 2050. Preliminary results

    International Nuclear Information System (INIS)

    Smeets, E.; Faaij, A.; Lewandowski, I.

    2004-05-01

    In this study a bottom-up scenario analysis of the global bioenergy production potential is carried out, with specific attention for the impact of underlying factors, existing outlook studies on demand and supply and gaps in the knowledge base that explain the large range in estimates. Key variables are the demand for industrial roundwood and fuelwood, plantation establishment rates and natural forest growth. Key uncertainties are the supply of wood from trees outside and the impact of sustainable forest management (SFM) of yields. Results show that the world is capable of meeting the future demand for industrial roundwood and fuelwood, without further deforestation. The total potential of bioenergy from surplus forest growth and residues is estimated at 27 to 140 EJy -1 in 2050

  17. Cadmium in the bioenergy system - a synthesis

    International Nuclear Information System (INIS)

    Ahlfont, K.

    1997-12-01

    Cadmium is a toxic metal without any known positive biological effects. Both emissions and atmospheric deposition of cadmium have decreased radically in Sweden during recent years. In Sweden, about 150 tonnes of cadmium was supplied to the technosphere in 1990, mostly originating from NiCd batteries. More than 100 tonnes of cadmium accumulated in the technosphere. Mankind takes up cadmium from water, food and particulate atmospheric pollution. Even small amounts may be injurious in the long-term since the half-life in the kidneys is 30 years. Cadmium in biofuel and ashes are generally a cause of discussion. Ashes from biofuel constitute a nutrient resource that should be returned to the soil. A possible risk with spreading ashes is the spreading of heavy metals, and then foremost cadmium, which is among the heavy metals that forest soils are considered to tolerate the least. Several studies on cadmium in the bioenergy system have been made, both within the Research Programme for Recycling of Wood-ash, and within Vattenfall's Bioenergy Project. The present report is intended to provide a picture of the current state of knowledge and to review plans for the future With a 3 page summary in English. 51 refs, 1 fig, 3 tabs

  18. Efficient and sustainable deployment of bioenergy with carbon capture and storage in mitigation pathways

    Science.gov (United States)

    Kato, E.; Moriyama, R.; Kurosawa, A.

    2016-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise well below 2°C above pre-industrial, which would require net negative carbon emissions at the end of the 21st century. Also, in the Paris agreement from COP21, it is denoted "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century" which could require large scale deployment of negative emissions technologies later in this century. Because of the additional requirement for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of large-scale BECCS. In this study, we present possible development strategies of low carbon scenarios that consider interaction of economically efficient deployment of bioenergy and/or BECCS technologies, biophysical limit of bioenergy productivity, and food production. In the evaluations, detailed bioenergy representations, including bioenergy feedstocks and conversion technologies with and without CCS, are implemented in an integrated assessment model GRAPE. Also, to overcome a general discrepancy about yield development between 'top-down' integrate assessment models and 'bottom-up' estimates, we applied yields changes of food and bioenergy crops consistent with process-based biophysical models; PRYSBI-2 (Process-Based Regional-Scale Yield Simulator with Bayesian Inference) for food crops, and SWAT (Soil and Water Assessment Tool) for bioenergy crops in changing climate conditions. Using the framework, economically viable strategy for implementing sustainable BECCS are evaluated.

  19. Sustainability analysis of bioenergy based land use change under climate change and variability

    Science.gov (United States)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water

  20. Management swing potential for bioenergy crops

    NARCIS (Netherlands)

    Davis, S.C.; Boddey, R.M.; Alves, B.J.R.; Cowie, A.L.; George, B.H.; Ogle, S.M.; Smith, P.; Noordwijk, van M.; Wijk, van M.T.

    2013-01-01

    Bioenergy crops are often classified (and subsequently regulated) according to species that have been evaluated as environmentally beneficial or detrimental, but in practice, management decisions rather than species per se can determine the overall environmental impact of a bioenergy production

  1. Social acceptability of bioenergy in the U.S

    Science.gov (United States)

    J. Peter Brosius; John Schelhas; Sarah Hitchner

    2013-01-01

    Global interest in bioenergy development has increased dramatically in recent years, due to its promise to reduce dependence on fossil fuel energy supplies, its contribution to global and national energy security, its potential to produce a carbon negative or neutral fuel source and to mitigate climate change, and its potential as a vehicle for rural development....

  2. Bioenergy from sisal residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    The main objectives of this report are: To analyse the bioenergy potential of the Tanzanian agro-industries, with special emphasis on the Sisal industry, the largest producer of agro-industrial residues in Tanzania; and to upgrade the human capacity and research potential of the Applied Microbiology Unit at the University of Dar es Salaam, in order to ensure a scientific and technological support for future operation and implementation of biogas facilities and anaerobic water treatment systems. The experimental work on sisal residues contains the following issues: Optimal reactor set-up and performance; Pre-treatment methods for treatment of fibre fraction in order to increase the methane yield; Evaluation of the requirement for nutrient addition; Evaluation of the potential for bioethanol production from sisal bulbs. The processing of sisal leaves into dry fibres (decortication) has traditionally been done by the wet processing method, which consumes considerable quantities of water and produces large quantities of waste water. The Tanzania Sisal Authority (TSA) is now developing a dry decortication method, which consumes less water and produces a waste product with 12-15% TS, which is feasible for treatment in CSTR systems (Continously Stirred Tank Reactors). (EG)

  3. Combining Bioenergy with CCS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a carbon reduction technology that offers permanent net removal of carbon dioxide (CO2) from the atmosphere. This has been termed negative carbon dioxide emissions, and offers a significant advantage over other mitigation alternatives, which only decrease the amount of emissions to the atmosphere. The benefits inherent within this technology are currently receiving increased attention from policy makers. To facilitate the development of appropriate policy incentives, this paper reviews the treatment of negative carbon dioxide emissions under current and planned international carbon accounting frameworks. It finds that, while current frameworks provide limited guidance, proposed and revised guidelines could provide an environmentally sound reporting framework for BECCS. However, the paper also notes that, as they currently stand, new guidelines do not tackle a critical issue that has implications for all biomass energy systems, namely the overall carbon footprint of biomass production and use. It recommends that, to the best extent possible, all carbon impacts of BECCS are fully reflected in carbon reporting and accounting systems under the UNFCCC and Kyoto Protocol.

  4. Bioenergy Knowledge Discovery Framework (KDF) Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-29

    The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. This publication describes how the KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of bioenergy-related information.

  5. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Marshall, R.; Lauerman, V.; Yamaguchi, N.

    2001-02-01

    This study was undertaken in an effort to determine the market potential for crude bitumen and derivative products from the Western Canadian Sedimentary Basin in 2007. As part of the study, CERI assessed the economic viability of a wide range of bitumen-based feedstock based on their refining values, investigated the sensitivity of refinery demand to the prices of these feedstocks, and examined the competitiveness of bitumen-based feedstocks and conventional crudes. A US$18.00 per barrel price for West Texas Intermediate at Cushing, Oklahoma, was assumed in all calculations, including other crude prices, as well as for Western Canadian and US crude oil production forecasts. Four different scenarios have been considered, but only the 'most plausible' scenario is discussed in the report. Consequently, Hydrocracked/Aromatics Saturated Synthetic Crude Oil, which is currently only a hypothetical product, is excluded from consideration. The availability of historical price differentials for the various competing crudes was another assumption used in developing the scenario. Proxy prices for the bitumen-based feedstock were based on their respective supply costs. The study concludes that the principal dilemma facing bitumen producers in Western Canada is to determine the amount of upgrading necessary to ensure an economic market for their product in the future. In general, the greater the degree of upgrading, the higher is the demand for bitumen-based feedstock. However, it must be kept in mind that the upgrading decisions of other bitumen producers, along with many other factors, will have a decisive impact on the economics of any individual project. The combination of coking capacity and asphalt demand limits the market for heavy and extra-heavy crudes. As a result, the researchers concluded that major expansion of heavy crude conversion capacity may have to wait until the end of the current decade. The economic market for bitumen-based blends in 2007 is estimated at

  6. The market for bioenergy in Europe

    International Nuclear Information System (INIS)

    Kopetz, H.

    1997-01-01

    Conference paper. The demand for energy in Europe at present amounts to 16 PWh. Of this, 50% is needed for heating, 27% for transportation, 23% for light, communication and power. The European Commission in 1996 proposed that the share of renewables should be doubled to 12% by 2010. It is calculated that 3/4 of the supply of renewables must be supplied by biomass. A comprehensive energy crop programme is needed to guarantee the supply. According to calculations, 77% of the bioenergy supply will be used to deliver heat. For small heating installations financial support is necessary to overcome the investment costs. It is recommended that biomass based district heating grids should be subsidized by a joint programme of the Commission and the national governments. For industrial users little or no subsidies are required. It is suggested that the members of the EU should submit to the commission regional heat concepts, ''heat from biomass'', of a certain specified content. The necessary investment should come from private investors, from public money and from the EU. Green electricity is a way to promote renewable energy resources. As a realistic target for electricity from biomass within 12 years, 80 TWh is proposed. The production of raw materials for the energy sector on set-aside land is unsuccessful because of the changing set-aside rate. Some remedial actions are proposed

  7. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  8. Assessment of biomass residue availability and bioenergy yields in Ghana

    DEFF Research Database (Denmark)

    Kemausuor, Francis; Kamp, Andreas; Thomsen, Sune Tjalfe

    2014-01-01

    Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future us...

  9. Pathways and pitfalls of implementing the use of woodfuels in Germany's bioenergy sector

    DEFF Research Database (Denmark)

    Plieninger, Tobias; Thiel, Andreas; Bens, Oliver

    2009-01-01

    The paper presents an empirical study on the use of woody biomass for energy supply in Germany and the federal state of Brandenburg. It aims to explain the role forestry enterprises have for bioenergy provision in this area. The 'Institutions of Sustainability' framework is used as an analytical.......e. strong support by national and regional policies, rising prices for fossil energy sources, and co-operation of committed individuals and groups, a new bioenergy industry has been successfully established. However, the forestry sector has so far been just a marginal fuel supplier for this industry....... The study identifies pitfalls impeding a broad implementation of wood-energy supply in forestry: not cost-covering prices offered by the bioenergy sector, lacking market transparency and security of supply, lacking mobilization of forest wood, and a preference among forest managers to sell products...

  10. Bioenergy research advances and applications

    CERN Document Server

    Gupta, Vijai G; Kubicek, Christian P; Saddler, Jack; Xu, Feng

    2014-01-01

    Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post...

  11. Non-technical success factors for bioenergy projects—Learning from a multiple case study in Japan

    International Nuclear Information System (INIS)

    Blumer, Yann B.; Stauffacher, Michael; Lang, Daniel J.; Hayashi, Kiyotada; Uchida, Susumu

    2013-01-01

    There is wide agreement in the literature that non-technical factors play a decisive role in the successful implementation of bioenergy projects. One underlying reason is that such projects require the involvement of many stakeholders, such as feedstock producers, engineers, authorities and the concerned public. We analyze the role of bioenergy-specific non-technical factors for the success of bioenergy projects. In a broad literature review we first identify potential success factors belonging to the five dimensions project characteristics, policy framework, regional integration, public perception and stakeholders. Using these factors as conceptual framework, we next analyze six Japanese pilot projects for bioenergy utilization supported by Japans Agriculture, Forestry and Fisheries Research Council. We apply Rough Set Analysis, a data mining method that can be used for small sample sizes to identify patterns in a dataset. We find that, by and large, non-technical factors from all five dimensions – such as the stability of the local policy framework – co-occur with project success. Furthermore, we show that there are diverging interpretations as to what success in a bioenergy project means. This requires tradeoffs between various goals, which should be identified and addressed explicitly at early stages of such a project. - Highlights: • We collect a broad list of non-technical success factors for bioenergy projects. • These are applied to six pilot projects in Japan and shown to be relevant. • We acknowledge different aspects of project success and their potential conflicts

  12. Securing a bioenergy future without imports

    International Nuclear Information System (INIS)

    Welfle, Andrew; Gilbert, Paul; Thornley, Patricia

    2014-01-01

    The UK has legally binding renewable energy and greenhouse gas targets. Energy from biomass is anticipated to make major contributions to these. However there are concerns about the availability and sustainability of biomass for the bioenergy sector. A Biomass Resource Model has been developed that reflects the key biomass supply-chain dynamics and interactions determining resource availability, taking into account climate, food, land and other constraints. The model has been applied to the UK, developing four biomass resource scenarios to analyse resource availability and energy generation potential within different contexts. The model shows that indigenous biomass resources and energy crops could service up to 44% of UK energy demand by 2050 without impacting food systems. The scenarios show, residues from agriculture, forestry and industry provide the most robust resource, potentially providing up to 6.5% of primary energy demand by 2050. Waste resources are found to potentially provide up to 15.4% and specifically grown biomass and energy crops up to 22% of demand. The UK is therefore projected to have significant indigenous biomass resources to meet its targets. However the dominant biomass resource opportunities identified in the paper are not consistent with current UK bioenergy strategies, risking biomass deficit despite resource abundance. - Highlights: • Biomass Resource Model and Scenarios reflect biomass supply-chain dynamics to 2050. • High potential availability of biomass and energy crops without food systems impacts. • UK Indigenous biomass resource could service up to 44% of UK energy demand by 2050. • Robust residue resource from ongoing activities and large potential waste resource. • Indigenous resource abundance and the UK’s path towards increased resource deficit

  13. Integrating sustainable biofuels and byproducts into forest industry supply chains

    Science.gov (United States)

    Reid Hensen; Maureen Essen; Nathaniel Anderson; Larry Peters; April Kimmerly

    2016-01-01

    Forest biomass is a promising feedstock for the production of bioenergy, biofuels, and bioproducts because it is renewable and widely available as a byproduct of forest management. Its harvest and use also has the potential to positively impact rural communities, especially those negatively impacted by upheaval in the forest sector.

  14. Design, modeling, and analysis of a feedstock logistics system.

    Science.gov (United States)

    Judd, Jason D; Sarin, Subhash C; Cundiff, John S

    2012-01-01

    Given the location of a bio-energy plant for the conversion of biomass to bio-energy, a feedstock logistics system that relies on the use of satellite storage locations (SSLs) for temporary storage and loading of round bales is proposed. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile and thereby travel from one SSL to another. A mathematical programming-based approach is utilized to determine SSLs and equipment routes in order to minimize the total cost. The use of a Side-loading Rack System results in average savings of 21.3% over a Densification System while a Rear-loading Rack System is more expensive to operate than either of the other equipment systems. The utilization of mobile equipment results in average savings of 14.8% over the equipment placed permanently. Furthermore, the Densification System is not justifiable for transportation distances less than 81 km. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Cob biomass supply for combined heat and power and biofuel in the north central USA

    International Nuclear Information System (INIS)

    Schmer, Marty R.; Dose, Heather L.

    2014-01-01

    Corn (Zea mays L.) cobs are being evaluated as a potential bioenergy feedstock for combined heat and power generation (CHP) and conversion into a biofuel. The objective of this study was to determine corn cob availability in north central United States (Minnesota, North Dakota, and South Dakota) using existing corn grain ethanol plants as a proxy for possible future co-located cellulosic ethanol plants. Cob production estimates averaged 6.04 Tg and 8.87 Tg using a 40 km radius area and 80 km radius area, respectively, from existing corn grain ethanol plants. The use of CHP from cobs reduces overall GHG emissions by 60%–65% from existing dry mill ethanol plants. An integrated biorefinery further reduces corn grain ethanol GHG emissions with estimated ranges from 13.9 g CO 2  equiv MJ −1 to 17.4 g CO 2  equiv MJ −1 . Significant radius area overlap (53% overlap for 40 km radius and 86% overlap for 80 km radius) exists for cob availability between current corn grain ethanol plants in this region suggesting possible cob supply constraints for a mature biofuel industry. A multi-feedstock approach will likely be required to meet multiple end user renewable energy requirements for the north central United States. Economic and feedstock logistics models need to account for possible supply constraints under a mature biofuel industry. - Highlights: • Corn cob biomass was estimated for the north central United States region. • Cobs were evaluated for combined heat and power generation and bioethanol. • Co-located ethanol plants showed a reduction in greenhouse gas emissions. • Biomass supply constraints may occur under a mature cellulosic ethanol scenario

  16. Bioenergy industries development in China. Dilemma and solution

    International Nuclear Information System (INIS)

    Peidong, Zhang; Yanli, Yang; Xutong, Yang; Yonghong, Zheng; Lisheng, Wang; Yongsheng, Tian; Yongkai, Zhang

    2009-01-01

    Having 2.8 x 10 8 -3.0 x 10 8 t/a of wood energy, 4.0 x 10 6 t/a of oil seeds, 7.7 x 10 8 t/a of crops straw, 3.97 x 10 9 t/a of poultry and livestock manure, 1.48 x 10 8 t/a of municipal waste, and 4.37 x 10 10 t/a of organic wastewater, China is in possession of good resource condition for the development of bioenergy industries. Until the end of 2007, China has popularized 2.65 x 10 7 rural household biogas, established 8318 large and middle-scale biogas projects, and produced 1.08 x 10 10 m 3 /a of biogas; the production of bioethanol, biodiesel, biomass briquettes fuel and biomass power generation reached to 1.5 x 10 6 t/a, 3.0 x 10 5 t/a, 6.0 x 10 4 t/a and 6.42 x 10 9 kWh, respectively. In recent years, bioenergy industries developed increasingly fast in China. However, the industrial base was weak with some dilemma existing in raw material supply, technological capability, industry standards, policy and regulation, and follow-up services, etc. From the viewpoint of long-term effective development system for bioenergy industries in China, a series of policy suggestions have been offered, such as strengthening strategy research, improving bioenergy industries development policies and plan, enhancing scientific research input, persisting in technology innovation, establishing product quality standard, improving industrial standard system, opening market and accelerating commercialization, etc. It is expected that the advices mentioned above could be helpful for the improvement of bioenergy industries development. (author)

  17. How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise

    Directory of Open Access Journals (Sweden)

    Anandarajah Gabrial

    2009-07-01

    accelerated technological development scenario due to a reduction in ethanol produced from wheat. Conclusion There is much potential for future deployment of bioenergy technologies to decarbonise the energy sector. However, future deployment is dependent on many different factors including investment and efforts towards research and development needs, carbon reduction targets and the ability to compete with other low carbon technologies as they become deployed. All bioenergy technologies should become increasingly more economically competitive with fossil-based technologies as feedstock costs and flexibility are reduced in line with technological advances.

  18. Evaluation on community tree plantations as sustainable source for rural bioenergy in Indonesia

    Science.gov (United States)

    Siregar, U. J.; Narendra, B. H.; Suryana, J.; Siregar, C. A.; Weston, C.

    2017-05-01

    Indonesia has forest plantation resources in rural areas far from the national electricity grid that have potential as feedstock for biomass based electricity generation. Although some fast growing tree plantations have been established for bioenergy, their sustainability has not been evaluated to date. This research aimed to evaluate the growth of several tree species, cultivated by rural communities in Jawa Island, for their sustainability as a source for bio-electricity. For each tree species the biomass was calculated from diameter and height measurements and an estimate made for potential electricity generation based on density of available biomass and calorific content. Species evaluated included Acacia mangium, A. auriculiformis, A. crasicarpa, Anthocephalus cadamba, Calliandra calothirsus, Eucalyptus camaldulensis, Falcataria moluccana, Gmelina arborea, Leucaena leucochephala and Sesbania grandiflora. Among these species Falcataria moluccana and Anthocephalus cadamba showed the best potential for bioenergy production, with up to 133.7 and 67.1 ton/ha biomass respectively, from which 160412 and 80481 Kwh of electricity respectively could be generated. Plantations of these species could potentially meet the estimated demand for biomass feedstock to produce bioenergy in many rural villages, suggesting that community plantations could sustainably provide much needed electricity.

  19. Developing a sustainability framework for the assessment of bioenergy systems

    International Nuclear Information System (INIS)

    Elghali, Lucia; Clift, Roland; Sinclair, Philip; Panoutsou, Calliope; Bauen, Ausilio

    2007-01-01

    The potential for biomass to contribute to energy supply in a low-carbon economy is well recognised. However, for the sector to contribute fully to sustainable development in the UK, specific exploitation routes must meet the three sets of criteria usually recognised as representing the tests for sustainability: economic viability in the market and fiscal framework within which the supply chain operates; environmental performance, including, but not limited to, low carbon dioxide emissions over the complete fuel cycle; and social acceptability, with the benefits of using biomass recognised as outweighing any negative social impacts. This paper describes an approach to developing a methodology to establish a sustainability framework for the assessment of bioenergy systems to provide practical advice for policy makers, planners and the bioenergy industry, and thus to support policy development and bioenergy deployment at different scales. The approach uses multi-criteria decision analysis (MCDA) and decision-conferencing, to explore how such a process is able to integrate and reconcile the interests and concerns of diverse stakeholder groups

  20. Biofuel and Bioenergy implementation scenarios. Final report of VIEWLS WP5, modelling studies

    International Nuclear Information System (INIS)

    Wakker, A.; Egging, R.; Van Thuijl, E.; Van Tilburg, X.; Deurwaarder, E.P.; De Lange, T.J.; Berndes, G.; Hansson, J.

    2005-11-01

    This report is published within the framework of the European Commission-supported project 'Clear Views on Clean Fuels' or VIEWLS. The overall objectives of this project are to provide structured and clear data on the availability and performance of biofuel and to identify the possibilities and strategies towards large-scale sustainable production, use and trading of biofuels for the transport sector in Europe, including Central and Eastern European Countries (CEEC). This reports constitutes the outcome of the Work Package 5 (WP5) of the VIEWLS project. In WP5 the EU biofuels and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costs of biofuels and on the resulting market structure and supply chains. In a bigger context, where possible, WP5 aims also to provide insight into larger socio-economic impacts of bioenergy trade within Europe. The objective of this research is to develop a cost efficient biofuel strategy for Europe in terms of biofuel production, cost and trade, and to assess its larger impact on bioenergy markets and trade up to 2030. Based on the biomass availability and associated costs within EU25, under different conditions, scenarios for biofuels production and cost can be constructed using quantitative modelling tools. Combining this with (cost) data on biofuel conversion technologies and transport of biomass and biofuels, the lowest cost biofuel supply chain given a certain demand predetermined by the biofuels Directive can be designed. In a broader context, this is supplemented by a design of a sustainable bioenergy supply chain in view of the fact that biomass-heat, biomass-electricity and biofuels are competing for the same biomass resources. In other words, the scarcity of bioenergy crops, as manifested through overall bioenergy demand, is an essential variable in bioenergy scenarios

  1. Moderne bioenergi har store muligheder

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt; Kossmann, J.; Sønderberg Petersen, L.

    2003-01-01

    Bioenergi er energi, der stammer fra vedvarende kilder af biologisk oprindelse. Normalt bruges energiafgrøder dyrket specielt til formålet, eller biprodukter fra landbrug, skovbrug eller fiskeri. Eksempler på bioenergikilder er træbrændsel, bagasse(udpressede sukkerrør), organisk affald, biogas og...

  2. Assessment of renewable bioenergy application

    DEFF Research Database (Denmark)

    Kronborg Jensen, Jesper; Govindan, Kannan

    2014-01-01

    into biogas. In order to validate the proposed options of bioenergy application, we considered a food processing company in Denmark as a case company in a single in-depth case study. In the case studied, the produced biogas is to be utilized in one of two options at a bakery site: To substitute natural gas...

  3. Shorea robusta: A sustainable biomass feedstock

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  4. United States biomass energy: An assessment of costs and infrastructure for alternative uses of biomass energy crops as an energy feedstock

    Science.gov (United States)

    Morrow, William Russell, III

    Reduction of the negative environmental and human health externalities resulting from both the electricity and transportation sectors can be achieved through technologies such as clean coal, natural gas, nuclear, hydro, wind, and solar photovoltaic technologies for electricity; reformulated gasoline and other fossil fuels, hydrogen, and electrical options for transportation. Negative externalities can also be reduced through demand reductions and efficiency improvements in both sectors. However, most of these options come with cost increases for two primary reasons: (1) most environmental and human health consequences have historically been excluded from energy prices; (2) fossil energy markets have been optimizing costs for over 100 years and thus have achieved dramatic cost savings over time. Comparing the benefits and costs of alternatives requires understanding of the tradeoffs associated with competing technology and lifestyle choices. As bioenergy is proposed as a large-scale feedstock within the United States, a question of "best use" of bioenergy becomes important. Bioenergy advocates propose its use as an alternative energy resource for electricity generation and transportation fuel production, primarily focusing on ethanol. These advocates argue that bioenergy offers environmental and economic benefits over current fossil energy use in each of these two sectors as well as in the U.S. agriculture sector. Unfortunately, bioenergy research has offered very few comparisons of these two alternative uses. This thesis helps fill this gap. This thesis compares the economics of bioenergy utilization by a method for estimating total financial costs for each proposed bioenergy use. Locations for potential feedstocks and bio-processing facilities (co-firing switchgrass and coal in existing coal fired power plants and new ethanol refineries) are estimated and linear programs are developed to estimate large-scale transportation infrastructure costs for each sector

  5. Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy

    Science.gov (United States)

    Booth, Mary S.

    2018-03-01

    Climate mitigation requires emissions to peak then decline within two decades, but many mitigation models include 100 EJ or more of bioenergy, ignoring emissions from biomass oxidation. Treatment of bioenergy as ‘low carbon’ or carbon neutral often assumes fuels are agricultural or forestry residues that will decompose and emit CO2 if not burned for energy. However, for ‘low carbon’ assumptions about residues to be reasonable, two conditions must be met: biomass must genuinely be material left over from some other process; and cumulative net emissions, the additional CO2 emitted by burning biomass compared to its alternative fate, must be low or negligible in a timeframe meaningful for climate mitigation. This study assesses biomass use and net emissions from the US bioenergy and wood pellet manufacturing sectors. It defines the ratio of cumulative net emissions to combustion, manufacturing and transport emissions as the net emissions impact (NEI), and evaluates the NEI at year 10 and beyond for a variety of scenarios. The analysis indicates the US industrial bioenergy sector mostly burns black liquor and has an NEI of 20% at year 10, while the NEI for plants burning forest residues ranges from 41%-95%. Wood pellets have a NEI of 55%-79% at year 10, with net CO2 emissions of 14-20 tonnes for every tonne of pellets; by year 40, the NEI is 26%-54%. Net emissions may be ten times higher at year 40 if whole trees are harvested for feedstock. Projected global pellet use would generate around 1% of world bioenergy with cumulative net emissions of 2 Gt of CO2 by 2050. Using the NEI to weight biogenic CO2 for inclusion in carbon trading programs and to qualify bioenergy for renewable energy subsidies would reduce emissions more effectively than the current assumption of carbon neutrality.

  6. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  7. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

    2014-08-28

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  8. IEA Bioenergy task 40. Country report for the Netherlands 2007

    International Nuclear Information System (INIS)

    Sikkema, R.; Junginger, M.; Faaij, A.

    2007-12-01

    Short-term objectives of the IEA Bioenergy Task 40 'Sustainable International Bio-energy Trade: Securing Supply and Demand' are amongst other objectives to present an overview of development of biomass markets in various parts of the world and to identify existing barriers hampering development of a (global) commodity market (e.g. policy framework, ecology, economics). As in most countries biomass is a relatively new (though quickly growing) commodity, relatively little information is available on e.g. the traded volumes and prices of various biomass streams, policies and regulations on biomass use and trade, and existing and perceived barriers. This country report aims to provide an overview of these issues for the Netherlands and is an extended update of previous reports (2005 and 2006)

  9. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, S.B.

    1995-12-31

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

  10. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    International Nuclear Information System (INIS)

    McLaughlin, S.B.

    1995-01-01

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy's Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO 2 emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels

  11. Feedstock characterization and recommended procedures

    International Nuclear Information System (INIS)

    Chum, H.L.; Milne, T.A.; Johnson, D.K.; Agblevor, F.A.

    1993-01-01

    Using biomass for non-conventional applications such as feedstocks for fuels, chemicals, new materials, and electric power production requires knowledge of biomass characteristics important to these processes, and characterization techniques that are more appropriate than those employed today for conventional applications of food, feed, and fiber. This paper reviews feedstock characterization and standardization methodologies, and identifies research and development needs. It reviews the international cooperation involved in determining biomass characteristics and standards that has culminated in preparing four biomass samples currently available from the National Institute of Standards and Technology (NIST)

  12. Ecological assessment of integrated bioenergy systems using the Sustainable Process Index

    International Nuclear Information System (INIS)

    Krotscheck, C.; Konig, F.; Obernberger, I.

    2000-01-01

    Biomass utilisation for energy production presently faces an uphill battle against fossil fuels. The use of biomass must offer additional benefits to compensate for higher prices: on the basis of a life cycle assessment (using BEAM to evaluate a variety of integrated bioenergy systems in connection with the Sustainable Process Index as a highly aggregated environmental pressure index) it is shown that integrated bioenergy systems are superior to fossil fuel systems in terms of environmental compatibility. The implementation of sustainability measures provides additional valuable information that might help in constructing and optimising integrated bioenergy systems. For a set of reference processes, among them fast pyrolysis, atmospheric gasification, integrated gasification combined cycle (IGCC), combustion and steam cycle (CS) and conventional hydrolysis, a detailed impact assessment is shown. Sensitivity analyses of the most important ecological parameters are calculated, giving an overview of the impacts of various stages in the total life cycle and showing 'what really matters'. Much of the ecological impact of integrated bioenergy systems is induced by feedstock production. It is mainly the use of fossil fuels in cultivation, harvesting and transportation as well as the use of fertilisers in short-rotation coppice production that impose considerable ecological pressure. Concerning electricity generation the most problematic pressures are due to gaseous emissions, most notably the release of NO x . Moreover, a rather complicated process (high amount of grey energy) and the use of fossil pilot fuel (co-combustion) leads to a rather weak ecological performance in contrast to other 100% biomass-based systems. (author)

  13. Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity.

    Science.gov (United States)

    Gell, Kealan; van Groenigen, JanWillem; Cayuela, Maria Luz

    2011-02-28

    The current shift towards bioenergy production increases streams of bioenergy rest-products (RPs), which are likely to end-up as soil amendments. However, their impact on soil remains unclear. In this study we evaluated crop phytotoxicity of 15 RPs from common bioenergy chains (biogas, biodiesel, bioethanol and pyrolysis). The RPs were mixed into a sandy soil and the seedling root and shoot elongation of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and wheat (Triticum aestivum L.) were measured. Immediate phytotoxic effects were observed with biodiesel and bioethanol RPs (root elongation reduced to 14-60% for the three crops; P<0.05). However, phytotoxicity was no longer significant after seven days. Digestates had no phytotoxic effect whereas biochars ranged from beneficial to detrimental depending on the original feedstock and temperature of pyrolysis. Biochar amendment alleviated phytotoxicity of bioethanol by-products for wheat and radish. Phytotoxicity assessment is critical for successful soil amendment with bioenergy RPs. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. 2009 Feedstocks Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  15. The future of bioenergy; Die Zukunft der Bioenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This volume contains the following five contributions: 1. The impact of the governmental biogas production on agricultural rents in Germany. An econometric study (Hendrik Garvert); 2. Biogas as price drivers on the land and rental market? An Empirical Analysis (Uwe Latacz-Lohmann); 3. Analysis of comparative advantage of bioenergy in electricity and heat production. Greenhouse gas abatement and mitigation costs in Brandenburg (Lukas Scholz); 4. Flexibility potential of biogas and biomethane CHP in the investment portfolio (Matthias Edel); 5. Legal possibilities and limitations of a reform of the system for the promotion of bioenergy (Jose Martinez). [German] Dieser Band enthaelt folgende fuenf Themenbeitraege: 1. Die Auswirkungen der staatlichen Biogasfoerderung auf landwirtschaftliche Pachtpreise in Deutschland. Eine oekonometrische Untersuchung (Hendrik Garvert); 2. Biogas als Preistreiber am Bodenmarkt und Pachtmarkt? Eine empirische Analyse (Uwe Latacz-Lohmann); 3. Analyse komparativer Kostenvorteile von Bioenergielinien in der Strom- und Waermeproduktion Treibhausgasvermeidung und Vermeidungskosten in Brandenburg (Lukas Scholz); 4. Flexibilisierungspotenzial von Biogas- und Biomethan-BHKWs im Anlagenbestand (Matthias Edel); 5. Rechtliche Moeglichkeiten und Grenzen einer Reform des Systems zur Foerderung der Bioenergie (Jose Martinez).

  16. Survey of alternative feedstocks for biodiesel production

    Science.gov (United States)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  17. A Brief Global Perspective on Biomass for Bioenergy and Biofuels

    Directory of Open Access Journals (Sweden)

    Richard Vlosky

    2011-10-01

    Full Text Available Biomass has a large energy potential. A comparison between the available potential with the current use shows that, on a worldwide level, about two-fifths of the existing biomass energy potential is used. In most areas of the world the current biomass use is clearly below the available potential. Only for Asia does the current use exceed the available potential, i.e. non-sustainable biomass use. Therefore, increased biomass use, e.g. for upgrading is possible in most countries. A possible alternative is to cover the future demand for renewable energy, by increased utilization of forest residues and residues from the wood processing industry, e.g. for production of densified biofuels (Parrika, 2004.If carried out on a large scale, the increased use of agricultural resources for energy will have the effect of raising the prices of most commodity crops and reducing the need for subsidies – with particular benefit for producers of commodity crops in developing countries. An aggressive program of bioenergy development could lead to reductions in government support to farmers without any loss of income. The long-term success of bio-based facilities and markets is dependent in part on the level of commitment of feedstock from forest landowners and farmers.  Forest, crop, and animal residues present considerable potential as a biomass feedstock.  They are renewable, sustainable, locally available, and often considered carbon-neutral when compared to fossil fuels (Hoogwijk, 2004; Mathews, 2008.

  18. Bioenergy Knowledge Discovery Framework Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-07-01

    The Bioenergy Knowledge Discovery Framework (KDF) supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner.

  19. Developments in international bioenergy trade

    International Nuclear Information System (INIS)

    Junginger, Martin; Faaij, Andre; Wit, Marc de; Bolkesjoe, Torjus; Bradley, Douglas; Dolzan, Paulo; Piacente, Erik; Walter, Arnaldo da Silva; Heinimoe, Jussi; Hektor, Bo; Leistad, Oeyvind; Ling, Erik; Perry, Miles; Rosillo-Calle, Frank; Ryckmans, Yves; Schouwenberg, Peter-Paul; Solberg, Birger; Troemborg, Erik

    2008-01-01

    The aim of this paper is to present a synthesis of the main developments and drivers of international bioenergy trade in IEA Bioenergy Task 40 member countries, based on various country reports written by Task 40 members. Special attention is given to pellet and ethanol trade. In many European countries such as Belgium, Finland, the Netherlands, Sweden and the UK, imported biomass contributes already significantly (between 21% and 43%) to total biomass use. Wood pellets are currently exported by Canada, Finland and (to a small extent) Brazil and Norway, and imported by Sweden, Belgium, the Netherlands, and the UK. In the Netherlands and Belgium, pellet imports nowadays contribute to a major share to total renewable electricity production. Trade in bio-ethanol is another example of a rapidly growing international market. With the EU-wide target of 5.75% biofuels for transportation in 2010 (and 10% in 2020), exports from Brazil and other countries to Europe are likely to rise as well. Major drivers for international bioenergy trade in general are the large resource potentials and relatively low production costs in producing countries such as Canada and Brazil, and high fossil fuel prices and various policy incentives to stimulate biomass use in importing countries. However, the logistic infrastructure both in exporting and importing countries needs to be developed to access larger physical biomass volumes and to reach other (i.e. smaller) end-consumers. It is concluded that international bioenergy trade is growing rapidly, far beyond what was deemed possible only a few years ago, and may in the future in some Task 40 countries surpass domestic biomass use, especially for specific applications (e.g. transport fuels). (author)

  20. Bioenergy Status Document 2011; Statusdocument Bio-energie 2011

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.

    2011-03-15

    The Dutch status document on bio-energy has been updated with data for the year 2011. This document provides an overview of the amount of energy derived from biomass, a description of the current bio-energy policy framework and a discussion of the extent to which the Netherlands is on track for securing European renewable energy targets. The status document shows there has been a slight increase in the share of bio-energy in overall energy consumption as well as in the total amount of renewable energy generated (which now stands at a little over 4% of gross final consumption). The question, however, is whether this growth is sufficient to meet the European target of 14% renewables in 2020. The limited growth is due partly to the decrease in the amount of energy generated in the category 'other incineration'. In addition, there was a decline in the physical delivery of transport biofuels because certain types of fuel can be 'double-counted' in the records, although they do not contribute to the 14% target. This document provides an overview of the amount of energy derived from biomass, a description of the current bio-energy policy framework and a discussion of the extent to which the Netherlands is on track for securing European renewable energy targets [Dutch] Het statusdocument bio-energie 2011 geeft de huidige status weer van bioenergie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken aan overheden en marktpartijen in de ontwikkelingen van bio-energie. De kabinetsdoelstellingen voor hernieuwbare energie zijn conform de doelstellingen uit de richtlijn voor hernieuwbare energie (2009/28/EG), die is vastgesteld door de EC. In 2020 moet 14% van het nationale bruto finaal eindgebruik afkomstig zijn van hernieuwbare bronnen, de Nederlandse overheid schat dat dat overeenkomt met 300 PJ. Naar schatting is in 2011 ongeveer 88 PJ aan hernieuwbare energie geproduceerd, ongeveer evenveel

  1. From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning

    International Nuclear Information System (INIS)

    van Dam, J.; Junginger, M.; Faaij, A.P.C.

    2010-01-01

    This paper presents an overview of 67 ongoing certification initiatives to safeguard the sustainability of bioenergy. Most recent initiatives are focused on the sustainability of liquid biofuels. Content-wise, most of these initiatives have mainly included environmental principles. Despite serious concerns in various parts of the world on the socio-economic impacts of bioenergy production, these are generally not included in existing bioenergy initiatives. At the same time, the overview shows a strong proliferation of standards. The overview shows that certification has the potential to influence direct, local impacts related to environmental and social effects of direct bioenergy production. Key recommendations to come to an efficient certification system include the need for further harmonization, availability of reliable data and linking indicators on a micro, meso and macro levels. Considering the multiple spatial scales, certification should be combined with additional measurements and tools on a regional, national and international level. The role of bioenergy production on indirect land use change (ILUC) is still very uncertain and current initiatives have rarely captured impacts from ILUC in their standards. Addressing unwanted LUC requires first of all sustainable land use production and good governance, regardless of the end-use of the product. It is therefore recommended to extend measures to mitigate impacts from LUC to other lands and feedstock. (author)

  2. Sustainability of bioenergy chains. The result is in the details

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, J.M.C.

    2009-05-13

    This thesis investigated how the feasibility and sustainability of large-scale bioenergy production, supply and use for local use or trade can be determined ex ante on a regional level, taking into account the complexities and variabilities of the underlying factors like food demand and land use. Recently, governments, NGOs, companies and international organizations (e.g. Dutch government, Solidaridad, Shell or FAO) have taken initiatives to guarantee the sustainable production and use of biomass. Uncertainties on the feasibility, implementation and costs of international biomass certification systems and the compliance with international laws and agreements have to be resolved. A developed software tool shows that it is possible to allow users from various regions to use one methodology and tool to calculate the GHG balances and cost-effectiveness of biomass energy systems. Core methodological issues are accommodated in the tool. One of the case studies demonstrates e.g. that the allocation procedure should be carefully defined as is shown by the variation in results, which is 35 to 50 kg CO2 eq./GJ delivered in GHG emissions. The technical potentials and cost-supply curves of bioenergy are assessed for Central and Eastern European Countries (CEEC) on a regional level. The more favourable scenarios to 2030 show a highest potential of 11.7 EJ. In most CEEC, bulk of the biomass potential can be produced at costs below 2 euro/GJ. The cost performance of energy carriers supplied from the CEEC is assessed for a set of bioenergy chains. Ethanol can be produced at 12 to 21 euro/GJ if the biomass conversion is performed at selected destinations in Western Europe or at 15 to 18 euro/GJ if biomass to ethanol conversion takes place where the biomass is produced. A case in Argentina shows the potential and economic feasibility of large-scale bioenergy production from soybeans and switchgrass, cultivated in La Pampa province. For the various scenarios to 2030, biodiesel from

  3. Development of a tool to model European biomass trade : Report for IEA Bioenergy Task 40

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Junginger, H.M.; Resch, G.; Matzenberger, J.; Panzer, C.; Pelkmans, L.

    2011-01-01

    This report investigated the potential of future intra- and inter-European trade of solid biomass for bioenergy purposes taking country to country specific intermodal transport routes into account and matching supply and demand for energy crops, forestry products and residues and agricultural

  4. Two levels decision system for efficient planning and implementation of bioenergy production

    International Nuclear Information System (INIS)

    Ayoub, Nasser; Martins, Ricardo; Wang, Kefeng; Seki, Hiroya; Naka, Yuji

    2007-01-01

    When planning bioenergy production from biomass, planners should take into account each and every stakeholder along the biomass supply chains, e.g. biomass resources suppliers, transportation, conversion and electricity suppliers. Also, the planners have to consider social concerns, environmental and economical impacts related with establishing the biomass systems and the specific difficulties of each country. To overcome these problems in a sustainable manner, a robust decision support system is required. For that purpose, a two levels general Bioenergy Decision System (gBEDS) for bioenergy production planning and implementation was developed. The core part of the gBEDS is the information base, which includes the basic bioenergy information and the detailed decision information. Basic bioenergy information include, for instance, the geographical information system (GIS) database, the biomass materials' database, the biomass logistic database and the biomass conversion database. The detailed decision information considers the parameters' values database with their default values and the variables database, values obtained by simulation and optimization. It also includes a scenario database, which is used for demonstration to new users and also for case based reasoning by planners and executers. Based on the information base, the following modules are included to support decision making: the simulation module with graph interface based on the unit process (UP) definition and the genetic algorithms (GAs) methods for optimal decisions and the Matlab module for applying data mining methods (fuzzy C-means clustering and decision trees) to the biomass collection points, to define the location of storage and bioenergy conversion plants based on the simulation and optimization model developed of the whole life cycle of bioenergy generation. Furthermore, Matlab is used to set up a calculation model with crucial biomass planning parameters (e.g. costs, CO 2 emissions), over

  5. The role of bioenergy in the energy transition. The ''Smart Bioenergy'' concept; Die Rolle der Bioenergie in der Energiewende. Das ''Smart Bioenergy''-Konzept

    Energy Technology Data Exchange (ETDEWEB)

    Thraen, Daniela [Helmholtz-Zentrum fuer Umweltforschung - UFZ, Leipzig (Germany). Dept. Bioenergie (BEN); DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Seitz, Stefanie B.; Wirkner, Ronny; Nelles, Michael [DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig (Germany). Bereich Bioenergiesysteme

    2016-08-01

    The energy system's transformation away from fossil and therefore finite resources and ecological harmful use towards renewable energy sources and sustainable forms of usage proceeds. But even after 35 years, the German energy transition has yet not reached its ambitious goals. Moreover, in the recent years the progress has stagnated in certain areas. This is due to the fact that one of the central challenges of the energy system's changeover to an sole use renewable energy (RE) have not yet mastered: the reliable and stable delivery of RE for all energy dependent sectors starting form electricity via heat to mobility in the face of fluctuating energy sources like sun and wind. Bioenergy with its flexible use of innovative technologies and smart integration in the overall system is therefore vital to grant stability of energy supply. Furthermore, bioenergy can recourse on sustainable resources and may become therefore the backbone of the future bioeconomy. For this purpose an integrative approach is necessary that aligns the aforementioned building blocks in a cohesive whole: the Smart Bioenergy concept - that will be presented here with its elements but also open questions and challenges.

  6. Socio-economic drivers in implementing bioenergy projects

    Energy Technology Data Exchange (ETDEWEB)

    Domac, J. [Energy Institute ' Hrvoje Pozar' , Zagreb (Croatia); Richards, K. [TV Energy Ltd., Newbury (United Kingdom); Risovic, S. [Zagreb Univ., Faculty of Forestry, Zagreb (Croatia)

    2005-02-01

    Within the international community there is considerable interest in the socio-economic implications of moving society towards the more widespread use of renewable energy resources. Such change is seen to be very necessary but is often poorly communicated to people and communities who need to accept such changes. There are pockets of activity across the world looking at various approaches to understand this fundamental matter. Typically, socio-economic implications are measured in terms of economic indices, such as employment and monetary gains, but in effect the analysis relates to a number of aspects which include social, cultural, institutional, and environmental issues. The extremely complex nature of bioenergy, many different technologies involved and a number of different, associated aspects (socio-economics, greenhouse gas mitigation potential, environment, etc) make this whole topic a complex subject. This paper is primarily a descriptive research and review of literature on employment and other socio-economic aspects of bioenergy systems as drivers for implementing bioenergy projects. Due to the limited information, this paper does not provide absolute quantification on the multiplier effects of local and or national incomes of any particular country or region. The paper intends to trigger a more in-depth discussion of data gaps, potentials, opportunities and challenges. An encouraging trend is that in many countries policy makers are beginning to perceive the potential economic benefits of commercial biomass e.g. employment/earnings, regional economic gain, contribution to security of energy supply and all others. (Author)

  7. Bioenergy Ecosystem Land-Use Modelling and Field Flux Trial

    Science.gov (United States)

    McNamara, Niall; Bottoms, Emily; Donnison, Iain; Dondini, Marta; Farrar, Kerrie; Finch, Jon; Harris, Zoe; Ineson, Phil; Keane, Ben; Massey, Alice; McCalmont, Jon; Morison, James; Perks, Mike; Pogson, Mark; Rowe, Rebecca; Smith, Pete; Sohi, Saran; Tallis, Mat; Taylor, Gail; Yamulki, Sirwan

    2013-04-01

    Climate change impacts resulting from fossil fuel combustion and concerns about the diversity of energy supply are driving interest to find low-carbon energy alternatives. As a result bioenergy is receiving widespread scientific, political and media attention for its potential role in both supplying energy and mitigating greenhouse (GHG) emissions. It is estimated that the bioenergy contribution to EU 2020 renewable energy targets could require up to 17-21 million hectares of additional land in Europe (Don et al., 2012). There are increasing concerns that some transitions into bioenergy may not be as sustainable as first thought when GHG emissions from the crop growth and management cycle are factored into any GHG life cycle assessment (LCA). Bioenergy is complex and encapsulates a wide range of crops, varying from food crop based biofuels to dedicated second generation perennial energy crops and forestry products. The decision on the choice of crop for energy production significantly influences the GHG mitigation potential. It is recognised that GHG savings or losses are in part a function of the original land-use that has undergone change and the management intensity for the energy crop. There is therefore an urgent need to better quantify both crop and site-specific effects associated with the production of conventional and dedicated energy crops on the GHG balance. Currently, there is scarcity of GHG balance data with respect to second generation crops meaning that process based models and LCAs of GHG balances are weakly underpinned. Therefore, robust, models based on real data are urgently required. In the UK we have recently embarked on a detailed program of work to address this challenge by combining a large number of field studies with state-of-the-art process models. Through six detailed experiments, we are calculating the annual GHG balances of land use transitions into energy crops across the UK. Further, we are quantifying the total soil carbon gain or

  8. Bioenergy as a Mitigation Measure

    Science.gov (United States)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these

  9. Process for desulfurizing petroleum feedstocks

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  10. Synthesis of fuels and feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri; Moore, Cameron; Staples, Orion

    2017-10-10

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  11. Process for purifying lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Matthew; Matthes, Megan; Nelson, Thomas; Held, Andrew

    2018-01-09

    The present invention includes methods for removing mineral acids, mineral salts and contaminants, such as metal impurities, ash, terpenoids, stilbenes, flavonoids, proteins, and other inorganic products, from a lignocellulosic feedstock stream containing organic acids, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, phenols, cresols, and other oxygenated hydrocarbons, in a manner that maintains a portion of the organic acids and other oxygenated hydrocarbons in the product stream.

  12. The role of bioenergy in the energy transition. The ''Smart Bioenergy'' concept

    International Nuclear Information System (INIS)

    Thraen, Daniela; DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig; Seitz, Stefanie B.; Wirkner, Ronny; Nelles, Michael

    2016-01-01

    The energy system's transformation away from fossil and therefore finite resources and ecological harmful use towards renewable energy sources and sustainable forms of usage proceeds. But even after 35 years, the German energy transition has yet not reached its ambitious goals. Moreover, in the recent years the progress has stagnated in certain areas. This is due to the fact that one of the central challenges of the energy system's changeover to an sole use renewable energy (RE) have not yet mastered: the reliable and stable delivery of RE for all energy dependent sectors starting form electricity via heat to mobility in the face of fluctuating energy sources like sun and wind. Bioenergy with its flexible use of innovative technologies and smart integration in the overall system is therefore vital to grant stability of energy supply. Furthermore, bioenergy can recourse on sustainable resources and may become therefore the backbone of the future bioeconomy. For this purpose an integrative approach is necessary that aligns the aforementioned building blocks in a cohesive whole: the Smart Bioenergy concept - that will be presented here with its elements but also open questions and challenges.

  13. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  14. Sun Grant Initiative Regional Biomass Feedstock Partnership Competitive Grants Program

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance [South Dakota State Univ., Brookings, SD (United States). North Central Regional Sun Grant Center

    2016-12-30

    The Sun Grant Initiative partnered with the US Department of Energy (DOE) in 2008 to create the Regional Biomass Feedstock Partnership Competitive Grants Program. The overall goal of this project was to utilize congressionally directed funds to leverage the North Central Regional Sun Grant’s Competitive Grant program at South Dakota State University (SDSU) to address key issues and research gaps related to development of the bioeconomy. Specific objectives of this program were to: 1. Identify research projects through a Regional Competitive Grants program that were relevant to the sustainable production, harvest, transport, delivery, and processing/conversion of cost-competitive, domestically grown biomass. 2. Build local expertise and capacity at the North Central Regional Sun Grant Center at SDSU through an internal selection of key bioenergy research projects. To achieve these, three nationwide Request for Applications (RFA) were developed: one each in 2008, 2009, and 2010. Internal, capacity building projects at SDSU were also selected during each one of these RFAs. In 2013 and 2015, two additional Proof of Concept RFAs were developed for internal SDSU projects. Priority areas for each RFA were 1) Biomass feedstock logistics including biomass harvesting, handling, transportation, storage, and densification; 2) Sustainable biomass feedstock production systems including biomass crop development, production, and life-cycle analysis; 3) Biomass production systems that optimize biomass feedstock yield and economic return across a diverse landscape while minimizing negative effects on the environment and food/feed production; and 4) Promotion of knowledge-based economic development in science and technology and to advance commercialization of inventions that meet the mission of the Sun Grant Initiative. A total of 33 projects were selected for funding through this program. Final reports for each of these diverse projects are included in this summary report

  15. The drought of 2012: Effects on photosynthesis and soil respiration in bioenergy cropping systems of the Midwest USA

    Science.gov (United States)

    Cruse, M.; Kucharik, C. J.

    2012-12-01

    Climate change is predicted to increase the frequency and severity of drought conditions across the central US. This heightened risk on producers and economies alike also supports the need to improve our understanding of how extreme environmental conditions impact other ecosystem services such as carbon sequestration, which is directly linked to net ecosystem exchange (NEE). In doing so, the scientific community aims to improve the realism of ecosystem models that are relied upon to project changes in large scale and long-term land surface-atmosphere carbon exchange as they are affected by continued land management change and climate change. One such large-scale land management change of the next several decades in the Midwest US could be the expansion of bioenergy cropping systems across the landscape. A wide range of bioenergy cropping systems (e.g., miscanthus, switchgrass, diverse prairie, hybrid poplar) are now targeted to support a feedstock supply chain for production of cellulosic biofuels. Many of these agroecosystems have only recently begun to appear as functional types in dynamic ecosystem models, and a general lack of observational data across a wide range of soils and climate has hampered model development and validation. In response to this shortcoming, from 2009 through 2012, component measurements of ecosystem carbon exchange (total soil respiration and leaf level photosynthetic rates) have been made along with measurements of other soil and meteorological variables in three model bioenergy cropping systems (continuous corn, hybrid poplar and switchgrass) at the Great Lakes Bioenergy Research Center (GLBRC) field trial at Arlington, Wisconsin. The three cropping systems encompass a wide range of growth (e.g. C3 vs. C4, annual vs. perennial) and management (e.g., tillage, harvesting) strategies that are predicted to impart different controls on NEE given likely varying biological responses to extreme weather events. Throughout the study period, the

  16. Land-Use Change and Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  17. Bioenergy has a key role to play!

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo

    2010-01-01

    Key note speach - Opening seremony of the 6.th International Bioenergy Conference organized by NASU - Kiev, Ukraine; www.biomass.kiev.ua;......Key note speach - Opening seremony of the 6.th International Bioenergy Conference organized by NASU - Kiev, Ukraine; www.biomass.kiev.ua;...

  18. Ethical and legal challenges in bioenergy governance

    DEFF Research Database (Denmark)

    Gamborg, Christian; Anker, Helle Tegner; Sandøe, Peter

    2014-01-01

    The article focuses on the interplay between two factors giving rise to friction in bioenergy governance: profound value disagreements (e.g. the prioritizing of carbon concerns like worries over GHG emissions savings over non-carbon related concerns) and regulatory complexity (in terms of regulat...... about such factors, and about the inherent trade-offs in bioenergy governance....

  19. Bioenergy in energy transformation and climate management

    NARCIS (Netherlands)

    Rose, S.K.; Kriegler, E.; Bibas, R.; Calvin, K.; Popp, A.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Weyant, J.

    2014-01-01

    This study explores the importance of bioenergy to potential future energy transformation and climate change management. Using a large inter-model comparison of 15 models, we comprehensively characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run

  20. Large scale international bioenergy trading. How bioenergy trading can be reliazed under safe and sustainable frame conditions?

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Kirchovas, Simas

    2011-01-01

    has for many years been forming the basis for the change together with wind and solar energy. These resources still contains great potentials for energy supply chains in increasing areas of Europe and the World. Biomass sustainability issues could be solved by developing the international...... sustainability criteria. The sustainability criteria agreed internationally could be realized as a tool to secure the positive impacts of bioenergy and to foster the international trade. This study investigates the developments by national and international bodies of biomass standardization and certification...

  1. Pathways and pitfalls of implementing the use of woodfuels in Germany's bioenergy sector

    International Nuclear Information System (INIS)

    Plieninger, Tobias; Thiel, Andreas; Bens, Oliver; Huettl, Reinhard F.

    2009-01-01

    The paper presents an empirical study on the use of woody biomass for energy supply in Germany and the federal state of Brandenburg. It aims to explain the role forestry enterprises have for bioenergy provision in this area. The 'Institutions of Sustainability' framework is used as an analytical tool to investigate the role of private and public actors in these transactions, respectively, in the governance structures they are subject to. Empirical evidence was gathered by in-depth interviews with actors from forestry and bioenergy practice. Triggered by favorable governance structures, i.e. strong support by national and regional policies, rising prices for fossil energy sources, and co-operation of committed individuals and groups, a new bioenergy industry has been successfully established. However, the forestry sector has so far been just a marginal fuel supplier for this industry. The study identifies pitfalls impeding a broad implementation of wood-energy supply in forestry: not cost-covering prices offered by the bioenergy sector, lacking market transparency and security of supply, lacking mobilization of forest wood, and a preference among forest managers to sell products to the wood-processing industry. In terms of the Institutions of Sustainability the properties of transactions (asset specificities, uncertainties, separability), characteristics of actors (values, rationality) and governance structures (long-term contractual obligations elsewhere) are decisive in explaining the current form of transaction. (author)

  2. Role of biomass in global energy supply

    International Nuclear Information System (INIS)

    Best, G.; Christensen, R.; Christensen, J.

    2003-01-01

    Bioenergy is energy of biological and renewable origin, normally in the form of purpose-grown energy crops or by-products from agriculture, forestry or fisheries. Biomass provides approximately 11-14% of the world's energy, but there are significant differences between industrialised and developing countries. In many developing countries biomass is the most important energy source. As a global average, biomass provides approximately 35% of developing countries' energy, but there are large regional differences. Many sub-Saharan African countries depend on biomass for up to 90% of their energy indicating that they have little in the way of industry or other modern activities. In the last decade interest in bioenergy has increased in industrialised countries partly due to growing concern about climate change, technological advances in biomass conversion, increasing focus on security of energy supply, and increasing interest in renewable energy generally. Two trends emerge: The developing countries will in general aim to reduce their dependence on traditional bioenergy. The relative share of bioenergy in the energy balance will therefore go down, though the number of people depending on traditional bioenergy probably will remain constant, with corresponding consequences for health and resources. Industrialised countries, plus a number of developing countries, will aim to increase their use of modern bioenergy technologies. With the traditional association of bioenergy as old fashioned and for the poor, the recent interest in biomass resources has invented a new term 'modern bioenergy' which covers a number of technological areas from combustion at domestic, industrial or power plant scale, gasification, hydrolysis, pyrolysis, extraction, digestion etc. There are some barriers to the increased use of bioenergy, but they can be overcome through dedicated interventions by public and private sector entities. (BA)

  3. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  4. Market survey Austria. Bio-energy

    International Nuclear Information System (INIS)

    2008-01-01

    Austria has a well developed bioenergy infrastructure as regards solid biomass and a strong growth in the biogas and biofuel sector. The results of a SWOT analysis show the major issues for the development in each of these sectors now and in the short to medium-term future. Based on the SWOT analyses the following conclusions are formulated: (1)The development of the wood biomass sector in Austria is successful. This can be seen from the point of view of the end user, biomass for heating in single houses as well in district heating systems is very widely spread. This created opportunities for Austrian firms producing biomass technology, now having a large market and expending abroad. This development creates, however, major challenges for players from other countries like the Netherlands. It may be difficult to enter this market, unless one offers a cheaper product with the same quality or finding a niche market with a new unique product; (2) The growth of the wood biomass application for heat and electricity has led to the occurrence of another problem, a competition for wood as resource between the energy sector and other applications as pulp and paper industry. Wood imports are nowadays increasing but in the longer term Austria cannot rely on that because of the growing biomass use in neighbouring countries. Austria will therefore have to look for ways how to optimise biomass use for the energy sector and increasing the use of other fuels like straw and other forms of agricultural waste: (3) The production of biogas presents a number of new applications, production of renewable electricity, production of biogas for the transport sector as well as the possibility to inject cleaned biogas into the natural gas grid. In the short term, production of renewable electricity is the most promising for investors as feed-in tariffs are available for these projects. The other applications are still in a pilot phase but may become interesting in the coming years; (4) The

  5. Synthetic carbonaceous fuels and feedstocks

    Science.gov (United States)

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  6. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  7. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ., Bozeman, MT (United States); Alcorn-Windy Boy, Jessica [Montana State Univ., Bozeman, MT (United States); Abedin, Md. Joynal [Montana State Univ., Bozeman, MT (United States); Maglinao, Randy [Montana State Univ., Bozeman, MT (United States)

    2014-09-30

    MSU-Northern established the Bio-Energy Center (the Center) into a Regional Research Center of Excellence to address the obstacles concerning biofuels, feedstock, quality, conversion process, economic viability and public awareness. The Center built its laboratories and expertise in order to research and support product development and commercialization for the bio-energy industry in our region. The Center wanted to support the regional agricultural based economy by researching biofuels based on feedstock’s that can be grown in our region in an environmentally responsible manner. We were also interested in any technology that will improve the emissions and fuel economy performance of heavy duty diesel engines. The Center had a three step approach to accomplish these goals: 1. Enhance the Center’s research and testing capabilities 2. Develop advanced biofuels from locally grown agricultural crops. 3. Educate and outreach for public understanding and acceptance of new technology. The Center was very successful in completing the tasks as outlined in the project plan. Key successes include discovering and patenting a new chemical conversion process for converting camelina oil to jet fuel, as well as promise in developing a heterogeneous Grubs catalyst to support the new chemical conversion process. The Center also successfully fragmented and deoxygenated naturally occurring lignin with a Ni-NHC catalyst, showing promise for further exploration of using lignin for fuels and fuel additives. This would create another value-added product for lignin that can be sourced from beetle kill trees or waste products from cellulose ethanol fuel facilities.

  8. Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products

    NARCIS (Netherlands)

    Weijde, van der Tim; Kiesel, Andreas; Iqbal, Yasir; Muylle, Hilde; Dolstra, Oene; Visser, Richard G.F.; Lewandowski, Iris; Trindade, Luisa M.

    2017-01-01

    Miscanthus is a promising fiber crop with high potential for sustainable biomass production for a biobased economy. The effect of biomass composition on the processing efficiency of miscanthus biomass for different biorefinery value chains was evaluated, including combustion, anaerobic digestion

  9. 78 FR 45441 - Sugar Program; Feedstock Flexibility Program for Bioenergy Producers

    Science.gov (United States)

    2013-07-29

    ... removing sugar from the market. CCC may employ several contracting strategies to discover the most cost... sugar purchase strategy of staggering CCC purchases for biofuel as the market unfolds, rather than one... communications (Braille, large print, audio tape, etc.) should contact the USDA Target Center at (202) 720-2600...

  10. 76 FR 64839 - Sugar Program; Feedstock Flexibility Program for Bioenergy Producers

    Science.gov (United States)

    2011-10-19

    ...: Federal eRulemaking Portal: Go to http://www.regulations.gov . Follow the online instructions for... of marketing allocations and tariff-rate quotas, thereby usually resulting in higher domestic sugar... management strategy in the recently amended statute is the removal of sugar surpluses through CCC sugar...

  11. Potential of feedstock and catalysts from waste in biodiesel preparation: A review

    International Nuclear Information System (INIS)

    Nurfitri, Irma; Maniam, Gaanty Pragas; Hindryawati, Noor; Yusoff, Mashitah M.; Ganesan, Shangeetha

    2013-01-01

    Highlights: • Oils/lipids from waste sources are the suitable candidates for transesterification. • Catalyst derived from waste materials proven its role in transesterification. • The use of materials from waste should be intensify for sustainability. - Abstract: For many years, the cost of production has been the main barrier in commercializing biodiesel, globally. It has been well researched and established in the literature that the cost of feedstock is the major contributor. Biodiesel producers are forced to choose between edible and non-edible feedstock. The use of edible feedstock sparks concern in terms of food security while the inedible feedstock needs additional pretreatment steps. On the other hand, the wide availability of edible feedstock guarantees the supply while the choice of non-edible results in a non-continuous or non-ready supply. With these complications in mind, this review attempts to identify possible solutions by exploring the potential of waste edible oils and waste catalysts in biodiesel preparation. Since edible oils are available and used abundantly, waste or used edible oils have the potential to provide plentiful feedstock for biodiesel. In addition, since traditional homogeneous catalysts are less competent in transesterifying waste/used oils, this review includes the possibility of heterogeneous catalysts from waste sources that are able to aid the transesterification reaction with success

  12. Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria

    International Nuclear Information System (INIS)

    Schmidt, Johannes; Leduc, Sylvain; Dotzauer, Erik; Schmid, Erwin

    2011-01-01

    Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets. - Highlights: → Costs of energy policies and effects on reduction of CO 2 emissions and fossil fuel consumption. → Particular focus on new bioenergy production technologies such as second generation biofuels. → Spatially explicit techno-economic optimization model. → CO 2 tax: high costs for reducing fossil fuel consumption if carbon capture and storage is available. → Biofuel policy: no significant reductions in CO 2 emissions or fossil fuel consumption.

  13. Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Johannes, E-mail: johannes.schmidt@boku.ac.at [Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria); Leduc, Sylvain [International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg (Austria); Dotzauer, Erik [Maelardalen University, P.O. Box 883, SE-72123 Vaesteras (Sweden); Schmid, Erwin [Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria)

    2011-06-15

    Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets. - Highlights: > Costs of energy policies and effects on reduction of CO{sub 2} emissions and fossil fuel consumption. > Particular focus on new bioenergy production technologies such as second generation biofuels. > Spatially explicit techno-economic optimization model. > CO{sub 2} tax: high costs for reducing fossil fuel consumption if carbon capture and storage is available. > Biofuel policy: no significant reductions in CO{sub 2} emissions or fossil fuel consumption.

  14. BIOENERGY AND ITS CONTRIBUTION TO REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Flaška Filip

    2011-01-01

    Full Text Available The paper deals with bioenergy as an innovative source of regional development in Europe.It provides overview about main drivers and barriers to bioenergy implementation andemphases the role of potential socio-economic factors. Brief summary of real contributionto regional development in Germany, Austria and Norway is presented. The paper analyzesproblems and benefits of Slovak bioenergy project in town Detva as well. The finalsuggestions focus on creating effective information campaign in combination withappropriate tax measures and setting up conditions for better utilization of municipalorganic waste.

  15. 2010 World bio-energy conference

    International Nuclear Information System (INIS)

    2010-01-01

    After having evoked the bio-energy price awarded to a Brazilian for his works on the use of eucalyptus as energy source, this report proposes a synthesis of the highlights of the conference: discussions about sustainability, bio-energies as an opportunity for developing countries, the success of bio-energies in Sweden, and more particularly some technological advances in the field of biofuels: a bio-LPG by Biofuel-solution AB, catalysis, bio-diesel from different products in a Swedish farm, a second generation ethanol by the Danish company Inbicon, a large scale methanization in Goteborg, a bio-refinery concept in Sweden, bio-gases

  16. Agronomic Suitability of Bioenergy Crops in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Lemus, Rocky; Baldwin, Brian; Lang, David

    2011-10-01

    ‚€Ã‚¢ How will these crops affect fertilizer use and water quality? • What kind of water management is needed to maintain a productive crop? The answers to these questions will help supporting institutions across the state to improve land assessment and agronomic management practices for biomass production. In the last decade, energy supply has become a worldwide problem. Bioenergy crops could supply energy in the future. Bioenergy crops are plants, usually perennial grasses and trees, that produce a lot of biomass that can be converted into energy. Bioenergy crops can be grown for two energy markets: power generation, such as heat and electricity, or liquid fuel, such as cellulosic ethanol. These resources could reduce petroleum dependency and greenhouse gas production. Woody plants and herbaceous warm-season grasses, such as switchgrass, giant miscanthus,energy cane, and high yielding sorghums, could be major sources of biomass in Mississippi.

  17. DOE-INES New Planet Bioenergy Technical Report Final Public Version 7-22-16

    Energy Technology Data Exchange (ETDEWEB)

    Niederschulte, Mark [INEOS New Planet BioEnergy LLC, Vero Beach, FL (United States); Russell, Kelly [INEOS New Planet BioEnergy LLC, Vero Beach, FL (United States); Connors, Keith [INEOS New Planet BioEnergy LLC, Vero Beach, FL (United States)

    2016-07-22

    INEOS Bio and New Planet Energy Florida formed a joint venture company called INEOS New Planet BioEnergy (“INPB”) in 2009. This venture’s intent was to demonstrate at commercial scale INEOS Bio’s third-generation technology (the “Bio Process”) that converts a variety of lignocellulosic feedstocks into bioethanol and renewable electricity. INPB applied for and was awarded a $50,000,000 Department of Energy (“DOE”) grant in 2009 to support the construction of the commercial demonstration plant. The grant was a cost-sharing arrangement requiring at least 50% equity participation by the grantee. INPB completed construction of the Indian River BioEnergy Center in Vero Beach, Florida in June, 2012. The facility is designed to produce 8 million gallons per year of fuel-grade bioethanol and 6MW of electrical power, with upwards of 2MW exported to the electrical grid. Construction of the Indian River BioEnergy Center was completed on-time and within its capital budget of $121 million.

  18. REMARKS TO THE CURRENT DISCUSSION ABOUT BIOENERGYBIOENERGY FOR THE PUBLIC AND/ OR FOR THE AGRICULTURAL OR RURAL AREAS ONLY ?

    Directory of Open Access Journals (Sweden)

    P. Ruckenbauer

    2008-09-01

    Full Text Available An energy system that is based on the use of renewable energy resources must be service –oriented and should be able to cover the varying energy demands. Moreover it must be flexible and cost effective by using on optimal mix of predominantly renewable energy sources. Agriculture will play an important role in the future if an optimal mix between food/feed production and energy plant production could be found. The present examples in the world to gain agricultural land for energy plants on the expenses of forests is going into the wrong direction. The cost intensive investments at present performed in Europe for biofuel and bioenergy production will certainly influence prices for crops and biomass supply. In this paper, strategies are questioned and discussed if the goals of the EU-commission to replace substantial parts of the fossile energy demands by bioenergy supply is feasible and can be realistic. As an example for a national agricultural situation, Austria, as am member of the PBBA, has elaborated a study about the timely development how much of the arable land can be utilized in the period between 2005 and 2020 for various bioenergy sources .The results demonstrate that, at the maximum , agriculture can only supply about 22 % of the total arable land for additional bioenergy as biofuel and biogas without interfering the national self food/feed supply and the protection of the sensible environment and emission situation. Finally, recent University research studies are presented about new processes to achieve a better and more efficient use of cereal and maize straw for biogas production already performed in the present 358 local biogas plants in Austria.

  19. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    Science.gov (United States)

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Bioenergy `97: Nordic Bioenergy Conference, market, environment and technology; Bioenergi `97: nordisk bioenergikonferanse, marked, miljoe og teknikk

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    (Leading abstract). The conference ``Bioenergy `97: Nordic Bioenergy Conference, market, environment and technology`` took place in Oslo, Norway, 7-8 Oct 1997. The conference papers are grouped under three headings: (1) The nordic energy market. 12 papers. (2) Production and sale of biofuels. 8 papers. (3) Conversion and utilization of biofuels. With subsections New technologies, 4 papers, and Power/heat production from biofuels, 4 papers

  1. Production and supply logistics of switchgrass as an energy feedstock

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a warm-season (C4), perennial grass that is native to the tallgrass ecoregion of North America (Figure 1). Historically, switchgrass has been used for summer forage, hay, ensiling, or in conservation plantings. At the end of the 20th century, switchgrass was de...

  2. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    Science.gov (United States)

    2003-11-01

    when harvested) contains few free sugars and little assimilable nitrogen. Ensiling has been used successfully to store sweet sorghum and sugar cane...are hampered. Little work has been done to determine potential emissions, runoff, ground- water contamination, dust, mold , odor control, fire

  3. Effects of bioenergy production on European nature conservation options

    Science.gov (United States)

    Schleupner, C.; Schneider, U. A.

    2009-04-01

    To increase security of energy supply and reduce greenhouse gas (GHG) emissions the European Commission set out a long-term strategy for renewable energy in the European Union (EU). Bioenergy from forestry and agriculture plays a key role for both. Since the last decade a significant increase of biomass energy plantations has been observed in Europe. Concurrently, the EU agreed to halt the loss of biodiversity within its member states. One measure is the Natura2000 network of important nature sites that actually covers about 20% of the EU land surface. However, to fulfil the biodiversity target more nature conservation and restoration sites need to be designated. There are arising concerns that an increased cultivation of bioenergy crops will decrease the land available for nature reserves and for "traditional" agriculture and forestry. In the following the economic and ecological impacts of structural land use changes are demonstrated by two examples. First, a case study of land use changes on the Eiderstedt peninsula in Schleswig-Holstein/Germany evaluates the impacts of grassland conversion into bioenergy plantations under consideration of selected meadow birds. Scenarios indicate not only a quantitative loss of habitats but also a reduction of habitat quality. The second study assesses the role of bioenergy production in light of possible negative impacts on potential wetland conservation sites in Europe. By coupling the spatial wetland distribution model "SWEDI" (cf. SCHLEUPNER 2007) to the European Forest and Agricultural Sector Optimization Model (EUFASOM; cf. SCHNEIDER ET AL. 2008) economic and environmental aspects of land use are evaluated simultaneously. This way the costs and benefits of the appropriate measures and its consequences for agriculture and forestry are investigated. One aim is to find the socially optimal balance between alternative wetland uses by integrating biological benefits - in this case wetlands - and economic opportunities - here

  4. The Controversies over Bioenergy in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Andersen, Bente Hessellund

    2012-01-01

    for processing of biomass for biofuels. The alignment with the private car regime is strong, because biofuel enables continuation of fuel-driven vehicles as dominating transportation mode. Danish farmers see manure as important source for biogas while arguing for reduction of climate impact and nuisances from......Based on the approach of 'arena of development' controversies over bioenergy in the shaping of a Danish climate strategy are analyzed as a contribution to a sustainable transition perspective on bioenergy in industrialized societies with substantial agricultural production. Bioenergy plays...... a prominent role in several Danish climate and energy plans, alongside with wind and solar energy, and energy savings. There are major controversies about targets for bioenergy with respect to acceptable types, sources and amounts of biomass. Strong path dependency is identified. Energy companies in Denmark...

  5. 2013 Bioenergy Technologies Office Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2013 U.S. Department of Energy Bioenergy Technologies Office's Peer Review meeting.

  6. Bioenergy possibilities in Northwest Russia

    Energy Technology Data Exchange (ETDEWEB)

    Rakitova, O. (The National Bioenergy Union, Saint Petersburg (Russian Federation)); Mutanen, K. (Joensuu Regional Development Company JOSEK Ltd, Joensuu (Finland))

    2007-07-01

    Russia owns the largest natural gas, the second largest coal and the third largest oil reserves in the world. Russia is the third largest energy user and the largest producer of oil and gas in the world. Export of oil and gas plays a major role in the economic development of the whole Russia. Wood harvesting and processing industry responds only 4,4 % of the industrial production although Russia owns 23 % of the world's forest resources. Biomass represents only 1 % of the total energy consumption including residential use but hydro power represents about 18 % of Russia's electricity generation. Russia needs three times more energy to produce one unit of GDP than e.g. EU. This indicates very poor energy efficiency and poor conditions of the energy and the whole infrastructure as well. Simultaneously the prices of fossil fuels and electricity are heavily subsidized. These basic figures give on idea why utilization of renewable energy and especially biomass play a minor role in Russian energy system. One of the most progressive regions in bioenergy is the Northwest of Russia. The first pellet and briquette plants were installed in this region a few years ago. The region can be regarded as the forerunner in bioenergy in Russia. Federal Region of Northwest Russia consists of City of St.Petersburg, Republics of Karelia and Komi and regions of Leningrad, Arkhangelsk, Kaliningrad, Murmansk, Nenetsk, Novgorod, Pskov and Vologda. The region has 15 million inhabitants and a 2200 km long joint border with the EU, most of that with Finland. N W Russia owns over 14000 million m3 of raw wood that represents 17 % of Russian forests and 60 % of the forests located in the European side. Potential for annual harvesting is over 100 million m3 while harvesting is about 45 million m3. Most of that is exported as a form of raw wood. Wood represents only 2,8 % of the region's energy use including residential usage. Use of peat is marginal representing only 0,1 % of the

  7. Canada report on bioenergy 2009

    International Nuclear Information System (INIS)

    2009-01-01

    Canada possesses significant forest resources. This paper reviewed Canada's bioenergy potential and market. Biomass in Canada is used to produce heat and power, as well as to produce ethanol and biodiesel. Biomass is also used to produce pyrolysis oil and wood pellets. Biomass resources included woody biomass; annual residue production; hog fuel piles; forest harvest waste and urban wood residues; agricultural residues; and municipal solid wastes. Trends in biomass production and consumption were discussed, and current biomass users were identified. A review of biomass prices was presented, and imports and exports for ethanol, biodiesel, pyrolysis oil, and wood pellets were discussed. Barriers and opportunities for trade were also outlined. 6 tabs., 6 figs. 1 appendix.

  8. Mixed Culture PHA Production With Alternating Feedstocks

    DEFF Research Database (Denmark)

    Oliveira, C.S.S.; Duque, A.F.; Carvalho, Gilda

    selection stage, and a PHA production phase. This work investigated the performance robustness and microbial population dynamics of a PHA producing MMC when subjected to a feedstock shift, mimicking a seasonal feedstock scenario, from cheese whey to sugar cane molasses. Research was focused...

  9. Bioenergy

    Science.gov (United States)

    2012-03-06

    H2 production in microalgae and cyanobacteria • Genetically engineer pathways to improve the H2 producing capacity of these phototrophs 10...density of enzymatic fuel cells (EFC) - sustained oxygen-tolerant hydrogen production by photosynthetic microbes Artificial Systems Research...Metabolic Engineering for the Production of Biofuels 2 H2O water-splitting enzyme 4 e_ 4 H+ H2-generating hydrogenase enzyme

  10. The position of bioenergy and development possibilities

    International Nuclear Information System (INIS)

    Asplund, D.

    1997-01-01

    This report is a review of bioenergy in energy economy of Finland and generally a review of bioenergy markets in the world. This review concentrates on wood and peat fuels. Municipal wastes, agro biomass and use of biogas in energy production are also considered in this review but in minor aspect. The significant part of this work is an estimation of bioenergy development prospects. The schedule is strategic to the year 2010, partly to the year 2025. The use of bioenergy in Finland has increased 64 % from the year 1980 and was in 1996 almost 7 million toe. The use of peat was 2,1 million toe and the rest consisted mainly of wood and wood based fuels. The share of bioenergy in the primary energy consumption is over 20 %. As far as the resources are concerned the possibilities to increase the use are very good. The main problem is the competitiveness. The competitiveness of forest biomass has improved as a result of technological research and development but it is still potential to maintain more by systematical R and D. A large target setting of increasing the bioenergy use in Finland is included in this review. The target is to increase the bioenergy use 25 % by the year 2005. This equals to 1,5 million toe. The target for the year 2010 is suggested to increase of 3,5 million toe from the 1995 level. Also the possibilities to develop new bioenergy technology for export markets are considered. A large number of concrete actions and long term activities to achieve these targets are presented. (orig.) 24 refs

  11. The Vermont Bioenergy Initiative: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Chris [Vermont Sustainable Jobs Fund, Montpelier, VT (United States); Sawyer, Scott [Vermont Sustainable Jobs Fund, Montpelier, VT (United States); Kahler, Ellen [Vermont Sustainable Jobs Fund, Montpelier, VT (United States)

    2016-11-30

    The purpose of the Vermont Bioenergy Initiative (VBI) was to foster the development of sustainable, distributed, small-scale biodiesel and grass/mixed fiber industries in Vermont in order to produce bioenergy for local transportation, agricultural, and thermal applications, as a replacement for fossil fuel based energy. The VBI marked the first strategic effort to reduce Vermont’s dependency on petroleum through the development of homegrown alternatives.

  12. Bioenergy in Energy Transformation and Climate Management

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives—reducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  13. Biofuels feedstock development program. Annual progress report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy`s (DOE`s) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires.

  14. Multi Criteria Analysis for bioenergy systems assessments

    International Nuclear Information System (INIS)

    Buchholz, Thomas; Rametsteiner, Ewald; Volk, Timothy A.; Luzadis, Valerie A.

    2009-01-01

    Sustainable bioenergy systems are, by definition, embedded in social, economic, and environmental contexts and depend on support of many stakeholders with different perspectives. The resulting complexity constitutes a major barrier to the implementation of bioenergy projects. The goal of this paper is to evaluate the potential of Multi Criteria Analysis (MCA) to facilitate the design and implementation of sustainable bioenergy projects. Four MCA tools (Super Decisions, DecideIT, Decision Lab, NAIADE) are reviewed for their suitability to assess sustainability of bioenergy systems with a special focus on multi-stakeholder inclusion. The MCA tools are applied using data from a multi-stakeholder bioenergy case study in Uganda. Although contributing to only a part of a comprehensive decision process, MCA can assist in overcoming implementation barriers by (i) structuring the problem, (ii) assisting in the identification of the least robust and/or most uncertain components in bioenergy systems and (iii) integrating stakeholders into the decision process. Applying the four MCA tools to a Ugandan case study resulted in a large variability in outcomes. However, social criteria were consistently identified by all tools as being decisive in making a bioelectricity project viable

  15. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  16. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops.

    Directory of Open Access Journals (Sweden)

    Yuejian Mao

    Full Text Available Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR and diversity (barcoded pyrosequencing of key functional genes (nifH, bacterial/archaeal amoA and nosZ and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop, in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA not bacteria (AOB, indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community.

  17. A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators

    NARCIS (Netherlands)

    Hayashi, T.; Ierland, van E.C.; Zhu, X.

    2014-01-01

    In 2011 the Global Bioenergy Partnership (GBEP) released a set of indicators for sustainable bioenergy. However, two important issues still remain unresolved. One of them is the definition of “sustainability”, and the other is the lack of a holistic assessment tool for drawing conclusions from the

  18. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    Science.gov (United States)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  19. Bioenergy, the Carbon Cycle, and Carbon Policy

    Science.gov (United States)

    Kammen, D. M.

    2003-12-01

    The evolving energy and land-use policies across North America and Africa provide critical case studies in the relationship between regional development, the management of natural resources, and the carbon cycle. Over 50 EJ of the roughly 430 EJ total global anthropogenic energy budget is currently utilized in the form of direct biomass combustion. In North America 3 - 4 percent of total energy is derived from biomass, largely in combined heat and power (CHP) combustion applications. By contrast Africa, which is a major consumer of 'traditional' forms of biomass, uses far more total bioenergy products, but largely in smaller batches, with quantities of 0.5 - 2 tons/capita at the household level. Several African nations rely on biomass for well over 90 percent of household energy, and in some nations major portions of the industrial energy supply is also derived from biomass. In much of sub-Saharan Africa the direct combustion of biomass in rural areas is exceeded by the conversion of wood to charcoal for transport to the cities for household use there. There are major health, and environmental repercussions of these energy flows. The African, as well as Latin American and Asian charcoal trade has a noticeable signature on the global greenhouse gas cycles. In North America, and notably Scandinavia and India as well, biomass energy and emerging conversion technologies are being actively researched, and provide tremendous opportunities for the evolution of a sustainable, locally based, energy economy for many nations. This talk will examine aspects of these current energy and carbon flows, and the potential that gassification and new silvicultural practices hold for clean energy systems in the 21st century. North America and Africa will be examined in particular as both sources of innovation in this field, and areas with specific promise for application of these energy technologies and biomass/land use practices to further energy and global climate management.

  20. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ. Northern, Havre, MT (United States); Windy Boy, Jessica [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Maglinao, Randy Latayan [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Abedin, Md. Joynal [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence

    2017-03-02

    The goal of this project was to establish the Bio-Energy Center (the Center) of Montana State University Northern (MSUN) as a Regional Research Center of Excellence in research, product development, and commercialization of non-food biomass for the bio-energy industry. A three-step approach, namely, (1) enhance the Center’s research and testing capabilities, (2) develop advanced biofuels from locally grown agricultural crops, and (3) educate the community through outreach programs for public understanding and acceptance of new technologies was identified to achieve this goal. The research activities aimed to address the obstacles concerning the production of biofuels and other bio-based fuel additives considering feedstock quality, conversion process, economic viability, and public awareness. First and foremost in enhancing the capabilities of the Center is the improvement of its laboratories and other physical facilities for investigating new biomass conversion technologies and the development of its manpower complement with expertise in chemistry, engineering, biology, and energy. MSUN renovated its Auto Diagnostics building and updated its mechanical and electrical systems necessary to house the state-of-the-art 525kW (704 hp) A/C Dynamometer. The newly renovated building was designated as the Advanced Fuels Building. Two laboratories, namely Biomass Conversion lab and Wet Chemistry lab were also added to the Center’s facilities. The Biomass Conversion lab was for research on the production of advanced biofuels including bio-jet fuel and bio-based fuel additives while the Wet Chemistry lab was used to conduct catalyst research. Necessary equipment and machines, such as gas chromatograph-mass spectrometry, were purchased and installed to help in research and testing. With the enhanced capabilities of the Center, research and testing activities were very much facilitated and more precise. New biofuels derived from Camelina sativa (camelina), a locally

  1. Bioenergy futures in Sweden – Modeling integration scenarios for biofuel production

    International Nuclear Information System (INIS)

    Börjesson Hagberg, Martin; Pettersson, Karin; Ahlgren, Erik O.

    2016-01-01

    Use of bioenergy can contribute to greenhouse gas emission reductions and increased energy security. However, even though biomass is a renewable resource, the potential is limited, and efficient use of available biomass resources will become increasingly important. This paper aims to explore system interactions related to future bioenergy utilization and cost-efficient bioenergy technology choices under stringent CO 2 constraints. In particular, the study investigates system effects linked to integration of advanced biofuel production with district heating and industry under different developments in the electricity sector and biomass supply system. The study is based on analysis with the MARKAL-Sweden model, which is a bottom-up, cost-optimization model covering the Swedish energy system. A time horizon to 2050 is applied. The results suggest that system integration of biofuel production has noteworthy effects on the overall system level, improves system cost-efficiency and influences parameters such as biomass price, marginal CO 2 emission reduction costs and cost-efficient biofuel choices in the transport sector. In the long run and under stringent CO 2 constraints, system integration of biofuel production has, however, low impact on total bioenergy use, which is largely decided by supply-related constraints, and on total transport biofuel use, which to large extent is driven by demand. - Highlights: • Long-term bioenergy scenarios for Sweden are modeled. • Efficient use of biomass resources will become increasingly important. • Integration of biofuel production with industry or heating improves efficiency. • Integration can reduce biomass prices and marginal CO 2 reduction costs. • Cost-efficient biofuel choices in the transport sector are affected.

  2. A methodology and decision support tool for informing state-level bioenergy policymaking: New Jersey biofuels as a case study

    Science.gov (United States)

    Brennan-Tonetta, Margaret

    This dissertation seeks to provide key information and a decision support tool that states can use to support long-term goals of fossil fuel displacement and greenhouse gas reductions. The research yields three outcomes: (1) A methodology that allows for a comprehensive and consistent inventory and assessment of bioenergy feedstocks in terms of type, quantity, and energy potential. Development of a standardized methodology for consistent inventorying of biomass resources fosters research and business development of promising technologies that are compatible with the state's biomass resource base. (2) A unique interactive decision support tool that allows for systematic bioenergy analysis and evaluation of policy alternatives through the generation of biomass inventory and energy potential data for a wide variety of feedstocks and applicable technologies, using New Jersey as a case study. Development of a database that can assess the major components of a bioenergy system in one tool allows for easy evaluation of technology, feedstock and policy options. The methodology and decision support tool is applicable to other states and regions (with location specific modifications), thus contributing to the achievement of state and federal goals of renewable energy utilization. (3) Development of policy recommendations based on the results of the decision support tool that will help to guide New Jersey into a sustainable renewable energy future. The database developed in this research represents the first ever assessment of bioenergy potential for New Jersey. It can serve as a foundation for future research and modifications that could increase its power as a more robust policy analysis tool. As such, the current database is not able to perform analysis of tradeoffs across broad policy objectives such as economic development vs. CO2 emissions, or energy independence vs. source reduction of solid waste. Instead, it operates one level below that with comparisons of kWh or

  3. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

    Science.gov (United States)

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L.; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-01-01

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.— Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.— Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences

  4. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  5. Reconciling food security and bioenergy : Priorities for action

    NARCIS (Netherlands)

    Kline, Keith L.; Msangi, Siwa; Dale, Virginia H.; Woods, Jeremy; Souza, Glaucia m.; Osseweijer, P.; Clancy, Joy S.; Hilbert, Jorge A.; Johnson, Francis X.; Mcdonnell, Patrick C.; Mugera, Harriet K.

    Understanding the complex interactions among food security, bioenergy sustainability, and resource management requires a focus on specific contextual problems and opportunities. The United Nations' 2030 Sustainable Development Goals place a high priority on food and energy security; bioenergy

  6. Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian; George, Kevin W.; Sun, Ning; He, Wei; Li, Chenlin; Stavila, Vitalie; Keasling, Jay D.; Simmons, Blake A.; Lee, Taek Soon; Singh, Seema

    2015-02-28

    In order to enable the large-scale production of biofuels or chemicals from lignocellulosic biomass, a consistent and affordable year-round supply of lignocellulosic feedstocks is essential. Feedstock blending and/or densification offers one promising solution to overcome current challenges on biomass supply, i.e., low energy and bulk densities and significant compositional variations. Therefore, it is imperative to develop conversion technologies that can process mixed pelleted biomass feedstocks with minimal negative impact in terms of overall performance of the relevant biorefinery unit operations: pretreatment, fermentable sugar production, and fuel titers. We processed the mixture of four feedstocks—corn stover, switchgrass, lodgepole pine, and eucalyptus (1:1:1:1 on dry weight basis)—in flour and pellet form using ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate, dilute sulfuric acid (DA), and soaking in aqueous ammonia (SAA) pretreatments. Commercial enzyme mixtures, including cellulases and hemicellulases, were then applied to these pretreated feedstocks at low to moderate enzyme loadings to determine hydrolysis efficiency. Results show significant variations on the chemical composition, crystallinity, and enzymatic digestibility of the pretreated feedstocks across the different pretreatment technologies studied. The advanced biofuel isopentenol was produced during simultaneous saccharification and fermentation (SSF) of pretreated feedstocks using an engineered Escherichia coli strain. Results show that IL pretreatment liberates the most sugar during enzymatic saccharification, and in turn led to the highest isopentenol titer as compared to DA and SAA pretreatments. This study provides insights on developing biorefinery technologies that produce advanced biofuels based on mixed feedstock streams.

  7. Interplanetary Supply Chain Risk Management

    Science.gov (United States)

    Galluzzi, Michael C.

    2018-01-01

    Emphasis on KSC ground processing operations, reduced spares up-mass lift requirements and campaign-level flexible path perspective for space systems support as Regolith-based ISM is achieved by; Network modeling for sequencing space logistics and in-space logistics nodal positioning to include feedstock. Economic modeling to assess ISM 3D printing adaption and supply chain risk.

  8. Single and multiple objective biomass-to-biofuel supply chain optimization considering environmental impacts

    Science.gov (United States)

    Valles Sosa, Claudia Evangelina

    Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers diminishing climate change by reducing Green House Gas Emissions, as well as providing energy security and enhancing rural development. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supply future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. Approaching this complex logistic problem as a multi-commodity network flow structure, the present work proposes the use of a genetic algorithm as a single objective optimization problem that considers the maximization of profit and the present work also proposes the use of a Multiple Objective Evolutionary Algorithm to simultaneously maximize profit while minimizing global warming potential. Most transportation optimization problems available in the literature have mostly considered the maximization of profit or the minimization of total travel time as potential objectives to be optimized. However, on this research work, we take a more conscious and sustainable approach for this logistic problem. Planners are increasingly expected to adopt a multi-disciplinary approach, especially due to the rising importance of environmental stewardship. The role of a transportation planner and designer is shifting from simple economic analysis to promoting sustainability through the integration of environmental objectives. To

  9. An integrated policy framework for the sustainable exploitation of biomass for bioenergy from marginal lands

    Science.gov (United States)

    Panoutsou, Calliope

    2017-04-01

    Currently, there are not sufficiently tailored policies focusing on biomass and bioenergy from marginal lands. This paper will provide an integrated policy framework and recommendations to facilitate understanding for the market sectors involved and the key principles which can be used to form future sustainable policies for this issue. The work will focus at EU level policy recommendations and discuss how these can interrelate with national and regional level policies to promote the usage of marginal lands for biomass and bioenergy. Recommended policy measures will be based on the findings of the Biomass Policies (www.biomasspolicies.eu) and S2Biom (www.s2biom.eu) projects and will be prepared taking into account the key influencing factors (technical, environmental, social and economic) on biomass and bioenergy from marginal lands: • across different types of marginality (biophysical such as: low temperature, dryness, excess soil moisture, poor chemical properties, steep slope, etc., and socio-economic resulting from lack of economic competitiveness in certain regions and crops, abandonment or rural areas, etc.) • across the different stages of the biomass value chain (supply, logistics, conversion, distribution and end-use). The aim of recommendations will be to inform policy makers on how to distinguish key policy related attributes across biomass and bioenergy from marginal lands, measure them and prioritise actions with a 'system' based approach.

  10. Bioenergy and the Sustainability Transition: from Local Resource to Global Commodity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Francis X.

    2007-07-01

    The looming threat of climate change and the invaluable role of energy in development have complicated the global transition to sustainable energy while also increasing the urgency of the transition. Bioenergy has a key role in this transition due to its unique characteristics among renewable energy sources, the concentration of bioenergy potential in major developing country regions, and the close relationship between biomass resources and carbon management strategies. This paper offers a conceptual model for bioenergy's role in the transition, outlining its key elements and their significance with respect to environment and development. In spite of the globalising economy, the security of energy supply continues to be threatened by geo-political conflicts. Continued expansion of energy consumption is constrained by its environmental impacts. At the same time two billion persons have little or no access to modern energy services. The diversity and flexibility of bioenergy systems offers opportunities to bridge some of the key divisions-technical, political, economic, and environmental-that have complicated international efforts to address climate change and promote equitable development of global resources. The challenge is to take advantage of the heterogeneity of biomass resources to facilitate the most effective use of those resources in the emerging bio-economy. (auth)

  11. Global land use patterns and the production of bioenergy to 2050

    International Nuclear Information System (INIS)

    Smeets, E.; Faaij, A.; Lewandowski, I.

    2004-05-01

    The results of a bottom-up analysis of the theoretical global bioenergy production potential are presented and discussed, with specific attention for the impact of underlying factors, existing studies on agriculture and forestry and gaps in the knowledge base that explain ranges in estimates. The impact of various factors is analysed by means of scenario analysis. Results indicate that the key factor for bioenergy production on surplus agricultural land is the type of agricultural management system. Theoretically, 70% of the present agricultural land use can be made available for bioenergy production, without further deforestation or endangering the future supply of food. The bioenergy potential from surplus agricultural land is estimated at 215 EJy -1 to 1471 EJy -1 in 2050. The bulk of this potential comes from the developing regions South America and the Carribean (47-221 EJy -1 ) and sub-Saharan Africa (31-317 EJy -1 ) and the transition economies of the CIS and Baltic States (45-199 EJy -1 )

  12. Global land use patterns and the production of bioenergy to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Smeets, E.; Faaij, A.; Lewandowski, I.

    2004-05-15

    The results of a bottom-up analysis of the theoretical global bioenergy production potential are presented and discussed, with specific attention for the impact of underlying factors, existing studies on agriculture and forestry and gaps in the knowledge base that explain ranges in estimates. The impact of various factors is analysed by means of scenario analysis. Results indicate that the key factor for bioenergy production on surplus agricultural land is the type of agricultural management system. Theoretically, 70% of the present agricultural land use can be made available for bioenergy production, without further deforestation or endangering the future supply of food. The bioenergy potential from surplus agricultural land is estimated at 215 EJy{sup -1} to 1471 EJy{sup -1} in 2050. The bulk of this potential comes from the developing regions South America and the Carribean (47-221 EJy{sup -1}) and sub-Saharan Africa (31-317 EJy{sup -1}) and the transition economies of the CIS and Baltic States (45-199 EJy{sup -1})

  13. Bioenergy, its present and future competitiveness

    International Nuclear Information System (INIS)

    Ling, Erik

    1999-01-01

    The thesis deals with aspects of the competitiveness of bioenergy. The central aim is to develop a number of concepts that enables an extended analysis. The thesis is composed of four studies. In study 1 and 2 the emphasis is put on two institutional frameworks within the forest company, i.e. the framework around the forest fuel operations and the framework around the industrial timber operations. Depending on which of the two institutional frameworks that makes up the basis for the understanding of forest fuel operations, the forest fuel operations will be given different roles and different priorities. Different goals and the process of integrating the forest fuel operations into the forest company will therefore be carried out with different means, different feelings and different resources. Study 3 examines the conceptions that the actors of the energy system uphold. The study presents the concept of logic, which is an institutionalised conception of the competitiveness of bioenergy. Logics can be seen as the dominating conceptions within the energy system and are decisive in determining the factors and parameters that state the competitiveness of different forms of energy. Study 4 argues that the strategical work concerning the competitiveness of bioenergy in the long-run to a great extent is about understanding, shaping and utilising the conceptions that affect the bioenergy system. The study problematises strategies that are used to develop bioenergy by introducing the uncertainty of the future into the analysis. The uncertainty of the future is captured in different scenarios

  14. Evaluating the Potential of Marginal Land for Cellulosic Feedstock Production and Carbon Sequestration in the United States.

    Science.gov (United States)

    Emery, Isaac; Mueller, Steffen; Qin, Zhangcai; Dunn, Jennifer B

    2017-01-03

    Land availability for growing feedstocks at scale is a crucial concern for the bioenergy industry. Feedstock production on land not well-suited to growing conventional crops, or marginal land, is often promoted as ideal, although there is a poor understanding of the qualities, quantity, and distribution of marginal lands in the United States. We examine the spatial distribution of land complying with several key marginal land definitions at the United States county, agro-ecological zone, and national scales, and compare the ability of both marginal land and land cover data sets to identify regions for feedstock production. We conclude that very few land parcels comply with multiple definitions of marginal land. Furthermore, to examine possible carbon-flow implications of feedstock production on land that could be considered marginal per multiple definitions, we model soil carbon changes upon transitions from marginal cropland, grassland, and cropland-pastureland to switchgrass production for three marginal land-rich counties. Our findings suggest that total soil organic carbon changes per county are small, and generally positive, and can influence life-cycle greenhouse gas emissions of switchgrass ethanol.

  15. Upgrading of solid biofuels and feedstock quality

    Energy Technology Data Exchange (ETDEWEB)

    Burvall, Jan [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Agricultural Research for Northern Sweden

    1998-06-01

    This paper treats upgrading of biomass to pellets, briquettes and powder and the quality needed of the initial feedstock. The main raw materials are wood and reed canary grass (Phalaris arundinacea L.) 5 refs, 6 figs, 2 tabs

  16. 2011 Biomass Program Platform Peer Review: Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Laura [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  17. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  18. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2004-07-28

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  19. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2005-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  20. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  1. Willow bioenergy plantation research in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    White, E.H.; Abrahamson, L.P.; Kopp, R.F. [SUNY College of Environmental Science and Forestry, Syracuse, NY (United States); Nowak, C.A. [USDA Forest Service, Warren, PA (United States)

    1993-12-31

    Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are now being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.

  2. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  3. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  4. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    International Nuclear Information System (INIS)

    Kathryn Baskin

    2001-01-01

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts

  5. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2001-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  6. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2001-07-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  7. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2003-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  8. Technological learning in bioenergy systems

    International Nuclear Information System (INIS)

    Junginger, Martin; Visser, Erika de; Hjort-Gregersen, Kurt; Koornneef, Joris; Raven, Rob; Faaij, Andre; Turkenburg, Wim

    2006-01-01

    The main goal of this article is to determine whether cost reductions in different bioenergy systems can be quantified using the experience curve approach, and how specific issues (arising from the complexity of biomass energy systems) can be addressed. This is pursued by case studies on biofuelled combined heat and power (CHP) plants in Sweden, global development of fluidized bed boilers and Danish biogas plants. As secondary goal, the aim is to identify learning mechanisms behind technology development and cost reduction for the biomass energy systems investigated. The case studies reveal large difficulties to devise empirical experience curves for investment costs of biomass-fuelled power plants. To some extent, this is due to lack of (detailed) data. The main reason, however, are varying plant costs due to differences in scale, fuel type, plant layout, region etc. For fluidized bed boiler plants built on a global level, progress ratios (PRs) for the price of entire plants lies approximately between 90-93% (which is typical for large plant-like technologies). The costs for the boiler section alone was found to decline much faster. The experience curve approach delivers better results, when the production costs of the final energy carrier are analyzed. Electricity from biofuelled CHP-plants yields PRs of 91-92%, i.e. an 8-9% reduction of electricity production costs with each cumulative doubling of electricity production. The experience curve for biogas production displays a PR of 85% from 1984 to the beginning of 1990, and then levels to approximately 100% until 2002. For technologies developed on a local level (e.g. biogas plants), learning-by-using and learning-by-interacting are important learning mechanism, while for CHP plants utilizing fluidized bed boilers, upscaling is probably one of the main mechanisms behind cost reductions

  9. Bioenergy costs and potentials with special attention to implications for the land system

    Science.gov (United States)

    Popp, A.; Lotze-Campen, H.; Dietrich, J.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.

    2011-12-01

    In the coming decades, an increasing competition for global land and water resources can be expected, due to rising demand for agricultural products, goals of nature conservation, and changing production conditions due to climate change. Especially biomass from cellulosic bioenergy crops, such as Miscanthus or poplar, is being proposed to play a substantial role in future energy systems if climate policy aims at stabilizing greenhouse gas (GHG) concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements, land availability for biomass plantations, and implications for the land system. In order to explore the cost-effective contribution of bioenergy to a low carbon transition with special attention to implications for the land system, we present a modeling framework with detailed biophysical and economic representation of the land and energy sector: We have linked the global dynamic vegetation and water balance model LPJmL (Bondeau et al. 2007, Rost et al. 2008), the global land and water use model MAgPIE (Lotze-Campen et al. 2008, Popp et al. 2010), and the global energy-economy-climate model ReMIND (Leimbach et al. 2009). In this modeling framework LPJmL supplies spatially explicit (0.5° resolution) agricultural yields as well as carbon and water stocks and fluxes. Based on this biophysical input MAgPIE delivers cost-optimized land use patterns (0.5° resolution), associated GHG emissions and rates of future yield increases in agricultural production. Moreover, shadow prices are calculated for irrigation water (as an indicator for water scarcity), food commodities, and bioenergy (as an indicator for changes in production costs) under different land use constraints such as forest conservation for climate change mitigation and as a contribution to biodiversity conservation. The energy-economy-climate model ReMIND generates the demand for

  10. Trends in european bioenergy law: problems, perspectives and risks.

    Directory of Open Access Journals (Sweden)

    Alice Caputo

    2014-10-01

    Full Text Available Research into new forms of energy is a current challenge. This paper aims to inquire into the real advantages of bioenergy and its sustainable development within the European legal framework, while also considering the negative aspects of bioenergy use. The European Union, in fact, is an important supporter of bioenergy and shows that, through good legislative policy, the negative aspects of bioenergy use can be surmounted . In conclusion, bioenergy and sustainable development can still be a plausible solution to feed the planet

  11. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  12. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. - Highlights: ► Global energy crop potentials in 2050 are calculated with a biophysical biomass-balance model. ► The study is focused on dedicated energy crops, forestry and residues are excluded. ► Depending on food-system change, global energy crop potentials range from 26–141 EJ/yr. ► Exclusion of protected areas and failed states may reduce the potential up to 45%. ► The bioenergy potential may be 26% lower or 45% higher, depending on energy crop yields.

  13. Biomass, Bioenergy and the Sustainability of Soils and Climate: What Role for Biochar?

    Science.gov (United States)

    Sohi, Saran

    2013-04-01

    Biochar is the solid, carbon rich product of heating biomass with the exclusion of air (pyrolysis). Whereas charcoal is derived from wood, biochar is a co-product of energy capture and can derive from waste or non-waste, virgin or non-virgin biomass resources. But also, biochar is not a fuel - rather it is intended for the beneficial amendment of soil in agriculture, forestry and horticulture. This results in long-term storage of plant-derived carbon that could improve yield or efficiency of crop production, and/or mitigate trace gas emissions from the land. Life cycle analysis (LCA) shows that pyrolysis bioenergy with biochar production should offer considerably more carbon abatement than combustion, or gasification of the same feedstock. This has potential to link climate change mitigation to bioenergy and sustainable use of soil. But, in economic terms, the opportunity cost of producing biochar (reflecting the calorific value of its stored carbon) is inflated by bioenergy subsidies. This, combined with a lack of clear regulatory position and no mature pyrolysis technologies at large scale, means that pyrolysis-biochar systems (PBS) remain largely conceptual at the current time. Precise understanding of its function and an ability to predict its impact on different soils and crops with certainty, biochar should acquire a monetary value. Combining such knowledge with a system that monetizes climate change mitigation potential (such as carbon markets), could see schemes for producing and using biochar escalate - including a context for its deployment in biomass crops, or through pyrolysis of residues from other bioenergy processes. This talk explores the opportunity, challenges and risks in pursuing biochar production in various bioenergy contexts including enhanced sustainability of soil use in biomass crop production, improving the carbon balance and value chain in biofuel production, and using organic waste streams more effectively (including the processing of

  14. Public–private partnerships value in bioenergy projects: Economic feasibility analysis based on two case studies

    International Nuclear Information System (INIS)

    Fantozzi, Francesco; Bartocci, Pietro; D'Alessandro, Bruno; Arampatzis, Stratos; Manos, Basil

    2014-01-01

    Greece and Italy are facing serious energy challenges concerning sustainability and greenhouse gas emissions as well as security of supply and the competitiveness of the internal energy market. These challenges require investments by the public sector, while the countries have seen in the last years their debts rising. A solution to promote bioenergy business, without rising public debt, could be the use of PPP (Public–Private Partnership). This paper presents a methodology to develop agro-energy business using PPP in two rural areas: the municipality of Evropos (in Greece) and the municipality of Montefalco (in Italy). At first biomass availability is studied, then the optimal technology is selected. Once technological issues have been analyzed PPP value for money has to be assessed. Conventional methods to evaluate economic viability of a project are not enough and a Public-Sector Comparator (PSC) has to be calculated. Typical risks of bioenergy projects are identified, estimating their probabilities and consequences. This will lead to associate a monetary value to each risk. Then the identified risks are allocated among private and public partners, establishing synergies. The allocation of risks will have consequences on the preparation of PPP contract and on partner selection procedure. - Highlights: • PPPs can control or reduce risks in bioenergy business. • Development of a methodology for risk allocation in bioenergy projects. • Development of a methodology for risk valuing in bioenergy projects. • A Public-Sector Comparator has been realized for an agro-energy PPP. • Risk allocation has to be clearly indicated in PPP contract

  15. Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, Oliver [Metabolix Inc., Cambridge, MA (United States); Snell, Kristi [Metabolix Inc., Cambridge, MA (United States)

    2016-06-09

    The basic concept of the REFABB project was that by genetically engineering the biomass crop switchgrass to produce a natural polymer PHB, which is readily broken down by heating (thermolysis) into the chemical building block crotonic acid, sufficient additional economic value would be added for the grower and processor to make it an attractive business at small scale. Processes for using thermolysis to upgrade biomass to densified pellets (char) or bio-oil are well known and require low capital investment similar to a corn ethanol facility. Several smaller thermolysis plants would then supply the densified biomass, which is easier to handle and transport to a centralized biorefinery where it would be used as the feedstock. Crotonic acid is not by itself a large volume commodity chemical, however, the project demonstrated that it can be used as a feedstock to produce a number of large volume chemicals including butanol which itself is a biofuel target. In effect the project would try to address three key technology barriers, feedstock logistics, feedstock supply and cost effective biomass conversion. This project adds to our understanding of the potential for future biomass biorefineries in two main areas. The first addressed in Task A was the importance and potential of developing an advanced value added biomass feedstock crop. In this Task several novel genetic engineering technologies were demonstrated for the first time. One important outcome was the identification of three novel genes which when re-introduced into the switchgrass plants had a remarkable impact on increasing the biomass yield based on dramatically increasing photosynthesis. These genes also turned out to be critical to increasing the levels of PHB in switchgrass by enabling the plants to fix carbon fast enough to support both plant growth and higher levels of the polymer. Challenges in the critical objective of Task B, demonstrating conversion of the PHB in biomass to crotonic acid at over 90

  16. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K.; Cai, Hao; Dunn, Jennifer B.; Hartley, Damon; Searcy, Erin; Tan, Eric; Jones, Sue; Snowden-Swan, Lesley

    2016-03-31

    This report describes the supply chain sustainability analysis (SCSA) of renewable gasoline and diesel produced via fast pyrolysis of a blended woody feedstock. The metrics considered in this analysis include supply chain greenhouse gas (GHG) emissions and water consumption.

  17. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    Science.gov (United States)

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Opportunities and barriers for international bioenergy trade

    NARCIS (Netherlands)

    Junginger, H.M.|info:eu-repo/dai/nl/202130703; van Dam, J.M.C.; Zarrilli, S.; Mohamed, F.A.; Marchal, D.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2011-01-01

    Recently, the international trade of various bioenergy commodities has grown rapidly, yet this growth is also hampered by some barriers. The aim of this paper is to obtain an overview of what market actors currently perceive as major opportunities and barriers for the development of international

  19. Water usage in southeastern bioenergy crop production

    Science.gov (United States)

    The southeastern United States with its long growing season and mild winter temperatures has long been able to produce a variety of food, forage, and fiber crops. In addition to these crops, the Southeast is capable of producing a plethora of lignoceullosic-based bioenergy crops for conversion into ...

  20. Wood bioenergy and soil productivity research

    Science.gov (United States)

    D. Andrew Scott; Deborah S. Page-Dumroese

    2016-01-01

    Timber harvesting can cause both short- and long-term changes in forest ecosystem functions, and scientists from USDA Forest Service (USDA FS) have been studying these processes for many years. Biomass and bioenergy markets alter the amount, type, and frequency at which material is harvested, which in turn has similar yet specific impacts on sustainable productivity....

  1. Social Aspects of Bioenergy Sustainability Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Luchner, Sarah [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Johnson, Kristen [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Lindauer, Alicia [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); McKinnon, Taryn [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Broad, Max [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-05-30

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office held a workshop on “Social Aspects of Bioenergy” on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The findings and recommendations from the workshop and webinar are compiled in this report.

  2. Water for bioenergy: A global analysis

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert; van der Meer, Theodorus H.; Gasparatos, A.; Stromberg, P.

    2012-01-01

    Agriculture is by far the largest water user. This chapter reviews studies on the water footprints (WFs) of bioenergy (in the form of bioethanol, biodiesel, and heat and electricity produced from biomass) and compares their results with the WFs of fossil energy and other types of renewables (wind

  3. Sustainable forest-based bioenergy in Eurasia

    Directory of Open Access Journals (Sweden)

    F. Kraxner

    2018-02-01

    Full Text Available This study analyzes the Russian forest biomass-based bioenergy sector. It is shown that presently – although given abundant resources – the share of heat and electricity from biomass is very minor. With the help of two IIASA models (G4M and BeWhere, future green-field bioenergy plants are identified in a geographically explicit way. Results indicate that by using 3.78 Mt (or 6.16 M m3, twice as much heat and electricity than is presently available from forest biomass could be generated. This amount corresponds to 3.3 % of the total annual wood removals or 12 % of the annually harvested firewood, or about 11 % of illegal logging. With this amount of wood, it is possible to provide an additional 444 thousand households with heat and 1.8 M households with electricity; and at the same time to replace 2.7 Mt of coal or 1.7 Mt of oil or 1.8 G m3 of natural gas, reducing emissions of greenhouse gases from burning fossil fuels by 716 Mt of CO2-equivalent per year. A multitude of co-benefits can be quantified for the socio-economic sector such as green jobs linked to bioenergy. The sustainable sourcing of woody biomass for bioenergy is possible as shown with the help of an online crowdsourcing tool Geo-Wiki.org for forest certification.

  4. Predicted avian responses to bioenergy development scenarios in an intensive agricultural landscape

    Science.gov (United States)

    Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; McCoy, Tim D.; Guan, Qingfeng

    2015-01-01

    Conversion of native prairie to agriculture has increased food and bioenergy production but decreased wildlife habitat. However, enrollment of highly erodible cropland in conservation programs has compensated for some grassland loss. In the future, climate change and production of second-generation perennial biofuel crops could further transform agricultural landscapes and increase or decrease grassland area. Switchgrass (Panicum virgatum) is an alternative biofuel feedstock that may be economically and environmentally superior to maize (Zea mays) grain for ethanol production on marginally productive lands. Switchgrass could benefit farmers economically and increase grassland area, but there is uncertainty as to how conversions between rowcrops, switchgrass monocultures and conservation grasslands might occur and affect wildlife. To explore potential impacts on grassland birds, we developed four agricultural land-use change scenarios for an intensively cultivated landscape, each driven by potential future climatic changes and ensuing irrigation limitations, ethanol demand, commodity prices, and continuation of a conservation program. For each scenario, we calculated changes in area for landcover classes and predicted changes in grassland bird abundances. Overall, birds responded positively to the replacement of rowcrops with switchgrass and negatively to the conversion of conservation grasslands to switchgrass or rowcrops. Landscape context and interactions between climate, crop water use, and irrigation availability could influence future land-use, and subsequently, avian habitat quality and quantity. Switchgrass is likely to provide higher quality avian habitat than rowcrops but lower quality habitat than conservation grasslands, and therefore, may most benefit birds in heavily cultivated, irrigation dependent landscapes under warmer and drier conditions, where economic profitability may also encourage conversions to drought tolerant bioenergy feedstocks.

  5. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    Science.gov (United States)

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  6. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Lijó, Lucía, E-mail: lucia.lijo@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); González-García, Sara [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Bacenetti, Jacopo; Negri, Marco; Fiala, Marco [Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milan (Italy); Feijoo, Gumersindo; Moreira, María Teresa [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2015-07-15

    Highlights: • Anaerobic monodigestion and codigestion were compared. • The environmental advantages of suitable waste management were proved. • The use of cereal crops as feedstock improves biogas yield. • Cultivation step implies the most important environmental hotspot. • Digestate management options were evaluated. - Abstract: The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidenced the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions.

  7. An exploration of common reed (Phragmites australis bioenergy potential in North America

    Directory of Open Access Journals (Sweden)

    R. Vaičekonytė

    2014-10-01

    Full Text Available In North America, reed (Phragmites australis is typically considered to be a weed although it provides important ecosystem services. Small, sparse, patchy or mixed reedbeds are more suitable as habitat for many species than extensive dense reedbeds, whose habitat functions can be enhanced by the selective removal of biomass. We propose that above-ground reed biomass could be harvested for bioenergy, at the same time improving habitat for biodiversity by thinning or fragmenting the more extensive reedbeds. Biofuel pellets manufactured from reeds harvested at Montréal (Canada had moisture content 6.4 %, energy content 16.9 kJ g-1 (dry mass, ash content 3.44 %, and chloride content 1962 ppm. Thus, reed as a material for fuel pellet manufacture is similar to switchgrass (Panicum virgatum, which is commonly cultivated for that purpose and requires higher inputs than harvested wild reed. We discuss these findings in the context of environmental considerations and conclude that the bioenergy potential of reed could most expediently be realised in North America by combining material harvested from the widespread spontaneously occurring reedbeds with organic waste from other sources to create mixed biofuels. However, reeds with high levels of chlorine, sulphur or metals should not be burned to avoid air pollution or equipment damage unless these problems are mitigated by means of appropriate season of harvest, equipment, combustion regime, or use of a mixed feedstock.

  8. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production

    International Nuclear Information System (INIS)

    Lijó, Lucía; González-García, Sara; Bacenetti, Jacopo; Negri, Marco; Fiala, Marco; Feijoo, Gumersindo; Moreira, María Teresa

    2015-01-01

    Highlights: • Anaerobic monodigestion and codigestion were compared. • The environmental advantages of suitable waste management were proved. • The use of cereal crops as feedstock improves biogas yield. • Cultivation step implies the most important environmental hotspot. • Digestate management options were evaluated. - Abstract: The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidenced the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions

  9. Insight on Biomass Supply and Feedstock Definition for Fischer-Tropsch Based BTL Processes Aperçu sur l’approvisionnement en biomasse et la caractérisation des charges pour les procédés de synthèse de biocarburants par voie BTL

    OpenAIRE

    Coignac Julien

    2013-01-01

    Process chains of thermo chemical conversion of lignocellulosic biomass through gasification and Fischer-Tropsch synthesis (known as BTL) represent promising alternatives for biofuels production. Since biomass is heterogeneous and not homogeneously spread over territories, one of the major technological stakes of the project is to develop a flexible industrial chain capable of co-treating the widest possible range of biomass and fossil fuel feedstock. The present study aims at character...

  10. Legal framework for a sustainable biomass production for bioenergy on Marginal Lands

    Science.gov (United States)

    Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    authorities and principal laws in the field of bioenergy is given, supplemented by national biomass potentials and bioenergy use as well as by the German, Greek, Italian and Ukrainian NREAP. The overall target of all EU-28 countries - and Ukraine - is to create a more efficient bioeconomy, to increase the amount of biomass produced for bioenergy purposes, to avoid an increased competition between food/feed production on arable land and energy plant production, and decrease imports of fossil energy sources, i.e. [crude] oil, aiming at an independent, domestically based (bio)energy supply. Whereas in Germany the national policy framework regarding bioenergy is well-defined, there are only few specific national and/or regional policies in Greece, Italy or Ukraine. Moreover, the German legislation offers a higher potential for designing and modifying already existing regulations and laws, e.g. soil protection, EEG, etc. with respect to the use of MagL for bioenergy production, than in other SEEMLA partner countries. Although the biomass potential of each SEEMLA partner country varies a lot and the 2020 targets remain ambitious, the exploitation of sustainable biomass production on MagL may offer a suitable approach to fill the gaps of future biomass demands and accelerate the growth of an independent bioenergy based society.

  11. Global land-use and market interactions between climate and bioenergy policies

    Science.gov (United States)

    Golub, A.; Hertel, T. W.; Rose, S. K.

    2011-12-01

    mitigation potential in non-US forests (8.9 GtCO2yr-1 at $27/tCO2eq). Furthermore, a carbon tax could lead to input substitution in agricultural production away from land and fertilizer (e.g., in China, an approximate 20% reduction in paddy rice acreage and 10% reduction in crop production fertilizer use at the same GHG price). Both results run counter to the changes in land-use induced by biofuels. However, given the energy security benefits for bioenergy, this study also evaluate whether a land GHG policy could manage international indirect land-use leakage concerns for bioenergy. In addition to a global perspective, a US perspective is taken to evaluate the implications of joint and separate bioenergy and climate policies on domestic offset and bioenergy supplies. Preliminary results indicate that US biofuels mandate reduces the global abatement potential for agriculture and forestry and thereby imposes an additional cost on society. There are regional comparative advantages in biofuels production (as well as non-biofuels crops and timber production). There are also regional comparative advantages in land-based GHG mitigation. By modeling bioenergy and climate policies separately and simultaneously, this study assess the net comparative advantage regions have in meeting these two sets of goals.

  12. Role of community acceptance in sustainable bioenergy projects in India

    International Nuclear Information System (INIS)

    Eswarlal, Vimal Kumar; Vasudevan, Geoffrey; Dey, Prasanta Kumar; Vasudevan, Padma

    2014-01-01

    Community acceptance has been identified as one of the key requirements for a sustainable bioenergy project. However less attention has been paid to this aspect from developing nations and small projects perspective. Therefore this research examines the role of community acceptance for sustainable small scale bioenergy projects in India. While addressing the aim, this work identifies influence of community over bioenergy projects, major concerns of communities regarding bioenergy projects and factors influencing perceptions of communities about bioenergy projects. The empirical research was carried out on four bioenergy companies in India as case studies. It has been identified that communities have significant influence over bioenergy projects in India. Local air pollution, inappropriate storage of by-products and credibility of developer are identified as some of the important concerns. Local energy needs, benefits to community from bioenergy companies, level of trust on company and relationship between company and the community are some of the prime factors which influence community's perception on bioenergy projects. This research sheds light on important aspects related to community acceptance of bioenergy projects, and this information would help practitioners in understanding the community perceptions and take appropriate actions to satisfy them

  13. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  14. Engineering cyanobacteria as photosynthetic feedstock factories.

    Science.gov (United States)

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  15. The bioenergy potential of conservation areas and roadsides for biogas in an urbanized region

    International Nuclear Information System (INIS)

    Van Meerbeek, Koenraad; Ottoy, Sam; De Meyer, Annelies; Van Schaeybroeck, Tom; Van Orshoven, Jos; Muys, Bart; Hermy, Martin

    2015-01-01

    Highlights: • We assessed the bioenergy potential of conservation areas and roadsides in Flanders. • An area of 31,055 ha produces 203 kton DM of herbaceous biomass annually. • The associated biomass supply chain was optimized with OPTIMASS in four scenarios. • The net energy balance of the studied systems was 7 GJ ha −1 in the 2020 scenarios. • We show that this biomass can play a role to meet the increased biomass demand in 2020. - Abstract: In many urbanized areas the roadside and nature conservation management offers a biomass-for-bioenergy resource potential which is barely valorized, because of the fragmented biomass production sites and the scarcity of accurate data on the spatial availability of the biomass. In this study, a GIS based assessment was performed to determine the regional non-woody biomass-for-bioenergy potential for biogas from conservation areas and roadsides in Flanders, Belgium. These systems, with an area of 31,055 ha, have an annual herbaceous biomass production of 203 kton dry matter. The full associated biomass-to-bioenergy supply chain was optimized in four scenarios to maximize the net energy output and the profit. The scenario analysis was performed with OPTIMASS, a recently developed GIS based strategic decision support system. The analysis showed that the energetic valorization of conservation and roadside biomass through anaerobic digestion had a positive net energy balance, although there is still much room for improvements. Economically, however, it is a less interesting biomass resource. Most likely, the economic picture would change when other ecosystem services delivered by the protected biodiversity would be taken into account. Future technical advances and governmental incentives, like green energy certificates, will be necessary to incorporate the biomass into the energy chain. By tackling the existing barriers and providing a detailed methodology for biomass potential assessments, this study tries to

  16. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  17. Perspectives for RandD in Bioenergy in the Baltic States

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Rurik (Technopolis Group, Stockholm (Sweden) )

    2009-11-15

    developing bioenergy RandD is almost insignificant. The Baltic States have created an industry which has become successful in exporting wood chips, pellet and briquettes. Although this often is a local success story for many a small municipality, the added value is highly limited and this contributes to a situation where the Baltic economies remain dependent on inexpensive labour instead of high value added through technological development. Promoting the understanding of the potential role of bioenergy would be important in the Baltic States. As long as bioenergy is almost solely seen as a question of security of supply (and perhaps justifiably so) and not as a major technology under development, RandD funding will not be directed to it. There are a few fields in which RandD conducted in the Baltic States might contribute to the broader development of bioenergy. Among the most promising is the straw research in Lithuania and the reed experiments in Estonia. In Latvia RandD has been conducted on the integration of bioenergy in the energy system. If successful, micro- and small-scale CHPs could have profound impacts on the construction of the future energy systems in the Baltic States, where, as has been mentioned, population density is low, self-sufficiency high on the agenda, and most CHPs currently available too big. The main risk to the Baltic States in the bioenergy sector appears to be left out from global RandD-trends. The reasons for this are mainly domestic, such as lack of funding through insufficient political support. So far, the Baltic States have more or less successfully implemented technology developed elsewhere, but the domestic contributions remain modest. Against the background that the Baltic States need more industry with high productivity and thus value added, bioenergy- related technology would in many respects make a good match with the needs of the Baltic societies. For the Nordic countries, the skills already developed in the Baltic States could be a

  18. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  19. Chemical or feedstock recycling of WEEE products

    NARCIS (Netherlands)

    Tukker, A.

    2012-01-01

    This chapter reviews initiatives with regard to chemical or feedstock recycling of plastics waste from electrical and electronic products. eurostat estimates the amount of waste from electrical and electronic products that is collected is 2.2 million tonnes. Roughly 20% of this waste consists of

  20. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  1. Bioenergy and biodiversity: Key lessons from the Pan American region

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinelli, Fernanda Silva [UFRRJ/Conservation International Brazil, Seropedica (Brazil); Mayer, Audrey L. [Michigan Technological Univ., Houghton, MI (United States); Medeiros, Rodrigo [Federal Rural Univ. of Rio de Janeiro, Rio de Janeiro (Brazil); Oliveira, Camila Ortolan F. [Univ. of Campinas, Campinas (Brazil); Sparovek, Gerd [Univ. of Sao Paulo, Piracicaba (Brazil); Walter, Arnaldo [Univ. of Campinas, Campinas (Brazil); Venier, Lisa A. [Canadian Forest Service, Sault Ste. Marie (Canada). Great Lakes Forestry Centre

    2015-06-24

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. Lastly, we propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  2. Bioenergy and Biodiversity: Key Lessons from the Pan American Region.

    Science.gov (United States)

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L; Medeiros, Rodrigo; Oliveira, Camila Ortolan F; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  3. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    Science.gov (United States)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  4. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  5. Global spatially explicit CO2 emission metrics at 0.25° horizontal resolution for forest bioenergy

    Science.gov (United States)

    Cherubini, F.

    2015-12-01

    equations are derived to infer metric values from the turnover time of the biomass feedstock and the fraction of forest residues left on site after harvest. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales.

  6. Biomass for energy versus food and feed, land use analyses and water supply

    OpenAIRE

    Ladanai, Svetlana; Vinterbäck, Johan

    2010-01-01

    The global growth in energy demand continues, but the way of meeting rising energy needs is not sustainable. The use of biomass energy is a widely accepted strategy towards sustainable development that sees the fastest rate with the most of increase in power generation followed by strong rises in the consumption of biofuels for transport. Agriculture, forestry and wood energy sector are the leading sources of biomass for bioenergy. However, to be acceptable, biomass feedstock must be produced...

  7. The impact of sustainability criteria on the costs and potentials of bioenergy production : applied for case studies in Brazil and Ukraine

    NARCIS (Netherlands)

    Smeets, E.M.W.; Faaij, A.P.C.

    2009-01-01

    The goal of this paper is to analyse the impact of the implementation of a certification system on the management system (costs) of and the availability of land (quantity) for bioenergy production. Twelve socio-economic areas of concern (food supply, child labour, (minimum) wages, employment, health

  8. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  9. Novel storage technologies for raw and clarified syrup biomass feedstocks from sweet sorghum (Sorghum bicolor L. Moench)

    Science.gov (United States)

    Attention is currently focused on developing sustainable supply chains of sugar feedstocks for new, flexible biorefineries. Fundamental processing needs identified by industry for the large-scale manufacture of biofuels and bioproducts from sweet sorghum (Sorghum bicolor L. Moench) include stabiliz...

  10. Impact evaluation of integrated food-bioenergy systems: A comparative LCA of peach nectar

    International Nuclear Information System (INIS)

    De Menna, Fabio; Vittuari, Matteo; Molari, Giovanni

    2015-01-01

    Processed food products present high energy intensity, along with a large amount of food losses and waste. The recovery of residual biomass as integrated renewable energy source could represent an interesting option for the substitution of fossil energy, contributing to the transition of agro-food sector towards a low-carbon economy. Two scenarios were compared, in order to evaluate the impacts of a fossil fuel-based food chain and the potential benefits of the integration of bioenergy production, using peach nectar as case study. In the first scenario, peach nectar is produced, distributed and consumed using fossil energy, while residuals are wasted. In the second scenario, byproducts from the nectar chain are used to produce bioenergy from combustion or anaerobic digestion, which is then consumed to substitute electricity and heat. A comparative life cycle assessment (LCA) based on the same functional unit was performed. Main results show that, in the conventional scenario, most of the damage derives from land use, especially for sugar and glucose production, from the fossil energy consumption of about 15 MJ l −1 , and the related greenhouse gas (GHG) emissions of 0.91 kg CO 2  eq l −1 . Food waste leads to a loss of about 20 kcal l −1 . Bioenergy integration would allow a 13–15% damage reduction, mainly due to the substitution of indirect energy consumption. The effects on human health and ecosystem quality are limited. - Highlights: • Up to 15 MJ l −1 of fossil energy are needed to produce 2.7 MJ of peach nectar. • About 20 out of 648 kcal l −1 of peach and nectar are wasted along the supply chain. • Added ingredients (sugar and glucose) cause a large share of land use impact. • Bioenergy from waste reduces up to 37% of non-renewable energy consumption

  11. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  12. Processing Cost Analysis for Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  13. Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

  14. Incorporating bioenergy into sustainable landscape designs

    DEFF Research Database (Denmark)

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.

    2016-01-01

    . Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution...

  15. Urban Wood-Based Bio-Energy Systems in Seattle

    Energy Technology Data Exchange (ETDEWEB)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  16. Proceedings of the Bio-Energy '80 world congress and exposition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

  17. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, R.; McDonnell, K.; Devlin, G. [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin, Belfield (Ireland)

    2009-07-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  18. Potential Bioethanol Feedstock Availability Around Nine Locations in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Rory Deverell

    2009-03-01

    Full Text Available The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland’s distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks.

  19. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.

    Science.gov (United States)

    Mertens, A; Van Meensel, J; Mondelaers, K; Buysse, J

    2015-01-01

    Recently, biogas plant managers in Flanders face increased financial uncertainty. Between 2011 and 2012, 20% of the Flemish biogas plants went bankrupt. Difficulties in obtaining feedstock at stable and affordable prices is one reason why the biogas sector struggles. In literature, contracting is often proposed as a way to decrease the volatility of the feedstock costs. However, these studies generally do not consider the context in which the biogas plant manager needs to buy the feedstock. Yet, this context could be of specific importance when biogas plant managers are in competition with other users of the same biomass type. Silage maize is an example of such a feedstock, as it is both used by dairy farmers and biogas plant managers. Using a combination of qualitative research and agent-based modelling, we investigated the effect of specific characteristics of the silage maize market on the acquisition of local silage maize by biogas plant managers. This paper details the institutional arrangements of the silage maize market in Flanders and the results of a scenario analysis, simulating three different scenarios. As shown by the results, the time of entry into the market, as well as the different institutional arrangements used by the biogas plant managers as opposed to dairy farmers could explain the difficulties in obtaining a stable supply of local silage maize by biogas plants. Our findings can help to develop mitigation strategies addressing these difficulties.

  20. Analysis of growth dynamics of Mediterranean bioenergy crops

    NARCIS (Netherlands)

    Archontoulis, S.V.

    2011-01-01

    In spite of the rapidly growing bioenergy production worldwide, there is lack of field experience and experimental data on the cultivation of bioenergy crops. This study aims to advance crop management operations and modelling studies by providing essential information on phenology, agronomy and

  1. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Science.gov (United States)

    2010-03-12

    ... Biofuels AGENCY: Rural Business-Cooperative Service (RBS), USDA. ACTION: Notice of Contract for Proposal... Year 2009 for the Bioenergy Program for Advanced Biofuels under criteria established in the prior NOCP... Bioenergy Program for Advanced Biofuels. In response to the previously published NOCP, approximately $14.5...

  2. Medium and long-term perspectives of international bioenergy trade

    NARCIS (Netherlands)

    Kranzl, Lukas; Daioglou, Vasileios; Faaij, Andre; Junginger, Martin; Keramidas, Kimon; Matzenberger, Julian; Tromborg, Erik

    2014-01-01

    In the coming decades, huge challenges in the global energy system are expected. Scenarios indicate that bioenergy will play a substantial role in this process. However, up to now there is very limited insight regarding the implication this may have on bioenergy trade in the long term. The

  3. Bio-energy and the environment: land of possible misunderstanding

    International Nuclear Information System (INIS)

    Moncada P C, Pietro; Grassi, G.

    1994-01-01

    This paper presents a point of view that bio-energy could assume sustainable environmental features for our future. The principal arguments of this paper are: bio-energy system and carbon emission -including confrontation of CO 2 emissions between electricity closed system and a coal-based electric generation system - soil erosion, fertilizer use, pesticide use, and biodiversity. (author)

  4. IEA Bioenergy Task 40 country report for the Netherlands 2011

    NARCIS (Netherlands)

    Goh, C.S.; Junginger, H.M.; Jonker, J.G.G.; Faaij, A.P.C.

    2011-01-01

    This country report was written within the frame of IEA Bioenergy Task 40. In summary, the aims of this country report are: (1) To provide a concise overview of biomass policy, domestic resources, biomass users, biomass prices and biomass trade, and (2) To analyse bioenergy trends, and reasons for

  5. Potential Bioenergy Options in Developed and Developing Countries

    African Journals Online (AJOL)

    Plant –based energy production (energy crops, forest growth) and residue and waste based fuels can substitute fossil fuels in a sustainable and environmental friendly way. In this study, bioenergy includes bio-resources that can be potentially used for modern energy production. Modern bioenergy options offer significant, ...

  6. Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production

    International Nuclear Information System (INIS)

    Kwon, Ho-Young; Mueller, Steffen; Dunn, Jennifer B.; Wander, Michelle M.

    2013-01-01

    Current estimates of life cycle greenhouse gas emissions of biofuels produced in the US can be improved by refining soil C emission factors (EF; C emissions per land area per year) for direct land use change associated with different biofuel feedstock scenarios. We developed a modeling framework to estimate these EFs at the state-level by utilizing remote sensing data, national statistics databases, and a surrogate model for CENTURY's soil organic C dynamics submodel (SCSOC). We estimated the forward change in soil C concentration within the 0–30 cm depth and computed the associated EFs for the 2011 to 2040 period for croplands, grasslands or pasture/hay, croplands/conservation reserve, and forests that were suited to produce any of four possible biofuel feedstock systems [corn (Zea Mays L)-corn, corn–corn with stover harvest, switchgrass (Panicum virgatum L), and miscanthus (Miscanthus × giganteus Greef et Deuter)]. Our results predict smaller losses or even modest gains in sequestration for corn based systems, particularly on existing croplands, than previous efforts and support assertions that production of perennial grasses will lead to negative emissions in most situations and that conversion of forest or established grasslands to biofuel production would likely produce net emissions. The proposed framework and use of the SCSOC provide transparency and relative simplicity that permit users to easily modify model inputs to inform biofuel feedstock production targets set forth by policy. -- Highlights: ► We model regionalized feedstock-specific United States soil C emission factors. ► We simulate soil C changes from direct land use change associated with biofuel feedstock production. ► Corn, corn-stover, and perennial grass biofuel feedstocks grown in croplands maintain soil C levels. ► Converting grasslands to bioenergy crops risks soil C loss. ► This modeling framework yields more refined soil C emissions than national-level emissions

  7. Harmonising bioenergy resource potentials - Methodological lessons from review of state of the art bioenergy potential asessments

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Published estimates of the potential of bioenergy vary widely, mainly due to the heterogeneity of methodologies, assumptions and datasets employed. These discrepancies are confusing for policy and it is thus important to have scientific clarity on the basis of the assessment outcomes. Such clear

  8. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  9. Bioenergy, Pollution, and Economic Growth

    International Nuclear Information System (INIS)

    Ankarhem, Mattias

    2005-01-01

    This thesis consists of four papers: two of them deal with the effects on the forest sector of an increase in the demand for forest fuels, and two of them concern the relation between economic growth and pollution. Paper [I] is a first, preliminary study of the potential effects on the Swedish forest sector of a continuing rise in the use of forest resources as a fuel in energy generation. Sweden has made a commitment that the energy system should be sustainable, i.e., it should be based on renewable resources. However, an increasing use of the forest resources as an energy input could have effects outside the energy sector. We consider this in a static model by estimating a system of demand and supply equations for the four main actors on the Swedish roundwood market; forestry, sawmills, pulpmills and the energy sector. We then calculate the industries' short run supply and demand elasticities. Paper [II], is a development of the former paper. In this paper, we estimate the dynamic effects on the forest sector of an increased demand for forest fuels. This is done by developing a partial adjustment model of the forest sector that enables short, intermediate, and long run price elasticities to be estimated. It is relevant to study the effects of increased demand for forest fuels as the Swedish government has committed to an energy policy that is likely to further increase the use of renewable resources in the Swedish energy system. Four subsectors are included in the model: forestry, sawmills, pulpmills and the energy industry. The results show that the short run elasticities are fairly consistent with earlier studies and that sluggish adjustment in the capital stock is important in determining the intermediate and long run responses. Simulation shows that an increase in the demand for forest fuels has a positive effect on the equilibrium price of all three types of wood, and a negative effect on the equilibrium quantities of sawtimber and pulpwood. In paper [III] a

  10. Effect of policy-based bioenergy demand on southern timber markets: A case study of North Carolina

    Science.gov (United States)

    Robert C. Abt; Karen L. Abt; Frederick W. Cubbage; Jesse D. Henderson

    2010-01-01

    Key factors driving renewable energy demand are state and federal policies requiring the use of renewable feedstocks to produce energy (renewable portfolio standards) and liquid fuels (renewable fuel standards). However, over the next decade, the infrastructure for renewable energy supplies is unlikely to develop as fast as both policy- and market-motivated renewable...

  11. USDA-ARS Efforts in Expanding the Region for Growing Sugar Cane and Complimentary Sugar Crops for Bioenergy

    Science.gov (United States)

    There is an urgent need to develop second generation feedstocks to supply the additional 16 billion gallons of non-corn biofuels required in 2022 under the Renewable Fuel Standard passed in 2005. As part of the final regulations for the implementation of these standards, EPA has designated sugarcan...

  12. Productivity and nutrient cycling in bioenergy cropping systems

    Science.gov (United States)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  13. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    DEFF Research Database (Denmark)

    Petersen, Pia; Lau, Jane; Ebert, Berit

    2012-01-01

    Background: Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross...... in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels.......-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production...

  14. Managing Bioenergy Production on Arable Field Margins for Multiple Ecosystem Services: Challenges and Opportunities

    Science.gov (United States)

    Ferrarini, Andrea; Serra, Paolo; Amaducci, Stefano; Trevisan, Marco; Puglisi, Edoardo

    2013-04-01

    Growing crops for bioenergy is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. The debate should shift from "food or fuel" to the more challenging target: how the increasing demand for food and energy can be met in the future, particularly when water and land availability will be limited. As for food crops, also for bioenergy crops it is questioned whether it is preferable to manage cultivation to enhance ecosystem services ("land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand ("land sparing" strategy). Energy crop production systems differ greatly in the supply of ecosystem services. The use of perennial biomass (e.g. Switchgrass, Mischantus, Giant reed) for energy production is considered a promising way to reduce net carbon emissions and mitigate climate change. In addition, regulating and supporting ecosystem services could be provided when specific management of bioenergy crops is implemented. The idea of HEDGE-BIOMASS* project is to convert the arable field margins to bioenergy crop production fostering a win-win strategy at landscape level. Main objective of the project is to improve land management to generate environmental benefits and increase farmer income. The various options available in literature for an improved field boundary management are presented. The positive/unknown/negative effects of growing perennial bioenergy crops on field margins will be discussed relatively to the following soil-related ecosystem services: (I) biodiversity conservation and enhancement, (II) soil nutrient cycling, (III) climate regulation (reduction of GHG emissions and soil carbon sequestration/stabilization, (IV) water regulation (filtering and buffering), (V) erosion regulation, (VI) pollination and pest regulation. From the analysis of available

  15. Prospects for Hybrid Breeding in Bioenergy Grasses

    DEFF Research Database (Denmark)

    Aguirre, Andrea Arias; Studer, Bruno; Frei, Ursula

    2012-01-01

    , we address crucial topics to implement hybrid breeding, such as the availability and development of heterotic groups, as well as biological mechanisms for hybridization control such as self-incompatibility (SI) and male sterility (MS). Finally, we present potential hybrid breeding schemes based on SI...... of different hybrid breeding schemes to optimally exploit heterosis for biomass yield in perennial ryegrass (Lolium perenne L.) and switchgrass (Panicum virgatum), two perennial model grass species for bioenergy production. Starting with a careful evaluation of current population and synthetic breeding methods...

  16. A prospective study of bioenergy use in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Islas, Jorge; Manzini, Fabio [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico (CIE-UNAM), Aptdo. Postal 34, Temixco, 62580 Morelos (Mexico); Masera, Omar [Centro de Investigaciones en Ecosistemas, Universidad Nacional Autonoma de Mexico (CIECO-UNAM), Antigua Carretera a Patzcuaro No. 8701, Morelia 58190, Michoacan (Mexico)

    2007-12-15

    Bioenergy is one of the renewable energy sources that can readily replace fossil fuels, while helping to reduce greenhouse gas emissions and promoting sustainable rural development. This paper analyses the feasibility of future scenarios based on moderate and high use of biofuels in the transportation and electricity generation sectors with the aim of determining their possible impact on the Mexican energy system. Similarly, it evaluates the efficient use of biofuels in the residential sector, particularly in the rural sub-sector. In this context, three scenarios are built within a time frame that goes from 2005 to 2030. In the base scenario, fossil fuels are assumed as the dominant source of energy, whereas in the two alternative scenarios moderate and high biofuel penetration diffusion curves are constructed and discussed on the basis of their technical and economical feasibility. Simulation results indicate that the use of ethanol, biodiesel and electricity obtained from primary biomass may account for 16.17% of the total energy consumed in the high scenario for all selected sectors. CO{sub 2} emissions reduction - including the emissions saved from the reduction in the non-sustainable use of fuelwood in the rural residential sector - is equivalent to 87.44 million tons of CO{sub 2} and would account for 17.84% of the CO{sub 2} emitted by electricity supply and transportation sectors when the base case and the high scenario are compared by 2030. (author)

  17. A prospective study of bioenergy use in Mexico

    International Nuclear Information System (INIS)

    Islas, Jorge; Manzini, Fabio; Masera, Omar

    2007-01-01

    Bioenergy is one of the renewable energy sources that can readily replace fossil fuels, while helping to reduce greenhouse gas emissions and promoting sustainable rural development. This paper analyses the feasibility of future scenarios based on moderate and high use of biofuels in the transportation and electricity generation sectors with the aim of determining their possible impact on the Mexican energy system. Similarly, it evaluates the efficient use of biofuels in the residential sector, particularly in the rural sub-sector. In this context, three scenarios are built within a time frame that goes from 2005 to 2030. In the base scenario, fossil fuels are assumed as the dominant source of energy, whereas in the two alternative scenarios moderate and high biofuel penetration diffusion curves are constructed and discussed on the basis of their technical and economical feasibility. Simulation results indicate that the use of ethanol, biodiesel and electricity obtained from primary biomass may account for 16.17% of the total energy consumed in the high scenario for all selected sectors. CO 2 emissions reduction-including the emissions saved from the reduction in the non-sustainable use of fuelwood in the rural residential sector-is equivalent to 87.44 million tons of CO 2 and would account for 17.84% of the CO 2 emitted by electricity supply and transportation sectors when the base case and the high scenario are compared by 2030

  18. Identification and overexpression of a Knotted1-like transcription factor in switchgrass (Panicum virgatum L. for lignocellulosic feedstock improvement

    Directory of Open Access Journals (Sweden)

    Wegi eWuddineh

    2016-04-01

    Full Text Available High biomass production and wide adaptation has made switchgrass (Panicum virgatum L. an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signalling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.

  19. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  20. Water Quality Effects of Miscanthus as a Bioenergy Crop

    Science.gov (United States)

    Ng, T.; Eheart, J. W.; Cai, X.

    2009-12-01

    There is increasing interest in perennial grasses as a renewable source of bioenergy and biofuels. Under the right conditions, environmental advantages of cultivating such crops, relative to conventional row crops, include reductions in greenhouse gas emissions and waterborne pollutants, increased biodiversity and improved soil properties. This study focuses on the riverine nitrate load of cultivating miscanthus in lieu of conventional crops. Miscanthus has been identified as a high-yielding, low-input perennial grass suitable as a feedstock for cellulosic ethanol production and power generation by biomass combustion. To achieve the objective of this study, the Soil and Water Assessment Tool (SWAT) is used to model runoff and stream water quality in the Salt Creek watershed in East-Central Illinois. The watershed is agricultural and its nitrogen export, like that of most other agricultural watersheds in the region, is a major contributor to hypoxia in the Gulf of Mexico. SWAT is a hydrologic model with a built-in crop growth component. However, as miscanthus is relatively new as a crop of interest, data for the SWAT crop growth parameters for it are lacking. This study reports an evaluation of those parameters and an application of them to estimate the potential reduction in nitrate load from miscanthus cultivation under various scenarios. The miscanthus growth parameters are divided into three subsets. The first subset contains those parameters describing optimal growth under zero stress conditions, while the second contains those used to estimate nitrogen stress. Those parameters that are remaining (namely, maximum root depth and phosphorus and temperature stress parameters) are included in the third subset. To calibrate for the parameters in the first subset, simulated data from another miscanthus growth model are used. That other model is highly mechanistic and has been validated (no calibration is necessary because of its degree of mechanisticity) using

  1. Predicting moisture and economic value of solid forest fuel piles for improving the profitability of bioenergy use

    Science.gov (United States)

    Lauren, Ari; Kinnunen, Jyrki-Pekko; Sikanen, Lauri

    2016-04-01

    Bioenergy contributes 26 % of the total energy use in Finland, and 60 % of this is provided by solid forest fuel consisting of small stems and logging residues such as tops, branches, roots and stumps. Typically the logging residues are stored as piles on site before transporting to regional combined heat and power plants for combustion. Profitability of forest fuel use depends on smart control of the feedstock. Fuel moisture, dry matter loss, and the rate of interest during the storing are the key variables affecting the economic value of the fuel. The value increases with drying, but decreases with wetting, dry matter loss and positive rate of interest. We compiled a simple simulation model computing the moisture change, dry matter loss, transportation costs and present value of feedstock piles. The model was used to predict the time of the maximum value of the stock, and to compose feedstock allocation strategies under the question: how should we choose the piles and the combustion time so that total energy yield and the economic value of the energy production is maximized? The question was assessed concerning the demand of the energy plant. The model parameterization was based on field scale studies. The initial moisture, and the rates of daily moisture change and dry matter loss in the feedstock piles depended on the day of the year according to empirical field measurements. Time step of the computation was one day. Effects of pile use timing on the total energy yield and profitability was studied using combinatorial optimization. Results show that the storing increases the pile maximum value if the natural drying onsets soon after the harvesting; otherwise dry matter loss and the capital cost of the storing overcome the benefits gained by drying. Optimized timing of the pile use can improve slightly the profitability, based on the increased total energy yield and because the energy unit based transportation costs decrease when water content in the biomass is

  2. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K. [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, Sue [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The Department of Energy’s (DOE) Bioenergy Technology Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels. These assessments evaluate feedstock production, logistics of transporting the feedstock, and conversion of the feedstock to biofuel. There are two general types of TEAs. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables identification of data gaps and research and development needs, and provides goals and targets against which technology progress is assessed. On the other hand, a state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available.

  3. Global warming potential impact of bioenergy systems

    Directory of Open Access Journals (Sweden)

    Wenzel H.

    2012-10-01

    Full Text Available Reducing dependence on fossil fuels and mitigation of GHG emissions is a main focus in the energy strategy of many Countries. In the case of Demark, for instance, the long-term target of the energy policy is to reach 100% renewable energy system. This can be achieved by drastic reduction of the energy demand, optimization of production/distribution and substitution of fossil fuels with biomasses. However, a large increase in biomass consumption will finally induce conversion of arable and currently cultivated land into fields dedicated to energy crops production determining significant environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest GHG emission reduction.

  4. Bioenergy in the new Finnish energy strategy

    International Nuclear Information System (INIS)

    Vilkamo, S.

    1997-01-01

    As discussed in this conference paper, the goal of Finnish energy strategy is to bring the growth of the total energy consumption to a halt in the next 10-15 years and to speed up the restructuring of the energy economy without hampering economic growth. By 2010 the emission of greenhouse gases should be down to the 1990 level. To reach the goals, various means are available: taxation, subsidies, energy efficiency measures, replacing fossil sources with renewable and low-emission energy sources. By 1999 Finland should be connected to the European gas network. The use of bioenergy, wood fuels and wind power is encouraged. Peat is a competitive fuel in areas where it is locally available. To cut down on CO 2 emission it is necessary to increase the use of bioenergy, and by 2025 the use of wood will have increased considerably from the present level. At present, the wood reserves increase by one percent per year. Public funds will be set aside for energy wood research, for product development and marketing. Peat is an important indigenous energy resource, accounting for about 5% of all energy use. The Government is committed to closely follow up the implementation of its energy strategy. 1 ref., 3 figs

  5. Production conditions of bioenergy in Swedish agriculture; Produktionsfoerutsaettningar foer biobraenslen inom svenskt jordbruk

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2007-05-15

    The overall aim of this report is to analyse and describe the production conditions of bioenergy in Swedish agriculture and how these conditions can vary due to different factors. The conclusion is that the potential for producing bioenergy in Swedish agriculture will vary significantly depending on which energy crops are cultivated, which type of agricultural land is utilised and the geographical location of the production. Furthermore, different crop residues and other by-products from agriculture, utilised for energy purposes, will affect the bioenergy potential. To which extent this physical/biological potential will be utilised in the future depends mainly on economic conditions and financial considerations. These aspects are not included in this study. The report starts with a description of current crop production in Sweden, expressed in energy terms, the energy needed for this production and the regional variation in crop yields. The local variations in cultivation conditions are also analysed, as well as variations over the area of a single farm. Another aspect discussed is the production conditions of energy crops on previous farm land not currently utilised. The report includes an analysis of the potential supply of crop residues and other by-products for energy purposes, such as straw, tops and leaves of sugar beets, manure etc, as well as the regional variation of these residues and by-products. A similar analysis is made of the regional production conditions and potential biomass yields of traditional crops and new energy crops. These analyses also include energy balance calculations showing the energy input needed for different production systems in relation to the harvested biomass yield, and the potential for increased biomass yields in the future. Based on the findings of these various analyses, calculations are made showing some examples of how much bioenergy Swedish agriculture can deliver, depending on how much agricultural land is utilised for

  6. Possibilities and limitations for sustainable bioenergy production systems

    International Nuclear Information System (INIS)

    Smeets, Edward Martinus Wilhelmus Utrecht University

    2008-05-01

    The main objective of this thesis is to investigate the possibilities and limitations of sustainable bioenergy production. To this end, the following research questions have been formulated: (1). What is the potential of different world regions to produce biomass for energy generation in the year 2050, taking account of biological and climatological limitations, the use of biomass to produce food, materials and traditional bioenergy, as well as the need to maintain existing forests and thus protect biodiversity?; (2) What are the main bottlenecks to formulating and implementing sustainability criteria for bioenergy production?; (3) To what extent does complying with sustainability criteria have impacts on the costs and potential of bioenergy production?; (4) To what extent do fertilizer- and manure-induced nitrous oxide (N2O) emissions due to energy crop production have an impact on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first-generation biofuels?; (5) In terms of economic and environmental performance, how does Europe's production, storage and transport of miscanthus and switchgrass in 2004 compare to that in 2030? Throughout this thesis, specific attention is paid to knowledge gaps and their potential impact on results, the aim being to identify priorities for future research and development. Another key element of our research is that we evaluate the possibilities and limitations of strategies that are designed to improve the performance of bioenergy production systems and that may be incorporated in bioenergy certification schemes and bioenergy promoting policies

  7. Large or small? Rethinking China’s forest bioenergy policies

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Su, Yufang; Tennigkeit, Timm; Yang, Yongping; Xu, Jianchu

    2013-01-01

    China’s forest bioenergy policies are evolving against the backdrop of pressing national energy challenges similar to those faced by OECD countries, and chronic rural energy challenges more characteristic of developing countries. Modern forest bioenergy could contribute to solutions to both of these challenges. However, because of limitations in current technologies and institutions, significant policy and resource commitments would be required to make breakthroughs in either commercializing forest bioenergy or modernizing rural energy systems in China. Given the potential attention, funding, and resource trade-offs between these two goals, we provide an argument for why the focus of China’s forest bioenergy policy should initially be on addressing rural energy challenges. The paper concludes with a discussion on strategies for laying the groundwork for a modern, biomass-based energy infrastructure in rural China. -- Highlights: ► China’s bioenergy policy is at a crossroads. ► Trade-offs exist between forest bioenergy policy for urban and rural users in China. ► There are strong arguments for focusing forest bioenergy policy on rural areas. ► China’s rural energy policy should increasingly support modern energy carriers

  8. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus.

    Directory of Open Access Journals (Sweden)

    Jennifer eIngs

    2013-11-01

    Full Text Available High yielding perennial biomass crops of the species Miscanthus are widely recognized as one of the most promising lignocellulosic feedstocks for the production of bioenergy and bioproducts. Miscanthus is a C4 grass and thus has relatively high water use efficiency. Cultivated Miscanthus comprises primarily of a single clone, Miscanthus x giganteus, a sterile hybrid between M. sacchariflorus and M. sinensis. M. x giganteus is high yielding and expresses desirable combinations of many traits present in the two parental species types; however, it responds poorly to low water availability. To identify the physiological basis of the response to water stress in M. x giganteus and to identify potential targets for breeding improvements we characterised the physiological responses to water-deficit stress in a pot experiment. The experiment has provided valuable insights into the temporal aspects of drought-induced responses of M. x giganteus. Withholding water resulted in marked changes in plant physiology with growth-associated traits among the first affected, the most rapid response being a decline in the rate of stem elongation. A reduction in photosynthetic performance was among the second set of changes observed; indicated by a decrease in stomatal conductance followed by decreases in chlorophyll fluorescence and chlorophyll content. Measures reflecting the plant water status were among the last affected by the drought treatment. Metabolite analysis indicated that proline was a drought stress marker in M. x giganteus, metabolites in the proline synthesis pathway were more abundant when stomatal conductance decreased and dry weight accumulation ceased. The outcomes of this study in terms of drought-induced physiological changes, accompanied by a proof-of-concept metabolomics investigation, provide a platform for identifying targets for improved drought-tolerance of the Miscanthus bioenergy crop.

  9. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  10. BioenergyKDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Aaron T [ORNL; Movva, Sunil [ORNL; Karthik, Rajasekar [ORNL; Bhaduri, Budhendra L [ORNL; White, Devin A [ORNL; Thomas, Neil [ORNL; Chase, Adrian S Z [ORNL

    2014-01-01

    The Bioenergy Knowledge Discovery Framework (BioenergyKDF) is a scalable, web-based collaborative environment for scientists working on bioenergy related research in which the connections between data, literature, and models can be explored and more clearly understood. The fully-operational and deployed system, built on multiple open source libraries and architectures, stores contributions from the community of practice and makes them easy to find, but that is just its base functionality. The BioenergyKDF provides a national spatiotemporal decision support capability that enables data sharing, analysis, modeling, and visualization as well as fosters the development and management of the U.S. bioenergy infrastructure, which is an essential component of the national energy infrastructure. The BioenergyKDF is built on a flexible, customizable platform that can be extended to support the requirements of any user community especially those that work with spatiotemporal data. While there are several community data-sharing software platforms available, some developed and distributed by national governments, none of them have the full suite of capabilities available in BioenergyKDF. For example, this component-based platform and database independent architecture allows it to be quickly deployed to existing infrastructure and to connect to existing data repositories (spatial or otherwise). As new data, analysis, and features are added; the BioenergyKDF will help lead research and support decisions concerning bioenergy into the future, but will also enable the development and growth of additional communities of practice both inside and outside of the Department of Energy. These communities will be able to leverage the substantial investment the agency has made in the KDF platform to quickly stand up systems that are customized to their data and research needs.

  11. Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Djomo, Sylvestre Njakou

    2017-01-01

    Warming Potential (GWP100), Eutrophication Potential (EP), Non-Renewable Energy (NRE) use, Agricultural Land Occupation (ALO), Potential Freshwater Ecotoxicity (PFWTox) and Soil quality. With regard to the methods, soil organic carbon (SOC) change related to the land occupation was calculated based...

  12. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.

    Directory of Open Access Journals (Sweden)

    Meghan N Pawlowski

    Full Text Available Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2, as methane was oxidized and nitrous oxide (N2O emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.

  13. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.

    Science.gov (United States)

    Pawlowski, Meghan N; Crow, Susan E; Meki, Manyowa N; Kiniry, James R; Taylor, Andrew D; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae

    2017-01-01

    Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.

  14. Preparation of gasification feedstock from leafy biomass.

    Science.gov (United States)

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw.

  15. Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature.

    Science.gov (United States)

    Domene, X; Enders, A; Hanley, K; Lehmann, J

    2015-04-15

    Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350°C) and high temperature (550 or 600°C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In the last case, respiration decreased with pyrolysis temperature (r=-0.78; pcharacterization schemes or in management recommendations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Leading global energy and environmental transformation: Unified ASEAN biomass-based bio-energy system incorporating the clean development mechanism

    International Nuclear Information System (INIS)

    Lim, Steven; Lee, Keat Teong

    2011-01-01

    In recent years, the ten member countries in the Association of Southeast Asia Nations (ASEAN) have experienced high economic growth and, in tandem, a substantial increment in energy usage and demand. Consequently, they are now under intense pressure to secure reliable energy supplies to keep up with their growth rate. Fossil fuels remain the primary source of energy for the ASEAN countries, due to economic and physical considerations. This situation has led to unrestrained emissions of greenhouse gases to the environment and thus effectively contributes to global climate change. The abundant supply of biomass from their tropical environmental conditions offers great potential for ASEAN countries to achieve self-reliance in energy supplies. This fact can simultaneously transform into the main driving force behind combating global climate change, which is associated with the usage of fossil fuels. This research article explores the potential and advantages for ASEAN investment in biomass-based bio-energy supply, processing and distribution network with an emphasis on regional collaborations. It also investigates the implementation and operational challenges in terms of political, economic and technical factors for the cross-border energy scheme. Reliance of ASEAN countries on the clean development mechanism (CDM) to address most of the impediments in developing the project is also under scrutiny. Unified co-operation among ASEAN countries in integrating biomass-based bio-energy systems and utilising the clean development mechanism (CDM) as the common effort could serve as the prime example for regional partnerships in achieving sustainable development for the energy and environmental sector in the future. -- Highlights: →A study that explores feasibility for ASEAN investment in biomass-based bio-energy. →Focus is given on regional supply, processing and distribution network. →Cross-border implementation and operational challenges are discussed thoroughly.

  17. Smart bioenergy technologies and concepts for a more flexible bioenergy provision in future energy systems

    CERN Document Server

    2015-01-01

    Biomass is a vital source of renewable energy, because it offers a wide range of established and potential methods for energy generation. It is also an important facet of the progression toward a sustainable energy future. The need for further development in the provision of bioenergy is underlined by challenges affecting the biomass resource base, including rising demand for biomass for food, feed, materials and fuel. This is underlined by significant concerns over factors relating to land, such as soil, nutrients and biodiversity. This book examines and analyzes Germany's decade-long initiative toward implementation of an active policy for the transition of the energy system to make greater use of renewable energy sources, which has resulted in a significant increase in the amount of biomass used for electricity, heat and transport fuel. The book begins with a review of market and resource base issues, and moves on to analyze the technical options for a more integrated bioenergy use. The analysis spans the ...

  18. Increasing biomass resource availability through supply chain analysis

    International Nuclear Information System (INIS)

    Welfle, Andrew; Gilbert, Paul; Thornley, Patricia

    2014-01-01

    Increased inclusion of biomass in energy strategies all over the world means that greater mobilisation of biomass resources will be required to meet demand. Strategies of many EU countries assume the future use of non-EU sourced biomass. An increasing number of studies call for the UK to consider alternative options, principally to better utilise indigenous resources. This research identifies the indigenous biomass resources that demonstrate the greatest promise for the UK bioenergy sector and evaluates the extent that different supply chain drivers influence resource availability. The analysis finds that the UK's resources with greatest primary bioenergy potential are household wastes (>115 TWh by 2050), energy crops (>100 TWh by 2050) and agricultural residues (>80 TWh by 2050). The availability of biomass waste resources was found to demonstrate great promise for the bioenergy sector, although are highly susceptible to influences, most notably by the focus of adopted waste management strategies. Biomass residue resources were found to be the resource category least susceptible to influence, with relatively high near-term availability that is forecast to increase – therefore representing a potentially robust resource for the bioenergy sector. The near-term availability of UK energy crops was found to be much less significant compared to other resource categories. Energy crops represent long-term potential for the bioenergy sector, although achieving higher limits of availability will be dependent on the successful management of key influencing drivers. The research highlights that the availability of indigenous resources is largely influenced by a few key drivers, this contradicting areas of consensus of current UK bioenergy policy. - Highlights: • As global biomass demand increases, focus is placed indigenous resources. • A Biomass Resource Model is applied to analyse UK biomass supply chain dynamics. • Biomass availability is best increased

  19. Bioenergy in Brazil and Europe: a comparative analysis; Bioenergia no Brasil e na Europa: uma analise comparativa

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Nivalde Jose de [Universidade Federal do Rio de Janeiro (IE/UFRJ), RJ (Brazil). Inst. de Economia], e-mail: nivalde@ie.ufrj.br; Dantas, Guilherme de Azevedo [Universidade Federal do Rio de Janeiro (GESEL/UFRJ), RJ (Brazil). Grupo de Estudos do Setor Eletrico], e-mail: guilhermecrvg@yahoo.com.br

    2008-07-01

    A higher application of bioenergy is one of the existing ways to adequate the necessity of an expansion in the energy supply with the mitigation of global warming. The consumption of biofuel in the transport sector is the most usual and important use of biomass, however, bioenergy may also have a relevant contribution to the world electrical matrix. A comparative analysis shows that Brazil has consolidate the usage of biofuel while Europe is having problems to accomplish the biofuels levels established in the European Union guidelines. However, some european countries are developing their bioelectrical generation potential in a much more efficient way than Brazil. Therefore , brazilian policies to support bioelectricity should observe the successful instruments applied in Europe. (author)

  20. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    Science.gov (United States)

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  1. Bioenergy. A sustainable option for Germany?; Bioenergie. Eine nachhaltige Option fuer Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Schink, Bernhard [Konstanz Univ. (Germany)

    2012-12-15

    Biogas, biodiesel and bioethanol have experienced a major boom over the past years. However, a critical look at the climate impact, surface area efficiency and ecosystem impact of these energy resources shows them to be in need of reassessment, along with the policies in place for their promotion. This is the conclusion to which the German Academy of Sciences Leopoldina comes in an opinion entitled ''Bioenergy - possibilities and limits''.

  2. Switching to switchgrass: Pathways and consequences of bioenergy switchgrass entering the Midwestern landscape

    Science.gov (United States)

    Krohn, Brian

    The US has the ambitious goal of producing 60 billion liters of cellulosic biofuel by 2022. Researchers and US Federal Agencies have identified switchgrass (Panicum virgatum L.) as a potential feedstock for next generation biofuels to help meet this goal because of its excellent agronomic and environmental characteristics. With national policy supporting the development of a switchgrass to bioenergy industry two key questions arise: 1) Under what economic and political conditions will switchgrass enter the landscape? 2) Where on the landscape will switchgrass be cultivated given varying economic and political conditions? The goal of this dissertation is to answer these questions by analyzing the adoption of switchgrass across the upper Midwestern US at a high spatial resolution (30m) under varying economic conditions. In the first chapter, I model switchgrass yields at a high resolution and find considerable variability in switchgrass yields across space, scale, time, and nitrogen management. Then in the second chapter, I use the spatial results from chapter one to challenge the assumption that low-input (unmanaged) switchgrass systems cannot compete economically with high-input (managed) switchgrass systems. Finally, in the third chapter, I evaluate the economic and land quality conditions required for switchgrass to be competitive with a corn/soy rotation. I find that switchgrass can displace low-yielding corn/soy on environmentally sensitive land but, to be competitive, it requires economic support through payments for ecosystem services equal to 360 ha-1. With a total expenditure of 4.3 billion annually for ecosystem services, switchgrass could displace corn/soy on 12.2 million hectares of environmentally sensitive land and increase ethanol production above that from the existing corn by 20 billion liters. Thus, ecosystem services can be an effective means of meeting both bioenergy and environmental goals. Taking the three chapters in aggregate it is apparent

  3. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    Directory of Open Access Journals (Sweden)

    Bauen Ausilio

    2009-08-01

    Full Text Available Abstract Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy

  4. Bioenergy Research Programme. Yearbook 1994. Utilization of bioenergy and biomass conversion

    International Nuclear Information System (INIS)

    Alakangas, E.

    1995-01-01

    BIOENERGIA Research Programme is one of energy technology programmes of the Finnish Ministry of Trade and Industry (in 1995 TEKES, Technology Development Center). The aim of Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels and new equipment and methods for production, handling and using of biofuels. The funding for 1994 was nearly 50 million FIM and project numbered 60. The research area of biomass conversion consisted of 8 projects in 1994, and the research area of bioenergy utilization of 13 projects. The results of these projects carried out in 1994 are presented in this publication. The aim of the biomass conversion research is to produce more bio-oils and electric power as well at wood processing industry as at power plants. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. Possibilities to produce agrofibre in investigated at a laboratory study

  5. The potential demand for bioenergy in residential heating applications (bio-heat) in the UK based on a market segment analysis

    International Nuclear Information System (INIS)

    Jablonski, S.; Pantaleo, A.; Bauen, A.; Pearson, P.; Panoutsou, C.; Slade, R.

    2008-01-01

    How large is the potential demand for bio-heat in the UK? Whilst most research has focused on the supply of biomass for energy production, an understanding of the potential demand is crucial to the uptake of heat from bioenergy. We have designed a systematic framework utilising market segmentation techniques to assess the potential demand for biomass heat in the UK. First, the heat market is divided into relevant segments, characterised in terms of their final energy consumption, technological and fuel supply options. Second, the key technical, economic and organisational factors that affect the uptake of bioenergy in each heat segment are identified, classified and then analysed to reveal which could be strong barriers, which could be surmounted easily, and for which bioenergy heat represents an improvement compared to alternatives. The defined framework is applied to the UK residential sector. We identify provisionally the most promising market segments for bioenergy heat, and their current levels of energy demand. We find that, depending on the assumptions, the present potential demand for bio-heat in the UK residential sector ranges between 3% (conservative estimate) and 31% (optimistic estimate) of the total energy consumed in the heat market. (author)

  6. Projecting demand and supply of forest biomass for heating in Norway

    International Nuclear Information System (INIS)

    Tromborg, Erik; Havskjold, Monica; Lislebo, Ole; Rorstad, Per Kristian

    2011-01-01

    This paper assesses the increase in demand and supply for forest biomass for heating in Norway in 2020. By then there is a political aim to double the national production of bioenergy from the level in 2008. The competitiveness of woody biomass in central and district heating is analyzed in a model selecting the least-cost heating technology and scale in municipalities given a set of constraints and under different fuels price scenarios. The supply of forest biomass from roundwood is estimated based on data of forest inventories combined with elasticities regarding price and standing volumes. The supply of biomass from harvesting residues is estimated in an engineering approach based on data from the national forest inventories and roundwood harvest. The results show how the production of bioenergy is affected by changes in energy prices and support schemes for bioenergy. One conclusion from the analyses is that the government target of 14 TWh more bioenergy by 2020 is not likely to be met by current technologies and policy incentives. The contribution of the analysis is the detailed presentation of the heat market potentials and technology choices combined with supply functions for both roundwood and harvesting residues. - Highlights: → This paper accesses the demand and supply for forest biomass for heating in Norway in 2020. → Market share for wood in central and new district heating is analyzed in a cost-minimizing model. → The supply of forest biomass includes wood chips from import, roundwood and harvesting residues. → The production of bioenergy is affected by changes in energy prices and support schemes. → The government target for bioenergy is not met by current technologies and policy incentives.

  7. Climate effects of wood used for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Ros, Jan P.M.; Van Minnen, Jelle G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Arets, Eric J.M.M. [Alterra, Wageningen University WUR, Wageningen (Netherlands)

    2013-08-15

    Wood growth and natural decay both take time, and this is an important aspect of sustainability assessments of wood used for energy. Wood taken from forests is a carbon-neutral energy source in the long term, but there are many examples of potential sources of wood used for bioenergy for which net emission reductions are not achieved in 10 to 40 years - the time frame for most climate policy mitigation targets. This is caused by two factors. The first factor relates to the fact that the carbon cycles of wood have a long time span. After final felling, CO2 fixation rates are initially relatively low, but increase again as forests regrow. This regrowth takes many years, sometimes more than a century. Wood residues can either be used or left in the forest. By using them, the emissions from the otherwise decaying residues (taking 2 to 30 years) would be avoided. The second factor concerns the fact that, if the wood is used for bioenergy, then fossil energy emissions are being avoided. However, the direct emission levels from bioenergy are higher than those related to the fossil energy it replaces. These additional emissions also have to be compensated. The carbon debt caused by both factors has to be paid back first, before actual emission reductions can be realised. For wood residues (from harvesting or thinning) that are used to replace coal or oil products, these payback times are relatively short, of the order of 5 to 25 years, mainly depending on location and type of residue (longer if they replace gas). This is also the case when using wood from salvage logging. In most cases, when using wood from final felling directly for energy production, payback times could be many decades to more than a century, with substantial increases in net CO2 emissions, in the meantime. This is especially the case for many forests in Europe, because they are currently an effective carbon sink. Additional felling reduces average growth rates in these forests and thus the sequestration

  8. Biogas - Bioenergy potential in East Africa

    International Nuclear Information System (INIS)

    1997-01-01

    The workshop is part of the project: 'Energy production from Sisal Waste in East Africa' sponsored by the Danish Energy Agency, an agency under the Danish Ministry of Environment and Energy. This project has been carried out in close cooperation between the Danish Technological Institute and University of Dar es Salaam, Applied Microbiology Unit, who has also taken care of the practical arrangement. The main objectives of the workshop was: To present the ongoing research in East Africa on biogas production from organic residues; To get an overview of political and administrative issues related to promotion and implementation of renewable energy facilities in East Africa; To discuss appropriate set-ups for bioenergy facilities in East Africa. (au)

  9. Integrated Model of Bioenergy and Agriculture System

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    approach that builds on Life Cycle Inventory and carries out Life Cycle Impact Assessment for a con- sequential Life Cycle Assessment on integrated bioenergy and agriculture systems. The model framework is built in Python which connects various freely available soft- ware that handle different aspects......Due to increased burden on the environment caused by human activities, focus on industrial ecology designs are gaining more attention. In that perspective an environ- mentally effective integration of bionergy and agriculture systems has significant potential. This work introduces a modeling...... of the overall model. C- TOOL and Yasso07 are used in the carbon balance of agri- culture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for vari- ous impacts assessment methods. The model is success- fully...

  10. Technical/economical analysis of bioenergy systems

    International Nuclear Information System (INIS)

    Solantausta, Y.

    1998-01-01

    The objectives of the IEA Bioenergy Technoeconomic Analysis Activity are: (1) To promote development of thermochemical biomass conversion methods by carrying out selected site specific feasibility studies in participating countries. Both agricultural and woody biomasses will be converted either into electricity or boiler fuels; (2) To compare advanced technologies to commercial alternatives based on technoeconomic basis to establish future development needs, and (3) To facilitate information exchange between participants on relevant basic process issues. Five countries (Finland, Canada, USA, Norway, Austria) are participating to the Activity. Initially two feasibility studies are planned for each country. Each study has three common elements: site specific, technical, and economic data. The site specific cases are described below in short. Products in the cases are electricity, heat and fuel oil. Total of two cases per country are planned. (orig.)

  11. Biogas - Bioenergy potential in East Africa

    Energy Technology Data Exchange (ETDEWEB)