WorldWideScience

Sample records for bioelectrical impedance analysis

  1. Bioelectrical impedance analysis--part I

    DEFF Research Database (Denmark)

    Kyle, Ursula G; Bosaeus, Ingvar; De Lorenzo, Antonio D;

    2004-01-01

    The use of bioelectrical impedance analysis (BIA) is widespread both in healthy subjects and patients, but suffers from a lack of standardized method and quality control procedures. BIA allows the determination of the fat-free mass (FFM) and total body water (TBW) in subjects without significant ...

  2. Perioperative bioelectrical impedence analysis in neurosurgery.

    Science.gov (United States)

    El-Dawlatly, Abdelazeem A

    2005-10-01

    The use of bioelectrical impedence (BI) measurement to assess body composition has recently attracted the attention of anesthesiologists. Analysis of BI provides a non-invasive method to quantify fluid distribution in different body compartments. This study was designed to assess whether BI analysis reflects fluid depletion in neurosurgical patients with moderate blood loss. Six adult male patients scheduled for elective craniotomy under general anesthesia were studied. Exclusion criteria included patients with cardio-respiratory disease. BI analysis was performed at three stages, A, day before operation, B, during surgery and C, on the first postoperative day. Total body resistivity was measured by BI analysis with a four-terminal portable impedence analyzer. At each frequency, impedence was calculated as resistance (Rx)2 + reactance (Rc)2. The mean values of total body water (TBW) at stages A, B and C were 39.8 L (range: 33.1-46.7 L), 43.2 L (range: 33.1-66.2 L) and 36.8 L (range: 22.4-36.3 L) respectively with significant differences (P<0.05). The impedence at the three frequencies during stages A, B and C showed significant differences (P<0.05). In conclusion, we have found that in male neurosurgical patients multiple frequency BI measurements has reflected fluid balance perioperatively. Whether this observation remains true for other surgical procedures with massive blood loss, yet to be further investigated.

  3. BIOELECTRICAL IMPEDANCE VECTOR ANALYSIS IDENTIFIES SARCOPENIA IN NURSING HOME RESIDENTS

    Science.gov (United States)

    Loss of muscle mass and water shifts between body compartments are contributing factors to frailty in the elderly. The body composition changes are especially pronounced in institutionalized elderly. We investigated the ability of single-frequency bioelectrical impedance analysis (BIA) to identify b...

  4. Bioelectrical Impedance Vector Analysis and Muscular Fitness in Healthy Men

    Science.gov (United States)

    Rodríguez-Rodríguez, Fernando; Cristi-Montero, Carlos; González-Ruíz, Katherine; Correa-Bautista, Jorge Enrique; Ramírez-Vélez, Robinson

    2016-01-01

    Muscle strength can define the general muscular fitness (MF) measurable through hand-grip strength (HG), which is a factor that relates to the health of people of different ages. In this study we evaluated the muscle strength together with a bioimpedance electric analysis in 223 healthy Colombian adult subjects. The bioelectrical impedance vector analysis (BIVA) was conducted to determine the resistance (R), reactance (Xc) and phase angle (PhA). We classified the subjects into three groups (for tertiles), obtaining lower values of R and Xc in subjects with lower HG, plus a high correlation between PhA and HG. An increase in the level of PhA is associated with a high level of MF in a sample of healthy Latin American adult men. The BIVA’s parameters and PhA are a potentially effective preventive measure to be integrated into routine screening in the clinical setting. PMID:27384579

  5. Bioelectrical Impedance Vector Analysis and Muscular Fitness in Healthy Men

    Directory of Open Access Journals (Sweden)

    Fernando Rodríguez-Rodríguez

    2016-07-01

    Full Text Available Muscle strength can define the general muscular fitness (MF measurable through hand-grip strength (HG, which is a factor that relates to the health of people of different ages. In this study we evaluated the muscle strength together with a bioimpedance electric analysis in 223 healthy Colombian adult subjects. The bioelectrical impedance vector analysis (BIVA was conducted to determine the resistance (R, reactance (Xc and phase angle (PhA. We classified the subjects into three groups (for tertiles, obtaining lower values of R and Xc in subjects with lower HG, plus a high correlation between PhA and HG. An increase in the level of PhA is associated with a high level of MF in a sample of healthy Latin American adult men. The BIVA’s parameters and PhA are a potentially effective preventive measure to be integrated into routine screening in the clinical setting.

  6. Use of bioelectrical impedance analysis to determine body composition changes in HIV-associated wasting.

    Science.gov (United States)

    Klauke, Stephan; Fischer, Harald; Rieger, Armin; Frühauf, Lukas; Staszewski, Schlomo; Althoff, Peter-Henning; Helm, Eilke Brigitte

    2005-04-01

    AIDS wasting syndrome results in loss of lean body mass and body cell mass. This 12-week, open-label study used bioelectrical impedance analysis to measure body composition changes in 24 patients with AIDS wasting syndrome receiving recombinant human growth hormone (r-hGH). The primary endpoint was percentage monthly change in body weight before/after r-hGH. Secondary endpoints included change from baseline in body composition (bioelectrical impedance analysis), isometric strength and CD4+ count. Twenty patients completed the study: r-hGH resulted in mean weight gains (+2.7%, P = 0.146), and significant increases in mean body cell mass (+8.0%, P = 0.0211), lean body mass (+4.8%, P = 0.0373) and water (+5.5%, P r-hGH was generally well tolerated; the most frequent adverse events were fever (7.3%) and diarrhoea (6.3%). Thus, bioelectrical impedance analysis can detect improved body cell mass independent of changes in body weight resulting from r-hGH treatment in patients with AIDS wasting syndrome.

  7. Bioelectrical impedance analysis for the prediction of hot carcass weight in buffalo calf

    Directory of Open Access Journals (Sweden)

    Leopoldo Iannuzzi

    2010-01-01

    Full Text Available Twenty young buffalo male calves were fed ad libitum with a total mix ration and with vitamin-mineral integration for 14 months. Seven days before slaughter, the animals were weighed and bioelectrical impedance measurements were collected in live animals. Physical and chemical characteristics were assessed on the Longissimus dorsi muscle after slaughter. Correlations and regression equations were calculated to determine the possible use of bioelectrical impedance for evaluating hot carcass weight. Bioelectrical impedance analysis at different frequencies, simple correlation and analysis of regression were examined for all the data collected, supporting the possibility of hot carcass weight prediction with equation at multifrequency. The results show that, probably due to the variability in animal live weight, the distribution of the colour parameters was not normally distributed. Moreover, using different frequencies of resistance and reactance, hot carcass weight in buffalo may be predicted with the following equation: Y=98.47–8.84(Rs100KHz+4.41(Rs1000 KHz-116.27(Xc5 KHz+51.04(Xc50 KHz+20.30(Xc100 KHz-33.92(Xc500 KHz+9.01(Xc1000 KHz±ε (Adjusted R Square value of .907 and SE of 5.728 However, further studies are required to improve the technique also in buffalo, after standardization of the method.

  8. NOTE: Spatial dependence of the phase in localized bioelectrical impedance analysis

    Science.gov (United States)

    Shiffman, C. A.; Aaron, R.; Altman, A.

    2001-04-01

    The variety of phase functions, θ(z) = arctan X(z)/R(z), observed earlier on the thighs of healthy and seriously ill subjects via localized bioelectrical impedance analysis, can be represented by a model which combines realistic thigh shapes with homogeneous, axially symmetric conductivity tensors. While quantitative results depend sensitively on the way current is injected, it appears to be generally true that dθ/dz φz (and vice versa), where φr and φz are the phases of the radial and longitudinal conductivity components.

  9. Bioelectrical impedance analysis for severe stroke patients with upper extremity hemiplegia

    Science.gov (United States)

    Yoo, Chanuk; Kim, Jaehyung; Yang, Yeongae; Lee, Jinsu; Jeon, Gyerok

    2016-01-01

    [Purpose] This study is to analyze bioimpedance parameters and occupational assessment for severe stroke patients with upper extremity hemiplegia. [Subjects and Methods] Experimental subjects were 20 hemiplegic stroke patients receiving rehabilitation therapy between November to October, 2015. Prediction marker (PM), and phase angle (θ), a nd characteristic frequency (fc) were measured using bioelectrical impedance spectroscopy (MultiScan 5000). Bioelectrical impedance vector analysis (BIVA) was also obtained from the bioimpedance data. Then, these values were compared with occupational assessment tools. [Results] A significant differences in PM, θ, fc, and BIVA were observed between paretic region and non-paretic region of 5 severe stroke patients. These results were in good agreement with occupational assessment (pinch and hand grip strength, and ADL by MBI). [Conclusion] There were significant differences in impedance parameters between paretic region and non-paretic region of 5 severe stroke patients with upper extremity hemiplegia. Thus, the BIA could be useful tool for evaluating hemiplegic stroke patients receiving the rehabilitation therapy in the clinical application. PMID:27821919

  10. Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons.

    Science.gov (United States)

    Sergi, Giuseppe; De Rui, Marina; Stubbs, Brendon; Veronese, Nicola; Manzato, Enzo

    2016-08-27

    The assessment of body composition has important applications in the evaluation of nutritional status and estimating potential health risks. Bioelectrical impedance analysis (BIA) is a valid method for the assessment of body composition. BIA is an alternative to more invasive and expensive methods like dual-energy X-ray absorptiometry, computerized tomography, and magnetic resonance imaging. Bioelectrical impedance analysis is an easy-to-use and low-cost method for the estimation of fat-free mass (FFM) in physiological and pathological conditions. The reliability of BIA measurements is influenced by various factors related to the instrument itself, including electrodes, operator, subject, and environment. BIA assumptions beyond its use for body composition are the human body is empirically composed of cylinders, FFM contains virtually all the water and conducting electrolytes in the body, and its hydration is constant. FFM can be predicted by BIA through equations developed using reference methods. Several BIA prediction equations exist for the estimation of FFM, skeletal muscle mass (SMM), or appendicular SMM. The BIA prediction models differ according to the characteristics of the sample in which they have been derived and validated in addition to the parameters included in the multiple regression analysis. In choosing BIA equations, it is important to consider the characteristics of the sample in which it has been developed and validated, since, for example, age- and ethnicity-related differences could sensitively affect BIA estimates.

  11. Evaluation of segmental body composition by gender in obese children using bioelectric impedance analysis method

    Directory of Open Access Journals (Sweden)

    İhsan Çetin

    2015-12-01

    Full Text Available Objective: In this study, it was aimed to evaluate segmental body composition of children diagnosed with obesity using bioelectrical impedance analysis method in terms of different gender. Methods: 48 children, aged between 6-15 years, 21 of whom were boys while 27 were girls, diagnosed with obesity in Erciyes University Medical Faculty Department of Pediatric Endocrinology Outpatient Clinic were included in our study from April to June in 2011. Those over 95 percentile were defined as obese group. Tanita BC-418 device was used to analyze the body composition. Results: As a result of bioelectrical impedance analysis, lean body mass and body muscle mass were found to be statistically significantly higher in obese girls compared with obese boys. However, lean mass of the left arm, left leg muscle mass and basal metabolic rate were found to be statistically significantly lower in obese girls compared with obese boys. Conclusion: Consequently, it may be suggest that segmental analysis, where gender differences are taken into account, can provide proper exercise pattern and healthy way of weight loss in children for prevention of obesity and associated diseases including obesity and type 2 diabetics and cardiovascular diseases.

  12. Analysis of body water compartments after a short sauna bath using bioelectric impedance analysis.

    Science.gov (United States)

    Servidio, M-F; Mohamed, E I; Maiolo, C; Hereba, A T; Perrone, F; Garofano, P; Iacopino, L

    2003-10-01

    Studies have suggested that long-term sauna bathing may lower blood pressure in persons with hypertension by causing a direct loss of extracellular water and plasma minerals. The objective of the present study was to evaluate the effect of short-term sauna bathing on body water compartments as estimated by bioelectric impedance analysis (BIA). We recruited 15 men [mean age (+/-SD) of 23.93+/-5.12 years and mean body mass index (BMI) of 23.25+/-2.84 kg/m(2)] and 10 women matched for age and BMI. Total body resistance, reactance, and impedance were measured for all participants using BIA, at baseline, after a short sauna bath, and after a rest period. Total, extracellular, and intracellular water compartments were calculated using BIA formulae. There were no significant differences for any of the body water compartments when comparing the measurements taken before and after the sauna bath and after the rest period. However, it remains to be determined whether or not BIA is sensitive to rapid changes in water volume.

  13. Validity of bioelectrical impedance analysis to assess fat-free mass in head and neck cancer patients: an exploratory study

    NARCIS (Netherlands)

    Jager-Wittenaar, Harriët; Dijkstra, Pieter U.; Earthman, Carrie P.; Krijnen, Wim P.; Langendijk, Johannes A.; Laan, Bernard F.A. M. van der; Pruim, Jan; Roodenburg, Jan L.N.

    2013-01-01

    Bioelectrical impedance analysis (BIA) may be used to assess fet free mass (FFM) with reasonable validity based on mean-level comparisons, but differences between BIA and DXA may vary by about 4 kg in an individual patient. These results require confirmation in a larger sample of HNC patients. (Head

  14. Validation of bioelectrical-impedance analysis as a measurement of change in body composition in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, R.F.; Kunigk, A.; Alspaugh, M.; Andronis, P.T.; Leitch, C.A.; Schoeller, D.A. (Univ. of Chicago, IL (USA))

    1990-08-01

    The bioelectrical-impedance-analysis (BIA) method accurately measures body composition in weight-stable subjects. This study validates the use of BIA to measure change in body composition. Twelve obese females underwent weight loss at a mean rate of 1.16 kg/wk. Body composition was measured by deuterium oxide dilution (D2O), BIA, and skinfold anthropometry (SFA) at baseline and at 5% decrements in weight. Highly significant correlations were obtained between D2O and BIA (r = 0.971) and between D2O and SFA (r = 0.932). Overall, BIA predicted change in fat-free mass with greater accuracy (to 0.4 kg) and precision (+/- 1.28 kg) than did anthropometry (to 0.8 kg and +/- 2.58 kg, respectively). We conclude that BIA is a useful clinical method for measuring change in body composition.

  15. Lipid and moisture content modeling of amphidromous Dolly Varden using bioelectrical impedance analysis

    Science.gov (United States)

    Stolarski, J.T.; Margraf, F.J.; Carlson, J.G.; Sutton, T.M.

    2014-01-01

    The physiological well-being or condition of fish is most commonly estimated from aspects of individual morphology. However, these metrics may be only weakly correlated with nutritional reserves stored as lipid, the primary form of accumulated energy in fish. We constructed and evaluated bioelectrical impedance analysis (BIA) models as an alternative method of assessing condition in amphidromous Dolly Varden Salvelinus malma collected from nearshore estuarine and lotic habitats of the Alaskan Arctic. Data on electrical resistance and reactance were collected from the lateral and ventral surfaces of 192 fish, and whole-body percent lipid and moisture content were determined using standard laboratory methods. Significant inverse relationships between temperature and resistance and reactance prompted the standardization of these data to a constant temperature using corrective equations developed herein. No significant differences in resistance or reactance were detected among spawning and nonspawning females after accounting for covariates, suggesting that electrical pathways do not intersect the gonads. Best-fit BIA models incorporating electrical variables calculated from the lateral and ventral surfaces produced the strongest associations between observed and model-predicted estimates of proximate content. These models explained between 6% and 20% more of the variability in laboratory-derived estimates of proximate content than models developed from single-surface BIA data and 32% more than models containing only length and weight data. While additional research is required to address the potential effects of methodological variation, bioelectrical impedance analysis shows promise as a way to provide high-quality, minimally invasive estimates of Dolly Varden lipid or moisture content in the field with only small increases in handling time.

  16. Smartphone-Based Bioelectrical Impedance Analysis Devices for Daily Obesity Management

    Directory of Open Access Journals (Sweden)

    Ahyoung Choi

    2015-09-01

    Full Text Available Current bioelectric impedance analysis (BIA systems are often large, cumbersome devices which require strict electrode placement on the user, thus inhibiting mobile capabilities. In this work, we developed a handheld BIA device that measures impedance from multiple frequencies (5 kHz~200 kHz with four contact electrodes and evaluated the BIA device against standard body composition analysis systems: a dual-energy X-ray absorptiometry (DXA system (GE Lunar Prodigy, GE Healthcare, Buckinghamshire, UK and a whole-body BIA system (InBody S10, InBody, Co. Ltd, Seoul, Korea. In the study, 568 healthy participants, varying widely in body mass index, age, and gender, were recruited at two research centers: the Samsung Medical Center (SMC in South Korea and the Pennington Biomedical Research Center (PBRC in the United States. From the measured impedance data, we analyzed individual body fat and skeletal muscle mass by applying linear regression analysis against target reference data. Results indicated strong correlations of impedance measurements between the prototype pathways and corresponding InBody S10 electrical pathways (R = 0.93, p < 0.0001. Additionally, body fat estimates from DXA did not yield significant differences (p > 0.728 (paired t-test, DXA mean body fat 29.45 ± 10.77 kg, estimated body fat 29.52 ± 12.53 kg. Thus, this portable BIA system shows a promising ability to estimate an individual’s body composition that is comparable to large stationary BIA systems.

  17. Evaluation of body composition in COPD patients using multifrequency bioelectrical impedance analysis

    Science.gov (United States)

    de Blasio, Francesca; de Blasio, Francesco; Miracco Berlingieri, Giulia; Bianco, Andrea; La Greca, Marta; Franssen, Frits M E; Scalfi, Luca

    2016-01-01

    Background Multifrequency bioelectrical impedance analysis (MF-BIA) is a technique that measures body impedance (Z) at different frequencies (5, 10, 50, 100, and 250 kHz). Body composition may be estimated using empirical equations, which include BIA variables or, alternatively, raw BIA data may provide direct information on water distribution and muscle quality. Objectives To compare raw MF-BIA data between COPD patients and controls and to study their relationship with respiratory and functional parameters in COPD patients. Methods MF-BIA was performed (Human Im-Touch analyzer) in 212 COPD patients and 115 age- and BMI-matched controls. Fat-free mass (FFM) and fat mass were estimated from BIA data, and low- to high-frequency (5 kHz/250 kHz) impedance ratio was calculated. Physical fitness, lung function and respiratory muscle strength were also assessed in COPD patients. Results After adjusting for age, weight, and body mass index, FFM and the 5/250 impedance ratio were lower in COPD patients (P<0.001) and were negatively affected by disease severity. In both male and female patients, the 5/250 impedance ratio was significantly correlated mainly with age (r=−0.316 and r=−0.346, respectively). Patients with a 5/250 impedance ratio below median value had lower handgrip strength (P<0.001), 6-minute walk distance (P<0.005), respiratory muscle strength (P<0.005), forced expiratory volume in 1 second (P<0.05) and vital capacity (P<0.005). Finally, the 5/250 impedance ratio was reduced (P<0.05) in patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) III and IV (compared to those with GOLD I and II) or a BODE index between 6 and 10 points (compared to those with BODE index between 1 and 5 points). Conclusion MF-BIA may be a useful tool for assessing body composition and nutritional status in COPD patients. In particular, the impedance ratio could give valuable information on cellular integrity and muscle quality.

  18. Evaluation of bioelectrical impedance analysis for identifying overweight individuals at increased cardiometabolic risk: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Maxine J E Lamb

    Full Text Available OBJECTIVE: To investigate whether bioelectrical impedance analysis could be used to identify overweight individuals at increased cardiometabolic risk, defined as the presence of metabolic syndrome and/or diabetes. DESIGN AND METHODS: Cross-sectional study of a Scottish population including 1210 women and 788 men. The diagnostic performance of thresholds of percentage body fat measured by bioelectrical impedance analysis to identify people at increased cardiometabolic risk was assessed using receiver-operating characteristic curves. Odds ratios for increased cardiometabolic risk in body mass index categories associated with values above compared to below sex-specific percentage body fat thresholds with optimal diagnostic performance were calculated using multivariable logistic regression analyses. The validity of bioelectrical impedance analysis to measure percentage body fat in this population was tested by examining agreement between bioelectrical impedance analysis and dual-energy X-ray absorptiometry in a subgroup of individuals. RESULTS: Participants were aged 16-91 years and the optimal bioelectrical impedance analysis cut-points for percentage body fat for identifying people at increased cardiometabolic risk were 25.9% for men and 37.1% for women. Stratifying by these percentage body fat cut-points, the prevalence of increased cardiometabolic risk was 48% and 38% above the threshold and 24% and 19% below these thresholds for men and women, respectively. By comparison, stratifying by percentage body fat category had little impact on identifying increased cardiometabolic risk in normal weight and obese individuals. Fully adjusted odds ratios of being at increased cardiometabolic risk among overweight people with percentage body fat ≥ 25.9/37.1% compared with percentage body fat <25.9/37.1% as a reference were 1.93 (95% confidence interval: 1.20-3.10 for men and 1.79 (1.10-2.92 for women. CONCLUSION: Percentage body fat measured using

  19. Accuracy of segmental bioelectrical impedance analysis for predicting body composition in pre- and postmenopausal women.

    Science.gov (United States)

    Tanaka, Noriko I; Hanawa, Satoshi; Murakami, Haruka; Cao, Zhen-Bo; Tanimoto, Michiya; Sanada, Kiyoshi; Miyachi, Motohiko

    2015-01-01

    This study aimed to compare the accuracy for predicting body composition using single-frequent segmental bioelectrical impedance analysis (BIA) between pre- and postmenopausal women. A total f 559 Japanese women aged 30-88yr were divided into 4 groups by questionnaire: natural menopause, pathological menopause, regular menstruation, or irregular menstruation. The measurement values by dual-energy X-ray absorptiometry were used as a reference of the body composition. In terms of the results, regardless of the menopausal status, BIA slightly but significantly overestimated the percentage of body fat (standard error of estimate: 5.3%-6.7%) and the leg lean soft tissue mass (LSTM; 5.1%-6.1%), and underestimated the LSTM in the whole body (6.2%-7.6%) and arm (2.8%-3.7%). The absolute values of the predictive error for leg LSTM were significantly higher in postmenopausal groups than in the premenopausal ones. The corresponding values for the whole body and arm LSTM, and the percentage of body fat were higher in premenopausal groups than in postmenopausal ones. In conclusion, the predictive accuracy of BIA for postmenopausal women is not inferior to that for premenopausal ones, unless we target the leg LSTM.

  20. Bioelectrical impedance vector analysis for evaluating zinc supplementation in prepubertal and healthy children

    Directory of Open Access Journals (Sweden)

    Márcia Marília Gomes Dantas

    2015-09-01

    Full Text Available Background: The prevalence of abnormal nutritional status has increased in children and adolescents. Nutritional assessment is important for monitoring the health and nutritional status. Bioelectrical impedance vector analysis (BIVA combines changes in tissue hydration and structure and body composition that can be assessed. Objectives: The objective of this study was to use BIVA to evaluate nutritional status in 60 prepubertal children, aged between 8 and 9 years, supplemented with zinc, to detect possible changes in body composition. Design: We performed a randomized, controlled, triple-blind study. The children were divided into the control group (CG; sorbitol 10%, n=29 or the experimental group (EG; 10 mg Zn/day, n=31, and the duration of the experiment was 3 months. Anthropometric assessments were performed for all of the children. Results: The body mass index-for-age increased after oral zinc supplementation in the EG (p=0.005. BIVA indicated that the CG demonstrated a tendency for dehydration and decreased soft tissue and the EG demonstrated a tendency for increased soft tissue, primarily the fat-free mass. After analyses of BIVA ellipses, we observed that this method could detect improvements in body composition in healthy children supplemented with zinc. Conclusions: These results suggest that BIVA could be an auxiliary method for studying a small population undergoing zinc intervention.

  1. Bioelectrical impedance analysis determination of water content and distribution in the horse.

    Science.gov (United States)

    Latman, Neal S; Keith, Natalie; Nicholson, Alan; Davis, Michael

    2011-06-01

    A horse's hydration status is critical to its health. The accurate and quantitative determination of it has been problematic because of size, length and density of hair, and uneven topography. The objective of this study was to validate a bioelectrical impedance analysis (BIA) method for objectively quantifying hydration status. Monofrequency BIA values and simple biometric measurements were used to construct predictive equations for total body water, plasma, extracellular, and intra-cellular fluid volumes. These predictive equations were correlated with standard body fluid dilution reference methods. The result was an accuracy of ±0.64% for total body water, ±0.17% for plasma volume, ±1.91% for extra-cellular fluid, and ±0.57% for intra-cellular fluid compartments. Less than 5 min was required for all of the measurements and determinations. Therefore, it appears that an accurate measurement of body fluid distribution can be performed on horses using a fast, easy, non-invasive, inexpensive BIA method.

  2. Bioelectrical impedance modelling of gentamicin pharmacokinetic parameters.

    Science.gov (United States)

    Zarowitz, B J; Pilla, A M; Peterson, E L

    1989-10-01

    1. Bioelectrical impedance analysis was used to develop descriptive models of gentamicin pharmacokinetic parameters in 30 adult in-patients receiving therapy with gentamicin. 2. Serial blood samples obtained from each subject at steady state were analyzed and used to derive gentamicin pharmacokinetic parameters. 3. Multiple regression equations were developed for clearance, elimination rate constant and volume of distribution at steady state and were all statistically significant at P less than 0.05. 4. Clinical validation of this innovative technique is warranted before clinical use is recommended.

  3. Evaluation of body composition in COPD patients using multifrequency bioelectrical impedance analysis

    Directory of Open Access Journals (Sweden)

    de Blasio F

    2016-09-01

    Full Text Available Francesca de Blasio,1 Francesco de Blasio,2,3 Giulia Miracco Berlingieri,2 Andrea Bianco,3,4 Marta La Greca,1 Frits M E Franssen,5 Luca Scalfi1 1Department of Public Health, Medical School, “Federico II” University of Naples, 2Respiratory Medicine and Pulmonary Rehabilitation Section, Clinic Center, Private Hospital, Naples, 3Department of Medicine and Health Sciences “V Tiberio”, University of Molise, Campobasso, 4Department of Cardio-Thoracic and Respiratory Sciences, Second University of Naples, Naples, Italy; 5Department of Research and Education, CIRO, Horn, the NetherlandsBackground: Multifrequency bioelectrical impedance analysis (MF-BIA is a technique that measures body impedance (Z at different frequencies (5, 10, 50, 100, and 250 kHz. Body composition may be estimated using empirical equations, which include BIA variables or, alternatively, raw BIA data may provide direct information on water distribution and muscle quality.Objectives: To compare raw MF-BIA data between COPD patients and controls and to study their relationship with respiratory and functional parameters in COPD patients.Methods: MF-BIA was performed (Human Im-Touch analyzer in 212 COPD patients and 115 age- and BMI-matched controls. Fat-free mass (FFM and fat mass were estimated from BIA data, and low- to high-frequency (5 kHz/250 kHz impedance ratio was calculated. Physical fitness, lung function and respiratory muscle strength were also assessed in COPD patients.Results: After adjusting for age, weight, and body mass index, FFM and the 5/250 impedance ratio were lower in COPD patients (P<0.001 and were negatively affected by disease severity. In both male and female patients, the 5/250 impedance ratio was significantly correlated mainly with age (r=−0.316 and r=−0.346, respectively. Patients with a 5/250 impedance ratio below median value had lower handgrip strength (P<0.001, 6-minute walk distance (P<0.005, respiratory muscle strength (P<0.005, forced

  4. A Useful Tool As a Medical Checkup in a General Population—Bioelectrical Impedance Analysis

    Science.gov (United States)

    Enomoto, Mika; Adachi, Hisashi; Fukami, Ako; Kumagai, Eita; Nakamura, Sachiko; Nohara, Yume; Kono, Shoko; Nakao, Erika; Morikawa, Nagisa; Tsuru, Tomoko; Sakaue, Akiko; Fukumoto, Yoshihiro

    2017-01-01

    Accumulation of visceral fat leads to metabolic syndrome and increases risks of cerebro-cardiovascular diseases, which should be recognized and improved at the early stage in general population. Accurate measurement of visceral fat area (VFA) is commonly performed by the abdominal cross-sectional image measured by computed tomography scan, which is, however, limited due to the radiation exposure. The bioelectrical impedance analysis (OMRON, HDS-2000 DUALSCANR) has been recently developed to measure VFA, which is more easily accessible modality. In the present study, we investigated the clinical usefulness of DUALSCANR in 226 subjects who received health examination, including blood chemistries, electrocardiography, cardio, and carotid ultrasonography. VFA was measured within only just 5 min. Average of VFA was 83.5 ± 36.3 cm2 in men, and 64.8 ± 28.0 cm2 in women, which was correlated to weight (r = 0.7404, p < 0.0001), body mass index (BMI) (r = 0.7320, p < 0.0001), and waist circumstance (r = 0.7393, p < 0.0001). In multivariate analyses, VFA was significantly associated with weight (p < 0.0001), BMI (p < 0.0001), and waist circumstance (p < 0.0001). Compared to the group of smaller waist and normal BMI, VFA was significantly increased (p < 0.0001) in the group of larger waist and obese subjects. In conclusion, these results indicated that DUALSCANR is useful to measure VFA easily in general population, even in a large number of subjects. PMID:28210619

  5. Bioelectrical impedance analysis in clinical practice: implications for hepatitis C therapy BIA and hepatitis C

    Directory of Open Access Journals (Sweden)

    Kahraman Alisan

    2010-08-01

    Full Text Available Abstract Background Body composition analysis using phase angle (PA, determined by bioelectrical impedance analysis (BIA, reflects tissue electrical properties and has prognostic value in liver cirrhosis. Objective of this prospective study was to investigate clinical use and prognostic value of BIA-derived phase angle and alterations in body composition for hepatitis C infection (HCV following antiviral therapy. Methods 37 consecutive patients with HCV infection were enrolled, BIA was performed, and PA was calculated from each pair of measurements. 22 HCV genotype 3 patients treated for 24 weeks and 15 genotype 1 patients treated for 48 weeks, were examined before and after antiviral treatment and compared to 10 untreated HCV patients at 0, 24, and 48 weeks. Basic laboratory data were correlated to body composition alterations. Results Significant reduction in body fat (BF: 24.2 ± 6.7 kg vs. 19.9 ± 6.6 kg, genotype1; 15.4 ± 10.9 kg vs. 13.2 ± 12.1 kg, genotype 3 and body cell mass (BCM: 27.3 ± 6.8 kg vs. 24.3 ± 7.2 kg, genotype1; 27.7 ± 8.8 kg vs. 24.6 ± 7.6 kg, genotype 3 was found following treatment. PA in genotype 3 patients was significantly lowered after antiviral treatment compared to initial measurements (5.9 ± 0.7° vs. 5.4 ± 0.8°. Total body water (TBW was significantly decreased in treated patients with genotype 1 (41.4 ± 7.9 l vs. 40.8 ± 9.5 l. PA reduction was accompanied by flu-like syndromes, whereas TBW decline was more frequently associated with fatigue and cephalgia. Discussion BIA offers a sophisticated analysis of body composition including BF, BCM, and TBW for HCV patients following antiviral regimens. PA reduction was associated with increased adverse effects of the antiviral therapy allowing a more dynamic therapy application.

  6. Validity of estimating limb muscle volume by bioelectrical impedance.

    Science.gov (United States)

    Miyatani, M; Kanehisa, H; Masuo, Y; Ito, M; Fukunaga, T

    2001-07-01

    The present study aimed to investigate the validity of estimating muscle volume by bioelectrical impedance analysis. Bioelectrical impedance and series cross-sectional images of the forearm, upper arm, lower leg, and thigh on the right side were determined in 22 healthy young adult men using a specially designed bioelectrical impedance acquisition system and magnetic resonance imaging (MRI) method, respectively. The impedance index (L(2)/Z) for every segment, calculated as the ratio of segment length squared to the impedance, was significantly correlated to the muscle volume measured by MRI, with r = 0.902-0.976 (P estimation was 38.4 cm(3) for the forearm, 40.9 cm(3) for the upper arm, 107.2 cm(3) for the lower leg, and 362.3 cm(3) for the thigh. Moreover, isometric torque developed in elbow flexion or extension and knee flexion or extension was significantly correlated to the L(2)/Z values of the upper arm and thigh, respectively, with correlation coefficients of 0.770-0.937 (P knee flexors or extensors. Thus the present study indicates that bioelectrical impedance analysis may be useful to predict the muscle volume and to investigate possible relations between muscle size and strength capability in a limited segment of the upper and lower limbs.

  7. Assessment of body composition with bioelectrical impedance analysis in pregnant women with hyperemesis gravidarum before and after treatment.

    Science.gov (United States)

    Tazegül Pekin, A; Yılmaz, S A; Kerimoğlu, Ö Seçilmiş; Çelik, G; Doğan, N U; Beyhekim, H; Çelik, Ç

    2015-01-01

    More than half of pregnant women suffer from nausea and vomiting, in 0.5-1% of the pregnant women, if nausea and vomiting are severe and persistent, condition can progress to hyperemesis. We evaluated the fluid volume parameters in pregnant women with hyperemesis gravidarum, before and after treatment using the bioelectrical impedance vectors. A total of 70 pregnant women who had weight loss exceeding 5% of pre-pregnancy body weight were recruited for the study in the first trimester. The measurement of multi-frequency bioelectrical impedance analysis parameters was performed on the day of hospitalisation before any treatment and after treatment at 24 h and 72 h with the same procedure. Total body water, extracellular water, intracellular water, and fat-free mass index increased after treatment at 24 h (P treatment (11.3 ± 2.1 at enrolment, 5.1 ± 1.4 at 24 h and 4.3 ± 1.1 at 72 h) (P hyperemesis gravidarum, significant body composition changes occur and fluid replacement therapy performed during a short period of time, such as 24 h, provides improvement in body composition.

  8. Bioelectrical impedance analysis and anthropometry for the determination of body composition in rats: effects of high-fat and high-sucrose diets

    Directory of Open Access Journals (Sweden)

    Larissa Rodrigues Neto Angéloco

    2012-06-01

    Full Text Available OBJECTIVE: The aim of the present study was to determine the impedance of Wistar rats treated with high-fat and high-sucrose diets and correlate their biochemical and anthropometric parameters with chemical analysis of the carcass. METHODS: Twenty-four male Wistar rats were fed a standard (AIN-93, high-fat (50% fat or high-sucrose (59% of sucrose diet for 4 weeks. Abdominal and thoracic circumference and body length were measured. Bioelectrical impedance analysis was used to determine resistance and reactance. Final body composition was determined by chemical analysis. RESULTS: Higher fat intake led to a high percentage of liver fat and cholesterol and low total body water in the High-Fat group, but these changes in the biochemical profile were not reflected by the anthropometric measurements or bioelectrical impedance analysis variables. Anthropometric and bioelectrical impedance analysis changes were not observed in the High-Sucrose group. However, a positive association was found between body fat and three anthropometric variables: body mass index, Lee index and abdominal circumference. CONCLUSION: Bioelectrical impedance analysis did not prove to be sensitive for detecting changes in body composition, but body mass index, Lee index and abdominal circumference can be used for estimating the body composition of rats.

  9. Validity of segmental bioelectrical impedance analysis for estimating fat-free mass in children including overweight individuals.

    Science.gov (United States)

    Ohta, Megumi; Midorikawa, Taishi; Hikihara, Yuki; Masuo, Yoshihisa; Sakamoto, Shizuo; Torii, Suguru; Kawakami, Yasuo; Fukunaga, Tetsuo; Kanehisa, Hiroaki

    2017-02-01

    This study examined the validity of segmental bioelectrical impedance (BI) analysis for predicting the fat-free masses (FFMs) of whole-body and body segments in children including overweight individuals. The FFM and impedance (Z) values of arms, trunk, legs, and whole body were determined using a dual-energy X-ray absorptiometry and segmental BI analyses, respectively, in 149 boys and girls aged 6 to 12 years, who were divided into model-development (n = 74), cross-validation (n = 35), and overweight (n = 40) groups. Simple regression analysis was applied to (length)(2)/Z (BI index) for each of the whole-body and 3 segments to develop the prediction equations of the measured FFM of the related body part. In the model-development group, the BI index of each of the 3 segments and whole body was significantly correlated to the measured FFM (R(2) = 0.867-0.932, standard error of estimation = 0.18-1.44 kg (5.9%-8.7%)). There was no significant difference between the measured and predicted FFM values without systematic error. The application of each equation derived in the model-development group to the cross-validation and overweight groups did not produce significant differences between the measured and predicted FFM values and systematic errors, with an exception that the arm FFM in the overweight group was overestimated. Segmental bioelectrical impedance analysis is useful for predicting the FFM of each of whole-body and body segments in children including overweight individuals, although the application for estimating arm FFM in overweight individuals requires a certain modification.

  10. Inter-sport variability of muscle volume distribution identified by segmental bioelectrical impedance analysis in four ball sports

    Directory of Open Access Journals (Sweden)

    Yamada Y

    2013-04-01

    Full Text Available Yosuke Yamada,1,2 Yoshihisa Masuo,3 Eitaro Nakamura,4 Shingo Oda5 1Laboratory of Sports and Health Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 2Japan Society for the Promotion of Science, Tokyo, Japan; 3Waseda University Research Institute for Elderly Health, Saitama, Japan; 4Department of Sport Science, Kyoto Iken College of Medicine and Health, Kyoto, Japan; 5Faculty of Health and Well-being, Kansai University, Osaka, Japan Abstract: The aim of this study was to evaluate and quantify differences in muscle distribution in athletes of various ball sports using segmental bioelectrical impedance analysis (SBIA. Participants were 115 male collegiate athletes from four ball sports (baseball, soccer, tennis, and lacrosse. Percent body fat (%BF and lean body mass were measured, and SBIA was used to measure segmental muscle volume (MV in bilateral upper arms, forearms, thighs, and lower legs. We calculated the MV ratios of dominant to nondominant, proximal to distal, and upper to lower limbs. The measurements consisted of a total of 31 variables. Cluster and factor analyses were applied to identify redundant variables. The muscle distribution was significantly different among groups, but the %BF was not. The classification procedures of the discriminant analysis could correctly distinguish 84.3% of the athletes. These results suggest that collegiate ball game athletes have adapted their physique to their sport movements very well, and the SBIA, which is an affordable, noninvasive, easy-to-operate, and fast alternative method in the field, can distinguish ball game athletes according to their specific muscle distribution within a 5-minute measurement. The SBIA could be a useful, affordable, and fast tool for identifying talents for specific sports. Keywords: discriminant analysis, cluster and factor analysis, segmental bioelectrical impedance analysis, baseball, lacrosse

  11. Measuring body composition in dogs using multifrequency bioelectrical impedance analysis and dual energy X-ray absorptiometry.

    Science.gov (United States)

    Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C

    2016-06-01

    Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs.

  12. Bioelectric impedance phase angle in breast carcinoma

    Directory of Open Access Journals (Sweden)

    Ruchi Tyagi

    2014-01-01

    Full Text Available Context: Worldwide breast cancer is the most frequently diagnosed life threatening cancer and the leading cause of death in women. Bioelectric impedance analysis (BIA affords an emerging opportunity to assess prognosis because of its ability to non invasively assess cell and plasma membrane structure and function by means of phase angle. Aims: To compare the phase angle between patients of breast cancer and their matched control with the help of BIA. Settings and Design: After taking clearance from ethical committee, a total of 34 female cases of histologically proven infiltrating ductal breast carcinoma were included from the surgery IPD, department of surgery. Equal numbers of the matched controls were recruited from the friends and relatives of cases. Materials and Methods: Bio Electrical Impedance Analyzer (BIA BODY STAT QUAD SCAN 4000 was used to measure resistance (R and reactance (Xc by recording a voltage drop in applied current. Phase angle is the ratio of reactance to resistance and is a measure of cell vitality. Statistical analysis used: Unpaired "t" test was applied. Results: In control group, the phase angle showed a mean of 5.479 whereas in test group, it showed a mean value of 4.726. The P value showed a significant difference (P < 0.0001. The smaller the phase angle values were higher was the tumor, nodes, metastases (TNM staging. The phase angles differed significantly from the healthy age matched control values. Conclusions: This study demonstrated that phase angle is a strong predictor of severity of breast cancer and differed significantly between the two groups.

  13. Experimental verification of depolarization effects in bioelectrical impedance measurement.

    Science.gov (United States)

    Chen, Xiaoyan; Lv, Xinqiang; Du, Meng

    2014-01-01

    The electrode polarization effects on bioelectrical impedance measurement at low-frequency cannot be ignored. In this paper, the bioelectrical data of mice livers are measured to specify the polarization effects on the bio-impedance measurement data. We firstly introduce the measurement system and methodology. Using the depolarization method, the corrected results are obtained. Besides, the specific effects of electrode polarization on bio-impedance measurement results are investigated using comparative analysis of the previous and posterior correction results from dielectric spectroscopy, Cole-Cole plot, conductivity and spectroscopy of dissipation tangent. Experimental results show that electrode polarization has a significant influence on the characteristic parameters of mouse liver tissues. To be specific, we see a low-frequency limit resistance R0 increase by 19.29%, a reactance peak XP increase by 8.50%, a low-frequency limit conductivity Kl decrease by 17.65% and a dissipation peak tangent decrease by 160%.

  14. Multi-frequency bioelectrical impedance analysis (BIA) compared to magnetic resonance imaging (MRI) for estimation of fat-free mass in colorectal cancer patients treated with chemotherapy

    DEFF Research Database (Denmark)

    Palle, Stine Skov; Tang Møllehave, Line; Kadkhoda, Zahra Taheri

    2016-01-01

    Background: Changes in body composition in cancer patients during chemotherapy are associated with treatment related toxicities or mortalities. Thus, it is relevant to identify accessible, relatively inexpensive, portable and reliable tools for evaluation of body composition in cancer patients...... during the course of their treatments. Objective: To examine relationships between single cross-sectional thighs magnetic resonance imaging (MRI), skeletal muscle mass (SM) as reference and multi-frequency bioelectrical impedance analysis (BIA) fat free mass (FFM) in patients with colorectal cancer...

  15. The accuracy of hand-to-hand bioelectrical impedance analysis in predicting body composition in college-age female athletes.

    Science.gov (United States)

    Esco, Michael R; Olson, Michele S; Williford, Henry N; Lizana, Suheil N; Russell, Angela R

    2011-04-01

    The purpose of this investigation was to determine the accuracy of hand-to-hand bioelectrical impedance analysis (BIA) for estimating body composition in college-age female athletes using dual-energy X-ray absorptiometry (DEXA) as the criterion measure. Forty National Association for Intercollegiate Athletics college female athletes volunteered to participate in this study. For each participant, total body fat percentage (BF%) and fat-free mass (FFM) were obtained via BIA and DEXA. The mean BF% and FFM values obtained by BIA were compared with the criterion DEXA measure. The DEXA strongly correlated to the BIA for BF% (r = 0.74, R2 = 0.55, SEE = 3.60, and p < 0.01) and FFM (r = 0.84, R2 = 0.71, SEE = 2.45, p < 0.01). However, when compared with the DEXA, the mean values for BIA were significantly lower for BF% (DEXA = 27.6 ± 5.3%, BIA = 22.5 ± 3.5%, p < 0.01) and higher for FFM (DEXA = 47.2 ± 4.5 kg, BIA = 50.6 ± 4.6 kg, p < 0.01). The results of this investigation indicate that hand-to-hand BIA significantly underestimates BF% and overestimated FFM in college-age female athletes when compared with the criterion DEXA. Practitioners should use caution when analyzing body composition with hand-held BIA in a population of athletic women.

  16. [Effects of different electrodes on bioelectrical impedance values].

    Science.gov (United States)

    Nakadomo, F; Tanaka, K; Yokoyama, T; Maeda, K

    1990-01-01

    Effects of different electrodes on bioelectrical impedance values measured by the Selco bioelectrical impedance plethysmograph (SIF-881, Japan) were investigated using 8 adult females (age: 35.3 +/- 7.6 yr, Ht: 156.9 +/- 3.8 cm, Wt: 57.1 +/- 9.9 kg, and hydrodensitometrically determined body fat: 29.4 +/- 6.0%). The Lectec MP3000 electrode (Liberty Carton, USA) and the Bipolar electrode (Sanwa, Japan) produced significantly higher impedance values when compared to the Disposable electrode (Adovance, Japan) and the ECG electrode (Nihon Kohden, Japan). The coefficient of variation was significantly lower for the Disposable electrode (0.8%) and the ECG electrode (0.2%) than that for the Lectec MP3000 electrode (2.3%) and the Bipolar electrode (4.9%). In conclusion, the ECG electrode provides higher bioelectrical impedance values with the highest reproducibility in the assessment of human body composition by the bioelectrical impedance plethysmography.

  17. Comparison of body fat in Brazilian adult females by bioelectrical impedance analysis

    Science.gov (United States)

    Altamir, Vaz; Frère, Slaets Annie France; Ramírez Leonardo, López

    2012-12-01

    Body-fat is essential for human body, provided that its amount is at healthy levels. If in-excess body-fat is deleterious, its lack is otherwise also harmful. Estimated percent body-fat performed with commercially available devices measuring bioimpedance have many advantages, such as easy measurement and low cost. However, these measurements are based on standard models and equations that are not disclosed by manufacturers, and this leads to questioning the validity of these estimates for Brazilian females. The aim of this study was to compare electrical tetrapolar and octapolar impedance results obtained with commercially available equipment: Maltron BF-906 and OMRON 510-W. Data analysis involved descriptive and inferential statistics. Devices used in this study to estimate body fat quantity have not shown any significant differences in results; this is a major issue when selecting equipment based on three factors: study focus, available financial resources, and target population. Results obtained from the two devices have not shown any significant differences, which lead to the conclusion that either device may be reliably used.

  18. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population

    Science.gov (United States)

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B.; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  19. The investigation of the some body parameters of obese and (obese+diabetes) patients with using bioelectrical impedance analysis techniques

    Science.gov (United States)

    Yerlikaya, Emrah; Karageçili, Hasan; Aydin, Ruken Zeynep

    2016-04-01

    Obesity is a key risk for the development of hyperglycemia, hypertension, hyperlipidemia, insulin resistance and is totally referred to as the metabolic disorders. Diabetes mellitus, a metabolic disorder, is related with hyperglycemia, altered metabolism of lipids, carbohydrates and proteins. The minimum defining characteristic feature to identify diabetes mellitus is chronic and substantiated elevation of circulating glucose concentration. In this study, it is aimed to determine the body composition analyze of obese and (obese+diabetes) patients.We studied the datas taken from three independent groups with the body composition analyzer instrument. The body composition analyzer calculates body parameters, such as body fat ratio, body fat mass, fat free mass, estimated muscle mass, and base metabolic rate on the basis of data obtained by Dual Energy X-ray Absorptiometry using Bioelectrical Impedance Analysis. All patients and healthy subjects applied to Siirt University Medico and their datas were taken. The Statistical Package for Social Sciences version 21 was used for descriptive data analysis. When we compared and analyzed three groups datas, we found statistically significant difference between obese, (obese+diabetes) and control groups values. Anova test and tukey test are used to analyze the difference between groups and to do multiple comparisons. T test is also used to analyze the difference between genders. We observed the statistically significant difference in age and mineral amount peducation level among the illiterate and university graduates; fat mass kg, fat percentage, internal lubrication, body mass index, water percentage, protein mass percentage, mineral percentage p<0.05, significant statistically difference were observed. This difference especially may result of a sedentary lifestyle.

  20. Hand-to-Hand Model for Bioelectrical Impedance Analysis to Estimate Fat Free Mass in a Healthy Population

    Directory of Open Access Journals (Sweden)

    Hsueh-Kuan Lu

    2016-10-01

    Full Text Available This study aimed to establish a hand-to-hand (HH model for bioelectrical impedance analysis (BIA fat free mass (FFM estimation by comparing with a standing position hand-to-foot (HF BIA model and dual energy X-ray absorptiometry (DXA; we also verified the reliability of the newly developed model. A total of 704 healthy Chinese individuals (403 men and 301 women participated. FFM (FFMDXA reference variables were measured using DXA and segmental BIA. Further, regression analysis, Bland–Altman plots, and cross-validation (2/3 participants as the modeling group, 1/3 as the validation group; three turns were repeated for validation grouping were conducted to compare tests of agreement with FFMDXA reference variables. In male participants, the hand-to-hand BIA model estimation equation was calculated as follows: FFMmHH = 0.537 h2/ZHH − 0.126 year + 0.217 weight + 18.235 (r2 = 0.919, standard estimate of error (SEE = 2.164 kg, n = 269. The mean validated correlation coefficients and limits of agreement (LOAs of the Bland–Altman analysis of the calculated values for FFMmHH and FFMDXA were 0.958 and −4.369–4.343 kg, respectively, for hand-to-foot BIA model measurements for men; the FFM (FFMmHF and FFMDXA were 0.958 and −4.356–4.375 kg, respectively. The hand-to-hand BIA model estimating equation for female participants was FFMFHH = 0.615 h2/ZHH − 0.144 year + 0.132 weight + 16.507 (r2 = 0.870, SEE = 1.884 kg, n = 201; the three mean validated correlation coefficient and LOA for the hand-to-foot BIA model measurements for female participants (FFMFHH and FFMDXA were 0.929 and −3.880–3.886 kg, respectively. The FFMHF and FFMDXA were 0.942 and −3.511–3.489 kg, respectively. The results of both hand-to-hand and hand-to-foot BIA models demonstrated similar reliability, and the hand-to-hand BIA models are practical for assessing FFM.

  1. Malnutrition in remission of childhood cancers as assessed by bioelectric impedance analysis

    Directory of Open Access Journals (Sweden)

    M. V. Konovalova

    2014-07-01

    Full Text Available The results of our cross-sectional bioimpedance study of children aged 7–17 years cured of cancer during follow-up (patients’ group, n = 552, remission time range 0–15 years and of age-matched healthy controls (n = 1,500 show significant intergroup differences in body height and body composition parameters. The most pronounced alterations in the patients’ group were observed in standardized values of phase angle reflecting a sharp decrease in the percentage of metabolically active body cell mass in fat-free mass. Malnutrition, judged from the prevalence of obesity and low phase angle, was observed in 52.7 % of our patients reaching a maximum of 76.8 % in a subgroup of children with CNS tumors. In view of known association that exists between malnutrition and reduced tolerance to chemotherapy, increased susceptibility to infections and adverse outcomes rate, we recommend using bioimpedance analysis in remission of childhood cancers in order to monitoring and timely correction of nutritional state as well as for prevention of delayed cardiovascular risks.

  2. Malnutrition in remission of childhood cancers as assessed by bioelectric impedance analysis

    Directory of Open Access Journals (Sweden)

    M. V. Konovalova

    2012-01-01

    Full Text Available The results of our cross-sectional bioimpedance study of children aged 7–17 years cured of cancer during follow-up (patients’ group, n = 552, remission time range 0–15 years and of age-matched healthy controls (n = 1,500 show significant intergroup differences in body height and body composition parameters. The most pronounced alterations in the patients’ group were observed in standardized values of phase angle reflecting a sharp decrease in the percentage of metabolically active body cell mass in fat-free mass. Malnutrition, judged from the prevalence of obesity and low phase angle, was observed in 52.7 % of our patients reaching a maximum of 76.8 % in a subgroup of children with CNS tumors. In view of known association that exists between malnutrition and reduced tolerance to chemotherapy, increased susceptibility to infections and adverse outcomes rate, we recommend using bioimpedance analysis in remission of childhood cancers in order to monitoring and timely correction of nutritional state as well as for prevention of delayed cardiovascular risks.

  3. Nutritional status and body composition by bioelectrical impedance vector analysis: A cross sectional study in mild cognitive impairment and Alzheimer’s disease

    Science.gov (United States)

    Pomati, Simone; Maggiore, Laura; Forcella, Marica; Cucumo, Valentina; Ghiretti, Roberta; Grande, Giulia; Muzio, Fulvio; Mariani, Claudio

    2017-01-01

    Aims Analysis of nutritional status and body composition in Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI). Methods A cross-sectional study was performed in a University-Hospital setting, recruiting 59 patients with AD, 34 subjects with MCI and 58 elderly healthy controls (HC). Nutritional status was assessed by anthropometric parameters (body mass index; calf, upper arm and waist circumferences), Mini Nutritional Assessment (MNA) and body composition by bioelectrical impedance vector analysis (BIVA). Variables were analyzed by analysis of variance and subjects were grouped by cognitive status and gender. Results Sociodemographic variables did not differ among the three groups (AD, MCI and HC), except for females’ age, which was therefore used as covariate in a general linear multivariate model. MNA score was significantly lower in AD patients than in HC; MCI subjects achieved intermediate scores. AD patients (both sexes) had significantly (p<0.05) higher height-normalized impedance values and lower phase angles (body cell mass) compared with HC; a higher ratio of impedance to height was found in men with MCI with respect to HC. With BIVA method, MCI subjects showed a significant displacement on the RXc graph on the right side indicating lower soft tissues (Hotelling’s T2 test: men = 10.6; women = 7.9;p < 0,05) just like AD patients (Hotelling’s T2 test: men = 18.2; women = 16.9; p<0,001). Conclusion Bioelectrical parameters significantly differ from MCI and AD to HC; MCI showed an intermediate pattern between AD and HC. Longitudinal studies are required to investigate if BIVA could reflect early AD-changes in body composition in subjects with MCI. PMID:28187148

  4. Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications.

    Science.gov (United States)

    Harder, Rene; Diedrich, Andre; Whitfield, Jonathan S; Buchowski, Macie S; Pietsch, John B; Baudenbacher, Franz J

    2016-08-01

    Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization. The export of patient measurement results into a clinical research database facilitates the aggregation of bioelectrical impedance analysis and biolectrical impedance vector analysis (BIVA) data across multiple subjects and/or studies. The performance of the spectrometer was evaluated using a passive tissue equivalent circuit model as well as a comparison of body composition changes assessed with bioelectrical impedance and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Our results show an absolute error of 1% for resistance and 5% for reactance measurements in the frequency range of 3 kHz to 150 kHz. A linear regression of BIA and DXA fat mass estimations showed a strong correlation (r(2)=0.985) between measures with a maximum absolute error of 6.5%. The simplicity of BIA measurements, a cost effective design and the simple visual representation of impedance data enables patients to compare and determine body composition during the time course of a specific treatment plan in a clinical or home environment.

  5. Impact of hemodialysis on dual X-ray absorptiometry, bioelectrical impedance measurements, and anthropometry

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Hansen, T B; Høgsberg, I M;

    1996-01-01

    ), bioelectrical impedance analysis (BIA), and simple anthropometry in 19 patients (9 women and 10 men, mean age 46 y) before and after hemodialysis, removing 0.9-4.3 L (x: 2.8L) of ultrafiltrate. The reduction in fat-free mass (FFM) measured by DXA was highly correlated with the ultrafiltrate, as determined...

  6. Effectiveness of thigh-to-thigh current path for the measurement of abdominal fat in bioelectrical impedance analysis.

    Science.gov (United States)

    Hong, Ki Hwan; Lim, Yong Gyu; Park, Kwang Suk

    2009-12-01

    We present a new method measuring body impedance using a thigh-to-thigh current path, which can reflect the abdominal fat portion more sensitively and can be conveniently applied during the daily use on a toilet seat. Two pairs of electrodes were installed on a toilet seat to provide current and to permit voltage measurement through a thigh-to-thigh current path. The effectiveness of the method was compared with conventional foot-to-foot and hand-to-foot current paths by simulation and by experiments referenced to computed tomography (CT) image analysis. Body impedance using three different current paths was measured, and abdominal CT images were acquired for eight subjects. Measured body impedances were compared with the visceral to subcutaneous fat ratio (VF/SF) calculated from the CT-determined abdominal fat volume. The thigh-to-thigh current path was about 75% more sensitive in abdominal fat measurement than the conventional current paths in simulation experiments and displayed a higher VF/SF correlation (r = 0.768) than the foot-to-foot (r = 0.425) and hand-to-foot (r = 0.497) current paths.

  7. Effect of the ethinylestradiol/norelgestromin contraceptive patch on body composition. Results of bioelectrical impedance analysis in a population of Italian women

    Directory of Open Access Journals (Sweden)

    Bruni Vincenzina

    2008-08-01

    Full Text Available Abstract Background As weight gain is one of the most frequently cited reasons for not using and for discontinuing hormonal contraceptives, in an open-label, single-arm, multicentre clinical study we evaluated the effect of the ethinylestradiol/norelgestromin contraceptive patch (EVRA, Janssen-Cilag International, Belgium on body composition using bioelectrical impedance analysis (BIA. Methods Body weight and impedance vector components (resistance (R and reactance (Xc, at 50 kHz frequency, Akern-RJL Systems analyzer were recorded before entry, after 1, 3 and 6 months in 182 Italian healthy women aged 29 yr (18 to 45, and with BMI 21.8 kg/m2 (16 to 31. Total body water (TBW was estimated with a BIA regression equation. Vector BIA was performed with the RXc mean graph method and the Hotelling's T2 test for paired and unpaired data. Results After 6 months body weight increased by 0.64 kg (1.1% and TBW increased by 0.51 L (1.7%. The pattern of impedance vector displacement indicated a small increase in soft tissue hydration (interstitial gel fluid. Body composition changes did not significantly differ among groups of previous contraceptive methods. Arterial blood pressure did not significantly change over time. Conclusion After 6 months of treatment with the ethinylestradiol/norelgestromin contraceptive patch we found a minimal, clinically not relevant, increase in body weight less than 1 kg that could be attributed to an adaptive interstitial gel hydration. This fluctuation is physiological as confirmed by the lack of any effect on blood pressure. This could be useful in increasing women's choice, acceptability and compliance of the ethinylestradiol/norelgestromin contraceptive patch.

  8. Prediction of fat-free mass and percentage of body fat in neonates using bioelectrical impedance analysis and anthropometric measures: validation against the PEA POD.

    Science.gov (United States)

    Lingwood, Barbara E; Storm van Leeuwen, Anne-Martine; Carberry, Angela E; Fitzgerald, Erin C; Callaway, Leonie K; Colditz, Paul B; Ward, Leigh C

    2012-05-01

    Accurate assessment of neonatal body composition is essential to studies investigating neonatal nutrition or developmental origins of obesity. Bioelectrical impedance analysis or bioimpedance analysis is inexpensive, non-invasive and portable, and is widely used in adults for the assessment of body composition. There are currently no prediction algorithms using bioimpedance analysis in neonates that have been directly validated against measurements of fat-free mass (FFM). The aim of the study was to evaluate the use of bioimpedance analysis for the estimation of FFM and percentage of body fat over the first 4 months of life in healthy infants born at term, and to compare these with estimations based on anthropometric measurements (weight and length) and with skinfolds. The present study was an observational study in seventy-seven infants. Body fat content of infants was assessed at birth, 6 weeks, 3 and 4·5 months of age by air displacement plethysmography, using the PEA POD body composition system. Bioimpedance analysis was performed at the same time and the data were used to develop and test prediction equations for FFM. The combination of weight+sex+length predicted FFM, with a bias of < 100 g and limits of agreement of 6-13 %. Before 3 months of age, bioimpedance analysis did not improve the prediction of FFM or body fat. At 3 and 4·5 months, the inclusion of impedance in prediction algorithms resulted in small improvements in prediction of FFM, reducing the bias to < 50 g and limits of agreement to < 9 %. Skinfold measurements performed poorly at all ages.

  9. The comparative evaluation of patients′ body dry weight under hemodialysis using two methods: Bioelectrical impedance analysis and conventional method

    Directory of Open Access Journals (Sweden)

    Neda Alijanian

    2012-01-01

    Full Text Available Background: Dry weight (DW is an important concept related to patients undergoing hemodialysis. Conventional method seems to be time consuming and operator dependent. Bio impedance analysis (BIA is a new and simple method reported to be an accurate way for estimating DW. In this study, we aimed to compare the conventional estimation of DW with measuring DW by BIA. Materials and Methods: This study involved 130 uremic patients, performed in Isfahan, Iran. DW was calculated by both conventional (CDW and BIA (BIADW method and results were compared based on different grouping factors including sex, underlying cause of renal failure (RF (diabetic RF and non-diabetic RF, body mass index (BMI status, and sessions of hemodialysis. We also calculated the difference between DWs of 2 methods (DW diff = CDW-BIADW. Results: The mean of BIADW was significantly lower than CDW (57.20 ± 1.82 vs 59.36 ± 1.77, P value < 0.001. After grouping cases according to the underlying cause, BMI, sex, and dialysis sessions BIADW was significantly lower than CDW. Conclusion: Based on the combination of problems with CDW measurement which are corrected by BIA, and more clinical reliability of CDW, we concluded that although conventional method is a time-consuming and operator-dependent way to assess DW, DW could be estimated by combining both of these methods by finding the mathematic correlation between these methods.

  10. Calibration of bioelectrical impedance analysis for body composition assessment in Ethiopian infants using air-displacement plethysmography

    DEFF Research Database (Denmark)

    Christensen, Rasmus Wibæk; Kæstel, Pernille; Skov, R.

    2015-01-01

    on BIA in 0- to 6-month-old Ethiopian infants. SUBJECTS/METHODS: The study comprised a total of 186 BC assessments performed in 101 healthy infants, delivered at Jimma University Specialized Hospital. Infant air-displacement plethysmography (IADP) was the criterion method, whereas weight, length, sex...... by IADP, with an adjusted R(2) and root mean square error (RMSE) of 0.94 and 200 g, respectively. Adding impedance index to the model resulted in a significantly improved model fit (R(2)=0.95; RMSE=181 g). For infants below 3 months of age, inclusion of impedance index did not contribute to an improved...... model fit for predicting FFM compared with a model already comprising weight, sex and age. CONCLUSIONS: The derived equations predicted FFM with acceptable accuracy and may be used in future field surveys, epidemiological studies and clinical trials conducted in similar sub-Saharan African population...

  11. EFFECT OF INTERMITTENT SUB-MAXIMAL EXERCISE ON PERCENT BODY FAT USING LEG-TO-LEG BIOELECTRICAL IMPEDANCE ANALYSIS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Joseph L. Andreacci

    2006-09-01

    Full Text Available The purpose of this investigation was to determine the effect of intermittent sub-maximal exercise on percent body fat (%BF estimated by leg-to-leg bioelectrical impedance analysis (LBIA in children. Fifty-nine children (29 girls; 30 boys mean age 9.0 ± 1.3 years participated in this study. LBIA measured %BF values were obtained immediately before and within five minutes after completing an intermittent exercise protocol consisting of three 8-minute sub-maximal exercise bouts (2.74 km·hr-1, 0% grade; 4.03 km·hr-1, 0% grade; and 5.47 km·hr-1, 0% grade each separated by a 5-min seated rest period. The three exercise bouts corresponded to 56%, 61% and 71% of maximal heart rate. Significant differences (p < 0.001 were observed for fat mass, fat free mass, total body water, and body weight, post-exercise in both groups. Significant reductions (p < 0.001 in %BF were observed post-exercise in the female (23.1 ± 9.9 vs. 21.8 ± 9. 9 % and male (23.3 ± 10.5 vs. 21.8 ± 10.2 % children when compared to pre-exercise values. However, for the majority of the subjects (females = 86%; males = 73% the decrease in %BF post- exercise was less than 2.0 %BF. These data indicate that sub-maximal intermittent exercise, that may be representative of daily free-form activities in children, will most likely have a limited impact on %BF estimates when the assessment is performed immediately post-exercise

  12. Evaluation of the BOD POD and leg-to-leg bioelectrical impedance analysis for estimating percent body fat in National Collegiate Athletic Association Division III collegiate wrestlers.

    Science.gov (United States)

    Dixon, Curt B; Deitrick, Ronald W; Pierce, Joseph R; Cutrufello, Paul T; Drapeau, Linda L

    2005-02-01

    The purpose of this study was to compare percent body fat (%BF) estimated by air displacement plethysmography (ADP) and leg-to-leg bioelectrical impedance analysis (LBIA) with hydrostatic weighing (HW) in a group (n = 25) of NCAA Division III collegiate wrestlers. Body composition was assessed during the preseason wrestling weight certification program (WCP) using the NCAA approved methods (HW, 3-site skinfold [SF], and ADP) and LBIA, which is currently an unaccepted method of assessment. A urine specific gravity less than 1.020, measured by refractometry, was required before all testing. Each subject had all of the assessments performed on the same day. LBIA measurements (Athletic mode) were determined using a Tanita body fat analyzer (model TBF-300A). Hydrostatic weighing, corrected for residual lung volume, was used as the criterion measurement. The %BF data (mean +/- SD) were LBIA (12.3 +/- 4.6), ADP (13.8 +/- 6.3), SF (14.2 +/- 5.3), and HW (14.5 +/- 6.0). %BF estimated by LBIA was significantly (p < 0.01) smaller than HW and SF. There were no significant differences in body density or %BF estimated by ADP, SF, and HW. All methods showed significant correlations (r = 0.80-0.96; p < 0.01) with HW. The standard errors of estimate (SEE) for %BF were 1.68, 1.87, and 3.60%; pure errors (PE) were 1.88, 1.94, and 4.16% (ADP, SF, and LBIA, respectively). Bland-Atman plots for %BF demonstrated no systematic bias for ADP, SF, and LBIA when compared with HW. These preliminary findings support the use of ADP and SF for estimating %BF during the NCAA WCP in Division III wrestlers. LBIA, which consistently underestimated %BF, is not supported by these data as a valid assessment method for this athletic group.

  13. Percentage of body fat assessment using bioelectrical impedance analysis and dual-energy X-ray absorptiometry in a weight loss program for obese or overweight Chinese adults.

    Directory of Open Access Journals (Sweden)

    Yi-Chun Li

    Full Text Available The current study aimed to compare the estimates of body fat percentage (%BF by performing bioelectrical impedance analysis (BIA and dual energy X-ray absorptiometry (DXA in a sample of obese or overweight Chinese adults who participated in a weight-loss randomized control trial stratified by gender to determine whether or not BIA is a valid measurement tool. Among 189 adults [73 males, 116 females; age = 41 to 74 years; mean body mass index (BMI = 27.3 kg/m(2], assessments of %BF at the baseline and six months from the baseline were conducted by performing BIA and DXA. Bland-Altman analyses and multiple regression analyses were used to assess the relationships between %BFBIA and %BFDXA. Compared with DXA, BIA underestimated %BF [in males: 4.6, -2.4 to 11.7 (mean biases, 95% limit of agreement at the baseline, 1.4, -7.4 to 10.2 at the endpoint, and 3.2, -4.8 to 11.3 in changes; in females: 5.1, -2.4 to 12.7; 2.2, -6.1 to 10.4; and 3.0, -4.8 to 10.7, respectively]. For males and females, %BFDXA proved to be a significant predictor of the difference between DXA and BIA at the baseline, the endpoint, and in changes when BMI and age were considered (in males: p<0.01 and R (2 = 23.1%, 24.1%, 20.7%, respectively; for females: p<0.001 and R (2 = 40.4%, 48.8%, 25.4%, respectively. The current study suggests that BIA provides a relatively accurate prediction of %BF in individuals with normal weight, overweight, or obesity after the end of weight-loss program, but less accurate prediction of %BF in obese individuals at baseline or weight change during the weight-loss intervention program.

  14. Application of bioelectrical impedance vector analysis (BIVA in dogs: a preliminary study on gender-related differences

    Directory of Open Access Journals (Sweden)

    Rebecca Ricci

    2010-01-01

    Full Text Available In this preliminary study, BIVA has been performed on 17 healthy Italian Hound dogs, 10 males (M and 7 females (F, in order to verify if gender-related differences can be detected. Only in F higher reactance (Xc values (F: 46.4 vs M: 37.7, P<0.05 and a significant negative correlation (-0.80, P<0.05 between BCS and resistance (R values were detected. 50%, 75% and 95% tolerance ellipses were calculated both in M and F using average Xc and R values standardized for withers height. Probably due to the low number of subjects used in the present study, the variability of the individual vector distribution (F: 79.6 vs M: 53.0Ohm/m, as well as the mean impedance vector lengtht (F: 548.2 vs M: 498.9Ohm/m, were similar in F and M. The gender-related difference in phase angle values was not significant (F: 0.168 vs M: 0.157, P=ns. In conclusion, the use of BIVA in dogs indicated differences between males and females which should be confirmed by a larger number of subjects.

  15. Effect of intermittent sub-maximal exercise on percent body fat using leg-to-leg bioelectrical impedance analysis in children.

    Science.gov (United States)

    L Andreacci, Joseph; B Dixon, Curt; Ledezma, Christina; L Goss, Fredric

    2006-01-01

    The purpose of this investigation was to determine the effect of intermittent sub-maximal exercise on percent body fat (%BF) estimated by leg-to-leg bioelectrical impedance analysis (LBIA) in children. Fifty-nine children (29 girls; 30 boys) mean age 9.0 ± 1.3 years participated in this study. LBIA measured %BF values were obtained immediately before and within five minutes after completing an intermittent exercise protocol consisting of three 8-minute sub-maximal exercise bouts (2.74 km·hr(-1), 0% grade; 4.03 km·hr(-1), 0% grade; and 5.47 km·hr(-1), 0% grade) each separated by a 5-min seated rest period. The three exercise bouts corresponded to 56%, 61% and 71% of maximal heart rate. Significant differences (p < 0.001) were observed for fat mass, fat free mass, total body water, and body weight, post-exercise in both groups. Significant reductions (p < 0.001) in %BF were observed post-exercise in the female (23.1 ± 9.9 vs. 21.8 ± 9. 9 %) and male (23.3 ± 10.5 vs. 21.8 ± 10.2 %) children when compared to pre-exercise values. However, for the majority of the subjects (females = 86%; males = 73%) the decrease in %BF post- exercise was less than 2.0 %BF. These data indicate that sub-maximal intermittent exercise, that may be representative of daily free-form activities in children, will most likely have a limited impact on %BF estimates when the assessment is performed immediately post-exercise. Key PointsLBIA measures of body weight, percent body fat, fat mass, fat free mass and total body water were significantly lower after the intermittent sub-maximal exercise.The reductions in percent body fat for girls (1.4%) and boys (1.5%) compare favorably to previous investigations.Intermittent exercise, that may be representative of daily free-form activities in children, will most likely have a limited impact on LBIA percent body fat estimates.

  16. Body fat measurement by bioelectrical impedance and air displacement plethysmography: a cross-validation study to design bioelectrical impedance equations in Mexican adults

    Directory of Open Access Journals (Sweden)

    Valencia Mauro E

    2007-08-01

    Full Text Available Abstract Background The study of body composition in specific populations by techniques such as bio-impedance analysis (BIA requires validation based on standard reference methods. The aim of this study was to develop and cross-validate a predictive equation for bioelectrical impedance using air displacement plethysmography (ADP as standard method to measure body composition in Mexican adult men and women. Methods This study included 155 male and female subjects from northern Mexico, 20–50 years of age, from low, middle, and upper income levels. Body composition was measured by ADP. Body weight (BW, kg and height (Ht, cm were obtained by standard anthropometric techniques. Resistance, R (ohms and reactance, Xc (ohms were also measured. A random-split method was used to obtain two samples: one was used to derive the equation by the "all possible regressions" procedure and was cross-validated in the other sample to test predicted versus measured values of fat-free mass (FFM. Results and Discussion The final model was: FFM (kg = 0.7374 * (Ht2 /R + 0.1763 * (BW - 0.1773 * (Age + 0.1198 * (Xc - 2.4658. R2 was 0.97; the square root of the mean square error (SRMSE was 1.99 kg, and the pure error (PE was 2.96. There was no difference between FFM predicted by the new equation (48.57 ± 10.9 kg and that measured by ADP (48.43 ± 11.3 kg. The new equation did not differ from the line of identity, had a high R2 and a low SRMSE, and showed no significant bias (0.87 ± 2.84 kg. Conclusion The new bioelectrical impedance equation based on the two-compartment model (2C was accurate, precise, and free of bias. This equation can be used to assess body composition and nutritional status in populations similar in anthropometric and physical characteristics to this sample.

  17. Bioelectrics

    CERN Document Server

    Heller, Richard

    2017-01-01

    This book focuses on bioelectrics, a new multidisciplinary field encompassing engineering and biology with applications to the medical, environmental, food, energy, and biotechnological fields. At present, 15 universities and institutes in Japan, the USA and the EU comprise the International Consortium of Bioelectrics, intended to advance this novel and important research field. This book will serve as an introductory resource for young scientists and also as a textbook for use by both undergraduate and graduate students – the world’s first such work solely devoted to bioelectrics.

  18. Study of cystatin C (Cys C in relation to the calculation of the glomerular filtration rate and bioelectrical impedance analysis parameters in obese patients with and without type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Mario Liani

    2012-01-01

    Full Text Available IntroductionAssessment of renal function based on quantification of the glomerular filtration rate (GFR is essential for early detection of damage and progression of renal diseases. The purpose of our study was to determine the value of cystatin C (Cys C assays in the calculation of the GFR and bioelectrical impedance analysis parameters in obese subjects aged 30-70 years with moderately damaged renal function.Materials and methodsCys C levels were measured with a new immunoturbidimetric kit (Roche Diagnostics and an automated Cobas c6000 analyzer. In the GFR calculation, creatinine and Cys C levels were included. The GFR calculated with the equation that included Cys C in obese and normal-weight patients is not affected by changes in the lean body mass.ResultsObese patients (N = 70 had a mean (± SD serum creatinine level of 1.52 ± 1.0 mg/dL and a mean Cys C level of 1.28 ± 0.59 mg/L. In this group, the GFR calculated on the basis of MDRD, Cys C, and creatinine clearance values showed similar filtered values between MDRD and Cys C and a DS value smaller in the case of Cys C. The correlation (R2 between GFR and its metabolite is higher in the case of Cys C when somatotype parameters (measured with bioelectrical impedance analysis were introduced into the equation.ConclusionsWhen Cys C is included in calculations of GFR, the result shows a higher correlation degree compared to the MDRD system. Given that Cys C shows less intra-individual variability than creatinine, it can be applied in routine diagnostics in a larger number of patients.

  19. A comparison of skinfolds and leg-to-leg bioelectrical impedance for the assessment of body composition in children

    Science.gov (United States)

    Goss, Fredric; Robertson, Robert; Williams, Allison; Sward, Kathy; Abt, Kristi; Ladewig, Melissa; Timmer, Jeffrey; Dixon, Curt

    2003-01-01

    Background This field-based investigation examined the congruence between skinfolds and bioelectrical impedance in assessing body composition in children. Methods Subjects were 162 female and 160 male children 10–15 years of age. Skinfold measures obtained at the triceps and medial calf and a leg-to-leg bioelectrical impedance system were used to determine percent fat using child-specific equations. Pearson product moment correlations were performed on the percent fat values obtained using skinfolds and bioelectric impedance for the entire data set. Separate correlations were also conducted on gender and age/gender subsets. Dependent t tests were used to compare the two techniques. Results Percent fat did not differ between skinfolds and bioelectrical impedance for the total subject pool. Bioelectrical impedance overestimated percent fat in girls by 2.6% and underestimated percent fat in boys by 1.7% (p < 0.01). Correlations between skinfolds and bioelectrical impedance ranged from r = 0.51 to r = 0.90. Conclusions Leg-to-leg bioelectrical impedance may be a viable alternative field assessment technique that is comparable to skinfolds. The small differences in percent fat between the two techniques may have limited practical significance in school-based health-fitness settings. PMID:14498990

  20. Bioelectrical impedance phase angle as a prognostic indicator in breast cancer

    Directory of Open Access Journals (Sweden)

    Dahlk Sadie L

    2008-08-01

    Full Text Available Abstract Background Bioelectrical impedance analysis (BIA is an easy-to-use, non-invasive, and reproducible technique to evaluate changes in body composition and nutritional status. Phase angle, determined by bioelectrical impedance analysis (BIA, detects changes in tissue electrical properties and has been hypothesized to be a marker of malnutrition. Since malnutrition can be found in patients with breast cancer, we investigated the prognostic role of phase angle in breast cancer. Methods We evaluated a case series of 259 histologically confirmed breast cancer patients treated at Cancer Treatment Centers of America. Kaplan Meier method was used to calculate survival. Cox proportional hazard models were constructed to evaluate the prognostic effect of phase angle independent of stage at diagnosis and prior treatment history. Survival was calculated as the time interval between the date of first patient visit to the hospital and the date of death from any cause or date of last contact/last known to be alive. Results Of 259 patients, 81 were newly diagnosed at our hospital while 178 had received prior treatment elsewhere. 56 had stage I disease at diagnosis, 110 had stage II, 46 had stage III and 34 had stage IV. The median age at diagnosis was 49 years (range 25 – 74 years. The median phase angle score was 5.6 (range = 1.5 – 8.9. Patients with phase angle 5.6 had 49.9 months (95% CI: 35.6 to 77.8; n = 130; the difference being statistically significant (p = 0.031. Multivariate Cox modeling, after adjusting for stage at diagnosis and prior treatment history found that every one unit increase in phase angle score was associated with a relative risk of 0.82 (95% CI: 0.68 to 0.99, P = 0.041. Stage at diagnosis (p = 0.006 and prior treatment history (p = 0.001 were also predictive of survival independent of each other and phase angle. Conclusion This study demonstrates that BIA-derived phase angle is an independent prognostic indicator in patients

  1. [Values of the phase angle by bioelectrical impedance; nutritional status and prognostic value].

    Science.gov (United States)

    Llames, L; Baldomero, V; Iglesias, M L; Rodota, L P

    2013-01-01

    Phase angle (PA) is the most established parameter from bioelectrical impedance analysis (BIA) for diagnosis of malnutrition and clinical prognosis, both associated with changes on cellular membrane integrity and alterations on fluids balance. PA expresses changes in quantity and quality of soft tissue mass (ie, cell membrane permeability and soft tissue hydration). A large body of clinical trials propose PA as a useful prognostic marker in clinical conditions like liver cirrhosis and breast, colon, pancreatic and lung cancer; positive association between PA and survival was also observed in surgical and HIV infected patients. Several authors suggest that PA can be an important tool in the evaluation of the clinical result or of the progression of the disease, and it can even be superior to other nutritional, biochemical or anthropometric indicators. Lack of reference values has limited its use in clinical and epidemiological situations. The purpose of this review is to describe PA reference values according to different clinical conditions as proposed in published scientific works.

  2. ANALYSIS OF INTERNALLY GENERATED NOISE OF BIOELECTRIC AMPLIFIERS

    Institute of Scientific and Technical Information of China (English)

    Mashhour Mustafa; Bani Amer

    2003-01-01

    This paper deals with internally generated noise of bioelectric amplifiers that are usually used for processing of bioelectric events. The main purpose of this paper is to present a procedure for analysis of the effects of internal noise generated by the active circuits and to evaluate the output noise of the author's new designed bioelectric amplifier that caused by internal effects to the amplifier circuit itself in order to compare it with the noise generated by conventional amplifiers. The obtained analysis results of internally generated noise showed that the total output noise of bioelectric active circuits does not increase when some of their resistors have a larger value. This behavior is caused by the different transfer functions for the signal and the respective noise sources associated with these resistors. Moreover, the new designed bioelectric amplifier has an output noise less than that for conventional amplifiers. The obtained analysis results were also experimentally verified and the final conclusions were drawn.

  3. A comparison between handgrip strength, upper limb fat free mass by segmental bioelectrical impedance analysis (SBIA) and anthropometric measurements in young males

    Science.gov (United States)

    Gonzalez-Correa, C. H.; Caicedo-Eraso, J. C.; Varon-Serna, D. R.

    2013-04-01

    The mechanical function and size of a muscle may be closely linked. Handgrip strength (HGS) has been used as a predictor of functional performing. Anthropometric measurements have been made to estimate arm muscle area (AMA) and physical muscle mass volume of upper limb (ULMMV). Electrical volume estimation is possible by segmental BIA measurements of fat free mass (SBIA-FFM), mainly muscle-mass. Relationship among these variables is not well established. We aimed to determine if physical and electrical muscle mass estimations relate to each other and to what extent HGS is to be related to its size measured by both methods in normal or overweight young males. Regression analysis was used to determine association between these variables. Subjects showed a decreased HGS (65.5%), FFM, (85.5%) and AMA (74.5%). It was found an acceptable association between SBIA-FFM and AMA (r2 = 0.60) and poorer between physical and electrical volume (r2 = 0.55). However, a paired Student t-test and Bland and Altman plot showed that physical and electrical models were not interchangeable (ptanthropometric (r2 = 0.07) and electrical (r2 = 0.192) ULMMV showing that muscle mass quantity does not mean muscle strength. Other factors influencing HGS like physical training or nutrition require more research.

  4. Prediction of fat-free body mass from bioelectrical impedance among 9- to 11-year-old Swedish children

    DEFF Research Database (Denmark)

    Nielsen, Birgit Marie; Dencker, M; Ward, L

    2007-01-01

    -energy X-ray absorptiometry (DXA) as the reference measurement of body composition. METHODS: The study population consisted of 49 girls and 52 boys aged 9-11 years from Malmö, Sweden. Bioelectrical impedance was measured between hand and foot at 50 kHz. Predictive equations were developed by multiple...

  5. Prediction of body composition of Iberian pigs by means bioelectrical impedance.

    Science.gov (United States)

    Daza, A; Mateos, A; Ovejero, I; Bote, C J López

    2006-01-01

    Twelve barrow Iberian pigs with an average weight at slaughter of 109.2kg were used to evaluate bioelectrical impedance procedures to predict the body composition of live pigs. Twelve hours before slaughter pigs were weighed, and a four-terminal body composition analyser (Model BIA-101, RJL Systems, Detroit, MI) was utilized to determine resistance (R(s) in Ω) and reactance (X(c) in Ω). The length values (L in cm) were measured between detector electrodes with a flexible steel tape. Twenty four hours after slaughter the left side of each carcass was separated using a scalpel into fat, lean, bone and skin. Multiple regression equations for estimating lean, fat, bone and skin amounts and lean, fat, bone and skin proportions with respect to slaughter weight were calculated. The live weight (LW) and L independent variables predicted 85.3% and 64.3% of the variability of the lean amount and lean proportion, respectively. The LW, X(c) and L variables accounted for 96% and 91.6% of the variation in fat quantity and fat proportion, respectively. The LW and R(s) accounted for 58.9% of the variation in bone amount, and the same variables predict 79.1% of the variability of bone percentage. The R(s) and L variables explained 68% of the variability of skin quantity and LW, R(s) and X(c) predicted 83.1% of the variation of skin proportion. Results from this experiment indicate that bioelectrical impedance may be of interest for body composition prediction of live Iberian pigs.

  6. Estimativa da massa muscular esquelética em mulheres idosas: validade da impedância bioelétrica Validity of bioelectrical impedance analysis for the estimation of skeletal muscle mass in elderly women

    Directory of Open Access Journals (Sweden)

    Cassiano Ricardo Rech

    2010-04-01

    Full Text Available O presente estudo tem como objetivos: a verificar a concordância entre os métodos da impedância bioelétrica (BIA e da absortometria radiológica de dupla energia (DXA para a estimativa da massa muscular esquelética (MME; e b analisar o poder preditivo de variáveis antropométricas e da BIA para a predição da MME em idosas. Foram avaliadas 120 mulheres (60 a 81 anos, residentes na região Sul do Brasil. Mensuraram-se as variáveis antropométricas (massa corporal e estatura; a resistência e hidratação dos tecidos livres de gordura foram medidas pela técnica da BIA tetrapolar (Biodinamics - BF-310, e pela DXA de corpo inteiro (Lunar Prodigy DF + 14319 Radiation e software 7.52.002 DPX-L. A diferença entre os métodos foi verificada pelo teste t pareado, análise dos resíduos e o coeficiente de correlação. O valor preditivo das variáveis antropométricas e de BIA foi verificado pela regressão linear múltipla, adotando nível de significância de p 0,01. Observou-se que a BIA subestimou em média 0,8kg (IC95%: -3,7; 2,0kg a MME, quando comparada com a DXA. Foi observada alta correlação entre os métodos (r² = 0,75; p The objectives of the present study were: a to determine the agreement between bioelectrical impedance analysis (BIA and dual-energy X-ray absorptiometry (DXA for the estimation of skeletal muscle mass (SMM, and b to analyze the predictive power of anthropometric variables and BIA for the prediction of SMM in elderly women. A total of 120 women (60 to 81 years, living in the southern region of Brazil, were studied. Anthropometric variables (body weight and height were measured. Resistance and hydration of fat-free tissues were measured by tetrapolar BIA (Biodynamics, BF-310 and by whole-body DXA (Lunar Prodigy DF + 14319 Radiation and DPX-L software, version 7.52.002. Differences between methods were determined using the paired t-test, analysis of residuals and correlation coefficient. The predictive value of the

  7. ANALYSIS OF INTERNALLY GENERATED NOISE OF BIOELECTRIC AMPLIFIERS

    Institute of Scientific and Technical Information of China (English)

    MashhourMustafaBaniAmer

    2003-01-01

    This papenr deals with internally generated noise of bioelectric amplifiers that are usually used for processing of bioelectric events.The main purpose of this paper is to present a procedure for analysis of the effects of internal noise generated by the active circuits and to evaluate the output noise of the author's new designed bioelectric amplifier that caused by internal effects to the amplifier circuit itself in order to compare it with the noise generated by conventional amplifiers.The obtained analysis results of internally generated noise showed that the total output noise of bioelectric active circuits does not increase when some of their resitors have a larger value.This behavior is caused by the different transfer functions for the signal and the respective noise sources associated with these resistors.Moreover,the new designed bioelectric amplifier haws an output noise less than that for conventional amplifiers.The obtained analysis results were also experimentally verified and the final conclusions were drawn.

  8. Foot-to-foot bioelectrical impedance accurately tracks direction of adiposity change in overweight and obese 7- to 13-year-old children.

    Science.gov (United States)

    Kasvis, Popi; Cohen, Tamara R; Loiselle, Sarah-Ève; Kim, Nicolas; Hazell, Tom J; Vanstone, Catherine A; Rodd, Celia; Plourde, Hugues; Weiler, Hope A

    2015-03-01

    Body composition measurements are valuable when evaluating pediatric obesity interventions. We hypothesized that foot-to-foot bioelectrical impedance analysis (BIA) will accurately track the direction of adiposity change, but not magnitude, in part due to differences in fat patterning. The purposes of this study were to examine the accuracy of body composition measurements of overweight and obese children over time using dual-energy x-ray absorptiometry (DXA) and BIA and to determine if BIA accuracy was affected by fat patterning. Eighty-nine overweight or obese children (48 girls, 41 boys, age 7-13 years) participating in a randomized controlled trial providing a family-centered, lifestyle intervention, underwent DXA and BIA measurements every 3 months. Bland-Altman plots showed a poor level of agreement between devices for baseline percent body fat (%BF; mean, 0.398%; +2SD, 8.685%; -2SD, -7.889%). There was overall agreement between DXA and BIA in the direction of change over time for %BF (difference between visits 3 and 1: DXA -0.8 ± 0.5%, BIA -0.7 ± 0.5%; P = 1.000) and fat mass (FM; difference between visits 3 and 1: DXA 0.7 ± 0.5 kg, BIA 0.6 ± 0.5 kg; P = 1.000). Bioelectrical impedance analysis measurements of %BF and FM at baseline were significantly different in those with android and gynoid fat (%BF: 35.9% ± 1.4%, 32.2% ± 1.4%, P < .003; FM: 20.1 ± 0.8 kg, 18.4 ± 0.8, P < .013). Bioelectrical impedance analysis accurately reports the direction of change in FM and FFM in overweight and obese children; inaccuracy in the magnitude of BIA measurements may be a result of fat patterning differences.

  9. Bioelectrical impedance spectroscopy as a fluid management system in heart failure.

    Science.gov (United States)

    Weyer, Sören; Zink, Matthias Daniel; Wartzek, Tobias; Leicht, Lennart; Mischke, Karl; Vollmer, Thomas; Leonhardt, Steffen

    2014-06-01

    Episodes of hospitalization for heart failure patients are frequent and are often accompanied by fluid accumulations. The change of the body impedance, measured by bioimpendace spectroscopy, is an indicator of the water content. The hypothesis was that it is possible to detect edema from the impedance data. First, a finite integration technique was applied to test the feasibility and allowed a theoretical analysis of current flows through the body. Based on the results of the simulations, a clinical study was designed and conducted. The segmental impedances of 25 patients suffering from heart failure were monitored over their recompensation process. The mean age of the patients was 73.8 and their mean body mass index was 28.6. From these raw data the model parameters from the Cole model were deduced by an automatic fitting algorithm. These model data were used to classify the edema status of the patient. The baseline values of the regression lines of the extra- and intracellular resistance from the transthoracic measurement and the baseline value of the regression line of the extracellular resistance from the foot-to-foot measurement were identified as important parameters for the detection of peripheral edema. The rate of change of the imaginary impedance at the characteristic frequency and the mean intracellular resistance from the foot-to-foot measurement were identified as important parameters for the detection of pulmonary edema. To classify the data, two decision trees were considered: One should detect pulmonary edema (n(pulmonary) = 13, n(none) = 12) and the other peripheral edema (n(peripheral) = 12, n(none) = 13). Peripheral edema could be detected with a sensitivity of 100% and a specificity of 90%. The detection of pulmonary edema showed a sensitivity of 92.31% and a specificity of 100%. The leave-one-out cross-validation-error for the peripheral edema detection was 12% and 8% for the detection of pulmonary edema. This enables the application of BIS as

  10. Tracking of anthropometric parameters and bioelectrical impedance in pubertal boys and girls.

    Science.gov (United States)

    Leppik, Aire; Jürimäe, Toivo; Jürimäe, Jaak

    2006-12-01

    The aim of this study was to investigate the anthropometric parameters and body impedance once per year during four years of the pubertal period in Estonian children. In total, 81 boys and 86 girls aged 10-11 years at the beginning of the study were investigated. Pubertal status was self-assessed by sexual maturation stages according to Tanner and physical activity index (PAI) according to Telama et al.. Body height and weight were measured and body mass index (BMI) calculated. In total, 9 skinfolds, 13 girths, 8 lengths and 8 breadths/lengths were measured according to the protocol of the International Society for the Advancement of Kinanthropometry. Somatotype components were estimated according to the method of Carter and Heath. Body impedance was measured using Multiscan 5000 (Bodystat, UK) and the impedance index (height/impedance) was calculated. The tracking of body height, weight, BMI, skinfolds, girths, lengths, breadth/lengths and body impedance was high (as a rule r> or =0.9). By increasing the time period, the correlation slightly decreased. In contrast, tracking correlations for PAI and Tanner stages were significant but quite low. Increase in mean body height was highest between 12-13 years of age (6.9 cm per year) in boys and in girls between 11-12 years of age (6.3 cm per year). In boys and girls, the peak increase in body weight was between 11 and 12 years of age, 5.7 kg and 5.2 kg, respectively. With the increasing age, body impedance decreased and impedance index increased. In conclusion, our results indicate that during puberty the detailed anthropometric parameters and body impedance tracked highly. However, the tracking of PAI and Tanner stages was significant but relatively low.

  11. Body composition of Bangladeshi children: comparison and development of leg-to-leg bioelectrical impedance equation.

    Science.gov (United States)

    Khan, Ashraful I; Hawkesworth, Sophie; Hawlader, Mohammad Delwer Hossain; El Arifeen, Shams; Moore, Sophie; Hills, Andrew P; Wells, Jonathan C; Persson, Lars-Åke; Kabir, Iqbal

    2012-09-01

    The aim of this study was to investigate the validity of the Tanita TBF 300A leg-to-leg bioimpedance analyzer for estimating fat-free mass (FFM) in Bangladeshi children aged 4-10 years and to develop novel prediction equations for use in this population, using deuterium dilution as the reference method. Two hundred Bangladeshi children were enrolled. The isotope dilution technique with deuterium oxide was used for estimation of total body water (TBW). FFM estimated by Tanita was compared with results of deuterium oxide dilution technique. Novel prediction equations were created for estimating FFM, using linear regression models, fitting child's height and impedance as predictors. There was a significant difference in FFM and percentage of body fat (BF%) between methods (pmodel with height and impedance explained 83% of the variance in FFM estimated by deuterium oxide dilution technique. The best-fit equation to predict FFM from linear regression modelling was achieved by adding weight, sex, and age to the basic model, bringing the adjusted R² to 89% (standard error=0.90, p<0.001). These data suggest Tanita analyzer may be a valid field-assessment technique in Bangladeshi children when using population-specific prediction equations, such as the ones developed here.

  12. Reliability of Calf Bioelectrical Impedance Spectroscopy and Magnetic-Resonance-Imaging-Acquired Skeletal Muscle Hydration Measures in Healthy People

    Directory of Open Access Journals (Sweden)

    Anuradha Sawant

    2013-01-01

    Full Text Available Purpose. The purpose of this study was to investigate the test-retest reliability, relative variability, and agreement between calf bioelectrical impedance-spectroscopy (cBIS acquired extracellular fluid (ECF, intracellular fluid (ICF, total water and the ratio of ECF : ICF, magnetic-resonance-imaging (MRI acquired transverse relaxation times (T2, and apparent diffusion coefficient (ADC of calf muscles of the same segment in healthy individuals. Methods. Muscle hydration measures were collected in 32 healthy individuals on two occasions and analyzed by a single rater. On both occasions, MRI measures were collected from tibialis anterior (TA, medial (MG, and lateral gastrocnemius (LG and soleus muscles following the cBIS data acquired using XiTRON Hydra 4200 BIS device. The intraclass correlation coefficients (ICC2,1, coefficient of variation (CV, and agreement between MRI and cBIS data were also calculated. Results. ICC2,1 values for cBIS, T2, and ADC ranged from 0.56 to 0.92, 0.96 to 0.99, and 0.05 to 0.56, respectively. Relative variability between measures (CV ranged from 14.6 to 25.6% for the cBIS data and 4.2 to 10.0% for the MRI-acquired data. The ratio of ECF : ICF could significantly predict T2 of TA and soleus muscles. Conclusion. MRI-acquired measures of T2 had the highest test-retest reliability of muscle hydration with the least error and variation on repeated testing. Hence, T2 of a muscle is the most reliable and stable outcome measure for evaluating individual muscle hydration.

  13. Performance of Two Bioelectrical Impedance Analyses in the Diagnosis of Overweight and Obesity in Children and Adolescents: The FUPRECOL Study

    Science.gov (United States)

    Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; Martínez-Torres, Javier; González-Ruíz, Katherine; González-Jiménez, Emilio; Schmidt-RioValle, Jacqueline; Garcia-Hermoso, Antonio

    2016-01-01

    This study aimed to determine thresholds for percentage of body fat (BF%) corresponding to the cut-off values for overweight/obesity as recommended by the International Obesity Task Force (IOTF), using two bioelectrical impedance analyzers (BIA), and described the likelihood of increased cardiometabolic risk in our cohort defined by the IOTF and BF% status. Participants included 1165 children and adolescents (54.9% girls) from Bogotá (Colombia). Body mass index (BMI) was calculated from height and weight. BF% of each youth was assessed first using the Tanita BC-418® followed by a Tanita BF-689®. The sensitivity and specificity of both devices and their ability to correctly classify children as overweight/obesity (≥2 standard deviation), as defined by IOTF, was investigated using receiver operating characteristic (ROC) by sex and age groups (9–11, 12–14, and 13–17 years old); Area under curve (AUC) values were also reported. For girls, the optimal BF% threshold for classifying into overweight/obesity was found to be between 25.2 and 28.5 (AUC = 0.91–0.97) and 23.9 to 26.6 (AUC = 0.90–0.99) for Tanita BC-418® and Tanita BF-689®, respectively. For boys, the optimal threshold was between 16.5 and 21.1 (AUC = 0.93–0.96) and 15.8 to 20.6 (AUC = 0.92–0.94) by Tanita BC-418® and Tanita BF-689®, respectively. All AUC values for ROC curves were statistically significant and there were no differences between AUC values measured by both BIA devices. The BF% values associated with the IOTF-recommended BMI cut-off for overweight/obesity may require age- and sex-specific threshold values in Colombian children and adolescents aged 9–17 years and could be used as a surrogate method to identify individuals at risk of excess adiposity. PMID:27782039

  14. Performance of Two Bioelectrical Impedance Analyses in the Diagnosis of Overweight and Obesity in Children and Adolescents: The FUPRECOL Study

    Directory of Open Access Journals (Sweden)

    Robinson Ramírez-Vélez

    2016-10-01

    Full Text Available This study aimed to determine thresholds for percentage of body fat (BF% corresponding to the cut-off values for overweight/obesity as recommended by the International Obesity Task Force (IOTF, using two bioelectrical impedance analyzers (BIA, and described the likelihood of increased cardiometabolic risk in our cohort defined by the IOTF and BF% status. Participants included 1165 children and adolescents (54.9% girls from Bogotá (Colombia. Body mass index (BMI was calculated from height and weight. BF% of each youth was assessed first using the Tanita BC-418® followed by a Tanita BF-689®. The sensitivity and specificity of both devices and their ability to correctly classify children as overweight/obesity (≥2 standard deviation, as defined by IOTF, was investigated using receiver operating characteristic (ROC by sex and age groups (9–11, 12–14, and 13–17 years old; Area under curve (AUC values were also reported. For girls, the optimal BF% threshold for classifying into overweight/obesity was found to be between 25.2 and 28.5 (AUC = 0.91–0.97 and 23.9 to 26.6 (AUC = 0.90–0.99 for Tanita BC-418® and Tanita BF-689®, respectively. For boys, the optimal threshold was between 16.5 and 21.1 (AUC = 0.93–0.96 and 15.8 to 20.6 (AUC = 0.92–0.94 by Tanita BC-418® and Tanita BF-689®, respectively. All AUC values for ROC curves were statistically significant and there were no differences between AUC values measured by both BIA devices. The BF% values associated with the IOTF-recommended BMI cut-off for overweight/obesity may require age- and sex-specific threshold values in Colombian children and adolescents aged 9–17 years and could be used as a surrogate method to identify individuals at risk of excess adiposity.

  15. A comparison of fat mass and skeletal muscle mass estimation in male ultra-endurance athletes using bioelectrical impedance analysis and different anthropometric methods Comparación de la masa grasa y muscular estimada en atletas varones de ultra-resistencia utilizando la bioimpedancia eléctrica y diferentes métodos antropométricos

    Directory of Open Access Journals (Sweden)

    B. Knechtle

    2011-12-01

    Full Text Available Two hundred and fifty seven male Caucasian ultraendurance athletes were recruited, pre-race, before different swimming, cycling, running and triathlon races. Fat mass and skeletal muscle mass were estimated using bioelectrical impedance analysis (BIA and anthropometric methods in order to investigate whether the use of BIA or anthropometry would be useful under field conditions. Total body fat estimated using BIA was significantly high (P Se reclutaron a 257 hombres caucasianos que eran atletas de alto rendimiento, antes de competir en diferentes pruebas triatlón de natación, ciclismo y carrera. Se estimaron la masa grasa y la masa de músculo esquelético utilizando un análisis de impedancia bioeléctrica (BIA y métodos antropométricos con el fin de investigar si el uso de BIA o de la antropometría sería útil en tales condiciones de campo. La grasa corporal total estimada por BIA fue significativamente mayor en comparación con la antropometría (P < 0,001. Cuando se compararon los resultados entre BIA y antropometría, se encontraron niveles de concordancia bajos a moderados. Estos resultados concuerdan con las diferencias halladas con el análisis Bland-Altman, lo que indica que la ecuación antropométrica de Ball et al. posee el mayor grado de concordancia (desviación = -3,0 ± 5,8 kg con BIA, con Stewart et al. (desviación = -6,4 ± 6,3 kg, Faulkner (desviación = -4,7 ± 5,8 kg y Wilmore-Siri (desviación = -4,8 ± 6,2 kg. La estimación de la masa de músculo esquelético fue significativamente superior con BIAS que con antropometría (P < 0,001. Los resultados de la ICC y del método Bland-Altman muestran que la ecuación antropométrica de Lee et al. (desviación = -5,4 ± 5,3 kg produjo el mayor grado de concordancia. El método combinado de Janssen et al. entre antropometría y BIA mostró el menor grado de concordancia (desviación = -12,5 ± 5,7 kg. Hubo una diferencia estadísticamente significativa entre los resultados

  16. Bioelectrical impedance phase angle in clinical practice: implications for prognosis in stage IIIB and IV non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Grutsch James F

    2009-01-01

    Full Text Available Abstract Background A frequent manifestation of advanced lung cancer is malnutrition, timely identification and treatment of which can lead to improved patient outcomes. Bioelectrical impedance analysis (BIA is an easy-to-use and non-invasive technique to evaluate changes in body composition and nutritional status. We investigated the prognostic role of BIA-derived phase angle in advanced non-small cell lung cancer (NSCLC. Methods A case series of 165 stages IIIB and IV NSCLC patients treated at our center. The Kaplan Meier method was used to calculate survival. Cox proportional hazard models were constructed to evaluate the prognostic effect of phase angle, independent of stage at diagnosis and prior treatment history. Results 93 were males and 72 females. 61 had stage IIIB disease at diagnosis while 104 had stage IV. The median phase angle was 5.3 degrees (range = 2.9 – 8. Patients with phase angle 5.3 had 12.4 months (95% CI: 10.5 to 18.7; n = 84; (p = 0.02. After adjusting for age, stage at diagnosis and prior treatment history we found that every one degree increase in phase angle was associated with a relative risk of 0.79 (95% CI: 0.64 to 0.97, P = 0.02. Conclusion We found BIA-derived phase angle to be an independent prognostic indicator in patients with stage IIIB and IV NSCLC. Nutritional interventions targeted at improving phase angle could potentially lead to an improved survival in patients with advanced NSCLC.

  17. A Comparison Study of Portable Foot-to-Foot Bioelectrical Impedance Scale to Measure Body Fat Percentage in Asian Adults and Children

    Directory of Open Access Journals (Sweden)

    Pei Ying Sim

    2014-01-01

    Full Text Available Objective. To compare the measurements of body fat percentage (BF% using the foot-to-foot bioelectrical impedance analysis (FTF-BIA with the direct segmental multifrequency BIA (DSM-BIA. Methods. There were 36 men and 52 women (37.1±14.3 years with 57% Malays, 30% Chinese, and 13% Indian. For children, there were 45 boys and 26 girls (11.5±2.5 years with 52% Malay, 15% Chinese, and 33% Indian. Results. Mean height for men was 168.4 cm, 11 cm taller than women. Men were 10 kg heavier than women at 70 kg. BF% in women was 32% and 33% whereas BF% in men was 23% and 25% when measured using FTF-BIA and DSM-BIA, respectively. In children, BF% measured with FTF-BIA and DSM-BIA was 49% and 46%, respectively. The correlations were significant for men (r=0.92, SEE = 2.80, women (r=0.91, SEE = 3.31, boys (r=0.95, SEE = 5.44, and girls (r=0.96, SEE = 5.27. The BF% in underweight/normal (r=0.92, SEE = 2.47 and that in overweight/obese adults (r=0.89, SEE = 3.61 were strongly correlated. The correlations were significant in normal/underweight (r=0.94, SEE = 3.78 and obese/overweight children (r=0.83, SEE = 6.49. All ethnic groups showed significant correlation with BF%. Malay adults (r=0.92, SEE = 3.27 and children (r=0.94, SEE = 0.88 showed significant mean differences in BF%. Conclusion. The FTF-BIA showed higher accuracy for all normal/underweight and Chinese group with acceptable overestimation in children and underestimation in adults. Caution should be taken when interpreting BF% depending on gender, BMI, and ethnicity.

  18. 基于FPGA的生物电阻抗成像系统设计%Design of bioelectrical electrical impedance tomography system based on FPGA

    Institute of Scientific and Technical Information of China (English)

    丁忠林; 陈晓艳; 吴佳妮

    2012-01-01

    According to requirements of electrical impedance tomography, the 16 electrode bioelectrical electrical impedance system was designed in this paper, which embedded 8 bits microprocessor PicoBlaze to realize logic control for generating excitation signals and high-speed A/D acquisition, realization of digital demodulation and the data was be transferred to PC through RS232, redraw the human body resistivity distribution or change images .The system provides a very good hardware design scheme for widely research of electrical impedance tomography.%根据电阻抗断层成像技术要求,设计了以Spartan3E系列XC3S500E FPGA为核心的16电极生物电阻抗成像系统,系统嵌入8 bit微处理器PicoBlaze实现逻辑控制并产生激励信号实现高速A/D采集及实现数字解调,通过RS232将采集数据传输到PC机,重建人体内部的电阻率分布或其变化图像.为广泛应用研究电阻抗断层成像技术提供一种硬件设计方案.

  19. Establishment of muscle mass diagnostic standard of sarcopenia using a bioelectrical impedance analysis and epidemiological investigation of the elderly in Shanghai%上海地区老年人肌少症骨骼肌质量诊断标准建立和流行病学调查

    Institute of Scientific and Technical Information of China (English)

    陈敏; 白慧婧; 王纯; 王彦; 徐丹凤; 谢华; 易青; 李臻; 李茹

    2015-01-01

    目的 应用生物电阻抗法(BIA)建立上海地区老年人肌少症骨骼肌质量诊断标准并开展上海地区老年人肌少症患病率的调查.方法 对40例志愿者(年龄20~77岁)进行BIA和双能X线吸收仪(DEXA)检测,验证BIA测定瘦体组织的可靠性.对219例(年龄20~40岁)健康青年人(男∶女为100∶119)进行BIA检测,获得峰值肌量和老年人肌少症诊断切点.对657例≥60岁医院体检和社区老年人(男∶女为318∶339)进行BIA检测,了解上海地区老年人肌少症患病率.结果 BIA和DEXA检测瘦体组织差异无统计学意义(P=0.307).健康青年人四肢肌肉组织和身高平方的比值(ASM/身高2)男性和女性分别为(7.90±0.62)kg/m2和(6.12±0.44)kg/m2,老年人肌少症诊断标准男性和女性分别为≤6.66 kg/m2和≤5.24 kg/m2.将老年人分为3个年龄段,60~岁、70~岁和≥80岁3个年龄段男性肌少症的患病率分别为14.6%、25.0%和36.0%,女性分别为6.8%、12.6%和27.9%.老年男性整体患病率为23.6%,女性为11.8%.结论 BIA检测人体肌肉组织是可靠的,且随增龄肌少症患病率明显上升,男性高于女性.%Objective To establish diagnostic standard of sarcopenia using bioelectrical impedance analysis (BIA) and to obtain the prevalence of sarcopenia in the elderly in Shanghai.Methods 40 volunteers aged 20-77 years were enrolled and received BIA and dual-energy X-ray absorptiometry (DEXA) measurements in order to verify the reliability of BIA for measuring lean mass.219 healthy young volunteers aged 20 to 40 years with ratio of gender men:women 100:119 had BIA measurements to obtain peak muscle mass and sarcopenia diagnostic cut-off point of the elderly.657 elderly aged ≥ 60 years with ratio of gendermen:women 318:339 took BIA measurements to obtain the prevalence of sarcopenia in the elderly in Shanghai.Results No statistical difference between BIA-measured and DEXA-measured LM was observed (P =0.307).The

  20. Multi-frequency bioelectrical impedance: a comparison between the Cole-Cole modelling and Hanai equations with the classical impedance index approach.

    Science.gov (United States)

    Deurenberg, P; Andreoli, A; de Lorenzo, A

    1996-01-01

    Total body water and extracellular water were measured by deuterium oxide and bromide dilution respectively in 23 healthy males and 25 healthy females. In addition, total body impedance was measured at 17 frequencies, ranging from 1 kHz to 1350 kHz. Modelling programs were used to extrapolate impedance values to frequency zero (extracellular resistance) and frequency infinity (total body water resistance). Impedance indexes (height2/Zf) were computed at all 17 frequencies. The estimation errors of extracellular resistance and total body water resistance were 1% and 3%, respectively. Impedance and impedance index at low frequency were correlated with extracellular water, independent of the amount of total body water. Total body water showed the greatest correlation with impedance and impedance index at high frequencies. Extrapolated impedance values did not show a higher correlation compared to measured values. Prediction formulas from the literature applied to fixed frequencies showed the best mean and individual predictions for both extracellular water and total body water. It is concluded that, at least in healthy individuals with normal body water distribution, modelling impedance data has no advantage over impedance values measured at fixed frequencies, probably due to estimation errors in the modelled data.

  1. Wearable Multi-Frequency and Multi-Segment Bioelectrical Impedance Spectroscopy for Unobtrusively Tracking Body Fluid Shifts during Physical Activity in Real-Field Applications: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Federica Villa

    2016-05-01

    Full Text Available Bioelectrical Impedance Spectroscopy (BIS allows assessing the composition of body districts noninvasively and quickly, potentially providing important physiological/clinical information. However, neither portable commercial instruments nor more advanced wearable prototypes simultaneously satisfy the demanding needs of unobtrusively tracking body fluid shifts in different segments simultaneously, over a broad frequency range, for long periods and with high measurements rate. These needs are often required to evaluate exercise tests in sports or rehabilitation medicine, or to assess gravitational stresses in aerospace medicine. Therefore, the aim of this work is to present a new wearable prototype for monitoring multi-segment and multi-frequency BIS unobtrusively over long periods. Our prototype guarantees low weight, small size and low power consumption. An analog board with current-injecting and voltage-sensing electrodes across three body segments interfaces a digital board that generates square-wave current stimuli and computes impedance at 10 frequencies from 1 to 796 kHz. To evaluate the information derivable from our device, we monitored the BIS of three body segments in a volunteer before, during and after physical exercise and postural shift. We show that it can describe the dynamics of exercise-induced changes and the effect of a sit-to-stand maneuver in active and inactive muscular districts separately and simultaneously.

  2. BODY COMPOSITION OF YOUNG PEOPLE AGED 17-18 YEARS, PRACTICING AND NOT PRACTICING SWIMMING, WITH THE USE OF THE BIOELECTRICAL IMPEDANCE METHOD

    Directory of Open Access Journals (Sweden)

    Jendrysek Marek

    2015-11-01

    Full Text Available Purpose: Body composition evaluation of youth aged 17-18 of a different physical activity with the help of bioelectric impedance method. Material and Methods: 18 boys practicing swimming and 19 boys not practicing it took part in the study, making up a control group. Height, weight, BMI, lean body mass, the content of fat and water, Rohr factor were evaluated. Non-parametric Mann-Whitney test has been used to evaluate the differences in the range of the tissue components between the two groups. Results: Statistically significant differences were found on the p<0,05 level in % fat content. Mean body weight in experimental group was 71.5 kg, while in control group it was 69.4 kg. Minimum and maximum weight in group of swimming-practicing persons was: 56.6-92.2 kg. Increased body weight in the group of swimmers can result from greater amount of active tissue in this group compared with persons of low physical activity. Proportionally, it amounted to 64.3 kg and 61.3 kg. In the tested groups, minimal and maximal values of amount of active tissue proportionately amounted to: 54.1-78 and 49.5-72,3 kg. Conclusions: Physical activity modifies body composition. Active lifestyle is one of the methods for prevention of overweight and obesity.

  3. Bioelectric impedance overestimates the body fat in overweight and underestimates in Brazilian obese women: a comparation with Segal equation 1

    OpenAIRE

    Pimentel, G. D.; Bernhard, A. B. [UNESP; M. R. P. Frezza; Rinaldi, A. E. M. [UNESP; Roberto Carlos BURINI

    2010-01-01

    Introduction: Overweight and obesity are risk factors to appearance of cardiovascular diseases and anthropometry is important as clinical tool for planning and health policymaking at population level. Thus, aim of this work was to compare the simple body fat percentage (%BF) obtained straight by bioeletric impedance (BIA) to the one obtained by the equation of Segal et al (1988), which uses the BIA resistance value, overweight among adult women.Methods: This study conducted with 86 adult wome...

  4. 生物电阻抗技术研究进展%The Development of the Bioelectric Impedance Technologies

    Institute of Scientific and Technical Information of China (English)

    董秀珍

    2004-01-01

    本文从生物电阻抗血流图(bioimpedance rheohepatogram)、生物电阻抗测量(bioimpedance measurement)、生物组织阻抗频谱特性(bioimpedance spextroscopy)、生物电阻抗成像(electrical impedance imaging)等方面结合自己的研究工作,较全面地介绍并讨论了生物电阻抗技术的研究进展情况.

  5. 多频多段人体生物电阻抗测量系统%A Bioelectrical Impedance Measurement System Based on Multi-Frequency and Multi-Segment Technology

    Institute of Scientific and Technical Information of China (English)

    高秀娥; 唐佳; 陈波

    2012-01-01

    Bioelectrical impedance is an important composition of human body, and reflects the physical conditions of human tissues to some extent. Based on this, a multi-frequency and multi-segment bioelectrical impedance measurement system is designed on the principle of eight electrodes. In fact, the system, which consists of MCU system, sinusoidal excitation current source, RMS-to-DC circuit and etc, has achieved the impedance measurement of the extremities as well as the trunk under the frequency ranged from 5 ~ 500 kHz. Experiment results show that the system finally realizes high-accuracy measurements of amplitude and phase of bioelectrical impedance with the result of a relative error of magnitude which is less than 0. 7% and an absolute error of phase which is less than 0.8°.%人体生物电阻抗是人体体成分的重要组成部分,在一定程度上反映了人体组织的生理状况.基于此,设计了一套基于八电极的多频多段人体生物电阻抗测量系统.测量系统由单片机系统、正弦交流激励电流源、有效值检测电路等组成,实现了5 ~ 500 kHz频率范围的左右上下肢及躯干的5段测量.测试结果表明,测量系统实现了人体生物电阻抗的幅值和相位的高精度测量,幅值相对误差小于0.7%,相位绝对误差小于0.8°.

  6. 生物电阻抗铜片电极的化学刻蚀工艺%Chemical etching process of copper electrode for bioelectrical impedance technology

    Institute of Scientific and Technical Information of China (English)

    周伟; 宋嵘; 蒋乐伦; 许文平; 梁国开; 程德才; 刘灵蛟

    2012-01-01

    为获得具有强稳定性能的生物电阻抗电极,采用化学刻蚀加工方法,制造出表面具有一系列微结构的金属铜片电极.通过改变加工工艺参数的方法,着重分析刻蚀时间、刻蚀温度、刻蚀液体浓度、样品尺寸等刻蚀工艺参数对铜片电极的蚀刻速率和表面微结构的影响.结果表明:刻蚀速率将随着刻蚀时间的延长而逐渐降低,随着刻蚀温度的升高而逐渐升高,而刻蚀样本尺寸对刻蚀速率的影响不大.选用合适的刻蚀液体浓度(组分3),在室温条件下刻蚀20 min,可以获得具有丰富表面微结构的铜片电极.另外,进行24 h电极对接的连续性交流阻抗测试,与心电电极相比,利用化学刻蚀加工的铜片电极,由于表面具有丰富的表面微结构,可以形成可靠的表面接触,从而具有稳定的交流阻抗值.%In order to obtain bioelectrical impedance electrodes with high stability,the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures.By changing the etching processing parameters,some comparison experiments were performed to reveal the influence of etching time,etching temperature,etching liquid concentration,and sample sizes on the etching rate and surface microstructures of copper electrode.The result shows that the etching rate is decreased with increasing etching time,and is increased with increasing etching temperature.Moreover,it is found that the sample size has little influence on the etching rate.After choosing the reasonable etching liquid composition (formulation 3),the copper electrode with many surface microstructures can be obtained by chemical etching process at room temperature for 20 min.In addition,using the alternating current impedance test of electrode-electrode for 24 h,the copper electrode with a series of surface microstructures fabricated by the etching process presents a more stable impedance value compared with the

  7. Assessment of body fat proportion by means of bioelectrical impedance in athletic boys aged 7 to 18 years with respect to specific types of instruments

    Directory of Open Access Journals (Sweden)

    Sigmund Martin

    2015-07-01

    Full Text Available BACKGROUND: Bioelectrical impedance (BIA seems an appropriate method for basic diagnostics of body composition in a practical environment. This is a non-time consuming non-invasive method that provides a high degree of response relevance. However, the values identifi ed by the BIA method are susceptible to a number of factors, which need to be taken into account during the investigation stage and interpretation of the results. One of the signifi cant factors infl uencing the outcomes of measurement is the instrument factor.OBJECTIVE: The objective of the present comparative survey was to analyse the proportions of body fat by means of the BIA hand-to-leg method and BIA leg-to-leg method in a sample of athletic individuals aged 7 to 18 years.METHODS: The survey included a total of 178 ice-hockey players aged 7 to 18 years. The proportion of body fat analysed by means of the BIA hand-to-leg method was measured by the Tanita BC-418 MA instrument. For the purposes of the BIA leg-to-leg method the Tanita BF-350 instrument was used (Tanita, Japan. Both instruments work at a frequency of 50 kHz.RESULTS: The percentage of body fat established by the BIA leg-to-leg method (M = 13.5%; SD = 4.8 indicated signifi cantly lower values of fat percentage than the values measured by the BIA hand-to-leg method (M = 17.1%; SD = 4.3. The overall diff erence represents an average value of 3.6% (standard mode; p < .001; d = 0.8. Regarding the monitored age categories the observed diff erences are in the range of 3.1–4.7% (p < .001; d = 0.7–1.2.CONCLUSION: The present study compares the proportions of body fat by means of the BIA leg-to-leg method and BIA hand-to-leg method in athletic boys aged 7 to 18 years. The results measured by the BIA leg-to-leg method signifi cantly undervalue the proportion of body fat in comparison with the BIA hand-to-leg method. The instrument factor and age factor represented signifi - cant variables infl uencing the results of the

  8. DXA, bioelectrical impedance, ultrasonography and biometry for the estimation of fat and lean mass in cats during weight loss

    Directory of Open Access Journals (Sweden)

    Borges Naida C

    2012-07-01

    Full Text Available Abstract Background Few equations have been developed in veterinary medicine compared to human medicine to predict body composition. The present study was done to evaluate the influence of weight loss on biometry (BIO, bioimpedance analysis (BIA and ultrasonography (US in cats, proposing equations to estimate fat (FM and lean (LM body mass, as compared to dual energy x-ray absorptiometry (DXA as the referenced method. For this were used 16 gonadectomized obese cats (8 males and 8 females in a weight loss program. DXA, BIO, BIA and US were performed in the obese state (T0; obese animals, after 10% of weight loss (T1 and after 20% of weight loss (T2. Stepwise regression was used to analyze the relationship between the dependent variables (FM, LM determined by DXA and the independent variables obtained by BIO, BIA and US. The better models chosen were evaluated by a simple regression analysis and means predicted vs. determined by DXA were compared to verify the accuracy of the equations. Results The independent variables determined by BIO, BIA and US that best correlated (p r2, 19 equations were selected (12 for FM, 7 for LM; however, only 7 equations accurately predicted FM and one LM of cats. Conclusions The equations with two variables are better to use because they are effective and will be an alternative method to estimate body composition in the clinical routine. For estimated lean mass the equations using body weight associated with biometrics measures can be proposed. For estimated fat mass the equations using body weight associated with bioimpedance analysis can be proposed.

  9. Wave impedance retrieving via Bloch modes analysis

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, S.; Sukhorukov, A.;

    2011-01-01

    of the Bloch mode, respectively. Case studies prove that our ap-proach can determine material and wave effective parameters of lossy and lossless metamaterials. In some examples when the passivity is violated we made further analysis and showed that this is due to the failure of concept of impedance retrieving......-ciples violation, like antiresonance behaviour with Im(ε) mode analysis of periodic metamaterials to extract the dominating (fundamental) Bloch mode. Then it is possible to determine the Bloch and wave impedances by the surface and volume aver-aging of the electromagnetic field......The main bottleneck in the restoration of electromagnetic effective parameters is connected to the impedance retrieving. The S-parameters method gives the input (Bloch) impedance, which, being then used for permittivity and permeability determination, causes some fundamental physics prin...

  10. Are ethnic and gender specific equations needed to derive fat free mass from bioelectrical impedance in children of South asian, black african-Caribbean and white European origin? Results of the assessment of body composition in children study.

    Directory of Open Access Journals (Sweden)

    Claire M Nightingale

    Full Text Available BACKGROUND: Bioelectrical impedance analysis (BIA is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. METHODS: Cross-sectional study of children aged 8-10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500. Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z; B: FFM = linear combination(height(2/Z; C: FFM = linear combination(height(2/Z+weight}. RESULTS: Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A. The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A. Consistent results were observed when the equations were applied to a large external data set. CONCLUSIONS: Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations

  11. [Saarland Growth Study: analyses of body composition of children, aged 3 to 11 years. Measurement of height, weight, girth (abdomen, upper arm, calf) and skinfolds (triceps, biceps, subscapular,suprailiacal, abdominal) and bioelectric impedance (BIA)].

    Science.gov (United States)

    Weinand, C; Müller, S; Zabransky, S; Danker-Hopfe, H

    2000-01-01

    This study aimed to set up current reference charts of anthropometric data in the Saarland. Only national and international data were available to be compared but no former Saarland charts could be found. In the period between 1994 and 1995 we investigated children of 3 to 11 years in a cross-sectional study. Therefore we measured body height, weight, circumferences, skinfolds and bioelectrical impedance (BIA). No significant gender differences were found for body height and weight. Boys of all groups of age showed bigger abdominal circumferences than girls of the same age. On the other hand upper-arm and calf-girth of younger girls were larger than that from boys. In higher age groups circumferences become rather equal. The skinfolds of Saarland girls are thicker than those of boys. The urban rural comparison indicated no significant differences. Nor was any social divergence found among the aforementioned parameters. Regarding height Saarland children are seen to be similar or somewhat shorter than those examined in national or international studies. By the way, in higher percentiles the children in our study were heavier. Thus high BMI values of our study are bigger compared with former studies. According to the definition of obesity by the ECOG almost 20 to 30% of our children are obese. The older children become the higher is the percentage of obesity. Comparing girls and boys, bioelectrical impedance shows higher values for girls. In higher age classes resistance levels gets smaller, in boys more so than in girls. Body fat estimated by a formula based on BIA test parameters yielded negative values. So we propose the use of sex- and age-specific raw charts of BIA test parameters.

  12. Association of nutrition parameters including bioelectrical impedance and systemic inflammatory response with quality of life and prognosis in patients with advanced non-small-cell lung cancer: a prospective study.

    Science.gov (United States)

    Sánchez-Lara, Karla; Turcott, Jenny G; Juárez, Eva; Guevara, Patricia; Núñez-Valencia, Carolina; Oñate-Ocaña, Luis F; Flores, Diana; Arrieta, Oscar

    2012-01-01

    Early identification and treatment of nutritional deficiencies can lead to improved outcomes in the quality of life (QoL) and survival of patients with nonsmall cell lung cancer (NSCLC). Noninvasive techniques are needed to evaluate changes in body composition as part of determining nutritional status. The aim of the study was to evaluate the association of nutritional parameters in health-related quality of life (HRQL) and survival in patients with advanced NSCLC. Chemotherapy-naïve patients with advanced NSCLC with good performance status Eastern Cooperative Oncology Group (ECOG) 0-2 were included prospectively in the study. We evaluated inflammatory parameters such as C-reactive protein, platelet/lymphocyte index, neutrophil/lymphocyte index, serum interleukin (IL)-6, and tumor necrosis factor-α, and nutritional variables such as body mass index (BMI) and serum albumin levels. Bioelectrical impedance analysis including phase angle was obtained before cisplatin-based chemotherapy was started. HRQL was assessed by application of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (QLQ)-C30 and QLQ-LC13 instruments at baseline. Overall survival (OS) was calculated with the Kaplan-Meier method and analyzed with log-rank and Cox proportional hazard models. One hundred nineteen patients were included. Mean BMI was 24.8 ± 4.5 kg/m(2), average weight loss of patients was 8.4%, and median phase angle was 5.8°. Malnutrition measured by subjective global assessment (SGA), weight loss >10%, BMI >20 was associated with lower HRQL scales. Patients with ECOG 2, high content serum IL-6, lower phase angle, and malnutrition parameters showed lower OS; however, after multivariate analysis, only ECOG 2 [Hazard ratio (HR), 2.7; 95% confidence interval (95% CI), 1.5-4.7; P = 0.001], phase angle ≤5.8° (HR = 3.02; 95% CI: 1.2-7.11; P = 0.011), and SGA (HR = 2.7; 95% CI, 1.31-5.5; P = 0.005) were associated with poor survival. Patients

  13. OCM and Impedance Analysis of Polypyrrole

    Science.gov (United States)

    1990-05-01

    0e 4 ’.6. SUPPLEMENTARY NOTATION 178th Meeting of the Electrochemical Society , Seattle, Washington, October 1990 !7 COSA7 CODES -4) SUBJECT TERMS...to: The Electrochemical Society , Inc. Abstract No. 10 South Main Street Pennington, NJ 08534.2696 (to be assigned by te Society) With a copy to the... Electrochemical Society . Inc. QCM and Impedance Analysis of Polypyrrole CoLe-Cole plots for anion -intercalating polypyrrole Mary M. Lien. Hesi-ku Park. and

  14. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods.

    Science.gov (United States)

    Jaffrin, Michel Y; Morel, Hélène

    2008-12-01

    This paper reviews various bioimpedance methods permitting to measure non-invasively, extracellular, intracellular and total body water (TBW) and compares BIA methods based on empirical equations of the wrist-ankle resistance or impedance at 50 kHz, height and weight with BIS methods which rely on an electrical model of tissues and resistances measured at zero and infinite frequencies. In order to compare these methods, impedance measurements were made with a multifrequency Xitron 4200 impedance meter on 57 healthy subjects which had undergone simultaneously a Dual X-ray absorptiometry examination (DXA), in order to estimate their TBW from their fat-free-mass. Extracellular (ECW) and TBW volumes were calculated for these subjects using the original BIS method and modifications of Matthie[Matthie JR. Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J Appl Physiol 2005;99:780-1], Jaffrin et al. [Jaffrin MY, Fenech M, Moreno MV, Kieffer R. Total body water measurement by a modification of the bioimpédance spectroscopy method. Med Bio Eng Comput 2006;44:873-82], Moissl et al. [Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 2006;27:921-33] and their TBW resistivities were compared and discussed. ECW volumes were calculated by BIA methods of Sergi et al. [Sergi G, Bussolotto M, Perini P, Calliari I, et al. Accuracy of bioelectrical bioimpedance analysis for the assessment of extracellular space in healthy subjects and in fluid retention states. Ann Nutr Metab 1994;38(3):158-65] and Hannan et al. [Hannan WJ, Cowen SJ, Fearon KC, Plester CE, Falconer JS, Richardson RA. Evaluation of multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin Sci 1994;86:479-85] and TBW volumes by BIA methods of Kushner and Schoeller [Kushner RF

  15. The use of bioelectrical impedance analysis for body composition in epidemiological studies

    DEFF Research Database (Denmark)

    Böhm, A; Heitmann, B L

    2013-01-01

    with increased risk of developing chronic diseases. Studies, among others using BIA, suggest that low BMI may reflect low muscle and high BMI fat mass (FM). BIA-derived lean and FM is directly associated with morbidity and mortality. To the contrary, BMI is rather of limited use for measuring BF...

  16. Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy

    Science.gov (United States)

    Danilov, A. A.; Kramarenko, V. K.; Nikolaev, D. V.; Rudnev, S. G.; Salamatova, V. Yu; Smirnov, A. V.; Vassilevski, Yu V.

    2013-04-01

    In this work, an adaptive unstructured tetrahedral mesh generation technology is applied for simulation of segmental bioimpedance measurements using high-resolution whole-body model of the Visible Human Project man. Sensitivity field distributions for a conventional tetrapolar, as well as eight- and ten-electrode measurement configurations are obtained. Based on the ten-electrode configuration, we suggest an algorithm for monitoring changes in the upper lung area.

  17. Feasibility of bioelectrical impedance analysis in children with a severe generalized cerebral palsy

    NARCIS (Netherlands)

    R. Veugelers (Rebekka); C. Penning (Corine); L. van Gulik (Laura); D. Tibboel (Dick); H.M. Evenhuis (Heleen)

    2006-01-01

    textabstractObjective: The need is strong for an accurate and easy-to-perform test to evaluate the nutritional state of children who have a severe generalized cerebral palsy, defined as a severe motor handicap and an intellectual disability. For that purpose, we determined the feasibility of bioelec

  18. [ABDOMINAL BIOELECTRICAL IMPEDANCE ANALYSIS AND ANTHROPOMETRY FOR PREDICTING METABOLIC SYNDROME IN MIDDLE AGED MEN].

    Science.gov (United States)

    Fernández-Vázquez, Rosalía; Millán Romero, Ángel; Barbancho, Miguel Ángel; Alvero-Cruz, José Ramón

    2015-09-01

    Objetivo: la obesidad central tiene una gran relación con el síndrome metabólico. Estudiar la relación de la grasa del tronco, el índice de grasa visceral y las medidas antropométricas con el síndrome metabólico. Métodos: diseño: transversal descriptivo y correlacional. Participaron 75 varones, voluntarios, de distintas profesiones, que accedieron a un reconocimiento médico- laboral, con un rango de edad de 21 a 59 años. Mediciones de peso, talla, índice de masa corporal, perímetro abdominal, perímetro glúteo, índice cintura-cadera y grasa de tronco y nivel de grasa visceral mediante bioimpedanciometría (Tanita AB-140-ViScan) y parámetros bioquímicos: glucosa, colesterol total y triglicéridos. Así mismo, se midió la presión arterial sistólica y diastólica. Se comparan los estados de síndrome metabólico, sobrepeso y obesidad. Resultados: existen correlaciones de las medidas antropométricas con la de grasa de tronco y el nivel de grasa visceral, así como con los parámetros bioquímicos (p obesidad y síndrome metabólico. Conclusiones: la grasa de tronco y los niveles de grasa visceral son muy sensibles y específicos para la detección del síndrome metabólico y la obesidad, aunque no superan a las variables e índices antropométricos. En la condición de sobrepeso, la grasa de tronco y visceral son medidas algo más predictivas que las variables antropométricas.

  19. Bioelectrical impedance analysis (BIA) for sarcopenic obesity (SO) diagnosis in young female subjects

    Science.gov (United States)

    González-Correa, C. H.; Caicedo-Eraso, J. C.; S, Villada-Gomez J.

    2013-04-01

    Sarcopenia is defined as a loss of muscle mass depending of ageing and affecting physical function (definition A). A new definition considers excluding mass reduction criterion (definition B). Obesity is pandemic and occurs at all ages. Sarcopenic obesity (SO) implies both processes. The purpose of this study was to compare the results obtained after applying these 2 definitions in 66 aged 22 ± 2.8 years overweight or obese young college women. Percentage body fat (%BF) and skeletal mass index (SMI) were estimated by BIA, muscle function by handgrip strength test (HGS) and physical performance by Harvard step test (HST). There were 9.1% and 90.9% overweight or obese subjects. Twenty nine subjects (43.9%) had decreased HGS and 22 (33.3%) had impaired physical performance. One obese subject (1.5%) met the criteria for sarcopenic obesity by definition A and 9 (13.6%) by definition B. Although a linear regression (α obese, the problematic of SO will be found earlier in life.

  20. Impedance analysis of acupuncture points and pathways

    Science.gov (United States)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  1. Impedance Based Analysis and Design of Harmonic Resonant Controller for a Wide Range of Grid Impedance

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    This paper investigates the effect of grid impedance variation on harmonic resonant current controllers for gridconnected voltage source converters by means of impedance-based analysis. It reveals that the negative harmonic resistances tend to be derived from harmonic resonant controllers......, where the controller gain boundary region is derived based on the short circuit ratio. The nonlinear time domain simulations are presented to verify the theoretical analysis in the frequency domain, and the experimental results based on the analysis results are included....

  2. Estimativa da gordura corporal através de equipamentos de bioimpedância, dobras cutâneas e pesagem hidrostática Comparison of body fat estimation by bioelectric impedance, skinfold thickness, and underwater weighing

    Directory of Open Access Journals (Sweden)

    Maurício Nunes Rodrigues

    2001-08-01

    Full Text Available A estimativa do percentual de gordura (%G pela bioimpedância (BIA tem como vantagem a simplicidade da medida. Contudo, a confiabilidade da BIA tem sofrido críticas. O objetivo deste estudo foi comparar a estimativa do %G através das técnicas de bioimpedância (RJL-101; Byodinamics A-310, Maltron BF-900 e BF-906, de dobras cutâneas (DC e da pesagem hidrostática (PH. Observaram-se 25 indivíduos, homogeneizados segundo raça (branca, gênero (masculino e idade (18 a 36 anos. Para a medida de BIA foi utilizada a padronização proposta por Lukaski et al. (1985, 1986. Para as DC foram utilizadas as equações de å 3 DC e å 7 DC (Jackson, Pollock, 1978. Os valores de %G e de volume residual para PH foram preditos, respectivamente, pelas equações de Siri (1961 e Goldman e Becklake (1959. A análise estatística compreendeu: a comparação entre os métodos através da ANOVA com medidas repetidas seguida de testes post-hoc de Tukey; b correlação de Pearson (r; e c cálculo do erro padrão de estimativa (SEE das técnicas em relação à PH. Os resultados indicaram que: a as medidas de BIA não diferiram significativamente, entre si, para o %G estimado; b As medidas dos aparelhos A-310 e BF-906 não coincidiram com a PH (p The main advantage of the bioelectric impedance method (BIA in the determination of body fat (%BF is the simplicity of the procedure. However, its accuracy and reliability have been criticized. The purpose of this study was to compare the %BF obtained by BIA (RJL-101; Biodynamics A-310, Maltron BF-900 e BF-906, by skinfold thickness (ST, and by underwater weighing (UW. Twenty-five subjects, divided in homogenous groups according to age (18 to 36 years, sex (men, and race (white participated in the study. BIA measures were taken using the Lukaski et al. standardization (1985,1986. ST was taken by using the equation of 3 and 7 skinfolds (Jackson, Pollock, 1978. The values of %BF and residual volume for the UW were estimated

  3. Equivalent circuit models for ac impedance data analysis

    Science.gov (United States)

    Danford, M. D.

    1990-01-01

    A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.

  4. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based on Impedance Based Harmonic Analysis

    DEFF Research Database (Denmark)

    Kwon, JunBum; Wang, Xiongfei; Bak, Claus Leth;

    2014-01-01

    This paper addresses the harmonic compensation error problem existing with parallel connected inverter in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid...... impedance can make influence to each other if they each have a harmonic compensation function. The analysis method proposed in this paper is based on the relationship between the overall output impedance and input impedance of parallel connected inverter, where controller gain design method, which can...

  5. Impedance Analysis of SOGI-FLL-Based Grid Synchronization

    DEFF Research Database (Denmark)

    Yi, Hao; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    The latest research has pointed out that the Phase-Locked Loop (PLL) plays an important role in shaping the impedance of grid-connected converters, yet most of the works so far merely focus on the synchronous reference-frame PLL. Alternatively, this letter presents the impedance analysis of the S...

  6. Analysis and design of complex impedance transforming marchand baluns

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2014-01-01

    A new type of Marchand balun is presented in this paper, which has the property of complex impedance transformation. To allow the Marchand balun to transform between arbitrary complex impedances, three reactances should be added to the circuit. A detailed analysis of the circuit gives the governi...

  7. Equivalent Circuits For AC-Impedance Analysis Of Corrosion

    Science.gov (United States)

    Danford, M. D.

    1992-01-01

    Report presents investigation of equivalent circuits for ac-impedance analysis of corrosion. Impedance between specimen and electrolyte measured as function of frequency. Data used to characterize corrosion electrochemical system in terms of equivalent circuit. Eleven resistor/capacitor equivalent-circuit models were analyzed.

  8. Single cell array impedance analysis in a microfluidic device

    Science.gov (United States)

    Altinagac, Emre; Taskin, Selen; Kizil, Huseyin

    2016-10-01

    Impedance analysis of single cells is presented in this paper. Following the separation of a target cell type by dielectrophoresis in our previous work, this paper focuses on capturing the cells as a single array and performing impedance analysis to point out the signature difference between each cell type. Lab-on-a-chip devices having a titanium interdigitated electrode layer on a glass substrate and a PDMS microchannel are fabricated to capture each cell in a single form and perform impedance analysis. HCT116 (homosapiens colon colorectal carcin) and HEK293 (human embryonic kidney) cells are used in our experiments.

  9. Bioelectricity and epimorphic regeneration.

    Science.gov (United States)

    Stewart, Scott; Rojas-Muñoz, Agustin; Izpisúa Belmonte, Juan Carlos

    2007-11-01

    All cells have electric potentials across their membranes, but is there really compelling evidence to think that such potentials are used as instructional cues in developmental biology? Numerous reports indicate that, in fact, steady, weak bioelectric fields are observed throughout biology and function during diverse biological processes, including development. Bioelectric fields, generated upon amputation, are also likely to play a key role during vertebrate regeneration by providing the instructive cues needed to direct migrating cells to form a wound epithelium, a structure unique to regenerating animals. However, mechanistic insight is still sorely lacking in the field. What are the genes required for bioelectric-dependent cell migration during regeneration? The power of genetics combined with the use of zebrafish offers the best opportunity for unbiased identification of the molecular players in bioelectricity.

  10. Change in fat-free mass assessed by bioelectrical impedance, total body potassium and dual energy X-ray absorptiometry during prolonged weight loss

    DEFF Research Database (Denmark)

    Hendel, H W; Gotfredsen, A; Højgaard, L;

    1996-01-01

    ). These measurements were compared with bioimpedance analysis (BIA) by applying 11 predictive BIA equations published in the literature. Predictive equations for the present study population were developed, with the use of fat-free mass (FFM) as assessed by TBK and DXA as references in multiple regression analysis...

  11. VALIDITY OF BODY DENSITY WITH METHODS OF BODY MASS INDEX, SKIN FOLD, BIO- ELECTRICAL IMPEDANCE & CRITERION METHOD OF HYDROSTATIC IN MEN ATHLETES OF SWIMMING

    Directory of Open Access Journals (Sweden)

    M Bayat KASHKOLİ

    2011-12-01

    Full Text Available The goal of present research is estimating and validity of body density with methods of Body Mass Index, Skin Fold, Bio-Electrical Impedance and Criterion Method of Hydrostatic in men athletes of swimming. The present research has been conducted with semi-experimental and functional method. For doing so 25 men swimming athletes were randomly selected (N= 120. Statistical analysis was conducted with Pearson coefficient, correlated T-test, TE & SEE. The results of statistical analysis show that the method of Skin Fold Stat with hydrostatic criterion method has meaningful difference in society of swimmers. Also there is meaningful difference between body mass index and criterion method. There was not any meaningful difference between bio-electrical impedance and criterion method in swimmers. (TE=3.01, SEE=2.91, R=0.924, P=0.064. The findings show that that bio-electrical impedance in swimmer athletes is more suitable method.

  12. Impedance analysis of an enhanced piezoelectric biosensor

    Science.gov (United States)

    Kim, Gi-Ho

    This study investigated the usefulness and characteristics of a five-megahertz quartz crystal resonator oscillating in a thickness-shear mode as a sensor of biological pathogens such as Salmonella typhimurium . An impedance analyzer measured the impedance of the oscillating quartz crystal, which determined all mechanical properties of the oscillating quartz and its immediate environment. In this study, the impedance behavior of the bare crystal was characterized in air and in potassium phosphate buffer solution. The potassium phosphate buffer was a Newtonian liquid. The resonance frequency of the oscillating quartz shifted down about 900 Hz by contacting with the buffer. An immobilized-antibody layer on the quartz surface behaved like a rigid mass when immersed in the buffer solution. The quartz crystal with immobilized antibodies was characterized in various solutions containing antibody- coated paramagnetic microspheres and varying concentrations of Salmonella typhimurium (102 - 108 cells/ml). The Salmonella cells were captured by antibody- coated paramagnetic microspheres, and then these complexes were moved magnetically to the oscillating quartz and were captured by antibodies immobilized on the crystal surface. The response of the crystal was expressed in terms of equivalent circuit parameters. The motional inductance and the motional resistance increased as a function of the concentration of Salmonella. The viscous damping was the main contribution to the resistance and the inductance in a liquid environment. The load resistance was the most effective and sensitive circuit parameter. A magnetic force was a useful method to collect the complexes of Salmonella-microspheres on the crystal surface and enhance the response sensor. In this system, the detection limit, based on resistance monitoring, was about 103 cells/ml.

  13. Bioelectrical impedance for detecting and monitoring lymphedema in patients with breast cancer. Preliminary results of the florence nightingale breast study group.

    Science.gov (United States)

    Erdogan Iyigun, Zeynep; Selamoglu, Derya; Alco, Gul; Pilancı, Kezban Nur; Ordu, Cetin; Agacayak, Filiz; Elbüken, Filiz; Bozdogan, Atilla; Ilgun, Serkan; Guler Uysal, Fusun; Ozmen, Vahit

    2015-03-01

    The aim of this study was to evaluate the efficacy of bioimpedance spectroscopy for the follow-up of patients with lymphedema in Turkey and its benefits in the diagnosis of stage 0, 1, and 2 lymphedema in patients who are under treatment for breast cancer. Thirty-seven female patients with breast cancer who underwent surgical procedures in our Breast Health Centre were followed up for lymphedema using bioimpedance, and clinical measurements were taken for a minimum period of 1 year at 3-month intervals. Patients who had been monitored regularly between November, 2011, and September, 2013, were enrolled to the study. In total, 8 patients developed lymphedema with an overall rate of 21.6%. Among the 8 patients who developed lymphedema, 4 had Stage 2, 1 had Stage 1, and 3 had Stage 0 lymphedema. Stage 0 lymphedema could not be detected with clinical measurements. During the patients' 1-year follow-up period using measurements of bioimpedance, a statistically significant relationship was observed between the occurrence of lymphedema and the disease characteristics. including the number of the extracted and remaining lymph nodes and the region of radiotherapy (p=0.042, p=0.024, p=0.040). Bioimpedance analysis seems to be a practical and reliable method for the early diagnosis of lymphedema. It is believed that regular monitoring of patients in the high-risk group using bioimpedance analyses increases the ability to treat lymphedema.

  14. A parametric framework for modelling of bioelectrical signals

    CERN Document Server

    Mughal, Yar Muhammad

    2016-01-01

    This book examines non-invasive, electrical-based methods for disease diagnosis and assessment of heart function. In particular, a formalized signal model is proposed since this offers several advantages over methods that rely on measured data alone. By using a formalized representation, the parameters of the signal model can be easily manipulated and/or modified, thus providing mechanisms that allow researchers to reproduce and control such signals. In addition, having such a formalized signal model makes it possible to develop computer tools that can be used for manipulating and understanding how signal changes result from various heart conditions, as well as for generating input signals for experimenting with and evaluating the performance of e.g. signal extraction methods. The work focuses on bioelectrical information, particularly electrical bio-impedance (EBI). Once the EBI has been measured, the corresponding signals have to be modelled for analysis. This requires a structured approach in order to move...

  15. A systematic uncertainty analysis for liner impedance eduction technology

    Science.gov (United States)

    Zhou, Lin; Bodén, Hans

    2015-11-01

    The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.

  16. Uncertainty Analysis of the Grazing Flow Impedance Tube

    Science.gov (United States)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  17. Bioelectrical Perchlorate Remediation

    Science.gov (United States)

    Thrash, C.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Several bioreactor designs are currently available for the ex-situ biological attenuation of perchlorate- contaminated waters and recently, some of these reactor designs were conditionally approved by the California Department of Health Services for application in the treatment of perchlorate contaminated drinking water. However, all of these systems are dependent on the continual addition of a chemical electron donor to sustain microbial activity and are always subject to biofouling and downstream water quality issues. In addition, residual labile electron donor in the reactor effluent can stimulate microbial growth in water distribution systems and contribute to the formation of potentially toxic trihalomethanes during disinfection by chlorination. As part of our ongoing studies into microbial perchlorate reduction we investigated the ability of dissimilatory perchlorate reducing bacteria (DPRB) to metabolize perchlorate using a negatively charged electrode (cathode) in the working chamber of a bioelectrical reactor (BER) as the primary electron donor. In this instance the DPRB use the electrons on the electrode surface either directly or indirectly in the form of electrolytically produced H2 as a source of reducing equivalents for nitrate and perchlorate reduction. As part of this investigation our fed-batch studies showed that DPRB could use electrons from a graphite cathode poised at -500mV (vs. Ag/AgCl) for the reduction of perchlorate and nitrate. We isolated a novel organism, Dechlorospirillum strain VDY, from the cathode surface after 70 days operation which readily reduced 100 mg.L-1 perchlorate in a mediatorless batch bioelectrical reactor (BER) in 6 days. Continuous up-flow BERs (UFBERs) seeded with active cultures of strain VDY continuously treated waters containing 100 mg.L-1 perchlorate with almost 100% efficiency throughout their operation achieving a non-optimized volumetric loading of 60 mg.L-1 reactor volume.day-1. The same UFBERs also treated

  18. A Planar Interdigital Sensor for Bio-impedance Measurement: Theoretical analysis, Optimization and Simulation

    Directory of Open Access Journals (Sweden)

    Thanh-Tuan Ngo

    2014-04-01

    Full Text Available This paper proposes the design of a biosensor to characterize the dielectric and conductive properties of biological materials (for example blood or water by impedance spectroscopy. Particularly, its design optimized the geometric structure interdigitated electrodes. This optimization allows extending the frequency range of measurement by reducing the polarization effect. Polarization effect is manifested by an interface capability (or double layer from interaction between ions and molecules in the boundary between the surface of the electrolyte and the electrodes, it increases the measurement error at low frequencies. This paper recommends also a novel method to determine the parameters (relative permittivity, thickness and capacitance per unit area of the double layer (DL at the contact surface of the electrode with the solution. CoventorWare software was utilized to modelize of interdigital sensor structure in three dimensions (3D to verify the analytical results and evaluate the influence of geometrical parameters and the dielectric properties of the medium on bioelectrical impedance.

  19. Bioelectric signal classification using a recurrent probabilistic neural network with time-series discriminant component analysis.

    Science.gov (United States)

    Hayashi, Hideaki; Shima, Keisuke; Shibanoki, Taro; Kurita, Yuichi; Tsuji, Toshio

    2013-01-01

    This paper outlines a probabilistic neural network developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower-dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model that incorporates a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into a neural network so that parameters can be obtained appropriately as network coefficients according to backpropagation-through-time-based training algorithm. The network is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. In the experiments conducted during the study, the validity of the proposed network was demonstrated for EEG signals.

  20. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes

    KAUST Repository

    Ruffo, Riccardo

    2009-07-02

    The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance spectroscopy in equilibrium conditions at different lithium compositions and during several cycles of charge and discharge in a half cell vs. metallic lithium. The impedance analysis shows the contribution of both surface resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominated by a solid electrolyte layer (SEI) consisting of an inner, inorganic insoluble part and several organic compounds at the outer interface, as seen by XPS analysis. The surface resistivity, which seems to be correlated with the Coulombic efficiency of the electrode, grows at very high lithium contents due to an increase in the inorganic SEI thickness. We estimate the diffusion coefficient of about 2 × 10 -10 cm 2/s for lithium diffusion in silicon. A large increase in the electrode impedance was observed at very low lithium compositions, probably due to a different mechanism for lithium diffusion inside the wires. Restricting the discharge voltage to 0.7 V prevents this large impedance and improves the electrode lifetime. Cells cycled between 0.07 and 0.70 V vs. metallic lithium at a current density of 0.84 A/g (C/5) showed good Coulombic efficiency (about 99%) and maintained a capacity of about 2000 mAh/g after 80 cycles. © 2009 American Chemical Society.

  1. Analysis of impedance measurements of a suspension of microcapsules using a variable length impedance measurement cell

    Directory of Open Access Journals (Sweden)

    Dejan Krizaj

    2012-10-01

    Full Text Available Electrical impedance measurements of the suspensions have to take into account the double layer impedance that is due to a very thin charged layer formed at the electrode-electrolite interface. A dedicated measuring cell that enables variation of the distance between the electrodes was developed for investigation of electrical properties of suspensions using two electrode impedance measurements. By varying the distance between the electrodes it is possible to separate the double layer and the suspension impedance from the measured data. From measured and extracted impedances electrical lumped models have been developed. The error of non inclusion of the double layer impedance has been analyzed. The error depends on the frequency of the measurements as well as on the distance between the electrodes.

  2. Interference of heart and transcutaneous oxygen monitoring in the measurement of bioelectrical impedance analysis in preterm newborns

    Directory of Open Access Journals (Sweden)

    Viviane C. Comym

    Full Text Available Abstract Objective: To verify if the connection of electrodes for heart and transcutaneous oxygen monitoring interfere with the measurement of electrical bioimpedance in preterm newborns. Methods: This was a prospective, blinded, controlled, cross-sectional, crossover study that assessed and compared paired measures of resistance (R and reactance (Xc by BIA, obtained with and without monitoring wires attached to the preterm newborn. The measurements were performed in immediate sequence, after randomization to the presence or absence of electrodes. The sample size calculated was 114 measurements or tests with monitoring wires and 114 without monitoring wires, considering for a difference between the averages of 0.1 ohms, with an alpha error of 10% and beta error of 20%, with significance <0.05. Results: No differences were observed between the R (677.37 ± 196.07 vs. 677.46 ± 194.86 and Xc (31.15 ± 9.36 vs. 31.01 ± 9.56 values obtained with and without monitoring wires, respectively, with good correlation between them (R: 0.997 and Xc: 0.968. Conclusion: The presence of heart and/or transcutaneous oxygen monitoring wires connected to the preterm newborn did not affect the values of R or Xc measured by BIA, allowing them to be carried out in this population without risks.

  3. Impedance Flow Cytometry: A Novel Technique in Pollen Analysis

    OpenAIRE

    Heidmann, Iris; Schade-Kampmann, Grit; Lambalk, Joep; Ottiger, Marcel; Di Berardino, Marco

    2016-01-01

    Introduction An efficient and reliable method to estimate plant cell viability, especially of pollen, is important for plant breeding research and plant production processes. Pollen quality is determined by classical methods, like staining techniques or in vitro pollen germination, each having disadvantages with respect to reliability, analysis speed, and species dependency. Analysing single cells based on their dielectric properties by impedance flow cytometry (IFC) has developed into a comm...

  4. Analysis on electromagnetic scattering by a wedge with impedance faces under exact impedance boundary

    Institute of Scientific and Technical Information of China (English)

    吴良超; 汪茂光

    1995-01-01

    Under the exact impedance boundary condition (EIBC), by using wave equations and the longitudinal field method, the electromagnetic scattenng by an impedance wedge has been analysed in detail, following the Maliuzhinets approach, and the uniform diffraction coefficient of the diffracted field has been presented.

  5. Electrochemical impedance analysis of SOFC cathode reaction using evolutionary programming

    Energy Technology Data Exchange (ETDEWEB)

    Hershkovitz, S.; Baltianski, S.; Tsur, Y. [Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa (Israel)

    2012-02-15

    Investigation of the cathode reaction in solid oxide fuel cells (SOFC) by impedance spectroscopy (IS) measurements using evolutionary-based programming analysis is demonstrated. In contrast to the conventional analysis methods used for impedance spectroscopy measurements, e.g., equivalent circuits, the impedance spectroscopy genetic programming (ISGP) program seeks for a distribution of relaxation times that has the form of a peak or a sum of several peaks, assuming the Debye kernel. Using this method one finds a functional (parametric) form of the distribution of relaxation times. A symmetric cell configuration of Pt vertical stroke LSCF vertical stroke GDC vertical stroke LSCF vertical stroke Pt was examined using IS measurements combined with I-V measurements. Different samples at different temperatures and different oxygen partial pressures were examined in order to investigate their influence on the oxygen reduction reaction. The resulting IS data was analyzed using the ISGP program and the resulting peaks constructing the distribution of relaxation times were assigned for the different processes that occur at the cathode side. The activation energies as well as the dependence of the processes on the oxygen partial pressure were also evaluated. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS

    Directory of Open Access Journals (Sweden)

    LEE V. C.-C.

    2017-02-01

    Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.

  7. 应用生物电阻抗预测方程评价维持性血液透析患者干体质量%Assessment of dry weight among maintenance hemodialysis patients with the application of bioelectrical impedance prediction equation

    Institute of Scientific and Technical Information of China (English)

    杜静; 隋小妮; 赵战云; 邹作君

    2012-01-01

    Object To explore the accuracy of bioelectrical impedance prediction equation in the evaluation of dry weight among maintenance hemodialysis (MHD) patients. Methods Dry weight of 60 MHD patients was estimated using electrical impedance value of 50 KHz frequency measured by bioelectrical impedance analyzer, combined with slope method and new 3-compartment model. Dry weight of these participants was the post-dialysis weight, measured by inferior vena cava diameter (IVCD) method which was deemed as golden standard. Another 90 individuals with matched gender, age, height, body weight and BMI were selected to construct coefficient and compare the human body parameters with MHD patient. Results Pearson correlation coefficient between the evaluated dry weight by slope method and true dry weight was 0.991. Bland-Altman plot showed these two approaches bore poor consistency and the difference between them was far from zero. Pearson correlation coefficient between assessed dry weight by new 3-compartmental model and true dry weight was 0.993. Bland- Airman plot revealed good consistency between the two methods with stable and minor diffidence as their differences fluctuated near zero. Conclusion Different bioelectrical impedance measuring instrument gives rise to the impact on measured data. In this study, the new 3-compartment model predicts the dry weight of MHD patients more accurately.%目的 探讨运用生物电阻抗预测方程评价维持性血液透析(maintenance hemodialysis,MHD)患者干体质量的准确性. 方法 使用多频生物电阻抗分析仪测定60例MHD患者50千赫下电阻抗值,结合斜率法、新三室模型预测MHD患者干体质量.经下腔静脉直径(inferior vena cava diameter,IVCD)等综合评价,认为患者的干体质量即入选患者本次透析后体质量,可用于干体质量准确性评价.另选择性别、年龄、身高,体质量和体质量指数(BMI)相匹配个体87例,用于构建方程系数及与MHD患

  8. Interobserver and Intraobserver Variability in pH-Impedance Analysis between 10 Experts and Automated Analysis

    DEFF Research Database (Denmark)

    Loots, Clara M; van Wijk, Michiel P; Blondeau, Kathleen;

    2011-01-01

    OBJECTIVE: To determine interobserver and intraobserver variability in pH-impedance interpretation between experts and accuracy of automated analysis (AA). STUDY DESIGN: Ten pediatric 24-hour pH-impedance tracings were analyzed by 10 observers from 7 world groups and with AA. Detection of gastroe......OBJECTIVE: To determine interobserver and intraobserver variability in pH-impedance interpretation between experts and accuracy of automated analysis (AA). STUDY DESIGN: Ten pediatric 24-hour pH-impedance tracings were analyzed by 10 observers from 7 world groups and with AA. Detection....... CONCLUSION: Interobserver agreement in combined pH-multichannel intraluminal impedance analysis in experts is moderate; only 42% of GER episodes were detected by the majority of observers. Detection of total GER numbers is more consistent. Considering these poor outcomes, AA seems favorable compared...

  9. Grado de acuerdo entre los índices adiposo-musculares obtenidos a partir de medidas antropométricas del brazo, pliegues cutáneos e impedancia bioeléctrica Interchangeability of the fat-to-fat-free mass ratios obtained by arm anthropometric measures, skinfold thickness and bioelectrical impedance

    Directory of Open Access Journals (Sweden)

    V. Martín Moreno

    2003-04-01

    agreement among the fat-to-fat-free mass ratios obtained by arm anthropometric measures (fat-muscle index, FMI, Siri equation for the sum of four skinfold thickness (body fat-muscle index, BFMI Siri and triceps skinfold (BFMItriceps and bioelectrical impedance (BFMI Omron methods. Methods: This is a cross-sectional study. A total of 145 patients were evaluated by anthropometry and bioelectrical impedance (Omron BF 300(, being estimated the agreement through the Intraclass Correlation Coefficient (ICC and Bland-Altman method. The reference method was BFMI Siri. Results: The ICC between BFMI Siri - BFMItriceps were 0,9304 (0,9035; 0,9498, between BFMI Siri - FMI of 0,7726 (0,6846; 0,8361 and between BFMI Siri - BFMI Omron of 0,9114 (0,8771; 0,9361. BFMItriceps (limits of agreement -0,171 to 0,117 show the best agreement according to Bland-Altman analysis with BFMI Siri, followed by BMFI Siri - BFMI Omron (-0,186; 0,178. The agreement limits between FMI and BFMI Siri (-0,2; 0,42, BFMItriceps (-0,26; 0,42 or BFMI Omron (-0,292; 0,504 were beyond of the established cut-off points (-0,2; 0,2. Conclusions: Due to the nature of the statistical agreement BFMItriceps and BFMI Omron are methods interchangeable methods between them and with BFMI Siri. FMI is not interchangeable with BFMI Siri, BFMI Omron or BFMItriceps. These results suggest that FMI cannot estimate properly the body composition. BFMItriceps and BFMI Omron are valid alternative methods to be used instead BFMI Siri in the fat-to-fat-free mass ratio assessment.

  10. 多频生物电阻抗技术评价 COPD 患者营养状况及其与血气分析指标的相关性%Evaluation of Nutritional Status in COPD Patients by Multi - frequency Bioelectrical Impedance and Its Correlation With Blood Gas Indicators

    Institute of Scientific and Technical Information of China (English)

    黄陈; 朱文艺; 徐静; 李利; 樊荣; 李琦; 王建

    2015-01-01

    Objective To examine the body composition of COPD patients by multi - frequency bioelectrical impedance and investigate the relationship between body composition and blood gas indicators in order to provide clinical references for nutritional support for COPD patients. Methods We enrolled 62 patients who was hospitalized and diagnosed with COPD in the Department of Respiratory Medicine of Xinqiao Hospital from January to June in 2011. Multi - frequency bioelectrical impedance was used to detect the patients' physical composition. We collected data of serum total protein,albumin, prealbumin,hemoglobin,lymph cell count,blood gas( PaCO2 ,PaO2 and SpO2 ),HCO -3 ,Cl - ,K + ,Na + ,pH of the subjects at admission. Statistical analysis was conducted on the above indicators. Results The malnutrition rates assessed by ribosomal protein content,body fat content,BMI and MAC were 41. 9% ,17. 7% ,19. 4% and 16. 1% , respectively. According the BMI,the patients with inadequate,normal and excess nutrition were significantly different( P < 0. 05 )in ribosomal TBW,BFM,PBF,FFM,PBFF,protein content and PBP;the subjects with inadequate nutrition were higher(P <0. 05)than those with normal and high nutrition in PBP;the subjects with inadequate nutrition were lower( P < 0. 05)than those with normal and high nutrition in PBF and FFM. TBW,FFM,ribosomal protein,and SMM were negatively correlated with PaO2 ( r = - 0. 311, - 0. 306, - 0. 308, - 0. 306;P < 0. 05),and BMI was negatively correlated with SpO2 ( r =- 0. 304,P < 0. 05). Conclusion COPD patients have high malnutrition rate when assessed by ribosomal protein. FFM is more sensitive than BMI in nutritional evaluation of COPD patients. The increase of FFM in COPD patients may improve hypoxia tolerance.%目的:应用多频生物电阻抗技术分析 COPD 患者人体成分及其与血气分析指标的关系,为 COPD 患者的营养支持提供依据。方法选择2011年1—6月在新桥医院呼吸科住院并诊断为 COPD

  11. Extensions to a manifold learning framework for time-series analysis on dynamic manifolds in bioelectric signals

    Science.gov (United States)

    Erem, Burak; Martinez Orellana, Ramon; Hyde, Damon E.; Peters, Jurriaan M.; Duffy, Frank H.; Stovicek, Petr; Warfield, Simon K.; MacLeod, Rob S.; Tadmor, Gilead; Brooks, Dana H.

    2016-04-01

    This paper addresses the challenge of extracting meaningful information from measured bioelectric signals generated by complex, large scale physiological systems such as the brain or the heart. We focus on a combination of the well-known Laplacian eigenmaps machine learning approach with dynamical systems ideas to analyze emergent dynamic behaviors. The method reconstructs the abstract dynamical system phase-space geometry of the embedded measurements and tracks changes in physiological conditions or activities through changes in that geometry. It is geared to extract information from the joint behavior of time traces obtained from large sensor arrays, such as those used in multiple-electrode ECG and EEG, and explore the geometrical structure of the low dimensional embedding of moving time windows of those joint snapshots. Our main contribution is a method for mapping vectors from the phase space to the data domain. We present cases to evaluate the methods, including a synthetic example using the chaotic Lorenz system, several sets of cardiac measurements from both canine and human hearts, and measurements from a human brain.

  12. Transformerless High-Quality Electrocardiogram and Body Impedance Recording by an Amplifier with Current-Driven Inputs

    Directory of Open Access Journals (Sweden)

    Dobrev D.

    2009-12-01

    Full Text Available Measurement and recording of changes in bioelectrical impedance in vivo has become a widely used method with various clinical applications. It includes basal impedance Zo, relative changes ΔZ or its derivative dZ. Many applications related to cardiac and respiratory function require simultaneous electrocardiogram, impedance cardiogram and/or respiration signals recording and analysis. Accurate recording of body impedance is limited by high common mode voltages at the amplifier inputs combined with the influence of the output impedance of the used current source. A circuit concept for a simultaneous high-quality electrocardiogram and bioimpedance acquisition is proposed, profiting from advantages offered by a previously specially designed amplifier with current-driven inputs, yielding to low common mode and high differential mode input impedances.

  13. Comparison of bioelectrical impedance with skinfold thickness and X-ray absorptiometry to measure body composition in HIV-infected with lipodistrophy Comparación de impendancia bioeléctrica con grosor de pliegues cutáneos y absorciometría de rayos X para mensurar la composición corporal de personas con VIH con lipodistrofia

    Directory of Open Access Journals (Sweden)

    H. Siqueira Vassimon

    2011-06-01

    Full Text Available Introduction: Human immunodeficiency vírus (HIV-associated lipodystrophy syndrome (LS includes body composition and metabolic alterations. Lack of validated criteria and tools make difficult to evaluate body composition in this group. Objective: The aim of the study was to compare different methods to evaluate body composition between Brazilians HIV subjects with (HIV+LIPO+ or without LS (HIV+LIPO- and healthy subjects (Control. Methods: in a cross-sectional analyses, body composition was measured by bioelectrical impedance analysis (BIA, skinfold thickness (SF and dual-energy x-ray absorptiometry (DXA in 10 subjects from HIV+LIPO+ group; 22 subjects from HIV+LIPO- group and 12 from Control group. Results: There were no differences in age and body mass index (BMI between groups. The fat mass (FM (% estimated by SF did not correlate with DXA in HIV+LIPO+ group (r = 0,46/ p > 0,05 and had fair agreement in both HIV groups (HIV+LIPO+ =0,35/ HIV+ LIPO- = 0,40. BIA had significant correlation in all groups (p Introducción: El síndrome de lipodistrofia (SL asociado al virus de inmunodeficiencia humana (HIV incluye alteraciones en la composición corporal y metabólica. La falta de herramientas adecuadas y criterios válidos dificultan la evaluación de la composición corporal en este grupo. Objetivo: El objetivo del estudio fue comparar distintos métodos para evaluar la composición corporal entre individuos brasileños con HIV que teniam (HIV+LIPO+ o no LS (HIV+LIPO- e individuos sanos (control. Métodos: Estudio transversal en el que fue evaluada la composición corporal por análisis de impedancia bioeléctrica (BIA, pliegues cutáneos (SF y absorciometría de rayos X de doble energía (DXA en un grupo de 10 individuos con HIV+LIPO+, 22 individuos del grupo HIV+ LIPO- y 12 individuos del grupo control. Resultados: No hubo diferencias en la edad e índice de masa corporal (IMC entre grupos. La masa grasa (MG (% estimada por SF no se correlacion

  14. INFLUÊNCIA DE DIFERENTES TIPOS DE ELETRODOS SOBRE OS VALORES DA BIOIMPEDÂNCIA CORPORAL E NA ESTIMATIVA DE MASSA MAGRA (MM EM GATOS ADULTOS INFLUENCE OF DIFFERENT TYPES OF ELECTRODES ON THE BIOELECTRICAL IMPEDANCE VALUES AND IN THE ESTIMATION OF LEAN BODY MASS (LBM IN ADULT CATS

    Directory of Open Access Journals (Sweden)

    Thassila Caccia Feragi Cintra

    2010-04-01

    Full Text Available A bioimpedância (BIC é um método que aplica à tecnologia da impedância no estudo da composição corporal pela avaliação da diferença da condutividade elétrica dos tecidos. Os resultados da BIC são expressos pelas medidas primárias de resistência (R e reatância (Xc. Neste experimento, o método foi desenvolvido para verificar a viabilidade do uso de três diferentes tipos de eletrodos sobre a reprodutibilidade dos valores de R e Xc em gatos adultos. As médias de R e Xc com adesivos e agulhas de acupuntura não diferiram entre si (p?0,05, e os menores valores dos coeficientes de variação obtidos com estes eletrodos sinalizaram para uma melhor reprodutibilidade dos resultados quando comparados com os da agulha hipodérmica. Os diferentes tipos de eletrodos não interferiram nos valores da massa magra (MM estimada por equação específica, porém a agulha de acupuntura mostrou ser o eletrodo mais estável e de melhor aplicabilidade. A MM determinada com os diferentes tipos de eletrodos foi superior (p?0,05 à obtida com a absorciometria de raios-x de dupla energia (DEXA, provavelmente decorrente da equação utilizada na sua estimativa.

    PALAVRAS-CHAVES: Composição corporal, felinos, impedância, massa magra.
    The bioelectrical impedance is a method that applies impedance technology in the study of physical composition by evaluation of electrical conductivity difference on each organism tissue. The results of bioelectrical impedance (BIC are expressed by the resistance (R and reactance (Xc primary measures. This study was carried out to verify the viability of the use of three different electrodes on the repeatability of R and Xc values in adult cats. The averages of R and Xc estimated by adhesive and acupuncture needles did not differ from each other (p?0.05 and the smaller values of the variation coefficient acquired with these electrodes signaled for a better reproducibility of the results when compared with

  15. Analysis of impedance characteristics of IMPATT-generators

    Directory of Open Access Journals (Sweden)

    F. B. Bereziuk

    2007-10-01

    Full Text Available Model of power solid-state oscillators in a millimeter wave band is presented. This model based on non-stationary impedance characteristics of pulse oscillating impact avalanche transit time diodes.

  16. Controllability Analysis for Operation Margin of Zone 3 Impedance Relay

    Science.gov (United States)

    Li, Shenghu; Yorino, Naoto; Zoka, Yoshifumi

    Undesirable operation of zone 3 impedance relay (mho relays) is a possible factor for causing cascading failure as seen in several previous large scale blackouts, where power flow redistribution and power swing caused by outage or switching operations satisfy the condition for the relay operation. So far, the condition itself has not fully been investigated, and therefore, there has been little attempt to avoid the relay operation by means of direct power flow control. This paper analyzes the condition for zone 3 relay operation from the viewpoint of its sensitivity to power flow. An operating margin for security is defined for each relay to carry out effective monitoring. It is newly pointed out that undesirable operation can be effectively avoided by reactive power controls as well as real power controls. The method to compute the operation margin is also given through the analysis of the optimal Var location to control the operation margin. Effectiveness of the proposed method is demonstrated using the IEEE test systems.

  17. An Impedance-Based Stability Analysis Method for Paralleled Voltage Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    This paper analyses the stability of paralleled voltage source converters in AC distributed power systems. An impedance-based stability analysis method is presented based on the Nyquist criterion for multiloop system. Instead of deriving the impedance ratio as usual, the system stability...... is assessed based on a series of Nyquist diagrams drawn for the terminal impedance of each converter. Thus, the effect of the right half-plane zeros of terminal impedances in the derivation of impedance ratio for paralleled source-source converters is avoided. The interaction between the terminal impedance...... of converter and the passive network can also be predicted by the Nyquist diagrams. This method is applied to evaluate the current and voltage controller interactions of converters in both grid-connected and islanded operations. Simulations and experimental results verify the effectiveness of theoretical...

  18. Electrochemical impedance analysis of perovskite–electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Mercado, Candy C.; Yang, Mengjin; Palay, Ethan; Zhu, Kai

    2017-01-01

    Flat band potentials and carrier densities of spin coated and sprayed MAPbI3, FA0.85Cs0.15PbI3, and MAPbBr3 perovskite films were determined using the Mott-Schottky relation. The films developed a space charge layer and exhibited p-type conduction with carrier concentration ~ 1016 cm-3 for spin coated films. Electrochemical impedance spectra showed typical space charge impedance at frequencies > 1 kHz with increasing capacitance < 1 kHz owing to an ion diffusion component.

  19. Two port network analysis for three impedance based oscillators

    KAUST Repository

    Said, Lobna A.

    2011-12-01

    Two-port network representations are applied to analyze complex networks which can be dissolved into sub-networks connected in series, parallel or cascade. In this paper, the concept of two-port network has been studied for oscillators. Three impedance oscillator based on two port concept has been analyzed using different impedance structures. The effect of each structure on the oscillation condition and the frequency of oscillation have been introduced. Two different implementations using MOS and BJT have been introduced. © 2011 IEEE.

  20. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors

    Science.gov (United States)

    Yoo, Hyun Deog; Jang, Jong Hyun; Ryu, Ji Heon; Park, Yuwon; Oh, Seung M.

    2014-12-01

    Electrochemical impedance analysis is performed to predict the rate capability of two commercial activated carbon electrodes (RP20 and MSP20) for electric double-layer capacitor. To this end, ac impedance data are fitted with an equivalent circuit that comprises ohmic resistance and impedance of intra-particle pores. To characterize the latter, ionic accessibility into intra-particle pores is profiled by using the fitted impedance parameters, and the profiles are transformed into utilizable capacitance plots as a function of charge-discharge rate. The rate capability that is predicted from the impedance analysis is well-matched with that observed from a charge-discharge rate test. It is found that rate capability is determined by ionic accessibility as well as ohmic voltage drop. A lower value in ionic accessibility for MSP20 is attributed to smaller pore diameter, longer length, and higher degree of complexity in pore structure.

  1. Architecture, modeling, and analysis of a plasma impedance probe

    Science.gov (United States)

    Jayaram, Magathi

    Variations in ionospheric plasma density can cause large amplitude and phase changes in the radio waves passing through this region. Ionospheric weather can have detrimental effects on several communication systems, including radars, navigation systems such as the Global Positioning Sytem (GPS), and high-frequency communications. As a result, creating models of the ionospheric density is of paramount interest to scientists working in the field of satellite communication. Numerous empirical and theoretical models have been developed to study the upper atmosphere climatology and weather. Multiple measurements of plasma density over a region are of marked importance while creating these models. The lack of spatially distributed observations in the upper atmosphere is currently a major limitation in space weather research. A constellation of CubeSat platforms would be ideal to take such distributed measurements. The use of miniaturized instruments that can be accommodated on small satellites, such as CubeSats, would be key to achieving these science goals for space weather. The accepted instrumentation techniques for measuring the electron density are the Langmuir probes and the Plasma Impedance Probe (PIP). While Langmuir probes are able to provide higher resolution measurements of relative electron density, the Plasma Impedance Probes provide absolute electron density measurements irrespective of spacecraft charging. The central goal of this dissertation is to develop an integrated architecture for the PIP that will enable space weather research from CubeSat platforms. The proposed PIP chip integrates all of the major analog and mixed-signal components needed to perform swept-frequency impedance measurements. The design's primary innovation is the integration of matched Analog-to-Digital Converters (ADC) on a single chip for sampling the probes current and voltage signals. A Fast Fourier Transform (FFT) is performed by an off-chip Field-Programmable Gate Array (FPGA

  2. A dielectrophoresis-impedance method for protein detection and analysis

    Science.gov (United States)

    Mohamad, Ahmad Sabry; Hamzah, Roszymah; Hoettges, Kai F.; Hughes, Michael Pycraft

    2017-01-01

    Dielectrophoresis (DEP) has increasingly been used for the assessment of the electrical properties of molecular scale objects including proteins, DNA, nanotubes and nanowires. However, whilst techniques have been developed for the electrical characterisation of frequency-dependent DEP response, biomolecular study is usually limited to observation using fluorescent markers, limiting its applicability as a characterisation tool. In this paper we present a label-free, impedance-based method of characterisation applied to the determination of the electrical properties of colloidal protein molecules, specifically Bovine Serum Albumin (BSA). By monitoring the impedance between electrodes as proteins collect, it is shown to be possible to observe multi-dispersion behaviour. A DEP dispersion exhibited at 400 kHz is attributable to the orientational dispersion of the molecule, whilst a second, higher-frequency dispersion is attributed to a Maxwell-Wagner type dispersion; changes in behaviour with medium conductivity suggest that this is strongly influenced by the electrical double layer surrounding the molecule.

  3. High accuracy particle analysis using sheathless microfluidic impedance cytometry.

    Science.gov (United States)

    Spencer, Daniel; Caselli, Federica; Bisegna, Paolo; Morgan, Hywel

    2016-07-01

    This paper describes a new design of microfluidic impedance cytometer enabling accurate characterization of particles without the need for focusing. The approach uses multiple pairs of electrodes to measure the transit time of particles through the device in two simultaneous different current measurements, a transverse (top to bottom) current and an oblique current. This gives a new metric that can be used to estimate the vertical position of the particle trajectory through the microchannel. This parameter effectively compensates for the non-uniform electric field in the channel that is an unavoidable consequence of the use of planar parallel facing electrodes. The new technique is explained and validated using numerical modelling. Impedance data for 5, 6 and 7 μm particles are collected and compared with simulations. The method gives excellent coefficient of variation in (electrical) radius of particles of 1% for a sheathless configuration.

  4. Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations

    Science.gov (United States)

    Huang, Jun; Li, Zhe; Liaw, Bor Yann; Zhang, Jianbo

    2016-03-01

    Though it becomes a routine to fit impedance data to an equivalent electric circuit model (EECM) using complex nonlinear least square (CNLS) to extract physical parameters from impedance data, two formidable challenges still remain: to build a physically meaningful EECM and to find good initial estimates for model parameters. In this study, combining graphical analysis of impedance data in both Bode and Nyquist plots, a two-step procedure is proposed to address the challenges: (1) a frequency derivative phase angle method is developed in Bode plot to identify the number of time constants (or electrochemical processes); (2) graphical analysis of impedance data in Nyquist plot is used sequentially for initial parameter determination. Major graphical analysis methods are compared in terms of frequency resolution, accuracy and complexity using synthetic data. The superiority of the proposed procedure is illustrated using the experimental data of a three-electrode lithium-ion cell.

  5. [The development of an computerized analysis system for the women pelvic cavity impedance rheogram].

    Science.gov (United States)

    Ye, J; Cheng, L; Xie, Z; Zhang, J; Xia, M; Cheng, L; Ying, Y

    1997-11-01

    This article introduces the components and functions of an computered analysis system for the women pelvic cavity impedance rheogram. It can sample the pelvic cavity impedance rheogram signal of the body double-side and the reference ECG signal. With help of manual intervence, it also can automatically recognize characteristic points of the pelvic cavity impedance rheogram and measure the parameters. It can correct the recognized characteristic points simultaneously and print the pelvic cavity impedance rheogram of the body double-side and 15 characteristic data parameters. After clinical applying, the analysis results of mors 100 patients make clear that: this system has remarkably clinical significance for diagnosis of the women pelvic cavity extravasated blood and evaluation of treating effect, so it has much better clinical applied expectation.

  6. Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    The impedance-based model of Doubly Fed Induction Generator (DFIG) systems, including the rotor part (Rotor Side Converter (RSC) and induction machine), and the grid part (Grid Side Converter (GSC) and its output filter), has been developed for analysis and mitigation of the Sub- Synchronous...... Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus investigates the impedance characteristics of DFIG systems for the analysis of HFR. The influences...... of the rotor speed variation, the machine mutual inductance and the digital control delay are evaluated. Two resonances phenomena are revealed, i.e., 1) the series HFR between the DFIG system and weak power grid; 2) the parallel HFR between the rotor part and the grid part of DFIG system. The impedance...

  7. Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids

    OpenAIRE

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    The impedance-based model of Doubly Fed Induction Generator (DFIG) systems, including the rotor part (Rotor Side Converter (RSC) and induction machine), and the grid part (Grid Side Converter (GSC) and its output filter), has been developed for analysis and mitigation of the Sub- Synchronous Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus...

  8. Analysis of bio-anode performance through electrochemical impedance spectroscopy.

    Science.gov (United States)

    ter Heijne, Annemiek; Schaetzle, Olivier; Gimenez, Sixto; Navarro, Lucia; Hamelers, Bert; Fabregat-Santiago, Francisco

    2015-12-01

    In this paper we studied the performance of bioanodes under different experimental conditions using polarization curves and impedance spectroscopy. We have identified that the large capacitances of up to 1 mF·cm(-2) for graphite anodes have their origin in the nature of the carbonaceous electrode, rather than the microbial culture. In some cases, the separate contributions of charge transfer and diffusion resistance were clearly visible, while in other cases their contribution was masked by the high capacitance of 1 mF·cm(-2). The impedance data were analyzed using the basic Randles model to analyze ohmic, charge transfer and diffusion resistances. Increasing buffer concentration from 0 to 50mM and increasing pH from 6 to 8 resulted in decreased charge transfer and diffusion resistances; lowest values being 144 Ω·cm(2) and 34 Ω·cm(2), respectively. At acetate concentrations below 1 mM, current generation was limited by acetate. We show a linear relationship between inverse charge transfer resistance at potentials close to open circuit and saturation (maximum) current, associated to the Butler-Volmer relationship that needs further exploration.

  9. Robot impedance control and passivity analysis with inner torque and velocity feedback loops

    Institute of Scientific and Technical Information of China (English)

    Michele FOCCHI; Gustavo A MEDRANO-CERDA; Thiago BOAVENTURA; Marco FRIGERIO; Claudio SEMINI; Jonas BUCHLI; Darwin G CALDWELL

    2016-01-01

    Impedance control is a well-established technique to control interaction forces in robotics. However, real implementations of impedance control with an inner loop may suffer from several limitations. In particular, the viable range of stable stiffness and damping values can be strongly affected by the bandwidth of the inner control loops (e.g., a torque loop) as well as by the filtering and sampling frequency. This paper provides an extensive analysis on how these aspects influence the stability region of impedance parameters as well as the passivity of the system. This will be supported by both simulations and experimental data. Moreover, a methodology for designing joint impedance controllers based on an inner torque loop and a positive velocity feedback loop will be presented. The goal of the velocity feedback is to increase (given the constraints to preserve stability) the bandwidth of the torque loop without the need of a complex controller.

  10. Analytical Model for High Impedance Fault Analysis in Transmission Lines

    Directory of Open Access Journals (Sweden)

    S. Maximov

    2014-01-01

    Full Text Available A high impedance fault (HIF normally occurs when an overhead power line physically breaks and falls to the ground. Such faults are difficult to detect because they often draw small currents which cannot be detected by conventional overcurrent protection. Furthermore, an electric arc accompanies HIFs, resulting in fire hazard, damage to electrical devices, and risk with human life. This paper presents an analytical model to analyze the interaction between the electric arc associated to HIFs and a transmission line. A joint analytical solution to the wave equation for a transmission line and a nonlinear equation for the arc model is presented. The analytical model is validated by means of comparisons between measured and calculated results. Several cases of study are presented which support the foundation and accuracy of the proposed model.

  11. Bioelectrical impedance and visceral fat: a comparison with computed tomography in adults and elderly; Bioimpedancia eletrica e gordura visceral: uma comparacao com a tomografia computadorizada em adultos e idosos

    Energy Technology Data Exchange (ETDEWEB)

    Eickemberg, Michaela [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Roriz, Anna Karla Carneiro [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Fontes, Gardenia Abreu Vieira [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Sampaio, Lilian Ramos [Universidade Federal de Sao Paulo (Unifesp), Sao Paulo, SP (Brazil)

    2013-05-01

    Objective: To evaluate the association between electrical bioimpedance analysis (BIA) and visceral fat (VF) in adult and elderly patients. Subjects and methods: This was a cross-sectional study, with a sample of 191 subjects (52% women, 49% elderly) stratified by sex, age and body mass. Computerized tomography (VF area) and BIA (percentage of total body fat (%TBF-BIA), phase angle, reactance and resistance) data were generated. Statistical analysis was based on Pearson's Correlation Coefficient, Anova, Pearson's Chi-square, and ROC curves. Results: VF areas {>=} 130 cm{sup 2} were more prevalent among the elderly and among men. Adult females showed a stronger correlation between GV and %TBF-BIA. The other groups showed similar results and statistically significant correlations. Correlations between GV and phase angle were weak and not statistically significant. ROC Curves analyzes showed the following %TBF-BIA, which identified excess VF: for male subjects: 21.5% (adults) and 24.25% (elderly); for female subjects: 35.05% (adults) and 38.45% (elderly) with sensitivity of 78.6%, 82.1%, 83.3%, and 66.7%, and specificity of 70.6%, 62.5%, 79.1%, and 69%, respectively. Conclusion: BIA was found to have satisfactory sensitivity and specificity to predict VF; however, other devices and other techniques should be investigated to improve VF prediction. (author)

  12. Electrochemical impedance spectroscopy on in-situ analysis of oxide layer formation in liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M., E-mail: kondo.masatoshi@tokai-u.jp [Department of Nuclear Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Suzuki, N.; Nakajima, Y. [Department of Nuclear Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Tanaka, T.; Muroga, T. [National Institute for Fusion Science, Toki, Gifu 502-5292 (Japan)

    2014-10-15

    Graphical abstract: Some test materials (i.e. Fe, Cr, Y and JLF-1 steel) were immersed to liquid metal lead (Pb) mainly at 773 K as the working electrode of electrochemical impedance spectroscopy (EIS). Some oxide layers formed on the electrodes in liquid Pb were analyzed by EIS. The impedance response was summarized as semicircular Nyquist plot, and the electrical properties and the thickness of the oxide layers were evaluated in non-destructive manner. Large impedance due to the formation of Y oxide formed in liquid Pb was detected by EIS, though impedance of Fe oxide and Cr oxide could not be detected due to their small electro resistance. The time constant of the oxide layers was evaluated from the impedance information, and this value identified the types of oxides. The change of the time constant with the immersion time indicated the change of the electrical properties determined by the chemical composition and the crystal structure. The thickness of the oxide layer estimated by EIS agreed well with that evaluated by metallurgical analysis. The growth of Y oxide layer in the liquid Pb was successfully detected by EIS in non-destructive manner. - Highlights: • The electrical properties and the thickness of lead oxide layer formed in liquid Pb were obtained by electrochemical impedance spectroscopy (EIS). • The Fe oxide, Cr oxide and Fe–Cr oxide formed on the electrodes in liquid Pb were not detected by EIS due to their small electrical resistance. • The formation and the growth of Y oxide formed in liquid Pb was detected by EIS. - Abstract: Some test materials (i.e. Fe, Cr, Y and JLF-1 steel) were immersed to liquid metal lead (Pb) mainly at 773 K as the working electrode of electrochemical impedance spectroscopy (EIS). Some oxide layers formed on the electrodes in liquid Pb were analyzed by EIS. The impedance response was summarized as Nyquist plot, and the electrical properties and the thickness of the oxide layers were evaluated in non

  13. Measuring Electrolyte Impedance and Noise Simultaneously by Triangular Waveform Voltage and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Shanzhi Xu

    2016-04-01

    Full Text Available In order to measure the impedance variation process in electrolyte solutions, a method of triangular waveform voltage excitation is investigated together with principal component analysis (PCA. Using triangular waveform voltage as the excitation signal, the response current during one duty cycle is sampled to construct a measurement vector. The measurement matrix is then constructed by the measurement vectors obtained from different measurements. After being processed by PCA, the changing information of solution impedance is contained in the loading vectors while the response current and noise information is contained in the score vectors. The measurement results of impedance variation by the proposed signal processing method are independent of the equivalent impedance model. The noise-induced problems encountered during equivalent impedance calculation are therefore avoided, and the real-time variation information of noise in the electrode-electrolyte interface can be extracted at the same time. Planar-interdigitated electrodes are experimentally tested for monitoring the KCl concentration variation process. Experimental results indicate that the measured impedance variation curve reflects the changing process of solution conductivity, and the amplitude distribution of the noise during one duty cycle can be utilized to analyze the contact conditions of the electrode and electrolyte interface.

  14. Measuring Electrolyte Impedance and Noise Simultaneously by Triangular Waveform Voltage and Principal Component Analysis.

    Science.gov (United States)

    Xu, Shanzhi; Wang, Peng; Dong, Yonggui

    2016-04-22

    In order to measure the impedance variation process in electrolyte solutions, a method of triangular waveform voltage excitation is investigated together with principal component analysis (PCA). Using triangular waveform voltage as the excitation signal, the response current during one duty cycle is sampled to construct a measurement vector. The measurement matrix is then constructed by the measurement vectors obtained from different measurements. After being processed by PCA, the changing information of solution impedance is contained in the loading vectors while the response current and noise information is contained in the score vectors. The measurement results of impedance variation by the proposed signal processing method are independent of the equivalent impedance model. The noise-induced problems encountered during equivalent impedance calculation are therefore avoided, and the real-time variation information of noise in the electrode-electrolyte interface can be extracted at the same time. Planar-interdigitated electrodes are experimentally tested for monitoring the KCl concentration variation process. Experimental results indicate that the measured impedance variation curve reflects the changing process of solution conductivity, and the amplitude distribution of the noise during one duty cycle can be utilized to analyze the contact conditions of the electrode and electrolyte interface.

  15. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  16. Application of impedance spectroscopy method for analysis of benzanol fuels

    Directory of Open Access Journals (Sweden)

    Mamykin A. V.

    2015-06-01

    Full Text Available The authors have developed a method for express control of three component «gasoline-alcohol-water» fuel mixtures based on the spectral impedance investigation of benzanol mixture in the frequency range of 500 Hz — 10 kHz. A correlation dependence between the dielectric constant and the specific resistance of the fuel mixture on content of ethanol and water in the mixture has been found. On the basis of this dependence a calibration nomogram to quantify the gasoline and water-alcohol components content in the test benzanol fuel in the actual range of concentrations has been formed. The nomogram allows determining the water-alcohol and gasoline parts in the analyzed fuel with an error of no more than 1% vol., while the strength of water-alcohol solution is determined with an error of no more than 0.8% vol. The obtained nomogram can also give information about critical water content in the benzanol fuel to prevent its eventual phase separation. It is shown that the initial component composition of different gasoline brands has no significant effect on the electrical characteristics of the studied benzanol fuels, which makes the evaluation of alcohol and water content in the fuel sufficiently accurate. for practical applications.

  17. [Study of bioelectrical properties of acupuncture areas].

    Science.gov (United States)

    Filimon, D V; Zaharia, D; Ciochină, A D; Stratulat, S; Stratone, Ana

    2010-01-01

    The research has as a goal the investigation of the bioelectrical behaviour of the acupunctural areas in order to obtain a scientific substantiation of the correspondence between the extreme--eastern medical tradition and the academical medicine. It is obvious that the Chinese traditional medicine knows a certain mechanism of ensurance of homeostasis of the organisms, a mechanism represented, according to the Chinese medical tradition, by the net of acupuncture points and meridians. The experimental data presented in this paper lead to the discovery of the fact that this net works as the fourth system of integration, the electrical--regulator one. The maintenance of the internal homeostasis of the superior organisms and their adaptation to the environment is ensured by the neuro-endocrine and circulatory systems through a mechanism described by Selye under the name of the Uncertain General Syndrome of Adaptation represented by the hypothalamo-hypophyso-corticoadrenal axis. The evolution of these systems and of their mechanisms can be supervised on the basis of the cortisole concentration. The research emphasized the direct proportionality between the cortisone levels and the variation of the electrical values of the acupuncture points, a fact that demonstrates the involvement of the net of acupuncture points and meridians in the maintenance processes of the homeostasis, control, adjustment and adaptation of the living organisms. Additionally, the analysis of the bioelectrical behavior of the acupuncture areas led to the conclusion that the morpho-functional substrate of this net is the conjunctive tissue. The physical-chemical properties of the interstitial connective tissue assures its working as an electro-regulator system on one side and as a harmonization agent of the neuro-endocrine and circulatory systems on the other side, this aspect being to be developed in a future paper.

  18. Response Characteristics of Plant Bioelectric Potential to Light Intensity Indoor and Outdoor

    Science.gov (United States)

    Shimbo, Tatsuya; Fujii, Masaki; Sawada, Ayako; Oyabu, Takashi; Kimura, Haruhiko

    Plant is affected by environmental factors. For example, these are temperature, humidity and light intensity. The light intensity affected strongly to the plant. The plant produces glucose and oxygen with photosynthesis. Moreover, light intensity is important to purify the contaminants in the atmosphere. In this study, it was examined whether the plant is affected by temperature, wind grade and soil moisture using bioelectric potential characteristics of the plant. Especially plant bioelectric potential to light intensity change was measured. The measurement was carried out in indoor and outdoor. As for the result, the differences of plant bioelectric potential characteristics in the indoor and outdoor were recognized. At that analysis, the integrated value of plant bioelectric potential for 1 minute (vm1) was adopted. Moreover, a high correlation was indicated between the vm1 and light intensity. The correlation coefficient was R2=0.94. It becomes obvious that the plant is affected strongly by light intensity and the plant can understand the environmental factors like light intensity. The characteristics are found by measuring bioelectric potential of the plant. The environmental sensing can be possible by the use of the plant bioelectric potential.

  19. Power flow analysis for droop controlled LV hybrid AC-DC microgrids with virtual impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Vasquez, Juan Carlos

    2014-01-01

    The AC-DC hybrid microgrid is an effective form of utilizing different energy resources and the analysis of this system requires a proper power flow algorithm. This paper proposes a suitable power flow algorithm for LV hybrid AC-DC microgrid based on droop control and virtual impedance. Droop...... and virtual impedance concepts for AC network, DC network and interlinking converter are reviewed so as to model it in the power flow analysis. The validation of the algorithm is verified by comparing it with steady state results from detailed time domain simulation. The effectiveness of the proposed...

  20. NEUROFEEDBACK INFLUENCE ON CEREBRUM BIOELECTRICAL ACTIVITY IN GYMNASTS-WOMEN

    Directory of Open Access Journals (Sweden)

    T. Yu. Strizhkova

    2013-01-01

    Full Text Available The analysis of electroencephalogram (EEG of highly skilled gymnasts-women (main group – 49, control group – 39 showed the availability of cerebrum bioelectrical activity features of sportswomen connected with left hemisphere dominance, predominance of theta-rhythm power and lower reaction to eyes closing, also character of neurodynamic changes generated by neurofeedback course depended on ovarian-menstrual cycle phases.

  1. Impedance-matching analysis in IR leaky-wave antennas

    Science.gov (United States)

    Premkumar, Navaneeth; Xu, Yuancheng; Lail, Brian A.

    2015-08-01

    Planar leaky-wave antennas (LWA) that are capable of full-space scanning have long since been the pursuit for applications including, but not limited to, integration onto vehicles and into cameras for wide-angle of view beam-steering. Such a leaky-wave surface (LWS) was designed for long-wave infrared frequencies with frequency scanning capability. The LWS is based on a microstrip patch array design of a leaky-wave impedance surface and is made up of gold microstrip patches on a grounded zinc sulphide substrate. A 1D composite right/left-handed (CRLH) metamaterial made by periodically stacking a unit cell of the LWS in the longitudinal direction to form a LWA was designed. This paper deals with loading the LWA with a nickel bolometer to collect leaky-wave signals. The LWA radiates a backward leaking wave at 30 degrees at 28.3THz and scans through broadside for frequencies 20THz through 40THz. The paper deals with effectively placing the bolometer in order for the collected signal to exhibit the designed frequency regime. An effective way to maximize the power coupling into the load from the antenna is also explored. The benefit of such a metamaterial/holographic antennacoupled detector is its ability to provide appreciable capture cross-sections while delivering smart signals to subwavelength sized detectors. Due to their high-gain, low-profile, fast response time of the detector and ease of fabrication, this IR LWA-coupled bolometer harbors great potential in the areas of high resolution, uncooled, infrared imaging.

  2. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    Directory of Open Access Journals (Sweden)

    Fábio M. Pereira

    2016-10-01

    Full Text Available This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii fluorescence-based bead counting.

  3. Time-invariant measurement of time-varying bioimpedance using vector impedance analysis.

    Science.gov (United States)

    Sanchez, B; Louarroudi, E; Pintelon, R

    2015-03-01

    When stepped-sine impedance spectroscopy measurements are carried out on (periodically) time-varying bio-systems, the inherent time-variant (time-periodic) parts are traditionally ignored or mitigated by filtering. The latter, however, lacks theoretical foundation and, in this paper, it is shown that it only works under certain specific conditions. Besides, we propose an alternative method, based on multisine signals, that exploits the non-stationary nature in time-varying bio-systems with a dominant periodic character, such as cardiovascular and respiratory systems, or measurements interfered with by their physiological activities. The novel method extracts the best—in a mean square sense—linear time-invariant (BLTI) impedance approximation ZBLTI(jω) of a periodically time-varying (PTV) impedance ZPTV(jω, t) as well as its time-periodic part. Relying on the geometrical interpretation of the BLTI concept, a new impedance analysis tool, called vector impedance analysis (VIA), is also presented. The theoretical and practical aspects are validated through measurements performed on a PTV dummy circuit and on an in vivo myocardial tissue.

  4. Analysis of the impedance resonance of piezoelectric multi-fiber composite stacks

    Science.gov (United States)

    Sherrit, S.; Djrbashian, A.; Bradford, S. C.

    2013-04-01

    Multi-Fiber Composites™ (MFC's) produced by Smart Materials Corp behave essentially like thin planar stacks where each piezoelectric layer is composed of a multitude of fibers. We investigate the suitability of using previously published inversion techniques [9] for the impedance resonances of monolithic co-fired piezoelectric stacks to the MFC™ to determine the complex material constants from the impedance data. The impedance equations examined in this paper are those based on the derivation by Martin [5,6,10]. The utility of resonance techniques to invert the impedance data to determine the small signal complex material constants are presented for a series of MFC's. The technique was applied to actuators with different geometries and the real coefficients were determined to be similar within changes of the boundary conditions due to change of geometry. The scatter in the imaginary coefficient was found to be larger. The technique was also applied to the same actuator type but manufactured in different batches with some design changes in the non active portion of the actuator and differences in the dielectric and the electromechanical coupling between the two batches were easily measureable. It is interesting to note that strain predicted by small signal impedance analysis is much lower than high field stains. Since the model is based on material properties rather than circuit constants, it could be used for the direct evaluation of specific aging or degradation mechanisms in the actuator as well as batch sorting and adjustment of manufacturing processes.

  5. Evaluation of a real-time impedance analysis platform on fungal infection.

    Science.gov (United States)

    Sun, Jiufeng; Ning, Dan; Cai, Wenying; Zhou, Huiqiong; Zhang, Huan; Guan, Dawei; Wu, De

    2017-05-01

    End-point assays of in vitro cell proliferation and death have been employed to study the mechanisms of fungal pathogenesis and have shown the responses of host cells at individual time points. A new cell analysis technology has been developed that allows for the continuous measurement and quantification of cell activities, thus enabling the dynamic assessment of electrical impedance when various pathogens are cultured in vitro. In this study, this system was evaluated to determine the response of the cell line RAW264.7 to infection by several clinically relevant fungi in vitro, including Aspergillus fumigatus, Candida albicans, and melanized and albino mutant strains of Fonsecaea monophora. The results showed that infection resulted in rounding of the host cells with a loss of contact between individual cells and a decline in the electrical impedance of all test groups. However, changes in the electrical impedance were variable. Aspergillus fumigatus caused initial increases and later significant decreases in the electrical impedance, while for C. albicans and F. monophora, the effect was reduced. The melanized strain of F. monophora caused a faster change in the electrical impedance than the albino strain. Our data proved that this system can be used as an efficient tool for monitoring cellular responses to fungal infection.

  6. Electrochemical Characterization and Degradation Analysis of Large SOFC Stacks by Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.;

    2013-01-01

    electrochemical characterization during operation. An experimental stack with low ohmic resistance from Topsoe Fuel Cell A/S was characterized in detail using electrochemical impedance spectroscopy (EIS). An investigation of the optimal geometrical placement of the current feeds and voltage probes was carried out...... with hydrogen as fuel with 52% fuel utilization and constant current load (0.2 A cm–2) at 750 °C. Stack interconnects were coated with six different coatings to prevent chromium poisoning on the cathode side. Four repeating units (RUs) with different coatings were selected for detailed impedance analysis. EIS...

  7. Simultaneous Impedance Analysis of Three Parallel Piezoelectric Quartz Crystals for Electrochemical Depletion Layer Effect Study

    Institute of Scientific and Technical Information of China (English)

    Hui Yan liu; Qing Ji XIE

    2004-01-01

    Simultaneous impedance analysis of three one-face sealed resonating piezoelectric quartz crystals (PQCs) in parallel is proposed through admittance measurements of the three PQCs on one impedance analyzer and then non-linear fitting according to the parallel combination of three Butterworth-Van Dyke circuits. Responses of each PQC obtained from the three-PQC mode agreed well with those measured separately in series sucrose aqueous solutions. This novel method has been used for the study of depletion-layer effect during ferri-/ferrocyanide electrochemical reactions.

  8. Impedance Based Analysis of DFIG Stator Current Unbalance and Distortion Suppression Strategies

    DEFF Research Database (Denmark)

    Song, Yipeng; Zhou, Dao; Blaabjerg, Frede

    2016-01-01

    (VPI) regulator. Nevertheless, these two resonance regulators have never been compared from the perspective of suppression capability of output current unbalance and distortion. In this paper, the impedance based analysis method is adopted to theoretically explain and compare the DFIG system impedance...... reshaping though the introduction of R and VPI regulator. It is pointed out that, when implemented in the DFIG system output current unbalance and distortion suppression, the VPI regulator (equivalent to the combination of virtual positive inductor and virtual positive resistor) has two advantages over R...

  9. Effects of Nitrogen on Passivity of Nickel-Free Stainless Steels by Electrochemical Impedance Spectroscopy Analysis

    Science.gov (United States)

    Wu, Xinqiang; Fu, Yao; Ke, Wei; Xu, Song; Feng, Bing; Hu, Botao

    2015-09-01

    The effects of different nitrogen contents on the passivity of nickel-free stainless steels in 0.5 M sulfuric acid + 0.5 M sodium chloride solution were investigated by electrochemical impedance spectroscopy in the potential ranges of active dissolution and active-passive transition. A simplified reaction model containing adsorbed intermediates involved dissolution process, and passivation process was proposed to explain the impedance characteristics. Based on both equivalent circuit and mathematical model analysis, the effects of nitrogen on the passivity of stainless steels are discussed.

  10. A Practical Approach for Analysis of Input and Output Impedances of Feedback Amplifiers

    Science.gov (United States)

    Abramovitz, A.

    2009-01-01

    This paper suggests a pedagogical approach to teaching the subject of the analysis of feedback amplifiers for electrical engineering students at the undergraduate level. Special attention is given to derivation of the input and output impedances. In order to make the procedure clear and suitable for classroom presentation an alternative proof of…

  11. Calculation of rotor impedance for use in design analysis of helicopter airframe vibrations

    Science.gov (United States)

    Nygren, Kip P.

    1990-01-01

    Excessive vibration is one of the most prevalent technical obstacles encountered in the development of new rotorcraft. The inability to predict these vibrations is primarily due to deficiencies in analysis and simulation tools. The Langley Rotorcraft Structural Dynamics Program was instituted in 1984 to meet long term industry needs in the area of rotorcraft vibration prediction. As a part of the Langley program, this research endeavors to develop an efficient means of coupling the rotor to the airframe for preliminary design analysis of helicopter airframe vibrations. The main effort was to modify the existing computer program for modeling the dynamic and aerodynamic behavior of rotorcraft called DYSCO (DYnamic System COupler) to calculate the rotor impedance. DYSCO was recently developed for the U.S. Army and has proven to be adaptable for the inclusion of new solution methods. The solution procedure developed to use DYSCO for the calculation of rotor impedance is presented. Verification of the procedure by comparison with a known solution for a simple wind turbine model is about 75 percent completed, and initial results are encouraging. After the wind turbine impedance is confirmed, the verification effort will continue by comparison to solutions of a more sophisticated rotorcraft model. Future work includes determination of the sensitivity of the rotorcraft airframe vibrations to helicopter flight conditions and rotor modeling assumptions. When completed, this research will ascertain the feasibility and efficiency of the impedance matching method of rotor-airframe coupling for use in the analysis of airframe vibrations during the preliminary rotorcraft design process.

  12. A package for impedance/admittance data analysis

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    1986-01-01

    An outline is given of a Basic computer program which facilitates the analysis of frequency dispersion data. With this program an equivalent circuit, and starting values for the corresponding circuit parameters, can be extracted from the dispersion data. A circuit description together with crude par

  13. Analysis of Conductor Impedances Accounting for Skin Effect and Nonlinear Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, M P; Ong, M M; Brown, C G; Speer, R D

    2011-07-20

    It is often necessary to protect sensitive electrical equipment from pulsed electric and magnetic fields. To accomplish this electromagnetic shielding structures similar to Faraday Cages are often implemented. If the equipment is inside a facility that has been reinforced with rebar, the rebar can be used as part of a lighting protection system. Unfortunately, such shields are not perfect and allow electromagnetic fields to be created inside due to discontinuities in the structure, penetrations, and finite conductivity of the shield. In order to perform an analysis of such a structure it is important to first determine the effect of the finite impedance of the conductors used in the shield. In this paper we will discuss the impedances of different cylindrical conductors in the time domain. For a time varying pulse the currents created in the conductor will have different spectral components, which will affect the current density due to skin effects. Many construction materials use iron and different types of steels that have a nonlinear permeability. The nonlinear material can have an effect on the impedance of the conductor depending on the B-H curve. Although closed form solutions exist for the impedances of cylindrical conductors made of linear materials, computational techniques are needed for nonlinear materials. Simulations of such impedances are often technically challenging due to the need for a computational mesh to be able to resolve the skin depths for the different spectral components in the pulse. The results of such simulations in the time domain will be shown and used to determine the impedances of cylindrical conductors for lightning current pulses that have low frequency content.

  14. Analysis of different device-based intrathoracic impedance vectors for detection of heart failure events (from the Detect Fluid Early from Intrathoracic Impedance Monitoring study).

    Science.gov (United States)

    Heist, E Kevin; Herre, John M; Binkley, Philip F; Van Bakel, Adrian B; Porterfield, James G; Porterfield, Linda M; Qu, Fujian; Turkel, Melanie; Pavri, Behzad B

    2014-10-15

    Detect Fluid Early from Intrathoracic Impedance Monitoring (DEFEAT-PE) is a prospective, multicenter study of multiple intrathoracic impedance vectors to detect pulmonary congestion (PC) events. Changes in intrathoracic impedance between the right ventricular (RV) coil and device can (RVcoil→Can) of implantable cardioverter-defibrillators (ICDs) and cardiac resynchronization therapy ICDs (CRT-Ds) are used clinically for the detection of PC events, but other impedance vectors and algorithms have not been studied prospectively. An initial 75-patient study was used to derive optimal impedance vectors to detect PC events, with 2 vector combinations selected for prospective analysis in DEFEAT-PE (ICD vectors: RVring→Can + RVcoil→Can, detection threshold 13 days; CRT-D vectors: left ventricular ring→Can + RVcoil→Can, detection threshold 14 days). Impedance changes were considered true positive if detected <30 days before an adjudicated PC event. One hundred sixty-two patients were enrolled (80 with ICDs and 82 with CRT-Ds), all with ≥1 previous PC event. One hundred forty-four patients provided study data, with 214 patient-years of follow-up and 139 PC events. Sensitivity for PC events of the prespecified algorithms was as follows: ICD: sensitivity 32.3%, false-positive rate 1.28 per patient-year; CRT-D: sensitivity 32.4%, false-positive rate 1.66 per patient-year. An alternative algorithm, ultimately approved by the US Food and Drug Administration (RVring→Can + RVcoil→Can, detection threshold 14 days), resulted in (for all patients) sensitivity of 21.6% and a false-positive rate of 0.9 per patient-year. The CRT-D thoracic impedance vector algorithm selected in the derivation study was not superior to the ICD algorithm RVring→Can + RVcoil→Can when studied prospectively. In conclusion, to achieve an acceptably low false-positive rate, the intrathoracic impedance algorithms studied in DEFEAT-PE resulted in low sensitivity for the prediction of heart

  15. Electrochemical impedance analysis of spray deposited CZTS thin film: Effect of Se introduction

    Science.gov (United States)

    Patil, Swati J.; Lokhande, Vaibhav C.; Lee, Dong-Weon; Lokhande, Chandrakant D.

    2016-08-01

    The present work deals with electrochemical impedance analysis of spray deposited Cu2ZnSnS4 (CZTS) thin films grown on fluorine doped tin oxide (FTO) substrates and effect of post Se introduction. The CZTS thin films are characterized using X-ray diffraction (XRD), X-Ray photo spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and UV-Vis spectroscopy techniques. The electrochemical measurements are carried out using impedance analysis spectroscopy. The strong peak in XRD pattern along (112) plane confirms the Kestrite crystal structure of CZTS film. The FE-SEM analysis reveals that nanoflakes contain crack-free surface microstructure changes with post Se introucation. The optical study reveals that absorption increases with Se dipping time and observed lower band gap of 1.31 eV. Introduction of Se in CZTS film results an improvement in the grain size and surface morphology which leads to increased electrical conductivity of CZTS film.

  16. Bioelectrical Impedance法による体組成の推定 : インピーダンス−体水分量(BI-TBW)法と皮下脂肪厚法から推定された日本人女性の%Fatの比較

    OpenAIRE

    小宮, 秀一; 今井, 克巳; 増田, 卓二; 赤崎, 房生

    1990-01-01

    This article reports a study in which the percent of fat estimated from bioelectrical impedance-total body water measurement and skinfold-body density method in Japanese women were compared. The bioelectrical impedance measurement provides a new approach to assessment of human body composition that is based on the principle that the electrical conductivity of lean body mass, which includes the protein matrix of adipose tissue, contains virtually all the water and conducting electrolytes in th...

  17. Analysis of thermal degradation of organic light-emitting diodes with infrared imaging and impedance spectroscopy.

    Science.gov (United States)

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-12-02

    We propose a route to examine the thermal degradation of organic light-emitting diodes (OLEDs) with infrared (IR) imaging and impedance spectroscopy. Four different OLEDs with tris (8-hydroxyquinolinato) aluminum are prepared in this study for the analysis of thermal degradation. Our comparison of the thermal and electrical characteristics of these OLEDs reveals that the real-time temperatures of these OLEDs obtained from the IR images clearly correlate with the electrical properties and lifetimes. The OLED with poor electrical properties shows a fairly high temperature during the operation and a considerably short lifetime. Based on the correlation of the real-time temperature and the performance of the OLEDs, the impedance results suggest different thermal degradation mechanisms for each of the OLEDs. The analysis method suggested in this study will be helpful in developing OLEDs with higher efficiency and longer lifetime.

  18. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    Science.gov (United States)

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  19. Bioelectric signaling regulates size in zebrafish fins.

    Directory of Open Access Journals (Sweden)

    Simon Perathoner

    2014-01-01

    Full Text Available The scaling relationship between the size of an appendage or organ and that of the body as a whole is tightly regulated during animal development. If a structure grows at a different rate than the rest of the body, this process is termed allometric growth. The zebrafish another longfin (alf mutant shows allometric growth resulting in proportionally enlarged fins and barbels. We took advantage of this mutant to study the regulation of size in vertebrates. Here, we show that alf mutants carry gain-of-function mutations in kcnk5b, a gene encoding a two-pore domain potassium (K(+ channel. Electrophysiological analysis in Xenopus oocytes reveals that these mutations cause an increase in K(+ conductance of the channel and lead to hyperpolarization of the cell. Further, somatic transgenesis experiments indicate that kcnk5b acts locally within the mesenchyme of fins and barbels to specify appendage size. Finally, we show that the channel requires the ability to conduct K(+ ions to increase the size of these structures. Our results provide evidence for a role of bioelectric signaling through K(+ channels in the regulation of allometric scaling and coordination of growth in the zebrafish.

  20. Impedance Analysis of 7YSZ Thermal Barrier Coatings During High-Temperature Oxidation

    Science.gov (United States)

    Chen, Wen-Long; Liu, Min; Zhang, Ji-Fu

    2016-12-01

    ZrO2-7 wt.%Y2O3 (7YSZ) thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying. High-temperature oxidation of 7YSZ TBCs was accomplished at 950 °C and characterized by impedance spectroscopy and scanning electron microscopy with energy-dispersive spectrometry. The results indicated that the thermally grown oxide (TGO) mainly contained alumina. The increase of the thickness of the TGO layer appeared to follow a parabolic law. Impedance analysis demonstrated that the resistance of the TGO increased with increasing oxidation time, also following a parabolic law, and that characterization of the TGO thickness based on fitting an equivalent circuit to its measured resistance is feasible. The YSZ grain-boundary resistance increased due to increasing cracks within the coating for oxidation time less than 50 h. However, beyond 150 h, the YSZ grain-boundary resistance slightly decreased, mainly due to sintering of the coating during the oxidation process.

  1. Label-free single cell analysis with a chip-based impedance flow cytometer

    Science.gov (United States)

    Pierzchalski, Arkadiusz; Hebeisen, Monika; Mittag, Anja; Di Berardino, Marco; Tarnok, Attila

    2010-02-01

    For description of cellular phenotypes and physiological states new developments are needed. Axetris' impedance flow cytometer (IFC) (Leister) is a new promising label-free alternative to fluorescence-based flow cytometry (FCM). IFC measures single cells at various frequencies simultaneously. The frequencies used for signal acquisition range from 0.1 to 20 MHz. The impedance signal provides information about cell volume (4 MHz) and membrane capacitance (1-4 MHz). Our data indicate that IFC can be a valuable alternative to conventional FCM for various applications in the field of cell death and physiology. The work will be extended to address further potential applications of IFC in biotechnology and biomedical cell analysis, as well as in cell sorting.

  2. Impedance Characteristics and Analysis of Liftoff Distance Effect using Polynomial Approximation on Eddycurrent Nondestructive Testing

    Directory of Open Access Journals (Sweden)

    Jaejoon Kim

    2016-08-01

    Full Text Available Development of eddy current testing makes possible for the inspection of the conductivity variations, inspection of surface and beneath the surface of conductivity materials and liftoff property to characterize nonconductive materials.This paper deals with impedance analysis and analyzes liftoff distance effect using numerical method on eddy current testing. The focus of this paper is to first characterize impedance values under measurement with ferrite pot core probe in eddy current testing. Pot coreshaping probe used in this work offers a number of advantages, including self-shielding, space efficiency, convenience, good temperature stability and low losses. In addition, utilization of pot core shaped probe makes the edge effect on test sample avoidable. Secondly, a liftoff distance effect using a polynomial model is introduced and can be mitigated on zero of liftoff distance effect for measured data. This research allows to present the possibility of pot core shaped probe utilization and analytical approach for lift off distance effect.

  3. Hemodynamics analysis of patient-specific carotid bifurcation: a CFD model of downstream peripheral vascular impedance.

    Science.gov (United States)

    Dong, Jingliang; Wong, Kelvin K L; Tu, Jiyuan

    2013-04-01

    The study of cardiovascular models was presented in this paper based on medical image reconstruction and computational fluid dynamics. Our aim is to provide a reality platform for the purpose of flow analysis and virtual intervention outcome predication for vascular diseases. By connecting two porous mediums with transient permeability at the downstream of the carotid bifurcation branches, a downstream peripheral impedance model was developed, and the effect of the downstream vascular bed impedance can be taken into consideration. After verifying its accuracy with a healthy carotid bifurcation, this model was implemented in a diseased carotid bifurcation analysis. On the basis of time-averaged wall shear stress, oscillatory shear index, and the relative residence time, fractions of abnormal luminal surface were highlighted, and the atherosclerosis was assessed from a hemodynamic point of view. The effect of the atherosclerosis on the transient flow division between the two branches because of the existence of plaque was also analysed. This work demonstrated that the proposed downstream peripheral vascular impedance model can be used for computational modelling when the outlets boundary conditions are not available, and successfully presented the potential of using medical imaging and numerical simulation to provide existing clinical prerequisites for diagnosis and therapeutic treatment.

  4. Advantages of Nanosensors in the Development of Interfaces for Bioelectric Prostheses

    Directory of Open Access Journals (Sweden)

    Avdeeva Diana

    2016-01-01

    Full Text Available The present research aims to explore the bioelectric activity of muscles using a high-resolution electromyograph and to analyze the prospects of the electromyograph to develop bioelectric patterns for the prosthesis control method based on the data recognition system. The activity of the healthy forearm muscles was investigated during the cyclic activity of fingers in different modes. In addition, the impact of filters on the quality and informativity of myoelectric signals, as well as on the development of bioelectric activity patterns was analyzed. The virtually developed bandpass filters were utilized as experimental filters. The filter impact analysis included the comparison of the signal recorded in the frequency band from 0 to 10000 Hz with the signal filtered in the frequency band from 20 to 500 Hz. The research revealed the advantages of a high-resolution electromyogram for the pattern recognition-based myocontrol.

  5. Small Signal Modeling and Comprehensive Analysis of Magnetically Coupled Impedance Source Converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam Prasad; Blaabjerg, Frede;

    2016-01-01

    applications; however, due to effective role of system modeling in the closed-loop controller design, this paper is allocated to small-signal modeling and analysis of MCIS converters. The modeling is performed by means of the circuit averaging and averaged switch technique. A generalized small...... impedance are derived and have been validated through frequency and dynamic responses of computer simulation results. In addition, a comprehensive analysis has been done for all mentioned PWM MCIS converters regarding their circuit parameters. Furthermore, the effect of considering the equivalent series...

  6. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.

    Science.gov (United States)

    Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan

    2016-12-15

    Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection.

  7. The inverse problem of bioelectricity: an evaluation

    NARCIS (Netherlands)

    Oosterom, A. van

    2012-01-01

    This invited paper presents a personal view on the current status of the solution to the inverse problem of bioelectricity. Its focus lies on applications in the field of electrocardiography. The topic discussed is also relevant in other medical domains, such as electroencephalography, electroneurog

  8. 复合波阻技术波阻特性分析%Wave impedance characteristic analysis of composite wave impedance techniques

    Institute of Scientific and Technical Information of China (English)

    林永水; 吴卫国

    2015-01-01

    A wave dynamic response matrix method is proposed in this paper to investigate the problem of impeding structure-borne sound transmission from wave impedance facilities based on the wave approach, the impedance method, and the finite element idea. First, the structure is discretized into many wave ele-ments and a general equilibrium equation of wave dynamic response is developed according to the displace-ment compatibility, force, and moment equilibrium at the junction node. Then, the wave dynamic response matrices of wave elements and the added wave dynamic response matrices of wave impedance facilities are deduced. The vibration amplitudes of wave elements are obtained by resolving the equilibrium equation, and the transmission efficiencies and transmission loss are then obtained. The method is then illustrated by a series of wave attenuation models such as blocking mass, elastic interlayer, and dynamic vibration absorb-er. Finally, numerical analysis focusing on the attenuation of structure-borne sound through the composite wave impedance facilities is conducted. The numerical simulation results show that the wave transmission loss within the full frequency domain is greatly reduced by using the composite wave impedance technique with a reasonable selection of design parameters and an optimal layout. The study provides certain guid-ance and a new control policy for the structural acoustic design of composite wave impedance facilities, which further offers guidance for the acoustic design of impedance techniques.%复合波阻技术在舰船减振降噪中的应用日益广泛.基于有限元思想,综合运用波分析法和阻抗法,提出一种复合波阻元件阻抑结构声传递特性的波动力响应矩阵分析法.该方法将结构离散为若干波导单元和波阻单元,建立附加波阻元件的结构连接的波动力响应广义平衡方程,推导出波导单元波动力响应矩阵及波阻单元附加波动响应矩阵,代入平衡方程求出

  9. Equivalent circuit model analysis on electrochemical impedance spectroscopy of lithium metal batteries

    Science.gov (United States)

    Gao, Peng; Zhang, Cuifen; Wen, Guangwu

    2015-10-01

    Lithium metal electrode is pretreated with 1,3-dioxolane or 1,4-dioxane to improve its properties. The components and morphology of the surface films formed in the above two pretreatment liquids are studied using FTIR and SEM respectively. Li-LiCoO2 coin cells are then fabricated and their cycle and discharge performance are tested. It is found that the battery performance is greatly improved by such pretreatment. Interestingly, the 1,4-dioxane pretreatment is more effective than 1,3-dioxolane in improving the lithium metal electrode performance. To explore the mechanism(s) behind, the electrochemical impedance spectroscopy (EIS) is employed and an equivalent circuit model is designed for EIS analysis. The fitting curves are aligned well with the experimental curves, suggesting that the proposed equivalent circuit model is an ideal model for lithium battery. Next, the corresponding relationship between the impedance components and every individual semicircle in the Nyquist curves is inferred theoretically and the result is satisfying. Based on the analysis using this model, we conclude that the structural stability of SEI film is increased and the interfacial compatibility between the lithium substrate and the SEI film is improved by 1,3-dioxolane or 1,4-dioxane pretreatment.

  10. Bioelectric Applications for Treatment of Melanoma

    Directory of Open Access Journals (Sweden)

    Richard Heller

    2010-09-01

    Full Text Available Two new cancer therapies apply bioelectric principles. These methods target tumor structures locally and function by applying millisecond electric fields to deliver plasmid DNA encoding cytokines using electrogene transfer (EGT or by applying rapid rise-time nanosecond pulsed electric fields (nsPEFs. EGT has been used to locally deliver cytokines such as IL-12 to activate an immune response, resulting in bystander effects. NsPEFs locally induce apoptosis-like effects and affect vascular networks, both promoting tumor demise and restoration of normal vascular homeostasis. EGT with IL-12 is in melanoma clinical trials and nsPEFs are used in models with B16F10 melanoma in vitro and in mice. Applications of bioelectrics, using conventional electroporation and extensions of it, provide effective alternative therapies for melanoma.

  11. Bioelectric Applications for Treatment of Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, Stephen J., E-mail: sbeebe@odu.edu; Schoenbach, Karl H.; Heller, Richard [Frank Reidy Research Center for Bioelectrics/Old Dominion University 4211 Monarch Way, Suite 300, Norfolk, Virginia 23508 (United States)

    2010-09-27

    Two new cancer therapies apply bioelectric principles. These methods target tumor structures locally and function by applying millisecond electric fields to deliver plasmid DNA encoding cytokines using electrogene transfer (EGT) or by applying rapid rise-time nanosecond pulsed electric fields (nsPEFs). EGT has been used to locally deliver cytokines such as IL-12 to activate an immune response, resulting in bystander effects. NsPEFs locally induce apoptosis-like effects and affect vascular networks, both promoting tumor demise and restoration of normal vascular homeostasis. EGT with IL-12 is in melanoma clinical trials and nsPEFs are used in models with B16F10 melanoma in vitro and in mice. Applications of bioelectrics, using conventional electroporation and extensions of it, provide effective alternative therapies for melanoma.

  12. Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review

    Science.gov (United States)

    Nechache, A.; Cassir, M.; Ringuedé, A.

    2014-07-01

    High temperature water electrolysis based on Solid Oxide Electrolysis Cell (SOEC) is a very promising solution to produce directly pure hydrogen. However, degradation issues occurring during operation still represent a scientific and technological barrier in view of its development at an industrial scale. Electrochemical Impedance Spectroscopy (EIS) is a powerful in-situ fundamental tool adapted to the study of SOEC systems. Hence, after a quick presentation of EIS principle and data analysis methods, this review demonstrates how EIS can be used: (i) to characterize the performance and mechanisms of SOEC electrodes; (ii) as a complementary tool to study SOEC degradation processes for different cell configurations, in addition to post-test tools such as scanning electron microscopy (SEM) or X-ray diffraction (XRD). The use of EIS to establish a systematic SOEC analysis is introduced as well.

  13. Hydration dynamics of collagen/PVA composites: Thermoporometric and impedance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kanungo, Ivy; Fathima, N. Nishad; Rao, J. Raghava, E-mail: clrichem@mailcity.com; Nair, Balachandran Unni

    2013-06-15

    Porous scaffolds like collagen/PVA (polyvinyl alcohol) composites have potential applications in the field of biomedical engineering. The pore properties and electrical behavior of collagen/PVA composite system were investigated by thermoporometry technique and electrochemical impedance analysis. The porous composites were crosslinked by less cytotoxic genipin due to the versatility in the crosslinking reactivity between the amino groups. Different physicochemical properties like rheological behavior, thermal stability of the protein and morphological changes of the composites were investigated as a function of PVA concentration by viscosity profile, temperature dependant circular dichroic spectroscopic studies, scanning electron microscopy. Bound water constrained within the pores of collagen/PVA composites seems to provide signatures for changes induced by amount of additives on the pore diameter and distribution in composite molecules. Impedance measurements of the composites in the frequency range of 10{sup −2} to 10{sup 5} Hz reveal that concentration of the additive and crosslinking significantly influence the permittivity of the composites. The tunable physicochemical properties help to gain insight for regulating cellular events for tissue and organ regeneration. - Highlights: • Additive and crosslinker influence pore size distribution of biocomposite. • Pore sizes are shifted to the lower nanometer range with increasing PVA concentration. • Additives influence reorientation of water near the peptide group of collagen. • Increase of tan δ values with the decrease of frequency indicates that the resistive component of biocomposites dominates.

  14. Electrochemical impedance spectroscopy analysis of porous silicon prepared by photo-electrochemical etching: current density effect

    Science.gov (United States)

    Husairi, F. S.; Rouhi, J.; Eswar, K. A.; Zainurul, A. Z.; Rusop, M.; Abdullah, S.

    2014-09-01

    Electrical impedance characteristics of porous silicon nanostructures (PSiNs) in frequency function were studied. PSiNs were prepared through photo-electrochemical etching method at various current densities (15-40 mA/cm2) and constant etching time. The atomic force microscope images of PSiNs show that pore diameter and roughness increase when current density increases to 35 mA/cm2. The surface roughness subsequently decreases because of continuous etching of pillars, and a second etching process occurs. Photoluminescence spectra show blue and red shift with increasing applied current density that is attributed to PSiNs size. Variations of electrical resistance and capacitance values of PSiNs were measured using electrochemical impedance spectroscopy analysis. These results indicate that PSiNs prepared at 20 mA/cm2 current density have uniform porous structures with a large number of pillars. Furthermore, this PSiNs structure influences large values of charge transfer resistance and double layer capacitance, indicating potential application in sensors.

  15. Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with Droop Control and Virtual Impedance Loop

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Vasquez, Juan Carlos

    2014-01-01

    In this paper, an improved power flow analysis algorithm for distributed generation (DG) units controlled with P/Q droop functions and virtual impedances in a low voltage (LV) microgrid is proposed. The proposed analysis provides in contrast to conventional power flow calculation techniques: (i......) consideration of virtual impedance parameters and (ii) higher accuracy in reactive power flow calculation. The improved power flow analysis algorithm proposed in this paper is validated by comparing the calculation results with detailed time domain simulation results. Case studies have been carried out...... by analyzing the effects of control parameter variation in the power flow results obtained by the proposed algorithm....

  16. Correlation between percentage of body fat measured by the Slaughter equation and bio impedance analysis technique in Mexican schoolchildren

    Directory of Open Access Journals (Sweden)

    Mariana Orta Duarte

    2014-01-01

    Full Text Available Introduction: Obesity is considered one of the most serious public health problems of the 21st century in children and adolescents. The percentile or Z-score of the body mass index is widely used in children and adolescents to define and assess overweight and obesity, but it does not determine the percentage of total body fat. Other anthropometric measurements that determine total body fat are skinfold thickness and methods of body composition assessment such as bio impedance analysis, both of which are rapid and inexpensive. Objetive: The aim of the study was to correlate the percentage of body fat determined by the Slaughter equation with the percentage of body fat determined by the bio impedance analysis technique, and the body mass index in schoolchildren. Methods: The design of the study is cross-sectional and it was performed on a random selection of 74 children (9.47 ± 1.55 years old attending a primary school in Colima, Mexico during 2011. The percentage of body fat was measured by the Slaughter equation and bio impedance analysis technique. Body mass index was calculated. Inferential statistics were performed with the non-paired Student's t test, Pearson's correlation for quantitative variables (percentage of body fat by the Slaughter equation and bio impedance analysis and the Fisher exact test for qualitative variables. Results: A significant correlation (r = 0.74; p < 0.001 was identified between the percentage of fat measured by the Slaughter equation and bio impedance analysis. We also identified a significant correlation between the percentage of fat measured by the Slaughter equation and body mass index (r = 0. 85; p < 0.001 and the percentage of fat measured by bio impedance analysis and body mass index (r = 0.78; p < 0.001. Conclusion: Given that we identified a significant positive correlation between BIA and STE, we conclude that both are adequate alternatives for measuring the percentage of body fat among schoolchildren in

  17. Impedance analysis of Pb2Sb3LaTi5O18 ceramic

    Indian Academy of Sciences (India)

    C K Suman; K Prasad; R N P Choudhary

    2004-12-01

    Polycrystalline sample of Pb2Sb3LaTi5O18, a member of tungsten–bronze (TB) family, was prepared using a high temperature solid-state reaction technique. XRD analysis indicated the formation of a singlephase orthorhombic structure. The dielectric studies revealed the diffuse phase transition and the transition temperature was found to be at 52°C. Impedance plots were used as tools to analyse the sample behaviour as a function of frequency. Cole–Cole plots showed Debye relaxation. The activation energy was estimated to be 0.634 eV from the temperature variation of d.c. conductivity. The nature of variation of d.c. conductivity with temperature suggested NTCR behaviour.

  18. MULTIRESOLUTION MOMENT METHOD BASED ON THE IMPEDANCE OPERATOR FOR THE ANALYSIS OF PLANAR MICROSTRIP STRUCTURES

    Directory of Open Access Journals (Sweden)

    NEJLA OUESLATI,

    2011-03-01

    Full Text Available This paper presents an integral equation analysis of planar microstrip circuits. In the developed approach, the Moment Method (MoM with wavelet expansion is combined to the generalized equivalent circuit (GEC to characterize microstrip structures. The interest of the (GEC method is to simplify the implementation of the moment method by the translation of an electromagnetic problem to an electric one with the use of the impedance operator. In the multiresolution moment method (MRMoM-GEC, an excitation on the plane of the circuit is used in conjunction with compactly supported wavelets trial functions. This approach generates a sparse linear system. The application of the Discrete Wavelet Transform (DWT,especially for large structures, allows a significant reduction of the unit time of central processing.

  19. Impedance spectroscopy analysis of CeNbO4.25

    Institute of Scientific and Technical Information of China (English)

    李琴; 王金玲; 张国光

    2013-01-01

    Monoclinic CeNbO4.25 was prepared by solid state reaction. Complex impedance analysis indicated the presence of grain interior effect along with the grain boundary contribution. The values of ionic transference number ti below 423 K were calculated to be about 0.5. The activation energies of ionic conductivity and electronic conductivity were deduced to be 36.0 and 37.2 kJ/mol, re-spectively. The real part of the AC conductivity was frequency dependent. At high frequencies corresponding to the grain interior ef-fect, the non-Debye nature of the AC conductivity was interpreted by the correlated hopping of interstitial oxygen with the electron holes on the basis of the correlated barrier hopping (CBH) model.

  20. Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming

    Science.gov (United States)

    Oz, Alon; Hershkovitz, Shany; Tsur, Yoed

    2014-11-01

    In this contribution we present a novel approach to analyze impedance spectroscopy measurements of supercapacitors. Transforming the impedance data into frequency-dependent capacitance allows us to use Impedance Spectroscopy Genetic Programming (ISGP) in order to find the distribution function of relaxation times (DFRT) of the processes taking place in the tested device. Synthetic data was generated in order to demonstrate this technique and a model for supercapacitor ageing process has been obtained.

  1. Numerical analysis of complex impedance and microwave absorption of metamaterials composed of split cut wires on grounded dielectric substrate

    Science.gov (United States)

    Lim, Jun-Hee; Liu, Tian; Kim, Sung-Soo

    2014-06-01

    The microwave absorption of metamaterials composed of split cut wire (SCW) on grounded dielectric substrate has been investigated on the basis of equivalent transmission line circuit. S-parameters (S 11 and S 21) and input impedance are numerically simulated with variations of the thickness and dielectric loss of the substrate and the geometry of the SCW. Magnetic resonance resulting from antiparallel currents between SCW and ground plane was observed at the frequency of minimum reflection loss. The simulated resonance frequency and reflection loss can be explained well on the basis of the circuit theory of an LC resonator. Analysis of the input impedance of the high impedance surface has shown that perfect absorption can be obtained at the optimized impedance-matching condition, which is dependent on SCW width, thickness and the dielectric loss of the substrate. Better insight into the absorption mechanism of metamaterial absorbers can be attained through the parametric analysis on complex impedance of SCW and its relationship with reflection loss.

  2. Impedance Scaling and Impedance Control

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.; Griffin, J.

    1997-06-01

    When a machine becomes really large, such as the Very Large Hadron Collider (VLHC), of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ``normal`` way. It is shown that the beam would be intrinsically unstable for the VLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane.

  3. Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis.

    Science.gov (United States)

    McHale, Glen; Hardacre, Chris; Ge, Rile; Doy, Nicola; Allen, Ray W K; MacInnes, Jordan M; Bown, Mark R; Newton, Michael I

    2008-08-01

    Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of approximately 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of square root(rho eta) approximately 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.

  4. The analysis of electrode impedances complicated by the presence of a constant phase element

    NARCIS (Netherlands)

    Brug, G.J.; Eeden, A.L.G. van den; Sluyters-Rehbach, M.; Sluyters, J.H.

    1984-01-01

    The electrical double-layer at a solid electrode does not in general behave as a pure capacitance but rather as an impedance displaying a frequency-independent phase angle different from 90°. Ways are indicated how to analyse the interfacial impedance if such a complication arises in the presence of

  5. Impedance Analysis of the Conditioning of PBI–Based Electrode Membrane Assemblies for High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Vang, Jakob Rabjerg; Andreasen, Søren Juhl;

    2013-01-01

    This work analyses the conditioning of single fuel cell assemblies based on different membrane electrode assembly (MEA) types, produced by different methods. The analysis was done by means of electrochemical impedance spectroscopy, and the changes in the fitted resistances of the all the tested...

  6. Analysis of a disk-type piezoelectric ultrasonic motor using impedance matrices.

    Science.gov (United States)

    Kim, Young H; Ha, Sung K

    2003-12-01

    The dynamic behavior and the performance characteristics of the disk-type traveling wave piezoelectric ultrasonic motors (USM) are analyzed using impedance matrices. The stator is divided into three coupled subsystems: an inner metal disk, a piezoelectric annular actuator with segmented electrodes, and an outer metal disk with teeth. The effects of both shear deformation and rotary inertia are taken into account in deriving an impedance matrix for the piezoelectric actuator. The impedance matrices for each subsystem then are combined into a global impedance matrix using continuity conditions at the interfaces. A comparison is made between the impedance matrix model and the three-dimensional finite element model of the piezoelectric stator, obtaining the resonance and antiresonance frequencies and the effective electromechanical coupling factors versus circumferential mode numbers. Using the calculated resonance frequency and the vibration modes for the stator and a brush model with the Coulomb friction for the stator and rotor contact, stall torque, and no-load speed versus excitation frequencies are calculated at different preloads. Performance characteristics such as speed-torque curve and the output efficiency of the USM also are estimated using the current impedance matrix and the contact model. The present impedance model can be shown to be very effective in the design of the USM.

  7. Bioelectricity potential in Mato Grosso do Sul, Brazil; O potencial de bioeletricidade no Mato Grosso do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Turdera, Eduardo Mirko Valenzuela [Universidade Federal da Grande Dourados (UFGD), Dourados, MS (Brazil). Faculdade de Ciencias Exatas e Tecnologicas], E-mail: eduardoturdera@ufgd.edu.br

    2009-07-01

    This paper presents the importance of bioelectricity power from renewable source in the power output of Mato Grosso do Sul (MS). The power energy capacity of MS could grow the next years due arrived of more of the thirty mills on medium term. This scenario will be very favorable because MS State will have conditions to meet power domestic market demand and to have significant surplus of electricity to export. Sugar cane crops are expanding and they could propitiate combined heat power (CHP or cogeneration) technology growth, we make an analysis about the share of the bioelectricity availability in MS power capacity installed. Bioelectricity could be good to MS as well as energy and economic aspects. (author)

  8. Combined Dielectrophoresis and Impedance Systems for Bacteria Analysis in Microfluidic On-Chip Platforms

    Directory of Open Access Journals (Sweden)

    Cristina Páez-Avilés

    2016-09-01

    Full Text Available Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP and impedance analysis (IA in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments.

  9. Combined Dielectrophoresis and Impedance Systems for Bacteria Analysis in Microfluidic On-Chip Platforms.

    Science.gov (United States)

    Páez-Avilés, Cristina; Juanola-Feliu, Esteve; Punter-Villagrasa, Jaime; Del Moral Zamora, Beatriz; Homs-Corbera, Antoni; Colomer-Farrarons, Jordi; Miribel-Català, Pere Lluís; Samitier, Josep

    2016-09-16

    Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments.

  10. Structural and impedance analysis of Co-doped SrTiO3 perovskite

    Science.gov (United States)

    Echeverri, E.; Arnache, O.

    2016-02-01

    SrTi1-xCoxO3 (0.2≥x≥0) polycrystalline samples were prepared by solid-state reaction. X-ray diffraction (XRD) analysis shown the perovskite type structure is conserved for all samples without impurities. A small increase in the lattice parameters were observed for x≥0.05. Morphology and composition were analysed by scanning electron microscopy (SEM- EDX). Impedance spectroscopy measurements form 50Hz to 1MHz were made at different temperatures (25-400°C). The spectra were analysed by Z' vs Z'' plots, which reveal 3 contributions associated to electrodes, grain boundary and grain. From the fits the frequency f) and times relaxation (τ) of the grain were estimated, with values of f∼15KHz and τ∼67µs for 20% Co samples at RT. A dispersion in the permittivity ε* at low frequency (<300Hz) were observed, which increase with the temperature. Each component of ε* converge for frequencies up to ∼300kHz. Finally, a behaviour and activation energy analysis of the electrical conductivity is presented from ln(σ) vs 1/T plots.

  11. Primary report of noninvasive impedance monitoring of cerebral hematoma and edema in patients with intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Xia Yi Lu; Dong Wei-Wei; Yang Hao; Long Men; Yang Hua

    2000-01-01

    Background and Objective Brain edema is one of the most important clinical process in many diseases. Tissue impedance monitoring offers a non-invasive, bedside, rapid, and reliable technique for the monitoring of the brain edema. Methods We use a bioelectrical impedance(BEI) monitoring unit to record the brain impedance in the healthy volunteer and the patients with intracerebral hemorrhage. Percent of BEI variations were calculation. Results and Conclusions Brain BEI haven f any difference between both hemispheres in normal ones. In 48hrs, BEI value at hematoma-side was obviously decreased; after 48hrs, BEI value was obviously increased and continue to tenth day. Brain bioelectrical impedance monitoring, particularly noninvasively, is a first time in this field. The primary results show brain BEI could reflect the evolution of cerebral hematoma and edema.

  12. Microelectrode and Impedance Analysis of Anion Secretion in Calu-3 Cells

    Directory of Open Access Journals (Sweden)

    Tamada T

    2001-07-01

    Full Text Available Calu-3 cells secrete HCO(3(- in response to cAMP agonists but can be stimulated to secrete Cl(- with K(+ channel activating agonists. Microelectrode and impedance analysis experiments were performed to obtain a better understanding of the conductances and driving forces involved in these different modes of anion secretion in Calu-3 cells. Microelectrode studies revealed apical and basolateral membrane depolarizations upon the addition of forskolin (V(ap -52 mV vs. -21 mV; V(bl -60 mV vs. -44 mV that paralleled the hyperpolarization of the mucosal negative transepithelial voltage (V(T -8 mV vs. -23 mV. These changes were accompanied by a decrease in the apical membrane fractional resistance (F(Rap from approximately 0.50 to 0.08, consistent with the activation of an apical membrane conductance. The subsequent addition of 1-ethyl-2-benzimidazolinone (1-EBIO, a K(+ channel activator, hyperpolarized V(ap to -27 mV, V(bl to -60 mV and V(T to -33 mV. Impedance analysis revealed the apical membrane resistance (R(ap of the forskolin-stimulated cells was less than 20 ohm cm(2, indeed in most monolayers R(ap fell to less than 5 ohm cm(2. The impedance derived estimate of the basolateral membrane resistance (R(bl was approximately 170 ohm cm(2 in forskolin treated cells and fell to 50 ohm cm(2 with the addition of 1-EBIO. Using these values for the R(bl and the F(Rap value of 0.08 yields a R(ap of approximately 14 ohm cm(2 in the presence of forskolin and 4 ohm cm(2 in the presence of forskolin plus 1-EBIO. Thus, by two independent methods, forskolin-stimulated Calu-3 cells are seen to have a very high apical membrane conductance of 50 to 200 mS/cm(2. Therefore, we would assert that even at one-tenth the anion selectivity for Cl(-, this high conductance could support the conductive exit of HCO(3(- across the apical membrane. We further propose that this high apical membrane conductance serves to clamp the apical membrane potential near the equilibrium

  13. Biohydrogen, bioelectricity and bioalcohols from cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.

    2013-03-01

    The demand for renewable energy is increasing due to increasing energy demand and global warming associated with increasing use of fossil fuels. Renewable energy can be derived from biological production of energy carriers from cellulosic biomass. These biochemical processes include biomass fermentation to hydrogen, methane and alcohols, and bioelectricity production in microbial fuel cells (MFCs). The objective of this study was to investigate the production of different energy carriers (hydrogen, methane, ethanol, butanol, bioelectricity) through biochemical processes. Hydrogen production potential of a hot spring enrichment culture from different sugars was determined, and hydrogen was produced continuously from xylose. Cellulolytic and hydrogenic cultures were enriched on cellulose, cellulosic pulp materials, and on silage at different process conditions. The enrichment cultures were further characterized. The effect of acid pretreatment on hydrogen production from pulp materials was studied and compared to direct pulp fermentation to hydrogen. Electricity and alcohol(s) were simultaneously produced from xylose in MFCs and the exoelectrogenic and alcohologenic enrichment cultures were characterized. In the end, the energy yields obtained from different biochemical processes were determined and compared. In this study, cultures carrying out simultaneous cellulose hydrolysis and hydrogen fermentation were enriched from different sources at different operational conditions. These cultures were successfully utilized for cellulose to hydrogen fermentation in batch systems. Based on these results further research should be conducted on continuous hydrogen production from cellulosic materials.

  14. Electrochemical impedance analysis of nanoporous TiO2 electrode at low bias potential

    Institute of Scientific and Technical Information of China (English)

    Sheng Jun Li; Yuan Lin; Zeng Chen; Jing Bo Zhang; Xiao Wen Zhou

    2010-01-01

    TiO2 colloid was prepared by the sol-gel method and was bladed on transparent conduction glass to made nanoporous electrode.The impedance performance of TiO2 electrode was studied at various bias potential.A simplified equivalent circuit was proposed to investigate the charge transport impedance of TiO2 film and good fitting results were obtained.

  15. Local and global stability analysis of compressible channel flow over wall impedance

    Science.gov (United States)

    Rahbari, Iman; Scalo, Carlo

    2016-11-01

    The stability properties of compressible channel flow over porous walls is investigated via Local (LSA) and Global Stability Analysis (GSA) for laminar and turbulent base flows at Reb = 6900 and Mb = 0 . 85 , 1 . 5 , 3 . 5 . Linearized Navier-Stokes equations are discretized via a sixth-order fully collocated Padé scheme leading to a Generalized Eigenvalue Problem (GEVP) solved using a parallel sparse eigenvalue solver based on the shift-invert Arnoldi method. The adopted discretization guarantees spectral-like spatial resolution. Fully sparsity of the system is retained via implicit calculation of the numerical derivatives ensuring computational efficiency on multi-processor platforms. The global eigen-spectrum exhibits various sets of modes grouped by streamwise wave-numbers, which are captured via LSA, as well as global acoustic modes. Consistently with the findings of C. Scalo et al., two unstable local modes are found for sufficiently high wall permeability: one standing-wave-like and one representing a bulk pressure mode, both generating additional Reynolds shear stresses concentrated in the viscous sublayer region. Stability properties of the flow over non-modal streamwise impedance distributions are also discussed.

  16. Electrochemical impedance spectroscopy analysis of a thin polymer film-based micro-direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Tobias; Weinmueller, Christian; Nabavi, Majid; Poulikakos, Dimos [Department of Mechanical and Process Engineering, Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, ETH Zurich, CH-8092 Zurich (Switzerland)

    2010-11-15

    A single cell micro-direct methanol fuel cell (micro-DMFC) was investigated using electrochemical impedance spectroscopy. The electrodes consisted of thin, flexible polymer (SU8) film microchannel structures fabricated in-house using microfabrication techniques. AC impedance spectroscopy was used to separate contributions to the overall cell polarization from the anode, cathode and membrane. A clear distinction between the different electrochemical phenomena occurring in the micro-DMFC, especially the distinction between double layer charging and Faradaic reactions was shown. The effect of fuel flow rate, temperature, and anode flow channel structure on the impedance of the electrode reactions and membrane/electrode double layer charging were investigated. Analysis of impedance data revealed that the performance of the test cell was largely limited by the presence of intermediate carbon monoxide in the anode reaction. Higher temperatures increase cell performance by enabling intermediate CO to be oxidized at much higher rates. The results also revealed that serpentine anode flow microchannels show a lower tendency to intermediate CO coverage and a more stable cell behavior than parallel microchannels. (author)

  17. Signal-to-Noise Ratio Analysis of a Phase-Sensitive Voltmeter for Electrical Impedance Tomography.

    Science.gov (United States)

    Murphy, Ethan K; Takhti, Mohammad; Skinner, Joseph; Halter, Ryan J; Odame, Kofi

    2017-04-01

    In this paper, thorough analysis along with mathematical derivations of the matched filter for a voltmeter used in electrical impedance tomography systems are presented. The effect of the random noise in the system prior to the matched filter, generated by other components, are considered. Employing the presented equations allow system/circuit designers to find the maximum tolerable noise prior to the matched filter that leads to the target signal-to-noise ratio (SNR) of the voltmeter, without having to over-design internal components. A practical model was developed that should fall within 2 dB and 5 dB of the median SNR measurements of signal amplitude and phase, respectively. In order to validate our claims, simulation and experimental measurements have been performed with an analog-to-digital converter (ADC) followed by a digital matched filter, while the noise of the whole system was modeled as the input referred at the ADC input. The input signal was contaminated by a known value of additive white Gaussian noise (AWGN) noise, and the noise level was swept from 3% to 75% of the least significant bit (LSB) of the ADC. Differences between experimental and both simulated and analytical SNR values were less than 0.59 and 0.35 dB for RMS values ≥ 20% of an LSB and less than 1.45 and 2.58 dB for RMS values phase, respectively. Overall, this study provides a practical model for circuit designers in EIT, and a more accurate error analysis that was previously missing in EIT literature.

  18. An analysis of electrical impedance measurements applied for plant N status estimation in lettuce (Lactuca sativa).

    Science.gov (United States)

    Muñoz-Huerta, Rafael F; Ortiz-Melendez, Antonio de J; Guevara-Gonzalez, Ramon G; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V

    2014-06-27

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status.

  19. An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa

    Directory of Open Access Journals (Sweden)

    Rafael F. Muñoz-Huerta

    2014-06-01

    Full Text Available Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L. with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status.

  20. Digital microfluidics with impedance sensing for integrated cell culture and analysis.

    Science.gov (United States)

    Shih, Steve C C; Barbulovic-Nad, Irena; Yang, Xuning; Fobel, Ryan; Wheeler, Aaron R

    2013-04-15

    We report the first digital microfluidic (DMF) system capable of impedance sensing of mammalian cells. The new system was validated in three assays: calibration, proliferation, and serum sensing. In the first assay, three cell lines (HeLa, CHO-K1, and NIH-3T3) were seeded at different densities to determine the relationship between impedance and cell number, which was found to be linear for each type of cell. In the proliferation assay, cells were grown for four days and their proliferation rates were determined by regular impedance measurements. In the serum sensing assay, a dilution series of cell media containing different concentrations of serum was evaluated using impedance measurements to determine the optimum conditions for proliferation. The DMF impedance system is label-free, does not require imaging, and is compatible with long-term cell culture. We propose that this system will be useful for the growing number of scientists who are seeking methods other than fluorescence or cell sorting to analyze adherent cells in situ.

  1. The accurate use of impedance analysis for the study of microbial electrochemical systems.

    Science.gov (United States)

    Dominguez-Benetton, Xochitl; Sevda, Surajbhan; Vanbroekhoven, Karolien; Pant, Deepak

    2012-11-07

    The present critical review aims to portray the principles and theoretical foundations that have been used for the application of electrochemical impedance spectroscopy (EIS) to study electron-transfer mechanisms, mass transfer phenomena and distribution of the heterogeneous properties of microbial electrochemical systems (MXCs). Over the past eight years, the application of this method has allowed major breakthroughs, especially in the field of microbial fuel cells (MFCs); however, it is still most widely extended only to the calculation of internal resistances. The use and interpretation of EIS should greatly improve since the intrinsic knowledge of this field, and efforts and current trends in this field have already allowed its understanding based on rather meaningful physical properties and not only on fitting electrical analogues. From this perspective, the use, analysis and interpretation of EIS applied to the study of MXCs are critically examined. Together with the revision of more than 150 articles directly devoted to this topic, two examples of the correct and improved analysis of EIS data are extensively presented. The first one focuses on the use of graphical methods for improving EIS analysis and the other one concentrates on the elucidation of the constant phase element (CPE) parameters. CPEs have been introduced in equivalent circuit models, sometimes without solid justification or analysis; the effective capacitance has been obtained from CPE parameters, following an unsuitable theory for the case of microbial-electrochemical interfaces. The use of CPE is reviewed in terms of meaningful physical parameters, such as biofilm thickness. The use of a finite-diffusion element is reviewed throughout estimation of accurate values for obtaining the dimensionless numbers, Schmidt and Sherwood, in the context of a dioxygen-reducing-biocathode, under different flow-rate conditions. The use and analysis of EIS in this context are still emerging, but because of

  2. Models of intracellular mechanisms of plant bioelectrical potentials caused by combined stimulation

    Directory of Open Access Journals (Sweden)

    D. V. Chernetchenko

    2014-10-01

    Full Text Available This paper deals with bioelectrical potentials of the plants recorded during different types of stimuli and combined stimulus as well. All registrations were observed on the leaves of the corn. We used different stimuli, such as cold, heat, photo- and electrical stimulation, and certain combination of this stimuli. Hardware and software system for automated recording of bioelectrical potentials has been successfully used in this work. We proposed the universal pattern of bioelectrical potentials’ recording which allowed to detect the response of the biological object to different stimuli and various combinations of these stimuli. This pattern can be used for the deeper understanding of biological mechanisms of electrical potentials’ generation in cells and discovering of processes of accommodation of whole organisms to these stimuli. Integrated system of recording and biometrical processing was used for analysis of corn leaves electrical responses to the thermal stimuli. The dynamics of these potentials was studied, with the quantitative analysis of the potential level stabilization.We calculated the ratio of amplitude of response potentials to the first response amplitude. Mathematical models of the plant cell were used for studying of intracellular mechanisms of biopotentials gereration. As a result of modeling, we revealed that electrical response of the cells was based on selectiveconductivity of cell membrane for Н+ and Ca2+ ions. Therefore, we showed the biophysical relation of plant potentials to underlying intracellular biophysical mechanisms during thermal and combined stimulation.

  3. Measurement of fluid viscosity at microliter volumes using quartz impedance analysis.

    Science.gov (United States)

    Saluja, Atul; Kalonia, Devendra S

    2004-08-05

    The purpose of this work was to measure viscosity of fluids at low microliter volumes by means of quartz crystal impedance analysis. To achieve this, a novel setup was designed that allowed for measurement of viscosity at volumes of 8 to 10 microL. The technique was based on the principle of electromechanical coupling of piezoelectric quartz crystals. The arrangement was simple with measurement times ranging from 2 to 3 minutes. The crystal setup assembly did not impose any unwanted initial stress on the unloaded quartz crystal. Quartz crystals of 5- and 10-MHz fundamental frequency were calibrated with glycerol-water mixtures of known density and viscosity prior to viscosity measurements. True frequency shifts, for the purpose of this work, were determined followed by viscosity measurement of aqueous solutions of sucrose, urea, PEG-400, glucose, and ethylene glycol at 25 degrees C +/- 0.5 degrees C. The measured viscosities were found to be reproducible and consistent with the values reported in the literature. Minor inconsistencies in the measured resistance and frequency shifts did not affect the results significantly, and were found to be experimental in origin rather than due to electrode surface roughness. Besides, as expected for a viscoelastic fluid, PEG 8000 solutions, the calculated viscosities were found to be less than the reported values due to frequency dependence of storage and loss modulus components of complex viscosity. From the results, it can be concluded that the present setup can provide accurate assessment of viscosity of Newtonian fluids and also shows potential for analyzing non-Newtonian fluids at low microliter volumes.

  4. Electrochemical Impedance Analysis of β-TITANIUM Alloys as Implants in Ringers Lactate Solution

    Science.gov (United States)

    Bhola, Rahul; Bhola, Shaily M.; Mishra, Brajendra; Olson, David L.

    2010-02-01

    Commercially pure titanium and two β-titanium alloys, TNZT and TMZF, have been characterized using various electrochemical techniques for their corrosion behavior in Ringers lactate solution. The variation of corrosion potential and solution pH with time has been discussed. Electrochemical Impedance Spectroscopy has been used to fit the results into a circuit model. The stability of the oxides formed on the surface of these alloys has been correlated with impedance phase angles. Cyclic Potentiodynamic Polarization has been used to compute the corrosion parameters for the alloys. TMZF is found to be a better β-alloy as compared to TNZT.

  5. Brain bioelectrical activity changes in patients with poststroke depression and apathy

    Directory of Open Access Journals (Sweden)

    I. V. Kichuk

    2015-01-01

    Full Text Available Objective: to study the specific features of brain bioelectrical activity in patents with poststroke apathy and depressive disorders.Patients and methods. The investigation enrolled 175 patients (84 men and 91 women with new-onset cerebral stroke at different sites. A total of 107 (61% patients of them were observed to have depressive disorders (n=41 (38% and apathy (n=66 (62% within a year after disease onset. A control group included 68 (39% patients without poststroke affective disorders. The mean age of the study group patients was 66±10 years and that of the control patients was 68±11 years. The severity and magnitude of neurological deficit were evaluated using the U.S. National Institutes of Health Stroke Scale (NIHSS. The patients underwent electroencephalography (EEG, brain computed tomography and magnetic resonance imaging. The investigators used diagnostic and statistical manual of mental disorders (DSM-IV criteria to diagnose depression and the Hamilton depression rating scale (HAM-D and the mini-mental status examination (MMSE to evaluate the mental status. The basic rhythmic power indices in the affected and unaffected hemispheres were calculated, as well as anteroposterior alpha rhythm distribution coefficient and interhemispheric asymmetry coefficient. Results and discussion. The computer EEG analysis was shown to identify the hallmark characteristics of brain bioelectric activity in patients with different types of affective disorders in the acute, early and late recovery periods of stroke. The patients with affective disorders were found to have brain bioelectrical activity changes predominantly in the rapid frequency sub-band on EEG, suggesting midbrain structural dysfunction. In the patients with poststroke depression, depressive disorder scale scores were related to the power of bioelectric activity in the slow and alpha frequency bands manly in the acute stroke period whereas those were correlated with the EEG

  6. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    Science.gov (United States)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  7. Analysis and Design of Ultra Thin Electromagnetic Absorbers Comprising Resistively Loaded High Impedance Surfaces

    CERN Document Server

    Costa, Filippo; Manara, Giuliano; 10.1109/TAP.2010.2044329

    2010-01-01

    High-Impedance Surfaces (HIS) comprising lossy Frequency Selective Surfaces (FSS) are employed to design thin electromagnetic absorbers. The structure, despite its typical resonant behavior, is able to perform a very wideband absorption in a reduced thickness. Losses in the frequency selective surface are introduced by printing the periodic pattern through resistive inks and hence avoiding the typical soldering of a large number of lumped resistors. The effect of the surface resistance of the FSS and dielectric substrate characteristics on the input impedance of the absorber is discussed by means of a circuital model. It is shown that the optimum value of surface resistance is affected both by substrate parameters (thickness and permittivity) and by FSS element shape. The equivalent circuit model is then used to introduce the working principles of the narrowband and the wideband absorbing structure and to derive the best-suited element for wideband absorption. Finally, the experimental validation of the prese...

  8. Impedance spectroscopic analysis of nanoparticle functionalized graphene/p-Si Schottky diode sensors

    Science.gov (United States)

    Uddin, Md Ahsan; Singh, Amol; Daniels, Kevin; Vogt, Thomas; Chandrashekhar, M. V. S.; Koley, Goutam

    2016-11-01

    Metallic nanoparticle (NP) functionalized graphene/p-Si Schottky diode (chemidiode) sensors have been investigated through dc amperometric and ac impedance spectroscopic (IS) measurements. Four fold sensitivity enhancement for NH3 is demonstrated after Pt nanoparticle functionalization of graphene/p-Si Schottky diode sensor, and the response is also orders of magnitude higher compared to functionalized graphene chemiresistor. Experimentally obtained impedance spectra were modeled utilizing an equivalent circuit for both sensor types, and the junction resistance and capacitance were extracted for various gaseous analytes exposure. Variations in junction resistance, capacitance and 3-dB cut-off frequency plotted in three-dimensional (3D) enables extraction of unique signatures for various analyte gases.

  9. Report of the SSC impedance workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-10-28

    This workshop focused attention on the transverse, single-bunch instability and the detailed analysis of the broadband impedance which would drive it. Issues discussed included: (1) single bunch stability -- impact of impedance frequency shape, coupled-mode vs. fast blowup regimes, possible stopband structure; (2) numerical estimates of transverse impedance of inner bellows and sliding contact shielded bellows; (3) analytic estimates of pickup and kicker impedance contributions; and (4) feasibility studies of wire and beam measurements of component impedance.

  10. Analysis of degradation mechanisms in donor-acceptor copolymer based organic photovoltaic devices using impedance spectroscopy

    Science.gov (United States)

    Srivastava, S. B.; Sonar, P.; Singh, S. P.

    2016-09-01

    The stability of organic photovoltaic (OPV) devices in ambient conditions has been a serious issue which needs to be addressed and resolved timely. In order to probe the degradation mechanism in a donor-acceptor polymer PDPP-TNT: PC71BM bulk heterojunction based OPV devices, we have studied current density-voltage (J-V) behavior and impedance spectroscopy of fresh and aged devices. The current-voltage characteristic of optimized fresh devices exhibit a short circuit current density (J sc) of 8.9 mA cm-2, open circuit voltage (V oc) of 0.79 V, fill factor (FF) of 54.6%, and power conversion efficiency (PCE) of 3.8%. For aged devices, J sc, V oc, FF, and PCE were reduced to 57.3%, 89.8%, 44.3% and 23.7% of its initial value, respectively. The impedance spectra measured under illumination for these devices were successfully fitted using a CPE-based circuit model. For aged devices, the low-frequency response in impedance spectra suggests an accumulation of the photo-generated charge carriers at the interfaces which leads to a significant lowering in fill factor. Such degradation in device performance is attributed to the incorporation of oxygen and water molecules in devices. An increase in the recombination resistance indicates a deterioration of free charge carrier generation and conduction in devices.

  11. Diffusion and Gas Conversion Analysis of Solid Oxide Fuel Cells at Loads via AC Impedance

    Directory of Open Access Journals (Sweden)

    Robert U. Payne

    2011-01-01

    Full Text Available Impedance measurements were conducted under practical load conditions in solid oxide fuel cells of differing sizes. For a 2 cm2 button cell, impedance spectra data were separately measured for the anode, cathode, and total cell. Improved equivalent circuit models are proposed and applied to simulate each of measured impedance data. Circuit elements related to the chemical and physical processes have been added to the total-cell model to account for an extra relaxation process in the spectra not measured at either electrode. The processes to which elements are attributed have been deduced by varying cell temperature, load current, and hydrogen concentration. Spectra data were also obtained for a planar stack of five 61 cm2 cells and the individual cells therein, which were fitted to a simplified equivalent circuit model of the total button cell. Similar to the button cell, the planar cells and stack exhibit a pronounced low-frequency relaxation process, which has been attributed to concentration losses, that is, the combined effects of diffusion and gas conversion. The simplified total-cell model approximates well the dynamic behavior of the SOFC cells and the whole stack.

  12. Electrical impedance spectroscopy and diagnosis of tendinitis.

    Science.gov (United States)

    Yoon, Kisung; Lee, Kyeong Woo; Kim, Sang Beom; Han, Tai Ryoon; Jung, Dong Keun; Roh, Mee Sook; Lee, Jong Hwa

    2010-02-01

    There have been a number of studies that investigate the usefulness of bioelectric signals in diagnoses and treatment in the medical field. Tendinitis is a musculoskeletal disorder with a very high rate of occurrence. This study attempts to examine whether electrical impedance spectroscopy (EIS) can detect pathological changes in a tendon and find the exact location of the lesion. Experimental tendinitis was induced by injecting collagenase into one side of the patellar tendons in rabbits, while the other side was used as the control. After measuring the impedance in the tendinitis and intact tendon tissue, the dissipation factor was computed. The real component of impedance and the dissipation factor turned out to be lower in tendinitis than in intact tissues. Moreover, the tendinitis dissipation factor spectrum showed a clear difference from that of the intact tendon, indicating its usefulness as a tool for detecting the location of the lesion. Pathologic findings from the tissues that were obtained after measuring the impedance confirmed the presence of characteristics of tendinitis. In conclusion, EIS is a useful method for diagnosing tendinitis and detecting the lesion location in invasive treatment.

  13. A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Galigekere, Veda Prakash;

    2016-01-01

    A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance S...... with an example single-switch 400 W dc-dc converter. For the closed-loop control design and stability assessment, a small signal model and its analysis of the proposed network are also presented in brief.......A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance...

  14. An analysis of electrical impedance tomography with applications to Tikhonov regularization

    KAUST Repository

    Jin, Bangti

    2012-01-16

    This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in L p-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage. © EDP Sciences, SMAI, 2012.

  15. Study of lithium glassy solid electrolyte/electrode interface by impedance analysis

    Indian Academy of Sciences (India)

    A Karthikeyan; P Vinatier; A Levasseur

    2000-06-01

    Cells of lithium ion conducting glassy electrolyte Li2SO4–Li2O–B2O3 with different combinations of electrodes (stainless steel blocking electrode, lithium non-blocking electrode and TiS2 electrode) have been prepared. The a.c. impedance measurements of the cells have been studied at elevated temperature as a function of time. The circuit elements such as bulk resistance, double layer capacitance and charge transfer resistance have been inferred and their time dependence studied. The results show that the electrolyte and the interface are chemically very stable with the different types of electrodes studied here.

  16. Impedance Analysis of Grain Barrier Potential in SnO2 Gas Sensors①②

    Institute of Scientific and Technical Information of China (English)

    CHENZhong; S.Birlasekaran

    1997-01-01

    The potential barrier(or“grain boundaries”)of SnO2 gas sensor is the dominant factor of conductivity.A new simple method is applied to study the grain boundary using impedance analyzer under different DC bias.A model is presented to explain the experiment results.The model predicts height of the grain boundary under different humidity conditions,as well as grain size.The role of water is discussed.This model can be applied with ease to study the role of other reducing gasses.

  17. Complex Impedance Spectra Analysis of SnO2-glaze Composites

    Institute of Scientific and Technical Information of China (English)

    YAN Dongliang; LU Zhenya; ZHONG Yi; WU Jianqing

    2006-01-01

    SnO2-glaze composites were prepared by Sb-doped SnO2 and SiO2- CaO-Al2 O3- B2 O3 glaze. The composites changed from an electrical insulator to a conductor as the SnO2 content increased from 0wt% to 90 wt% . The complex impedance spectra of the fabricated composites were investigated in the frequency range of 100 Hz-40 MHz and three kinds of typical shape of complex impedance spectra were recorded and analyzed. The spectrum is quite close to the model of conduction via nonohmic contacting when the SnO2 content is relatively low. In high loading region, the spectrum shows the conduction pattern through ohmic contact chains. In the moderate loading region, the model is a mixture of the above two models. Equivalent circuit of the composite changes from resistor-capacitor circuit to resistor-inductor circuit as the content of SnO2 increases.

  18. Effect of photostimulation on maize leaves’ bioelectrical response

    Directory of Open Access Journals (Sweden)

    M. P. Motsnyj

    2011-06-01

    Full Text Available Dynamics of the maize leaves’ biopotentials evoked by white, blue, green and red light stimuli with an intensity of 90 Lx illumination is analyzed. Qualitative similarity in dynamics of plant’s bioelectrical response to white and colored stimuli is determined. Hyperpolarization levels are quantitatively estimated for each experimental series. Dependence of the total hyperpolarization levels on the photostimulus wave length is detected. Mean amplitude of the hyperpolarization potentials lessens when the wave length decreases: from 57.7 mV under the red light to 27.7 mV under the blue one. Probable forms of bioelectrical response initiation in photostimulated plants are analyzed.

  19. Analysis of mobile ionic impurities in polyvinylalcohol thin films by thermal discharge current and dielectric impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Egginger

    2012-12-01

    Full Text Available Polyvinylalcohol (PVA is a water soluble polymer frequently applied in the field of organic electronics for insulating thin film layers. By-products of PVA synthesis are sodium acetate ions which contaminate the polymer material and can impinge on the electronic performance when applied as interlayer dielectrics in thin film transistors. Uncontrollable voltage instabilities and unwanted hysteresis effects are regularly reported with PVA devices. An understanding of these effects require knowledge about the electronic dynamics of the ionic impurities and their influence on the dielectric properties of PVA. Respective data, which are largely unknown, are being presented in this work. Experimental investigations were performed from room temperature to 125°C on drop-cast PVA films of three different quality grades. Data from thermal discharge current (TDC measurements, polarization experiments, and dielectric impedance spectroscopy concurrently show evidence of mobile ionic carriers. Results from TDC measurements indicate the existence of an intrinsic, build-in electric field of pristine PVA films. The field is caused by asymmetric ionic double layer formation at the two different film-interfaces (substrate/PVA and PVA/air. The mobile ions cause strong electrode polarization effects which dominate dielectric impedance spectra. From a quantitative electrode polarization analysis of isothermal impedance spectra temperature dependent values for the concentration, the mobility and conductivity together with characteristic relaxation times of the mobile carriers are given. Also shown are temperature dependent results for the dc-permittivity and the electronic resistivity. The obtained results demonstrate the feasibility to partly remove contaminants from a PVA solution by dialysis cleaning. Such a cleaning procedure reduces the values of ion concentration, conductivity and relaxation frequency.

  20. Fatigue properties and impedance analysis of potassium sodium niobate-strontium titanate transparent ceramics

    Science.gov (United States)

    Liu, Zhiyong; Fan, Huiqing; Lei, Shenhui; Wang, Ju; Tian, Hailin

    2016-10-01

    Highly transparent ferroelectric ceramics based on 0.9K0.5Na0.5NbO3-0.1SrTiO3 were prepared using a pressure-less solid-state sintering method without using hot isostatic pressing and spark plasma sintering. An independence electromechanical response of bipolar switching cycles ( S 33 only degraded 3.2 % up to 107 cycles) was presented in this transparent ceramics, which indicated an extremely stable property under electric field. From impedance spectroscopy and X-ray photoelectron spectroscopy analyses, it was concluded that such optical transparency and fatigue-resistant behaviors were mainly attributed to the lower density of oxygen vacancies in the ceramics.

  1. Interface electric properties of Si/organic hybrid solar cells using impedance spectroscopy analysis

    Science.gov (United States)

    Wang, Dan; Zhu, Juye; Ding, Li; Gao, Pingqi; Pan, Xiaoyin; Sheng, Jiang; Ye, Jichun

    2016-05-01

    The internal resistance and capacitance of Si/organic hybrid solar cells (Si-HSC) based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are investigated by electrochemical impedance spectroscopy (EIS). Three types of Nyquist plots in Si-HSC are observed firstly at different bias voltages, while suitable equivalent circuit models are established to evaluate the details of interface carrier transfer and recombination. In particular, the carrier transport property of the PEDOT:PSS film responds at a high frequency (6 × 104-1 × 106 Hz) in three-arc spectra. Therefore, EIS could help us deeply understand the electronic properties of Si-HSC for developing high performance devices.

  2. Fatigue properties and impedance analysis of potassium sodium niobate-strontium titanate transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiyong; Fan, Huiqing; Lei, Shenhui; Wang, Ju; Tian, Hailin [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Xi' an (China)

    2016-10-15

    Highly transparent ferroelectric ceramics based on 0.9K{sub 0.5}Na{sub 0.5}NbO{sub 3}-0.1SrTiO{sub 3} were prepared using a pressure-less solid-state sintering method without using hot isostatic pressing and spark plasma sintering. An independence electromechanical response of bipolar switching cycles (S{sub 33} only degraded 3.2 % up to 10{sup 7} cycles) was presented in this transparent ceramics, which indicated an extremely stable property under electric field. From impedance spectroscopy and X-ray photoelectron spectroscopy analyses, it was concluded that such optical transparency and fatigue-resistant behaviors were mainly attributed to the lower density of oxygen vacancies in the ceramics. (orig.)

  3. Impedance spectroscopy analysis on electrical properties of serpentine at high pressure and high temperature

    Institute of Scientific and Technical Information of China (English)

    朱茂旭; 谢鸿森; 郭捷; 许祖鸣; 白武明

    2001-01-01

    The electrical conductivity of serpentine is measured and the microscopic conductance mechanisms are investigated with impedance spectroscopy at 2.5-4.0 GPa and 220-780℃. The results show that the electrical conductivity is strongly dependent on the frequencies used, and that only arcⅠ, which reflects grain interior conductance, occurs and dominates the whole conductance processes over 12-105 Hz at high pressure before dehydration. The arcⅡ, which indicates the grain boundary process, begins to occur at the initial stage of dehydration. After dehydration, due to the presence of highly conductive networks of free water, the electrical conductivity is not depen-dent on frequencies any longer and the total electrical conductivity is dominated by process of ionic conductance of free water in interconnected networks. Dehydration of serpentine enhances pro-nouncedly the total electrical conductivity, through which highly conductive layers (HCL) may be formed in the earth's interior.

  4. Energy Dispersive X-Ray and Electrochemical Impedance Spectroscopies for Performance and Corrosion Analysis of PEMWEs

    Science.gov (United States)

    Steen, S. M., Iii; Zhang, F.-Y.

    2014-11-01

    Proton exchange membrane water electrolyzers (PEMWEs) are a promising energy storage technology due to their high efficiency, compact design, and ability to be used in a renewable energy system. Before they are able to make a large commercial impact, there are several hurdles facing the technology today. Two powerful techniques for both in-situ and ex- situ characterizations to improve upon their performance and better understand their corrosion are electrochemical impedance spectroscopy and energy dispersive x-ray spectroscopy, respectively. In this paper, the authors use both methods in order to characterize the anode gas diffusion layer (GDL) in a PEMWE cell and better understand the corrosion that occurs in the oxygen electrode during electrolysis.

  5. Detection of methotrexate in a flow system using electrochemical impedance spectroscopy and multivariate data analysis.

    Science.gov (United States)

    Tesfalidet, Solomon; Geladi, Paul; Shimizu, Kenichi; Lindholm-Sethson, Britta

    2016-03-31

    Methotrexate (MTX), a common pharmaceutical drug in cancer therapy and treatment of rheumatic diseases, is known to cause severe adverse side effects at high dose. As the side effect may be life threatening, there is an urgent need for a continuous, bed-side monitoring of the nominal MTX serum level in a patient while the chemical is being administered. This article describes a detection of MTX using a flow system that consists two modified gold electrodes. Interaction of MTX with the antibodies fixed on the electrode surface is detected by electrochemical impedance spectroscopy and evaluated using singular value decomposition (SVD). The key finding of this work is that the change in the electrode capacitance is found to be quantitative with respect to the concentration of MTX. Moreover a calibration curve constructed using the principal component regression method has a linear range of six orders of magnitude and a detection limit of 1.65 × 10(-10) M.

  6. Analysis of Different Series-Parallel Connection Modules for Dye-Sensitized Solar Cell by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jung-Chuan Chou

    2016-01-01

    Full Text Available The internal impedances of different dye-sensitized solar cell (DSSC models were analyzed by electrochemical impedance spectrometer (EIS with an equivalent circuit model. The Nyquist plot was built to simulate the redox reaction of internal device at the heterojunction. It was useful to analyze the component structure and promote photovoltaic conversion efficiency of DSSC. The impedance of DSSC was investigated and the externally connected module assembly was constructed utilizing single cells on the scaled-up module. According to the experiment results, the impedance was increased with increasing cells connected in series. On the contrary, the impedance was decreased with increasing cells connected in parallel.

  7. A Software Tool for the Evaluation of the Behaviour of Bioelectrical Currents

    Directory of Open Access Journals (Sweden)

    Gianluca Fabbri

    2011-06-01

    Full Text Available A software tool has been developed in order to evaluate bioelectrical currents. The tool is able to provide a graphical representation of the behaviour of small currents emitted by characteristic points of the human body and captured through a non invasive probe previously developed. The software implementation combines a variety of graphical techniques to create a powerful system that will enable users to perform an accurate and reliable analysis of the emitted currents and to easily go on to further applications and research. This paper introduces the design and the main characteristics of the tool and shows significant measurement results.

  8. Phase transitions in PbZr(x)Hf(1-x)O3 determined by thermal analysis and impedance spectroscopy.

    Science.gov (United States)

    de la Rubia, Miguel Angel; Alonso, Roberto Emilio; López-Garcia, Alberto R; de Frutos, Jose

    2009-09-01

    The objective of this study is to determine the influence of partial substitutions of Zr by Hf in the perovskitetype crystalline structure of PbZrO(3). Different samples over the whole composition range (0 x x)Hf(1-x)O(3) family have been prepared. Phase transitions have been determined by thermal analysis (DSC) and complex impedance (IS) spectroscopy over a wide temperature range. As a consequence of the cation replacement, the changes that take place in the different phase transitions temperatures are reported. By both techniques, thermal analysis and electrical characterization, it is shown that for all compositions prepared there are 2 phase transitions in a temperature range between 160 and 230 degrees C. With these results and the previously known crystalline structure of pure PbZrO(3) and PbHfO(3) perovskites, the phase diagram of the PbZr(x)Hf(1-x) O(3) family is presented for the first time.

  9. Electrical properties of BaY 0.5Nb 0.5O 3 ceramic: Impedance spectroscopy analysis

    Science.gov (United States)

    Prasad, K.; Bhagat, S.; Priyanka; AmarNath, K.; Chandra, K. P.; Kulkarni, A. R.

    2010-09-01

    Lead-free perovskite BaY 0.5Nb 0.5O 3 was prepared by conventional ceramic technique at 1375 °C/7 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were derived from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of a single-phase cubic structure with the space group Pm3¯m. EDAX, X-ray mapping and SEM studies were carried to study the quality and purity of the compound. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using the impedance data. Electric modulus studies supported the hopping type of conduction in BaY 0.5Nb 0.5O 3. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in BaY 0.5Nb 0.5O 3. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compound.

  10. Impedance spectroscopy analysis on electrical properties of serpentine at high pressure and high temperature

    Institute of Scientific and Technical Information of China (English)

    ZHU; Maoxu; (

    2001-01-01

    [1]Stesky, R. M., Brace, W. F., Electrical conductivity of serpentinized rocks to 6 kilobar, J. Geophys. Res., 1973, 78 (32): 7614-7621.[2]Zhu Maoxu, Xie Hongsen, Experimental studies on electrical properties of materials in the earth's interior, Advancement in Geosciences (in Chinese), 1998, 13(5): 438-446.[3]Roberts, J. J., Tyburczy, J. A., Frequency dependent electrical properties of polycrystalline olivine compacts, J. Geophys. Res., 1991, 96 (B10): 16205-16222.[4]Roberts, J. J., Tyburczy, J. A., Frequency dependent electrical properties of minerals and partial-melts, Surv. Geophys., 1994, 15: 239-262.[5]Huebner, I. S., Dillenburg, R. G., Impedance spectra of hot, dry silicate minerals and rock: Qualitative interpretation of spectra, Amer. Mineral, 1995, 80: 46-64.[6]Kavner, A., Li, X-Y, Jeanloz, R., Electrical conductivity of a natural (Mg, Fe)SiO3 majorite garnet, Geophys. Res. Lett., 1995, 22 (22): 3103-3106.[7]Hicks, T. L., Secco, R., Dehydration and decomposition of pyrophyllite at high pressure: Electrical conductivity and X-ray diffraction studies to 5 Gpa, Can. J. Earth Sci., 1997, 34: 875-882.[8]Li, X-Y, Jeanloz, R., Effect of iron content on the electrical conductivity of perovskite and magnesiowustite assemblages at lower mantle condition, J. Geophys. Res., 1991, 96(B4): 6113-6120.[9]Xie Hongsen, Introduction to the Materials in the Earth's Interior (in Chinese), Beijing: Science Press, 1997, 42-53.[10] Tatsurmi, Y., Migration of fluid phase and genesis of basalt magmas in subduction zone, J. Geophys. Res., 1989, 94: 4697-4707.[11] Duba, A., Huenges, G., Nover, E. et al., Impedance of black shale from munsterland 1 borehole: An anomalously good conductor? Geophys. J., 1988, 94: 413-419.[12] Watanabe, T., Kurita, K., The relationship between electrical conductivity and melt fraction in a partially molten simple system: Archies's law behavior, Phys. Earth Planet Inter., 1993, 78: 9-17.[13] Macdonald

  11. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    Science.gov (United States)

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation.

  12. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    Science.gov (United States)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  13. Electrochemical impedance analysis of electrodeposited Si-O-C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode

    Science.gov (United States)

    Hang, Tao; Mukoyama, Daikichi; Nara, Hiroki; Yokoshima, Tokihiko; Momma, Toshiyuki; Li, Ming; Osaka, Tetsuya

    2014-06-01

    The impedance behaviors of Si-O-C composite film electrodeposited on Cu microcones-arrayed current collector have been investigated to understand the electrochemical process kinetics that influences the cycling performance when used as a highly-durable anode in a lithium battery. The impedance was measured by using impedance spectroscopy in equilibrium conditions at various depths of discharge and during several hundred charge-discharge cycles. The measured impedance was interpreted with an equivalent circuit composed of solid electrolyte interphase (SEI) film, charge transfer and solid state diffusion. The impedance analysis shows that the change of charge transfer resistance is the main contribution to the total resistance change during discharge, but an abrupt augmentation of diffusive resistance at high depth of discharge is also observed which cannot be explained very well by the presented model. The impedance evolution of this electrode during charge-discharge cycles suggests that the slow growth of the SEI film as well as the increase of the electrode density are responsible for the capacity fading after long term cycling.

  14. Multiscale analysis of the acoustic scattering by many scatterers of impedance type

    Science.gov (United States)

    Challa, Durga Prasad; Sini, Mourad

    2016-06-01

    We are concerned with the acoustic scattering problem, at a frequency {κ}, by many small obstacles of arbitrary shapes with impedance boundary condition. These scatterers are assumed to be included in a bounded domain {Ω} in {{R}^3} which is embedded in an acoustic background characterized by an eventually locally varying index of refraction. The collection of the scatterers {D_m, m=1,ldots,M} is modeled by four parameters: their number M, their maximum radius a, their minimum distance d and the surface impedances {λ_m, m=1,ldots,M}. We consider the parameters M, d and {λ_m}'s having the following scaling properties: {M:=M(a)=O(a^{-s}), d:=d(a)≈ a^t} and {λ_m:=λ_m(a)=λ_{m,0}a^{-β}}, as {a→ 0}, with non negative constants s, t and {β} and complex numbers {λ_{m, 0}}'s with eventually negative imaginary parts. We derive the asymptotic expansion of the far-fields with explicit error estimate in terms of a, as {a→ 0}. The dominant term is the Foldy-Lax field corresponding to the scattering by the point-like scatterers located at the centers {z_m}'s of the scatterers {D_m}'s with {λ_m \\vert partial D_m\\vert} as the related scattering coefficients. This asymptotic expansion is justified under the following conditions a ≤ a_0, \\vert Re (λ_{m,0})\\vert ≥ λ_-,quad \\vertλ_{m,0}\\vert ≤ λ_+,quad β quad 0 ≤ s ≤2-β,quads/3 ≤ t and the error of the approximation is {C a^{3-2β-s}}, as {a → 0}, where the positive constants {a_0, λ_-,λ_+} and C depend only on the a priori uniform bounds of the Lipschitz characters of the obstacles {D_m}'s and the ones of {M(a)a^s} and {d(a)/a^t}. We do not assume the periodicity in distributing the small scatterers. In addition, the scatterers can be arbitrary close since t can be arbitrary large, i.e., we can handle the mesoscale regime. Finally, for spherical scatterers, we can also allow the limit case {β=1} with a slightly better error of the approximation.

  15. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  16. Detection and analysis of Bacillus subtilis growth with piezoelectric quartz crystal impedance based on starch hydrolysis.

    Science.gov (United States)

    Wu, Y; Xie, Q; Zhou, A; Zhang, Y; Nie, L; Yao, S; Mo, X

    2000-10-01

    A piezoelectric quartz crystal (PQC) impedance method based on the alpha-amylase-catalyzed hydrolysis of starch present in a culture medium has been developed for in situ monitoring of the whole growth process of Bacillus subtilis and the variation in the activity of alpha-amylase during bacterial growth. An S-shaped response behavior was observed for Deltaf(0), and simultaneously inverse S-shaped responses were found for DeltaR(1) and DeltaL(1). The ratio of DeltaR(1) to Deltaf(0) or DeltaL(1) coincided well with that calculated from Martin's equations reflecting the solution density-viscosity effect, suggesting that the continuing change in liquid loading onto the PQC surface causes significant variation in Deltaf(0), DeltaR(1), and DeltaL(1). Bacterial growth equations were derived from the kinetics of the enzyme-catalyzed hydrolysis of starch, which fit well with the experimental responses of Deltaf(0), DeltaR(1), and DeltaL(1). Kinetic parameters of bacterial growth, including the asymptote (A), the maximum specific growth rate (microm), and the lag time (lambda), were obtained and were in good agreement with those obtained from the pour plate count method. The variation in the activity of alpha-amylase exhibited peak-type behavior with its maximum value at the later stage of the log phase. In addition, the influence of initial bacterial concentration was also investigated.

  17. Impedance Analysis of Ovarian Cancer Cells upon Challenge with C-terminal Clostridium Perfringens Enterotoxin

    Science.gov (United States)

    Gordon, Geoffrey; Lo, Chun-Min

    2007-03-01

    Both in vitro and animal studies in breast, prostate, and ovarian cancers have shown that clostridium perfringens enterotoxin (CPE), which binds to CLDN4, may have an important therapeutic benefit, as it is rapidly cytotoxic in tissues overexpressing CLDN4. This study sought to evaluate the ability of C-terminal clostridium perfringens enterotoxin (C-CPE), a CLDN4-targetting molecule, to disrupt tight junction barrier function. Electric cell-substrate impedance sensing (ECIS) was used to measure both junctional resistance and average cell-substrate separation of ovarian cancer cell lines after exposure to C-CPE. A total of 14 ovarian cancer cell lines were used, and included cell lines derived from serous, mucinous, and clear cells. Our results showed that junctional resistance increases as CLDN4 expression increases. In addition, C-CPE is non-cytotoxic in ovarian cancer cells expressing CLDN4. However, exposure to C-CPE results in a significant (p<0.05) dose- and CLDN4-dependent decrease in junctional resistance and an increase in cell-substrate separation. Treatment of ovarian cancer cell lines with C-CPE disrupts tight junction barrier function.

  18. A Multilayer MEMS Platform for Single-Cell Electric Impedance Spectroscopy and Electrochemical Analysis

    Science.gov (United States)

    Dittami, Gregory M.; Ayliffe, H. Edward; King, Curtis S.; Rabbitt, Richard D.

    2008-01-01

    The fabrication and characterization of a microchamber electrode array for electrical and electrochemical studies of individual biological cells are presented. The geometry was tailored specifically for measurements from sensory hair cells isolated from the cochlea of the mammalian inner ear. Conventional microelectromechanical system (MEMS) fabrication techniques were combined with a heat-sealing technique and polydimethylsiloxane micromolding to achieve a multilayered microfluidic system that facilitates cell manipulation and selection. The system allowed for electrical stimulation of individual living cells and interrogation of excitable cell membrane dielectric properties as a function of space and time. A three-electrode impedimetric system was incorporated to provide the additional ability to record the time-dependent concentrations of specific biochemicals in microdomain volumes near identified regions of the cell membrane. The design and fabrication of a robust fluidic and electrical interface are also described. The interface provided the flexibility and simplicity of a “cartridge-based” approach in connecting to the MEMS devices. Cytometric measurement capabilities were characterized by using electric impedance spectroscopy (1 kHz–10 MHz) of isolated outer hair cells. Chemical sensing capability within the microchannel recording chamber was characterized by using cyclic voltammetry with varying concentrations of potassium ferricyanide (K3Fe(CN)6). Chronoamperometric recordings of electrically stimulated PC12 cells highlight the ability of the platform to resolve exocytosis events from individual cells. PMID:19756255

  19. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.

    Science.gov (United States)

    Simon, Peter; Frankowski, Marcin; Bock, Nicole; Neukammer, Jörg

    2016-06-21

    We developed a microfluidic sensor for label-free flow cytometric cell differentiation by combined multiple AC electrical impedance and light scattering analysis. The measured signals are correlated to cell volume, membrane capacity and optical properties of single cells. For an improved signal to noise ratio, the microfluidic sensor incorporates two electrode pairs for differential impedance detection. One-dimensional sheath flow focusing was implemented, which allows single particle analysis at kHz count rates. Various monodisperse particles and differentiation of leukocytes in haemolysed samples served to benchmark the microdevice applying combined AC impedance and side scatter analyses. In what follows, we demonstrate that AC impedance measurements at selected frequencies allow label-free discrimination of platelets, erythrocytes, monocytes, granulocytes and lymphocytes in whole blood samples involving dilution only. Immunofluorescence staining was applied to validate the results of the label-free cell analysis. Reliable differentiation and enumeration of cells in whole blood by AC impedance detection have the potential to support medical diagnosis for patients with haemolysis resistant erythrocytes or abnormally sensitive leucocytes, i.e. for patients suffering from anaemia or leukaemia.

  20. The platinum microelectrode/Nafion interface - An electrochemical impedance spectroscopic analysis of oxygen reduction kinetics and Nafion characteristics

    Science.gov (United States)

    Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.

    1992-01-01

    The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.

  1. Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization Analysis on Anticorrosive Activity of Thiophene-2-Carbaldehyde Derivative in Acid Medium

    Directory of Open Access Journals (Sweden)

    Nimmy Kuriakose

    2014-01-01

    Full Text Available The corrosion inhibition efficiency of thiophene-2-carbaldehyde tryptophan (T2CTRY on mild steel (MS in 1 M HCl solution has been investigated and compared using weight loss measurements, electrochemical impedance spectroscopy, and potentiodynamic polarization analysis. The Schiff base exhibited very good corrosion inhibition on mild steel in HCl medium and the inhibition efficiency increased with the increase in concentration of the inhibitor. The adsorption of the inhibitor on the surface of the corroding metal obeys Freundlich isotherm. Thermodynamic parameters (Kads, ΔG ads0 were calculated using adsorption isotherm. Polarization studies revealed that T2CTRY acts as a mixed type inhibitor. A maximum of 96.2% inhibition efficiency was achieved by EIS studies at a concentration of 1 mM.

  2. Exploring characteristics of bioelectricity generation and dye decolorization of mixed and pure bacterial cultures from wine-bearing wastewater treatment.

    Science.gov (United States)

    Han, Jing-Long; Liu, Ying; Chang, Chang-Tang; Chen, Bor-Yann; Chen, Wen-Ming; Xu, Hui-Zhong

    2011-04-01

    This study uncovered microbial characteristics of bioelectricity generation and dye decolorization in single-chamber microbial fuel cells (MFCs) using activated sludge for wine-containing wastewater treatment. Phylogenetic tree analysis on 16S rRNA gene fragments indicated that the predominant strains on anodic biofilm in acclimatized MFCs were Gamma-Proteobacteria Aeromonas punctata NIU-P9, Pseudomonas plecoglossicida NIU-Y3, Pseudomonas koreensis NIU-X8, Acinetobacter junii NIU-Y8, Stenotrophomonas maltophila NIU-X2. Our findings showed that the current production capabilities of these pure strains were only ca. 10% of those of their mother activated sludge, indicating that synergistic interactions among microbes might be the most influential factor to maximize power generation in MFCs. Plus, these electrochemically active strains also performed reductive decolorization of C.I. reactive blue 160, suggesting that bioelectricity generation might be directly associated to azo dye decolorization to deal with electron transfer on anodic biofilm in MFCs.

  3. Efficiency of wave impeding barrier in pipeline construction under earthquake excitation using nonlinear finite element analysis

    Indian Academy of Sciences (India)

    Fatih Goktepe; H Serdar Kuyuk; Erkan Celebi

    2014-04-01

    Earthquakes have caused colossal casualties and severe damages to engineering structures and especially leading to substantial economic loss to the underground structures and/or infrastructures. Pipelines are one of most important component of lifeline engineering. For instance, the Southern Caucasus- Eastern Turkey energy corridors are formed by several key pipelines carrying crude oil and natural gas from Azerbaijan, via Georgia, to world markets through Mediterranean Sea. Many project accomplished recently and construction of new corridors are still going on. They should be protected from earthquake disaster especially when they pass through high seismicity zones. The installation of wave impeding barriers (WIB) below the vulnerable infrastructures as pipelines established in soft soil can be used to reduce the effect of the earthquake induced ground borne vibrations. In this paper, a WIB as artificial bedrock based on the cut-off frequency of a soil layer over bedrock is proposed as isolation measurement in order to mitigate the dynamic response of the buried pipelines under earthquake strong ground motion. The computational simulation of the wave propagation problem is directly achieved by employing nonlinear 2D finite element modelling for prediction of screening performance of WIB on the dynamic response of vibrating coupled soil-pipeline system. Energy absorbing boundaries along the truncated interfaces of the unbounded nature of the underlying soil media are implemented in the time domain along with Newmark’s integration. An extensive parametric investigation and systematic computations are performed with different controlling parameters. The obtained numerical results point out that WIB can be very promising as an isolator to protect pipelines when they establish for a certain depth.

  4. Application of body mass index adjusted for fat mass (BMIfat obtained by bioelectrical impedance in adults

    Directory of Open Access Journals (Sweden)

    Mírele Savegnago Mialich

    2014-08-01

    Full Text Available Introduction: Body mass index (BMI has been one of the methods most frequently used for diagnose obesity, but it isn't consider body composition. Objective: This study intends to apply one new adiposity index, the BMI adjusted for fat mass (BMIfat developed by Mialich, et al. (2011, in a adult Brazilian sample. Methods: A cross-sectional study with 501 individuals of both genders (366 women, 135 men aged 17 to 38 years and mean age was 20.4 ± 2.8 years, mean weight 63.0 ± 13.5 kg, mean height 166.9 ± 9.0 cm, and BMI 22.4 ± 3.4 kg/m². Results and discussion: High and satisfactory R2 values were obtained, i.e., 91.1%, 91.9% and 88.8% for the sample as a whole and for men and women, respectively. Considering this BMIfat were developed new ranges, as follows: 1.35 to 1.65 (nutritional risk for malnutrition, > 1.65 and ≤ 2.0 (normal weight and > 2.0 (obesity. The BMIfat had a more accurate capacity of detecting obese individuals (0.980. 0.993, 0.974 considering the sample as a whole and women and men, respectively, compared to the traditional BMI (0.932, 0.956, 0.95. Were also defined new cut-off points for the traditional BMI for the classification of obesity, i.e.: 25.24 kg/m² and 28.38 kg/m² for men and women, respectively. Conclusion: The BMIfat was applied for the present population and can be adopted in clinical practice. Further studies are needed to determine its application to different ethnic groups and to compare this index to others previously described in the scientific literature.

  5. Prediction of percentage body fat from anthropometry and bioelectrical impedance in Singaporean and Beijing Chinese

    NARCIS (Netherlands)

    Deurenberg, P.; Deurenberg-Yap, M.; Jingzhong Wang,; Fu Po Lin,; Schmidt, G.

    2000-01-01

    Body composition was measured in 205 male and female Beijing Chinese and in 148 male and female Singaporean Chinese, age 34 (mean) (range 18-68) years and body mass index (BMI) 22.3 (15.9-38.5) kg/m 2. In Beijing Siri's two-compartment model based on densitometry was used as a reference technique an

  6. Pengembangan Bioelectrical Impedance Sebagai Control Commands Pengaturan Kecepatan Gerak Kursi Roda Dengan Metoda PID Controller

    Directory of Open Access Journals (Sweden)

    Juli Sardi

    2014-09-01

    Full Text Available In the present study, bioimpedance signals of human body was utilized to control speed of a wheelchair movement. A bioimpedance is electrically passive part contained the body tissues. The research is one of alternative solutions for patients with paralysis of the upper and lower limb. Firstly, design of system of the research consisted of bioimpedance measuring instruments and a mechanical design of the wheelchair. Bioimpedance measurement was performed by injecting a sinusoidal current source of 0.5 mArms with a frequency of 50 kHz to muscle tissue (shoulder to obtain the output voltage in the range of 0-5 Vdc. With impulse and manual thresholding methods, the voltage signal was classified into several controls command to adjust the speed and direction of the wheelchair control based on PID Controller. The experimental result of the research was realization of bioimpedance signal that used as a reference to control the direction and speed of the wheelchair with a success rate of 86.7 %. A wheelchair velocity was classified into three types of motion, namely slow, medium and fast. Slow speed has a rated speed of 30 Cm/s, medium speed value speed of 40 Cm/s and fast speed value of 50 Cm/s. The wheelchair can also turn to the left and the right in accordance with the wishes of wheelchair user beside to moving forward.

  7. EFFECTS OF FOOD AND DRINK INGESTION ON BODY COMPOSITION VARIABLES OF ABDOMINAL BIOELECTRICAL IMPEDANCE.

    Science.gov (United States)

    Fernández Vázquez, Rosalía; Martínez Blanco, Javier; García Vega, María del Mar; Barbancho, Miguel Ángel; Alvero-Cruz, José Ramón

    2015-11-01

    Objetivo: conocer los cambios en la grasa del tronco y el nivel de grasa visceral determinado por BIA abdominal, así como otras medidas antropométricas relacionadas con la grasa abdominal o central después de la ingestión de una comida. Métodos: se realizó un protocolo experimental para evaluar un estudio descriptivo de intervención longitudinal. Los participantes fueron 21 sujetos (10 hombres y 11 mujeres), voluntarios que tuvieron acceso a una evaluación médica, con una edad de 74 años ± 13,43. Las mediciones antropométricas fueron: circunferencia de la cintura máxima en posición de pie, circunferencia de la cintura a nivel del ombligo en posición de decúbito supino y diámetro sagital abdominal (SAD). Además se obtuvo la grasa del tronco y el nivel de grasa visceral, por análisis de impedancia bioeléctrica abdominal, con un dispositivo Tanita AB-140 (ViScan), todo ello antes y después de una ración de comida. Resultados: las medidas antropométricas, como la circunferencia de la cintura en posición supina y SAD, no mostraron diferencias significativas (P > 0,05), después de la ingestión de alimentos, a excepción de un aumento significativo de la circunferencia de la cintura máxima en posición de pie (P 0,05). Los cambios porcentuales de las medidas fueron menores del 2% para la circunferencia de la cintura en posición de pie, para la circunferencia de cintura por Viscan, para el diámetro sagital abdominal y la grasa del tronco, y un 5,9% para el nivel de grasa visceral. Conclusiones: los efectos de una comida y bebida sobre la grasa del tronco y el nivel de grasa visceral, medidas por impedancia bioeléctrica abdominal, son mínimas, aunque siempre es recomendable hacerlo en condiciones de ayuno.

  8. Electrochemical impedance spectroscopy analysis with a symmetric cell for LiCoO2 cathode degradation correlated with Co dissolution

    Directory of Open Access Journals (Sweden)

    Hiroki Nara

    2016-04-01

    Full Text Available Static degradation of LiCoO2 cathodes is a problem that hinders accurate analysis using our developed separable symmetric cell. Therefore, in this study we investigate the static degradation of LiCoO2 cathodes in separable symmetric cells by electrochemical impedance spectroscopy (EIS and inductively coupled plasma analyses. EIS measurements of LiCoO2 cathodes are conducted in various electrolytes, with different anions and with or without HF and/or H2O. This allows us to determine the static degradation of LiCoO2 cathodes relative to their increase of charge transfer resistance. The increase of the charge transfer resistance of the LiCoO2 cathodes is attributed to cobalt dissolution from the active material of LiCoO2. Cobalt dissolution from LiCoO2 is revealed to occur even at low potential in the presence of HF, which is generated from LiPF6 and H2O. The results indicate that avoidance of HF generation is important for the analysis of lithium-ion battery electrodes by using the separable cell. These findings reveal the condition to achieve accurate analysis by EIS using the separable cell.

  9. NOVEL DESIGN OF A BIOELECTRIC AMPLIFIER WITH MINIMIZED MAGNITUDE AND PHASE ERRORS

    Institute of Scientific and Technical Information of China (English)

    Mashhour Bani Amer; Assistant Professor

    2001-01-01

    A new design of a bioelectric amplifier that has better parameters than conventional designs is presented. The design allows the construction of bioelectric amplifier with improved parameters in terms of common-mode rejection ratio and phase and magnitude errors. The voltage gain is easily adapted to a wide range of biomedical applications. The experimental and simulation results of the designed bioelectric amplifier are also included.

  10. Electromagnetic Scattering Analysis of Coated Conductors With Edges Using the Method of Auxiliary Sources (MAS) in Conjunction With the Standard Impedance Boundary Condition (SIBC)

    DEFF Research Database (Denmark)

    Anastassiu, H.T.; D.I.Kaklamani, H.T.; Economou, D.P.;

    2002-01-01

    A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer is initia...

  11. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti

    2016-03-18

    Abstract: Electrical impedance tomography (EIT) phantoms are essential for the calibration, comparison and evaluation of the EIT systems. In EIT, the practical phantoms are typically developed based on inhomogeneities surrounded by a homogeneous background to simulate a suitable conductivity contrast. In multifrequency EIT (Mf-EIT) evaluation, the phantoms must be developed with the materials which have recognizable or distinguishable impedance variations over a wide range of frequencies. In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity are analyzed. A number of practical phantoms with different tissue inhomogeneities and different inhomogeneity configurations are developed and the multifrequency impedance imaging is studied with the Mf-EIT system to evaluate the phantoms. The conductivity of the vegetable inhomogeneities reconstructed from the EIT imaging is compared with the conductivity values obtained from the EIS studies. Experimental results obtained from multifrequency EIT reconstruction demonstrate that the electrical impedance of all the biological tissues inhomogenity decreases with frequency. The potato tissue phantom produces better impedance image in high frequency ranges compared to the cucumber phantom, because the cucumber impedance at high frequency becomes lesser than that of the potato at the same frequency range. Graphical Abstract: [Figure not available: see fulltext.] © 2016 The Visualization Society of Japan

  12. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuanwen; Carvalho-de-Souza, João L.; Wong, Raymond C. S.; Luo, Zhiqiang; Isheim, Dieter; Zuo, Xiaobing; Nicholls, Alan W.; Jung, Il Woong; Yue, Jiping; Liu, Di-Jia; Wang, Yucai; De Andrade, Vincent; Xiao, Xianghui; Navrazhnykh, Luizetta; Weiss, Dara E.; Wu, Xiaoyang; Seidman, David N.; Bezanilla, Francisco; Tian, Bozhi

    2016-06-27

    Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multi-scale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical vapour deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework and random submicrometre voids, and shows an average Young’s modulus that is 2–3 orders of magnitude smaller than that of single-crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permits non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems.

  13. [Endocrine obesity: bioelectric profiles (biotypes) detected in the body composition].

    Science.gov (United States)

    Miggiano, G A D; Petitti, T

    2004-09-01

    136 patients were selected (16 men and 120 women with non-specific menstrual disturbances) with a BMI (Body Mass Index) between 25 and 45 kg/m2, which were diagnosed with "disendocrinia" (GH deficit, hyperadrenocorticism, hypothyroidsm, hyperandrogenism, menstrual cycle disorders). The proposed approach, based on the visualization of the value distribution of the electric measures in different graphics, is able to immediately explain the bioelectric state of the individual's lean-mass. Subjects with hypothyroidism present, along with their overweight, less bio-conducting mass, with an altered fluid intra/extra-cellular distribution. Patients with hyperadrenocorticism show instead an hyperhydratation of the body mass, especially in the extracellular level. Patients with menstrual disorders (amenorrea, polycystic ovary syndrome, anovulatory cycle etc...) present a lean mass reduction (elevated Rs) and an increase of the intra-cellular compartment (elevated-Xc). Patients with hyper-androgenism (and hirsutism) show a characteristic bioelectric "pattern", with low Rs levels and high Xc levels. Subjects with GH deficit (men and women), has a trend of documenting bioelectric measures with lower lean mass and higher fat-mass. Different electric biotypes seem to characterize the body composition in the several endocrine disorders.

  14. Remifentanil alters sensory neuromodulation of swallowing in healthy volunteers: quantification by a novel pressure-impedance analysis.

    Science.gov (United States)

    Doeltgen, S H; Omari, T I; Savilampi, J

    2016-06-01

    Exposure to remifentanil contributes to an increased risk of pulmonary aspiration, likely through reduced pharyngeal contractile vigor and diminished bolus propulsion during swallowing. We employed a novel high-resolution pressure-flow analysis to quantify the biomechanical changes across the upper esophageal sphincter (UES). Eleven healthy young (23.3 ± 3.1 yr old) participants (7 men and 4 women) received remifentanil via intravenous target-controlled infusion with an effect-site concentration of 3 ng/ml. Before and 30 min following commencement of remifentanil administration, participants performed ten 10-ml saline swallows while pharyngoesophageal manometry and electrical impedance data were recorded using a 4.2-mm-diameter catheter housing 36 circumferential pressure sensors. Remifentanil significantly shortened the duration of UES opening (P pressure (P = 0.003). At the level of the hypopharynx, remifentanil significantly shortened the latency from maximum bolus distension to peak contraction (P = 0.004) and significantly increased intrabolus distension pressure (P = 0.024). Novel mechanical states analysis revealed that the latencies between the different phases of the stereotypical UES relaxation sequence were shortened by remifentanil. Reduced duration of bolus flow during shortened UES opening, in concert with increased hypopharyngeal distension pressures, is mechanically consistent with increased flow resistance due to a more rapid bolus flow rate. These biomechanical changes are congruent with modification of the physiological neuroregulatory mechanism governing accommodation to bolus volume.

  15. Simulation Analysis of Transmission-Line Impedance Transformers for Petawatt-Class Pulsed Power Accelerators%Simulation Analysis of Transmission-Line Impedance Transformers for Petawatt-Class Pulsed Power Accelerators

    Institute of Scientific and Technical Information of China (English)

    呼义翔; 雷天时; 孙风举; 黄涛; 邱爱慈; 丛培天; 王亮平; 曾江涛; 李岩; 张信军

    2011-01-01

    Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to quantify the efficiencies of voltage-transport, energy- transport and power-transport for a transmission-line impedance transformer as functions of ψ (the ratio of the output impedance to the input impedance of the transformer) and Г (the ratio of the pulse width to the one-way transit time of the transformer) under a large scale of m (the coefficient of the generalized exponential impedance profile). Simulation results suggest that with the increase in Г, from 0 to ∞, the power transport efficiency first increases and then decreases. The maximum power transport efficiency can reach 90% or even higher for an exponential impedance profile (m = 1). With a consideration of dissipative loss in the dielectric and electrodes of the transformer, two representative designs of the water-insulated transformer are investigated for the next generation of petawatt-class z-pinch drivers. It is found that the dissipative losses in the electrodes are negligibly small, below 0.1%, but the dissipative loss in the water dielectric is about 1% to 4%.

  16. FEM Analysis of Beam-coupling Impedance and RF Contacts Criticality on the LHC UA9 Piezo Goniometer

    CERN Document Server

    Danisi, A; Passarelli, A; Masi, A; Losito, R; Salvant, B

    2014-01-01

    The UA9 piezo-goniometer has been designed to guarantee micro-radians-accuracy angular positioning of a silicon crystal for a crystal collimation experiment in the LHC, and to minimize the impact on the LHC beam coupling impedance. This paper presents a Finite Element Method (FEM) study of the device, in both parking and operational positions, to evaluate its impact on the LHC impedance budget. In addition, the shielding contribution of the RF gaskets has been carefully evaluated, with the objective to assess the consequences for operation in case of their failure. A final word is drawn on the overall device impedance criticality.

  17. AN IMPEDANCE ANALYSIS FOR CRACK DETECTION IN THE TIMOSHENKO BEAM BASED ON THE ANTI-RESONANCE TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An alternative technique for crack detection in a Timoshenko beam based on the first anti-resonant frequency is presented in this paper. Unlike the natural frequency, the anti-resonant frequency is a local parameter rather than a global parameter of structures, thus the proposed technique can be used to locate the structural defects. An impedance analysis of a cracked beam stimulated by a harmonic force based on the Timoshenko beam formulation is investigated. In order to characterize the local discontinuity due to cracks, a rotational spring model based on fracture mechanics is proposed to model the crack. Subsequently, the proposed method is verified by a numerical example of a simply-supported beam with a crack. The effect of the crack size on the anti-resonant frequency is investigated. The position of the crack of the simply-supported beam is also determined by the anti-resonance technique. The proposed technique is further applied to the "contaminated" anti-resonant frequency to detect crack damage, which is obtained by adding 1-3% noise to the calculated data. It is found that the proposed technique is effective and free from the environment noise. Finally, an experimental study is performed, which further verifies the validity of the proposed crack identification technique.

  18. Cold vacuum chamber for diagnostics: Analysis of the measurements at the Diamond Light Source and impedance bench measurements

    Science.gov (United States)

    Voutta, R.; Gerstl, S.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; Saez de Jauregui, D.; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Migliorati, M.; Spataro, B.

    2016-05-01

    The beam heat load is an important input parameter needed for the cryogenic design of superconducting insertion devices. Theoretical models taking into account the different heating mechanisms of an electron beam to a cold bore predict smaller values than the ones measured with several superconducting insertion devices installed in different electron storage rings. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is equipped with temperature sensors, pressure gauges, mass spectrometers as well as retarding field analyzers which allow to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. COLDDIAG was installed in a straight section of the Diamond Light Source (DLS). In a previous paper the experimental equipment as well as the installation of COLDDIAG in the DLS are described [S. Gerstl et al., Phys. Rev. ST Accel. Beams 17, 103201 (2014)]. In this paper we present an overview of all the measurements performed with COLDDIAG at the DLS and their detailed analysis, as well as impedance bench measurements of the cold beam vacuum chamber performed at the Karlsruhe Institute of Technology after removal from the DLS. Relevant conclusions for the cryogenic design of superconducting insertion devices are drawn from the obtained results.

  19. Impedance Based Analysis of DFIG Stator Current Unbalance and Distortion Suppression Strategies

    DEFF Research Database (Denmark)

    Song, Yipeng; Zhou, Dao; Blaabjerg, Frede

    2016-01-01

    The control strategies of Doubly Fed Induction Generator (DFIG) system output current unbalance and distortion suppression have been well investigated in detail, with the implementation of two kinds of resonant regulators, i.e., conventional Resonance (R) regulator or Vector Proportional Integral...... regulator (equivalent to the combination of virtual positive resistor and virtual negative inductor), i.e., better high order harmonic distortion suppression. The theoretical analysis and MATLAB simulation results have validated the correctness of this conclusion....... reshaping though the introduction of R and VPI regulator. It is pointed out that, when implemented in the DFIG system output current unbalance and distortion suppression, the VPI regulator (equivalent to the combination of virtual positive inductor and virtual positive resistor) has two advantages over R...

  20. Bioelectrical signal processing in cardiac and neurological applications and electromyography: physiology, engineering, and noninvasive applications

    Directory of Open Access Journals (Sweden)

    Valentinuzzi Max E

    2007-07-01

    Full Text Available Abstract The present article reviews two recent books dealing with rather closely related subjects; in fact, they tend to complement and supplement reciprocally. Obviously, the electromyogram is a bioelectrical signal that often is mathematically manipulated in different ways to better extract its information. Moreover, its correlation with other bioelectric variables may become necessary.

  1. Electrical properties of rat muscle after sciatic nerve injury: Impact on surface impedance measurements assessed via finite element analysis

    Science.gov (United States)

    Ahad, M. A.; Rutkove, S. B.

    2010-04-01

    Tetrapolar surface electrical impedance methods are sensitive to changes in muscle status and can therefore provide a means for studying neuromuscular disease noninvasively. In order to better understand the relationship between surface impedance measurements and the actual muscle electrical properties, we performed measurements on 20 adult Wistar rats, 8 of which underwent sciatic nerve crush. Surface impedance measurements were performed on the left hind limb both before injury and out to 2 weeks after injury. In addition, both normal and sciatic crush animals were sacrificed and the dielectric properties of the extracted gastrocnemius muscle measured. We found that 50 kHz conductivities were greater in the animals that underwent crush than in the animals that did not. The permittivities in both directions, however, showed non-significant differences. In order to analyze the effect of these changes as well as the accompanying reduction in muscle volume, a finite element model of the hind limb was developed based on computerized tomographic imaging. The model successfully predicted the surface impedance values in the animals after crush injury and, by its inverse application, may be used to help determine the underlying electrical properties of muscle in various neuromuscular diseases based on surface impedance data.

  2. Admittance spectroscopy and complex impedance analysis of Ti-modified La 0.7Sr 0.3MnO 3

    Science.gov (United States)

    Rahmouni, H.; Jemai, R.; Nouiri, M.; Kallel, N.; Rzigua, F.; Selmi, A.; Khirouni, K.; Alaya, S.

    2008-02-01

    Titanium was added to La 0.7Sr 0.3MnO 3 (LSM) to study its effect on electrical conductivity. Samples were characterised by impedance measurements. It was found that conductivity in the reference material without titanium is temperature independent. On the contrary, when Ti is introduced different conduction mechanisms are observed. Electronic conduction is found to be dominated by thermally activated hopping of small polarons at high temperature and variable-range hopping at low temperature. Impedance spectrum analysis shows that the material can be described as a grain and grain boundary medium. The activation energy deduced from analysis of the conductance spectrum matches very well with the value estimated from the relaxation time; then, it is thought that relaxation process and electrical conductivity are attributed to the same defect.

  3. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Wang, Jiankang; Farrell, James

    2003-09-01

    Metallic iron filings are commonly employed as reducing agents in permeable barriers used for remediating groundwater contaminated by chlorinated solvents. Reactions of trichloroethylene (TCE) and tetrachloroethylene (PCE) with zerovalent iron were investigated to determine the role of atomic hydrogen in their reductive dechlorination. Experiments simultaneously measuring dechlorination and iron corrosion rates were performed to determine the fractions of the total current going toward dechlorination and hydrogen evolution. Corrosion rates were determined using Tafel analysis, and dechlorination rates were determined from rates of byproduct generation. Electrochemical impedance spectroscopy (EIS) was used to determine the number of reactions that controlled the observed rates of chlorocarbon disappearance, as well as the role of atomic hydrogen in TCE and PCE reduction. Comparison of iron corrosion rates with those for TCE reaction showed that TCE reduction occurred almost exclusively via atomic hydrogen at low pH values and via atomic hydrogen and direct electron transfer at neutral pH values. In contrast, reduction of PCE occurred primarily via direct electron transfer at both low and neutral pH values. At low pH values and micromolar concentrations, TCE reaction rates were faster than those for PCE due to more rapid reduction of TCE by atomic hydrogen. At neutral pH values and millimolar concentrations, PCE reaction rates were faster than those for TCE. This shift in relative reaction rates was attributed to a decreasing contribution of the atomic hydrogen reaction mechanism with increasing halocarbon concentrations and pH values. The EIS data showed that all the rate limitations for TCE and PCE dechlorination occurred during the transfer of the first two electrons. Results from this study show that differences in relative reaction rates of TCE and PCE with iron are dependent on the significance of the reduction pathway involving atomic hydrogen.

  4. Power Flow Analysis for Low-Voltage AC and DC Microgrids Considering Droop Control and Virtual Impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay Kumar; Savaghebi, Mehdi

    2017-01-01

    adequate power flow studies. In this paper, power flow analyses for both AC and DC microgrids are formulated and implemented. The mathematical models for both types of microgrids considering the concept of virtual impedance are used to be in conformity with the practical control of the distributed...... generators. As a result, calculation accuracy is improved for both AC and DC microgrid power flow analyses, comparing with previous methods without considering virtual impedance. Case studies are conducted to verify the proposed power flow analyses in terms of convergence and accuracy. Investigation...

  5. Electrochemical decolorization of methyl orange powered by bioelectricity from single-chamber microbial fuel cells.

    Science.gov (United States)

    Zhang, Baogang; Wang, Zhijun; Zhou, Xiang; Shi, Chunhong; Guo, Huaming; Feng, Chuanping

    2015-04-01

    Methyl orange (MO), a typical azo dye, is a well-known recalcitrant pollutant in dye wastewater. An aeration electrochemical system with single-chamber microbial fuel cell (MFC) as renewable power sources is proposed for MO decolorization. The enhanced color removal efficiency up to 90.4% within 360 min is observed with voltage across the aeration electrolytic reactor fixed at 700 mV. The results from gas chromatography-mass spectrometry (GC-MS) analysis indicate the destruction of MO, with generation of low molecular weight compounds such as benzene derivatives. Comparison experiments imply the indirect electrochemical oxidation of MO by generated H2O2 is mainly responsible for MO decolorization in present study. This work offers a cost-effective electrochemical method for enhancing electrochemical degradation of dyes with bioelectricity generated from MFCs.

  6. Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells.

    Science.gov (United States)

    Li, Yunlong; Zhang, Baogang; Cheng, Ming; Li, Yalong; Hao, Liting; Guo, Huaming

    2016-04-05

    Arsenic is one of the most toxic elements commonly found in groundwater. With initial concentration of 200μgL(-1), spontaneous As(III) oxidation is realized completely during 7 days operation in single-chamber microbial fuel cells (MFCs) in the present study, with the maximum power density of 752.6±17mWm(-2). The product is less toxic and mobile As(V), which can be removed from aqueous solution more easily. High-throughput 16S rRNA gene pyrosequencing analysis indicates the existence of arsenic-resistant bacteria as Actinobacteria, Comamonas, Pseudomonas and arsenic-oxidizing bacteria as Enterobacter, with electrochemically active bacteria as Lactococcus, Enterobacter. They interact together and are responsible for As(III) oxidation and bioelectricity generation in MFCs. This study offers a potential attractive method for remediation of arsenic-polluted groundwater.

  7. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.

    Science.gov (United States)

    Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli

    2015-03-01

    Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination.

  8. Bioelectricity production from various wastewaters through microbial fuel cell technology

    Directory of Open Access Journals (Sweden)

    Abhilasha S Mathuriya

    2009-12-01

    Full Text Available Microbial fuel cell technology is a new type of renewable and sustainable technology for electricity generation since it recovers energy from renewable materials that can be difficult to dispose of, such as organic wastes and wastewaters. In the present contribution we demonstrated electricity production by beer brewery wastewater, sugar industry wastewater, dairy wastewater, municipal wastewater and paper industry wastewater. Up to 14.92 mA current and 90.23% COD removal was achieved in 10 days of operation. Keywords: Bioelectricity, COD, Microbial Fuel Cells, Wastewater Received: 12 November 2009 / Received in revised form: 30 November 2009, Accepted: 30 November 2009, Published online: 10 March 2010

  9. Dielectric properties, impedance analysis and modulus behavior of CaTiO{sub 3} ceramic prepared by solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Y.J., E-mail: yjeng_86@hotmail.com [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hassan, J., E-mail: jumiah@science.upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hashim, M., E-mail: mansor@science.upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2013-09-15

    Highlights: •A single phase orthorhombic CaTiO{sub 3} structure with sub-micron grains is produced. •The frequency exponent ‘s’ is temperature dependent and explained by CBH model. •The dielectric constant and loss tangent are frequency and temperature dependent. •The modulus plot reveals the presence of thermally activated dielectric relaxation. •Cole-cole plot reveals two primary relaxation processes exist in the sample. -- Abstract: Calcium titanate (CaTiO{sub 3}) with the general formula for perovskites, ABO{sub 3}, is of technological importance, particularly with regard to dielectric properties. In this work, CaTiO{sub 3} ceramic material was prepared by the conventional solid state reaction method. The dielectric properties, impedance characteristics and modulus behavior of the CaTiO{sub 3} ceramic material sintered at 1240 °C were investigated in the frequency range of 10{sup −2}–10{sup 6} Hz and temperature range of 100–250 °C. The XRD analysis of the sintered CaTiO{sub 3} shows that it is an orthorhombic structure with lattice parameters a = 5.4398 Å, b = 7.6417 Å, and c = 5.3830 Å. The FESEM micrograph shows a significant difference in grain size distribution ranging from 0.26 to 2.32 μm. The AC conductivity, σ{sub AC}, is found to increase with increasing temperature within the frequency range of 10{sup −2}–10{sup 6} Hz confirming the hopping of electrons to be the conduction mechanism. Due to the decreasing values of the frequency exponent s with increasing temperature, the results of the σ{sub AC} are discussed using the correlated barrier height (CBH) model. For dielectric studies, the dielectric constant, ε′ is found to decrease with increasing frequency. In the whole temperature range of 100–250 °C, high and low frequency plateau are observed. Each converges at high frequency (>10{sup 5} Hz) for all the temperatures. The frequency dependence of loss tangent, tan δ, decreases with rise in temperature, with the

  10. Impedance analysis of Bi3.25La0.75Ti3O12 ferroelectric ceramic

    Indian Academy of Sciences (India)

    S Rachna; Surya M Gupta; S Bhattacharyya

    2008-09-01

    AC impedance spectroscopy technique has been used to study electrical properties of Bi3.25La0.75Ti3O12 (BLT) ceramic. Complex impedance plots were fitted with three depressed semicircles, which are attributed to crystalline layer, plate boundary and grain boundary and all three were found to comprise of universal capacitance nature [ = 0−1]. Grain boundary resistance and capacitance evaluated from complex impedance plots have larger values than that of plate boundary and crystalline layer. The activation energies (a) for DC-conductance in grain boundary, plate boundary and crystalline layer are 0.68 eV, 0.89 eV and 0.89 eV, respectively. Relaxation activation energies calculated from impedance plots showed similar values, 0.81 eV and 0.80 eV for crystalline layer and plate boundary, respectively. These activation energy values are found to be consistent with the a value of oxygen vacancies in perovskite materials. A mechanism is offered to explain the generation of oxygen vacancies in BLT ceramic and its role in temperature dependence of DC-conductance study.

  11. Application of the Method of Auxiliary Sources for the Analysis of Plane-Wave Scattering by Impedance Spheres

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Breinbjerg, Olav

    2002-01-01

    The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....

  12. CFD analysis of the human airways under impedance-based boundary conditions: application to healthy, diseased and stented trachea.

    Science.gov (United States)

    Malvè, M; Chandra, S; López-Villalobos, J L; Finol, E A; Ginel, A; Doblaré, M

    2013-01-01

    A computational fluid dynamics model of a healthy, a stenotic and a post-operatory stented human trachea was developed to study the respiration under physiological boundary conditions. For this, outflow pressure waveforms were computed from patient-specific spirometries by means of a method that allows to compute the peripheral impedance of the truncated bronchial generation, modelling the lungs as fractal networks. Intratracheal flow pattern was analysed under different scenarios. First, results obtained using different outflow conditions were compared for the healthy trachea in order to assess the importance of using impedance-based conditions. The resulted intratracheal pressures were affected by the different boundary conditions, while the resulted velocity field was unaffected. Impedance conditions were finally applied to the diseased and the stented trachea. The proposed impedance method represents an attractive tool to compute physiological pressure conditions that are not possible to extract in vivo. This method can be applied to healthy, pre- and post-operatory tracheas showing the possibility of predicting, through numerical simulation, the flow and the pressure field before and after surgery.

  13. Cartesian impedance control of dexterous robot hand

    Institute of Scientific and Technical Information of China (English)

    JIANG Li; LIU Hong; CAI He-gao

    2005-01-01

    Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as mechanical impedance in constrained space. In the position based impedance control strategy, any switching mode in contact transition phase is not needed. The impedance parameters can be adjusted in a certain range according to various tasks. In this paper, the analysis of the finger's kinematics and dynamics is given. Experimental results have shown the effectiveness of this control strategy.

  14. [Approaches to reduce the retroaction of long-term monitoring of bioelectric events in ergonomic field studies (author's transl)].

    Science.gov (United States)

    Zipp, P; Faber, S

    1979-10-01

    When monitoring bioelectric signals the surface electrodes can cause a retroaction on the subject thereby introducing an error of measurement. There are two types of retroaction: physical and psycho-physiological. A physical retroaction due to the hydration process of the skin occurs if 'wet' electrodes are used for the recording of the skin conductance level (SCL) causing a continuous drift of the SCL and a decrease in sensitivity to SCL changes. Therefore a dry electrode was developed with improved performance: It exhibits less sensitivity to motion, is not subject to polarization, and features better SCL long-term stability. When recording the electrocardiogram or the electromyogram a psychophysiological retroaction occurs due to the annoyance caused by the skin-irritating abrading techniques in order to decrease the skin impedance and reduce the motion artifact. In an attempt to abandon the skin preparation whenever permissible without sacrificing the measurement accuracy a performance estimation procedure was developed. Basing on the information on the signal frequency content, the electrode contact area, the required accuracy of measurement and the amplifier input impedance a decision on the necessity of skin preparation is made. Moreover, the results of a study are reported investigating the reduction of motion artifacts by means of electrode design and appropriate electrode jelly formulation.

  15. Compost in plant microbial fuel cell for bioelectricity generation.

    Science.gov (United States)

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation.

  16. Optically Controlled Oscillators in an Engineered Bioelectric Tissue

    Science.gov (United States)

    McNamara, Harold M.; Zhang, Hongkang; Werley, Christopher A.; Cohen, Adam E.

    2016-07-01

    Complex electrical dynamics in excitable tissues occur throughout biology, but the roles of individual ion channels can be difficult to determine due to the complex nonlinear interactions in native tissue. Here, we ask whether we can engineer a tissue capable of basic information storage and processing, where all functional components are known and well understood. We develop a cell line with four transgenic components: two to enable collective propagation of electrical waves and two to enable optical perturbation and optical readout of membrane potential. We pattern the cell growth to define simple cellular ring oscillators that run stably for >2 h (˜104 cycles ) and that can store data encoded in the direction of electrical circulation. Using patterned optogenetic stimulation, we probe the biophysical attributes of this synthetic excitable tissue in detail, including dispersion relations, curvature-dependent wave front propagation, electrotonic coupling, and boundary effects. We then apply the biophysical characterization to develop an optically reconfigurable bioelectric oscillator. These results demonstrate the feasibility of engineering bioelectric tissues capable of complex information processing with optical input and output.

  17. 基于插入损耗法的噪声源内阻抗建模及误差分析%Noise source impedance modeling and measurement error analysis based on insertion loss method

    Institute of Scientific and Technical Information of China (English)

    史国生; 赵阳; 颜伟; 董颖华; 朱志毅

    2012-01-01

    针对传导电磁干扰滤波器设计中人工电源网络阻抗、噪声源内阻抗、负载阻抗与EMI滤波器的阻抗匹配问题,建立了插入损耗法的误差理论模型及其等效电路.分别分析了串联和并联插入损耗法的测量精度及其系统误差,据此提出了相应的测试条件和测试方法,即当被测阻抗远大于负载阻抗时,采用串联插入损耗法;当被测阻抗远小于负载阻抗时,采用并联插入损耗法;当被测阻抗与负载阻抗相当时,可改变负载阻抗.理论与试验研究表明,该方法在适用范围内能够快速有效地提取EMI噪声源内阻抗,从而实现噪声源与EMI滤波器之间的最大阻抗适配,为EMI滤波器的设计及传导电磁干扰噪声抑制提供理论依据.%In order to solve the impedance matching problem for conducted EMI filter designing of artificial mains network (AMN) impedance, noise source impedance, load impedance and EMI filter impedance, the error theoretical model and equivalent circuits of insertion loss (IL) method were established. The measurement accuracy and system error of series and parallel IL methods were analyzed to provide improved test condition and methods. Series IL method was used when the measured impedance was much larger than load impedance. Parallel IL method was utilized when the measured impedance was much smaller than load impedance. The load impedance was altered when the measured impedance approximately equaled to load impedance. Theoretical analysis and experimental results show that the proposed method can extract EMI noise impedance effectively in certain range, where it can also realize the maximum impedance adapter between noise impedance and EMI filter. The proposed method has good validity for EMI filter design and conducted EMI noise suppression.

  18. Active impedance matching of complex structural systems

    Science.gov (United States)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  19. Analysis of dye-sensitized solar cells with current collecting electrodes using electrochemical impedance spectroscopy, with a finite element method

    Science.gov (United States)

    Shitanda, Isao; Inoue, Kazuya; Hoshi, Yoshinao; Itagaki, Masayuki

    2014-02-01

    The internal resistances of dye-sensitized solar cells (DSCs) with and without current collecting electrodes (CCEs) were analyzed using electrochemical impedance spectroscopy (EIS) with a finite element method (FEM). Three different DSC models with or without current collecting electrodes were designed. Theoretical values of the internal resistance were estimated by FEM on changing the position and size of the current collecting electrodes. Large DSCs with current collecting electrodes were fabricated using a screen-printing technique, and experimental values of the internal resistance were analyzed by EIS and compared with the theoretical values. The internal resistances obtained from the impedance measurements were in good agreement with those obtained by simulation. The internal resistance was found to decrease with increasing width and thickness of the CCEs, below a threshold value. EIS was found to be extremely useful for evaluating CCE design for improved DSCs.

  20. Analyzing Impedance Spectroscopy Results

    Institute of Scientific and Technical Information of China (English)

    Yoed Tsur; Sioma Baltianski

    2006-01-01

    In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments. A number of different approaches, which differ even by the definition of the problem, are used in the literature. Some aimed towards finding an equivalent circuit. Others aimed towards finding directly dielectric properties of the material under an assumed model. Others towards finding distribution of relaxation times, either parametric or point-by point. No matter what the approach is, this will always be an ill-posed problem in the sense that there exist a large number of possible solutions that solve the problem (mathematically) equally well. Therefore some a-priori knowledge about the system must be used. In addition, we should remember that the ultimate goal is to get physical insight about the system.

  1. Analysis of specification of an electrode type sensor equivalent circuit on the base of impedance spectroscopy simulation

    Science.gov (United States)

    Ogurtsov, V. I.; Mathewson, A.; Sheehan, M. M.

    2005-01-01

    Simulation of electrochemical impedance spectroscopy (EIS) based on a LabVIEW model of a complex impedance measuring system in the frequency domain has been investigated to specify parameters of Randle's equivalent circuit, which is ordinarily used for electrode sensors. The model was based on a standard system for EIS instrumentation and consisted of a sensor modelled by Randle's equivalent circuit, a source of harmonic frequency sweep voltage applied to the sensor and a transimpedance amplifier, which transformed the sensor current to voltage. It provided impedance spectroscopy data for different levels of noise, modelled by current and voltage equivalent noise sources applied to the amplifier input. The noise influence on Randle's equivalent circuit specification was analysed by considering the behaviour of the approximation error. Different metrics including absolute, relative, semilogarithmic and logarithmic based distance between complex numbers on a complex plane were considered and compared to one another for evaluating this error. It was shown that the relative and logarithmic based metrics provide more reliable results for the determination of circuit parameters.

  2. Microbiology and optimization of hydrogen fermentation and bioelectricity production

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, A.

    2013-11-01

    This work investigated dark fermentative hydrogen (H{sub 2}) and bioelectricity production from carbohydrates. Meso- and thermophilic fermentative and mesophilic exoelectrogenic bacteria were enriched from different natural sources. The H{sub 2} production from different hexoses and pentoses, them main constituents of lignocellulose, was studied in batch assays. H{sub 2} production from xylose was examined in continuous stirred tank reactor (CSTR). Operational parameters for H{sub 2} production were optimized. Bioelectricity production was studied in microbial fuel cells and process parameters were optimized. Dynamics of microbial communities in H{sub 2} and bioelectricity production processes were determined. A novel thermophilic dark fermentative H{sub 2} producing bacterium, Thermovorax subterraneus, was enriched and isolated from geothermal underground mine. T. subterraneus had the optimum growth temperature of 72 deg C and the maximum H{sub 2} yield of 1.4 mol/mol glucose in batch assay. The main soluble fermentative end products of T. subterraneus were acetate and ethanol. Thermophilic dark fermentative mixed culture enriched from hot spring (Hisarlan, Turkey) had the maximum H{sub 2} yield of 1.7 mol/mol glucose. The optimal environmental parameters to maximize H{sub 2} yield were temperature 52 deg C, initial pH 6.5, 40 mg/L Fe{sup 2+}, 4.5 g/L yeast extract and glucose concentration of 4 g/L. Increasing the glucose concentration to 18 g/L increased the maximum H{sub 2} production rate to 56.2 mmol H{sub 2}/h/L. Environmental parameters had a significant effect on metabolic pathways of fermentation. Another hot spring (Hisarkoy, Turkey) enrichment culture was able to ferment different sugars to H{sub 2} favoring pentoses over hexoses. The best H{sub 2} yields in batch assays were obtained from pentoses: xylose, arabinose and ribose yielded 21, 15 and 8 % of the theoretical yield, respectively; whilst on glucose the yield was only 2 % of the theoretical

  3. 基于生物电阻抗的血型检测新方法及系统实现%New Method for Blood Type Detection Based on Bioelectrical lmpedance Analysis Technology and its System lmplementation

    Institute of Scientific and Technical Information of China (English)

    陈里里; 廖强; 胡雪; 张国珍

    2014-01-01

    A new method for blood type detection and a new automated blood typing system are developed. In the system,the combined use of the AD9850 chip and MCU are employed to realize the DDS technique and produce excitation signal. Then an elliptic filter is designed to eliminate the signal interference,and an amplitude stabilized circuit is designed to stabilize the amplitude of the signal output by using an AD8370 chip,which is a low-cost variable gain amplifier. The amplitude and phase measurement chip AD8302 is adopted to extract the impedance information. Based on neural network recognition model,a new method is designed to determine the degree of agglutination in red blood cell suspension. The use of this method combined with the discriminant rule could successfully identify the blood type. Contrastive test is carried out and the new system showed high measurement accuracy and good stability,could better distinguish the different intensity of agglutination in red blood cell,and identified ABO and Rh blood type correctly in normal samples. The self-developed new automated blood typing system is in better agreement with clinical requirements.%提出了基于生物电阻抗测量技术的血型检测新方法并研制了检测系统。该系统采用单片机结合AD9850芯片实现 DDS 技术产生激励信号,设计椭圆滤波器消除信号干扰;运用低成本放大器 AD8370设计稳幅电路,确保信号输出幅度不变;系统采用 AD8302幅相检测芯片实现阻抗信息提取;基于人工神经网络判别红细胞悬浮液凝集强度,并结合判别规则得到血型结果。测试结果表明该系统精度高,稳定性好;临床实验表明,该系统能正确识别红细胞6种不同凝集程度,能100%正确地检测出正常标本的 ABO 和 Rh 血型,可更好地满足临床需求。

  4. Impedance model for nanostructures

    Directory of Open Access Journals (Sweden)

    R. S. Akhmedov

    2007-06-01

    Full Text Available The application of the impedance model for nanoelectronic quantum-mechanical structures modelling is described. Characteristics illustrating the efficiency of the model are presented.

  5. Wakefields and coupling impedances

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Superconducting Super Collider Laboratory, 2550 Beckleymeade Ave., Dallas, Texas 75237 (United States))

    1995-02-01

    After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example. [copyright] 1995 [ital American] [ital Institute] [ital of] [ital Physics

  6. Wakefields and coupling impedances

    Science.gov (United States)

    Kurennoy, Sergey

    1995-02-01

    After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example.

  7. Impedance plethysmography of thoracic region: impedance cardiography.

    Directory of Open Access Journals (Sweden)

    Deshpande A

    1990-10-01

    Full Text Available Impedance plethysmograms were recorded from thoracic region in 254 normal subjects, 183 patients with coronary artery disease, 391 patients with valvular heart disease and 107 patients with congenital septal disorder. The data in 18 normal subjects and 55 patients showed that basal impedance decreases markedly during exercise in patients with ischaemic heart disease. Estimation of cardiac index by this technique in a group of 99 normal subjects has been observed to be more consistent than that of the stroke volume. Estimation of systolic time index from impedance plethysmograms in 34 normal subjects has been shown to be as reliable as that from electrocardiogram, phonocardiogram and carotid pulse tracing. Changes in the shape of plethysmographic waveform produced by valvular and congenital heart diseases are briefly described and the role of this technique in screening cardiac patients has been highlighted.

  8. An impedance grasping strategy

    NARCIS (Netherlands)

    Muñoz Arias, Mauricio; Scherpen, Jacqueline M.A.; Macchelli, Alessandro

    2014-01-01

    This work is devoted to an impedance grasping strategy for a class of standard mechanical systems in the port- Hamiltonian framework. The presented control strategy re- quires a set of coordinate transformations, since the impedance control in the port-Hamiltonian framework with structure preservati

  9. Directed weighted network structure analysis of complex impedance measurements for characterizing oil-in-water bubbly flow

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Xue, Le; Zhang, Shan-Shan

    2017-03-01

    Characterizing the flow structure underlying the evolution of oil-in-water bubbly flow remains a contemporary challenge of great interests and complexity. In particular, the oil droplets dispersing in a water continuum with diverse size make the study of oil-in-water bubbly flow really difficult. To study this issue, we first design a novel complex impedance sensor and systematically conduct vertical oil-water flow experiments. Based on the multivariate complex impedance measurements, we define modalities associated with the spatial transient flow structures and construct modality transition-based network for each flow condition to study the evolution of flow structures. In order to reveal the unique flow structures underlying the oil-in-water bubbly flow, we filter the inferred modality transition-based network by removing the edges with small weight and resulting isolated nodes. Then, the weighted clustering coefficient entropy and weighted average path length are employed for quantitatively assessing the original network and filtered network. The differences in network measures enable to efficiently characterize the evolution of the oil-in-water bubbly flow structures.

  10. CSR Impedance for Non-Ultrarelativistic Beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui [Jefferson Lab., Newport News, VA (United States); Tsai, Cheng Y. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jefferson Lab., Newport News, VA (United States)

    2015-09-01

    For the analysis of the coherent synchrotron radiation (CSR)-induced microbunching gain in the low energy regime, such as when a high-brightness electron beam is transported through a low-energy merger in an energy-recovery linac (ERL) design, it is necessary to extend the CSR impedance expression in the ultrarelativistic limit to the non-ultrarelativistic regime. This paper presents our analysis of CSR impedance for general beam energies.

  11. Impedance and Collective Effects

    CERN Document Server

    Metral, E; Rumolo, R; Herr, W

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling

  12. Electrical impedance of acupuncture meridians: the relevance of subcutaneous collagenous bands.

    Directory of Open Access Journals (Sweden)

    Andrew C Ahn

    Full Text Available BACKGROUND: The scientific basis for acupuncture meridians is unknown. Past studies have suggested that acupuncture meridians are physiologically characterized by low electrical impedance and anatomically associated with connective tissue planes. We are interested in seeing whether acupuncture meridians are associated with lower electrical impedance and whether ultrasound-derived measures--specifically echogenic collagenous bands--can account for these impedance differences. METHODS/RESULTS: In 28 healthy subjects, we assessed electrical impedance of skin and underlying subcutaneous connective tissue using a four needle-electrode approach. The impedances were obtained at 10 kHz and 100 kHz frequencies and at three body sites - upper arm (Large Intestine meridian, thigh (Liver, and lower leg (Bladder. Meridian locations were determined by acupuncturists. Ultrasound images were obtained to characterize the anatomical features at each measured site. We found significantly reduced electrical impedance at the Large Intestine meridian compared to adjacent control for both frequencies. No significant decrease in impedance was found at the Liver or Bladder meridian. Greater subcutaneous echogenic densities were significantly associated with reduced impedances in both within-site (meridian vs. adjacent control and between-site (arm vs. thigh vs. lower leg analyses. This relationship remained significant in multivariable analyses which also accounted for gender, needle penetration depth, subcutaneous layer thickness, and other ultrasound-derived measures. CONCLUSION/SIGNIFICANCE: Collagenous bands, represented by increased ultrasound echogenicity, are significantly associated with lower electrical impedance and may account for reduced impedances previously reported at acupuncture meridians. This finding may provide important insights into the nature of acupuncture meridians and the relevance of collagen in bioelectrical measurements.

  13. On the impedance of galvanic cells XXI. Analysis of the electrode impedance in the case of a non-reversible electrode reaction with specific adsorption of the electroactive species; appl

    NARCIS (Netherlands)

    Sluyters-Rehbach, M.; Timmer, B.; Sluyters, J.H.

    1967-01-01

    The impedance of the Pb2+/Pb(Hg) electrode has been measured in order to demonstrate the effect of specific adsorption of the electroactive species. The simple randles circuit is not in accordance with the experimental facts and therefore an attempt has been made to interpret them in terms of the th

  14. The Analysis and Structuring of the Causes Impeding the Introduction of Advanced Technologies for Exchange Grain Trading

    Directory of Open Access Journals (Sweden)

    Vinnychenko Olena V

    2015-03-01

    Full Text Available In the article the main causes impeding the development and introduction of advanced technologies for grain trading on commodity exchanges in Ukraine have been identified and structured. The generalization of existing shortcomings in operation of the domestic commodity exchanges has served the basis for the model, within which there were built: a directed graph of correlations between the above mentioned shortcomings in the operation of exchanges, the matrix of dependency and reachability. The causes have been identified and structured, the main ones being determined, which, in turn, makes it possible to carry out the correct sequence of actions and emphasize the primary issues requiring priority solutions at making management decisions in order to promote the grain exchange market. The suggested approach clearly shows the correlation between the existing causes and sequence of their elimination.

  15. Evaluation of back contact in spray deposited SnS thin film solar cells by impedance analysis.

    Science.gov (United States)

    Patel, Malkeshkumar; Ray, Abhijit

    2014-07-09

    The role of back metal (M) contact in sprayed SnS thin film solar cells with a configuration Glass/F:SnO2/In2S3/SnS/M (M = Graphite, Cu, Mo, and Ni) was analyzed and discussed in the present study. Impedance spectroscopy was employed by incorporating constant phase elements (CPE) in the equivalent circuit to investigate the degree of inhomogeneity associated with the heterojunction and M/SnS interfaces. A best fit to Nyquist plot revealed a CPE exponent close to unity for thermally evaporated Cu, making it an ideal back contact. The Bode phase plot also exhibited a higher degree of disorders associated with other M/SnS interfaces. The evaluation scheme is useful for other emerging solar cells developed from low cost processing schemes like spray deposition, spin coating, slurry casting, electrodeposition, etc.

  16. Surface-charge accumulation effects on open-circuit voltage in organic solar cells based on photoinduced impedance analysis.

    Science.gov (United States)

    Zang, Huidong; Hsiao, Yu-Che; Hu, Bin

    2014-03-14

    The accumulation of dissociated charge carriers plays an important role in reducing the loss occurring in organic solar cells. We find from light-assisted capacitance measurements that the charge accumulation inevitably occurred at the electrode and photovoltaic layer interface for bulk-heterojunction ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al solar cells. Our results indicate, for the first time through impedance measurements, that the charge accumulation exists at the anode side of the device, and more importantly, we successfully identify the type of charge accumulated. Further study shows that the charge accumulation can significantly affect open circuit voltage and short circuit current. As a result, our experimental results from light assisted capacitance measurements provide a new understanding of the loss in open-circuit voltage and short-circuit photocurrent based on charge accumulation. Clearly, controlling charge accumulation presents a new mechanism to improve the photovoltaic performance of organic solar cells.

  17. Analysis of the Impedance Estimation Process of EH4%EH4仪器阻抗估算剖析

    Institute of Scientific and Technical Information of China (English)

    腰善丛

    2012-01-01

    详细讨论了STRATAGEM (EH4)音频大地电磁测量系统资料处理过程中所隐含的重要步骤及其实现过程,特别是由时间序列资料经FFT变换后所产生的原始谱叠加后的频点与其相应的X文件(互功率谱文件)中的频点对应、归属与筛选问题,由X文件形成Z(阻抗)文件时X文件中频点与Z文件中频点的对应、归属与筛选问题.上述问题的解决,为相关研究人员利用该设备所采集资料而开发其他阻抗估算技术提供了基础.%The key steps and performance in the data process of STRAGEM (EH4) system was discussed in details, especially the raw cross-powers caused by the time-serial data's FFT, its stack and the corresponding problems in the X file (the cross-power file) such as frequency reflecting, attribution and sifting, as well as those between X file and Z file (impedance file). The solution to the above problems can provide a basis for the related researcher to develop new impedance estimation technique for the EH4's time-serial data.

  18. Impedance and component heating

    CERN Document Server

    Métral, E; Mounet, N; Pieloni, T; Salvant, B

    2015-01-01

    The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.

  19. Analysis of electric vehicle charger input impedance%电动汽车充电机输入阻抗特性分析

    Institute of Scientific and Technical Information of China (English)

    李晶; 姜久春; 牛利勇

    2013-01-01

    The problem of interaction between electric car charger and the grid is transformed into the research on charging machine input impedance and the grid output impedance by using the research methods of DC-DC modules interaction. The electric car charger input part is three-phase PWM rectifier, so first the small signal model of three-phase PWM rectifier is established in d-q coordinate system , then the reduced order model is established and its open loop and closed loop input impedance expression are deduced. How the charging machine input impedance vary with the change of the grid voltage is discussed. PWM rectifier output current, inductance parasitic resistance, capacitance parasitic resistance, voltage control loop, and current control loop are researched. The paper can provide a basis for the stability analysis of electric vehicle chargers.%针对电动汽车充电机与电网之间的相互作用问题,借鉴DC/DC模块之间相互作用的研究方法,将充电机与电网之间的相互作用问题转化为研究充电机输入阻抗与电网输出阻抗之间的问题.由于电动汽车充电机的输入部分为三相PWM整流器,在d-q坐标系下建立了降阶的三相PWM整流器小信号模型,推导出其开环与闲环输入阻抗表达式.研究充电机输入阻抗随电网电压波动,PWM整流器输出电流、电感寄生电阻和电容寄生电阻,以及电压控制环路和电流控制环路对输入阻抗的影响.

  20. The LEP impedance model

    Energy Technology Data Exchange (ETDEWEB)

    Zotter, B. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-08-01

    This report describes a number of measurements and computations of the impedance of the Large Electron Positron collider LEP at CERN. The work has been performed over several years, together with D. Brandt, K. Cornelis, A. Hofmann, G. Sabbi and many others. The agreement between measurements of single bunch instabilities on the machine and computer simulations is in general excellent and gives confidence in the impedance model used. (author)

  1. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration.

    Science.gov (United States)

    Levin, Michael

    2014-06-01

    Pattern formation, as occurs during embryogenesis or regeneration, is the crucial link between genotype and the functions upon which selection operates. Even cancer and aging can be seen as challenges to the continuous physiological processes that orchestrate individual cell activities toward the anatomical needs of an organism. Thus, the origin and maintenance of complex biological shape is a fundamental question for cell, developmental, and evolutionary biology, as well as for biomedicine. It has long been recognized that slow bioelectrical gradients can control cell behaviors and morphogenesis. Here, I review recent molecular data that implicate endogenous spatio-temporal patterns of resting potentials among non-excitable cells as instructive cues in embryogenesis, regeneration, and cancer. Functional data have implicated gradients of resting potential in processes such as limb regeneration, eye induction, craniofacial patterning, and head-tail polarity, as well as in metastatic transformation and tumorigenesis. The genome is tightly linked to bioelectric signaling, via ion channel proteins that shape the gradients, downstream genes whose transcription is regulated by voltage, and transduction machinery that converts changes in bioelectric state to second-messenger cascades. However, the data clearly indicate that bioelectric signaling is an autonomous layer of control not reducible to a biochemical or genetic account of cell state. The real-time dynamics of bioelectric communication among cells are not fully captured by transcriptomic or proteomic analyses, and the necessary-and-sufficient triggers for specific changes in growth and form can be physiological states, while the underlying gene loci are free to diverge. The next steps in this exciting new field include the development of novel conceptual tools for understanding the anatomical semantics encoded in non-neural bioelectrical networks, and of improved biophysical tools for reading and writing

  2. Electrochemical Impedance Studies of SOFC Cathodes

    DEFF Research Database (Denmark)

    Hjelm, Johan; Søgaard, Martin; Wandel, Marie

    2007-01-01

    impedance of the cathode at intermediate operating temperatures. The perovskite is of the La-Sr-Co-Fe type. The EIS response of symmetrical cells with a thick (similar to 200 mu m) gadolinia doped ceria electrolyte was compared with the impedance contribution of the cathode of a full anode supported cell....... The full cells had a Ni-YSZ anode and anode support, a thin YSZ electrolyte, and a CGO barrier layer. The symmetric and full cell cathode responses were compared at open-circuit voltage. Humidified hydrogen was used as the fuel in the full cell measurements. Differential analysis of the impedance data...

  3. Electrical properties of BaY{sub 0.5}Nb{sub 0.5}O{sub 3} ceramic: Impedance spectroscopy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, K., E-mail: k.prasad65@gmail.co [University Department of Physics, T.M. Bhagalpur University, Bhagalpur 812 007 (India); Bhagat, S.; Priyanka,; AmarNath, K. [University Department of Physics, T.M. Bhagalpur University, Bhagalpur 812 007 (India); Chandra, K.P. [Department of Physics, S.M. College, Bhagalpur 812 001 (India); Kulkarni, A.R. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400 076 (India)

    2010-09-01

    Lead-free perovskite BaY{sub 0.5}Nb{sub 0.5}O{sub 3} was prepared by conventional ceramic technique at 1375 {sup o}C/7 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were derived from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of a single-phase cubic structure with the space group Pm3m. EDAX, X-ray mapping and SEM studies were carried to study the quality and purity of the compound. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using the impedance data. Electric modulus studies supported the hopping type of conduction in BaY{sub 0.5}Nb{sub 0.5}O{sub 3}. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in BaY{sub 0.5}Nb{sub 0.5}O{sub 3}. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compound.

  4. Structural and impedance spectroscopy analysis of Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, S.; Prasad, K. [Materials Research Laboratory, University Department of Physics, T.M. Bhagalpur University, Bhagalpur 812 007 (India)

    2010-05-15

    Lead-free perovskite Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} (BFN) was prepared by conventional ceramic fabrication technique at 1200 C/5 h in air atmosphere. The crystal symmetry, space group, and unit cell dimensions were determined from the experimental results using FullProf software whereas crystallite size and lattice strain were estimated from Williamson-Hall approach. X-ray diffraction (XRD) analysis of the compound indicated the formation of a single-phase monoclinic structure with the space group P2/m. EDAX and SEM studies were carried out in order to evaluate the quality and purity of the compound. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using the impedance data. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type. The correlated barrier hopping (CBH) model was employed to successfully explain the mechanism of charge transport in BFN. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. The fetal cardiovascular response to increased placental vascular impedance to flow determined with four-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis

    Science.gov (United States)

    Hamill, Neil; Romero, Roberto; Hassan, Sonia; Lee, Wesley; Myers, Stephen A.; Mittal, Pooja; Kusanovic, Juan Pedro; Balasubramaniam, Mamtha; Chaiworapongsa, Tinnakorn; Vaisbuch, Edi; Espinoza, Jimmy; Gotsch, Francesca; Goncalves, Luis F.; Mazaki-Tovi, Shali; Erez, Offer; Hernandez-Andrade, Edgar; Yeo, Lami

    2014-01-01

    Objective To determine if increased placental vascular impedance to flow is associated with changes in fetal cardiac function using spatiotemporal image correlation (STIC) and Virtual Organ Computer-aided AnaLysis (VOCAL). Study Design A cross-sectional study was performed in fetuses with an umbilical artery pulsatility index > 95th percentile (ABN). Ventricular volume (end-systole, end-diastole), stroke volume (SV), cardiac output (CO), adjusted CO, and ejection fraction (EF) were compared to those of 184 normal fetuses (NL). Results 1) 34 fetuses were evaluated at a median gestational age of 28.3 (range 20.6 – 36.9) weeks; 2) mean ventricular volumes were lower for ABN than NL (end-systole, end-diastole) with a proportionally greater decrease for left ventricular volume (vs. right); 3) mean left and right SV, CO, and adjusted CO were lower for ABN (vs. NL); 4) right ventricular volume, SV, CO, and adjusted CO exceeded the left in ABN fetuses; 5) mean EF was greater for ABN than NL; and 6) median left EF was greater (vs. right) in ABN fetuses. Conclusion Increased placental vascular impedance to flow is associated with changes in fetal cardiac function. PMID:23220270

  6. Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging

    Science.gov (United States)

    Meyer, Quentin; Ashton, Sean; Curnick, Oliver; Reisch, Tobias; Adcock, Paul; Ronaszegi, Krisztian; Robinson, James B.; Brett, Daniel J. L.

    2014-05-01

    Dead-ended anode operation, with intermittent purge, is increasingly being used in polymer electrolyte fuel cells as it simplifies the mass flow control of feed and improves fuel efficiency. However, performance is affected through a reduction in voltage during dead-ended operation, particularly at high current density. This study uses electrochemical impedance spectroscopy (EIS), off-gas analysis and high resolution thermal imaging to examine the source of performance decay during dead-ended operation. A novel, 'reconstructed impedance' technique is applied to acquire complete EIS spectra with a temporal resolution that allows the dynamics of cell processes to be studied. The results provide evidence that upon entering dead-ended operation, there is an initial increase in performance associated with an increase in anode compartment pressure and improved hydration of the membrane electrolyte. Subsequent reduction in performance is associated with an increase in mass transport losses due to a combination of water management issues and build-up of N2 in the anode. The purge process rapidly recovers performance. Understanding of the processes involved in the dead-end/purge cycle provides a rationale for determining the optimum cycle frequency and duration as a function of current density.

  7. Optimisation of the Low-Frequency Response of a Multi-stage Bioelectric Amplifier for Electrocardiogram (ECG Recording

    Directory of Open Access Journals (Sweden)

    Burke Martin J.

    2016-01-01

    Full Text Available This paper reports the optimisation of the low-frequency response of a multi-stage bioelectric amplifier intended for use in the measurement of the human electrocardiogram (ECG using high-impedance un-gelled electrodes. The frequency response was optimised to meet international performance requirements for electrocardiographic recorders, in particular the International Electrotechnical Commission 60601 standards [1,2]. The pole and zero locations of a multi-stage amplifier configuration were optimised to meet both time and frequency domain specifications. The optimum assignment for a three stage amplifier, having two differential stages and a differential-to-single-ended conversion stage was established by evaluating the performance of a number of circuit configurations. The optimum configuration was found to be two differential stages with a gain of 20dB each and a differential-to single-ended output stage with unity gain. The -3dB pole is placed at 0.028Hz and a zero at 0.0028Hz in the first and second stages to give an overall -3dB bandwidth of 0.043Hz. In addition, the pole of the input ac coupling network was placed at 0.0028Hz in order to meet the undershoot and recovery slope requirements in the narrow pulse response.

  8. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  9. Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Di Turo, Francesca; Montoya, Noemí; Piquero-Cilla, Joan; De Vito, Caterina; Coletti, Fulvio; Favero, Gabriele; Doménech-Carbó, Antonio

    2017-02-22

    Voltammetry of microparticles (VMP) and electrochemical impedance spectroscopy (EIS) techniques, complemented by SEM-EDX and Raman spectroscopy, were applied to a set of 15 Roman bronze coins and one Tessera from the temple of Magna Mater (Rome, Italy). The archaeological site, dated back between the second half and the end of the 4th century A.D., presented a complicated stratigraphic context. Characteristic voltammetric patterns for cuprite and tenorite for sub-microsamples of the corrosion layers of the coins deposited onto graphite electrodes in contact with 0.10 M HClO4 aqueous solution yielded a grouping of the coins into three main groups. This grouping was confirmed and refined using EIS experiments of the coins immersed in air-saturated mineral water using the reduction of dissolved oxygen as a redox probe. The electrochemical grouping of coins corroborated the complex stratigraphy of the archaeological site and, above all, the reuse of the coins during the later periods due to the economic issues related to the fall of the Roman Empire.

  10. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Taer, E.; Awitdrus,; Farma, R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Kanwal, S. [ICCBS, H.E.J. Research Institute of Chemistry, University of Karachi, 75270 Karachi (Pakistan)

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  11. Position dependent analysis of membrane electrode assembly degradation of a direct methanol fuel cell via electrochemical impedance spectroscopy

    Science.gov (United States)

    Hartmann, Peter; Zamel, Nada; Gerteisen, Dietmar

    2013-11-01

    The performance of a direct methanol fuel cell MEA degraded during an operational period of more than 3000 h in a stack is locally examined using electrochemical impedance spectroscopy. Therefore, after disassembling the MEA is cut into small pieces and analyzed in a 1 cm2 test cell. Using a reference electrode, we were capable of measuring the anode and cathode spectra separately. The spectra of the segments at different positions do not follow a specified trend from methanol inlet to outlet of the stack flow field. The anode spectra were analyzed with an equivalent circuit simulation. The conductance of the charge transfer was found to increase with current density up to a point where a raising limitation process of the complex methanol oxidation dominates, which is not a bottleneck at low current density. Further, an increase of the double layer capacitance with current density was observed. The diffusion resistance was calculated as an effective diffusion coefficient in the order of 10-10 m2 s-1; implying that the diffusion limitation is not the bulk diffusion in the backing layer. Finally, the degree of poisoning of the catalysts by carbon monoxide was measured as a pseudo inductive arc and decreases with increasing current.

  12. Biogenic metallic nanoparticles as catalyst for bioelectricity production: A novel approach in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, Kandasamy, E-mail: saravana732@gmail.com [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai (China); MubarakAli, Davoodbasha [Microbial Genetic Engineering Laboratory, Division of Bioengineering, College of Life Science and Bioengineering, Incheon National University, Songdo 406772, Incheon (Korea, Republic of); Department of Microbiology, School of Lifesciences, Bharathidasan University, Tiruchirappalli 620024 (India); Kathiresan, Kandasamy [Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu (India); Thajuddin, Nooruddin [Department of Microbiology, School of Lifesciences, Bharathidasan University, Tiruchirappalli 620024 (India); Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Alharbi, Naiyf S. [Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Chen, Jie, E-mail: jiechen59@sjtu.edu.cn [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai (China)

    2016-01-15

    Highlights: • Trichoderma sp., showed an abilities to synthesis of AgNPs and AuNPs with an excellent stability. • AuNPs significantly enhanced the bioelectricity production by MFC of anaerobic fermentation as catalyst. • Maximum bioelectricity production was optimized and obtained the voltage of 432.80 mA using RSM. - Abstract: The present work aimed to use the biogenic metallic nanoparticles as catalyst for bioelectricity production in microbial fuel cell (MFC) approach under anaerobic condition. Silver and gold nanoparticles (AuNPs) were synthesized using Trichoderma sp. Particle size and cystallinity were measured by X-ray diffraction revealed the crystalline structure with average size of 36.17 nm. Electron microscopic studies showed spherical shaped silver nanoparticles (AgNPs) and cubical shaped AuNPs with size ranges from 50 to 150 nm. The concentration of biogenic metallic nanoparticles as catalyst for enhanced bioelectricity generations and estimated by response surface methodology (RSM) and found at the greatest of 342.80 mA under optimized conditions are time interval, temperature, nanoparticles used as 63 h, 28 ± 2.0 °C, 22.54 mg l{sup −1} (AgNPs) and 25.62 mg l{sup −1} (AuNPs) in a batch reactor. AuNPs acted as an excellent catalyst to enhance the bioelectricity production. This novel technique could be used for eco-friendly, economically feasible and facile electricity production.

  13. Use of low-frequency electrical impedance measurements to determine phospholipid content in amniotic fluid

    Science.gov (United States)

    DeLuca, F.; Cametti, C.; Zimatore, G.; Maraviglia, B.; Pachi', A.

    1996-09-01

    In this report we propose a new method for an in vitro test of the foetal lung maturity based on the measurement of the electrical conductivity of the overall amniotic fluid obtained from transabdominal amniocentesis, since this quantity can be linked to a first approximation in a very simple way to the phospholipid content. We have carried out measurements of 85 different samples of amniotic fluid as a function of gestation weeks and we have observed a pronounced change of the electrical conductivity that reflects the increase in the phospholipid concentration occurring at the end of normal pregnancies. The method could be further developed to obtain similar information on in vivo experiments by means of bioelectric impedance tomography, taking advantage of the frequency dependence of the tissue electrical impedance.

  14. Finemet cavity impedance studies

    CERN Document Server

    Persichelli, S; Migliorati, M; Salvant, B

    2013-01-01

    The aim of the study is to evaluate the impedance of the Finemet kicker cavity to be installed in the PS straight section 02 during LS1, under realistic assumptions of bunch length. Time domain simulations with CST Particle Studio have been performed in order to get the impedance of the cavity and make a comparison with the longitudinal impedance measured for a single cell prototype. The study has been performed on simplified 3D geometries imported from a mechanical CATIA drawing, assuming that the simplications have small impact on the nal results. Simulations confirmed that the longitudinal impedance observed with measurements can be excited by bunches circulating in the PS. In the six-cells Finemet cavity, PS bunches circulating in the center can excite a longitudinal impedance, the real part of which has a maximum of 2 kOhm at 4 MHz. This mode does not seem to have any transverse component. All the eigenmodes of the cavity are strongly damped by the Finemet rings: we predict to have no issues regarding tr...

  15. Evaluation of the Trajectory Sensitivity Analysis of the DFIG Control Parameters in Response to Changes in Wind Speed and the Line Impedance Connection to the Grid DFIG

    Directory of Open Access Journals (Sweden)

    Mehdi Fooladgar

    2015-01-01

    Full Text Available Economic and environmental conditions often make large stations and transmission lines, restrictions are placed. Small and medium-sized production units connected to existing systems as a strategy is in progress. These units are usually near the center of the load placed and distributed generators (DG famous are the DG are allowed types vary, such as induction generators rack squirrel-connected wind turbines, generators fed induction double mounted wind turbines, fuel cells connected to the system by power electronic converters or synchronous generator connected to the turbine combustion [10]. This way sensitivity analysis in systems of distributed generation (DG is assessed. It is shown that the method can detect the effect of control parameters listed wind turbine connected to a double-fed induction generator (DFIG Badoou the impedance of the changing the speed of on the stability of the transmission line useful system invested. The control parameters of the importance of influencing the behavior of DFIG are divided.

  16. Binding studies of L-tryptophan to human serum albumin with nanogold-structured sensor by piezoelectric quartz crystal impedance analysis.

    Science.gov (United States)

    Long, Yumei; Yao, Shouzhuo; Chen, Jinhua

    2011-12-01

    Nanogold-modified sensor was constructed and applied to study the binding of L-tryptophan to human serum albumin (HSA) in situ by piezoelectric quartz crystal impedance (PQCI) analysis. It was interesting that the as-prepared nanogold modified sensor was more sensitive and biocompatible than bare gold electrode. The frequency changes due to protein adsorption on the nanogold-modified sensor might be described as a sum of two exponential functions and detailed explanation was given. Additionally, the kinetics of the binding process was also investigated. The binding constant (K) and the number of binding site (n) for the binding process without competitor are fitted to be 1.07 x 10(4) (mol l(-1))(-1) s(-1) and 1.13, respectively, and 2.24 x 10(3) (mol l-(1))(-1) s(-1) and 1.18, respectively for the binding process with competitor.

  17. Evoked bioelectrical activity of efferent fibers of the sciatic nerve of white rats in experimental menopause

    Directory of Open Access Journals (Sweden)

    Rodinsky A.G.

    2016-03-01

    Full Text Available The aim of our work was analysis of the bioelectrical activity of efferent fibers of the sciatic nerve in experimental menopause condition. Experiments were performed on 25 female white rats, divided into experimental and control groups. Menopause was modeled by total ovariohysterectomy. In 120 days after modeling we had recorded evoked action potentials of fibers of isolated ventral root L5 induced by stimulation of sciatic nerve with rectangular pulses. Threshold, chronaxia, latency, amplitude and duration of the action potential (AP were analysed. Refractory phenomenon was investigated by applying paired stimuli at intervals of 2 to 20 ms. In the context of long-term hypoestrogenemy threshold of AP appearance was 55,32±7,69%, chronaxy – 115,09±2,67%, latent period – 112,62±1,74% as compared with the control animals (p<0.01. In conditions of paired stimuli applying the amplitude of response to the testing stimulus in animals with ovariohysterectomy at intervals 3 and 4 ms was 61,25±36,45% and 53,48±18,64% (p<0.05 respectively.

  18. Bioelectricity-assisted partial degradation of linear polyacrylamide in a bioelectrochemical system.

    Science.gov (United States)

    Cui, Yu-Zhi; Zhang, Jian; Sun, Min; Zhai, Lin-Feng

    2015-01-01

    The wide application of water-soluble linear polyacrylamides (PAMs) can cause serious environmental pollution. Biological treatment of PAMs receives very limited efficiency due to their recalcitrance to the microbial degradation. Here, we show the bioelectrochemical system (BES) can be used as an effective strategy to improve the biodegradation efficiency of PAMs. A linear PAM with viscosity-average molecular weight of 5 × 10(6) was treated in the anodic chamber of BES reactor, and the change of PAM structure during the degradation process was investigated. The anodic bacteria in the BES demonstrated abilities to utilize the PAM as the sole carbon and nitrogen source to generate electricity. Both the anode-attached and planktonic bacteria contributed to the electricity generation, while the anode-attached community exhibited stronger electron transfer ability than the planktonic one. The closed-circuit and open-circuit operations of the BES reactor obtained chemical oxygen demand (COD) removal efficiencies of 32.5 and 7.4 %, respectively, implying the generation of bioelectricity could enhance the biodegradation of PAM. Structure analysis suggested the carbon chain of PAM was partially degraded in the BES, producing polymeric products with lower molecular weight. The microbial cleavage of the carbon chain was proposed to start from the "head-to-head" linkages and end with the formation of ether bonds.

  19. Hydrodynamic and longitudinal impedance analysis of cerebrospinal fluid dynamics at the craniovertebral junction in type I Chiari malformation.

    Directory of Open Access Journals (Sweden)

    Bryn A Martin

    Full Text Available Elevated or reduced velocity of cerebrospinal fluid (CSF at the craniovertebral junction (CVJ has been associated with type I Chiari malformation (CMI. Thus, quantification of hydrodynamic parameters that describe the CSF dynamics could help assess disease severity and surgical outcome. In this study, we describe the methodology to quantify CSF hydrodynamic parameters near the CVJ and upper cervical spine utilizing subject-specific computational fluid dynamics (CFD simulations based on in vivo MRI measurements of flow and geometry. Hydrodynamic parameters were computed for a healthy subject and two CMI patients both pre- and post-decompression surgery to determine the differences between cases. For the first time, we present the methods to quantify longitudinal impedance (LI to CSF motion, a subject-specific hydrodynamic parameter that may have value to help quantify the CSF flow blockage severity in CMI. In addition, the following hydrodynamic parameters were quantified for each case: maximum velocity in systole and diastole, Reynolds and Womersley number, and peak pressure drop during the CSF cardiac flow cycle. The following geometric parameters were quantified: cross-sectional area and hydraulic diameter of the spinal subarachnoid space (SAS. The mean values of the geometric parameters increased post-surgically for the CMI models, but remained smaller than the healthy volunteer. All hydrodynamic parameters, except pressure drop, decreased post-surgically for the CMI patients, but remained greater than in the healthy case. Peak pressure drop alterations were mixed. To our knowledge this study represents the first subject-specific CFD simulation of CMI decompression surgery and quantification of LI in the CSF space. Further study in a larger patient and control group is needed to determine if the presented geometric and/or hydrodynamic parameters are helpful for surgical planning.

  20. Impeded Dark Matter

    CERN Document Server

    Kopp, Joachim; Slatyer, Tracy R; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppress...

  1. Impedance modelling of pipes

    Science.gov (United States)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  2. Dielectric, ferroelectrics properties and impedance spectroscopy analysis of the [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3-based lead-free ceramics

    Science.gov (United States)

    Saidi, M.; Chaouchi, A.; D'Astorg, S.; Rguiti, M.; Courtois, C.

    2015-04-01

    Polycrystalline of [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR) characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH) model to evaluate the binding energy (Wm), the minimum hopping distance (Rmin), the density of states at Fermi level (N(Ef)), and the activation energy of the compound.

  3. Impedance analysis of oxygen reduction in Au nanoparticles; Analisis por impedancia de la reduccion de oxigeno sobre nanoparticulas de Au

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Huerta, G.; Ramos-Sanchez, G. [Cinvestav-IPN, Mexico, D.F. (Mexico)]. E-mail: gervazkez@gmail.com; Antano-Lopez, R. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S. C., Pedro Escobedo, Queretaro (Mexico); Solorza-Feria, O. [Cinvestav-IPN, Mexico, D.F. (Mexico)

    2009-09-15

    Nanometric-sized ({approx}5nm) Au particles were synthesized using the chemical reduction of AuCl{sub 3} with NaBH{sub 4}. The Au particles were analyzed with x-ray diffraction (XRD), finding that the particles are highly crystalline, with a face-centered cubic (FCC) structure. The impedance spectrums obtained in 0.5M H{sub 2}SO{sub 4} solution saturated with O{sub 2}, at potentials greater than 0.38 V vs NHE, show one single temperature constant associated with the reduction in O{sub 2} on Au particles, producing hydrogen peroxide (O{sub 2} +2H{sup +} + 2e{sup -} =H{sub 2}O{sub 2}). At potentials less than 0.38 V, a second constant temperature appears associated with a second process, that is, the reduction of H{sub 2}O{sub 2} to H{sub 2}O. [Spanish] Particulas de Au con tamano nanometrico ({approx}5nm) fueron sintetizadas a partir de la reduccion quimica del AuCl{sub 3} con NaBH{sub 4}. Las particulas de Au fueron analizadas con difraccion de rayos X (XRD), se encontro que las particulas son altamente cristalinas, con una estructura cubica centrada en las caras (FCC). Los espectros de impedancia obtenidos en solucion 0.5M H{sub 2}SO{sub 4} saturada con O{sub 2}, a potenciales mayores de 0.38 V vs NHE muestran una sola constante de tiempo, asociada a la reduccion de O{sub 2} sobre las particulas de Au, dando como producto peroxido de hidrogeno (O{sub 2} +2H{sup +} + 2e{sup -} =H{sub 2}O{sub 2}). A potenciales menores de 0.38 V aparece una segunda constante de tiempo, asociada a un segundo proceso, i.e. la reduccion del H{sub 2}O{sub 2} a H{sub 2}O.

  4. In-situ oxide layer analysis of alloy 182 using electrochemical impedance spectroscopy in high dissolved hydrogen condition in PWR environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho-Sub; Subramanian, Gokul Obulan; Hong, Jong-Dae; Lee, Junho; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Alloy 82/182 weld metals had been extensively used in joining the components of the PWR primary system. Unfortunately, the cracking caused by PWSCC usually occurs on Alloy 82/182 dissimilar metal welds (DMW). Previous studies indicated that the susceptibility of PWSCC is closely related to the oxide characteristics which are dependent on water chemistry condition, especially dissolved hydrogen (DH). Furthermore, in primary system of pressurized water reactor (PWR), crack initiation resulted from electrochemical instability of oxide film of Ni-base structural materials in various hydrogen concentrations. In this study, in-situ oxide analysis of Alloy 182 using electrochemical impedance spectroscopy (EIS) was performed in high dissolved hydrogen condition. Especially, to understand the effects of tensile loading on the oxide characteristics, we tried to characterize the oxides formed on the tensile loaded specimen using in-situ EIS analysis. The EIS analysis of oxide on Alloy 182 was performed. The increase of oxide film thickness was observed with the increase of exposure time. To analysis the multi-layer structure of oxides, an equivalent model was obtained by fitting EIS data. It is assumed that overall oxide structures were composed of 3 layers approximately.

  5. Modified Blumlein pulse-forming networks for bioelectrical applications.

    Science.gov (United States)

    Romeo, Stefania; Sarti, Maurizio; Scarfì, Maria Rosaria; Zeni, Luigi

    2010-07-01

    Intense nanosecond pulsed electric fields (nsPEFs) have been shown to induce, on intracellular structures, interesting effects dependent on electrical exposure conditions (pulse length and amplitude, repetition frequency and number of pulses), which are known in the literature as "bioelectrical effects" (Schoenbach et al., IEEE Trans Plasma Sci 30:293-300, 2002). In particular, pulses with a shorter width than the plasma membrane charging time constant (about 100 ns for mammalian cells) can penetrate the cell and trigger effects such as permeabilization of intracellular membranes, release of Ca(2+) and apoptosis induction. Moreover, the observed effects have led to exploration of medical applications, like the treatment of melanoma tumors (Nuccitelli et al., Biochem Biophys Res Commun 343:351-360, 2006). Pulsed electric fields allowing such effects usually range from several tens to a few hundred nanoseconds in duration and from a few to several tens of megavolts per meter in amplitude (Schoenbach et al., IEEE Trans Diel Elec Insul 14:1088-1109, 2007); however, the biological effects of subnanosecond pulses have been also investigated (Schoenbach et al., IEEE Trans Plasma Sci 36:414-422, 2008). The use of such a large variety of pulse parameters suggests that highly flexible pulse-generating systems, able to deliver wide ranges of pulse durations and amplitudes, are strongly required in order to explore effects and applications related to different exposure conditions. The Blumlein pulse-forming network is an often-employed circuit topology for the generation of high-voltage electric pulses with fixed pulse duration. An innovative modification to the Blumlein circuit has been recently devised which allows generation of pulses with variable amplitude, duration and polarity. Two different modified Blumlein pulse-generating systems are presented in this article, the first based on a coaxial cable configuration, matching microscopic slides as a pulse-delivery system

  6. ANÁLISIS EN EL PLANO R-X PARA LOCALIZAR FALLAS DE ALTA IMPEDANCIA R-X AXIS ANALYSIS TO LOCATE HIGH IMPEDANCE FAULTS

    Directory of Open Access Journals (Sweden)

    Germán Andrés Morales-España

    2009-08-01

    Full Text Available Este artículo propone una herramienta de análisis en el plano R-X de un sistema en falla para resolver el problema de localización de fallas en sistemas de potencia. La herramienta permite localizar todo tipo de fallas incluidas las de alta impedancia y fallas en sistemas con sobrecarga. Metodológicamente, se analiza el plano R-X de la impedancia aparente de las fases involucradas en la falla, y utilizando interpolación bidimensional se logra la ubicación de la falla a partir de curvas de distancia previamente obtenidas del sistema mediante simulación. Como resultados se presentan pruebas en un sistema de referencia sometido a los cuatro tipos de falla con diversas resistencias localizadas en diferentes sitios dentro del sistema, resaltándose la obtención de errores inferiores al 3% para fallas monofásicas y resistencia de falla hasta 1000[Ω].This paper proposes an analysis tool using the R-X axis of a faulted system to solve the fault location problem in power systems. The proposed approach allows locating all types of faults including high impedance ones and faults on overload systems. Methodologically, the apparent impedance R-X axis of faulted phases is analyzed and the fault is located from distance curves, previously obtained from the power system, by using two-dimensional interpolation. As results, tests of a reference system with four types of faults and different fault resistances located on different places on the system are presented. Errors are kept lower than 3% for single phase faults and fault resistances up to 1000[Ω].

  7. Longitudinal impedance of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, J. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  8. Implantable Impedance Plethysmography

    OpenAIRE

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term.

  9. The Characteristic States of the Magnetotelluric Impedance Tensor: Construction, Analytic Properties and Utility in the Analysis of General Earth Conductivity Distributions

    CERN Document Server

    Tzanis, Andreas

    2014-01-01

    It is shown that the Magnetotelluric (MT) impedance tensor admits an anti-symmetric generalized eigenvalue - eigenstate decomposition consistent with the anti-symmetry of electric and magnetic fields referred to the same coordinate frame: this is achieved by anti-diagonalization through rotation by 2x2 complex operators of the SU(2) rotation group. The eigenstates comprise simple proportional relationships between linearly polarized eigenvalues of the input magnetic and output electric field along the locally resistive and conductive propagation path into the Earth, respectively mediated by the maximum and minimum characteristic values of the tensor (eigen-impedances). It is shown from first principles that the eigen-impedances are expected to be positive real (passive) functions, analytic in the entire lower-half complex frequency plane and with singularities confined on the positive imaginary frequency axis. Insofar as the impedance tensor is generated by isometric transformation of the eigen-impedances, it...

  10. Impedance spectroscopy of food mycotoxins

    Science.gov (United States)

    Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.

    2012-01-01

    A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.

  11. [Effect of refeeding on the body composition of females with restrictive anorexia nervosa; anthropometry versus bioelectrical impedance].

    Science.gov (United States)

    de Mateo Silleras, Beatriz; Redondo del Río, Paz; Camina Martín, Alicia; Soto Célix, María; Alonso Torre, Sara R; Miján de la Torre, Alberto

    2013-01-01

    Objetivo: Evaluar la composición corporal en un grupo de pacientes desnutridas con anorexia nerviosa, respecto de controles sanas, antes y después del soporte nutricional, mediante antropometría y bioimpedancia. Métodos: Estudio observacional prospectivo. Se realizó una antropometría completa y un análisis de bioimpedancia a 12 mujeres con anorexia nerviosa restrictiva (24,5 años) al ingreso hospitalario y semanalmente durante la realimentación. El grupo control estuvo formado por 24 mujeres sanas (21 años). Se aplicaron los test t-Student, U-Mann-Whitney, t-Student para medidas repetidas o Wilcoxon. La concordancia entre antropometría y BIA se analizó mediante el coeficiente de correlación intraclase y Bland-Altman. Resultados: Las pacientes mejoraron significativamente todos los índices de composición corporal a lo largo de la estancia hospitalaria, aunque sus valores al alta siguieron siendo menores que los de las controles. La media de peso ganado fue 5,22 kg (DE: 1,42), de los que el 51,4% fueron masa grasa, con distribución central preferentemente. En las controles la ecuación de BIA que mejor concuerda con antropometría es la de Sun (CCI = 0,896); en las pacientes la concordancia fue más débil, al ingreso y al alta. Conclusiones: La realimentación produce una ganancia ponderal, fundamentalmente a expensas de masa grasa, con distribución central; no se consigue restablecer el estado nutricional. La concordancia entre antropometría y bioimpedancia para el estudio de la composición corporal es aceptable, especialmente en sujetos sanos. Se recomienda emplear antropometría, si no se dispone de BIA vectorial o algún método gold estandard para el análisis de la composición corporal, en casos de alteraciones importantes en la composición corporal y/o el balance hídrico.

  12. Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA

    DEFF Research Database (Denmark)

    Ejlerskov, Katrine Tschentscher; Jensen, Signe Marie; Christensen, Line B

    2014-01-01

    -validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2-4 years...

  13. Impedance calculation for ferrite inserts

    Energy Technology Data Exchange (ETDEWEB)

    Breitzmann, S.C.; Lee, S.Y.; /Indiana U.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  14. Correlation between birth weight and maternal body composition.

    LENUS (Irish Health Repository)

    Kent, Etaoin

    2013-01-01

    To estimate which maternal body composition parameters measured using multifrequency segmental bioelectric impedance analysis in the first trimester of pregnancy are predictors of increased birth weight.

  15. The Evaluation of Bioelectrical Activity of Pelvic Floor Muscles Depending on Probe Location: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tomasz Halski

    2013-01-01

    Full Text Available Objectives. The main objective was to determine how the depth of probe placement affects functional and resting bioelectrical activity of the PFM and whether the recorded signal might be dependent on the direction in which the probe is rotated. Participants. The study comprised of healthy, nulliparous women between the ages of 21 and 25. Outcome Measures. Bioelectric activity of the PFM was recorded from four locations of the vagina by surface EMG and vaginal probe. Results. There were no statistically significant differences between the results during functional sEMG activity. During resting sEMG activity, the highest bioelectrical activity of the PFM was observed in the L1 and the lowest in the L4 and a statistically significant difference between the highest and the lowest results of resting sEMG activity was observed (P=0.0043. Conclusion. Different electrodes placement during functional contraction of PFM does not affect the obtained results in sEMG evaluation. In order to diagnose the highest resting activity of PFM the recording plates should be placed toward the anterior vaginal wall and distally from the introitus. However, all of the PFM have similar bioelectrical activity and it seems that these muscles could be treated as a single muscle.

  16. [Principles of design of neural-network analog-to-digital converters of bioelectric signals].

    Science.gov (United States)

    Loktiukhin, V N; Chelebaev, S V

    2007-01-01

    A design principle and a procedure for synthesis of neural-network analog-to-digital converters of bioelectric signals are suggested. An example of implementation of an FPGA-based neural-network converter for classification of bioparameters is presented.

  17. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering.

    Science.gov (United States)

    Levin, Michael; Stevenson, Claire G

    2012-01-01

    Achieving control over cell behavior and pattern formation requires molecular-level understanding of regulatory mechanisms. Alongside transcriptional networks and biochemical gradients, there functions an important system of cellular communication and control: transmembrane voltage gradients (V(mem)). Bioelectrical signals encoded in spatiotemporal changes of V(mem) control cell proliferation, migration, and differentiation. Moreover, endogenous bioelectrical gradients serve as instructive cues mediating anatomical polarity and other organ-level aspects of morphogenesis. In the past decade, significant advances in molecular physiology have enabled the development of new genetic and biophysical tools for the investigation and functional manipulation of bioelectric cues. Recent data implicate V(mem) as a crucial epigenetic regulator of patterning events in embryogenesis, regeneration, and cancer. We review new conceptual and methodological developments in this fascinating field. Bioelectricity offers a novel way of quantitatively understanding regulation of growth and form in vivo, and it reveals tractable, powerful control points that will enable truly transformative applications in bioengineering, regenerative medicine, and synthetic biology.

  18. Bioelectricity from kitchen and bamboo waste in a microbial fuel cell.

    Science.gov (United States)

    Moqsud, M Azizul; Omine, Kiyoshi; Yasufuku, Noriyuki; Bushra, Quazi S; Hyodo, Masayuki; Nakata, Yukio

    2014-02-01

    This study evaluated bioelectricity generation by using kitchen garbage (KG) and bamboo waste (BW) as a solid waste management option by a microbial fuel cell (MFC) method. The nutrient content [nitrogen, phosphorus and potassium (NPK)] of the by-products of bioelectricity were also analyzed and assessed for their potential use as a soil amendment. A one-chamber MFC was used for bioelectricity generation in laboratory experiments using both KG and BW. A data-logger recorded voltage every 20 mins at a constant room temperature of 25°C over 45 days. The trend of voltage generation was different for the two organic wastes. In the case of KG, the voltage at the initial stage (0-5 days) increased rapidly and then gradually to a peak of 620 mV. In contrast, the voltage increased gradually to a peak of 540 mV in the case of BW. The by-products of bioelectricity can be used as soil conditioner as its NPK content was in the range of soil conditioner mentioned in other literature. Thus, the MFC has emerged as an efficient and eco-friendly solution for organic waste management, especially in developing and technologically less sophisticated countries, and can provide green and safe electricity from organic waste.

  19. Acoustic ground impedance meter

    Science.gov (United States)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  20. Impeded Dark Matter

    OpenAIRE

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonst...

  1. Tensor Impedance Surfaces

    Science.gov (United States)

    2010-11-30

    ELECTROMAGNEETIC SURFACE IMPEDANCE PROPERTIES FA9550-09-C-0198 DR. ADOUR KABAKIAN HUGHES RESEARCH LABS AFOSR / RSE 875 North Randolph Street, Suit...325 Room 3112 Arlington, Virginia 22203-1768 AFOSR / RSE AFRL-OSR-VA-TR-2012-0770 Distribution A We have investigated and determined how the tensor...the case of a TM wave, which favors propagation along the shorter principal axis. Standard terms apply U U U UU Arje Nachman RSE (Program Manager

  2. Acoustic impedances of ear canals measured by impedance tube

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between two microphone...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...

  3. Test and analysis of impedance of carrier communication channel for residential meter-reading%住宅小区载波抄表信道阻抗测试与分析

    Institute of Scientific and Technical Information of China (English)

    王加钢; 吴小燕; 王琳; 王学伟

    2012-01-01

    以住宅小区载波抄表信道为测试对象,构建了低压电力线载波阻抗自动测试系统并开发了相应的系统主站管理软件。该系统长期稳定运行,可实现远程多载波频率阻抗自动连续测试及现场USB连接自动扫频阻抗测试等功能。本文根据长期采集的阻抗测试结果,着重分析了阻抗模值、相位在冬季受供暖设备影响下的变化规律,为低压电力线载波通信信道阻抗特性研究和阻抗匹配提供了参考。%In order to test the residential meter-reading channel, an automatic impedance test system for low-voltage power line carrier communication network was set up and management software was developed. This system can be used for remote automatic continuous impedance testing in the condition of multi-carrier frequency, and for automatic sweep impedance testing by local USB connection, and also capable of operate stably in long term, The variation of impedance modulus and phase under the influence of heating equipment in the winter was analyzed based on long-term test results of the system, and the impedance for low-voltage power line carrier communication channel was provided for impedance matching and characteristics analysis.

  4. Analysis, Design, and Optimization of Matched-Impedance Wide-Band Amplifiers With Multiple Feedback Loops Using 0.18 μm Complementary Metal Oxide Semiconductor Technology

    Science.gov (United States)

    Lin, Yo-Sheng; Lee, Tai-Hsing

    2004-10-01

    The realization of matched-impedance wide-band amplifier fabricated by 0.18 μm complementary metal oxide semiconductor (CMOS) process is reported. The technique of multiple feedback loops was used in the amplifier for terminal impedance matching and wide bandwidth simultaneously. The experimental results show that 3-dB bandwidth of 3 GHz and a gain of 10.7 dB with in-band input/output return loss more than 10 dB are obtained. These values agree well with those predicted from the analytic expressions derived for voltage gain, trans-impedance gain, bandwidth, and input/output return loss and impedance. In addition, the use of source capacitive peaking technique can improve the intrinsic over-damped characteristic of this amplifier.

  5. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  6. Characterization of PMN-PT piezoelectric single crystal and PMN-PT 1-3 composite at elevated temperatures by electrical impedance resonance analysis.

    Science.gov (United States)

    Wu, Zhengbin; Xi, Kui

    2014-07-01

    In this paper, lead magnesium niobate-lead titanate (PMN-PT) piezoelectric single crystal and its 1-3 composite counterpart were characterized and analyzed under different stable temperatures using both a Simulated Annealing (SA) optimization algorithm and the commercial software PRAP (Piezoelectric Resonance Analysis Program). Electrical impedance resonance characteristics of the two material samples over the range 25-125 °C were measured. The correlation between experimental data and numerical fits derived from both SA and PRAP is considered. Calculation of the determination coefficient (R1(2)) between numerically fitted and measured results is above 95% for both methods. Furthermore, variations in the number of data values used for the fit introduced no more than 3.1% uncertainty on the calculated material parameters. It is found that the complex material parameters of PMN-PT composite are more dependent on temperature than the single crystal. The phase transition of the PMN-PT, which is close to 90 °C, has an effect on the high temperature material characteristics of both piezoelectric materials. These calculated complex material parameters can be used for the design of ultrasonic transducers for elevated temperature applications.

  7. Impedance Analysis Method for Sound Insulation of Double Panels%双层板结构隔声性能阻抗法分析

    Institute of Scientific and Technical Information of China (English)

    王佐民; 姜在秀

    2011-01-01

    应用阻抗分析法与少量实样测试相结合的研究途径,探讨具有确定平面尺寸和边界条件的双层板结构的隔声量,进而得到相应的半理论半经验拟合公式.对3种不同夹层形式的双层板结构的倍频程隔声量进行实例分析,得到各自的拟合公式.3种夹层形式分别为吸声材料夹层、空气夹层(空腔)和空气-吸声材料夹层.利用这些拟合公式,可以便捷、高效地开展隔声结构参量的工程筛选.%The sound insulation of double panels with a certain plane dimensions and boundary condition can be analyzed by a combinative way of impedance analysis method and a few measurements, and an expert formula can be obtained. Three kinds of sandwich material constructions were analyzed respectively. Its sound insulations and expert formulae were obtained in octave band. These three kinds of sandwich materials are absorbing sandwich, air sandwich, and air-absorbing sandwich. It will be convenient and high efficient to screen insulation construction parameters by these expert formulae in engineering design.

  8. Determination of ammonium in Kjeldahl digests by gas-diffusion flow-injection analysis with a bulk acoustic wave-impedance sensor.

    Science.gov (United States)

    Su, X L; Nie, L H; Yao, S Z

    1997-11-01

    A novel flow-injection analysis (FIA) system has been developed for the rapid and direct determination of ammonium in Kjeldahl digests. The method is based on diffusion of ammonia across a PTFE gas-permeable membrane from an alkaline (NaOH/EDTA) stream into a stream of diluted boric acid. The trapped ammonium in the acceptor is determined on line by a bulk acoustic wave (BAW)-impedance sensor and the signal is proportional to the ammonium concentration present in the digests. The proposed system exhibits a favorable frequency response to 5.0 x 10(-6)-4.0 x 10(-3) mol l(-1) ammonium with a detection limit of 1.0 x 10(-6) mol l(-1), and the precision was better than 1% (RSD) for 0.025-1.0 mM ammonium at a through-put of 45-50 samples h(-1). Results obtained for nitrogen determination in amino acids and for proteins determination in blood products are in good agreement with those obtained by the conventional distillation/titration method, respectively. The effects of composition of acceptor stream, cell constant of conductivity electrode, sample volume, flow rates and potential interferents on the FIA signals were discussed in detail.

  9. X-ray photoelectron spectroscopic and electrochemical impedance spectroscopic analysis of RuO2-Ta2O5 thick film pH sensors.

    Science.gov (United States)

    Manjakkal, Libu; Cvejin, Katarina; Kulawik, Jan; Zaraska, Krzysztof; Socha, Robert P; Szwagierczak, Dorota

    2016-08-10

    The paper reports on investigation of the pH sensing mechanism of thick film RuO2-Ta2O5 sensors by using X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Interdigitated conductimetric pH sensors were screen printed on alumina substrates. The microstructure and elemental composition of the films were examined by scanning electron microscopy and energy dispersive spectroscopy. The XPS studies revealed the presence of Ru ions at different oxidation states and the surface hydroxylation of the sensing layer increasing with increasing pH. The EIS analysis carried out in the frequency range 10 Hz-2 MHz showed that the electrical parameters of the sensitive electrodes in the low frequency range were distinctly dependent on pH. The charge transfer and ionic exchange occurring at metal oxide-solution interface were indicated as processes responsible for the sensing mechanism of thick film RuO2-Ta2O5 pH sensors.

  10. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group.

    Science.gov (United States)

    Frerichs, Inéz; Amato, Marcelo B P; van Kaam, Anton H; Tingay, David G; Zhao, Zhanqi; Grychtol, Bartłomiej; Bodenstein, Marc; Gagnon, Hervé; Böhm, Stephan H; Teschner, Eckhard; Stenqvist, Ola; Mauri, Tommaso; Torsani, Vinicius; Camporota, Luigi; Schibler, Andreas; Wolf, Gerhard K; Gommers, Diederik; Leonhardt, Steffen; Adler, Andy

    2017-01-01

    Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an established medical technology, it requires consensus examination, nomenclature, data analysis and interpretation schemes. Such consensus is needed to compare, understand and reproduce study findings from and among different research groups, to enable large clinical trials and, ultimately, routine clinical use. Recommendations of how EIT findings can be applied to generate diagnoses and impact clinical decision-making and therapy planning are required. This consensus paper was prepared by an international working group, collaborating on the clinical promotion of EIT called TRanslational EIT developmeNt stuDy group. It addresses the stated needs by providing (1) a new classification of core processes involved in chest EIT examinations and data analysis, (2) focus on clinical applications with structured reviews and outlooks (separately for adult and neonatal/paediatric patients), (3) a structured framework to categorise and understand the relationships among analysis approaches and their clinical roles, (4) consensus, unified terminology with clinical user-friendly definitions and explanations, (5) a review of all major work in thoracic EIT and (6) recommendations for future development (193 pages of online supplements systematically linked with the chief sections of the main document). We expect this information to be useful for clinicians and researchers working with EIT, as well as for industry producers of this technology.

  11. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group

    Science.gov (United States)

    Frerichs, Inéz; Amato, Marcelo B P; van Kaam, Anton H; Tingay, David G; Zhao, Zhanqi; Grychtol, Bartłomiej; Bodenstein, Marc; Gagnon, Hervé; Böhm, Stephan H; Teschner, Eckhard; Stenqvist, Ola; Mauri, Tommaso; Torsani, Vinicius; Camporota, Luigi; Schibler, Andreas; Wolf, Gerhard K; Gommers, Diederik; Leonhardt, Steffen; Adler, Andy

    2017-01-01

    Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an established medical technology, it requires consensus examination, nomenclature, data analysis and interpretation schemes. Such consensus is needed to compare, understand and reproduce study findings from and among different research groups, to enable large clinical trials and, ultimately, routine clinical use. Recommendations of how EIT findings can be applied to generate diagnoses and impact clinical decision-making and therapy planning are required. This consensus paper was prepared by an international working group, collaborating on the clinical promotion of EIT called TRanslational EIT developmeNt stuDy group. It addresses the stated needs by providing (1) a new classification of core processes involved in chest EIT examinations and data analysis, (2) focus on clinical applications with structured reviews and outlooks (separately for adult and neonatal/paediatric patients), (3) a structured framework to categorise and understand the relationships among analysis approaches and their clinical roles, (4) consensus, unified terminology with clinical user-friendly definitions and explanations, (5) a review of all major work in thoracic EIT and (6) recommendations for future development (193 pages of online supplements systematically linked with the chief sections of the main document). We expect this information to be useful for clinicians and researchers working with EIT, as well as for industry producers of this technology. PMID:27596161

  12. Impedance of the PEP-II DIP screen

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.-K. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Weiland, T.

    1996-08-01

    The vacuum chamber of a storage ring normally consists of periodically spaced pumping slots. The longitudinal impedance of slots are analyzed in this paper. It is found that although the broad-band impedance is tolerable, the narrow-band impedance, as a consequence of the periodicity of the slots, may exceed the stability limit given by natural damping with no feedback system on. Based on this analysis, the PEP-II distributed-ion-pump (DIP) screen uses long grooves with hidden holes cut halfway to reduce both the broad-band and narrow-band impedances. (author)

  13. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer; Knudsen, Kim

    2014-01-01

    For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...... be based on a theoretical analysis of the underlying inverse problem....

  14. Impedance group summary

    Science.gov (United States)

    Blaskiewicz, M.; Dooling, J.; Dyachkov, M.; Fedotov, A.; Gluckstern, R.; Hahn, H.; Huang, H.; Kurennoy, S.; Linnecar, T.; Shaposhnikova, E.; Stupakov, G.; Toyama, T.; Wang, J. G.; Weng, W. T.; Zhang, S. Y.; Zotter, B.

    1999-12-01

    The impedance working group was charged to reply to the following 8 questions relevant to the design of high-intensity proton machines such as the SNS or the FNAL driver. These questions were first discussed one by one in the whole group, then each ne of them assigned to one member to summarize. On the lst morning these contributions were publicly read, re-discussed and re-written where required—hence they are not the opinion of a particular person, but rather the averaged opinion of all members of the working group. (AIP)

  15. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    Science.gov (United States)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  16. Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hjelm, Johan

    2014-01-01

    It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore, it was illustr......It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore...... acquired in the very broad temperature range of 200–900°C for complete elucidation of the impedance. All impedance spectra were analyzed in terms of porous electrode theory. Physical materials parameters were extracted from the analysis, which were in excellent accordance with literature values. Valuable...

  17. Photovoltaic Characterization and Electrochemical Impedance Spectroscopy Analysis of Dye-Sensitized Solar Cells Based on Composite TiO2-MWCNT Photoelectrodes

    Science.gov (United States)

    Parvazian, E.; Karimzadeh, F.; Enayati, M. H.

    2014-05-01

    Dye-sensitized solar cells (DSSCs) use the effect of light on dye molecules to generate electricity through a photoelectrochemical mechanism. The aim of this study is to synthesize nanostructured DSSCs based on titania-multiwalled carbon nanotube (TiO2-MWCNT) composite photoelectrodes and improve their performance and efficiency. DSSCs were fabricated based on single-layer TiO2-MWCNT photoelectrodes with various weight percentages of multiwalled carbon nanotubes and bilayer TiO2/TiO2-2%MWCNT photoelectrodes. The microstructure and thickness of the anodic layers were characterized by field-emission scanning electron microscopy and optical microscopy. Also, to compare the conversion efficiency and determine the electron behavior in the electrical equivalent circuit of these cells, photovoltaic characterization and electrochemical impedance spectroscopy (EIS) analysis were used. The DSSC based on a single-layer TiO2-2%MWCNT electrode, compared with other single-layer DSSCs in this study, had the highest conversion efficiency of 3.9% (for anodic layer thickness of 9 μm). The efficiency of the solar cell with the bilayer TiO2/TiO2-2%MWCNT photoelectrode, in comparison with the single-layer solar cell with the TiO2-2%MWCNT electrode, showed a 23% increase from 4.33% to 5.35% (for anodic layer thickness of 18 μm). EIS analysis indicated that the charge-transport resistance of the DSSC based on the bilayer photoelectrode, in comparison with the single-layer TiO2 and TiO2-2%MWCNT solar cells, was decreased by 68% and 57%, respectively.

  18. Outdoor ground impedance models.

    Science.gov (United States)

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram

    2011-05-01

    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  19. Isocratic and gradient impedance plot analysis and comparison of some recently introduced large size core-shell and fully porous particles.

    Science.gov (United States)

    Vanderheyden, Yoachim; Cabooter, Deirdre; Desmet, Gert; Broeckhoven, Ken

    2013-10-18

    The intrinsic kinetic performance of three recently commercialized large size (≥4μm) core-shell particles packed in columns with different lengths has been measured and compared with that of standard fully porous particles of similar and smaller size (5 and 3.5μm, respectively). The kinetic performance is compared in both absolute (plot of t0 versus the plate count N or the peak capacity np for isocratic and gradient elution, respectively) and dimensionless units. The latter is realized by switching to so-called impedance plots, a format which has been previously introduced (as a plot of t0/N(2) or E0 versus Nopt/N) and has in the present study been extended from isocratic to gradient elution (where the impedance plot corresponds to a plot of t0/np(4) versus np,opt(2)/np(2)). Both the isocratic and gradient impedance plot yielded a very similar picture: the clustered impedance plot curves divide into two distinct groups, one for the core-shell particles (lowest values, i.e. best performance) and one for the fully porous particles (highest values), confirming the clear intrinsic kinetic advantage of core-shell particles. If used around their optimal flow rate, the core-shell particles displayed a minimal separation impedance that is about 40% lower than the fully porous particles. Even larger gains in separation speed can be achieved in the C-term regime.

  20. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part II. Physics-based electrochemical impedance analysis

    Science.gov (United States)

    Bao, Cheng; Bessler, Wolfgang G.

    2015-03-01

    The state-of-the-art electrochemical impedance spectroscopy (EIS) calculations have not yet started from fully multi-dimensional modeling. For a polymer electrolyte membrane fuel cell (PEMFC) with long flow channel, the impedance plot shows a multi-arc characteristic and some impedance arcs could merge. By using a step excitation/Fourier transform algorithm, an EIS simulation is implemented for the first time based on the full 2D PEMFC model presented in the first part of this work. All the dominant transient behaviors are able to be captured. A novel methodology called 'configuration of system dynamics', which is suitable for any electrochemical system, is then developed to resolve the physical meaning of the impedance spectra. In addition to the high-frequency arc due to charge transfer, the Nyquist plots contain additional medium/low-frequency arcs due to mass transfer in the diffusion layers and along the channel, as well as a low-frequency arc resulting from water transport in the membrane. In some case, the impedance spectra appear partly inductive due to water transport, which demonstrates the complexity of the water management of PEMFCs and the necessity of physics-based calculations.

  1. Behaviour of the electrical impedance myography in isometric contraction of biceps brachii at different elbow joint angles

    Science.gov (United States)

    Coutinho, A. B. B.; Jotta, B.; Pino, A. V.; Souza, M. N.

    2012-12-01

    Electrical impedance myography (EIM) can be understood as an experimental technique applied to evaluate bioelectrical impedance associated to the muscular activity. With the development of technique, some studies are trying to associate the EIM parameters with the morphological and physiological changes that occur in the muscle during contraction. In this context this work sought to associate EIM parameters observed during isometric contractions of the biceps brachii muscle at different elbow joint angles with the correspondent muscular force. Differently from previous works that did not observe significant correlation between those data, our findings point to high correlations between the some EIM resistive parameters and the muscle force. Despite the need of further investigation, our results indicated that EIM technique can be used to estimate muscle force in a noninvasive way.

  2. Microwave Impedance Measurement for Nanoelectronics

    Directory of Open Access Journals (Sweden)

    M. Randus

    2011-04-01

    Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.

  3. Solving the forward problem in electrical impedance tomography for the human head using IDEAS (integrated design engineering analysis software), a finite element modelling tool.

    Science.gov (United States)

    Bayford, R H; Gibson, A; Tizzard, A; Tidswell, T; Holder, D S

    2001-02-01

    If electrical impedance tomography is to be used as a clinical tool, the image reconstruction algorithms must yield accurate images of impedance changes. One of the keys to producing an accurate reconstructed image is the inclusion of prior information regarding the physical geometry of the object. To achieve this, many researchers have created tools for solving the forward problem by means of finite element methods (FEMs). These tools are limited, allowing only a set number of meshes to be produced from the geometric information of the object. There is a clear need for geometrical accurate FEM models to improve the quality of the reconstructed images. We present a commercial tool called IDEAS, which can be used to create FEM meshes for these models. The application of this tool is demonstrated by using segmented data from the human head to model impedance changes inside the head.

  4. FFT-impedance spectroscopy analysis of the growth of magnetic metal nanowires in ultra-high aspect ratio InP membranes

    Science.gov (United States)

    Gerngross, M.-D.; Carstensen, J.; Föll, H.; Adelung, R.

    2016-01-01

    This paper reports on the characterization of the electrochemical growth process of magnetic nanowires in ultra-high-aspect ratio InP membranes via in situ fast Fourier transform impedance spectroscopy in a typical frequency range from 75 Hz to 18.5 kHz. The measured impedance data from the Ni, Co, and FeCo can be very well fitted using the same electric equivalent circuit consisting of a series resistance in serial connection to an RC-element and a Maxwell element. The impedance data clearly indicate the similarities in the growth behavior of Ni, Co and FeCo nanowires in ultra-high aspect ratio InP membranes—the beneficial impact of boric acid on the metal deposition in ultra-high aspect ratio membranes and the diffusion limitation of boric acid, as well as differences such as passivation or side reactions.

  5. Electrical impedance characterization of normal and cancerous human hepatic tissue.

    Science.gov (United States)

    Laufer, Shlomi; Ivorra, Antoni; Reuter, Victor E; Rubinsky, Boris; Solomon, Stephen B

    2010-07-01

    The four-electrode method was used to measure the ex vivo complex electrical impedance of tissues from 14 hepatic tumors and the surrounding normal liver from six patients. Measurements were done in the frequency range 1-400 kHz. It was found that the conductivity of the tumor tissue was much higher than that of the normal liver tissue in this frequency range (from 0.14 +/- 0.06 S m(-1) versus 0.03 +/- 0.01 S m(-1) at 1 kHz to 0.25 +/- 0.06 S m(-1) versus 0.15 +/- 0.03 S m(-1) at 400 kHz). The Cole-Cole models were estimated from the experimental data and the four parameters (rho(0), rho(infinity), alpha, f(c)) were obtained using a least-squares fit algorithm. The Cole-Cole parameters for the cancerous and normal liver are 9 +/- 4 Omega m(-1), 2.2 +/- 0.7 Omega m(-1), 0.5 +/- 0.2, 140 +/- 103 kHz and 50 +/- 28 Omega m(-1), 3.2 +/- 0.6 Omega m(-1), 0.64 +/- 0.04, 10 +/- 7 kHz, respectively. These data can contribute to developing bioelectric applications for tissue diagnostics and in tissue treatment planning with electrical fields such as radiofrequency tissue ablation, electrochemotherapy and gene therapy with reversible electroporation, nanoscale pulsing and irreversible electroporation.

  6. Optically stimulated differential impedance spectroscopy

    Science.gov (United States)

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  7. Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells.

    Science.gov (United States)

    Hao, Liting; Zhang, Baogang; Cheng, Ming; Feng, Chuanping

    2016-02-01

    Four ordinary carbon sources affecting V(V) reduction and bioelectricity generation in single chamber microbial fuel cells (MFCs) were investigated. Acetate supported highest maximum power density of 589.1mW/m(2), with highest V(V) removal efficiency of 77.6% during 12h operation, compared with glucose, citrate and soluble starch. Exorbitant initial V(V) concentration led to lower V(V) removal efficiencies and power outputs. Extra addition of organics had little effect on the improvement of MFCs performance. V(V) reduction and bioelectricity generation were enhanced and then suppressed by the increase of conductivity. The larger the external resistance, the higher the V(V) removal efficiencies and voltage outputs. High-throughput 16S rRNA gene pyrosequencing analysis implied the accumulation of Enterobacter which had the capabilities of V(V) reduction, electrochemical activity and fermentation, accompanied with other functional species as Pseudomonas, Spirochaeta, Sedimentibacter and Dysgonomonas. This study steps forward to remediate V(V) contaminated environment based on MFC technology.

  8. Low-noise two-wired buffer electrodes for bioelectric amplifiers.

    Science.gov (United States)

    Degen, Thomas; Torrent, Simon; Jäckel, Heinz

    2007-07-01

    Active buffer electrodes are known to improve the immunity of bioelectric recordings against power line interferences. A survey of published work reveals that buffer electrodes are almost exclusively designed using operational amplifiers (opamps). In this paper, we discuss the advantage of utilizing a single transistor instead. This allows for a simple electrode, which is small and requires only two wires. In addition, a single transistor adds considerably less noise when compared to an opamp with the same power consumption. We then discuss output resistance and gain as well as their respective effect on the common mode rejection ratio (CMRR). Finally, we demonstrate the use of two-wired buffer electrodes for a bioelectric amplifier.

  9. ELF-magnetic field induced effects on the bioelectric activity of single neurone cells

    Science.gov (United States)

    Azanza, Maria J.; del Moral, A.

    1998-01-01

    The membrane bioelectric activity recorded from single neurones is dramatically modified under applied extremely low frequency magnetic fields (ELF-MF) of 50 Hz and 1-15 mT peak intensity. In ≌27% of the neurones studied a firing rhythm is generated for ≌7 mT, which resembles synchronous oscillations activity. The possibility that ELF-MF could generate neuronal networks synchrony firing does exist as an explanatory physical model shows.

  10. Bioinspired Nanosucker Array for Enhancing Bioelectricity Generation in Microbial Fuel Cells.

    Science.gov (United States)

    Wang, Wei; You, Shijie; Gong, Xiaobo; Qi, Dianpeng; Chandran, Bevita K; Bi, Lanpo; Cui, Fuyi; Chen, Xiaodong

    2016-01-13

    A bioinspired active anode with a suction effect is demonstrated for microbial fuel cells by constructing polypyrrole (PPy) nanotubular arrays on carbon textiles. The oxygen in the inner space of the nanosucker can be depleted by micro-organisms with the capability of facul-tative respiration, forming a vacuum, which then activates the electrode to draw the microorganism by suction and thus improve the bioelectricity generation.

  11. Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2012-01-01

    Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  12. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2015-04-01

    Full Text Available This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1 early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2 microfluidic impedance flow cytometry with enhanced sensitivity; (3 microfluidic impedance and optical flow cytometry for single-cell analysis and (4 integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  13. [Specifics of perception of acoustic image of intrinsic bioelectric brain activity].

    Science.gov (United States)

    Konstantinov, K V; Leonova, M K; Miroshnikov, D B; Klimenko, V M

    2014-06-01

    We studied the particularities of perception of the acoustic image of intrinsic EEG. We found that the assessment of perception of sounds, the presentation of which was synchronized and was agreed with current bioelectric brain activity, is higher that assessment of perception of acoustic EEG image presented in recorded form. Presentation of recorded acoustic image of EEG is accompanied by increased activity of beta-band in the frontal areas, while real-time presentation of acoustic EEG image is accompanied by the increase of slow wave activity: theta- and delta-bands of occipital areas of the brain. Increase activity in theta- and delta-bands of occipital areas in sessions of hearing the acoustic image of EEG in real time depend on the baseline frequency structure of EEG and correlates with expression of alpha-, beta- and theta-bands of bioelectric brain activity in both frontal and occipital areas. We suppose that presentation of sounds synchronized and agreed with the current bioelectric activity, activated the regulatory brain structures.

  14. 三支节液态调配器ICRH时的阻抗匹配分析%Analysis of Impedance Matching of Three Liquid Stub Tuner for ICRH

    Institute of Scientific and Technical Information of China (English)

    尹陈艳; 龚学余; 杜丹; 向东; 胡凌志; 谭清懿

    2014-01-01

    In the paper ,the impedance matching between RF source and antenna load was studied by adopting the three liquid stub tuner for ion cyclotron resonance heating (ICRH) on Tokamak based on the transmission line theory .The impedance matching process was analyzed ,and the optimized parameters of three liquid stub tuner for the changeable antenna input impedance were obtained according to impedance matching condition .The numerical simulation results show that optimized parameters of three liquid stub tuner can make the antenna system obtain good matching w hen the other experimental conditions are same .%基于传输线理论,采用三支节液态调配器以达到托卡马克离子回旋共振加热(ICRH)时射频源和天线负载间的阻抗匹配。分析了其阻抗匹配过程,并根据阻抗匹配条件得到天线输入阻抗变化时,三支节液态调配器的优化调配参数。利用数值模拟验证了在其他实验参数相同的条件下,三支节液态调配器的优化调配参数能使天线系统获得良好的匹配状态。

  15. Experimental Analysis of the Effects of CO and CO2 on High Temperature PEM Fuel Cell Performance using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Vang, Jakob Rabjerg

    2010-01-01

    of fuel cells offer many advantages, particularly the increased desorption rate of CO on the anode catalyst. In order to evaluate the impact of CO and CO2 on the dynamic performance of the HTPEM fuel cell, electrochemical impedance spectroscopy (EIS) has been implemented in Labview, and used on BASF...

  16. Analysis of three-phase inverter small signal input impedance%三相逆变器小信号输入阻抗特性研究

    Institute of Scientific and Technical Information of China (English)

    郑先成; 王文光; 黄沈

    2015-01-01

    Based on the important significance of three-phase inverter input impedance characteristics while analyzing the stability of power system and controlling the power quality. This paper gives the small signal model of three-phase inverter and deduce the impedance expressions of the inverter. The influence on input impedance is analyzed. Then the conclusions are drew: overload is not conducive to the stability of the system; negative impedance characteristics is related to the control parameters, the larger the bandwidth is, the greater the negative impedance characteristics spectrum is;The influence of LC filter parameters on the input impedance of inverters mainly manifests under high frequency conditions. The impedance amplitude increases as the damping ratio enlarges. This paper also puts forward a new idea on inverter design by which the inverter parameters meets all the requirements of system stability. The simulation results show that cascade system comprised of rectifier and inverter is stable.%文中基于三相逆变器输入阻抗特性对于分析电力系统的稳定性和控制电能质量的重要意义,通过小信号建模对三相逆变器的输入阻抗进行了分析,得出以下结论:增加负载不利于系统稳定性;控制参数与维持逆变器输入阻抗负阻抗特性有关,带宽越大,负阻抗特性的频段越宽;而LC滤波器参数对输入阻抗的影响主要体现在高频段,随着阻尼比的增加,其输入阻抗幅值增加。本文还提出一种设计逆变器新思路,即从满足系统稳定性要求出发设计逆变器参数,仿真结果表明,整流器与逆变器级联系统是稳定的。

  17. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  18. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory.

    Science.gov (United States)

    Ehsani, A; Mahjani, M G; Hosseini, M; Safari, R; Moshrefi, R; Mohammad Shiri, H

    2017-03-15

    Inhibition performance of Thymus vulgaris plant leaves extract (thyme) as environmentally friendly (green) inhibitor for the corrosion protection of stainless steel (SS) type 304 in 1.0molL(-1) HCl solution was studied by potentiodynamic polarization, electrochemical impedance (EIS) and electrochemical noise measurements (EN) techniques. The EN data were analyzed with FFT technique to make the spectral power density plots. The calculations were performed by MATLAB 2014a software. Geometry optimization and calculation of the structural and electronic properties of the molecular system of inhibitor have been carried out using UB3LYP/6-311++G(∗∗) level. Moreover, the results obtained from electrochemical noise analysis were compared with potentiodynamic polarization and electrochemical impedance spectroscopy. All of the used techniques showed positive effect of green inhibitor with increasing inhibitor concentration.

  19. Modeling the Impedance of Nanostructured PV in Simulink/matlab

    Science.gov (United States)

    Houshmand, Mohammad; Zandi, Mohammad. H.; Gorji, Nima E.

    2013-08-01

    Impedance measurement is a common method to study the electrical properties of thin film photovoltaics. For the first time, we use the MATLAB/Simulink environment to extract the complex impedance of the nanostructured heterojunction solar cells. The impedance magnitude, phase and Nyquist plot of the PV are simulated in LTI Viewer and Impedance versus Frequency analysis tools of SimPower GUI block of Simulink. We examined a variety of the equivalent circuits consisting of capacitance, series and shunt resistances representing the solar cell structure. The model uses the parameters with values reported in the literature at room temperature and zero bias. The effect of the additional capacitance and resistances in the equivalent circuits on the impedance components of the cells is considered by Simulink environment.

  20. Method of estimating pulse response using an impedance spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.

  1. Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding

    Science.gov (United States)

    Lu, Jin; Wang, Wei; Wang, Shaopeng; Shan, Xiaonan; Li, Jinghong; Tao, Nongjian

    2012-01-01

    Plasmonic-based electrochemical impedance spectroscopy (P-EIS) is developed to investigate molecular binding on surfaces. Its basic principle relies on the sensitive dependence of surface plasmon resonance (SPR) signal on surface charge density, which is modulated by applying an AC potential to a SPR chip surface. The AC component of the SPR response gives the electrochemical impedance, and the DC component provides the conventional SPR detection. The plasmonic-based impedance measured over a range of frequency is in quantitative agreement with the conventional electrochemical impedance. Compared to the conventional SPR detection, P-EIS is sensitive to molecular binding taking place on the chip surface, and less sensitive to bulk refractive index changes or non-specific binding. Moreover, this new approach allows for simultaneous SPR and surface impedance analysis of molecular binding processes. PMID:22122514

  2. 空气置换法、生物电阻抗法与皮褶厚度法测试身体成分的比较研究%Comparative Study of Air Displacement Plethysmography, Bioelectrical Impedance Analysis and Skinfold Thickness in the Determination of Adult Body Fat Percentage

    Institute of Scientific and Technical Information of China (English)

    金晶; 庄洁; 陈佩杰; 王人卫

    2008-01-01

    目的:探讨生物电阻抗法与皮褶厚度法测定身体成分的结果与空气置换法(BOD-POD)结果的相关性.方法:随机选取20~59岁上海市居民697名(男471名,女226名),以空气置换法测定的身体成分值作为标准,将生物电阻抗法(OMRON与TANITA)和皮褶厚度法(测量部位为上臂部和肩胛部)的结果与之进行单因素方差分析和相关性分析.结果:皮褶厚度法测试结果与空气置换法结果相关性最低;生物电阻抗法中,TANITA测试结果与空气置换法结果相关性最高,OMRON相关性较低.结果提示:生物电阻抗法中TANI-TA测量的可靠性相对较高,皮褶厚度法(测量部位为上臂部和肩胛部)测量的可靠性相对较低.

  3. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    Science.gov (United States)

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  4. Does bioimpedance analysis or measurement of natriuretic peptides aid volume assessment in peritoneal dialysis patients?

    Science.gov (United States)

    Davenport, Andrew

    2013-01-01

    Cardiovascular mortality remains the commonest cause of death for peritoneal dialysis patients. As such, preventing persistent hypervolemia is important. On the other hand, hypovolemia may potentially risk episodes of acute kidney injury and loss of residual renal function, a major determinant of peritoneal dialysis technique survival. Bioimpedance has developed from a single-frequency research tool to a multi-frequency bioelectrical impedance analysis readily available in the clinic and capable of measuring extracellular, intracellular, and total body water. Similarly, natriuretic peptides released from the heart because of myocardial stretch and increased intracardiac volume have also been variously reported to be helpful in assessing volume status in peritoneal dialysis patients. The question then arises whether these newer technologies and biomarkers have supplanted the time-honored clinical assessment of hydration status or whether they are merely adjuncts that aid the experienced clinician.

  5. Electrical conductivity and complex impedance analysis of 20% Ti-doped La 0.7Sr 0.3MnO 3 perovskite

    Science.gov (United States)

    Rahmouni, H.; Nouiri, M.; Jemai, R.; Kallel, N.; Rzigua, F.; Selmi, A.; Khirouni, K.; Alaya, S.

    2007-09-01

    The electrical conductance of 20% Ti-doped La 0.7Sr 0.3MnO 3 (LSMO) was measured using admittance spectroscopy over a wide temperature and frequency ranges. The impedance plane plot shows semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. Activation energy inferred from conductance spectrum matches very well with the value estimated from relaxation time indicating that relaxation process and conductivity have the same origin. The electrical conductance of La 0.7Sr 0.3Mn 0.8Ti 0.2O 3 is found to be dependent on temperature and frequency. Also, the electronic conduction appears to be dominated by thermally activated hopping of small polaron (SPH) at high temperatures and by variable range hopping (VRH) at low temperatures.

  6. GB-R impedances: new approach to impedance simulation

    Science.gov (United States)

    Serrano, L.; Carlosena, A.

    1995-04-01

    A new design procedure is presented for obtaining simulated inductors and large capacitors from classical opamp circuits. Such impedances exploit almost all of the available bandwidth of the operational amplifier.

  7. Time course of pulmonary vascular response to an acutely repetitive pulmonary microembolism in dogs--an analysis using pulmonary vascular impedance.

    Science.gov (United States)

    Tobise, K; Tosaka, S; Onodera, S

    1992-05-01

    To understand the mechanism leading to progressive pulmonary hypertension, we investigated the time course of vascular response to an acutely repetitive pulmonary microembolism in dogs by using pulmonary vascular impedance. In a normal state, the mean pulmonary arterial pressure (mPAP) was transiently increased by emboli, and the impedance moduli of 0 Hz (= Rin), 1.5 Hz and 3 Hz were slightly increased. A four-element electrical vascular model showed the transient increase in peripheral pulmonary vascular resistance (R2) and inertia, and reduction in compliance (C). In contrast, in a state of a slight pulmonary hypertension, mPAP was continuously increased by the same amount of emboli, and the impedance moduli of both 0 Hz and 3 Hz were significantly increased. By a four-element model, a severe increase in R2 and reduction in C were observed, and these changes continued. Therefore, although the vascular response to pulmonary microembolism basically depends on the degree of mechanical obstruction, this response is thought to be modulated by the responsiveness of pulmonary vessels at that time, which is involved in the alteration in the local characteristics of pulmonary vessels, and/or the recruitment of a new blood flow.

  8. Spatially-resolved current and impedance analysis of a stirred tank reactor and serpentine fuel cell flow-field at low relative humidity

    Science.gov (United States)

    Hogarth, Warren H. J.; Steiner, Johannes; Benziger, Jay B.; Hakenjos, Alex

    A 20 cm 2 segmented anode fuel cell is used to investigate the performance of a hydrogen-air fuel cell at 1 atm. with two different flow-fields using spatially-resolved current and impedance measurements. A self-draining stirred tank reactor (STR) fuel cell and a single-channel serpentine fuel cell are compared with humidified and dry feed conditions. The current density distribution, impedance distribution, heat distribution and water evolution are compared for the two different flow-fields. With inlet feed dew points of 30 °C, the STR fuel cell and serpentine system performed comparably with moderate current gradients. With drier feeds, however, the STR fuel cell exhibited superior overall performance in terms of a higher total current and lower current, impedance and temperature distribution gradients. The STR fuel cell design is superior to a single-channel serpentine design under dry conditions because its open channel design allows the feed gases to mix with the product water and auto-humidify the cell.

  9. HDR reservoir flow impedance and potentials for impedance reduction

    Energy Technology Data Exchange (ETDEWEB)

    DuTeau, R.; Brown, D.

    1993-06-01

    The data from flow tests which employed two different production zones in a well at Fenton Hill indicates the flow impedance of a wellbore zone damaged by rapid depressurization was altered, possibly by pressure spallation, which appears to have mechanically propped the joint apertures of outlet flow paths intersecting the altered wellbore. The rapid depressurization and subsequent flow test data derived from the damaged well has led to the hypothesis that pressure spallation and the resultant mechanical propping of outlet flow paths reduced the outlet flow impedance of the damaged wellbore. Furthermore, transient pressure data shows the largest pressure drop between the injection and production wellheads occurs near the production wellbore, so lowering the outlet impedance by increasing the apertures of outlet flow paths will have the greatest effect on reducing the overall reservoir impedance. Fenton Hill data also reveals that increasing the overall reservoir pressure dilates the apertures of flow paths, which likewise serves to reduce the reservoir impedance. Data suggests that either pressure dilating the wellbore connected joints with high production wellhead pressure, or mechanically propping open the outlet flow paths will increase the near-wellbore permeability. Finally, a new method for calculating and comparing near-wellbore outlet impedances has been developed. Further modeling, experimentation, and engineered reservoir modifications, such as pressure dilation and mechanical propping, hold considerable potential for significantly improving the productivity of HDR reservoirs.

  10. Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

    KAUST Repository

    Adler, S. B.

    2013-08-31

    This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.

  11. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... control methods. Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems. Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...

  12. IMPEDANCE CHARACTERISTICS OF POLYFURAN FILMS

    Institute of Scientific and Technical Information of China (English)

    Liang Li; Xiao-bo Wan; Gi Xue

    2002-01-01

    Electrochemical impedance spectroscopy (EIS) was first used for the characterization of polyfuran (PFu) films that had been formed electrochemically on an Au electrode. The polyfuran was measured in high oxidation state, intermediate oxidation state and reduction state, respectively. As the oxidation level is increased, the ionic conductivity of PFu/BF4-increases. And impedance studies on PFu show that the anion BF4- appears to be mobile with a high diffusion coefficient of approximately 10-8 cm2 @ s-1.

  13. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  14. 同塔双回输电线路零序阻抗的测量及分析%Measurement and Analysis of the Zero Sequence Impedance of the Double Circuit Transmission Line

    Institute of Scientific and Technical Information of China (English)

    刘博; 卢明; 吕中宾; 杨晓辉; 杨威; 郭磊

    2011-01-01

    When the zero-sequence impedance of circuit I of the double circuit transmission line is measured, zero-sequence induced current will flow through the path composed of overhead ground wire, earth and another circuit II which is short connected and grounded in two ends and can be considered as shielding line with two terminals grounded , due to the mutual inductance between them. The path of those grounded lines is equivalent to a shorted secondary coil of circuit I and cause demagnetization on its magnetic field. The measured value of zero-sequence impedance amplitude will be reduced as a result of the path formed by those grounded lines and the zero-sequence impedance angle will also be affected. Inaccuracy can be caused by this measurement error of zero-sequence impedance to relay protective setting, power flow calculation and stability analysis. This article analyzes Double Circuit Transmission line with continuous ground zero sequence impedance grounding of the accuracy of measurement results,By EMTP of typical double-circuit transmission line tower with zero sequence impedance simulation, And analysis of the four 500 kV lines, two 220 kV lines, zero sequence impedance of the measured results, the measurement issues that should be noted, it puts forward some problems that should be paid attention to during the process of measurement and calculation.%同塔双回架空输电线路,测量I回线路零序阻抗,II回线路双端短路接地,其三相导线、地线与大地构成零序电流的通路,II回线路亦可等效为连续接地的避雷线,避雷线相当于I回线路的一个二次短路线圈,对I回线路磁场起去磁作用,引起I回线路零序阻抗幅值的降低和相角的变化.笔者理论分析同塔双回输电线路地线连续接地对零序阻抗测量结果准确性的影响,通过EMTP对典型同塔双回输电线路零序阻抗参数进行仿真计算,并且分析了4条500 kV线路、2条220 kV线路的零序阻抗实测结果,提

  15. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    Science.gov (United States)

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing

  16. A role for bioelectric effects in the induction of bystander signals by ionizing radiation?

    Science.gov (United States)

    Mothersill, C; Moran, G; McNeill, F; Gow, M D; Denbeigh, J; Prestwich, W; Seymour, C B

    2007-04-03

    The induction of "bystander effects" i.e. effects in cells which have not received an ionizing radiation track, is now accepted but the mechanisms are not completely clear. Bystander effects following high and low LET radiation exposure are accepted but mechanisms are still not understood. There is some evidence for a physical component to the signal. This paper tests the hypothesis that bioelectric or biomagnetic phenomena are involved. Human immortalized skin keratinocytes and primary explants of mouse bladder and fish skin, were exposed directly to ionizing radiation or treated in a variety of bystander protocols. Exposure of cells was conducted by shielding one group of flasks using lead, to reduce the dose below the threshold of 2mGy (60)Cobalt gamma rays established for the bystander effect. The endpoint for the bystander effect in the reporter system used was reduction in cloning efficiency (RCE). The magnitude of the RCE was similar in shielded and unshielded flasks. When cells were placed in a Faraday cage the magnitude of the RCE was less but not eliminated. The results suggest that liquid media or cell-cell contact transmission of bystander factors may be only part of the bystander mechanism. Bioelectric or bio magnetic fields may have a role to play. To test this further, cells were placed in a Magnetic Resonance Imaging (MRI) machine for 10 min using a typical head scan protocol. This treatment also induced a bystander response. Apart from the obvious clinical relevance, the MRI results further suggest that bystander effects may be produced by non-ionizing exposures. It is concluded that bioelectric or magnetic effects may be involved in producing bystander signaling cascades commonly seen following ionizing radiation exposure.

  17. Microwave impedance imaging on semiconductor memory devices

    Science.gov (United States)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  18. Electrical Stimulation: A Panacea for Disease?: DARPA Investigates New Bioelectrical Interfaces for a Range of Disorders.

    Science.gov (United States)

    Grifantini, Kristina

    2016-01-01

    It seems simple: send a small electrical current to a major nerve in the body and stimulate hormones and organs to react in the way you want. New efforts by research teams are doing just that, zapping peripheral nerves attached to major organs in the hopes of addressing problems as diverse as inflammatory bowel disease, chronic pain, and posttraumatic stress disorder. Thanks to the continued advance of smaller and more efficient electronics, researchers are finding new ways to develop implantable bioelectrical devices to treat a wide range of ailments.

  19. Viability of a Bioelectrical Signal Acquisition System Energized by Cellphone with NFC.

    Science.gov (United States)

    Kay, Marcel Seiji; Iaione, Fábio

    2015-01-01

    Currently, smartphones are used in various systems in the medical field due to the presence of various features, notably Near Field Communication (NFC). NFC utilizes communication technology and an energy supply based on electromagnetic induction. One of the most common medical tests is the electrocardiogram (ECG), through which various heart diseases can be diagnosed. The objective of this study is to evaluate the feasibility of providing power to a bioelectrical signal acquisition module using a mobile phone with NFC. After testing it was indicated that it is possible to construct a passive module to acquire ECG signals using NFC mobile phone.

  20. Lenguas bioelectrónicas en el análisis de polifenoles del vino

    OpenAIRE

    Cetó, Xavier; Valle Zafra, Manuel del

    2012-01-01

    El desarrollo y uso de una lengua bioelectrónica para llevar a cabo la discriminación y cuantificación de diferentes polifenoles (catecol, ácido cafeico y catequina) presentes en el vino és el objetivo de esta investigación desarrollada por el Departamento de Química de la UAB. En una primera aplicación, la discriminación de estos tuvo lugar en muestras sintéticas, mientras que en el siguiente paso se trabajó sobre muestras dopadas utilizando el vino como matriz. Esta discriminación puede ser...

  1. [Disturbed brain bioelectric activity in patients with liver encephalopathy and cirrhosis].

    Science.gov (United States)

    Alekseeva, A S; Beloborodova, E I; Rachkovskiĭ, M I; Filippova, L P; Lambrova, E G

    2009-01-01

    Brain bioelectric activity in 52 patients with liver cirrhosis (LC) was measured with respect to the degree of hepatic encephalopathy (HE) from the results of background and reactive EEG using West Haven criteria. As the severity of LC increased, signs of HE on background EEG appeared, index frequency and a-rhythm decreased and its amplitude increased. Reactive EEG was indicative of reduced duration, intensity, and decrement rate of responses to orientational loading (visual, somatosensorial, and auditory evoked potentials). It is concluded that EEG studies permit to predict dynamics of LC clinical course and may be used as an additional diagnostic tool, especially at the preclinical stage of HE.

  2. Motion discrimination of throwing a baseball using forearm electrical impedance

    Science.gov (United States)

    Nakamura, Takao; Kusuhara, Toshimasa; Yamamoto, Yoshitake

    2013-04-01

    The extroversion or hyperextension of elbow joint cause disorders of elbow joint in throwing a baseball. A method, which is easy handling and to measure motion objectively, can be useful for evaluation of throwing motion. We investigated a possibility of motion discrimination of throwing a baseball using electrical impedance method. The parameters of frequency characteristics (Cole-Cole arc) of forearm electrical impedance were measured during four types of throwing a baseball. Multiple discriminant analysis was used and the independent variables were change ratios of 11 parameters of forearm electrical impedance. As results of 120 data with four types of throwing motion in three subjects, hitting ratio was very high and 95.8%. We can expect to discriminate throwing a baseball using multiple discriminant analysis of impedance parameters.

  3. MD 349: Impedance Localization with AC-dipole

    CERN Document Server

    Biancacci, Nicolo; Metral, Elias; Salvant, Benoit; Papotti, Giulia; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2016-01-01

    The purpose of this MD is to measure the distribution of the transverse impedance of the LHC by observing the phase advance variation with intensity between the machine BPMs. Four injected bunches with different intensities are excited with an AC dipole and the turn by turn data is acquired from the BPM system. Through post-processing analysis the phase variation along the machine is depicted and, from this information, first conclusions of the impedance distribution can be drawn.

  4. Analysis of Impedance Matching Influence on Signal Transmission Quality%阻抗匹配对信号传输质量影响的分析

    Institute of Scientific and Technical Information of China (English)

    简钊

    2012-01-01

    Base on the common fault phenomenon in daily maintenance of digital television, this article intro- duces some technical problems often ignored and analyses special troubles made by coaxial cables in CATV system connecting theory with practice. Then the basic principles and concepts of impedance matching be- tween signal and transmission line are presented, to prove the consequence of signal transmission quality by impedance matching or not. With the purpose to give some references in maintenance work, a number of com- mon factors, which probable generate the fault phenomenon have summarized in the last place.%针对数字电视日常维护中常见的故障现象,从实践到理论分析了有线电视系统中由同轴电缆引起的一些特殊故障,阐述了信号与传输线路之间阻抗匹配的基本原理与概念,进一步验证阻抗的匹配与否直接关系到信号传输质量的优劣,最后总结了导致该类故障的常见因素,给相关维护工作提供参考。

  5. Dielectric relaxation and electrical conduction mechanism in A2HoSbO6 (A=Ba, Sr, Ca) Double Perovskite Ceramics: An impedance spectroscopic analysis

    Science.gov (United States)

    Halder, Saswata; Dutta, Alo; Sinha, T. P.

    2017-03-01

    The AC electrical properties of polycrystalline double perovskite oxides A2HoSbO6 (A=Ba, Sr, Ca; AHS) synthesized by solid state reaction technique has been explored by using impedance spectroscopic studies. The Rietveld refinement of the room temperature X-ray diffraction data show that Ba2HoSbO6 (BHS) has cubic phase and Sr2HoSbO6 (SHS) and Ca2HoSbO6 (CHS) crystallize in monoclinic phase. The samples show significant frequency dispersion in their dielectric properties. The polydispersive nature of the relaxation mechanism is explained by the modified Cole-Cole model. The scaling behavior of dielectric loss indicate the temperature independence of the relaxation mechanism. The magnitude of the activation energy indicates that the hopping mechanism is responsible for carrier transport in AHS. The frequency dependent conductivity spectra follow the double power law. Impedance spectroscopic data presented in the Nyquist plot (Z" versus Z‧) are used to identify an equivalent circuit along with to know the grain, grain boundary and interface contributions. The constant phase element (CPE) is used to analyze the experimental response of BHS, SHS and CHS comprehending the contribution of different microstructural features to the conduction process. The temperature dependent electrical conductivity shows a semiconducting behavior.

  6. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    Science.gov (United States)

    del Moral, A.; Azanza, María J.

    2015-03-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate ("frequency"), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca2+ Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD-CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD-CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B0 ≅0.2-15 mT) AC-MF of frequency fM=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation.

  7. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moral, A. del, E-mail: delmoral@unizar.es [Laboratorio de Magnetismo, Departamento de Física de Materia Condensada and Instituto de Ciencia de Materiales, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain); Azanza, María J., E-mail: mjazanza@unizar.es [Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain)

    2015-03-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca{sup 2+} Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B{sub 0}≅0.2–15 mT) AC-MF of frequency f{sub M}=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca{sup 2+} Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons.

  8. [Effect of dosed diet restriction on physiological remodeling and bioelectric properties of bone].

    Science.gov (United States)

    Levashov, M I; Ianko, R V; Chaka, E G; Safonov, S L

    2014-07-01

    The effect of dosed diet restriction on the physiological remodeling and bioelectric properties of bone tissue was studied in 48 male Wistar rats 3- and 18-months of age. The rate of bone tissue apposition was studied by the dynamic histomorphometry method (intravital tetracycline labeling). Electric potentials on the periosteal surface of the freshly isolated femurs were recorded. The magnitude of dielectric loss factor was determined to assess the quality of bone tissue. The control rats received a standard diet. The experimental rats received a limited diet (60 % of the standard mass) for 28 days. The magnitude and rate of the bone tissue apposition on the endosteal and periosteal surface of the tibia were less by 38.4% and 122.7% respectively in experimental rats after dosed diet restriction. Electric potential in the metaphyseal-epiphyseal growth zones of the femur was 29.7% lower, and the dielectric loss factor increased by 15.8%. The bone tissue apposition rate and the electric potential magnitude were increased 10 days after completion of the dosed diet restriction. The magnitude of the dielectric loss factor decreased after returning to the standard diet. Key words: dosed diet restriction, bone, remodelling, bioelectric properties.

  9. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    Science.gov (United States)

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method.

  10. Definition of the characteristic impedance

    Institute of Scientific and Technical Information of China (English)

    徐云生; Abbas Sayed OMAR

    1996-01-01

    Currently available definitions of the characteristic impedance are ambiguous andior inaccurate.A general definition,based on the description of discontinuities between adjacent waveguides,is given.This definition is accurate and independent of the structure concerned.So it can be applied to the design of passive components in any type of transmission lines.Using this definition,a given structure can be uniquely characterized,but the absolute value of the characteristic impedance has no sense any more.As an example,the design of a microstrip impedance transformer using this new definition is presented.Numerical results using the mode-matching method prove the accuracy of the theory.

  11. Transverse Impedance of LHC Collimators

    CERN Document Server

    Métral, E; Assmann, Ralph Wolfgang; Boccardi, A; Bracco, C; Bohl, T; Caspers, Friedhelm; Gasior, M; Jones, O R; Kasinski, K; Kroyer, T; Redaelli, S; Robert-Demolaize, R; Roncarolo, F; Rumolo, G; Salvant, B; Steinhagen, R; Weiler, T; Zimmermann, F

    2007-01-01

    The transverse impedance in the LHC is expected to be dominated by the numerous collimators, most of which are made of Fibre-Reinforced-Carbon to withstand the impacts of high intensity proton beams in case of failures, and which will be moved very close to the beam, with full gaps of few millimetres, in order to protect surrounding super-conducting equipments. We present an estimate of the transverse resistive-wall impedance of the LHC collimators, the total impedance in the LHC at injection and top energy, the induced coupled-bunch growth rates and tune shifts, and finally the result of the comparison of the theoretical predictions with measurements performed in 2004 and 2006 on a prototype collimator installed in the SPS.

  12. Impedances of Laminated Vacuum Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  13. Low profile conformal antenna arrays on high impedance substrate

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents electromagnetic (EM) design and analysis of dipole antenna array over high impedance substrate (HIS). HIS is a preferred substrate for low-profile antenna design, owing to its unique boundary conditions. Such substrates permit radiating elements to be printed on them without any disturbance in the radiation characteristics. Moreover HIS provides improved impedance matching, enhanced bandwidth, and increased broadside directivity owing to total reflection from the reactive surface and high input impedance. This book considers different configurations of HIS for array design on planar and non-planar high-impedance surfaces. Results are presented for cylindrical dipole, printed dipole, and folded dipole over single- and double-layered square-patch-based HIS and dogbone-based HIS. The performance of antenna arrays is analyzed in terms of performance parameters such as return loss and radiation pattern. The design presented shows acceptable return loss and mainlobe gain of radiation pattern. Thi...

  14. Conductive magnetorheological elastomer: fatigue dependent impedance-mechanic coupling properties

    Science.gov (United States)

    Wang, Yu; Xuan, Shouhu; Ge, Lin; Wen, Qianqian; Gong, Xinglong

    2017-01-01

    This work investigated the relationship between the impedance properties and dynamic mechanical properties of magnetorheological elastomers (MREs) under fatigue loading. The storage modulus and the impedance properties of MREs were highly influenced by the pressure and magnetic field. Under the same experimental condition, the two characteristics exhibited similar fatigue dependent change trends. When pressure was smaller than 10 N, the capacitance of MRE could be divided into four sections with the increase of the cyclic numbers. The relative equivalent circuit model was established to fit the experimental results of the impedance spectra. Each parameter of circuit element reflected the change of fatigue loading, relative microstructure of MRE, MRE-electrode interface layer, respectively. Based on the above analysis, the real-time and nondestructive impedance method was demonstrated to be high potential on detecting the fatigue of the MRE device.

  15. Complex impedance analysis of RbNO{sub 3} and RbNO{sub 3}:Al{sub 2}O{sub 3} dispersed solid electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.V. Madhava [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Reddy, S. Narender [Department of Physics, P.G. College of Science (O.U.), Saifabad 500 004 (India); Chary, A. Sadananda [Department of Physics, P.G. College of Science (O.U.), Saifabad 500 004 (India)]. E-mail: aschary60@yahoo.co.in; Shahi, K. [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)

    2005-07-15

    Complex impedance spectroscopic studies were carried out on RbNO{sub 3} and RbNO{sub 3}-Al{sub 2}O{sub 3} dispersed solid electrolyte systems (DSES) in the temperature range of 50 deg C to 300 deg C and the frequency 50 KHz to 1 MHz. Dielectric constant, loss tangent, and AC conductivity, in these systems are presented. Dielectric constant, loss and AC conductivity are found to increase with temperature and with mole percent of Al{sub 2}O{sub 3}. These dielectric properties are interpreted in terms of space charge polarization and increased concentration of defects in the interfacial layer formed between the host and the dispersoid.

  16. Impedance analysis for dye-sensitized solar cells based on TiO2 electrode coated with Cr2O3

    Science.gov (United States)

    Li, Y.; Zhuang, Q. C.; Wang, H. T.; Xu, X. Q.; Qiang, Y. H.; Fang, L.

    2013-09-01

    TiO2 nanomaterial with typical anatase was prepared by hydrothermal method. A surface modification method was carried out by dip TiO2 electrode into Cr(NO3)3 solution. The TiO2/Cr2O3 thin film was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The current-voltage (I-V) curve revealed that short circuit current and photoelectric transfer efficiency of the modified electrode enhanced by 19.3% and 21%, respectively. The main features of electrochemical impedance spectroscopy (EIS) were discussed in a wide range of potential applied. The parameters of electron transport resistance in TiO2 film (Rw), the overall charge transfer resistance (Rct) and capacitance (Cfilm) of film were analyzed using an equivalent circuit. It was found that Rw, Rct and Cfilm switch to exponential behavior at high bias.

  17. Impedance analysis of K2Pb2X2W2Ti4Nb4O30 (X = Nd, Y) tungsten bronze ceramics

    Science.gov (United States)

    Padhee, R.; Das, Piyush R.; Parida, B. N.; Choudhary, R. N. P.

    2014-04-01

    This paper highlights the electrical properties of two new complex tungsten bonze ceramics (K2Pb2Nd2W2Ti4Nb4O30 and K2Pb2Y2W2Ti4Nb4O30) that were prepared by using the high — temperature mixed — oxide method. The variations of impedance parameters with temperature (27-500 °C) and frequency (1-5 MHz) showed the grain and the grain — boundary effects in the samples. The variations of the dielectric parameters with frequency were also studied. The variation of the ac conductivity with temperature clearly showed that the materials exhibited thermally — activated transport properties of an Arrhenius type.

  18. Hybrid-Source Impedance Networks

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang;

    2010-01-01

    the cascaded networks would have a higher output voltage gain and other unique advantages that currently have not been investigated yet. It is anticipated that these advantages would help the formed inverters find applications in photovoltaic and other renewable systems, where a high voltage gain is usually......Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...

  19. Y-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Loh, Poh Chiang; Blaabjerg, Frede;

    2014-01-01

    This letter introduces a new versatile Y-shaped impedance network for realizing converters that demand a very high-voltage gain, while using a small duty ratio. To achieve that, the proposed network uses a tightly coupled transformer with three windings, whose obtained gain is presently not matched...... by existing networks operated at the same duty ratio. The proposed impedance network also has more degrees of freedom for varying its gain, and hence, more design freedom for meeting requirements demanded from it. This capability has been demonstrated by mathematical derivation, and proven in experiment...

  20. Input impedance characteristics of microstrip structures

    Directory of Open Access Journals (Sweden)

    A. I. Nazarko

    2015-06-01

    Full Text Available Introduction. Electromagnetic crystals (EC and EC-inhomogeneities are one of the main directions of microstrip devices development. In the article the input impedance characteristics of EC- and traditional microstrip inhomogeneities and filter based on EC-inhomogeneities are investigated. Transmission coefficient characteristics. Transmission coefficient characteristics of low impedance EC- and traditional inhomogeneities are considered. Characteristics are calculated in the software package Microwave Studio. It is shown that the efficiency of EC-inhomogeneity is much higher. Input impedance characteristics of low impedance inhomogeneities. Dependences of input impedance active and reactive parts of EC- and traditional inhomogeneities are given. Dependences of the active part illustrate significant low impedance transformation of nominal impedance. The conditions of impedance matching of structure and input medium are set. Input impedance characteristics of high impedance inhomogeneities. Input impedance characteristics of high impedance EC- and traditional inhomogeneities are considered. It was shown that the band of transformation by high impedance inhomogeneities is much narrower than one by low impedance inhomogeneities. Characteristics of the reflection coefficient of inhomogeneities are presented. Input impedance characteristics of narrowband filter. The structure of narrowband filter based on the scheme of Fabry-Perot resonator is presented. The structure of the filter is fulfilled by high impedance EC-inhomogeneities as a reflectors. Experimental and theoretical amplitude-frequency characteristics of the filter are presented. Input impedance characteristics of the filter are shown. Conclusions. Input impedance characteristics of the structure allow to analyse its wave properties, especially resonant. EC-inhomogeneity compared with traditional microstrip provide substantially more significant transformation of the the input impedance.

  1. 50 Hz-Sinusoidal magnetic field induced effects on the bioelectric activity of single unit neurone cells

    Science.gov (United States)

    Azanza, María. J.; Calvo, Ana C.; del Moral, A.

    2001-05-01

    Neurones recruiting and synchronized bioelectric activity recorded from Helix aspersa brain ganglia, under exposure to 50 Hz sinusoidal magnetic fields of 1-15 mT intensity, is reported. We show recruiting responses from single neurones and the synchronization of pairs of neurones activity. Experimental evidence and model theoretical explanation for the spreading of synchronization are presented.

  2. Analysis of the hydridation dynamics of metals by gaseous impedance spectroscopy. Application to electrolytic hydrogen storage; Analyse de la dynamique d'hydruration des metaux par spectroscopie d'impedance gazeuse. Application au stockage de l'hydrogene electrolytique

    Energy Technology Data Exchange (ETDEWEB)

    Millet, P. [Paris-11 Univ., Institut de Chimie Moleculaire et des Materiaux, UMR CNRS 8182, 91 - Orsay (France); Guymont, M.; Korobtsev, S. [Institut of Russian Research Center, Hydrogen Energy and Plasma Technology, Kurchatov Institute, Moscow (Russian Federation)

    2007-07-01

    In this work, the hydridation dynamics in presence of impurities is analyzed by pneumato-chemical impedance spectroscopy. The measurements are carried out with a Sieverts volumetric frame. The obtention conditions of the experimental impedances are discussed in relation with the thermodynamic states of the metal-H studied systems. A software of specific modelling has been developed: with this software, it is possible to calculate the experimental impedances and, from model equations, to accede to the microscopic kinetic parameters bound to the hydridation reactions. The results obtained on different materials, in presence of oxygen, are presented and analyzed. (O.M.)

  3. Acoustic Ground-Impedance Meter

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  4. Small Signal Loudspeaker Impedance Emulator

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold

    2014-01-01

    Specifying the performance of audio amplifiers is typically done by playing sine waves into a pure ohmic load. However real loudspeaker impedances are not purely ohmic but characterized by the mechanical resonance between the mass of the diaphragm and the compliance of its suspension which vary f...

  5. Characterization of electro-acoustics impedance and its application to active noise control

    Institute of Scientific and Technical Information of China (English)

    HOU Hong; YANG Jianhua

    2004-01-01

    Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to Active Noise Control is demonstrated through a coil driven loudspeaker. A general formula of radiation impedance is derived for two control strategies, according to the criterion of total acoustic power output. The radiation impedances of some commonly used sound sources are calculated. We discuss in detail the relation between variation of the input electrical impedance and radiation impedance for the two control strategies. The measured data of the input electrical impedance from a loudspeaker agree fairly well with theoretical analysis. An AC- bridge circuit is designed in order to measure the weak variation of electrical impedance resulted from radiation impedance. The bridge relative output is unique for a certain control strategy, from which an impedance-based error criterion is then proposed and the implementation of its application to an active control system is analyzed.Numerical results of such criterion are presented. An analogue control system is set up and experiments are carried out in a semi-anechoic chamber to verify the new control approach.

  6. LHC MD 232: Longitudinal Impedance Evaluation

    CERN Document Server

    Esteban Muller, Juan; Baudrenghien, Philippe; Shaposhnikova, Elena; CERN. Geneva. ATS Department

    2017-01-01

    The aim of the MDstudies presented here was to evaluate the imaginary part of the longitudinal impedance of the LHC by means of synchrotron frequency shift measurements. Single bunches with similar longitudinal emittance but different intensities were studied at flat top. Based on the beam parameters, a maximum shift of about 0.2 Hz was expected between the different bunches. A detailed analysis still needs to be carried out to determine the measured synchrotron frequency shift. The measurements took place between 8:00 p.m. on 26th and 2:00 a.m. on 27th July 2016

  7. Recording of cochlear bioelectricities from facial nerve canal in rats%经大鼠面神经管引导耳蜗生物电反应

    Institute of Scientific and Technical Information of China (English)

    于进涛; 丁大连; 孙虹; Richard Salvi

    2014-01-01

    different structures and cells of the cochlea. Except for the EP, which is a resting potential mainly reflecting the function of stria vascularis, other cochlear potentials actually are the auditory evoked responses from cochlear sensory hair cells or auditory nerve fibers of spiral ganglion neurons respectively. Therefore, cochlear bioelectric activity recording is an ideal technique to study cochlear physiological functions. Many tradi-tional techniques for cochlear bioelectricity recording through middle ear cavity are not suited for long-term observation due to potential surgical injury or infection to the middle ear. With the expanding use of rats, rat model has been investigated to gain insights into the mechanisms underlying noise or drug-induced hearing loss. However, there lacks effective method for long-term recording of cochlear bioelectricity in rats. A stable long-term recording technique of cochlear potentials in rats is described in this report. A silver electrode was implanted into the horizontal segment of facial nerve canal via stylomastoid fora-men. Since the cochlear cavity is separated from facial nerve canal only by a thin osteal wall, the waveform of cochlear bioelec-tric activities can be easily recorded from within the facial nerve canal. In addition, this electrode insertion does not require opening the middle ear cavity and hence helps avoid surgical damage and infection to the middle ear. The CAP, CM and SP can be reliably recorded following electrode implantation. However, the amplitude of CAP and CM can vary among indivdual animals. This suggests that data analysis is probably more reliable with pre-vs post-treatment design than comparison across animals. In conclusion, electrode insert at the dissepiment of cochlea for recording of cochlear bioelectric activities may pro-vide a useful approach for hearing physiological studies in rats. Moreover, this paper also discusses the characteristics and in-trinsic relationships between different

  8. Damage detection technique by measuring laser-based mechanical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeonseok; Sohn, Hoon [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (Daehak-ro 291, Yuseong-gu, Daejeon 305-701) (Korea, Republic of)

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  9. 阻抗式过环空找水仪校准问题分析%Calibration Problem Analysis on Annular Water Detector of Impedance Type

    Institute of Scientific and Technical Information of China (English)

    姜兆宇; 杨韵桐

    2015-01-01

    There are many factors that influence the impedance type annular water detector calibration efficiency. In order to improve the calibra-tion efficiency and value transfer, through the field calibration and maintenance, find out the major factors affecting the calibration efficiency are umbrella cloth size, water cut meter fault, the center tube sealing. Arrived at when the umbrella cloth width in 190-193mm, umbrella opening and contact length of casing rules in 30-50mm, the central tube and the thin wall cylinder loaded umbrella opaque are more appropriate.%影响阻抗式过环空找水仪校准效率的因素有很多,为了提高校准效率,实现量值传递,通过现场边校准边维修,发现集流伞布大小、含水率计故障、中心管密封程度是影响校准效率的主要因素。得出伞布宽度在190 mm~193 mm、集流伞开度与套管规接触段长度在30 mm~50 mm,中心管与薄壁筒装完伞不透光时比较合适。

  10. Transient State Analysis of Harmonic Branch Impedance of Electric Furnace SVC system%电炉SVC系统谐波支路阻抗暂态分析

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Based on the topology principle of the electric furnace SVC (static var com-pensator) system, the transient theory of the system is analyzed. The impedance character of the system is emphasized. The simulation verification experiments are made. The results show that variation of harmonic wave branch of the system would make an impact on the bus volt-age, current and power factor of the system.%  在介绍电炉SVC系统拓扑原理的基础上,对系统暂态原理进行了分析,重点针对系统阻抗特性作了详细分析。最后进行了仿真实验验证。仿真结果证明,系统滤波支路的变化,将对系统母线电压、电流以及功率因数造成影响。

  11. Beam Coupling Impedances of Small Discontinuities

    CERN Document Server

    Kurennoy, S S

    2000-01-01

    A general derivation of the beam coupling impedances produced by small discontinuities on the wall of the vacuum chamber of an accelerator is reviewed. A collection of analytical formulas for the impedances of small obstacles is presented.

  12. Wideband impedance spectrum analyzer for process automation applications

    Science.gov (United States)

    Doerner, Steffen; Schneider, Thomas; Hauptmann, Peter R.

    2007-10-01

    For decades impedance spectroscopy is used in technical laboratories and research departments to investigate effects or material characteristics that affect the impedance spectrum of the sensor. Establishing this analytical approach for process automation and stand-alone applications will deliver additional and valuable information beside traditional measurement techniques such as the measurement of temperature, flow rate, and conductivity, among others. As yet, most of the current impedance analysis methods are suited for laboratory applications only since they involve stand-alone network analyzers that are slow, expensive, large, or immobile. Furthermore, those systems offer a large range of functionality that is not being used in process control and other fields of application. We developed a sensor interface based on high speed direct digital signal processing offering wideband impedance spectrum analysis with high resolution for frequency adjustment, excellent noise rejection, very high measurement rate, and convenient data exchange to common interfaces. The electronics has been implemented on two small circuit boards and it is well suited for process control applications such as monitoring phase transitions, characterization of fluidal systems, and control of biological processes. The impedance spectrum analyzer can be customized easily for different measurement applications by adapting the appropriate sensor module. It has been tested for industrial applications, e.g., dielectric spectroscopy and high temperature gas analysis.

  13. Alteration of bioelectrically-controlled processes in the embryo: a teratogenic mechanism for anticonvulsants.

    Science.gov (United States)

    Hernández-Díaz, Sonia; Levin, Michael

    2014-08-01

    Maternal use of anticonvulsants during the first trimester of pregnancy has been associated with an elevated risk of major congenital malformations in the offspring. Whether the increased risk is caused by the specific pharmacological mechanisms of certain anticonvulsants, the underlying epilepsy, or common genetic or environmental risk factors shared by epilepsy and malformations has been controversial. We hypothesize that anticonvulsant therapies during pregnancy that attain more successful inhibition of neurotransmission might lead to both better seizure control in the mother and stronger alteration of bioelectrically-controlled processes in the embryo that result in structural malformations. We propose that development of pharmaceuticals that do not alter cell resting transmembrane voltage levels could result in safer drugs.

  14. Optimization of enhanced bioelectrical reactor with electricity from microbial fuel cells for groundwater nitrate removal.

    Science.gov (United States)

    Liu, Ye; Zhang, Baogang; Tian, Caixing; Feng, Chuanping; Wang, Zhijun; Cheng, Ming; Hu, Weiwu

    2016-01-01

    Factors influencing the performance of a continual-flow bioelectrical reactor (BER) intensified by microbial fuel cells for groundwater nitrate removal, including nitrate load, carbon source and hydraulic retention time (HRT), were investigated and optimized by response surface methodology (RSM). With the target of maximum nitrate removal and minimum intermediates accumulation, nitrate load (for nitrogen) of 60.70 mg/L, chemical oxygen demand (COD) of 849.55 mg/L and HRT of 3.92 h for the BER were performed. COD was the dominant factor influencing performance of the system. Experimental results indicated the undistorted simulation and reliable optimized values. These demonstrate that RSM is an effective method to evaluate and optimize the nitrate-reducing performance of the present system and can guide mathematical models development to further promote its practical applications.

  15. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials.

    Science.gov (United States)

    Zhou, Minghua; Yang, Jie; Wang, Hongyu; Jin, Tao; Xu, Dake; Gu, Tingyue

    2013-01-01

    Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated.

  16. Computationally efficient bioelectric field modeling and effects of frequency-dependent tissue capacitance

    Science.gov (United States)

    Tracey, Brian; Williams, Michael

    2011-06-01

    Standard bioelectric field models assume that the tissue is purely resistive and frequency independent, and that capacitance, induction, and propagation effects can be neglected. However, real tissue properties are frequency dependent, and tissue capacitance can be important for problems involving short stimulation pulses. A straightforward interpolation scheme is introduced here that can account for frequency-dependent effects, while reducing runtime over a direct computation by several orders of magnitude. The exact Helmholtz solution is compared to several approximate field solutions and is used to study neural stimulation. Results show that frequency-independent tissue capacitance always acts to attenuate the stimulation pulse, thereby increasing firing thresholds, while the dispersion effects introduced by frequency-dependent capacitance may decrease firing thresholds.

  17. Deciphering characteristics of bicyclic aromatics--mediators for reductive decolorization and bioelectricity generation.

    Science.gov (United States)

    Xu, Bin; Chen, Bor-Yann; Hsueh, Chung-Chuan; Qin, Lian-Jie; Chang, Chang-Tang

    2014-07-01

    This first-attempt study quantitatively assessed electron-mediating characteristics of bicyclic aromatics - 1-amino-2-naphthol, 4-amino-1-naphthol (i.e., decolorized intermediates of azo dyes - orange I and II) for color removal and power generation in MFCs. According to cyclic-voltammetric profiles, the presence of reduction and oxidation peak potentials clearly suggested a crucial role of these intermediates as electron-shuttling mediators. Shake-flask cultures also showed that appropriate accumulation of 1A2N, 4A1N apparently enhanced color-removal efficiencies of bacterial decolorization. This study clearly suggested that suitable supplementation of electrochemically active electron shuttle(s) to dye-bearing MFCs is a promising strategy to stimulate reductive decolorization and bioelectricity generation.

  18. 不同蛇形流场下的直接甲醇燃料电池性能及阻抗分析%Performance and Impedance Analysis of Direct Methanol Fuel Cell under Different Serpentine Flow Field

    Institute of Scientific and Technical Information of China (English)

    吴玉厚; 田扬; 孙红; 万烨

    2013-01-01

    The performances and impedances of direct methanol fuel cells with single channel serpentine flow field and multichannel serpentine flow field are studied. The VA( volt-ampere) characteristics and AC(alternating-current) impedance of serpentine flow field methanol fuel cell are measured in this experiment, and the effects of the flow field structure, methanol concentration and its flow velocity on the VA characteristics and AC impedance are analyzed. The experimental results show that the performance of multichannel serpentine flow field methanol fuel cell is better than that of the single channel serpentine flow field methanol fuel cell. The ohmic resistance and electrode reaction impedance of the methanol fuel cell with the multichannel serpentine flow field are small by the analysis of the AC impedance with equivalent circuit. The characteristic of the electric double layer is close to resistance characteristics in the methanol fuel cell with multichannel serpentine flow field. These results are very helpful to optimize the methanol fuel cell performance and its e-lectrode structure.%目的 研究不同实验条件下单通道蛇形流场与多通道蛇形流场直接甲醇燃料电池的性能差异与阻抗变化.方法 实验测量了蛇形流场甲醇燃料电池的伏安特性和交流阻抗,分析了流场结构、甲醇浓度和流速对电池伏安特性和交流阻抗的影响.结果 实验结果表明:多通道蛇形流场甲醇燃料电池的性能优于单通道蛇形流场甲醇燃料电池.通过等效电路分析其交流阻抗发现:多通道蛇形流场甲醇燃料电池的欧姆阻抗、电极反应阻抗都比较小;多通道蛇形流场甲醇燃料电池电极形成的双电层特性趋近电阻特性.结论 阻抗的变化是决定多通道蛇形流场甲醇燃料电池性能高于单通道蛇形流场甲醇燃料电池的重要原因.研究结果对甲醇燃料电池性能和电极优化提供了有益的参考.

  19. Multi-motion robots control based on bioelectric signals from single-channel dry electrode.

    Science.gov (United States)

    Shen, Hui-Min; Hu, Liang; Lee, Kok-Meng; Fu, Xin

    2015-02-01

    This article presents a multi-motion control system to help severe disabled people operate an auxiliary appliance using neck-up bioelectric signals measured by a single-channel dry electrode on the forehead. The single-channel dry-electrode multi-motion control system exhibits several practical advantages over its conventional counterparts that use multi-channel wet-electrodes; among the challenges is an effective technique to extract bioelectric features for reliable implementation of multi degrees-of-freedom motion control. Using both time and frequency characteristics of the single-channel dry-electrode measurements, motion commands are derived from multiple feature signals associated with concentration demands and different eye-blink actions for use in a two-level control strategy that has been developed to control predefined multi degrees-of-freedom motion trajectories. Test paradigms were designed to pre-calibrate the users' feature signals to statistically account for individual variances. Experimental trials were then carried out on able-bodied and disabled volunteers to validate the universal applicability of the algorithms. The classification success rates for two different eye-blink feature signals were approximately 95% with an average time of 2.4 s for executing a concentration feature signal. The single-channel dry-electrode-based technique has been validated on a 6-degree-of-freedom robot arm demonstrating its significant potentials to help patients suffering severe motor dysfunctions operate a multi-motion auxiliary appliance in everyday living where the ease of use is a priority.

  20. A spatial impedance controller for robotic manipulation

    NARCIS (Netherlands)

    Fasse, Ernest D.; Broenink, Jan F.

    1997-01-01

    Mechanical impedance is the dynamic generalization of stiffness, and determines interactive behavior by definition. Although the argument for explicitly controlling impedance is strong, impedance control has had only a modest impact on robotic manipulator control practice. This is due in part to the

  1. A compact broadband nonsynchronous noncommensurate impedance transformer

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Kim, Kseniya; Narenda, Kumar

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison to the tradit...

  2. Study on Impedance Characteristics of Aircraft Cables

    Directory of Open Access Journals (Sweden)

    Weilin Li

    2016-01-01

    Full Text Available Voltage decrease and power loss in distribution lines of aircraft electric power system are harmful to the normal operation of electrical equipment and may even threaten the safety of aircraft. This study investigates how the gap distance (the distance between aircraft cables and aircraft skin and voltage frequency (variable frequency power supply will be adopted for next generation aircraft will affect the impedance of aircraft cables. To be more precise, the forming mechanism of cable resistance and inductance is illustrated in detail and their changing trends with frequency and gap distance are analyzed with the help of electromagnetic theoretical analysis. An aircraft cable simulation model is built with Maxwell 2D and the simulation results are consistent with the conclusions drawn from the theoretical analysis. The changing trends of the four core parameters of interest are analyzed: resistance, inductance, reactance, and impedance. The research results can be used as reference for the applications in Variable Speed Variable Frequency (VSVF aircraft electric power system.

  3. A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2016-01-01

    This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... and complex space vectors, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect in the phase domain. Thus, the impedance models previously developed in the different domains can be unified. Moreover, the impedance shaping effects of PLL are structurally...... characterized for the current control in the rotating dq-frame and the stationary αβ-frame. Case studies based on the unified impedance model are presented, which are then verified in the time-domain simulations and experiments. The results closely correlate with the impedance-based analysis....

  4. Dynamic of bioelectric activity back hypothalamus changes in conditions of pyroxan application on the background of stress-reaction developmen

    Directory of Open Access Journals (Sweden)

    T. G. Chaus

    2005-04-01

    Full Text Available The dynamic of changes of capacity of electroencephalogram’s rhythms back hypothalamus at animals of control group and group in stress conditions in parallel with rats who on a background of stress development accepted pyroxan is analyzed. The submitted results have shown influence of a pharmacological preparation pyroxan on bioelectric activity of back hypothalamus in stress conditions that restoration of electric activity under action of this preparation was more shown at 3 weeks of its application.

  5. Materials analyses and electrochemical impedance of implantable metal electrodes.

    Science.gov (United States)

    Howlader, Matiar M R; Ul Alam, Arif; Sharma, Rahul P; Deen, M Jamal

    2015-04-21

    Implantable electrodes with high flexibility, high mechanical fixation and low electrochemical impedance are desirable for neuromuscular activation because they provide safe, effective and stable stimulation. In this paper, we report on detailed materials and electrical analyses of three metal implantable electrodes - gold (Au), platinum (Pt) and titanium (Ti) - using X-ray photoelectron spectroscopy (XPS), scanning acoustic microscopy, drop shape analysis and electrochemical impedance spectroscopy. We investigated the cause of changes in electrochemical impedance of long-term immersed Au, Pt and Ti electrodes on liquid crystal polymers (LCPs) in phosphate buffered saline (PBS). We analyzed the surface wettability, surface and interface defects and the elemental depth profile of the electrode-adhesion layers on the LCP. The impedance of the electrodes decreased at lower frequencies, but increased at higher frequencies compared with that of the short-term immersion. The increase of impedances was influenced by the oxidation of the electrode/adhesion-layers that affected the double layer capacitance behavior of the electrode/PBS. The oxidation of the adhesion layer for all the electrodes was confirmed by XPS. Alkali ions (sodium) were adsorbed on the Au and Pt surfaces, but diffused into the Ti electrode and LCPs. The Pt electrode showed a higher sensitivity to surface and interface defects than that of Ti and Au electrodes. These findings may be useful when designing electrodes for long-term implantable devices.

  6. Study of PEM fuel cell performance by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Saeed; Mokmeli, Ali; Samavati, Mahrokh [Isfahan Engineering Research Center, 7th kilometer of Imam Khomeini ave., P.O. Box 81395-619, Isfahan (Iran)

    2010-09-15

    Electrochemical impedance spectroscopy is a suitable and powerful diagnostic testing method for fuel cells because it is non-destructive and provides useful information about fuel cell performance and its components. This paper presents the diagnostic testing results of a 120 W single cell and a 480 W PEM fuel cell short stack by electrochemical impedance spectroscopy. The effects of clamping torque, non-uniform assembly pressure and operating temperature on the single cell impedance spectrum were studied. Optimal clamping torque of the single cell was determined by inspection of variations of high frequency and mass transport resistances with the clamping torque. The results of the electrochemical impedance analysis show that the non-uniform assembly pressure can deteriorate the fuel cell performance by increasing the ohmic resistance and the mass transport limitation. Break-in procedure of the short stack was monitored and it is indicated that the ohmic resistance as well as the charge transfer resistance decrease to specified values as the break-in process proceeds. The effect of output current on the impedance plots of the short stack was also investigated. (author)

  7. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-06-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  8. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2003-10-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  9. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2003-04-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  10. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2005-01-17

    This project aimed at developing a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GTI. GTI proposed to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment

  11. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2003-01-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  12. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-10-29

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  13. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2002-08-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  14. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2004-02-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  15. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2002-11-27

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  16. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2004-05-03

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  17. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.

    1995-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances.

  18. The Analysis of Cultural Factors in Impeding GMO Communication in China%转基因传播障碍中的文化因素辨析

    Institute of Scientific and Technical Information of China (English)

    范敬群; 贾鹤鹏; 彭光芒

    2013-01-01

    近年来,转基因技术与产品在中国的传播遭遇了一定障碍.科学界和相关政府部门往往从科学知识的普及角度克服这些障碍.但实际上,转基因传播障碍的背后有着更为隐蔽的反智的社会态度及对传统农业的迷恋心理,三个因素都与中国传统直观外推思维方式有关.转基因传播所面临的实际是构造自然观与有机自然观之间的冲突.对有机自然观的误读与当前弥漫的反智主义关系密切,转基因带有“高科技”的突出特征,恰恰容易成为反智主义攻击的对象.在有机自然观和“反智”传统的影响下,社会上对传统农业的迷恋有着相当的市场.在此情况下,转基因技术要克服传播障碍,必须重构环境,除了以经济动力继续推动传播工作外,也要让技术发展与人们普遍接受的自然观相结合.%In recent years,the communication of genetically modified organism (GMO) has been impeded in China.While science community and government departments try to overcome the barrier by enhancing science popularization efforts,it cannot be neglected that behind the resistance to GMO,there are hidden cultural factors.It identifies three cultural factors that are involved:the holistic view of nature that pursues "harmony between man and nature",anti-intellectualism,and the psychology of the indulgence with traditional agriculture.All three factors are related to traditional Chinese thinking mode of intuitive extrapolation.After tracing historical concepts of heaven and man,it find that the communication of GMO faces the conflict between constructivism natural view and holistic natural view.In fact,the holistic view of nature has been misinterpreted amidst the pervading anti-intellectualism against high technologies to which GMO belongs.Because of the holistic view of nature and "anti-intellectualism",the indulgence with traditional agriculture is very popular in modern China.But it is completely impossible to

  19. Impedance technique for measuring dielectrophoretic collection of microbiological particles

    CERN Document Server

    Allsopp, D W E; Brown, A P; Betts, W B

    1999-01-01

    Measurement of the impedance change resulting from the collection of microbiological particles at coplanar electrodes is shown to be an effective and potentially quantitative method of detecting dielectrophoresis. Strong correlations between the frequency-dependent dielectrophoretic collection characteristics measured by impedance change and those observed using an established counting method based on image analysis have been obtained for Escherichia coli. In addition it is shown that the new electrical method can be used to sense dielectrophoretic collection of 19 nm diameter latex beads, particles too small to be resolved by conventional optical detection systems. (author)

  20. Grid impedance detection via excitation of LCL-filter resonance

    DEFF Research Database (Denmark)

    Liserre, Marco; Blaabjerg, Frede; Teodorescu, Remus

    2005-01-01

    the resonance of the LCL-fiIter can be also excited in a controlled way in order to individuate the resonance frequency in the spectrum (using for example the FFn. This paper proposes to use a controlled excitation to measure the grid impedance, since this one influences also the resonance frequency. This paper...... will address some possible limits, some solutions and some implementation issues (e.g. how to obtain a controlled resonance in the filter without damaging the system) in order to use the resonant peak for grid impedance detection. The analysis is validated both by simulations and experimental results....

  1. Amplifier input impedance in dry electrode ECG recording.

    Science.gov (United States)

    Assambo, Cedric; Burke, Martin J

    2009-01-01

    This paper presents a novel approach for designing the front-end of instrumentation amplifiers for use in dry electrode recording of the human electrocardiogram (ECG). The method relies on information provided by the characterization of the skin-electrode interface and the analysis of low frequency ECG criteria defined by international standards. Marginal measurements of capacitive elements of the skin-electrode interface as small as 0.01 microF, suggest values of input impedance in the order of 1.3 GOmega. However, results in 99% of the data analyzed indicate that a recording amplifier providing an input impedance of 500 MOmega should ensure clear signal sensing without distortion.

  2. Beam Impedance Studies of the PS Beam Gas Ionization Monitor

    CERN Document Server

    Avgidis, Fotios

    2016-01-01

    The Beam Gas Ionization monitor (BGI) is a device for continuous beam size monitoring that is intended to be installed in the CERN Proton Synchrotron (PS) during the extended year-end technical stop from December 2016 to April 2017. With the objective of determining the impedance contribution of the BGI vacuum chamber to the overall beam impedance, we report on RF measurements on the device in a laboratory frame, measurement data analysis, and RF simulations of the structure under investigation. For the impedance contribution characterization of the BGI, the following approach has been followed: First, the EM fields inside a simplified BGI model that doesn’t include any of the internal components of the vacuum chamber have been simulated. RF measurements have been performed on the same empty structure showing great agreement between measurement and simulation and thus verifying the validity of the model. Second, simulations have been executed on a fully assembled BGI model that includes all the internal ele...

  3. Impedance characteristics of nanoparticle-LiCoO2+PVDF

    Science.gov (United States)

    Panjaitan, Elman; Kartini, Evvy; Honggowiranto, Wagiyo

    2016-02-01

    The impendance of np-LiCoO2+xPVDF, as a cathode material candidate for lithium-ion battery (LIB), has been characterized using impedance spectroscopy for x = 0, 5, 10, 15 and 20 volume percentage (%v/v) and for frequencies in the 42 Hz to 5 MHz range. Both real and imaginary components of the impedance were found to be frequency dependent, and both tend to increase for increasing PVDF (polyvinyilidene fluoride) concentration, except that for 10% PVDF both real and imaginary components of impedance are smaller than for 5%. The mechanism for relaxation time for each addition of PVDF was analyzed using Cole-Cole plots. The analysis showed that the relaxation times of the nanostructured LiCoO2 with PVDF additive is relatively constant. Further, PVDF addition increases the bulk resistance and decreases the bulk capacitance of the nanostructured LiCoO2.

  4. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number...... methods which advantageously minimize the number of modeling parameters and the parameters used have direct physicochemical meaning. This is accomplished by (i) employing an improved cell model where the representative 0-D resistive-capacitive type EC elements are replaced by analytical 1-D porous......) constraining the parameter values during fitting to ranges of physically reasonable values. Using these methods, the number of fitting parameters for four impedance spectra measured with isolated changes to the fuel and oxidant gas compositions, has been reduced from 80 to 21-34 depending on the model...

  5. Road Impedance Model Study under the Control of Intersection Signal

    Directory of Open Access Journals (Sweden)

    Yunlin Luo

    2015-01-01

    Full Text Available Road traffic impedance model is a difficult and critical point in urban traffic assignment and route guidance. The paper takes a signalized intersection as the research object. On the basis of traditional traffic wave theory including the implementation of traffic wave model and the analysis of vehicles’ gathering and dissipating, the road traffic impedance model is researched by determining the basic travel time and waiting delay time. Numerical example results have proved that the proposed model in this paper has received better calculation performance compared to existing model, especially in flat hours. The values of mean absolute percentage error (MAPE and mean absolute deviation (MAD are separately reduced by 3.78% and 2.62 s. It shows that the proposed model has feasibility and availability in road traffic impedance under intersection signal.

  6. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Ghaffari

    2015-09-01

    Full Text Available This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS, designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing.

  7. Effect of disc reflectors on radiation impedance of short-backfire antenna

    Science.gov (United States)

    Marougi, S. D.

    1982-02-01

    Using near-field analysis, the influence of large and small disc reflectors used in short-backfire antennas on the radiation impedance of a dipole feed element has been investigated. The effect of each reflector is evaluated separately, and the overall change in the radiation impedance of the dipole is predicted.

  8. Change in fat-free mass assessed by bioelectrical impedance, total body potassium and dual energy X-ray absorptiometry during prolonged weight loss

    DEFF Research Database (Denmark)

    Hendel, H W; Gotfredsen, A; Højgaard, L

    1996-01-01

    A total of 16 obese women (body mass index (BMI) 30-43 kg m(-2)) participated in a weight reduction study. Before and after a weight loss of 11.7 +/- 7.4 kg (mean +/- SD), body composition was assessed by dual energy X-ray absorptiometry (DXA), and total body potassium counting (TBK). These measu......A total of 16 obese women (body mass index (BMI) 30-43 kg m(-2)) participated in a weight reduction study. Before and after a weight loss of 11.7 +/- 7.4 kg (mean +/- SD), body composition was assessed by dual energy X-ray absorptiometry (DXA), and total body potassium counting (TBK...

  9. Spheromak Impedance and Current Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  10. How the Inductive Voltage Adder (IVA) output impedance affects impedance dynamics of a Self-Magnetic Pinch (SMP) diode

    Science.gov (United States)

    Renk, Timothy; Simpson, Sean; Webb, Timothy; Mazarakis, Michael; Kiefer, Mark

    2016-10-01

    The SMP diode, fielded on the RITS-6 (3.5-8.5 MV) IVA accelerator at Sandia National Laboratories, produces a focused electron beam (IVA flow impedance has on ZDIODE. A preliminary conclusion is that ZDIODE should be at least 1.5 times the flow impedance before ZDIODE is a parameter independent of flow impedance. This has implications for SMP as a load for a IVA, since ZDIODE >100 ohms has not been consistently demonstrated. Data analysis is ongoing, and latest results will be reported. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Pumping slots: impedances and power losses

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. [Maryland Univ., College Park, MD (United States). Dept. of Physics

    1996-08-01

    Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)

  12. Algorithmic Error Correction of Impedance Measuring Sensors

    Directory of Open Access Journals (Sweden)

    Vira Tyrsa

    2009-12-01

    Full Text Available This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance.

  13. Algorithmic Error Correction of Impedance Measuring Sensors

    Science.gov (United States)

    Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira

    2009-01-01

    This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177

  14. Transient impedance changes in venous endothelial monolayers as a biological radiation dosimetry response

    Directory of Open Access Journals (Sweden)

    Erik Fossum Young

    2012-10-01

    Full Text Available In March of 2011, a magnitude 9.0 earthquake and subsequent 14 m-high tsunami caused major damage to the Fukushima Daiichi nuclear power plant in Japan.  While cancer incidence in the radiation-exposed population is a logical concern, the complex effects of radiation on the heart and cardiovascular system are also of interest.  Immediate and early vascular radiation effects could be exploited as a dosimetry modality.  To test whether non-coronary vasculature exhibited transient perturbation in barrier function, video microscopy studies and Electric Cell Substrate Impedance Sensing technology were used to probe very subtle changes in primary human vascular endothelium.  Human umbilical vein endothelial cell (HUVEC monolayers exhibit a transient, statistically significant decrease (P = 0.017 in monolayer resistance 3 h after irradiation with 5.0 Gy of g rays.  Radiation induced perturbations in HUVEC monolayer permeability are similar in magnitude and kinetics to those observed in coronary arterial endothelium.  Therefore, at least two types of vasculature respond to radiation on ECIS arrays with an early transient disruption in permeability.  The finding supports the use of early passage HUVECs for use in bioelectric dosimetry studies of vasculature and suggests that permeability of vessels could potentially serve as a biological dosimetry tool.

  15. Polarization Force Microscopy of the Cell-Mineral Interface: Insights Into the Bioelectric Signature

    Science.gov (United States)

    Bartosik, E. M.; Kendall, T. A.

    2007-12-01

    The success of bioremediation strategies is dependent upon effective monitoring of microorganisms in the subsurface. Induced polarization (IP) may represent a cost-effective, complementary technique to existing borehole-based microbe detection schemes. Recent studies show a significant, yet poorly understood IP effect associated with the presence of bacteria in aqueous and porous media. This effect is believed to be rooted in the physicochemical surface interactions between cells and minerals which we probe using polarization and electric force microscopy. Dispersions of the local permittivity inferred from polarization force data that was collected over a hydrated mineral surface correspond to dispersions modeled for a bacterium. In each case, absolute permittivities and frequency cut-off values increase with surface potential and ion mobility, respectively. Potentially similar polarization mechanisms between the inorganic and organic condition are inferred. Further polarization force microscopy measurements of the mineral-microbe interface will provide molecular-level insight that complements column and field-scale IP observations. Anticipated is a more comprehensive mechanisitic description of the bioelectric IP response that facilitates application of IP to bioremediation.

  16. Improvement of human keratinocyte migration by a redox active bioelectric dressing.

    Directory of Open Access Journals (Sweden)

    Jaideep Banerjee

    Full Text Available Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization.

  17. Improvement of human keratinocyte migration by a redox active bioelectric dressing.

    Science.gov (United States)

    Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K; Bellman, Karen; Dickinson, Bryan C; Suri, Prerna; Subramaniam, Vish V; Chang, Christopher J; Sen, Chandan K

    2014-01-01

    Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization.

  18. Bioelectricity generation and dewatered sludge degradation in microbial capacitive desalination cell.

    Science.gov (United States)

    Meng, Fanyu; Zhao, Qingliang; Na, Xiaolin; Zheng, Zhen; Jiang, Junqiu; Wei, Liangliang; Zhang, Jun

    2016-05-18

    Microbial desalination cell (MDC) is a new approach for the synergy in bioelectricity generation, desalination and organic waste treatment without additional power input. However, current MDC systems cause salt accumulation in anodic wastewater and sludge. A microbial capacitive desalination cell (MCDC) with dewatered sludge as anodic substrate was developed to address the salt migration problem and improve the sludge recycling value by special designed-membrane assemblies, which consisted of cation exchange membranes (CEMs), layers of activated carbon cloth (ACC), and nickel foam. Experimental results indicated that the maximum power output of 2.06 W/m(3) with open circuit voltage (OCV) of 0.942 V was produced in 42 days. When initial NaCl concentration was 2 g/L, the desalinization rate was about 15.5 mg/(L·h) in the first 24 h, indicating that the MCDC reactor was suitable to desalinize the low concentration salt solution rapidly. The conductivity of the anodic substrate decreased during the 42-day operation; the CEM/ACC/Ni assemblies could effectively restrict the salt accumulation in MCDC anode and promote dewatered sludge effective use by optimizing the dewatered sludge properties, such as organic matter, C/N, pH value, and electric conductivity (EC).

  19. [Study on effects of bioelectric parameters of rats in electromagnetic radiation of HV transmission line].

    Science.gov (United States)

    Zhang, Anying; Pang, Xiaofeng; Yuan, Ping

    2007-02-01

    With the development of economy and coming of information era, the chance of exposure to electromagnetic fields with various frequencies has been increased for every human. The effects of electromagnetic radiattion on human being's health are versatile. To study the effects of bioelctronic parameters of rats in the electromagnetic radiations of HV transmission line, EEG, ECG and CMAP were measured in rats exposed to simulating high-voltage transmission line electromagnetic radiation for over one year. Brain tissues were studied by Fourier transform infrared spectroscopy. The results showed that no significant difference between exposed group and control group in EEG; however the FT-infrared spectra of brain tissues were different; the ECG of the exposed animals was considerably altered. Significant slowing of heart rate was observed in those rates exposed to EMFs; the latent period of CMAP in exposed group were not different compared with those of control group however there was a significant difference in wave amplitude of CMAP between the exposed group and control group. All results indicated that there must be some effects on bioelectric parameters of rats exposed to electromagnetic radiation of high-voltage transmission line for a long time.

  20. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.

    Science.gov (United States)

    Choi, Jeongdong; Ahn, Youngho

    2015-05-01

    Microbial fuel cells (MFCs) treating the food waste leachate produced from biohydrogen fermentation were examined to enhance power generation and energy recovery. In batch mode, the maximum voltage production was 0.56 V and the power density reached 1540 mW/m(2). The maximum Coulombic efficiency (CEmax) and energy efficiency (EE) in the batch mode were calculated to be 88.8% and 18.8%, respectively. When the organic loading rate in sequencing batch mode varied from 0.75 to 6.2 g COD/L-d (under CEmax), the maximum power density reached 769.2 mW/m(2) in OLR of 3.1 g COD/L-d, whereas higher energy recovery (CE=52.6%, 0.346 Wh/g CODrem) was achieved at 1.51 g COD/L-d. The results demonstrate that readily biodegradable substrates in biohydrogen fermentation can be effectively used for the enhanced bioelectricity harvesting of MFCs and a MFC coupled with biohydrogen fermentation is of great benefit on higher electricity generation and energy efficiency.