WorldWideScience

Sample records for biodiversity

  1. Biodiversity

    CSIR Research Space (South Africa)

    Scholes, RJ

    2006-01-01

    Full Text Available Biodiversity offers multiple opportunities for development and improving human well-being. It is the basis for essential environmental services upon which life on Earth depends. Thus, its conservation and sustainable use are of critical importance...

  2. Biodiversity

    International Nuclear Information System (INIS)

    Gomez Giraldo; Luis Jair

    2011-01-01

    Biodiversity is a really surprising ecological event, as long as there is an extraordinary chemical and biochemical homogeneity at the very foundation of all living beings. It is believed that there are at least three phenomena that may explain it: Darwinian evolution, that is a kind of ramifying evolution; structural coupling, as defined by H. Maturana; and, finally, thermodynamical phenomena, as presented by S. Kauffman leaning on the concepts of organization and a propagating organization that diversifies, and they are all interpreted by E. D. Schneider and J. J. Kay from the idea of Earth as a thermodynamical system. The explanatory importance of this idea in the current environmental crisis, evident in other events such as global warming, is of great relevance.

  3. Backyard Biodiversity.

    Science.gov (United States)

    Thompson, Sarah S.

    2002-01-01

    Describes a field trip experience for the Earth Odyssey project for elementary school students focusing on biodiversity. Introduces the concept of diversity, field work, species richness, and the connection between animals and their habitat. (YDS)

  4. Teaching Biodiversity

    Indian Academy of Sciences (India)

    Author Affiliations. Madhav Gadgil1 2. Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India. Biodiversity Unit, Jowaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O. Jakkur, Bangalore 560064, India ...

  5. Business and biodiversity

    DEFF Research Database (Denmark)

    Andersen, Rasmus Meyer; Lehmann, Martin; Christensen, Per

    Despite the overall importance of biodiversity, the quality measures of biodiversity show worrying figures. Numerous human impacts on nature impose serious hazard to its inherent diversity. This expansion of human activities leaves the battle against loss of biodiversity to be a great challenge......, but the effort has until now considered biodiversity actions relatively little, compared to other areas such as e.g. climate related actions. Nevertheless, the opportunity for businesses to meet their responsibilities and lift a share of the challenge is far from being just a romantic thought. Nor...... is the challenge of engaging businesses in responsible actions. The core challenge is to create awareness of the environmental phenomenon biodiversity, inform about the significance of business involvement, and encourage the business world to participate in this process of protecting biodiversity as the valuable...

  6. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Onyango, J.C.O.; Ojoo-Massawa, E.; Abira, M.A.

    1997-01-01

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  7. Recovering biodiversity knowledge

    NARCIS (Netherlands)

    Meijerink, G.W.; Smolders, H.; Sours, S.; Pou, S.

    2005-01-01

    Cambodian¿s civil wars have seriously affected the country¿s agro-biodiversity and the farmers¿ traditional knowledge in this field. The PEDIGREA project aims at conserving on-farm agro-biodiversity conservation and in Cambodia it focuses on vegetable diversity. It tries to link the preservation of

  8. In Defence of Biodiversity

    NARCIS (Netherlands)

    Archer, Alfred; Burch Brown, Joanna

    2017-01-01

    The concept of biodiversity has played a central role within conservation biology over the last thirty years. Precisely how it should be understood, however, is a matter of ongoing debate. In this paper we defend what we call a classic multidimensional conception of biodiversity. We begin by

  9. The biodiversity from Bogota

    International Nuclear Information System (INIS)

    Calvachi Zambrano, Byron

    2002-01-01

    It is about the flora biodiversity and fauna that it occupied the savannah of Bogota originally, about the flora and extinct fauna and of the flora and fauna that still persist in spite of the colonization

  10. Biodiversity and global change

    National Research Council Canada - National Science Library

    Solbrig, Otto Thomas; Emden, H. M. van; Oordt, P. G. W. J. van; Solbrig, Otto T

    1992-01-01

    The IUBS symposium "Biodiversity and Global Change" held during the 24th General Assembly, 1-6 September, 1991, in Amsterdam, the Netherlands, represented the first attempt to address the issue of bio...

  11. Birds as biodiversity surrogates

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Bladt, Jesper Stentoft; Balmford, Andrew

    2012-01-01

    1. Most biodiversity is still unknown, and therefore, priority areas for conservation typically are identified based on the presence of surrogates, or indicator groups. Birds are commonly used as surrogates of biodiversity owing to the wide availability of relevant data and their broad popular...... and applications.?Good surrogates of biodiversity are necessary to help identify conservation areas that will be effective in preventing species extinctions. Birds perform fairly well as surrogates in cases where birds are relatively speciose, but overall effectiveness will be improved by adding additional data...... from other taxa, in particular from range-restricted species. Conservation solutions with focus on birds as biodiversity surrogate could therefore benefit from also incorporating species data from other taxa....

  12. Funding begets biodiversity

    DEFF Research Database (Denmark)

    Ahrends, Antje; Burgess, Neil David; Gereau, Roy E.

    2011-01-01

    Aim Effective conservation of biodiversity relies on an unbiased knowledge of its distribution. Conservation priority assessments are typically based on the levels of species richness, endemism and threat. Areas identified as important receive the majority of conservation investments, often...... facilitating further research that results in more species discoveries. Here, we test whether there is circularity between funding and perceived biodiversity, which may reinforce the conservation status of areas already perceived to be important while other areas with less initial funding may remain overlooked......, and variances decomposed in partial regressions. Cross-correlations are used to assess whether perceived biodiversity drives funding or vice versa. Results Funding explained 65% of variation in perceived biodiversity patterns – six times more variation than accounted for by 34 candidate environmental factors...

  13. Dimensions of biodiversity loss

    NARCIS (Netherlands)

    Palma, De Adriana; Kuhlmann, Michael; Bugter, Rob; Ferrier, Simon; Hoskins, Andrew J.; Potts, Simon G.; Roberts, Stuart P.M.; Schweiger, Oliver; Purvis, Andy

    2017-01-01

    Aim: Agricultural intensification and urbanization are important drivers of biodiversity change in Europe. Different aspects of bee community diversity vary in their sensitivity to these pressures, as well as independently influencing ecosystem service provision (pollination). To obtain a more

  14. Marine biodiversity in Colombia

    International Nuclear Information System (INIS)

    Diaz, Juan Manuel

    2002-01-01

    One decade ago, the seas and oceans were considered biologically less diverse that the terrestrial environment. Now it is known that it is on the contrary; 33 of the 34 categories of animals (phylum), they are represented in the sea, compared with those solely 15 that exist in earth. The investigation about the diversity of life in the sea has been relatively scorned, but there are big benefits that we can wait if this is protected. The captures of fish depend on it; the species captured by the fisheries are sustained of the biodiversity of their trophic chains and habitats. The marine species are probably the biggest reservoir of chemical substances that can be used in pharmaceutical products. The genetic material of some species can be useful in biotechnical applications. The paper treats topics like the current state of the knowledge in marine biodiversity and it is done a diagnostic of the marine biodiversity in Colombia

  15. Warfare in biodiversity hotspots.

    Science.gov (United States)

    Hanson, Thor; Brooks, Thomas M; Da Fonseca, Gustavo A B; Hoffmann, Michael; Lamoreux, John F; Machlis, Gary; Mittermeier, Cristina G; Mittermeier, Russell A; Pilgrim, John D

    2009-06-01

    Conservation efforts are only as sustainable as the social and political context within which they take place. The weakening or collapse of sociopolitical frameworks during wartime can lead to habitat destruction and the erosion of conservation policies, but in some cases, may also confer ecological benefits through altered settlement patterns and reduced resource exploitation. Over 90% of the major armed conflicts between 1950 and 2000 occurred within countries containing biodiversity hotspots, and more than 80% took place directly within hotspot areas. Less than one-third of the 34 recognized hotspots escaped significant conflict during this period, and most suffered repeated episodes of violence. This pattern was remarkably consistent over these 5 decades. Evidence from the war-torn Eastern Afromontane hotspot suggests that biodiversity conservation is improved when international nongovernmental organizations support local protected area staff and remain engaged throughout the conflict. With biodiversity hotspots concentrated in politically volatile regions, the conservation community must maintain continuous involvement during periods of war, and biodiversity conservation should be incorporated into military, reconstruction, and humanitarian programs in the world's conflict zones. ©2009 Society for Conservation Biology.

  16. Biodiversity and productivity

    Science.gov (United States)

    M.R. Willig

    2011-01-01

    Researchers predict that human activities especially landscape modification and climate change will have a considerable impact on the distribution and abundance of species at local, regional, and global scales in the 21st century ( 1, 2). This is a concern for a number of reasons, including the potential loss of goods and services that biodiversity provides to people...

  17. When Leeches reveal Biodiversity

    DEFF Research Database (Denmark)

    Schnell, Ida Bærholm

    to provide information about vertebrate biodiversity. This thesis covers the development of a monitoring method based on iDNA extracted from terrestrial haematophagous leeches, a continuation of the work presented in Schnell et al., 2012. The chapters investigate and/or discuss different subjects regarding...

  18. Caribbean landscapes and their biodiversity

    Science.gov (United States)

    A. E. Lugo; E. H. Helmer; E. Santiago Valentín

    2012-01-01

    Both the biodiversity and the landscapes of the Caribbean have been greatly modified as a consequence of human activity. In this essay we provide an overview of the natural landscapes and biodiversity of the Caribbean and discuss how human activity has affected both. Our Caribbean geographic focus is on the insular Caribbean and the biodiversity focus is on the flora,...

  19. Forecasting the future of biodiversity

    DEFF Research Database (Denmark)

    Fitzpatrick, M. C.; Sanders, Nate; Ferrier, Simon

    2011-01-01

    , but their application to forecasting climate change impacts on biodiversity has been limited. Here we compare forecasts of changes in patterns of ant biodiversity in North America derived from ensembles of single-species models to those from a multi-species modeling approach, Generalized Dissimilarity Modeling (GDM...... climate change impacts on biodiversity....

  20. Beyond biodiversity: fish metagenomes.

    Directory of Open Access Journals (Sweden)

    Alba Ardura

    Full Text Available Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits.Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific. Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the barcoding target gene coi as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas.Treating all sequences obtained from each regional catch as a biological unit (exploited community we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods.We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level.

  1. Beyond biodiversity: fish metagenomes.

    Science.gov (United States)

    Ardura, Alba; Planes, Serge; Garcia-Vazquez, Eva

    2011-01-01

    Biodiversity and intra-specific genetic diversity are interrelated and determine the potential of a community to survive and evolve. Both are considered together in Prokaryote communities treated as metagenomes or ensembles of functional variants beyond species limits.Many factors alter biodiversity in higher Eukaryote communities, and human exploitation can be one of the most important for some groups of plants and animals. For example, fisheries can modify both biodiversity and genetic diversity (intra specific). Intra-specific diversity can be drastically altered by overfishing. Intense fishing pressure on one stock may imply extinction of some genetic variants and subsequent loss of intra-specific diversity. The objective of this study was to apply a metagenome approach to fish communities and explore its value for rapid evaluation of biodiversity and genetic diversity at community level. Here we have applied the metagenome approach employing the barcoding target gene coi as a model sequence in catch from four very different fish assemblages exploited by fisheries: freshwater communities from the Amazon River and northern Spanish rivers, and marine communities from the Cantabric and Mediterranean seas.Treating all sequences obtained from each regional catch as a biological unit (exploited community) we found that metagenomic diversity indices of the Amazonian catch sample here examined were lower than expected. Reduced diversity could be explained, at least partially, by overexploitation of the fish community that had been independently estimated by other methods.We propose using a metagenome approach for estimating diversity in Eukaryote communities and early evaluating genetic variation losses at multi-species level.

  2. European mountain biodiversity

    Directory of Open Access Journals (Sweden)

    Nagy, Jennifer

    1998-12-01

    Full Text Available This paper, originally prepared as a discussion document for the ESF Exploratory Workshop «Trends in European Mountain Biodiversity - Research Planning Workshop», provides an overview of current mountain biodiversity research in Europe. It discusses (a biogeographical trends, (b the general properties of biodiversity, (c environmental factors and the regulation of biodiversity with respect to ecosystem function, (d the results of research on mountain freshwater ecosystems, and (e climate change and air pollution dominated environmental interactions.- The section on biogeographical trends highlights the importance of altitude and latitude on biodiversity. The implications of the existence of different scales over the different levels of biodiversity and across organism groups are emphasised as an inherent complex property of biodiversity. The discussion on ecosystem function and the regulation of biodiversity covers the role of environmental factors, productivity, perturbation, species migration and dispersal, and species interactions in the maintenance of biodiversity. Regional and long-term temporal patterns are also discussed. A section on the relatively overlooked topic of mountain freshwater ecosystems is presented before the final topic on the implications of recent climate change and air pollution for mountain biodiversity.

    [fr] Ce document a été préparé à l'origine comme une base de discussion pour «ESF Exploratory Workshop» intitulé «Trends in European Mountain Biodiversity - Research Planning Workshop»; il apporte une vue d'ensemble sur les recherches actuelles portant sur la biodiversité des montagnes en Europe. On y discute les (a traits biogéographiques, (b les caractéristiques générales- de la biodiversité, (c les facteurs environnementaux et la régulation de la biodiversité par rapport à la fonction des écosystèmes, (d les résultats des études sur les écosystèmes aquatiques des montagnes et (e les

  3. The value of biodiversity

    Directory of Open Access Journals (Sweden)

    CJR. Alho

    Full Text Available In addition to its intrinsic value (nature working as it is; species are the product of a long history of continuing evolution by means of ecological processes, and so they have the right to continued existence, biodiversity also plays a fundamental role as ecosystem services in the maintenance of natural ecological processes. The economic or utilitarian values of biodiversity rely upon the dependence of man on biodiversity; products that nature can provide: wood, food, fibers to make paper, resins, chemical organic products, genes as well as knowledge for biotechnology, including medicine and cosmetic sub-products. It also encompasses ecosystem services, such as climate regulation, reproductive and feeding habitats for commercial fish, some organisms that can create soil fertility through complex cycles and interactions, such as earthworms, termites and bacteria, in addition to fungi responsible for cycling nutrients like nitrogen, phosphorus and sulfur and making them available to plant absorption. These services are the benefits that people indirectly receive from natural ecosystem functions (air quality maintenance, regional climate, water quality, nutrient cycling, reproductive habitats of commercial fish, etc. with their related economic values.

  4. Crowdfunding biodiversity conservation.

    Science.gov (United States)

    Gallo-Cajiao, E; Archibald, C; Friedman, R; Steven, R; Fuller, R A; Game, E T; Morrison, T H; Ritchie, E G

    2018-05-26

    Raising funds is critical for conserving biodiversity and hence so too is scrutinizing emerging financial mechanisms that might help achieve this goal. In this context, anecdotal evidence indicates crowdfunding is being used to support a variety of activities needed for biodiversity conservation, yet its magnitude and allocation remain largely unknown. We conducted a global analysis to help address this knowledge gap, based on empirical data from conservation-focused projects extracted from crowdfunding platforms. For each project, we determined the funds raised, date, country of implementation, proponent characteristics, activity type, biodiversity realm, and target taxa. We identified 72 relevant platforms and 577 conservation-focused projects that have raised US$4 790 634 since 2009. Whilst proponents were based in 38 countries, projects were delivered across 80 countries, indicating a potential mechanism of resource mobilization. Proponents were from non-governmental organizations (35%), universities (30%), or were freelancers (26%). Most projects were for research (40%), persuasion (31%), and on-ground actions (21%). Projects have focused primarily on species (57.7%) and terrestrial ecosystems (20.3%), and less on marine (8.8%) and freshwater ecosystems (3.6%). Projects have focused on 208 species, including a disproportionate number of threatened bird and mammal species. Crowdfunding for biodiversity conservation has now become a global phenomenon and presents signals for potential expansion, despite possible pitfalls. Opportunities arise from its spatial amplifying effect, steady increase over time, inclusion of Cinderella species, adoption by multiple actors, and funding of a range of activities beyond research. Our study paves the way for further research on key questions, such as campaign success rates, effectiveness, and drivers of adoption. Even though the capital input of crowdfunding so far has been modest compared to other conservation finance

  5. Biodiversity conservation in agricultural landscapes

    OpenAIRE

    Josefsson, Jonas

    2015-01-01

    Agricultural industrialization alters rural landscapes in Europe, causing large-scale and rapid loss of important biodiversity. The principal instruments to protect farmland biodiversity are various agri-environmental measures (AEMs) in the EU Common Agricultural Policy (CAP). However, growing awareness of shortcomings to CAP biodiversity integration prompts examination of causes and potential solutions. This thesis assesses the importance of structural heterogeneity of crop and non-crop habi...

  6. Grassland biodiversity can pay.

    Science.gov (United States)

    Binder, Seth; Isbell, Forest; Polasky, Stephen; Catford, Jane A; Tilman, David

    2018-04-10

    The biodiversity-ecosystem functioning (BEF) literature provides strong evidence of the biophysical basis for the potential profitability of greater diversity but does not address questions of optimal management. BEF studies typically focus on the ecosystem outputs produced by randomly assembled communities that only differ in their biodiversity levels, measured by indices such as species richness. Landholders, however, do not randomly select species to plant; they choose particular species that collectively maximize profits. As such, their interest is not in comparing the average performance of randomly assembled communities at each level of biodiversity but rather comparing the best-performing communities at each diversity level. Assessing the best-performing mixture requires detailed accounting of species' identities and relative abundances. It also requires accounting for the financial cost of individual species' seeds, and the economic value of changes in the quality, quantity, and variability of the species' collective output-something that existing multifunctionality indices fail to do. This study presents an assessment approach that integrates the relevant factors into a single, coherent framework. It uses ecological production functions to inform an economic model consistent with the utility-maximizing decisions of a potentially risk-averse private landowner. We demonstrate the salience and applicability of the framework using data from an experimental grassland to estimate production relationships for hay and carbon storage. For that case, our results suggest that even a risk-neutral, profit-maximizing landowner would favor a highly diverse mix of species, with optimal species richness falling between the low levels currently found in commercial grasslands and the high levels found in natural grasslands.

  7. Millennium Ecosystem Assessment: MA Biodiversity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Biodiversity provides data and information on amphibians, disease agents (extent and distribution of infectious and parasitic...

  8. Climate changes and biodiversity

    International Nuclear Information System (INIS)

    Bertelsmeier, C.

    2011-01-01

    As some people forecast an average temperature increase between 1 and 3.5 degrees by the end of the century, with higher increases under high latitudes (it could reach 8 degrees in some regions of Canada), other changes will occur: precipitations, sea level rise, reductions in polar ice, extreme climatic events, glacier melting, and so on. The author discusses how these changes will impact biodiversity as they will threat habitat and living conditions of many species. Some studies assess a loss of 15 to 37 per cent of biodiversity by 2050. Moreover, physiology is influenced by temperature: for some species, higher temperatures favour the development of female embryos, or the increase of their population, or may result in an evolution of their reproduction strategy. Life rhythm will also change, for plants as well as for animals. Species will keep on changing their distribution area, but some others will not be able to and are therefore threatened. Finally, as the evolutions concern their vectors, some diseases will spread in new regions

  9. Net present biodiversity value and the design of biodiversity offsets.

    Science.gov (United States)

    Overton, Jacob McC; Stephens, R T Theo; Ferrier, Simon

    2013-02-01

    There is an urgent need to develop sound theory and practice for biodiversity offsets to provide a better basis for offset multipliers, to improve accounting for time delays in offset repayments, and to develop a common framework for evaluating in-kind and out-of-kind offsets. Here, we apply concepts and measures from systematic conservation planning and financial accounting to provide a basis for determining equity across type (of biodiversity), space, and time. We introduce net present biodiversity value (NPBV) as a theoretical and practical measure for defining the offset required to achieve no-net-loss. For evaluating equity in type and space we use measures of biodiversity value from systematic conservation planning. Time discount rates are used to address risk of non-repayment, and loss of utility. We illustrate these concepts and measures with two examples of biodiversity impact-offset transactions. Considerable further work is required to understand the characteristics of these approaches.

  10. Reconciling biodiversity and carbon conservation.

    Science.gov (United States)

    Thomas, Chris D; Anderson, Barbara J; Moilanen, Atte; Eigenbrod, Felix; Heinemeyer, Andreas; Quaife, Tristan; Roy, David B; Gillings, Simon; Armsworth, Paul R; Gaston, Kevin J

    2013-05-01

    Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process. © 2012 John Wiley & Sons Ltd/CNRS.

  11. Habitat modeling for biodiversity conservation.

    Science.gov (United States)

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  12. Undergraduate Students' Attitudes toward Biodiversity

    Science.gov (United States)

    Huang, Hui-Ju; Lin, Yu-Teh Kirk

    2014-01-01

    The study investigated American and Taiwan undergraduate students' attitudes toward biodiversity. The survey questionnaire consisted of statements prompted by the question "To what extent do you agree with the following statements about problems with the biodiversity issues." Students indicated strongly disagree, disagree, agree,…

  13. Soil biodiversity for agricultural sustainability

    NARCIS (Netherlands)

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does

  14. Biodiversity of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    stream_size 2 stream_content_type text/plain stream_name Biodiversity_Western_Ghats_Inf_Kit_1994_3.1_1.pdf.txt stream_source_info Biodiversity_Western_Ghats_Inf_Kit_1994_3.1_1.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  15. Place prioritization for biodiversity content

    Indian Academy of Sciences (India)

    The prioritization of places on the basis of biodiversity content is part of any systematic biodiversity conservation planning process. The place prioritization procedure implemented in the ResNet software package is described. This procedure is primarily based on the principles of rarity and complementarity. Application of the ...

  16. Biodiversity in Benthic Ecology

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Carl, J. D.

    Foreword: This proceeding is based on a set of papers presented at the second Nordic Benthological Meeting held in Silkeborg, November 13-14, 1997. The main theme of the meeting was biodiversity in benthic ecology and the majority of contributions touch on this subject. In addition, the proceeding...... contains papers which cover other themes thus continuing with the spirit of the meetings in the Nordic Benthological Society (NORBS) by being an open forum for exchanging knowledge on all aspects of benthic ecology. Overall, we feel the proceeding contains a wide selection of very interesting papers...... representing the state-of-the-art of benthic ecology research within, and to a lesser degree, outside the Nordic countries. We wish to thank all the authors for their inspirational contributions to the proceeding, but we feel that a special thanks is due to the invited speakers for their readiness to produce...

  17. The Biodiversity Informatics Potential Index

    Science.gov (United States)

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  18. Indicators for Monitoring Soil Biodiversity

    DEFF Research Database (Denmark)

    Bispo, A.; Cluzeau, D.; Creamer, R.

    2009-01-01

    is made for a set of suitable indicators for monitoring the decline in soil biodiversity (Bispo et al. 2007). These indicators were selected both from a literature review and an inventory of national monitoring programmes. Decline in soil biodiversity was defined as the reduction of forms of life living...... indicators are actually measured.   For monitoring application it was considered in ENVASSO that only three key indicators per soil stress were practical. For indicating biodiversity decline it was difficult to arrive at a small set of indicators due to the complexity of soil biota and functions. Therefore...

  19. Economic inequality predicts biodiversity loss.

    Directory of Open Access Journals (Sweden)

    Gregory M Mikkelson

    Full Text Available Human activity is causing high rates of biodiversity loss. Yet, surprisingly little is known about the extent to which socioeconomic factors exacerbate or ameliorate our impacts on biological diversity. One such factor, economic inequality, has been shown to affect public health, and has been linked to environmental problems in general. We tested how strongly economic inequality is related to biodiversity loss in particular. We found that among countries, and among US states, the number of species that are threatened or declining increases substantially with the Gini ratio of income inequality. At both levels of analysis, the connection between income inequality and biodiversity loss persists after controlling for biophysical conditions, human population size, and per capita GDP or income. Future research should explore potential mechanisms behind this equality-biodiversity relationship. Our results suggest that economic reforms would go hand in hand with, if not serving as a prerequisite for, effective conservation.

  20. Urban lifestyle and urban biodiversity

    DEFF Research Database (Denmark)

    Petersen, L. K.; Lyytimäki, J.; Normander, B.

    2007-01-01

    This report is concerned with the relations between lifestyles of urban populations on one hand and protection of biodiversity in urban areas on the other. Urban areas are of importance for the general protection of biodiversity. In the surroundings of cities and within urban sprawls there can...... biodiversity, recreational, educational and other needs. However, uncovered and unsealed space is constantly under pressure for building and infrastructure development in the urban landscape, and the design and usages of urban green structure is a matter of differing interests and expectations. Integrating...... the green needs of urban lifestyle in the planning process does not come by itself. Nor does finding the synergies between urban lifestyle and urban biodiversity. Careful planning including stakeholder involvement is required. In this process various mapping techniques and use of indicators can be most...

  1. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  2. Economic inequality predicts biodiversity loss.

    Science.gov (United States)

    Mikkelson, Gregory M; Gonzalez, Andrew; Peterson, Garry D

    2007-05-16

    Human activity is causing high rates of biodiversity loss. Yet, surprisingly little is known about the extent to which socioeconomic factors exacerbate or ameliorate our impacts on biological diversity. One such factor, economic inequality, has been shown to affect public health, and has been linked to environmental problems in general. We tested how strongly economic inequality is related to biodiversity loss in particular. We found that among countries, and among US states, the number of species that are threatened or declining increases substantially with the Gini ratio of income inequality. At both levels of analysis, the connection between income inequality and biodiversity loss persists after controlling for biophysical conditions, human population size, and per capita GDP or income. Future research should explore potential mechanisms behind this equality-biodiversity relationship. Our results suggest that economic reforms would go hand in hand with, if not serving as a prerequisite for, effective conservation.

  3. MCBS Sites of Biodiversity Significance

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data layer represents areas with varying levels of native biodiversity that may contain high quality native plant communities, rare plants, rare animals, and/or...

  4. Biodiversity versus cloning

    International Nuclear Information System (INIS)

    Jaramillo T, Jose Hernan

    1998-01-01

    The announcement has been made on the cloning of mice in these days and he doesn't stop to miss, because the world lives a stage where conscience of the protection is creating that should be given to the biodiversity. It is known that alone we won't subsist and the protection of the means and all that contains that environment is of vital importance for the man. But it is also known that the vegetables and animal transgenic that they come to multiply the species have appeared that we prepare. The transgenic has been altered genetically, for substitution of one or more genes of other species, inclusive human genes. This represents an improvement compared with the investigations that gave origin to the cloning animal. But it is necessary to notice that to it you arrived through the cloning. This year 28 million hectares have been sowed in cultivations of transgenic seeds and there is around 700 bovine transgenic whose milk contains a necessary protein in the treatment of the man's illnesses

  5. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  6. Filling in biodiversity threat gaps

    DEFF Research Database (Denmark)

    Joppa, L. N.; O'Connor, Brian; Visconti, Piero

    2016-01-01

    increase to 10,000 times the background rate should species threatened with extinction succumb to pressures they face (4). Reversing these trends is a focus of the Convention on Biological Diversity's 2020 Strategic Plan for Biodiversity and its 20 Aichi Targets and is explicitly incorporated...... into the United Nations' 2030 Agenda for Sustainable Development and its 17 Sustainable Development Goals (SDGs). We identify major gaps in data available for assessing global biodiversity threats and suggest mechanisms for closing them....

  7. Economic Inequality Predicts Biodiversity Loss

    OpenAIRE

    Mikkelson, Gregory M.; Gonzalez, Andrew; Peterson, Garry D.

    2007-01-01

    Human activity is causing high rates of biodiversity loss. Yet, surprisingly little is known about the extent to which socioeconomic factors exacerbate or ameliorate our impacts on biological diversity. One such factor, economic inequality, has been shown to affect public health, and has been linked to environmental problems in general. We tested how strongly economic inequality is related to biodiversity loss in particular. We found that among countries, and among US states, the number of sp...

  8. Biodiversity impact assessment (BIA+) - methodological framework for screening biodiversity.

    Science.gov (United States)

    Winter, Lisa; Pflugmacher, Stephan; Berger, Markus; Finkbeiner, Matthias

    2018-03-01

    For the past 20 years, the life cycle assessment (LCA) community has sought to integrate impacts on biodiversity into the LCA framework. However, existing impact assessment methods still fail to do so comprehensively because they quantify only a few impacts related to specific species and regions. This paper proposes a methodological framework that will allow LCA practitioners to assess currently missing impacts on biodiversity on a global scale. Building on existing models that seek to quantify the impacts of human activities on biodiversity, the herein proposed methodological framework consists of 2 components: a habitat factor for 14 major habitat types and the impact on the biodiversity status in those major habitat types. The habitat factor is calculated by means of indicators that characterize each habitat. The biodiversity status depends on parameters from impact categories. The impact functions, relating these different parameters to a given response in the biodiversity status, rely on expert judgments. To ensure the applicability for LCA practitioners, the components of the framework can be regionalized on a country scale for which LCA inventory data is more readily available. The weighting factors for the 14 major habitat types range from 0.63 to 1.82. By means of area weighting of the major habitat types in a country, country-specific weighting factors are calculated. In order to demonstrate the main part of the framework, examples of impact functions are given for the categories "freshwater eutrophication" and "freshwater ecotoxicity" in 1 major habitat type. The results confirm suitability of the methodological framework. The major advantages are the framework's user-friendliness, given that data can be used from LCA databases directly, and the complete inclusion of all levels of biodiversity (genetic, species, and ecosystem). It is applicable for the whole world and a wide range of impact categories. Integr Environ Assess Manag 2018;14:282-297.

  9. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  10. Monitoring Biodiversity using Environmental DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis

    DNA). Especially the advance in DNA sequencing technology has revolutionized this field and opened new frontiers in ecology, evolution and environmental sciences. Also, it is becoming a powerful tool for field biologist, with new and efficient methods for monitoring biodiversity. This thesis focuses on the use...... of eDNA in monitoring of biodiversity in different settings. First, it is shown that a diversity of rare freshwater animals – representing amphibians, fish, mammals, insects and crustaceans – can be detected based on eDNA obtained directly from 15 ml water samples of lakes, ponds and streams...... setting, showing that eDNA obtained directly from ½ l seawater samples can account for marine fish biodiversity using NGS. Promisingly, eDNA covered the fish diversity better than any of 9 methods, conventionally used in marine fish surveys. Additionally, it is shown that even short 100-bp. fish e...

  11. Data intensive computing for biodiversity

    CERN Document Server

    Dhillon, Sarinder K

    2013-01-01

    This book is focused on the development of a data integration framework for retrieval of biodiversity information from heterogeneous and distributed data sources. The data integration system proposed in this book links remote databases in a networked environment, supports heterogeneous databases and data formats, links databases hosted on multiple platforms, and provides data security for database owners by allowing them to keep and maintain their own data and to choose information to be shared and linked. The book is a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development for data integration in biodiversity.

  12. Biodiverse planting for carbon and biodiversity on indigenous land.

    Science.gov (United States)

    Renwick, Anna R; Robinson, Catherine J; Martin, Tara G; May, Tracey; Polglase, Phil; Possingham, Hugh P; Carwardine, Josie

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes.

  13. Children prioritize virtual exotic biodiversity over local biodiversity.

    Directory of Open Access Journals (Sweden)

    Jean-Marie Ballouard

    Full Text Available Environmental education is essential to stem current dramatic biodiversity loss, and childhood is considered as the key period for developing awareness and positive attitudes toward nature. Children are strongly influenced by the media, notably the internet, about biodiversity and conservation issues. However, most media focus on a few iconic, appealing, and usually exotic species. In addition, virtual activities are replacing field experiences. This situation may curb children knowledge and concerns about local biodiversity. Focusing our analyses on local versus exotic species, we examined the level of knowledge and the level of diversity of the animals that French schoolchildren are willing to protect, and whether these perceptions are mainly guided by information available in the internet. For that, we collected and compared two complementary data sets: 1 a questionnaire was administered to schoolchildren to assess their knowledge and consideration to protect animals, 2 an internet content analysis (i.e. Google searching sessions using keywords was performed to assess which animals are the most often represented. Our results suggest that the knowledge of children and their consideration to protect animal are mainly limited to internet contents, represented by a few exotic and charismatic species. The identification rate of local animals by schoolchildren was meager, suggesting a worrying disconnection from their local environment. Schoolchildren were more prone to protect "virtual" (unseen, exotic rather than local animal species. Our results reinforce the message that environmental education must also focus on outdoor activities to develop conservation consciousness and concerns about local biodiversity.

  14. Evaluating Temporal Consistency in Marine Biodiversity Hotspots

    OpenAIRE

    Piacenza, Susan E.; Thurman, Lindsey L.; Barner, Allison K.; Benkwitt, Cassandra E.; Boersma, Kate S.; Cerny-Chipman, Elizabeth B.; Ingeman, Kurt E.; Kindinger, Tye L.; Lindsley, Amy J.; Nelson, Jake; Reimer, Jessica N.; Rowe, Jennifer C.; Shen, Chenchen; Thompson, Kevin A.; Heppell, Selina S.

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monito...

  15. Relationship between biodiversity and agricultural production

    OpenAIRE

    Brunetti, Ilaria; Tidball, Mabel; Couvet, Denis

    2018-01-01

    Agriculture is one of the main causes of biodiversity loss. In this work we model the interdependent relationship between biodiversity and agriculture on a farmed land, supposing that, while agriculture has a negative impact on biodiversity, the latter can increase agricultural production. Farmers act as myopic agents, who maximize their instantaneous profit without considering the negative effects of their practice on the evolution of biodiversity. We find that a tax on inputs can have a pos...

  16. Africa's hotspots of biodiversity redefined

    NARCIS (Netherlands)

    Küper, W.; Sommer, J.H.; Lovett, J.C.; Beentje, H.J.; Rompaey, van R.S.A.R.; Chatelain, C.; Sosef, M.S.M.; Barthlott, W.

    2004-01-01

    A key problem for conservation is the coincidence of regions of high biodiversity with regions of high human impact. Twenty-five of the most threatened centers of plant diversity were identified by Myers et al., and these "hotspots" play a crucial role in international conservation strategies. The

  17. Biodiversity in Word and Meaning

    Science.gov (United States)

    Slingsby, David

    2010-01-01

    This article argues that we need to abandon the word "biodiversity", to rediscover the biology that it obscures and to rethink how to introduce this biology to young people. We cannot go back to the systematics that once made up a large part of a biology A-level course (ages 16-18), so we need to find alternative ways of introducing the…

  18. Trading biodiversity for pest problems

    Science.gov (United States)

    Recent shifts in agricultural practices have resulted in increased pesticide use, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic a...

  19. Wilderness, biodiversity, and human health

    Science.gov (United States)

    Daniel L. Dustin; Keri A. Schwab; Kelly S. Bricker

    2015-01-01

    This paper illustrates how wilderness, biodiversity, and human health are intertwined. Proceeding from the assumption that humankind is part of, rather than apart from, nature, health is re-imagined as a dynamic relationship that can best be conceived in broad ecological terms. Health, from an ecological perspective, is a measure of the wellness of the individual and...

  20. Biodiversity: past, present and future

    Science.gov (United States)

    Rubidge, Emily M.; Burton, A. Cole; Vamosi, Steven M.

    2012-01-01

    On 12–15 May 2011, a diverse group of students, researchers and practitioners from across Canada and around the world met in Banff, Alberta, to discuss the many facets of biodiversity science at the 6th Annual Meeting of the Canadian Society for Ecology and Evolution. PMID:21733869

  1. The Early Years: Exploring Biodiversity

    Science.gov (United States)

    Ashbrook, Peggy

    2017-01-01

    The importance of biodiversity to human life and the benefits of a diverse ecosystem are not often obvious to young children. This column discusses resources and science topics related to students in grades preK to 2. The objective in this month's issue is to introduce children to the diversity of plant life in a given area through a plant…

  2. Nitrogen deposition and terrestrial biodiversity

    Science.gov (United States)

    Christopher M. Clark; Yongfei Bai; William D. Bowman; Jane M. Cowles; Mark E. Fenn; Frank S. Gilliam; Gareth K. Phoenix; Ilyas Siddique; Carly J. Stevens; Harald U. Sverdrup; Heather L. Throop

    2013-01-01

    Nitrogen deposition, along with habitat losses and climate change, has been identified as a primary threat to biodiversity worldwide (Butchart et al., 2010; MEA, 2005; Sala et al., 2000). The source of this stressor to natural systems is generally twofold: burning of fossil fuels and the use of fertilizers in modern intensive agriculture. Each of these human...

  3. Ecological restoration: Biodiversity and conservation

    International Nuclear Information System (INIS)

    Vargas Rios, Orlando

    2011-01-01

    In this essay the principal concepts and methods applied on projects aimed at ecological restoration are reviewed, with emphasis on the relationship between conservation, biodiversity and restoration. The most common definitions are provided and the steps to take into account to develop projects on ecological restoration, which will be determined by the level of degradation of the ecosystem to be intervened.

  4. Business Meets Biodiversity Conference 2012

    NARCIS (Netherlands)

    Vollaard, B.; Man, M. de; Verweij, P.A.

    2012-01-01

    How can companies successfully integrate the sustainable management of ecosystems and biodiversity into their business models? This was the central question at the international conference ‘Business Meets Biodiversity’ held in Utrecht, The Netherlands, on June 27th 2012. The organizing committee,

  5. A forgotten component of biodiversity

    Indian Academy of Sciences (India)

    2011-07-08

    Jul 8, 2011 ... Home; Journals; Journal of Biosciences; Volume 36; Issue 4. Clipboard: Helminth richness in Arunachal Pradesh fishes: A forgotten component of biodiversity. Amit Tripathi. Volume 36 Issue 4 September 2011 pp 559-561. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity

    Science.gov (United States)

    Diego Juffe-Bignoli; Ian Harrison; Stuart HM Butchart; Rebecca Flitcroft; Virgilio Hermoso; Harry Jonas; Anna Lukasiewicz; Michele Thieme; Eren Turak; Heather Bingham; James Dalton; William Darwall; Marine Deguignet; Nigel Dudley; Royal Gardner; Jonathan Higgins; Ritesh Kumar; Simon Linke; G Randy Milton; Jamie Pittock; Kevin G Smith; Arnout van Soesbergen

    2016-01-01

    1. The Strategic Plan for Biodiversity (2011–2020), adopted at the 10th meeting of the Conference of the Parties to the Convention on Biological Diversity, sets 20 Aichi Biodiversity Targets to be met by 2020 to address biodiversity loss and ensure its sustainable and equitable use. Aichi Biodiversity Target 11 describes what an improved conservation network would look...

  7. Teaching Biodiversity & Evolution through Travel Course Experiences

    Science.gov (United States)

    Zervanos, Stam. M.; McLaughlin, Jacqueline S.

    2003-01-01

    Biodiversity is the extraordinary variety of life in this planet. In order to be fully appreciated, biodiversity needs to be experienced firsthand, or "experientially." Thus, the standard classroom lecture format is not the ideal situation for teaching biodiversity and evolutionary concepts, in that student interest and understanding are…

  8. Inter-American Biodiversity Information Network (IABIN)

    Science.gov (United States)

    site. IABIN Inter-American Biodiversity Information Network (IABIN) OAS » SEDI » DSD » IABIN IABIN GEF Logo inbio natserve usgs polpar wcm The Inter-American Biodiversity Information Network (IABIN , and use of biodiversity information relevant to policy and decision-making on natural resources

  9. Biology Student Teachers' Conceptual Frameworks regarding Biodiversity

    Science.gov (United States)

    Dikmenli, Musa

    2010-01-01

    In recent years, biodiversity has received a great deal of attention worldwide, especially in environmental education. The reasons for this attention are the increase of human activities on biodiversity and environmental problems. The purpose of this study is to investigate biology student teachers' conceptual frameworks regarding biodiversity.…

  10. European Biodiversity Observation Network – EBONE

    NARCIS (Netherlands)

    Halada, L.; Jongman, R.H.G.; Gerard, F.; Whittaker, L.; Bunce, R.G.H.; Bauch, B.; Schmeller, D.S.

    2009-01-01

    EBONE (European Biodiversity Observation Network) is a project developing a system of biodiversity observation at regional, national and European levels as a contribution to European reporting on biodiversity. The project focuses on GEO (Group of Earth Observations) task BI 07-01 to unify many of

  11. Options for promoting high-biodiversity REDD+

    Energy Technology Data Exchange (ETDEWEB)

    Swan, Steve; Mcnally, Richard; Grieg-Gran, Maryanne; Roe, Dilys; Mohammed, Essam Yassin

    2011-11-15

    International climate and biodiversity conventions agree that to be effective in the long term, strategies to reduce emissions from deforestation, forest degradation, conservation and enhancement of forest carbon stocks, and sustainable forest management (REDD+), must not undermine biodiversity. But how do countries achieve 'high-biodiversity REDD+' in practice? At a global level, options include immediate policy strengthening in international negotiations; promotion of co-benefit standards; and financial incentives and preferences for buying countries. At a national level, developing countries can also promote high-biodiversity REDD+ through more coherent policies; integrated planning; regulatory and economic instruments; and improved monitoring of biodiversity impacts.

  12. Sustaining America's Aquatic Biodiversity. Aquatic Insect Biodiversity and Conservation

    OpenAIRE

    Voshell, J. Reese

    2005-01-01

    Provides a description of the structure and appearance of aquatic insects, how they live and reproduce, the habitats they live in, how to collect them, why they are of importance, and threats to their survival; document also includes a brief illustrated summary of the eight major groups of aquatic insects and web links to more information. Part of a 12 part series on sustaining aquatic biodiversity in America.

  13. Biodiversity in the Anthropocene: prospects and policy

    Science.gov (United States)

    Mace, Georgina M.; Mouillot, David; Vause, James; Walpole, Matt

    2016-01-01

    Meeting the ever-increasing needs of the Earth’s human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum—as well as opposition—is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem’s long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify ‘biodiversity services’ in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach. PMID:27928040

  14. Biodiversity in the Anthropocene: prospects and policy.

    Science.gov (United States)

    Seddon, Nathalie; Mace, Georgina M; Naeem, Shahid; Tobias, Joseph A; Pigot, Alex L; Cavanagh, Rachel; Mouillot, David; Vause, James; Walpole, Matt

    2016-12-14

    Meeting the ever-increasing needs of the Earth's human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum-as well as opposition-is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem's long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify 'biodiversity services' in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach. © 2016 The Author(s).

  15. Accounting for biodiversity in the dairy industry.

    Science.gov (United States)

    Sizemore, Grant C

    2015-05-15

    Biodiversity is an essential part of properly functioning ecosystems, yet the loss of biodiversity currently occurs at rates unparalleled in the modern era. One of the major causes of this phenomenon is habitat loss and modification as a result of intensified agricultural practices. This paper provides a starting point for considering biodiversity within dairy production, and, although focusing primarily on the United States, findings are applicable broadly. Biodiversity definitions and assessments (e.g., indicators, tools) are proposed and reviewed. Although no single indicator or tool currently meets all the needs of comprehensive assessment, many sustainable practices are readily adoptable as ways to conserve and promote biodiversity. These practices, as well as potential funding opportunities are identified. Given the state of uncertainty in addressing the complex nature of biodiversity assessments, the adoption of generally sustainable environmental practices may be the best currently available option for protecting biodiversity on dairy lands. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biodiversity redistribution under climate change

    DEFF Research Database (Denmark)

    Pecl, Gretta T.; Bastos, Miguel; Bell, Johann D.

    2017-01-01

    Distributions of Earth’s species are changing at accelerating rates, increasingly driven by humanmediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that ...... by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals....

  17. Island biodiversity conservation needs palaeoecology

    DEFF Research Database (Denmark)

    Nogué, Sandra; de Nascimento, Lea; Froyd, Cynthia A.

    2017-01-01

    to human activities. Consequently, even the most degraded islands are a focus for restoration, eradication, and monitoring programmes to protect the remaining endemic and/or relict populations. Here, we build a framework that incorporates an assessment of the degree of change from multiple baseline...... and the introduction of non-native species. We provide exemplification of how such approaches can provide valuable information for biodiversity conservation managers of island ecosystems....

  18. European Atlas of Soil Biodiversity

    DEFF Research Database (Denmark)

    Krogh (contributor), Paul Henning

    Soil is one of the fundamental components for supporting life on Earth. Most ecosystem processes and global functions that occur within soil are driven by living organisms that, in turn, sustain life above ground. However, despite the fact that soils are home to a quarter of all living species on...... Biodiversity is an essential reference to the many and varied aspects of soil. The overall goal of this work is to convey the fundamental necessity to safeguard soil biodiversity in order to guarantee life on this planet.......Soil is one of the fundamental components for supporting life on Earth. Most ecosystem processes and global functions that occur within soil are driven by living organisms that, in turn, sustain life above ground. However, despite the fact that soils are home to a quarter of all living species...... on Earth, life within the soil is often hidden away and suffers by being 'out of sight and out of mind'. What kind of life is there in soil? What do we mean by soil biodiversity? What is special about soil biology? How do our activities affect soil ecosystems? What are the links between soil biota...

  19. Biodiversity technologies: tools as change agents

    Science.gov (United States)

    Snaddon, Jake; Petrokofsky, Gillian; Jepson, Paul; Willis, Katherine J.

    2013-01-01

    A meeting on Biodiversity Technologies was held by the Biodiversity Institute, Oxford on the 27–28 of September 2012 at the Department of Zoology, University of Oxford. The symposium brought together 36 speakers from North America, Australia and across Europe, presenting the latest research on emerging technologies in biodiversity science and conservation. Here we present a perspective on the general trends emerging from the symposium. PMID:23221877

  20. Economic growth, biodiversity loss and conservation effort.

    Science.gov (United States)

    Dietz, Simon; Adger, W Neil

    2003-05-01

    This paper investigates the relationship between economic growth, biodiversity loss and efforts to conserve biodiversity using a combination of panel and cross section data. If economic growth is a cause of biodiversity loss through habitat transformation and other means, then we would expect an inverse relationship. But if higher levels of income are associated with increasing real demand for biodiversity conservation, then investment to protect remaining diversity should grow and the rate of biodiversity loss should slow with growth. Initially, economic growth and biodiversity loss are examined within the framework of the environmental Kuznets hypothesis. Biodiversity is represented by predicted species richness, generated for tropical terrestrial biodiversity using a species-area relationship. The environmental Kuznets hypothesis is investigated with reference to comparison of fixed and random effects models to allow the relationship to vary for each country. It is concluded that an environmental Kuznets curve between income and rates of loss of habitat and species does not exist in this case. The role of conservation effort in addressing environmental problems is examined through state protection of land and the regulation of trade in endangered species, two important means of biodiversity conservation. This analysis shows that the extent of government environmental policy increases with economic development. We argue that, although the data are problematic, the implications of these models is that conservation effort can only ever result in a partial deceleration of biodiversity decline partly because protected areas serve multiple functions and are not necessarily designated to protect biodiversity. Nevertheless institutional and policy response components of the income biodiversity relationship are important but are not well captured through cross-country regression analysis.

  1. Circumpolar Biodiversity Monitoring Programme coastal biodiversity monitoring background paper

    Science.gov (United States)

    McLennan, Donald; Anderson, Rebecca D.; Wegeberg, S.; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, S.; Markon, Carl J.; Christensen, T.; Barry, T.; Price, C.

    2016-01-01

    In 2014, the United States (U.S.) and Canada agreed to act as co-lead countries for the initial development of the Coastal Expert Monitoring Group (CEMG) as part of the Circumpolar Biodiversity Monitoring Program (CBMP, www. cbmp.is) under the Arctic Council’s Conservation of Arctic Flora and Fauna (CAFF, www.caff.is) working group. The CAFF Management Board approved Terms of Reference for the CEMG in the spring of 2014. The primary goal of the CEMG is to develop a long term, integrated, multi-disciplinary, circumpolar Arctic Coastal Biodiversity Monitoring Plan (the Coastal Plan) that relies on science and Traditional Knowledge, and has direct and relevant application for communities, industry, government decision makers, and other users. In addition to the monitoring plan, the CAFF working group has asked the CBMP, and thus the CEMG, to develop an implementation plan that identifies timeline, costs, organizational structure and partners. This background paper provides a platform for the guidance for the development of the Coastal Plan and is produced by the CEMG with assistance from a number of experts in multiple countries.

  2. Marine biodiversity in Japanese waters.

    Directory of Open Access Journals (Sweden)

    Katsunori Fujikura

    Full Text Available To understand marine biodiversity in Japanese waters, we have compiled information on the marine biota in Japanese waters, including the number of described species (species richness, the history of marine biology research in Japan, the state of knowledge, the number of endemic species, the number of identified but undescribed species, the number of known introduced species, and the number of taxonomic experts and identification guides, with consideration of the general ocean environmental background, such as the physical and geological settings. A total of 33,629 species have been reported to occur in Japanese waters. The state of knowledge was extremely variable, with taxa containing many inconspicuous, smaller species tending to be less well known. The total number of identified but undescribed species was at least 121,913. The total number of described species combined with the number of identified but undescribed species reached 155,542. This is the best estimate of the total number of species in Japanese waters and indicates that more than 70% of Japan's marine biodiversity remains un-described. The number of species reported as introduced into Japanese waters was 39. This is the first attempt to estimate species richness for all marine species in Japanese waters. Although its marine biota can be considered relatively well known, at least within the Asian-Pacific region, considering the vast number of different marine environments such as coral reefs, ocean trenches, ice-bound waters, methane seeps, and hydrothermal vents, much work remains to be done. We expect global change to have a tremendous impact on marine biodiversity and ecosystems. Japan is in a particularly suitable geographic situation and has a lot of facilities for conducting marine science research. Japan has an important responsibility to contribute to our understanding of life in the oceans.

  3. Antarctica and the strategic plan for biodiversity.

    Directory of Open Access Journals (Sweden)

    Steven L Chown

    2017-03-01

    Full Text Available The Strategic Plan for Biodiversity, adopted under the auspices of the Convention on Biological Diversity, provides the basis for taking effective action to curb biodiversity loss across the planet by 2020-an urgent imperative. Yet, Antarctica and the Southern Ocean, which encompass 10% of the planet's surface, are excluded from assessments of progress against the Strategic Plan. The situation is a lost opportunity for biodiversity conservation globally. We provide such an assessment. Our evidence suggests, surprisingly, that for a region so remote and apparently pristine as the Antarctic, the biodiversity outlook is similar to that for the rest of the planet. Promisingly, however, much scope for remedial action exists.

  4. Towards global interoperability for supporting biodiversity research on Essential Biodiversity Variables (EBVs)

    NARCIS (Netherlands)

    Kissling, W.D.; Hardisty, A.; García, E.A.; Santamaria, M.; De Leo, F.; Pesole, G.; Freyhof, J.; Manset, D.; Wissel, S.; Konijn, J.; Los, W.

    2015-01-01

    Essential biodiversity variables (EBVs) have been proposed by the Group on Earth Observations Biodiversity Observation Network (GEO BON) to identify a minimum set of essential measurements that are required for studying, monitoring and reporting biodiversity and ecosystem change. Despite the initial

  5. Marine biodiversity and fishery sustainability.

    Science.gov (United States)

    Shao, Kwang-Tsao

    2009-01-01

    Marine fish is one of the most important sources of animal protein for human use, especially in developing countries with coastlines. Marine fishery is also an important industry in many countries. Fifty years ago, many people believed that the ocean was so vast and so resilient that there was no way the marine environment could be changed, nor could marine fishery resources be depleted. Half a century later, we all agree that the depletion of fishery resources is happening mainly due to anthropogenic factors such as overfishing, habitat destruction, pollution, invasive species introduction, and climate change. Since overfishing can cause chain reactions that decrease marine biodiversity drastically, there will be no seafood left after 40 years if we take no action. The most effective ways to reverse this downward trend and restore fishery resources are to promote fishery conservation, establish marine-protected areas, adopt ecosystem-based management, and implement a "precautionary principle." Additionally, enhancing public awareness of marine conservation, which includes eco-labeling, fishery ban or enclosure, slow fishing, and MPA (marine protected areas) enforcement is important and effective. In this paper, we use Taiwan as an example to discuss the problems facing marine biodiversity and sustainable fisheries.

  6. Anthropic Risk Assessment on Biodiversity

    Science.gov (United States)

    Piragnolo, M.; Pirotti, F.; Vettore, A.; Salogni, G.

    2013-01-01

    This paper presents a methodology for risk assessment of anthropic activities on habitats and species. The method has been developed for Veneto Region, in order to simplify and improve the quality of EIA procedure (VINCA). Habitats and species, animals and plants, are protected by European Directive 92/43/EEC and 2009/147/EC but they are subject at hazard due to pollution produced by human activities. Biodiversity risks may conduct to deterioration and disturbance in ecological niches, with consequence of loss of biodiversity. Ecological risk assessment applied on Natura 2000 network, is needed to best practice of management and monitoring of environment and natural resources. Threats, pressure and activities, stress and indicators may be managed by geodatabase and analysed using GIS technology. The method used is the classic risk assessment in ecological context, and it defines the natural hazard as influence, element of risk as interference and vulnerability. Also it defines a new parameter called pressure. It uses risk matrix for the risk analysis on spatial and temporal scale. The methodology is qualitative and applies the precautionary principle in environmental assessment. The final product is a matrix which excludes the risk and could find application in the development of a territorial information system.

  7. Effective climate action: why biodiversity matters | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-05-22

    May 22, 2018 ... Home · Resources · Perspectives ... This resource-dependency describes the relationship between ... involves holistic and integrated resource management strategies that ... This has been recognized in the Strategic Plan for Biodiversity ... as setting the global framework for priority actions on biodiversity.

  8. The biodiversity conservation game with heterogeneous countries

    NARCIS (Netherlands)

    Winands, S.; Holm-Müller, K.; Weikard, H.P.

    2013-01-01

    Biodiversity is an essential resource, which we classify as conditionally-renewable. In order to achieve conservation and sustainable use of biodiversity virtually all nation states signed the United Nations Convention on Biological Diversity. In this paper we investigate how the heterogeneity of

  9. Biodiversity and Tourism : Impacts and Interventions

    NARCIS (Netherlands)

    Duim, van der V.R.; Caalders, J.D.A.D.

    2002-01-01

    This paper sets a framework for intervention in the relationship between biodiversity and tourism against the background of the Convention on Biological Diversity. It is argued that intervention cannot and should not only be based on considerations of measurable impacts of tourism on biodiversity

  10. Intentional systems management: managing forests for biodiversity.

    Science.gov (United States)

    A.B. Carey; B.R. Lippke; J. Sessions

    1999-01-01

    Conservation of biodiversity provides for economic, social, and environmental sustainability. Intentional management is designed to manage conflicts among groups with conflicting interests. Our goal was to ascertain if intentional management and principles of conservation of biodiversity could be combined into upland and riparian forest management strategies that would...

  11. Conserving biodiversity on native rangelands: Symposium proceedings

    Science.gov (United States)

    Daniel W. Uresk; Greg L. Schenbeck; James T. O' Rourke

    1997-01-01

    These proceedings are the result of a symposium, "Conserving biodiversity on native rangelands" held on August 17, 1995 in Fort Robinson State Park, NE. The purpose of this symposium was to provide a forum to discuss how elements of rangeland biodiversity are being conserved today. We asked, "How resilient and sustainable are rangeland systems to the...

  12. Digital Geogames to Foster Local Biodiversity

    Science.gov (United States)

    Schaal, Sonja; Schaal, Steffen; Lude, Armin

    2015-01-01

    The valuing of biodiversity is considered to be a first step towards its conservation. Therefore, the aim of the BioDiv2Go project is to combine sensuous experiences discovering biodiversity with mobile technology and a game-based learning approach. Following the competence model for environmental education (Roczen et al, 2014), Geogames (location…

  13. Forest Resilience, Biodiversity, and Climate Change

    Science.gov (United States)

    I. Thompson; B. Mackey; S. McNulty; A. Mosseler

    2009-01-01

    This paper reviews the concepts of ecosystem resilience, resistance, and stability in forests and their relationship to biodiversity, with particular reference to climate change. The report is a direct response to a request by the ninth meeting of the Conference of the Parties to the CBD, in decision IX/51, to explore the links between biodiversity, forest ecosystem...

  14. Plantation forests and biodiversity: oxymoron or opportunity?

    Science.gov (United States)

    Eckehard G. Brockerhoff; Hervé Jactel; John A. Parrotta; Christopher Quine; Jeffrey Sayer

    2008-01-01

    Losses of natural and semi-natural forests, mostly to agriculture, are a significant concern for biodiversity. Against this trend, the area of intensively managed plantation forests increases, and there is much debate about the implications for biodiversity. We provide a comprehensive review of the function of plantation forests as habitat compared with other land...

  15. African Traditional Knowledge Systems and Biodiversity Management

    African Journals Online (AJOL)

    There is a link between African Traditional Knowledge Systems and the management of Biodiversity. These have been passed over from one generation to the next through oral tradition. The lack of documentation of these systems of managing biodiversity has led to the existence of a gap between the scientifi cally based ...

  16. The origins of tropical marine biodiversity.

    Science.gov (United States)

    Bowen, Brian W; Rocha, Luiz A; Toonen, Robert J; Karl, Stephen A

    2013-06-01

    Recent phylogeographic studies have overturned three paradigms for the origins of marine biodiversity. (i) Physical (allopatric) isolation is not the sole avenue for marine speciation: many species diverge along ecological boundaries. (ii) Peripheral habitats such as oceanic archipelagos are not evolutionary graveyards: these regions can export biodiversity. (iii) Speciation in marine and terrestrial ecosystems follow similar processes but are not the same: opportunities for allopatric isolation are fewer in the oceans, leaving greater opportunity for speciation along ecological boundaries. Biodiversity hotspots such as the Caribbean Sea and the Indo-Pacific Coral Triangle produce and export species, but can also accumulate biodiversity produced in peripheral habitats. Both hotspots and peripheral ecosystems benefit from this exchange in a process dubbed biodiversity feedback. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Biodiversity and models of evolution

    Directory of Open Access Journals (Sweden)

    S. L. Podvalny

    2016-01-01

    Full Text Available Summary. The paper discusses the evolutionary impact of biodiversity, the backbone of noosphere, which status has been fixed by a UN convention. The examples and role of such diversity are considered the various levels of life arrangement. On the level of standalone organisms, the diversity in question manifests itself in the differentiation and separation of the key physiologic functions which significantly broaden the eco-niche for the species with the consummate type of such separation. However, the organismic level of biodiversity does not work for building any developmental models since the starting point of genetic inheritance and variability processes emerges on the minimum structural unit of the living world only, i.e. the population. It is noted that the sufficient gene pool for species development may accumulate in fairly large populations only, where the general rate of mutation does not yield to the rate of ambient variations. The paper shows that the known formal models of species development based on the Fisher theorem about the impact of genodispersion on species adjustment are not in keeping with the actual existence of the species due to the conventionally finite and steady number of genotypes within a population. On the ecosystem level of life arrangement, the key role pertains to the taxonomic diversity supporting the continuous food chain in the system against any adverse developmental conditions of certain taxons. Also, the progressive evolution of an ecosystem is largely stabilized by its multilayer hierarchic structure and the closed circle of matter and energy. The developmental system models based on the Lotka-Volterra equations describing the interaction of the open-loop ecosystem elements only insufficiently represent the position of biodiversity in the evolutionary processes. The paper lays down the requirements to such models which take into account the mass balance within a system; its trophic structure; the

  18. Evaluating Temporal Consistency in Marine Biodiversity Hotspots.

    Science.gov (United States)

    Piacenza, Susan E; Thurman, Lindsey L; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lindsley, Amy J; Nelson, Jake; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Heppell, Selina S

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  19. Cycad diversification and tropical biodiversity

    Directory of Open Access Journals (Sweden)

    Rull, V.

    2012-12-01

    Full Text Available The recent unexpected discovery that living Cycadales are not Jurassic-Cretaceous (200– 65 Mya relicts, as all their extant genera began to diversify during the Late Miocene (12 Mya, has challenged a classical evolutionary myth. This brief note shows how this finding may also provide new clues on the shaping of the high tropical biodiversity

    El reciente e inesperado descubrimiento de que las Cycadales actuales no son relictos Jurásico-Cretácicos (200-65 Mya, ya que todos sus géneros iniciaron su diversificación durante el Mioceno Tardío (12 Mya, ha puesto en entredicho un mito evolutivo clásico. En esta nota se expone como este hallazgo puede, además, proporcionar nuevas pistas sobre el origen de la elevada biodiversidad tropical.

  20. Biodiversity mapping in sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Tor; Ulssnes, Amund; Nissen-Lie, Torild [DNV, Oslo (Norway)

    2008-07-01

    When oil companies are entering new unexplored areas their potential footprint on the environment should be measured in a way that necessary action could be included in the planning of the activity. These actions should reduce the impact to accepted levels. Traditional baseline studies, including sediment and macro fauna sampling, are carried out in homogeneous areas. In heterogeneous and unexplored areas there is a need for more information than these traditional sediment analyses can give. To increase the knowledge from specific areas biodiversity mapping has been carried out. To combine the knowledge from ROV surveys, modelling, current measurements, sediment characteristics, seismic, macro fauna and background levels of chemicals contents in the sediments, both prior to the exploration, and after the drilling have taken place the operator can document their footprint on the marine environment. (author)

  1. How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring

    Directory of Open Access Journals (Sweden)

    Petteri Vihervaara

    2017-04-01

    Full Text Available Essential Biodiversity Variables (EBVs have been suggested to harmonize biodiversity monitoring worldwide. Their aim is to provide a small but comprehensive set of monitoring variables that would give a balanced picture of the development of biodiversity and the reaching of international and national biodiversity targets. Globally, GEO BON (Group on Earth Observations Biodiversity Observation Network has suggested 22 candidate EBVs to be monitored. In this article we regard EBVs as a conceptual tool that may help in making national scale biodiversity monitoring more robust by pointing out where to focus further development resources. We look at one country –Finland –with a relatively advanced biodiversity monitoring scheme and study how well Finland’s current biodiversity state indicators correspond with EBVs. In particular, we look at how national biodiversity monitoring could be improved by using available remote sensing (RS applications. Rapidly emerging new technologies from drones to airborne laser scanning and new satellite sensors providing imagery with very high resolution (VHR open a whole new world of opportunities for monitoring the state of biodiversity and ecosystems at low cost. In Finland, several RS applications already exist that could be expanded into national indicators. These include the monitoring of shore habitats and water quality parameters, among others. We hope that our analysis and examples help other countries with similar challenges. Along with RS opportunities, our analysis revealed also some needs to develop the EBV framework itself.

  2. Hopping hotspots: global shifts in marine biodiversity.

    Science.gov (United States)

    Renema, W; Bellwood, D R; Braga, J C; Bromfield, K; Hall, R; Johnson, K G; Lunt, P; Meyer, C P; McMonagle, L B; Morley, R J; O'Dea, A; Todd, J A; Wesselingh, F P; Wilson, M E J; Pandolfi, J M

    2008-08-01

    Hotspots of high species diversity are a prominent feature of modern global biodiversity patterns. Fossil and molecular evidence is starting to reveal the history of these hotspots. There have been at least three marine biodiversity hotspots during the past 50 million years. They have moved across almost half the globe, with their timing and locations coinciding with major tectonic events. The birth and death of successive hotspots highlights the link between environmental change and biodiversity patterns. The antiquity of the taxa in the modern Indo-Australian Archipelago hotspot emphasizes the role of pre-Pleistocene events in shaping modern diversity patterns.

  3. Late Quaternary climate change shapes island biodiversity

    DEFF Research Database (Denmark)

    Weigelt, Patrick; Steinbauer, Manuel; Cabral, Juliano

    2016-01-01

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration–extinction dynamics1, or as geologically dynamic with biodiversity resulting from immigration–speciation–extinction dynamics influenced by changes in island...... sea levels3, 4 and caused massive changes in island area, isolation and connectivity5, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory2, 6. Consequences of these oscillations for present biodiversity remain unassessed5, 7...

  4. Making the case for biodiversity in South Africa: Re-framing biodiversity communications

    OpenAIRE

    Maze, Kristal; Barnett, Mandy; Botts, Emily A.; Stephens, Anthea; Freedman, Mike; Guenther, Lars

    2016-01-01

    Background: Biodiversity education and public awareness do not always contain the motivational messages that inspire action amongst decision-makers. Traditional messages from the biodiversity sector are often framed around threat, with a generally pessimistic tone. Aspects of social marketing can be used to support positive messaging that is more likely to inspire action amongst the target audience. Objectives: The South African biodiversity sector embarked on a market research process to ...

  5. Bridging the gap between biodiversity data and policy reporting needs: An essential biodiversity variables perspective

    CSIR Research Space (South Africa)

    Geijzendorffer, IR

    2016-01-01

    Full Text Available come from less biodiverse areas such as North America and 92 Europe rather than biodiversity-rich areas such as some parts of the tropics (Collen et al. 2008; Mora et 93 al. 2008; Pereira et al. 2012) and developing countries (Butchart et al. 2010... provision, EBVs 349 for other specific ecosystem functions were missing (e.g., pollination or soil decomposition rates). 350 351 This analysis also highlighted that reporting required additional indicators on non-biodiversity variables, 352...

  6. Conservation of biodiversity in the Sango Bay area, southern Uganda

    African Journals Online (AJOL)

    A series of biodiversity and socio-economic surveys carried out in the Sango Bay area of southern Uganda revealed high biodiversity values for some taxa in some sites. Use of this biodiversity and reliance on it by local communities was widespread. Biodiversity scores were given to all species and these were coupled with ...

  7. Online Biodiversity Resources - Principles for Usability

    Directory of Open Access Journals (Sweden)

    Sophie Neale

    2007-01-01

    Full Text Available Online biodiversity portals and databases enabling access to large volumes of biological information represent a potentially extensive set of resources for a variety of user groups. However, in order for these resources to live up to their promise they need to be both useful and easy to use. We discuss a number of principles for designing systems for usability, examine how these have been applied to the development of online biodiversity resources and compare this with a portal project developed by the Astrophysics community. We highlight a lack of user involvement and formalised requirements analysis by biodiversity projects resulting in a poor understanding of both the users and their tasks. We suggest a change in the way large biodiversity portal projects are structured, that is by providing infrastructure and supporting user groups developing individual interfaces.

  8. Collaborative Networks for biodiversity domain organizations

    NARCIS (Netherlands)

    Ermilova, E.; Afsarmanesh, H.

    2010-01-01

    European scientific research and development organizations, operating in the domains of biology, ecology, and biodiversity, strongly need to cooperate/collaborate with other centers. Unavailability of interoperation infrastructure as well as the needed collaboration environment among research

  9. language as a culture and biodiversity conservation

    African Journals Online (AJOL)

    Guest

    biodiversity conservation because life in a particular human environment is ... communication ,by language, by word expression as cultural genes, stories, legends and ..... for expressing individual identity, preserve culture, understanding the ...

  10. Ecosystem function and biodiversity on coral reefs

    OpenAIRE

    Ogden, J.; Done, T.; Salvat, B.

    1994-01-01

    The article highlights a workshop held in Key West, Florida in November 1993 attended by a group of 35 international scientists where topics of ecosystem function and biodiversity on coral reefs were discussed.

  11. Antarctica and the strategic plan for biodiversity

    Science.gov (United States)

    Chown, Steven L.; Brooks, Cassandra M.; Terauds, Aleks; Le Bohec, Céline; van Klaveren-Impagliazzo, Céline; Whittington, Jason D.; Butchart, Stuart H. M.; Coetzee, Bernard W. T.; Collen, Ben; Convey, Peter; Gaston, Kevin J.; Gilbert, Neil; Gill, Mike; Höft, Robert; Johnston, Sam; Kennicutt, Mahlon C.; Kriesell, Hannah J.; Le Maho, Yvon; Lynch, Heather J.; Palomares, Maria; Puig-Marcó, Roser; Stoett, Peter; McGeoch, Melodie A.

    2017-01-01

    The Strategic Plan for Biodiversity, adopted under the auspices of the Convention on Biological Diversity, provides the basis for taking effective action to curb biodiversity loss across the planet by 2020—an urgent imperative. Yet, Antarctica and the Southern Ocean, which encompass 10% of the planet’s surface, are excluded from assessments of progress against the Strategic Plan. The situation is a lost opportunity for biodiversity conservation globally. We provide such an assessment. Our evidence suggests, surprisingly, that for a region so remote and apparently pristine as the Antarctic, the biodiversity outlook is similar to that for the rest of the planet. Promisingly, however, much scope for remedial action exists. PMID:28350825

  12. Biodiversity of the flora of Mount Papa

    International Nuclear Information System (INIS)

    Yin-Yin-Kyi

    1995-07-01

    Even though Mount Papa is in the dry zone area, it is almost evergreen, due to its elevation of 4981 feet above the sea level and its fertile soil conditions. A has a rich biodiversity with vegetation of many types

  13. Managing Agricultural Biodiversity for Nutrition, Health, Livelihoods ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Agricultural Biodiversity for Nutrition, Health, Livelihoods and ... on local ecosystems and human resources can provide sustainable solutions to ... and health among the rural and urban poor through increased dietary diversity.

  14. Pollination decays in biodiversity hotspots.

    Science.gov (United States)

    Vamosi, Jana C; Knight, Tiffany M; Steets, Janette A; Mazer, Susan J; Burd, Martin; Ashman, Tia-Lynn

    2006-01-24

    As pollinators decline globally, competition for their services is expected to intensify, and this antagonism may be most severe where the number of plant species is the greatest. Using meta-analysis and comparative phylogenetic analysis, we provide a global-scale test of whether reproduction becomes more limited by pollen receipt (pollen limitation) as the number of coexisting plant species increases. As predicted, we find a significant positive relationship between pollen limitation and species richness. In addition, this pattern is particularly strong for species that are obligately outcrossing and for trees relative to herbs or shrubs. We suggest that plants occurring in species-rich communities may be more prone to pollen limitation because of interspecific competition for pollinators. As a consequence, plants in biodiversity hotspots may have a higher risk of extinction and/or experience increased selection pressure to specialize on certain pollinators or diversify into different phenological niches. The combination of higher pollen limitation and habitat destruction represents a dual risk to tropical plant species that has not been previously identified.

  15. Biodiversity losses: The downward spiral

    Science.gov (United States)

    Tomback, Diana F.; Kendall, Katherine C.; Tomback, Diana F.; Arno, Stephen F.; Keane, Robert E.

    2001-01-01

    The dramatic decline of whitebark pine (Pinus albicaulis) populations in the northwestern United States and southwestern Canada from the combined effects of fire exclusion, mountain pine beetles (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola), and the projected decline of whitebark pine populations rangewide (Chapters 10 and 11) do not simply add up to local extirpations of a single tree species. Instead, the loss of whitebark pine has broad ecosystem-level consequences, eroding local plant and animal biodiversity, changing the time frame of succession, and altering the distribution of subalpine vegetation (Chapter 1). One potential casualty of this decline may be the midcontinental populations of the grizzly bear (Ursus arctos horribilis), which use whitebark pine seeds as a major food source (Chapter 7). Furthermore, whitebark pine is linked to other white pine ecosystems in the West through its seed-disperser, Clark's nutcracker (Nucifraga columbiana) (Chapter 5). Major declines in nutcracker populations ultimately seal the fate of several white pine ecosystems, and raise the question of whether restoration is possible once a certain threshold of decline is reached.

  16. Was sind Biodiversity Hotspots - global, regional, lokal?

    OpenAIRE

    Hobohm, Carsten

    2005-01-01

    Das Konzept der Biodiversity Hotspots, das Ende der 1980er Jahre von Norman Myers entworfen wurde, gehört derzeit zu den wichtigen forschungsleitenden Ansätzen globaler Naturschutzstrategien. In der vorliegenden Arbeit geht es in erster Linie um die Frage, ob und inwiefern dieses Konzept auf die regionale und lokale Dimension Europas übertragen werden kann. Es wird ein Vorschlag unterbreitet, wie europäische Biodiversity Hotspots definiert und identifiziert werden können. Bei der Erforschung ...

  17. Coastal sea radiation environment and biodiversity protection

    International Nuclear Information System (INIS)

    Tang Senming; Shang Zhaorong

    2009-01-01

    This paper characterizes the types, trend and the potential of radiation contamination in the sea against the development of nuclear power stations. Combined with the present status of radioactive contamination and marine biodiversity in China seas, it is pointed out that non-human radiation protection should be considered on the bases of marine biodiversity protection. Besides, the reference species for marine radiation protection and some viewpoints on the work of marine radiation protection in China are pro- posed. (authors)

  18. Towards a Duty of Care for Biodiversity

    Science.gov (United States)

    Earl, G.; Curtis, A.; Allan, C.

    2010-04-01

    The decline in biodiversity is a worldwide phenomenon, with current rates of species extinction more dramatic than any previously recorded. Habitat loss has been identified as the major cause of biodiversity decline. In this article we suggest that a statutory duty of care would complement the current mix of policy options for biodiversity conservation. Obstacles hindering the introduction of a statutory duty of care include linguistic ambiguity about the terms ‘duty of care’ and ‘stewardship’ and how they are applied in a natural resource management context, and the absence of a mechanism to guide its implementation. Drawing on international literature and key informant interviews we have articulated characteristics of duty of care to reduce linguistic ambiguity, and developed a framework for implementing a duty of care for biodiversity at the regional scale. The framework draws on key elements of the common law ‘duty of care’, the concepts of ‘taking reasonable care’ and ‘avoiding foreseeable harm’, in its logic. Core elements of the framework include desired outcomes for biodiversity, supported by current recommended practices. The focus on outcomes provides opportunities for the development of innovative management practices. The framework incorporates multiple pathways for the redress of non-compliance including tiered negative sanctions, and positive measures to encourage compliance. Importantly, the framework addresses the need for change and adaptation that is a necessary part of biodiversity management.

  19. AMBON - the Arctic Marine Biodiversity Observing Network

    Science.gov (United States)

    Iken, K.; Danielson, S. L.; Grebmeier, J. M.; Cooper, L. W.; Hopcroft, R. R.; Kuletz, K.; Stafford, K.; Mueter, F. J.; Collins, E.; Bluhm, B.; Moore, S. E.; Bochenek, R. J.

    2016-02-01

    The goal of the Arctic Marine Biodiversity Observing Network (AMBON) is to build an operational and sustainable marine biodiversity observing network for the US Arctic Chukchi Sea continental shelf. The AMBON has four main goals: 1. To close current gaps in taxonomic biodiversity observations from microbes to whales, 2. To integrate results of past and ongoing research programs on the US Arctic shelf into a biodiversity observation network, 3. To demonstrate at a regional level how an observing network could be developed, and 4. To link with programs on the pan-Arctic to global scale. The AMBON fills taxonomic (from microbes to mammals), functional (food web structure), spatial and temporal (continuing time series) gaps, and includes new technologies such as state-of-the-art genomic tools, with biodiversity and environmental observations linked through central data management through the Alaska Ocean Observing System. AMBON is a 5-year partnership between university and federal researchers, funded through the National Ocean Partnership Program (NOPP), with partners in the National Oceanographic and Atmospheric Administration (NOAA), the Bureau of Ocean and Energy Management (BOEM), and Shell industry. AMBON will allow us to better coordinate, sustain, and synthesize biodiversity research efforts, and make data available to a broad audience of users, stakeholders, and resource managers.

  20. The biodiversity-dependent ecosystem service debt.

    Science.gov (United States)

    Isbell, Forest; Tilman, David; Polasky, Stephen; Loreau, Michel

    2015-02-01

    Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity-dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2-21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity-dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services. © 2014 John Wiley & Sons Ltd/CNRS.

  1. Steel and biodiversity: a promising alliance

    Science.gov (United States)

    Peters, Klaus; Colla, Valentina; Moonen, Anna Camilla; Branca, Teresa Annunziata; Moretto, Deny Del; Ragaglini, Giorgio; Delmiro, Vanesa Maria Menendez; Romaniello, Lea; Carler, Sophie; Hodges, Jennifer; Bullock, Matthew; Malfa, Enrico

    2018-06-01

    The term "Biodiversity" derives from a contraction of "biological diversity" and commonly refers to a measure of the variety of organisms, which are present in different ecosystems, by considering genetic variation, ecosystem variation, or species variation within an area, biome, or planet. Biodiversity is receiving an ever-increasing attention at many levels of European society as well as from many industrial sectors, and a variety of actions are being put in place in order to protect, preserve and increase it. The present paper provides examples of the capabilities and potentials of the steel sector with respect to biodiversity. In effect, steel is a valuable and fundamental structural material in order to develop measures and systems for protection of biodiversity. On the other hand, biodiversity can represent for the steel industry not only a heritage to preserve, but, through its functional traits, it can become an opportunity, offering an ecosystem's perspective to all industrial companies. In the paper, steel relevant topics and applications are analyzed leading to the conclusion that biodiversity should be exploited and can play a role with potentially relevant benefits both for the company and for local communities. Sustainability and Ecodesign of processes, products and services

  2. Biodiversity informatics: challenges and opportunities for applying biodiversity information to management and conservation

    Science.gov (United States)

    James S. Kagan

    2006-01-01

    Researchers, land managers, and the public currently often are unable to obtain useful biodiversity information because the subject represents such a large component of biology and ecology, and systems to compile and organize this information do not exist. Information on vascular plant taxonomy, as addressed by the Global Biodiversity Information Facility and key...

  3. International Center for Himalayan Biodiversity (ICHB): Conserving Himalayan Biodiversity--A Global Responsibility

    Science.gov (United States)

    Ram Bhandari

    2006-01-01

    Biodiversity is a global endowment of nature. Conservation of biodiversity includes all species of plants, animals and other organisms, the range of genetic stocks within each species, and ecosystem diversity. Food, many types of medicine and industrial products are provided by the biological resources that are the basis of life on Earth. The value of the Earth’s...

  4. Compensation for biodiversity loss – Advice to the Netherlands' Taskforce on Biodiversity and Natural Resources

    NARCIS (Netherlands)

    Bie, de S.; Dessel, van B.

    2011-01-01

    Compensation of damage to biodiversity is one of the mechanisms to settle environmental costs. It concerns creating new opportunities for biodiversity, which as a minimum equals the residual impact after a company or organization has attempted to avoid, prevent and mitigate that impact. In the

  5. Breaking boundaries for biodiversity : expanding the policy agenda to halt biodiversity loss

    NARCIS (Netherlands)

    Veen, M.P.; Sanders, M.E.; Tekelenburg, A.; Gerritsen, A.L.; Lörzing, J.A.; Brink, Th.

    2010-01-01

    Our assessment from the perspective of the Netherlands, a country in the temperate zone, showed a slightly positive picture, in line with the overall results for this zone. The loss of biodiversity in the Netherlands has been slowed down, but the European target – halting the loss of biodiversity

  6. Challenges of Biodiversity Education: A Review of Education Strategies for Biodiversity Education

    Science.gov (United States)

    Navarro-Perez, Moramay; Tidball, Keith G.

    2012-01-01

    Biodiversity conservation has increasingly gained recognition in national and international agendas. The Convention on Biological Diversity (CBD) has positioned biodiversity as a key asset to be protected to ensure our well-being and that of future generations. Nearly 20 years after its inception, results are not as expected, as shown in the…

  7. Making the case for biodiversity in South Africa: Re-framing biodiversity communications

    Directory of Open Access Journals (Sweden)

    Kristal Maze

    2016-12-01

    Conclusion: Based on the findings, a communications strategy known as ‘Making the case for biodiversity’ was developed that re-framed the economic, emotional and practical value propositions for biodiversity. The communications strategy has already resulted in greater political and economic attention towards biodiversity in South Africa.

  8. Data hosting infrastructure for primary biodiversity data

    Science.gov (United States)

    2011-01-01

    Background Today, an unprecedented volume of primary biodiversity data are being generated worldwide, yet significant amounts of these data have been and will continue to be lost after the conclusion of the projects tasked with collecting them. To get the most value out of these data it is imperative to seek a solution whereby these data are rescued, archived and made available to the biodiversity community. To this end, the biodiversity informatics community requires investment in processes and infrastructure to mitigate data loss and provide solutions for long-term hosting and sharing of biodiversity data. Discussion We review the current state of biodiversity data hosting and investigate the technological and sociological barriers to proper data management. We further explore the rescuing and re-hosting of legacy data, the state of existing toolsets and propose a future direction for the development of new discovery tools. We also explore the role of data standards and licensing in the context of data hosting and preservation. We provide five recommendations for the biodiversity community that will foster better data preservation and access: (1) encourage the community's use of data standards, (2) promote the public domain licensing of data, (3) establish a community of those involved in data hosting and archival, (4) establish hosting centers for biodiversity data, and (5) develop tools for data discovery. Conclusion The community's adoption of standards and development of tools to enable data discovery is essential to sustainable data preservation. Furthermore, the increased adoption of open content licensing, the establishment of data hosting infrastructure and the creation of a data hosting and archiving community are all necessary steps towards the community ensuring that data archival policies become standardized. PMID:22373257

  9. CALICE: Calibrating Plant Biodiversity in Glacier Ice

    Science.gov (United States)

    Festi, Daniela; Cristofori, Antonella; Vernesi, Cristiano; Zerbe, Stefan; Wellstein, Camilla; Maggi, Valter; Oeggl, Klaus

    2017-04-01

    The objective of the project is to reconstruct plant biodiversity and its trend archived in Alpine glacier ice by pollen and eDNA (environmental DNA) during the last five decades by analyzing a 40 m ice core. For our study we chose the Adamello glacier (Trentino - Südtirol, Lombardia) because of i) the good preservation conditions for pollen and eDNA in ice, ii) the thickness of the ice cap (270m) and iii) the expected high time resolution. The biodiversity estimates gained by pollen analysis and eDNA will be validated by historical biodiversity assessments mainly based on vegetation maps, aerial photos and vegetation surveys in the catchment area of the Adamello glacier for the last five decades. This historical reconstruction of biodiversity trends will be performed on a micro-, meso- and macro-scale (5, 20-50 and 50-100 Km radius, respectively). The results will serve as a calibration data set on biodiversity for future studies, such as the second step of the coring by the POLLiCE research consortium (pollice.fmach.it). In fact, arrangements are currently been made to drill the complete ice cap and retrieve a 270 m thick core which has the potential to cover a time span of minimum 400 years up to several millennia. This second stage will extend the time scale and enable the evaluation of dissimilarity/similarity of modern biodiversity in relation to Late Holocene trends. Finally, we believe this case study has the potential to be applied in other glaciated areas to evaluate biodiversity for large regions (e.g. central Asian mountain ranges, Tibet and Tian Shan or the Andes).

  10. Biodiversity information platforms: From standards to interoperability

    Directory of Open Access Journals (Sweden)

    Walter Berendsohn

    2011-11-01

    Full Text Available One of the most serious bottlenecks in the scientific workflows of biodiversity sciences is the need to integrate data from different sources, software applications, and services for analysis, visualisation and publication. For more than a quarter of a century the TDWG Biodiversity Information Standards organisation has a central role in defining and promoting data standards and protocols supporting interoperability between disparate and locally distributed systems. Although often not sufficiently recognized, TDWG standards are the foundation of many popular Biodiversity Informatics applications and infrastructures ranging from small desktop software solutions to large scale international data networks. However, individual scientists and groups of collaborating scientist have difficulties in fully exploiting the potential of standards that are often notoriously complex, lack non-technical documentations, and use different representations and underlying technologies. In the last few years, a series of initiatives such as Scratchpads, the EDIT Platform for Cybertaxonomy, and biowikifarm have started to implement and set up virtual work platforms for biodiversity sciences which shield their users from the complexity of the underlying standards. Apart from being practical work-horses for numerous working processes related to biodiversity sciences, they can be seen as information brokers mediating information between multiple data standards and protocols. The ViBRANT project will further strengthen the flexibility and power of virtual biodiversity working platforms by building software interfaces between them, thus facilitating essential information flows needed for comprehensive data exchange, data indexing, web-publication, and versioning. This work will make an important contribution to the shaping of an international, interoperable, and user-oriented biodiversity information infrastructure.

  11. Molecular biodiversity of Red Sea demosponges

    International Nuclear Information System (INIS)

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M.; Berumen, Michael L.; Büttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schätzle, Simone

    2016-01-01

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters. - Highlights: •First assessment of demosponge molecular biodiversity from Arabia •Rapid molecular screening approach on Arabian demosponge collections •Assessment of 28S 'C-Region' for demosponge barcoding •Data for a future comprehensive understanding of sponge biodiversity of the Red Sea

  12. Climate change: potential implications for Ireland's biodiversity

    Science.gov (United States)

    Donnelly, Alison

    2018-03-01

    A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.

  13. Ecology and evolution of mammalian biodiversity.

    Science.gov (United States)

    Jones, Kate E; Safi, Kamran

    2011-09-12

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future.

  14. Mapping and Quantifying Terrestrial Vertebrate Biodiversity at ...

    Science.gov (United States)

    The ability to assess, report, map, and forecast functions of ecosystems is critical to our capacity to make informed decisions to maintain the sustainable nature of our environment. Because of the variability among living organisms and levels of organization (e.g. genetic, species, ecosystem), biodiversity has always been difficult to measure precisely, especially within a systematic manner and over multiple scales. In answer to this challenge, the U.S. Environmental Protection Agency has created a partnership with other Federal agencies, academic institutions, and Non-Governmental Organizations to develop the EnviroAtlas (https://www.epa.gov/enviroatlas), an online national Decision Support Tool that allows users to view and analyze the geographical description of the supply and demand for ecosystem services, as well as the drivers of change. As part of the EnviroAtlas, an approach has been developed that uses deductive habitat models for all terrestrial vertebrates of the conterminous United States and clusters them into biodiversity metrics that relate to ecosystem service-relevant categories. Metrics, such as species and taxon richness, have been developed and integrated with other measures of biodiversity. Collectively, these metrics provide a consistent scalable process from which to make geographic comparisons, provide thematic assessments, and to monitor status and trends in biodiversity. The national biodiversity component operates across approximatel

  15. Geography of conservation spending, biodiversity, and culture.

    Science.gov (United States)

    McClanahan, T R; Rankin, P S

    2016-10-01

    We used linear and multivariate models to examine the associations between geography, biodiversity, per capita economic output, national spending on conservation, governance, and cultural traits in 55 countries. Cultural traits and social metrics of modernization correlated positively with national spending on conservation. The global distribution of this spending culture was poorly aligned with the distribution of biodiversity. Specifically, biodiversity was greater in the tropics where cultures tended to spend relatively less on conservation and tended to have higher collectivism, formalized and hierarchical leadership, and weaker governance. Consequently, nations lacking social traits frequently associated with modernization, environmentalism, and conservation spending have the largest component of Earth's biodiversity. This has significant implications for setting policies and priorities for resource management given that biological diversity is rapidly disappearing and cultural traits change slowly. Therefore, we suggest natural resource management adapt to and use characteristics of existing social organization rather than wait for or promote social values associated with conservation spending. Supporting biocultural traditions, engaging leaders to increase conservation commitments, cross-national efforts that complement attributes of cultures, and avoiding interference with nature may work best to conserve nature in collective and hierarchical societies. Spending in modernized nations may be a symbolic response to a symptom of economic development and environmental degradation, and here conservation actions need to ensure that biodiversity is not being lost. © 2016 Society for Conservation Biology.

  16. Ecology and evolution of mammalian biodiversity

    Science.gov (United States)

    Jones, Kate E.; Safi, Kamran

    2011-01-01

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future. PMID:21807728

  17. Molecular biodiversity of Red Sea demosponges.

    Science.gov (United States)

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M; Berumen, Michael L; Büttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schätzle, Simone; Wörheide, Gert

    2016-04-30

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Molecular biodiversity of Red Sea demosponges

    KAUST Repository

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M.; Berumen, Michael L.; Bü ttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schä tzle, Simone; Wö rheide, Gert

    2016-01-01

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.

  19. Molecular biodiversity of Red Sea demosponges

    KAUST Repository

    Erpenbeck, Dirk

    2016-01-07

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.

  20. Educating for biodiversity conservation in urban parks

    Directory of Open Access Journals (Sweden)

    Guerra, M. C.

    2014-01-01

    Full Text Available This article is intended to propose a procedure for learning about biodiversity in urban parks, as a contribution for educating conservation of natural resources. The procedure was named “Diagnosis of biodiversity conservation status in urban parks”. It comprises for stages describing the physic, geographic, socio-historic, and cultural study of the park as well as a taxonomic inventory of species, its distribution, presence in Cuba, and menaces they are subjected to. This facilitates to carry out educative activities. The introduction of the procedure is thought of from an ethno-biological and interdisciplinary perspective for training students in biological, geographical, historical, cultural and ethnological procedures, seeking a holistic approach to environment. The effectiveness of the proposal was appraised by accounting the experience of a class at “Casino Campestre” park in Camagüey City. Key words: biodiversity, urban parks, procedures, conservation training

  1. Biodiversity and the feel-good factor

    DEFF Research Database (Denmark)

    Dallimer, Martin; Irvine, Katherine N.; Skinner, Andrew M. J.

    2012-01-01

    Over half of the world's human population lives in cities, and for many, urban greenspaces are the only places where they encounter biodiversity. This is of particular concern because there is growing evidence that human well-being is enhanced by exposure to nature. However, the specific qualities...... of greenspaces that offer the greatest benefits remain poorly understood. One possibility is that humans respond positively to increased levels of biodiversity. Here, we demonstrate the lack of a consistent relationship between actual plant, butterfly, and bird species richness and the psychological well......-being of urban greenspace visitors. instead, well-being shows a positive relationship with the richness that the greenspace users perceived to be present. One plausible explanation for this discrepancy, which we investigate, is that people generally have poor biodiversity-identification skills. The apparent...

  2. Biodiversity analysis in the digital era

    Science.gov (United States)

    2016-01-01

    This paper explores what the virtual biodiversity e-infrastructure will look like as it takes advantage of advances in ‘Big Data’ biodiversity informatics and e-research infrastructure, which allow integration of various taxon-level data types (genome, morphology, distribution and species interactions) within a phylogenetic and environmental framework. By overcoming the data scaling problem in ecology, this integrative framework will provide richer information and fast learning to enable a deeper understanding of biodiversity evolution and dynamics in a rapidly changing world. The Atlas of Living Australia is used as one example of the advantages of progressing towards this future. Living in this future will require the adoption of new ways of integrating scientific knowledge into societal decision making. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481789

  3. Biodiversity and Resilience of Ecosystem Functions.

    Science.gov (United States)

    Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M

    2015-11-01

    Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A conservation agenda for the Pantanal's biodiversity.

    Science.gov (United States)

    Alho, C J R; Sabino, J

    2011-04-01

    The Pantanal's biodiversity constitutes a valuable natural resource, in economic, cultural, recreational, aesthetic, scientific and educational terms. The vegetation plus the seasonal productivity support a diverse and abundant fauna. Many endangered species occur in the region, and waterfowl are exceptionally abundant during the dry season. Losses of biodiversity and its associated natural habitats within the Pantanal occur as a result of unsustainable land use. Implementation of protected areas is only a part of the conservation strategy needed. We analyse biodiversity threats to the biome under seven major categories: 1) conversion of natural vegetation into pasture and agricultural crops, 2) destruction or degradation of habitat mainly due to wild fire, 3) overexploitation of species mainly by unsustainable fishing, 4) water pollution, 5) river flow modification with implantation of small hydroelectric plants, 6) unsustainable tourism, and 7) introduction of invasive exotic species.

  5. Impact of GM crops on biodiversity.

    Science.gov (United States)

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  6. Biodiversity in a Florida Sandhill Ecosystem

    Directory of Open Access Journals (Sweden)

    Samantha Robertson

    2009-01-01

    Full Text Available This project compares two transects of land in the University of South Florida's Botanical Gardens for their biodiversity. The transects were chosen to represent a Florida sandhill ecosystem and the individual Longleaf Pine, Saw Palmetto, Turkey Oak, Laurel Oak and Live Oak specimens were counted. All other species above waist height were counted as "other"?. Once the individuals were counted, the Simpson's and Shannon-Wiener indices were calculated. Since the Shannon-Wiener index incorporates several diversity characteristics, it is typically more reliable than Simpson's. However, both biodiversity indices agreed that transect B was more diverse than transect A.

  7. Bats, Blood-Feeders and Biodiversity

    DEFF Research Database (Denmark)

    Bohmann, Kristine

    DNA metabarcoding of environmental samples has rapidly become a valuable tool for ecological studies such as biodiversity and diet studies. To reveal the diversity in environmental samples such as soil, water, and faeces, this approach principally employs PCR amplification of environmental DNA...... minimising the occurrence of errors. Centered around metabarcoding dietary studies of bat droppings and leech gut contents, this continuous exploration and refinement is reflected in both the work and structure of this thesis. After a thesis introduction and two chapters on environmental DNA and biodiversity...

  8. The Circumpolar Biodiversity Monitoring Program Terrestrial Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    , understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity, and to identify knowledge gaps and priorities. This poster will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based monitoring...... and coastal environments. The CBMP Terrestrial Plan is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect...

  9. The changing form of Antarctic biodiversity.

    Science.gov (United States)

    Chown, Steven L; Clarke, Andrew; Fraser, Ceridwen I; Cary, S Craig; Moon, Katherine L; McGeoch, Melodie A

    2015-06-25

    Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewhere.

  10. Essential Biodiversity Variables: A framework for communication between the biodiversity community and space agencies

    Science.gov (United States)

    Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.

    2017-12-01

    The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.

  11. Biodiversity monitoring in Europe: the EU FP7 EBONE project. European biodiversity observation NEtwork

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2008-09-01

    Full Text Available submission Presentation Poster presentation A) Title Biodiversity Monitoring in Europe: The EU FP7 EBONE project European Biodiversity Observation NEtwork B) Short title EBONE - European Biodiversity Observation NEtwork C) Author(s) Vogel, M. (1... stream_source_info Vogel_2008.pdf.txt stream_content_type text/plain stream_size 3055 Content-Encoding UTF-8 stream_name Vogel_2008.pdf.txt Content-Type text/plain; charset=UTF-8 BIOTA AFRICA Congress 2008 Abstract...

  12. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

    Science.gov (United States)

    Lefcheck, Jonathan S.; Byrnes, Jarrett E. K.; Isbell, Forest; Gamfeldt, Lars; Griffin, John N.; Eisenhauer, Nico; Hensel, Marc J. S.; Hector, Andy; Cardinale, Bradley J.; Duffy, J. Emmett

    2015-01-01

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. PMID:25907115

  13. Core issues in the economics of biodiversity conservation.

    Science.gov (United States)

    Tisdell, Clement A

    2011-02-01

    Economic evaluations are essential for assessing the desirability of biodiversity conservation. This article highlights significant advances in theories and methods of economic evaluation and their relevance and limitations as a guide to biodiversity conservation; considers the implications of the phylogenetic similarity principle for the survival of species; discusses consequences of the Noah's Ark problem for selecting features of biodiversity to be saved; analyzes the extent to which the precautionary principle can be rationally used to support the conservation of biodiversity; explores the impact of market extensions, market and other institutional failures, and globalization on biodiversity loss; examines the relationship between the rate of interest and biodiversity depletion; and investigates the implications of intergenerational equity for biodiversity conservation. The consequences of changes in biodiversity for sustainable development are given particular attention. © 2011 New York Academy of Sciences.

  14. Finding common ground for biodiversity and ecosystem services

    CSIR Research Space (South Africa)

    Reyers, B

    2012-05-01

    Full Text Available Recently, some members of the conservation community have used ecosystem services as a strategy to conserve biodiversity. Others in the community have criticized this strategy as a distraction from the mission of biodiversity conservation...

  15. Status and strategies for marine biodiversity of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    The status of marine biodiversity and factors responsible for the degradation and loss of marine biodiversity are discussed. Goa has abundant marine wealth. Phytoplankton, marine algae, manglicolous fungi, seagrasses, mangrove flora and other...

  16. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale

    NARCIS (Netherlands)

    Kissling, W.D.; Ahumada, J.A.; Bowser, A.; Fernandez, M.; Fernández, N.; Garcia, E.A.; Guralnick, R.P.; Isaac, N.J.B.; Kelling, S.; Los, W.; McRae, L.; Mihoub, J.-B.; Obst, M.; Santamaria, M.; Skidmore, A.K.; Williams, K.J.; Agosti, D.; Amariles, D.; Arvanitidis, C.; Bastin, L.; De Leo, F.; Egloff, W.; Elith, J.; Hobern, D.; Martin, D.; Pereira, H.M.; Pesole, G.; Peterseil, J.; Saarenmaa, H.; Schigel, D.; Schmeller, D.S.; Segata, N.; Turak, E.; Uhlir, P.F.; Wee, B.; Hardisty, A.R.

    2018-01-01

    Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and

  17. Connecting Earth observation to high-throughput biodiversity data

    DEFF Research Database (Denmark)

    Bush, Alex; Sollmann, Rahel; Wilting, Andreas

    2017-01-01

    Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could...... observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services....

  18. Making a better case for biodiversity conservation

    NARCIS (Netherlands)

    Bugter, Rob; Harrison, Paula; Haslett, John; Tinch, Rob

    2018-01-01

    This Editorial to the BESAFE special issue introduces the project and its approach and case studies. The BESAFE (EC 7th Framework programme) project investigated how the effectiveness of different types of arguments for biodiversity conservation depends on the context in which they are used. Our

  19. Public perceptions of risk to forest biodiversity.

    Science.gov (United States)

    McFarlane, Bonita L

    2005-06-01

    This study examines the perceived risks to forest biodiversity and perceived effectiveness of biodiversity conservation strategies among the general public. It tests the hypotheses that perceived risk to forest biodiversity is influenced by cognitive factors (value orientation and knowledge) and social-cultural factors (such as gender and environmental membership) and that risk perceptions influence other cognitive constructs such as support for natural resource policy and management. Data were collected from a sample of the general public (n= 596) in British Columbia, Canada by mail survey in 2001. Results show that insects and disease were perceived as the greatest risk. Educating the public and industry about biodiversity issues was perceived as a more effective conservation strategy than restricting human uses of the forest. Value orientation was a better predictor of perceptions of risk and perceived effectiveness of conservation strategies than knowledge indicators or social-cultural variables. Examining the indirect effects of social-cultural variables, however, revealed that value orientation may amplify the effect of these variables and suggests that alternative paths of influence should be included. Perceived risk showed an inconsistent association with perceived effectiveness of conservation strategies.

  20. Biodiversity, conservation biology, and rational choice.

    Science.gov (United States)

    Frank, David

    2014-03-01

    This paper critically discusses two areas of Sahotra Sarkar's recent work in environmental philosophy: biodiversity and conservation biology and roles for decision theory in incorporating values explicitly in the environmental policy process. I argue that Sarkar's emphasis on the practices of conservation biologists, and especially the role of social and cultural values in the choice of biodiversity constituents, restricts his conception of biodiversity to particular practical conservation contexts. I argue that life scientists have many reasons to measure many types of diversity, and that biodiversity metrics could be value-free. I argue that Sarkar's emphasis on the limitations of normative decision theory is in tension with his statement that decision theory can "put science and ethics together." I also challenge his claim that multi-criteria decision tools lacking axiomatic foundations in preference and utility theory are "without a rational basis," by presenting a case of a simple "outranking" multi-criteria decision rule that can violate a basic normative requirement of preferences (transitivity) and ask whether there may nevertheless be contexts in which such a procedure might assist decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Diseases threatening banana biodiversity in Uganda ...

    African Journals Online (AJOL)

    Recent on station and on-farm studies suggest the major diseases threatening banana biodiversity in Uganda include: 1)Black sigatoka which severely affects all East African Highland (EA-AAA) banana cultivars and a range of introduced genotypes; 2) Fusarium wilt which affects several introduced genotypes though all EA ...

  2. Novel urban ecosystems, biodiversity, and conservation

    International Nuclear Information System (INIS)

    Kowarik, Ingo

    2011-01-01

    With increasing urbanization the importance of cities for biodiversity conservation grows. This paper reviews the ways in which biodiversity is affected by urbanization and discusses the consequences of different conservation approaches. Cities can be richer in plant species, including in native species, than rural areas. Alien species can lead to both homogenization and differentiation among urban regions. Urban habitats can harbor self-sustaining populations of rare and endangered native species, but cannot replace the complete functionality of (semi-)natural remnants. While many conservation approaches tend to focus on such relict habitats and native species in urban settings, this paper argues for a paradigm shift towards considering the whole range of urban ecosystems. Although conservation attitudes may be challenged by the novelty of some urban ecosystems, which are often linked to high numbers of nonnative species, it is promising to consider their associated ecosystem services, social benefits, and possible contribution to biodiversity conservation. - Highlights: → This paper reviews biotic responses to urbanization and urban conservation approaches. → Cities may be rich in both native and nonnative species. → Urban habitats cannot replace the functionality of natural remnants. → However, even novel urban habitats may harbour rare and endangered species. → Conservation approaches should consider the perspective of novel urban ecosystems. - This paper reviews the ways in which biodiversity is affected by urbanization and argues for expanding urban conservation approaches.

  3. Novel urban ecosystems, biodiversity, and conservation

    Energy Technology Data Exchange (ETDEWEB)

    Kowarik, Ingo, E-mail: kowarik@tu-berlin.de [Department of Ecology, Technische Universitaet Berlin, Rothenburgstr. 12, D 12165 Berlin (Germany)

    2011-08-15

    With increasing urbanization the importance of cities for biodiversity conservation grows. This paper reviews the ways in which biodiversity is affected by urbanization and discusses the consequences of different conservation approaches. Cities can be richer in plant species, including in native species, than rural areas. Alien species can lead to both homogenization and differentiation among urban regions. Urban habitats can harbor self-sustaining populations of rare and endangered native species, but cannot replace the complete functionality of (semi-)natural remnants. While many conservation approaches tend to focus on such relict habitats and native species in urban settings, this paper argues for a paradigm shift towards considering the whole range of urban ecosystems. Although conservation attitudes may be challenged by the novelty of some urban ecosystems, which are often linked to high numbers of nonnative species, it is promising to consider their associated ecosystem services, social benefits, and possible contribution to biodiversity conservation. - Highlights: > This paper reviews biotic responses to urbanization and urban conservation approaches. > Cities may be rich in both native and nonnative species. > Urban habitats cannot replace the functionality of natural remnants. > However, even novel urban habitats may harbour rare and endangered species. > Conservation approaches should consider the perspective of novel urban ecosystems. - This paper reviews the ways in which biodiversity is affected by urbanization and argues for expanding urban conservation approaches.

  4. Problems of Biodiversity Management in Indonesia

    Directory of Open Access Journals (Sweden)

    OKID PARAMA ASTIRIN

    2000-01-01

    Full Text Available Indonesia is an archipelago of 17.508 islands with land width of 1.9 millions km2 and sea of 3.1 millions km2, having many types of habitat and become one of biodiversity center in the world. There are about 28.000 plants species, 350.000 animals species and about 10.000 microbes predicted lived endemically in Indonesia. The country that represents only 1.32% of the world having 10% of total flowering plants, 12% of mammals, 16% reptiles and amphibian, 17% birds, 25% fishes and 15% of insects in the world. Most of the biodiversity were not investigated and utilized yet. The direct use of the biodiversity is not any risk, and in addition, between government, society and industries sometime does not have the same view and attitude. Habitat destruction and over-exploitation have caused Indonesia having long list of endangered species including 126 birds, 63 mammals and 21 reptiles. The extinction of some species occurred just few years ago like trulek jawa (Vanellus macropterus, insectivore bird (Eutrichomyias rowleyi in North Sulawesi, and tiger sub species (Panthera tigris in Java and Bali. It seems that now is time for all Indonesians to introspect and look for the way that can be used for preserving biodiversity.

  5. biodiversity conservation problems and their implication on ...

    African Journals Online (AJOL)

    YAGER

    2018-03-01

    Mar 1, 2018 ... 2Department of Wildlife and Ecotourism Management, University of Ibadan, Ibadan, Nigeria. ... Data were collected from villagers in support zone communities and staff of ... Biodiversity conservation on the other hand is a ... MATERIALS AND METHOD ..... in the park leading to fauna migration, soil erosion.

  6. Formation Sources of the Caspian ecosystems biodiversity

    Directory of Open Access Journals (Sweden)

    G. A. Monakhova

    2009-01-01

    Full Text Available The existing ideas of the Caspian ecosystems biodiversity have been classified on the basis of data analysis and the main sources of its formation have been defined. They are different ways of flora and fauna originating combined with different mechanisms of water bodies’ isolation.

  7. Formation Sources of the Caspian ecosystems biodiversity

    OpenAIRE

    G. A. Monakhova; G. M. Abdurakhmanov; G. A. Akhmedova

    2009-01-01

    The existing ideas of the Caspian ecosystems biodiversity have been classified on the basis of data analysis and the main sources of its formation have been defined. They are different ways of flora and fauna originating combined with different mechanisms of water bodies’ isolation.

  8. Representing biodiversity: data and procedures for identifying ...

    Indian Academy of Sciences (India)

    Unknown

    nities agreed for a national forest reserve system in. Australia ... protection or exploitation, and these decisions should be informed by all ... constraint on biodiversity protection, planning methods must provide ..... assumed to support different sets of species (with some overlap) and ..... ces such as land (or water) and funds.

  9. VBioindex: A Visual Tool to Estimate Biodiversity

    Directory of Open Access Journals (Sweden)

    Dong Su Yu

    2015-09-01

    Full Text Available Biological diversity, also known as biodiversity, is an important criterion for measuring the value of an ecosystem. As biodiversity is closely related to human welfare and quality of life, many efforts to restore and maintain the biodiversity of species have been made by government agencies and non-governmental organizations, thereby drawing a substantial amount of international attention. In the fields of biological research, biodiversity is widely measured using traditional statistical indices such as the Shannon-Wiener index, species richness, evenness, and relative dominance of species. However, some biologists and ecologists have difficulty using these indices because they require advanced mathematical knowledge and computational techniques. Therefore, we developed VBioindex, a user-friendly program that is capable of measuring the Shannon-Wiener index, species richness, evenness, and relative dominance. VBioindex serves as an easy to use interface and visually represents the results in the form of a simple chart and in addition, VBioindex offers functions for long-term investigations of datasets using time-series analyses.

  10. Biodiversity footprint of companies - Summary report

    NARCIS (Netherlands)

    Rooij, van W.; Arets, E.J.M.M.

    2017-01-01

    Companies are becoming increasingly aware of their impact on biodiversity and natural capital. This may result from their implicit dependence on natural capital, from increasingly more critical consumers, or from the genuine concern of company managers and owners. Consequently, companies have an

  11. Economic valuation of biodiversity: A comparative study

    NARCIS (Netherlands)

    Nijkamp, P.; Vindigni, G.; Nunes, P.A.L.D.

    2008-01-01

    In recent years, an intensive debate on the economic valuation of biodiversity has entered the environmental-economics literature. The present paper seeks to offer first a critical review of key concepts that are essential for a proper understanding of such evaluation issues. Particular attention is

  12. Intensive agriculture reduces soil biodiversity across Europe

    NARCIS (Netherlands)

    Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.; Ruiter, de P.C.; Putten, van der W.H.; Birkhofer, K.; Hemerik, L.; Vries, de F.T.; Bardgett, R.D.; Brady, M.; Bjornlund, L.; Bracht Jörgensen, H.; Christensen, S.; Herfelt, D' T.; Hotes, S.; Hol, W.H.G.; Frouz, J.; Liiri, M.; Mortimer, S.R.; Setälä, H.; Stary, J.; Tzanopoulos, J.; Uteseny, C.; Wolters, V.; Hedlund, K.

    2015-01-01

    Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects

  13. Optimal fire histories for biodiversity conservation.

    Science.gov (United States)

    Kelly, Luke T; Bennett, Andrew F; Clarke, Michael F; McCarthy, Michael A

    2015-04-01

    Fire is used as a management tool for biodiversity conservation worldwide. A common objective is to avoid population extinctions due to inappropriate fire regimes. However, in many ecosystems, it is unclear what mix of fire histories will achieve this goal. We determined the optimal fire history of a given area for biological conservation with a method that links tools from 3 fields of research: species distribution modeling, composite indices of biodiversity, and decision science. We based our case study on extensive field surveys of birds, reptiles, and mammals in fire-prone semi-arid Australia. First, we developed statistical models of species' responses to fire history. Second, we determined the optimal allocation of successional states in a given area, based on the geometric mean of species relative abundance. Finally, we showed how conservation targets based on this index can be incorporated into a decision-making framework for fire management. Pyrodiversity per se did not necessarily promote vertebrate biodiversity. Maximizing pyrodiversity by having an even allocation of successional states did not maximize the geometric mean abundance of bird species. Older vegetation was disproportionately important for the conservation of birds, reptiles, and small mammals. Because our method defines fire management objectives based on the habitat requirements of multiple species in the community, it could be used widely to maximize biodiversity in fire-prone ecosystems. © 2014 Society for Conservation Biology.

  14. Endangered Species & Biodiversity: A Classroom Project & Theme

    Science.gov (United States)

    Lauro, Brook

    2012-01-01

    Students discover the factors contributing to species losses worldwide by conducting a project about endangered species as a component of a larger classroom theme of biodiversity. Groups conduct research using online endangered- species databases and present results to the class using PowerPoint. Students will improve computer research abilities…

  15. Plantation forests, climate change and biodiversity

    Science.gov (United States)

    S.M. Pawson; A. Brin; E.G. Brockerhoff; D. Lamb; T.W. Payn; A. Paquette; J.A. Parrotta

    2013-01-01

    Nearly 4 % of the world’s forests are plantations, established to provide a variety of ecosystem services, principally timber and other wood products. In addition to such services, plantation forests provide direct and indirect benefits to biodiversity via the provision of forest habitat for a wide range of species, and by reducing negative impacts on natural forests...

  16. Parasitism and the biodiversity-functioning relationship

    Science.gov (United States)

    Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.

    2018-01-01

    Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.

  17. Snapshots of biodiversity in Georgia agroecosystems

    Science.gov (United States)

    Georgia agricultural landscapes are composed of a diversity of commodities. Here we present biodiversity and biotic interaction data from multiple agricultural systems including: cotton, corn, peanut, blueberry and non-cropping wildflower areas over multiple years. Our goal is to better understand t...

  18. Frontiers in research on biodiversity and disease.

    Science.gov (United States)

    Johnson, Pieter T J; Ostfeld, Richard S; Keesing, Felicia

    2015-10-01

    Global losses of biodiversity have galvanised efforts to understand how changes to communities affect ecological processes, including transmission of infectious pathogens. Here, we review recent research on diversity-disease relationships and identify future priorities. Growing evidence from experimental, observational and modelling studies indicates that biodiversity changes alter infection for a range of pathogens and through diverse mechanisms. Drawing upon lessons from the community ecology of free-living organisms, we illustrate how recent advances from biodiversity research generally can provide necessary theoretical foundations, inform experimental designs, and guide future research at the interface between infectious disease risk and changing ecological communities. Dilution effects are expected when ecological communities are nested and interactions between the pathogen and the most competent host group(s) persist or increase as biodiversity declines. To move beyond polarising debates about the generality of diversity effects and develop a predictive framework, we emphasise the need to identify how the effects of diversity vary with temporal and spatial scale, to explore how realistic patterns of community assembly affect transmission, and to use experimental studies to consider mechanisms beyond simple changes in host richness, including shifts in trophic structure, functional diversity and symbiont composition. © 2015 John Wiley & Sons Ltd/CNRS.

  19. Calculating Biodiversity in the Real World

    Science.gov (United States)

    Schen, Melissa; Berger, Leslie

    2014-01-01

    One of the standards for life science addressed in the "Next Generation Science Standards" (NGSS Lead States 2013) is "Ecosystems: Interactions, Energy, and Dynamics" (HS-LS2). A critical concept included in this core idea is biodiversity. To show competency, students are expected to design investigations, collect data, and…

  20. Multifunctional floodplain management and biodiversity effects

    NARCIS (Netherlands)

    Schindler, Stefan; O’Neill, Fionnuala H.; Biró, Marianna; Damm, Christian; Gasso, Viktor; Kanka, Robert; Sluis, van der Theo; Krug, Andreas; Lauwaars, Sophie G.; Sebesvari, Zita; Pusch, Martin; Baranovsky, Boris; Ehlert, Thomas; Neukirchen, Bernd; Martin, James R.; Euller, Katrin; Mauerhofer, Volker; Wrbka, Thomas

    2016-01-01

    Floodplain ecosystems are biodiversity hotspots and supply multiple ecosystem services. At the same time they are often prone to human pressures that increasingly impact their intactness. Multifunctional floodplain management can be defined as a management approach aimed at a balanced supply of

  1. Biodiversity and radioecology under accidental conditions

    International Nuclear Information System (INIS)

    Stankovic, S.; Stankovic, A.

    1996-01-01

    The food, animal feed, bio indicators (fungi, game meat, lichens) contaminated by 134 Cs and 137 Cs, after accident of the Nuclear Power Plant in Chernobyl are in this paper reviewed. The impact of biodiversity in the intake of radionuclides is emphasized. 12 refs.; 3 figs.; 4 tabs

  2. Drivers of Pontocaspian Biodiversity Rise and Demise

    Science.gov (United States)

    Wesselingh, Frank; Flecker, Rachel; Wilke, Thomas; Leroy, Suzanne; Krijgsman, Wout; Stoica, Marius

    2015-04-01

    In the past two million years, the region of the Black Sea Basin, Caspian Basin and adjacent Anatolia and the Balkans were the stage of the evolution of a unique brackish water fauna, the so-called Pontocaspian fauna. The fauna is the result of assembly of genera with a Paratethyan origin and Anatolian origins during the Early Pleistocene. The rapid diversification of the Pontocaspian fauna is the result of the very dynamic nature of the lakes (the Caspian Sea is technically a lake) and seas in the region in the past two million years. In most times the various lake basins were isolated (like today), but in other episodes connections existed. Regional and global climate as well as the regional tectonic regimes were main drivers of lake basin evolution. Over the past 80 years a major biodiversity crisis is hitting the Pontocaspian faunas due to environmental degradation, pollution and invasive species. In the new EU-ETN PRIDE (Drivers of Pontocaspian Biodiversity Rise and Demise)we will be documenting the geological context of past diversifications and turnover events. We present examples of rapid turnover (biodiversity crises) in the Quaternary, assess driving forces and draw implications for the nature of the current human-mediated biodiversity crisis in the region.

  3. Monitoring biodiversity change through effective global coordination

    NARCIS (Netherlands)

    Navarro, Laetitia M.; Fernandez, Nestor; Guerra, Carlos; Guralnick, Rob; Kissling, W. Daniel; Londono, Maria Cecilia; Muller-Karger, Frank; Turak, Eren; El Serafy, G.Y.H.; Balvanera, Patricia; Authors, More

    2017-01-01

    The ability to monitor changes in biodiversity, and their societal impact, is critical to conserving species and managing ecosystems. While emerging technologies increase the breadth and reach of data acquisition, monitoring efforts are still spatially and temporally fragmented, and taxonomically

  4. Enhancing Life Sciences Teachers' Biodiversity Knowledge

    African Journals Online (AJOL)

    This paper provides insights into how Life Sciences teachers in the Eastern Cape ..... Even simulations, in most cases they are quite artificial in the sense that the ... explain the concept of human impacts on biodiversity; and field activities were .... integrated and applied knowledge required for quality teaching (disciplinary, ...

  5. Indigenous Angiosperm biodiversity of Olabisi Onabanjo University ...

    African Journals Online (AJOL)

    The conservation of the genetic variability of the indigenous angiosperm community is a sine qua non. A survey of indigenous angiosperm biodiversity of the Olabisi Onabanjo University permanent site was undertaken. Plants collected were dried, poisoned and mounted on herbarium sheets, proper identification and ...

  6. Biodiversity Conservation, Tourism and Development in Okomu ...

    African Journals Online (AJOL)

    The increased rate of species extinction as a result of expanding human population, resource exploitation and land use threatens biological diversity. Biodiversity by definition refers to the life forms on earth. This includes the millions of plants, animals and micro-organisms, the genes they contain and the intricate ...

  7. Assessment of biodiversity based on morphological characteristics ...

    African Journals Online (AJOL)

    Conservation and utilization of the native plant resources is essential for long term sustainability of biodiversity. Wild native resources are adapted to specific and diverse environmental conditions and therefore, these adaptive features can be introduced into modern cultivars either through conventional breeding or ...

  8. Biodiversity and systematics in cephalopods: Unresolved problems ...

    African Journals Online (AJOL)

    Some problems of cephalopod biodiversity are discussed. Many squid species are represented by 2–4 intraspecies groupings that may be wholly or partly sympatric, but differ in spawning season and size at maturity. They may be genetically distinct stock units, but their taxonomic status remains unresolved. Discovery of a ...

  9. Traditional African Knowledge In Biodiversity Conservation ...

    African Journals Online (AJOL)

    The tropical forest ecosystem is one of the most important ecosystems of the world, because it contains a large proportion of the world's biodiversity and provides many environmental functions. Local communities have successfully conserved these resources that are of interest to them through laws and taboos. These range ...

  10. Representing biodiversity: data and procedures for identifying ...

    Indian Academy of Sciences (India)

    Unknown

    urgent in the face of continuing land use change and because biodiversity .... tries they cover because the identification of priority areas requires the ... presence only kind. Most field records have been collec- ted opportunistically, and the species collected are often the ones of interest to the collector. Many collections of.

  11. The changing form of Antarctic biodiversity

    OpenAIRE

    Chown, Steven L.; Clarke, Andrew; Fraser, Ceridwen I.; Cary, S. Craig; Moon, Katherine L.; McGeoch, Melodie A.

    2015-01-01

    Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change non...

  12. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  13. The effect of buffer zone width on biodiversity

    DEFF Research Database (Denmark)

    Navntoft, Søren; Sigsgaard, Lene; Kristensen, Kristian Morten

    2012-01-01

    Field margin management for conservation purposes is a way to protect both functional biodiversity and biodiversity per se without considerable economical loss as field margins are less productive. However, the effect of width of the buffer zone on achievable biodiversity gains has received littl...

  14. An assessment of biodiversity surrogacy options in the Limpopo ...

    African Journals Online (AJOL)

    Because of the inadequacy of existing biodiversity distribution data, surrogate measures for regional biodiversity have long been used in conservation area selection. These measures include species and environmental data. However, the assumed relationship between surrogate measures and regional biodiversity has ...

  15. Persistence and vulnerability: retaining biodiversity in the landscape ...

    Indian Academy of Sciences (India)

    Unknown

    An objective of biodiversity conservation activities is to minimize the exposure of biodiversity features to threatening processes and to ensure, as far as possible, that biodiversity persists in the landscape. We discuss how issues of vulnerability and persistence can and should be addressed at all stages of the conservation.

  16. WOW! Windows on the Wild: A Biodiversity Primer.

    Science.gov (United States)

    Braus, Judy, Ed.; And Others

    Windows on the Wild is an environmental education program of the World Wildlife Fund. This issue of WOW! focuses on biodiversity. Topics include: an interview with one of the world's leading experts on biodiversity; the lighter side of biodiversity through comics and cartoons; a species-scape that compares the number of species on the planet;…

  17. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    NARCIS (Netherlands)

    Wagg, C.; Bender, S.F.; Widmer, D.; van der Heijden, Marcellus|info:eu-repo/dai/nl/240923901

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally

  18. Biodiversity and Edge Effects: An Activity in Landscape Ecology

    Science.gov (United States)

    Hart, Justin L.

    2007-01-01

    Biodiversity and the conservation of biodiversity have received increased attention during the last few decades and these topics have been implemented into many G7-12 science curricula. This work presents an exercise that may be used in middle and high school classrooms to help students better understand spatial aspects of biodiversity. The…

  19. Biodiversity information resource sharing as a viable strategy for ...

    African Journals Online (AJOL)

    Availability of accurate biodiversity information is a paramount necessity in facilitating the process of decision making on biodiversity resource use and protection. In Tanzania, like other countries in East Africa, a lot of biodiversity data and information is produced, analysed and disseminated as reports, seminars, ...

  20. Towards an operational definition of Essential Biodiversity Variables

    NARCIS (Netherlands)

    Schmeller, D.S.; Mihoub, J.-B.; Bowser, A.; Arvanitidis, C.; Costello, M.J.; Fernandez, M.; Geller, G.N.; Hobern, D.; Kissling, W.D.; Regan, E.; Saarenmaa, H.; Turak, E.; Isaac, N.J.B.

    2017-01-01

    The concept of essential biodiversity variables (EBVs) was proposed in 2013 to improve harmonization of biodiversity data into meaningful metrics. EBVs were conceived as a small set of variables which collectively capture biodiversity change at multiple spatial scales and within time intervals that

  1. Intensive agriculture reduces soil biodiversity across Europe.

    Science.gov (United States)

    Tsiafouli, Maria A; Thébault, Elisa; Sgardelis, Stefanos P; de Ruiter, Peter C; van der Putten, Wim H; Birkhofer, Klaus; Hemerik, Lia; de Vries, Franciska T; Bardgett, Richard D; Brady, Mark Vincent; Bjornlund, Lisa; Jørgensen, Helene Bracht; Christensen, Sören; Hertefeldt, Tina D'; Hotes, Stefan; Gera Hol, W H; Frouz, Jan; Liiri, Mira; Mortimer, Simon R; Setälä, Heikki; Tzanopoulos, Joseph; Uteseny, Karoline; Pižl, Václav; Stary, Josef; Wolters, Volkmar; Hedlund, Katarina

    2015-02-01

    Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems. © 2014 John Wiley

  2. Biodiversity and ecosystem functioning in dynamic landscapes

    Science.gov (United States)

    Brose, Ulrich; Hillebrand, Helmut

    2016-01-01

    The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships

  3. Biodiversity data obsolescence and land uses changes

    Directory of Open Access Journals (Sweden)

    Nora Escribano

    2016-12-01

    Full Text Available Background Primary biodiversity records (PBR are essential in many areas of scientific research as they document the biodiversity through time and space. However, concerns about PBR quality and fitness-for-use have grown, especially as derived from taxonomical, geographical and sampling effort biases. Nonetheless, the temporal bias stemming from data ageing has received less attention. We examine the effect of changes in land use in the information currentness, and therefore data obsolescence, in biodiversity databases. Methods We created maps of land use changes for three periods (1956–1985, 1985–2000 and 2000–2012 at 5-kilometres resolution. For each cell we calculated the percentage of land use change within each period. We then overlaid distribution data about small mammals, and classified each data as ‘non-obsolete or ‘obsolete,’ depending on both the amount of land use changes in the cell, and whether changes occurred at or after the data sampling’s date. Results A total of 14,528 records out of the initial 59,677 turned out to be non-obsolete after taking into account the changes in the land uses in Navarra. These obsolete data existed in 115 of the 156 cells analysed. Furthermore, more than one half of the remaining cells holding non-obsolete records had not been visited at least for the last fifteen years. Conclusion Land use changes challenge the actual information obtainable from biodiversity datasets and therefore its potential uses. With the passage of time, one can expect a steady increase in the availability and use of biological records—but not without them becoming older and likely to be obsolete by land uses changes. Therefore, it becomes necessary to assess records’ obsolescence, as it may jeopardize the knowledge and perception of biodiversity patterns.

  4. Localized Agri-Food Systems and Biodiversity

    Directory of Open Access Journals (Sweden)

    Bolette Bele

    2018-02-01

    Full Text Available Interest in localized agri-food systems has grown significantly in recent years. They are associated with several benefits and are seen as important for rural development. An important share of the academic debate addresses the contribution of localized food systems to the current and/or future sustainability of agriculture. Sustainability is defined in several ways, but many scholars recognize that sustainability can only be achieved by a combination of socio-economic, cultural, and environmental aspects. However, the attributes and indicators used for sustainability analyses also differ. Biodiversity is, for instance, often not included in analyses of environmental sustainability even if biodiversity is of crucial importance for longer-term ecological sustainability. To contribute to the debate about the importance of localized food production for sustainability from the environmental point of view, specifically with regard to biodiversity, this is therefore discussed based on the results of several studies presented in this paper. The studies focus on Nordic low-intensity livestock systems related to species-rich semi-natural grasslands. All the studies show that low-intensive agriculture and use of semi-natural grasslands may play an important role in maintaining biodiversity on both small and large scales. They also show that milk and dairy products from free-ranging livestock in heterogeneous landscapes with semi-natural grasslands may have a unique quality associated with local grazing resources. Thus, producers can combine production of food of documented high nutritional and gastronomic value with maintenance of biodiversity, i.e., localized agri-food production based on low-intensive agriculture systems and semi-natural grasslands may be a win-win recipe for both farmers and the society.

  5. What is marine biodiversity? Towards common concepts and their implications for assessing biodiversity status

    Directory of Open Access Journals (Sweden)

    Sabine Cochrane

    2016-12-01

    Full Text Available ‘Biodiversity’ is one of the most common keywords used in environmental sciences, spanning from research to management, nature conservation and consultancy. Despite this, our understanding of the underlying concepts varies greatly, between and within disciplines as well as among the scientists themselves. Biodiversity can refer to descriptions or assessments of the status and condition of all or selected groups of organisms, from the genetic variability, to the species, populations, communities, and ecosystems. However, a concept of biodiversity also must encompass understanding the interactions and functions on all levels from individuals up to the whole ecosystem, including changes related to natural and anthropogenic environmental pressures. While biodiversity as such is an abstract and relative concept rooted in the spatial domain, it is central to most international, European and national governance initiatives aimed at protecting the marine environment. These rely on status assessments of biodiversity which typically require numerical targets and specific reference values, to allow comparison in space and/or time, often in association with some external structuring factors such as physical and biogeochemical conditions. Given that our ability to apply and interpret such assessments requires a solid conceptual understanding of marine biodiversity, here we define this and show how the abstract concept can and needs to be interpreted and subsequently applied in biodiversity assessments.

  6. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    DEFF Research Database (Denmark)

    Naeem, S.; Prager, Case; Weeks, Brian

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity...... on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional...

  7. Student Teachers' Understanding of the Terminology, Distribution, and Loss of Biodiversity: Perspectives from a Biodiversity Hotspot and an Industrialized Country

    Science.gov (United States)

    Fiebelkorn, Florian; Menzel, Susanne

    2013-01-01

    The loss of biodiversity is one of the most urgent global environmental problems of our time. Public education and awareness building is key to successful biodiversity protection. Knowledgeable and skilled student teachers are a key component for the successful implementation of biodiversity education in schools. Yet, little empirical evidence…

  8. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation

    Science.gov (United States)

    Christopher A. Lepczyk; Myla F. J. Aronson; Karl L. Evans; Mark A. Goddard; Susannah B. Lerman; J. Scott MacIvor

    2017-01-01

    As urban areas expand, understanding how ecological processes function in cities has become increasingly important for conserving biodiversity. Urban green spaces are critical habitats to support biodiversity, but we still have a limited understanding of their ecology and how they function to conserve biodiversity at local and landscape scales across multiple taxa....

  9. Enhancement of biodiversity in energy farming: towards a functional approach

    International Nuclear Information System (INIS)

    Londo, M.; Dekker, J.

    1997-01-01

    When biomass is a substantial sustainable energy source, and special energy crops are grown on a large scale, land use and the environment of agriculture will be affected. Of these effects, biodiversity deserves special attention. The enhancement of biodiversity in energy farming via standard setting is the overall purpose of this project. In this study, the potential functionality of biodiversity in energy farming is proposed as a way of operationalising the rather abstract and broad concept of biodiversity. Functions of biodiversity are reviewed, and examples of functions are worked out, based on the current literature of nature in energy farming systems. (author)

  10. MOUNTAIN NATURAL BIODIVERSITY CONSERVATION IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Arkady Tishkov

    2012-01-01

    Full Text Available High biodiversity and degree of endemism of mountain biota strengthen the mountain regions’ status for the territorial nature conservation. Analysis of the protected areas’ representativeness in various mountain regions of Russia shows some discrepancy between their quantity, square and regional biodiversity originality. The biggest divergences are marked for the Northern Caucasus. The main problems: small area of the protected territories and also cluster character of their spatial distribution, mostly in the high mountains are not supposed to conform with the highest values of the regional flora’s and fauna’s uniqueness, to compensate representativeness of the protected biota and, in anyway, to correspond with the purpose of nature protection frame—the protected territories ecologic network’s forming. The situation in the Urals, Siberia and the Far East seems to be better. The large areas of the protected territories are in general agreement with the high originality of the nature ecosystems. Nevertheless each concrete case needs analysis of the regional biota’s and ecosystems’ biodiversity distribution within the protected areas, including character and (or unique elements of the regional biodiversity to be held. The development of the effectual territorial conservation of mountain regions needs differential approach. The creation of the large representative parcels of nature landscapes in the key-areas has the considerable meaning in the low-developed regions, difficult to access. And well-developed regions have the necessity of nature protected territories’ network development and the planning of the ecological frame’s forming. The territorial biodiversity conservation, including the system of federal, regional and local levels with protective conservation of the rare species has to be combined with ecosystem’s restoration, especially in the zones disturbed by erosion, recreation and military actions. Also it is

  11. Biodiversity and Climate Modeling Workshop Series: Identifying gaps and needs for improving large-scale biodiversity models

    Science.gov (United States)

    Weiskopf, S. R.; Myers, B.; Beard, T. D.; Jackson, S. T.; Tittensor, D.; Harfoot, M.; Senay, G. B.

    2017-12-01

    At the global scale, well-accepted global circulation models and agreed-upon scenarios for future climate from the Intergovernmental Panel on Climate Change (IPCC) are available. In contrast, biodiversity modeling at the global scale lacks analogous tools. While there is great interest in development of similar bodies and efforts for international monitoring and modelling of biodiversity at the global scale, equivalent modelling tools are in their infancy. This lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity to bring together climate, ecosystem, and biodiversity modeling experts to promote development of integrated approaches in modeling global biodiversity. Improved models are needed to understand how we are progressing towards the Aichi Biodiversity Targets, many of which are not on track to meet the 2020 goal, threatening global biodiversity conservation, monitoring, and sustainable use. We brought together biodiversity, climate, and remote sensing experts to try to 1) identify lessons learned from the climate community that can be used to improve global biodiversity models; 2) explore how NASA and other remote sensing products could be better integrated into global biodiversity models and 3) advance global biodiversity modeling, prediction, and forecasting to inform the Aichi Biodiversity Targets, the 2030 Sustainable Development Goals, and the Intergovernmental Platform on Biodiversity and Ecosystem Services Global Assessment of Biodiversity and Ecosystem Services. The 1st In-Person meeting focused on determining a roadmap for effective assessment of biodiversity model projections and forecasts by 2030 while integrating and assimilating remote sensing data and applying lessons learned, when appropriate, from climate modeling. Here, we present the outcomes and lessons learned from our first E-discussion and in-person meeting and discuss the next steps for future meetings.

  12. Maximizing biodiversity co-benefits under REDD+: a decoupled approach

    International Nuclear Information System (INIS)

    Potts, Matthew D; Kelley, Lisa C; Doll, Hannah M

    2013-01-01

    Current debates on biodiversity co-benefits under REDD+ are marked by considerable ambiguity and contention. Nevertheless, REDD+ continues to represent one of the most important opportunities for global biodiversity conservation, and the question of how best to achieve biodiversity co-benefits remains an important one. Thus far, most biodiversity conservation in the context of REDD+ is predicated on the notion that services are co-located on a landscape. In contrast, this letter argues that decoupling biodiversity and carbon services on a landscape through national-level planning is a better approach to biodiversity conservation under REDD+. We discuss the fundamental ecological differences between the two services and use principles of resource economics to demonstrate that a decoupled approach will be more efficient, more flexible, and better able to mobilize sufficient finance for biodiversity conservation than a coupled approach. (letter)

  13. Maximizing biodiversity co-benefits under REDD+: a decoupled approach

    Science.gov (United States)

    Potts, Matthew D.; Kelley, Lisa C.; Doll, Hannah M.

    2013-06-01

    Current debates on biodiversity co-benefits under REDD+ are marked by considerable ambiguity and contention. Nevertheless, REDD+ continues to represent one of the most important opportunities for global biodiversity conservation, and the question of how best to achieve biodiversity co-benefits remains an important one. Thus far, most biodiversity conservation in the context of REDD+ is predicated on the notion that services are co-located on a landscape. In contrast, this letter argues that decoupling biodiversity and carbon services on a landscape through national-level planning is a better approach to biodiversity conservation under REDD+. We discuss the fundamental ecological differences between the two services and use principles of resource economics to demonstrate that a decoupled approach will be more efficient, more flexible, and better able to mobilize sufficient finance for biodiversity conservation than a coupled approach.

  14. Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics.

    Science.gov (United States)

    Jeltsch, Florian; Bonte, Dries; Pe'er, Guy; Reineking, Björn; Leimgruber, Peter; Balkenhol, Niko; Schröder, Boris; Buchmann, Carsten M; Mueller, Thomas; Blaum, Niels; Zurell, Damaris; Böhning-Gaese, Katrin; Wiegand, Thorsten; Eccard, Jana A; Hofer, Heribert; Reeg, Jette; Eggers, Ute; Bauer, Silke

    2013-01-01

    Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.

  15. Extinction debt: a challenge for biodiversity conservation.

    Science.gov (United States)

    Kuussaari, Mikko; Bommarco, Riccardo; Heikkinen, Risto K; Helm, Aveliina; Krauss, Jochen; Lindborg, Regina; Ockinger, Erik; Pärtel, Meelis; Pino, Joan; Rodà, Ferran; Stefanescu, Constantí; Teder, Tiit; Zobel, Martin; Steffan-Dewenter, Ingolf

    2009-10-01

    Local extinction of species can occur with a substantial delay following habitat loss or degradation. Accumulating evidence suggests that such extinction debts pose a significant but often unrecognized challenge for biodiversity conservation across a wide range of taxa and ecosystems. Species with long generation times and populations near their extinction threshold are most likely to have an extinction debt. However, as long as a species that is predicted to become extinct still persists, there is time for conservation measures such as habitat restoration and landscape management. Standardized long-term monitoring, more high-quality empirical studies on different taxa and ecosystems and further development of analytical methods will help to better quantify extinction debt and protect biodiversity.

  16. Agroforestry: a refuge for tropical biodiversity?

    Science.gov (United States)

    Bhagwat, Shonil A; Willis, Katherine J; Birks, H John B; Whittaker, Robert J

    2008-05-01

    As rates of deforestation continue to rise in many parts of the tropics, the international conservation community is faced with the challenge of finding approaches which can reduce deforestation and provide rural livelihoods in addition to conserving biodiversity. Much of modern-day conservation is motivated by a desire to conserve 'pristine nature' in protected areas, while there is growing recognition of the long-term human involvement in forest dynamics and of the importance of conservation outside protected areas. Agroforestry -- intentional management of shade trees with agricultural crops -- has the potential for providing habitats outside formally protected land, connecting nature reserves and alleviating resource-use pressure on conservation areas. Here we examine the role of agroforestry systems in maintaining species diversity and conclude that these systems can play an important role in biodiversity conservation in human-dominated landscapes.

  17. Macroeconomic policy, growth, and biodiversity conservation.

    Science.gov (United States)

    Lawn, Philip

    2008-12-01

    To successfully achieve biodiversity conservation, the amount of ecosystem structure available for economic production must be determined by, and subject to, conservation needs. As such, the scale of economic systems must remain within the limits imposed by the need to preserve critical ecosystems and the regenerative and waste assimilative capacities of the ecosphere. These limits are determined by biophysical criteria, yet macroeconomics involves the use of economic instruments designed to meet economic criteria that have no capacity to achieve biophysically based targets. Macroeconomic policy cannot, therefore, directly solve the biodiversity erosion crisis. Nevertheless, good macroeconomic policy is still important given that bad macroeconomy policy is likely to reduce human well-being and increase the likelihood of social upheaval that could undermine conservation efforts.

  18. Biodiversity, evolution and adaptation of cultivated crops.

    Science.gov (United States)

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Biodiversity effects of the predation gauntlet

    Science.gov (United States)

    Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.

    2017-06-01

    The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.

  20. Invasive predators and global biodiversity loss.

    Science.gov (United States)

    Doherty, Tim S; Glen, Alistair S; Nimmo, Dale G; Ritchie, Euan G; Dickman, Chris R

    2016-10-04

    Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.

  1. Modeling the building blocks of biodiversity.

    Directory of Open Access Journals (Sweden)

    Lucas N Joppa

    Full Text Available BACKGROUND: Networks of single interaction types, such as plant-pollinator mutualisms, are biodiversity's "building blocks". Yet, the structure of mutualistic and antagonistic networks differs, leaving no unified modeling framework across biodiversity's component pieces. METHODS/PRINCIPAL FINDINGS: We use a one-dimensional "niche model" to predict antagonistic and mutualistic species interactions, finding that accuracy decreases with the size of the network. We show that properties of the modeled network structure closely approximate empirical properties even where individual interactions are poorly predicted. Further, some aspects of the structure of the niche space were consistently different between network classes. CONCLUSIONS/SIGNIFICANCE: These novel results reveal fundamental differences between the ability to predict ecologically important features of the overall structure of a network and the ability to predict pair-wise species interactions.

  2. Creating biodiversity partnerships: The Nature Conservancy's perspective

    Science.gov (United States)

    Sawhill, John C.

    1996-11-01

    The Nature Conservancy is an international organization dedicated to the mission of conserving biodiversity throughout the world. By working in a nonconfrontational manner, an approach that has promoted both government and corporate sponsorship of its activities, The Nature Conservancy has developed symbiotic relationships with many electric utility companies. Drawing on the organization's experiences, and the experiences of the author as the President and Chief Executive Officer of The Nature Conservancy, five broad areas of cooperation between conservation organizations and the utility industry are explored: landmanagement agreements, mitigation projects, conflictavoidance programs, program support, and volunteer activities. The paper is concluded with comments on the future trends of biodiversity conservation, challenging the electric utility industry to become involved with conservation efforts by forming cooperative partnerships.

  3. Reframing the Food-Biodiversity Challenge.

    Science.gov (United States)

    Fischer, Joern; Abson, David J; Bergsten, Arvid; French Collier, Neil; Dorresteijn, Ine; Hanspach, Jan; Hylander, Kristoffer; Schultner, Jannik; Senbeta, Feyera

    2017-05-01

    Given the serious limitations of production-oriented frameworks, we offer here a new conceptual framework for how to analyze the nexus of food security and biodiversity conservation. We introduce four archetypes of social-ecological system states corresponding to win-win (e.g., agroecology), win-lose (e.g., intensive agriculture), lose-win (e.g., fortress conservation), and lose-lose (e.g., degraded landscapes) outcomes for food security and biodiversity conservation. Each archetype is shaped by characteristic external drivers, exhibits characteristic internal social-ecological features, and has characteristic feedbacks that maintain it. This framework shifts the emphasis from focusing on production only to considering social-ecological dynamics, and enables comparison among landscapes. Moreover, examining drivers and feedbacks facilitates the analysis of possible transitions between system states (e.g., from a lose-lose outcome to a more preferred outcome). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Plant density affects measures of biodiversity effects

    Czech Academy of Sciences Publication Activity Database

    Stachová, T.; Fibich, P.; Lepš, Jan

    2013-01-01

    Roč. 6, č. 1 (2013), s. 1-11 ISSN 1752-9921 R&D Projects: GA ČR GD206/08/H044 Grant - others:GA JU(CZ) 138/2010/P Institutional support: RVO:60077344 Keywords : biodiversity effects * plant density * constant final yield Subject RIV: EH - Ecology, Behaviour Impact factor: 2.284, year: 2013 http://jpe.oxfordjournals.org/content/early/2012/04/27/jpe.rts015.full.pdf+html

  5. Canga biodiversity, a matter of mining

    Directory of Open Access Journals (Sweden)

    Aleksandra eSkirycz

    2014-11-01

    Full Text Available Brazilian name canga refers to the ecosystem associated with superficial iron crusts typical for the Brazilian state of Minas Gerais (MG and some parts of Amazon (Flona de Carajas. Iron stone is associated with mountain plateaux and so, in addition to high metal concentrations (particularly iron and manganese, canga ecosystems, as other rock outcrops, are characterized by isolation and environmental harshness. Canga inselbergs, all together, occupy no more than 200km2 of area spread over thousands of km2 of the Iron Quadrangle (MG and the Flona de Carajas, resulting in considerable beta biodiversity. Moreover, the presence of different microhabitats within the iron crust is associated with high alpha biodiversity. Hundreds of angiosperm species have been reported so far across remote canga inselbergs and different micro-habitats. Among these are endemics such as the cactus Arthrocereus glaziovii and the medicinal plant Pilocarpus microphyllus. Canga is also home to iron and manganese metallophytes; species that evolved to tolerate high metal concentrations. These are particularly interesting to study metal homeostasis as both iron and manganese are essential plant micro-elements. Besides being models for metal metabolism, metallophytes can be used for bio-remediation of metal contaminated sites, and as such are considered among priority species for canga restoration.Biodiversity mining is not the only mining business attracted to canga. Open cast iron mining generates as much as 5-6% of Brazilian gross domestic product (GDP and dialogue between mining companies, government, society and ecologists, enforced by legal regulation, is ongoing to find compromise for canga protection, and where mining is unavoidable for ecosystem restoration. Environmental factors that shaped canga vegetation, canga biodiversity , physiological mechanisms to play a role, and ways to protect and restore canga will be reviewed.

  6. Biodiversity Change and Sustainable Development: New Perspectives

    OpenAIRE

    Tisdell, Clement A.

    2012-01-01

    Biodiversity is usually regarded as an asset or resource, the stock of which is partly natural and partly determined by humans. Humans both subtract from and add to this stock and consequently, the change in the stock is heterogeneous. This heterogeneity is not taken account of by some authors who focus only on the loss aspect. Frequently, the conservation of this stock is seen as important for the achievement of sustainable development; sustainable development being defined (but not always a...

  7. Engaging the public in biodiversity issues

    OpenAIRE

    Novacek, Michael J.

    2008-01-01

    To engage people in biodiversity and other environmental issues, one must provide the opportunity for enhanced understanding that empowers individuals to make choices and take action based on sound science and reliable recommendations. To this end, we must acknowledge some real challenges. Recent surveys show that, despite growing public concern, environmental issues still rank below many other problems, such as terrorism, health care, the economy, and (in the U.S.) family values. Moreover, m...

  8. A Catalogue of marine biodiversity indicators

    Directory of Open Access Journals (Sweden)

    Heliana Teixeira

    2016-11-01

    Full Text Available A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD, this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g. EU policies, research projects and in national and international contexts (e.g. Regional Seas Conventions, and assessments in non-European seas. The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity.The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs.Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat or pressure in a marine area of interest.This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists and any person interested in marine environmental assessment. It allows users to

  9. A Catalogue of Marine Biodiversity Indicators

    KAUST Repository

    Teixeira, Heliana; Berg, Torsten; Uusitalo, Laura; Fü rhaupter, Karin; Heiskanen, Anna Stiina; Mazik, Krysia; Lynam, Christopher P.; Neville, Suzanna; Rodriguez, J. German; Papadopoulou, Nadia; Moncheva, Snejana; Churilova, Tanya; Kryvenko, Olga; Krause-Jensen, Dorte; Zaiko, Anastasija; Verí ssimo, Helena; Pantazi, Maria; Carvalho, Susana; Patrí cio, Joana; Uyarra, Maria C.; Borja, À ngel

    2016-01-01

    A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD), this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g., EU policies, research projects) and in national and international contexts (e.g., Regional Seas Conventions, and assessments in non-European seas). The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity. The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs. Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat, or pressure in a marine area of interest. This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists, and any person interested in marine environmental assessment. It allows users to build

  10. Effects of golf courses on local biodiversity.

    OpenAIRE

    Gange, A.C.; Tanner, R.A.

    2005-01-01

    There are approximately 2600 golf courses in the UK, occupying 0.7% of the total land cover. However, it is unknown whether these represent a significant resource, in terms of biodiversity conservation, or if they are significantly less diverse than the surrounding habitats. The diversity of vegetation (tree and herbaceous species) and three indicator taxa (birds, ground beetles (Coleoptera, Carabidae) and bumblebees (Hymenoptera, Apidae)) was studied on nine golf courses and nine adja...

  11. Perverse Market Outcomes from Biodiversity Conservation Interventions

    OpenAIRE

    Lim, F.K.S.; Carrasco, L.R.; McHardy, J.; Edwards, D.P.

    2016-01-01

    Conservation interventions are being implemented at various spatial scales to reduce the impacts of rising global population and affluence on biodiversity and ecosystems. While the direct impacts of these conservation efforts are considered, the unintended consequences brought about by market feedback effects are often overlooked. Perverse market outcomes could result in reduced or even reversed net impacts of conservation efforts. We develop an economic framework to describe how the intended...

  12. New Mediterranean Biodiversity Records (July 2016)

    OpenAIRE

    Dailianis, T.; Akyol, O.; Babali, N.; Bariche, M.; Crocetta, F.; Gerovasileiou, V.; Chanem, R.; Gökoğlu, M.; Hasiotis, T.; Izquierdo Muñoz, Andrés; Julian, D.; Katsanevakis, S.; Lipez, L.; Mancini, E.; Mytilineou, Ch.

    2016-01-01

    This contribution forms part of a series of collective articles published regularly in Mediterranean Marine Science that report on new biodiversity records from the Mediterranean basin. The current article presents 51 geographically distinct records for 21 taxa belonging to 6 Phyla, extending from the western Mediterranean to the Levantine. The new records, per country, are as follows: Spain: the cryptogenic calcareous sponge Paraleucilla magna is reported from a new location in the A...

  13. Canga biodiversity, a matter of mining.

    Science.gov (United States)

    Skirycz, Aleksandra; Castilho, Alexandre; Chaparro, Cristian; Carvalho, Nelson; Tzotzos, George; Siqueira, Jose O

    2014-01-01

    Brazilian name canga refers to the ecosystems associated with superficial iron crusts typical for the Brazilian state of Minas Gerais (MG) and some parts of Amazon (Flona de Carajas). Iron stone is associated with mountain plateaux and so, in addition to high metal concentrations (particularly iron and manganese), canga ecosystems, as other rock outcrops, are characterized by isolation and environmental harshness. Canga inselbergs, all together, occupy no more than 200 km(2) of area spread over thousands of km(2) of the Iron Quadrangle (MG) and the Flona de Carajas, resulting in considerable beta biodiversity. Moreover, the presence of different microhabitats within the iron crust is associated with high alpha biodiversity. Hundreds of angiosperm species have been reported so far across remote canga inselbergs and different micro-habitats. Among these are endemics such as the cactus Arthrocereus glaziovii and the medicinal plant Pilocarpus microphyllus. Canga is also home to iron and manganese metallophytes; species that evolved to tolerate high metal concentrations. These are particularly interesting to study metal homeostasis as both iron and manganese are essential plant micro-elements. Besides being models for metal metabolism, metallophytes can be used for bio-remediation of metal contaminated sites, and as such are considered among priority species for canga restoration. "Biodiversity mining" is not the only mining business attracted to canga. Open cast iron mining generates as much as 5-6% of Brazilian gross domestic product and dialog between mining companies, government, society, and ecologists, enforced by legal regulation, is ongoing to find compromise for canga protection, and where mining is unavoidable for ecosystem restoration. Environmental factors that shaped canga vegetation, canga biodiversity, physiological mechanisms to play a role, and ways to protect and restore canga will be reviewed.

  14. Household location choices: implications for biodiversity conservation.

    Science.gov (United States)

    Peterson, M Nils; Chen, Xiaodong; Liu, Jianguo

    2008-08-01

    Successful conservation efforts require understanding human behaviors that directly affect biodiversity. Choice of household location represents an observable behavior that has direct effects on biodiversity conservation, but no one has examined the sociocultural predictors of this choice relative to its environmental impacts. We conducted a case study of the Teton Valley of Idaho and Wyoming (U.S.A.) that (1) explored relationships between sociodemographic variables, environmental attitudes, and the environmental impact of household location choices, (2) assessed the potential for small household sizes in natural areas to multiply the environmental impacts of household location decisions, and (3) evaluated how length of residency predicted the environmental attitudes of people living in natural areas. We collected sociodemographic data, spatial coordinates, and land-cover information in a survey of 416 households drawn from a random sample of Teton Valley residents (95% compliance rate). Immigrants (respondents not born in the study area) with the lowest education levels and least environmentally oriented attitudes lived in previously established residential areas in disproportionately high numbers, and older and more educated immigrants with the most environmentally oriented attitudes lived in natural areas in disproportionately high numbers. Income was not a significant predictor of household location decisions. Those living in natural areas had more environmental impact per person because of the location and because small households (educated, and potentially growing more environmentally oriented, these patterns are troubling for biodiversity conservation. Our results demonstrate a need for environmentalists to make household location decisions that reflect their environmental attitudes and future research to address how interactions between education level, environmental attitudes, population aging, and household location choices influence biodiversity

  15. A Catalogue of Marine Biodiversity Indicators

    KAUST Repository

    Teixeira, Heliana

    2016-11-04

    A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD), this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g., EU policies, research projects) and in national and international contexts (e.g., Regional Seas Conventions, and assessments in non-European seas). The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity. The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs. Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat, or pressure in a marine area of interest. This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists, and any person interested in marine environmental assessment. It allows users to build

  16. How does economic risk aversion affect biodiversity?

    Science.gov (United States)

    Mouysset, L; Doyen, L; Jiguet, F

    2013-01-01

    Significant decline of biodiversity in farmlands has been reported for several decades. To limit the negative impact of agriculture, many agro-environmental schemes have been implemented, but their effectiveness remains controversial. In this context, the study of economic drivers is helpful to understand the role played by farming on biodiversity. The present paper analyzes the impact of risk aversion on farmland biodiversity. Here "risk aversion" means a cautious behavior of farmers facing uncertainty. We develop a bio-economic model that articulates bird community dynamics and representative farmers selecting land uses within an uncertain macro-economic context. It is specialized and calibrated at a regional scale for France through national databases. The influence of risk aversion is assessed on ecological, agricultural, and economic outputs through projections at the 2050 horizon. A high enough risk aversion appears sufficient to both manage economic risk and promote ecological performance. This occurs through a diversification mechanism on regional land uses. However, economic calibration leads to a weak risk-aversion parameter, which is consistent with the current decline of farmland birds. Spatial disparities however suggest that public incentives could be necessary to reinforce the diversification and bio-economic effectiveness.

  17. Global Priorities for Marine Biodiversity Conservation

    Science.gov (United States)

    Selig, Elizabeth R.; Turner, Will R.; Troëng, Sebastian; Wallace, Bryan P.; Halpern, Benjamin S.; Kaschner, Kristin; Lascelles, Ben G.; Carpenter, Kent E.; Mittermeier, Russell A.

    2014-01-01

    In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs) and Areas Beyond National Jurisdiction (ABNJ). Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity. PMID:24416151

  18. Late Quaternary climate change shapes island biodiversity.

    Science.gov (United States)

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-07

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.

  19. Land market feedbacks can undermine biodiversity conservation.

    Science.gov (United States)

    Armsworth, Paul R; Daily, Gretchen C; Kareiva, Peter; Sanchirico, James N

    2006-04-04

    The full or partial purchase of land has become a cornerstone of efforts to conserve biodiversity in countries with strong private property rights. Methods used to target areas for acquisition typically ignore land market dynamics. We show how conservation purchases affect land prices and generate feedbacks that can undermine conservation goals, either by displacing development toward biologically valuable areas or by accelerating its pace. The impact of these market feedbacks on the effectiveness of conservation depends on the ecological value of land outside nature reserves. Traditional, noneconomic approaches to site prioritization should perform adequately in places where land outside reserves supports little biodiversity. However, these approaches will perform poorly in locations where the countryside surrounding reserves is important for species' persistence. Conservation investments can sometimes even be counterproductive, condemning more species than they save. Conservation is most likely to be compromised in the absence of accurate information on species distributions, which provides a strong argument for improving inventories of biodiversity. Accounting for land market dynamics in conservation planning is crucial for making smart investment decisions.

  20. Global priorities for marine biodiversity conservation.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Selig

    Full Text Available In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs and Areas Beyond National Jurisdiction (ABNJ. Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity.

  1. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots.

    Science.gov (United States)

    Katouzian, Ahmad-Reza; Sari, Alireza; Macher, Jan N; Weiss, Martina; Saboori, Alireza; Leese, Florian; Weigand, Alexander M

    2016-03-01

    Biodiversity hotspots are centers of biological diversity and particularly threatened by anthropogenic activities. Their true magnitude of species diversity and endemism, however, is still largely unknown as species diversity is traditionally assessed using morphological descriptions only, thereby ignoring cryptic species. This directly limits evidence-based monitoring and management strategies. Here we used molecular species delimitation methods to quantify cryptic diversity of the montane amphipods in the Irano-Anatolian and Caucasus biodiversity hotspots. Amphipods are ecosystem engineers in rivers and lakes. Species diversity was assessed by analysing two genetic markers (mitochondrial COI and nuclear 28S rDNA), compared with morphological assignments. Our results unambiguously demonstrate that species diversity and endemism is dramatically underestimated, with 42 genetically identified freshwater species in only five reported morphospecies. Over 90% of the newly recovered species cluster inside Gammarus komareki and G. lacustris; 69% of the recovered species comprise narrow range endemics. Amphipod biodiversity is drastically underestimated for the studied regions. Thus, the risk of biodiversity loss is significantly greater than currently inferred as most endangered species remain unrecognized and/or are only found locally. Integrative application of genetic assessments in monitoring programs will help to understand the true magnitude of biodiversity and accurately evaluate its threat status.

  2. Forest restoration, biodiversity and ecosystem functioning

    Science.gov (United States)

    2011-01-01

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  3. Building capacity in biodiversity monitoring at the global scale

    Science.gov (United States)

    Schmeller, Dirk S.; Bohm, Monika; Arvanitidis, Christos; Barber-Meyer, Shannon; Brummitt, Neil; Chandler, Mark; Chatzinikolaou, Eva; Costello, Mark J.; Ding, Hui; García-Moreno, Jaime; Gill, Michael J.; Haase, Peter; Jones, Miranda; Juillard, Romain; Magnusson, William E.; Martin, Corinne S.; McGeoch, Melodie A.; Mihoub, Jean-Baptiste; Pettorelli, Nathalie; Proença, Vânia; Peng, Cui; Regan, Eugenie; Schmiedel, Ute; Simsika, John P.; Weatherdon, Lauren; Waterman, Carly; Xu, Haigen; Belnap, Jayne

    2017-01-01

    Human-driven global change is causing ongoing declines in biodiversity worldwide. In order to address these declines, decision-makers need accurate assessments of the status of and pressures on biodiversity. However, these are heavily constrained by incomplete and uneven spatial, temporal and taxonomic coverage. For instance, data from regions such as Europe and North America are currently used overwhelmingly for large-scale biodiversity assessments due to lesser availability of suitable data from other, more biodiversity-rich, regions. These data-poor regions are often those experiencing the strongest threats to biodiversity, however. There is therefore an urgent need to fill the existing gaps in global biodiversity monitoring. Here, we review current knowledge on best practice in capacity building for biodiversity monitoring and provide an overview of existing means to improve biodiversity data collection considering the different types of biodiversity monitoring data. Our review comprises insights from work in Africa, South America, Polar Regions and Europe; in government-funded, volunteer and citizen-based monitoring in terrestrial, freshwater and marine ecosystems. The key steps to effectively building capacity in biodiversity monitoring are: identifying monitoring questions and aims; identifying the key components, functions, and processes to monitor; identifying the most suitable monitoring methods for these elements, carrying out monitoring activities; managing the resultant data; and interpreting monitoring data. Additionally, biodiversity monitoring should use multiple approaches including extensive and intensive monitoring through volunteers and professional scientists but also harnessing new technologies. Finally, we call on the scientific community to share biodiversity monitoring data, knowledge and tools to ensure the accessibility, interoperability, and reporting of biodiversity data at a global scale.

  4. Economic tools for biodiversity. An elaboration of TEEB recommendations with regard to the Taskforce Biodiversity

    International Nuclear Information System (INIS)

    Davidson, M.D.; Bergsma, G.C.; Blom, M.J.

    2011-07-01

    The working group on Economic Instruments of the Biodiversity and Natural Resources Task Force addressed the question how the recommendations of the report of the United Nations 'The Economics of Ecosystems and Biodiversity' (TEEB) can be realized in the Netherlands. A selection of topics has been made for which policy proposals are developed which might be promising and can lead to a better protection of the biodiversity. The following proposals were investigated and/or elaborated: decrease of the social discount rate; further greening of the tax system; import levy on bulk commodities; taxes on non-sustainable wood; levy on the use of open space; differential tax on animal proteins; and a revision of biomass incentives. [nl

  5. Biodiversity, climate change and poverty: exploring the links

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Swiderska, Krystyna

    2008-02-15

    Biodiversity — the variety of all life, from genes and species to ecosystems — is intimately linked to Earth's climate and, inevitably, to climate change. Biodiversity and poverty are also inextricably connected. For instance, changes to natural ecosystems influence both climate change and people's ability to cope with some of its damaging impacts. And in their turn climate change, as well as people's responses to it, affect biodiversity. Unpicking all these strands clearly shows that conserving and managing biodiversity can help natural systems and vulnerable people cope with a shifting global climate. Yet compared to activities such as forest conservation and afforestation — widely noted as a way of sequestering carbon and cutting greenhouse gas emissions — biodiversity conservation is a neglected area. That must change: urgent support is needed for local solutions to biodiversity loss that provide benefits on all counts.

  6. Does conservation on farmland contribute to halting the biodiversity decline?

    Science.gov (United States)

    Kleijn, David; Rundlöf, Maj; Scheper, Jeroen; Smith, Henrik G; Tscharntke, Teja

    2011-09-01

    Biodiversity continues to decline, despite the implementation of international conservation conventions and measures. To counteract biodiversity loss, it is pivotal to know how conservation actions affect biodiversity trends. Focussing on European farmland species, we review what is known about the impact of conservation initiatives on biodiversity. We argue that the effects of conservation are a function of conservation-induced ecological contrast, agricultural land-use intensity and landscape context. We find that, to date, only a few studies have linked local conservation effects to national biodiversity trends. It is therefore unknown how the extensive European agri-environmental budget for conservation on farmland contributes to the policy objectives to halt biodiversity decline. Based on this review, we identify new research directions addressing this important knowledge gap. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Biodiversity, climate change and poverty: exploring the links

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Swiderska, Krystyna

    2008-02-15

    Biodiversity — the variety of all life, from genes and species to ecosystems — is intimately linked to Earth's climate and, inevitably, to climate change. Biodiversity and poverty are also inextricably connected. For instance, changes to natural ecosystems influence both climate change and people's ability to cope with some of its damaging impacts. And in their turn climate change, as well as people's responses to it, affect biodiversity. Unpicking all these strands clearly shows that conserving and managing biodiversity can help natural systems and vulnerable people cope with a shifting global climate. Yet compared to activities such as forest conservation and afforestation — widely noted as a way of sequestering carbon and cutting greenhouse gas emissions — biodiversity conservation is a neglected area. That must change: urgent support is needed for local solutions to biodiversity loss that provide benefits on all counts.

  8. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations.

    OpenAIRE

    John M. Gowdy; Richard Howarth; Clem Tisdell

    2010-01-01

    This chapter presents the economic logic behind the concept of discounting the future and discusses how it applies to biodiversity conservation. How should economists account for the effects of biodiversity and ecosystem losses in the immediate and distant future? We discuss how to integrate traditional cost-benefit analysis with other approaches to understand and measure, where possible, environmental values. We conclude that losses of biodiversity and ecosystems have properties that make it...

  9. National forest inventory contributions to forest biodiversity monitoring

    DEFF Research Database (Denmark)

    Chirici, Cherardo; McRoberts, Ronald; Winter, Susanne

    2012-01-01

    . The primary international processes dealing with biodiversity and sustainable forest management, the Convention on Biological Diversity (CBD), Forest Europe, Streamlining European Biodiversity Indicators 2010 of the European Environmental Agency, and the Montréal Process, all include indicators related...... (ground vegetation and regeneration) NFIs should invest more in harmonization efforts. On the basis of these key findings, we recommend that NFIs should represent a main component of a future global biodiversity monitoring network as urgently requested by the CBD....

  10. Soil fertility, crop biodiversity, and farmers' revenues: Evidence from Italy.

    Science.gov (United States)

    Di Falco, Salvatore; Zoupanidou, Elisavet

    2017-03-01

    This paper analyzes the interplay between soil fertility, crop biodiversity, and farmers' revenues. We use a large, original, farm-level panel dataset. Findings indicate that both crop biodiversity and soil fertility have positive effects on farmers' revenues. It is also shown that crop biodiversity and soil fertility may act as substitutes. These results provide evidence for the important role of diversity in the resilience of agroecosystems. Crop diversification can be a potential strategy to support productivity when soils are less fertile.

  11. Biodiversity offsets and the challenge of achieving no net loss.

    Science.gov (United States)

    Gardner, Toby A; VON Hase, Amrei; Brownlie, Susie; Ekstrom, Jonathan M M; Pilgrim, John D; Savy, Conrad E; Stephens, R T Theo; Treweek, Jo; Ussher, Graham T; Ward, Gerri; Ten Kate, Kerry

    2013-12-01

    Businesses, governments, and financial institutions are increasingly adopting a policy of no net loss of biodiversity for development activities. The goal of no net loss is intended to help relieve tension between conservation and development by enabling economic gains to be achieved without concomitant biodiversity losses. biodiversity offsets represent a necessary component of a much broader mitigation strategy for achieving no net loss following prior application of avoidance, minimization, and remediation measures. However, doubts have been raised about the appropriate use of biodiversity offsets. We examined what no net loss means as a desirable conservation outcome and reviewed the conditions that determine whether, and under what circumstances, biodiversity offsets can help achieve such a goal. We propose a conceptual framework to substitute the often ad hoc approaches evident in many biodiversity offset initiatives. The relevance of biodiversity offsets to no net loss rests on 2 fundamental premises. First, offsets are rarely adequate for achieving no net loss of biodiversity alone. Second, some development effects may be too difficult or risky, or even impossible, to offset. To help to deliver no net loss through biodiversity offsets, biodiversity gains must be comparable to losses, be in addition to conservation gains that may have occurred in absence of the offset, and be lasting and protected from risk of failure. Adherence to these conditions requires consideration of the wider landscape context of development and offset activities, timing of offset delivery, measurement of biodiversity, accounting procedures and rule sets used to calculate biodiversity losses and gains and guide offset design, and approaches to managing risk. Adoption of this framework will strengthen the potential for offsets to provide an ecologically defensible mechanism that can help reconcile conservation and development. Balances de Biodiversidad y el Reto de No Obtener P

  12. How economic contexts shape calculations of yield in biodiversity offsetting.

    Science.gov (United States)

    Carver, L; Sullivan, S

    2017-10-01

    We examined and analyzed methods used to create numerical equivalence between sites affected by development and proposed conservation offset sites. Application of biodiversity offsetting metrics in development impact and mitigation assessments is thought to standardize biodiversity conservation outcomes, sometimes termed yield by those conducting these calculations. The youth of biodiversity offsetting in application, however, means little is known about how biodiversity valuations and offset contracts between development and offset sites are agreed on in practice or about long-term conservation outcomes. We examined how sites were made commensurable and how biodiversity gains or yields were calculated and negotiated for a specific offset contract in a government-led pilot study of biodiversity offsets in England. Over 24 months, we conducted participant observations of various stages in the negotiation of offset contracts through repeated visits to 3 (anonymized) biodiversity offset contract sites. We conducted 50 semistructured interviews of stakeholders in regional and local government, the private sector, and civil society. We used a qualitative data analysis software program (DEDOOSE) to textually analyze interview transcriptions. We also compared successive iterations of biodiversity-offsetting calculation spreadsheets and planning documents. A particular focus was the different iterations of a specific biodiversity impact assessment in which the biodiversity offsetting metric developed by the U.K.'s Department for Environment, Food and Rural Affairs was used. We highlight 3 main findings. First, biodiversity offsetting metrics were amended in creative ways as users adapted inputs to metric calculations to balance and negotiate conflicting requirements. Second, the practice of making different habitats equivalent to each other through the application of biodiversity offsetting metrics resulted in commensuration outcomes that may not provide projected

  13. Global imprint of historical connectivity on freshwater fish biodiversity

    OpenAIRE

    Dias, M. S.; Oberdorff, Thierry; Hugueny, Bernard; Leprieur, F.; Jézéquel, Céline; Cornu, Jean-François; Brosse, S.; Grenouillet, G.; Tedesco, Pablo

    2014-01-01

    The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo-drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controll...

  14. The biodiversity cost of carbon sequestration in tropical savanna

    OpenAIRE

    Abreu, Rodolfo C. R.; Hoffmann, William A.; Vasconcelos, Heraldo L.; Pilon, Natashi A.; Rossatto, Davi R.; Durigan, Giselda

    2017-01-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. ...

  15. Earth Observation for Biodiversity Assessment (EO-BA)

    CSIR Research Space (South Africa)

    Cho, Moses A

    2012-10-01

    Full Text Available in the Dukuduku coastal forest Earth Observation for Biodiversity Assessment (EO-BA) MA CHO, P DEBBA, R MATHIEU, A RAMOELO, L NAIDOO, H VAN DEVENTER, O MALAHLELA AND R MAIN CSIR Natural Resources and the Environment, Pretoria, South Africa PO Box 395... Observation for Biodiversity Assessment (EO-BA) programme is designed to enhance biodiversity assessment and conservation through the application of earth observation data, with particular focus on the African continent. MISSION To initiate and develop...

  16. Mainstreaming biodiversity: conservation for the 21st century

    Directory of Open Access Journals (Sweden)

    Kent Hubbard Redford

    2015-12-01

    Full Text Available Insufficient focused attention has been paid by the conservation community to conservation of biodiversity outside of protected areas. Biodiversity mainstreaming addresses this gap in global conservation practice by embedding biodiversity considerations into policies, strategies and practices of key public and private actors that impact or rely on biodiversity, so that it is conserved, and sustainably used, both locally and globally (Huntley and Redford 2014. Biodiversity mainstreaming is designed to change those policies and practices that influence land uses outside of protected areas as well as to change economic and development decision-making by demonstrating the importance of conserving biodiversity for achieving development outcomes. The practice of mainstreaming is tied to implementation of the Convention on Biological Diversity and is practiced with billions of dollars of investment by development agencies, national government agencies, and the Global Environment Facility (GEF and its implementing organizations as well as other donors. It is essential for the long-term survival of biodiversity inside and outside protected areas. However, it is virtually unheard of in the main conservation science field. This must change so as to bring careful documentation, analysis, monitoring, publishing and improvement of practices – all things that conservation science should provide as partners to practitioners of biodiversity mainstreaming. The situation is ripe for informed coordination and consolidation and creation of a science-driven field of biodiversity mainstreaming.

  17. Biodiversity intactness score for South Africa

    CSIR Research Space (South Africa)

    Biggs, R

    2006-07-01

    Full Text Available are to show that the BII can be confidently applied, using available data, at all three gover- nance levels in South Africa (national, provincial, and local), as well as at the ecosystem level. We thereby introduce a tool that could be used to complement... existing methods in reporting on the state of South Africa’s biodiversity, a significant need which has been identified by the Department of Environmental Affairs and Tourism (DEAT).23,38,39 We highlight the implications of our findings for bio...

  18. Forecasting effects of global warming on biodiversity

    DEFF Research Database (Denmark)

    Botkin, D.B.; Saxe, H.; Araújo, M.B.

    2007-01-01

    The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. In this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche...... and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions...

  19. Plant biodiversity changes in Carboniferous tropical wetlands

    DEFF Research Database (Denmark)

    Cleal, C. J.; Uhl, D.; Cascales-Miñana, B.

    2012-01-01

    and Sydney coal basins. In all cases, species richness expansion followed an essentially logistic curve typical of that associated with ecologically closed habitats, with niche saturation being achieved in about three million years. The resulting steady-state (“climax”) coal swamp vegetation had a local......Using a combination of species richness, polycohort and constrained cluster analyses, the plant biodiversity of Pennsylvanian (late Carboniferous) tropical wetlands (“coal swamps”) has been investigated in five areas in Western Europe and eastern North America: South Wales, Pennines, Ruhr, Saarland...

  20. Coastal and marine biodiversity of India

    Digital Repository Service at National Institute of Oceanography (India)

    Venkataraman, K.; Wafar, M.V.M.

    endangered eco-regions of the world 1 . Among the Asian countries, India is perhaps the only one that has a long INDIAN J. MAR. SCI., VOL. 34, No. 1, MARCH 2005 58 record of inventories of coastal and marine biodiversity dating back to at least two..., planktonic algae appear to have been more completely catalogued 2,3 . Their compilation suggests that the number of pennate diatoms in the world oceans could range from 500 to 784 and that of centric diatoms, from 865 to 999. Compared with these, not more...

  1. The GEO Handbook on Biodiversity Observation Networks

    CSIR Research Space (South Africa)

    Walters, Michele

    2017-01-01

    Full Text Available across the planet. I congratulate GEO BON on creating this powerful mechanism and wish the GEO BON community great success in each of its future endeavours. Geneva, Switzerland Barbara J. Ryan Executive Director: Group on Earth Observations viii Foreword... of biodiversity data is the desired goal, it would be hard to achieve except via the mechanism of a network, simply because 6 R.J. Scholes et al. sampling and species identification is more cost-effective and situation-appropriate if conducted using local...

  2. Biodiversity of Van Reeds, Eastern Turkey

    Directory of Open Access Journals (Sweden)

    Özdemir Adızel

    2017-12-01

    Full Text Available In this study, it is aimed to determine the vertebrate fauna and flora species diversity of Van Reeds. For this purpose, studies were conducted between 2014 and 2017 and 1 fish, 3 frog, 6 reptilian, 185 bird, and 5 mammal species, 200 fauna species and 79 flora species in total, were determined in the study area. Van Reeds is an important breeding, feeding, and wintering feature especially for birds. Reeds, which has various biodiversity, is exposed to intense pressure and destruction. The main threats in the study area are construction, filling, hunting, drainage, and pollution.

  3. Spectrum of concepts associated with the term "biodiversity": a case study in a biodiversity hotspot in South America.

    Science.gov (United States)

    Cerda, Claudia; Bidegain, Iñigo

    2018-03-10

    In most conservation programs that include public participation, the word "biodiversity" is used. However, many variables influence the public understanding of the term and determine what biodiversity means to local stakeholders. Those representations of the concept must be addressed and included in conservation actions. We asked 47 local stakeholders in a biosphere reserve (BR) located in a biodiversity hotspot in South America, for whom the conservation of biodiversity is not the main focus of interest, to explain how they understand the term "biodiversity." Twenty-two different definitions were provided, ranging from purely ecological concepts to the human dimension. Although the diversity of animals and plants was the most frequently mentioned concept, the variety of concepts that emerged suggested that more explicit examples of social constructions must be considered in public participatory projects and environmental education programs. Actors living in a close relationship with nature provide a greater diversity of elements in defining biodiversity, visualizing ecological but also instrumental values.

  4. Biodiversity Scenarios: Projections of 21st century change in biodiversity and associated ecosystem services

    CSIR Research Space (South Africa)

    Scholes, B

    2010-01-01

    Full Text Available �cation on biodiversity can be mini- mized by appropriate agricultural practices. n International regulation of �shing in non-terri- torial waters and improved governance at local to global scales are key to avoiding wide- spread modi�cations of marine food chains...

  5. Integrating movement ecology with biodiversity research-exploring new avenues to address spatiotemporal biodiversity dynamics

    NARCIS (Netherlands)

    Jeltsch, F.; Bonte, D.; Pe'er, G.; Reineking, B.; Leimgruber, P.; Balkenhol, N.; Schröder, B.; Buchmann, C.M.; Mueller, T.; Blaum, N.; Zurell, D.; Böhning-Gaese, K.; Wiegand, T.; Eccard, J.A.; Hofer, H.; Reeg, J.; Eggers, U.; Bauer, S.

    2013-01-01

    Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the

  6. Measuring Biodiversity in Forest Communities – A Role of Biodiversity Indices

    Directory of Open Access Journals (Sweden)

    Lakićević Milena

    2018-03-01

    Full Text Available Biodiversity refers to genetic, species and ecosystems varieties within an area. Two main characteristics that should be investigated when considering biodiversity are richness and evenness. Richness is related to the number of different species in the analyzed area, while evenness corresponds to the homogeneity of the abundance of species. For quantifying these features, many indices have been defined, and this paper offers an overview of the most commonly used biodiversity indices, such as Shannon, Simpson, Margalef and Berger-Parker. The paper explains the process of calculating these indices on the case study example of four forest communities and discusses the results obtained. The Jaccard index analysis is used to discover a similarity between the analyzed forest communities. Results from this part of the research are visualized by creating appropriate dendrograms for making the interpretation easier. Calculating and analyzing these indices is useful not only for forest ecosystems, but for the other types of ecosystems as well, including agro-ecosystems. Biodiversity indices can be obtained in thespecialized software, for instance in EstimateS (Statistical Estimation of Species Richness and Shared Species from Samples, or by programming in the statistical package R, as it was done in this research.

  7. Biodiversity hotspots through time: an introduction.

    Science.gov (United States)

    Willis, Katherine J; Gillson, Lindsey; Knapp, Sandra

    2007-02-28

    International targets set for reducing the rate of biodiversity loss--the 2010 target--and ensuring environmental stability (Millennium Development Goals) have helped to focus the efforts of the scientific community on providing the data necessary for their implementation. The urgency of these goals, coupled with the increased rate of habitat alteration worldwide, has meant that actions have largely not taken into account the increasing body of data about the biodiversity change in the past. We know a lot about how our planet has been altered and recovered in the past, both in deep time and through prehistory. Linking this knowledge to conservation action has not been widely practised, by either the palaeoecology or the conservation communities. Long-term data, however, have much to offer current conservation practice, and in the papers for this volume we have tried to bring together a variety of different perspectives as to how this might happen in the most effective way. We also identify areas for productive collaboration and some key synergies for work in the near future to enable our knowledge of the past to be used for conservation action in the here and now. Lateral thinking, across knowledge systems and with open-mindness about bridging data gaps, will be necessary for our accumulating knowledge about our planet's past to be brought to bear on our attempts to conserve it in the future.

  8. Human population in the biodiversity hotspots.

    Science.gov (United States)

    Cincotta, R P; Wisnewski, J; Engelman, R

    2000-04-27

    Biologists have identified 25 areas, called biodiversity hotspots, that are especially rich in endemic species and particularly threatened by human activities. The human population dynamics of these areas, however, are not well quantified. Here we report estimates of key demographic variables for each hotspot, and for three extensive tropical forest areas that are less immediately threatened. We estimate that in 1995 more than 1.1 billion people, nearly 20% of world population, were living within the hotspots, an area covering about 12% of Earth's terrestrial surface. We estimate that the population growth rate in the hotspots (1995-2000) is 1.8% yr(-1), substantially higher than the population growth rate of the world as a whole (1.3% yr(-1)) and above that of the developing countries (1.6% yr(-1)). These results suggest that substantial human-induced environmental changes are likely to continue in the hotspots and that demographic change remains an important factor in global biodiversity conservation. The results also underline the potential conservation significance of the continuing worldwide declines in human fertility and of policies and programs that influence human migration.

  9. Genomics and the making of yeast biodiversity.

    Science.gov (United States)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. New Mediterranean Biodiversity Records (March 2016

    Directory of Open Access Journals (Sweden)

    P. K. KARACHLE

    2016-03-01

    Full Text Available In this Collective Article on “New Mediterranean Biodiversity Records”, we present additional records of species found in the Mediterranean Sea. These records refer to eight different countries throughout the northern part of the basin, and include 28 species, belonging to five phyla. The findings per country include the following species: Spain: Callinectes sapidus and Chelidonura fulvipunctata; Monaco: Aplysia dactylomela; Italy: Charybdis (Charybdis feriata, Carcharodon carcharias, Seriola fasciata, and Siganus rivulatus; Malta: Pomacanthus asfur; Croatia: Lagocephalus sceleratus and Pomadasys incisus; Montenegro: Lagocephalus sceleratus; Greece: Amathia (Zoobotryon verticillata, Atys cf. macandrewii, Cerithium scabridum, Chama pacifica, Dendostrea cf. folium, Ergalatax junionae, Septifer cumingii, Syphonota geographica, Syrnola fasciata, Oxyurichthys petersi, Scarus ghobban, Scorpaena maderensis, Solea aegyptiaca and Upeneus pori; Turkey: Lobotes surinamensis, Ruvettus pretiosus and Ophiocten abyssicolum. In the current article, the presence of Taractes rubescens (Jordan & Evermann, 1887 is recorded for the first time in the Mediterranean from Italy. The great contribution of citizen scientists in monitoring biodiversity records is reflected herein, as 10% of the authors are citizen scientists, and contributed 37.5% of the new findings.

  11. GEOSPATIAL CHARACTERIZATION OF BIODIVERSITY: NEED AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    P. S. Roy

    2012-08-01

    Full Text Available Explaining the distribution of species and understanding their abundance and spatial distribution at multiple scales using remote sensing and ground based observation have been the central aspect of the meeting of COP10 for achieving CBD 2020 targets. In this respect the Biodiveristy Characterization at Landscape Level for India is a milestone in biodiversity study in this country. Satellite remote sensing has been used to derive the spatial extent and vegetation composition patterns. Sensitivity of different multi-scale landscape metrics, species composition, ecosystem uniqueness and diversity in distribution of biological diversity is assessed through customized landscape analysis software to generate the biological richness surface. The uniqueness of the study lies in the creation of baseline geo-spatial data on vegetation types using multi-temporal satellite remote sensing data (IRS LISS III, deriving biological richness based on spatial landscape analysis and inventory of location specific information about 7964 unique plant species recorded in 20,000 sample plots in India and their status with respect to endemic, threatened and economic/medicinal importance. The results generated will serve as a baseline database for various assessment of the biodiversity for addressing CBD 2020 targets.

  12. Environmental Concerns: Biodiversity and Sustainable Environmental Protection

    International Nuclear Information System (INIS)

    Khamala, C.P.M.

    2006-01-01

    Biodiversity is the science tha describes the great variety of living things, namely animals, plants and bacteria present on this planet and their successful adaptation to diverse habitats. In other words, it is the science designed to acquint us with the spectrum of animal and plant and other life inhabiting this earth. Simply stated, it means the variety and variability among living organisms and ecological complexes in which they live. Thus defined, biodiversity is important in the structuring of stable life-support systems on the planet. In a time when animal and plant species all over the world are increasingly subject to extinction and diminishing population sizes, it is important to understand something about this diversity (science) if anything is to be preserved (technology). The future of the human race may depend upon the study of science and technology of living organisms. This is because it is the total variety of living matter on which society depends for food, water and air. It is the environment

  13. Rice agroecosystem and the maintenance of biodiversity

    International Nuclear Information System (INIS)

    Ahyaudin Ali

    2002-01-01

    Rice fields are a special type of wetland. They are shallow, constantly disturbed and experience extremes in temperature and dissolved oxygen content. They receive nutrients in the form of fertilizers during rice cultivation. Rice fields; support a variety of flora and fauna that have adapted and adjusted themselves to the extreme conditions. Since rice fields also support populations of wild fish, rice?fish integration should be done in order to optimize land use and provide supplementary income to farmers. Rice?fish farming encourages farmers to judiciously apply pesticides and herbicides in their fields thus helping to control excessive and unwarranted use of these chemicals. Rice fields also support many migratory and nonmigratory bird species and provides habitat for small mammals. Thus the rice agroecosystem helps to maintain aquatic biodiversity. The Muda rice agroecosystem consists of a troika of interconnected ecosystems. The troika consisting of reservoirs, the connecting network of canals and the rice fields; should be investigated further. This data is needed for informed decision-making concerning development and management of the system so that productivity and biodiversity can be maintained and sustained. (Author)

  14. Global biodiversity loss: Exaggerated versus realistic estimates

    Directory of Open Access Journals (Sweden)

    John C. Briggs

    2016-06-01

    Full Text Available For the past 50 years, the public has been made to feel guilty about the tragedy of human-caused biodiversity loss due to the extinction of hundreds or thousands of species every year. Numerous articles and books from the scientific and popular press and publicity on the internet have contributed to a propaganda wave about our grievous loss and the beginning of a sixth mass extinction. However, within the past few years, questions have arisen about the validity of the data which led to the doom scenario. Here I show that, for the past 500 years, terrestrial animals (insects and vertebrates have been losing less than two species per year due to human causes. The majority of the extinctions have occurred on oceanic islands with little effect on continental ecology. In the marine environment, losses have also been very low. At the same time, speciation has continued to occur and biodiversity gain by this means may have equaled or even surpassed the losses. While species loss is not, so far, a global conservation problem, ongoing population declines within thousands of species that are at risk on land and in the sea constitute an extinction debt that will be paid unless those species can be rescued.

  15. DNA barcoding the floras of biodiversity hotspots.

    Science.gov (United States)

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G; Savolainen, Vincent

    2008-02-26

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a "DNA barcoding gap" is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes.

  16. Genomic Approaches in Marine Biodiversity and Aquaculture

    Directory of Open Access Journals (Sweden)

    Jorge A Huete-Pérez

    2013-01-01

    Full Text Available Recent advances in genomic and post-genomic technologies have now established the new standard in medical and biotechnological research. The introduction of next-generation sequencing, NGS,has resulted in the generation of thousands of genomes from all domains of life, including the genomes of complex uncultured microbial communities revealed through metagenomics. Although the application of genomics to marine biodiversity remains poorly developed overall, some noteworthy progress has been made in recent years. The genomes of various model marine organisms have been published and a few more are underway. In addition, the recent large-scale analysis of marine microbes, along with transcriptomic and proteomic approaches to the study of teleost fishes, mollusks and crustaceans, to mention a few, has provided a better understanding of phenotypic variability and functional genomics. The past few years have also seen advances in applications relevant to marine aquaculture and fisheries. In this review we introduce several examples of recent discoveries and progress made towards engendering genomic resources aimed at enhancing our understanding of marine biodiversity and promoting the development of aquaculture. Finally, we discuss the need for auspicious science policies to address challenges confronting smaller nations in the appropriate oversight of this growing domain as they strive to guarantee food security and conservation of their natural resources.

  17. Biodiversity change is uncoupled from species richness trends : Consequences for conservation and monitoring

    NARCIS (Netherlands)

    Hillebrand, Helmut; Blasius, Bernd; Borer, Elizabeth T.; Chase, Jonathan M.; Downing, John A.; Eriksson, Britas Klemens; Filstrup, Christopher T.; Harpole, W. Stanley; Hodapp, Dorothee; Larsen, Stefano; Lewandowska, Aleksandra M.; Seabloom, Eric W.; Van de Waal, Dedmer B.; Ryabov, Alexey B.

    Global concern about human impact on biological diversity has triggered an intense research agenda on drivers and consequences of biodiversity change in parallel with international policy seeking to conserve biodiversity and associated ecosystem functions. Quantifying the trends in biodiversity is

  18. 78 FR 19353 - Biodiversity Beyond National Jurisdiction; Notice of Public Meeting

    Science.gov (United States)

    2013-03-29

    ... DEPARTMENT OF STATE [Public Notice 8262] Biodiversity Beyond National Jurisdiction; Notice of... information session regarding issues related to marine biodiversity in areas beyond national jurisdiction... international meetings and negotiations on marine biodiversity beyond national jurisdiction, such as the meeting...

  19. 77 FR 6820 - Proposed Information Collection; Comment Request: Creating Stewardship Through Biodiversity...

    Science.gov (United States)

    2012-02-09

    ... Information Collection; Comment Request: Creating Stewardship Through Biodiversity Discovery in National Parks... collection (IC) described below. This collection will survey participants of Biodiversity Discovery efforts... Biodiversity Discovery refers to a variety of efforts to discover living organisms through public involvement...

  20. Biodiversity analyses for risk assessment of genetically modified potato

    NARCIS (Netherlands)

    Lazebnik, Jenny; Dicke, Marcel; Braak, ter Cajo J.F.; Loon, van Joop J.A.

    2017-01-01

    An environmental risk assessment for the introduction of genetically modified crops includes assessing the consequences for biodiversity. In this study arthropod biodiversity was measured using pitfall traps in potato agro-ecosystems in Ireland and The Netherlands over two years. We tested the

  1. On the value of soil biodiversity and ecosystem services

    NARCIS (Netherlands)

    Pascual, U.; Termansen, M.; Hedlund, K.; Brussaard, L.; Faber, J.H.; Foudi, S.; Lemanceau, P.; Liv-Jørgensen, S.

    2015-01-01

    This paper provides a framework to understand the source of the economic value of soil biodiversity and soil ecosystem services and maps out the pathways of such values. We clarify the link between components of the economic value of soil biodiversity and their associated services of particular

  2. Soil biodiversity in amazonian and other Brazilian ecosystems

    NARCIS (Netherlands)

    Moreira, F.M.S.; Siqueira, J.O.; Brussaard, L.

    2006-01-01

    This book reviews soil biodiversity and related ecological processes in one of the key biodiversity hotspots of the world, the Amazon, and nearby regions of Brazil. It covers both the tropical savannah and rainforests. Chapters describe the biology, ecology, taxonomy, geographic distribution and

  3. Improving the Science-Policy Interface of Biodiversity Research Projects

    NARCIS (Netherlands)

    Neßhöver, C.; Timaeus, J.; Wittmer, H.; Krieg, A.; Geamana, N.; Van den Hove, S.; Young, J.; Watt, A.

    2013-01-01

    Against the background of a continuing biodiversity loss there is a strong need to improve the interfaces between science and policy. Many approaches for such interfaces exist, the most recent being the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES). A less prominent

  4. Engaging Pupils in Decision-Making about Biodiversity Conservation Issues

    Science.gov (United States)

    Grace, Marcus; Byrne, Jenny

    2010-01-01

    Our pupils' generation will eventually have the daunting responsibility of making decisions about local and global biodiversity. School provides an early opportunity for them to enter into formal discussion about the science and values associated with biodiversity conservation; but the crowded curriculum offers little time for such activities.…

  5. Conserving Earth's Biodiversity. [CD-ROM and] Instructor's Manual.

    Science.gov (United States)

    2000

    This CD-ROM is designed as an interactive learning tool to support teaching in highly interdisciplinary fields such as conservation of biodiversity. Topics introduced in the software include the impact of humans on natural landscapes, threats to biodiversity, methods and theories of conservation biology, environmental laws, and relevant economic…

  6. From genes to landscapes: conserving biodiversity at multiple scales.

    Science.gov (United States)

    Sally. Duncan

    2000-01-01

    Biodiversity has at last become a familiar term outside of scientific circles. Ways of measuring it and mapping it are advancing and becoming more complex, but ways of deciding how to conserve it remain mixed at best, and the resources available to manage dimishing biodiversity are themselves scarce. One significant problem is that policy decisions are frequently at...

  7. BIODIVERSITY CONSERVATION INCENTIVE PROGRAMS FOR PRIVATELY OWNED FORESTS

    Science.gov (United States)

    In many countries, a large proportion of forest biodiversity exists on private land. Legal restrictions are often inadequate to prevent loss of habitat and encourage forest owners to manage areas for biodiversity, especially when these management actions require time, money, and ...

  8. Why are no Biodiversity Management Committees that ought to have ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Why are no Biodiversity Management Committees that ought to have been established under B D Act 2002 in place? Why are no Biodiversity Management Committees that ought to have been established under B D Act 2002 in place? Why have no rights – individual and ...

  9. An analytical framework for linking biodiversity to poverty

    NARCIS (Netherlands)

    Hengsdijk, H.; Meijerink, G.W.; Tonneijck, A.E.G.; Bindraban, P.S.

    2005-01-01

    This report aims to develop a framework linking poverty reduction and biodiversity conservation in order to identify research questions and to contribute to improved policy formulation. A general overview of the subject, definitions and concepts of poverty and biodiversity are described.

  10. Children in Nature: Sensory Engagement and the Experience of Biodiversity

    Science.gov (United States)

    Beery, Thomas; Jørgensen, Kari Anne

    2018-01-01

    Given concerns for a severely diminished childhood experience of nature, coupled with alarm for a rapidly diminishing global biodiversity, this article considers the potential for childhood nature experience to be an important part of biodiversity understanding. Findings from two studies are integrated and presented as windows into childhood…

  11. Energy mitigation, adaptation and biodiversity: Synergies and antagonisms

    International Nuclear Information System (INIS)

    Berry, P M; Paterson, J S

    2009-01-01

    In this paper we review the current impacts of different energy producers (and energy conservation) on biodiversity and investigate the potential for achieving positive biodiversity effects along with mitigation and adaptation objectives. Very few energy producers achieve all three aims - although it may be possible with careful choice of location and management. In some instances, energy conservation can provide mitigation, adaptation and biodiversity benefits. There is still a gap in knowledge regarding the effects of newer energy technologies on biodiversity. There is an additional concern that many supposedly 'green' renewable energy projects may actually harm biodiversity to such a degree that their overall human benefits are negated. The increasing understanding that ecosystem services are vital for human well-being though means that attempting positive mitigation, adaptation and biodiversity conservation in the energy sector should be an imperative goal for international policy. Whilst research into synergies between mitigation and adaptation is established, there has been very little that has examined the impacts on biodiversity as well. Further work is required to identify and provide evidence of the best ways of optimising mitigation, adaptation and biodiversity in the energy sector.

  12. Systems in peril: Climate change, agriculture and biodiversity in Australia

    International Nuclear Information System (INIS)

    Cocklin, Chris; Dibden, Jacqui

    2009-01-01

    This paper reflects on the interplay amongst three closely linked systems - climate, agriculture and biodiversity - in the Australian context. The advance of a European style of agriculture has imperilled Australian biodiversity. The loss and degradation of biodiversity has, in turn, had negative consequences for agriculture. Climate change is imposing new pressures on both agriculture and biodiversity. From a policy and management perspective, though, it is possible to envisage mitigation and adaptation responses that would alleviate pressures on all three systems (climate, agriculture, biodiversity). In this way, the paper seeks to make explicit the important connections between science and policy. The paper outlines the distinctive features of both biodiversity and agriculture in the Australian context. The discussion then addresses the impacts of agriculture on biodiversity, followed by an overview of how climate change is impacting on both of these systems. The final section of the paper offers some commentary on current policy and management strategies that are targeted at mitigating the loss of biodiversity and which may also have benefits in terms of climate change.

  13. Participation in Biodiversity Conservation: Motivations and Barriers of Australian Landholders

    Science.gov (United States)

    Moon, Katie; Cocklin, Chris

    2011-01-01

    Biodiversity conservation programs that appeal to landholders' motivations and minimise their barriers to participation may result in both increased uptake rates and improved ecological outcomes. To understand their motivations and barriers to conserve biodiversity, qualitative interviews were conducted with 45 landholders who had participated in…

  14. Looking beyond superficial knowledge gaps: understanding public representations of biodiversity

    NARCIS (Netherlands)

    Buijs, A.E.; Fischer, A.; Rink, D.; Young, J.C.

    2008-01-01

    Lack of public support for, and protest against, biodiversity management measures have often been explained by the apparently inadequate knowledge of biodiversity in the general public. In stark contrast to this assumption of public ignorance, our results from focus group discussions in The

  15. Biodiversity research sets sail: showcasing the diversity of marine life.

    Science.gov (United States)

    Webb, Thomas J

    2009-04-23

    The World Congress on Marine Biodiversity was held in the City of Arts and Sciences, Valencia, from 10 to 15 November 2008, showcasing research on all aspects of marine biodiversity from basic taxonomic exploration to innovative conservation strategies and methods to integrate research into environmental policy.

  16. Taxonomy, biodiversity and management of knowledge in Asia

    NARCIS (Netherlands)

    Ng, F.S.P.

    2002-01-01

    At the Biodiversity 2000 Kuching Conference in November 2000, I put forward the thesis that biodiversity is a knowledge resource, and that Asian societies have an attitude problem with respect to the management of knowledge (Ng, 2001). I offered the following evidence: In AD 304, Chi Han published

  17. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  18. Threatened biodiversity, the nema eia regulations and cultivation of ...

    African Journals Online (AJOL)

    Until such listing, unresolved legal questions that inhibited the effective consideration of biodiversity in agricultural decision-making prior to the promulgation of the NEMA EIA regulations are likely to persist—to the detriment of a globally imperilled biodiversity. This contribution sets out to identify some of the key issues that ...

  19. Review on the Application of Ecosystem Models in Biodiversity ...

    African Journals Online (AJOL)

    This paper is an exposition with the sole aim of highlighting the relevance of ecosystem models in the analyses of biodiversity. The structure of ecosystem models enables researchers to design and consequently formulate monitoring programs that will be useful to the conservation of biodiversity. Ecosystem theoretical ...

  20. The place of environmental education and awareness in biodiversity ...

    African Journals Online (AJOL)

    This paper examines the place of environmental education and awareness in biodiversity conservation in Nigeria. Depletion of biodiversity in Nigeria is a major environmental problem and a serious threat to livelihood and the quality of life. It is very important that future development programmes aggressively develop ...

  1. The Custodians of Biodiversity : Sharing Access to and Benefits of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Custodians of Biodiversity : Sharing Access to and Benefits of Genetic Resources. Couverture du livre The Custodians of Biodiversity : Sharing Access to and Benefits of Genetic Resources. Directeur(s) : Manuel Ruiz, Ronnie Vernooy. Maison(s) d'édition : Earthscan, CRDI. 15 décembre 2011. ISBN : 9781849714518.

  2. Modes of speciation and the neutral theory of biodiversity

    NARCIS (Netherlands)

    Etienne, R.S.; Apol, M.E.F.; Olff, H.

    2007-01-01

    Hubbell's neutral theory of biodiversity has generated much debate over the need for niches to explain biodiversity patterns. Discussion of the theory has focused on its neutrality assumption, i.e. the functional equivalence of species in competition and dispersal. Almost no attention has been paid

  3. Modes of speciation and the neutral theory of biodiversity

    NARCIS (Netherlands)

    Etienne, Rampal S.; Apol, M. Emile F.; Olff, Han; Weissing, Franz J.

    Hubbell's neutral theory of biodiversity has generated much debate over the need for niches to explain biodiversity patterns. Discussion of the theory has focused on its neutrality assumption, i.e. the functional equivalence of species in competition and dispersal. Almost no attention has been paid

  4. A Biodiversity Indicators Dashboard: Addressing Challenges to Monitoring Progress towards the Aichi Biodiversity Targets Using Disaggregated Global Data

    Science.gov (United States)

    Han, Xuemei; Smyth, Regan L.; Young, Bruce E.; Brooks, Thomas M.; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H. M.; Larsen, Frank W.; Hamilton, Healy; Hansen, Matthew C.; Turner, Will R.

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's “Aichi Targets”. These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity “dashboard” – a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the

  5. A biodiversity indicators dashboard: addressing challenges to monitoring progress towards the Aichi biodiversity targets using disaggregated global data.

    Science.gov (United States)

    Han, Xuemei; Smyth, Regan L; Young, Bruce E; Brooks, Thomas M; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H M; Larsen, Frank W; Hamilton, Healy; Hansen, Matthew C; Turner, Will R

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity "dashboard"--a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the protection of

  6. A biodiversity indicators dashboard: addressing challenges to monitoring progress towards the Aichi biodiversity targets using disaggregated global data.

    Directory of Open Access Journals (Sweden)

    Xuemei Han

    Full Text Available Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity "dashboard"--a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate, state of species (Red List Index, conservation response (protection of key biodiversity areas, and benefits to human populations (freshwater provision. Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the

  7. Curbing UK impacts on global biodiversity: an agenda for action

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steve [Scott Wilson Ltd (United Kingdom); Craeynest, Lies [WWF (United Kingdom); Bass, Steve

    2008-05-15

    Stemming the tide of biodiversity loss is a global issue with national implications. The UK has set up initiatives to reduce its impacts on biodiversity worldwide — but as a government review found in 2006, these have yet to add up to a comprehensive strategy. How can the gaps be filled? New research suggests that action on a number of fronts is key. Many UK policies and practices clearly affect biodiversity even though they do not directly address it. For instance, UK imports such as coffee, cocoa and sugar are linked to biodiversity loss. By integrating relevant mainstream concerns such as trade and exploitation of natural resources into an overall strategy, the UK government could better demonstrate its commitment to reducing biodiversity loss significantly by the target date of 2010.

  8. Biodiversity analysis of vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    Ostler, W. K.; Hansen, D. J.

    2000-01-01

    The Nevada Test Site (NTS), located in south-central Nevada, encompasses approximately 3,500 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996 to 1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. The data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Biodiversity maps (species richness vs. species abundance) have been produced. Differences in biodiversity among ecoregions and vegetation alliances are presented. Spatial distribution maps of species' presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors, such as elevation, soil, and precipitation, on biodiversity are assessed

  9. Positive biodiversity-productivity relationship predominant in global forests.

    Science.gov (United States)

    Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B

    2016-10-14

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. Copyright © 2016, American Association for the Advancement of Science.

  10. “Love for sale”: biodiversity banking and the struggle to commodify nature in Sabah, Malaysia

    OpenAIRE

    Brock, Andrea

    2015-01-01

    In Malaysia, second largest palm oil producer worldwide, logging companies, palm oil corporations, and even responsible citizens can now compensate their biodiversity impacts by purchasing Biodiversity Conservation Certificates in an emerging new biodiversity market: the Malua BioBank. Biodiversity markets are part of a wider trend of marketisation and neoliberalisation of biodiversity governance; introduced and promoted as (technical) win–win solutions to counter biodiversity loss and enable...

  11. Marine biodiversity of Aotearoa New Zealand.

    Science.gov (United States)

    Gordon, Dennis P; Beaumont, Jennifer; MacDiarmid, Alison; Robertson, Donald A; Ahyong, Shane T

    2010-08-02

    The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km(2), is one of the largest in the world. It spans 30 degrees of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New Zealand's entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied, total marine

  12. Biodiversity scenarios neglect future land-use changes.

    Science.gov (United States)

    Titeux, Nicolas; Henle, Klaus; Mihoub, Jean-Baptiste; Regos, Adrián; Geijzendorffer, Ilse R; Cramer, Wolfgang; Verburg, Peter H; Brotons, Lluís

    2016-07-01

    Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge. © 2016 John Wiley & Sons Ltd.

  13. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    Science.gov (United States)

    Naeem, S.; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F. B.; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. PMID:27928041

  14. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity.

    Science.gov (United States)

    Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-12-14

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. © 2016 The Authors.

  15. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related services

    Science.gov (United States)

    Eckehard G. Brockerhoff; Hervé Jactel; John A. Parrotta; Silvio F.B. Ferraz

    2013-01-01

    Forests provide important habitat for much of the world’s biodiversity, and the continuing global deforestation is one of our greatest environmental concerns. Planted forests represent an increasing proportion of the global forest area and partly compensate for the loss of natural forest in terms of forest area, habitat for biodiversity and ecological function. At...

  16. Biodiversity hotspots house most undiscovered plant species.

    Science.gov (United States)

    Joppa, Lucas N; Roberts, David L; Myers, Norman; Pimm, Stuart L

    2011-08-09

    For most organisms, the number of described species considerably underestimates how many exist. This is itself a problem and causes secondary complications given present high rates of species extinction. Known numbers of flowering plants form the basis of biodiversity "hotspots"--places where high levels of endemism and habitat loss coincide to produce high extinction rates. How different would conservation priorities be if the catalog were complete? Approximately 15% more species of flowering plant are likely still undiscovered. They are almost certainly rare, and depending on where they live, suffer high risks of extinction from habitat loss and global climate disruption. By using a model that incorporates taxonomic effort over time, regions predicted to contain large numbers of undiscovered species are already conservation priorities. Our results leave global conservation priorities more or less intact, but suggest considerably higher levels of species imperilment than previously acknowledged.

  17. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  18. Do recreational activities affect coastal biodiversity?

    Science.gov (United States)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors (;diving; and ;fishing;). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  19. Coccolithophores: Functional Biodiversity, Enzymes and Bioprospecting

    Directory of Open Access Journals (Sweden)

    Michael J. Allen

    2011-04-01

    Full Text Available Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an ‘in house‘ enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.

  20. Is It Time for Synthetic Biodiversity Conservation?

    Science.gov (United States)

    Piaggio, Antoinette J; Segelbacher, Gernot; Seddon, Philip J; Alphey, Luke; Bennett, Elizabeth L; Carlson, Robert H; Friedman, Robert M; Kanavy, Dona; Phelan, Ryan; Redford, Kent H; Rosales, Marina; Slobodian, Lydia; Wheeler, Keith

    2017-02-01

    Evidence indicates that, despite some critical successes, current conservation approaches are not slowing the overall rate of biodiversity loss. The field of synthetic biology, which is capable of altering natural genomes with extremely precise editing, might offer the potential to resolve some intractable conservation problems (e.g., invasive species or pathogens). However, it is our opinion that there has been insufficient engagement by the conservation community with practitioners of synthetic biology. We contend that rapid, large-scale engagement of these two communities is urgently needed to avoid unintended and deleterious ecological consequences. To this point we describe case studies where synthetic biology is currently being applied to conservation, and we highlight the benefits to conservation biologists from engaging with this emerging technology. Published by Elsevier Ltd.

  1. Molecular evolution and the latitudinal biodiversity gradient.

    Science.gov (United States)

    Dowle, E J; Morgan-Richards, M; Trewick, S A

    2013-06-01

    Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.

  2. Economic barriers and incentives for biodiversity restoration

    International Nuclear Information System (INIS)

    Garcia Frapolli, Eduardo; Lindigcisneros, Roberto

    2011-01-01

    Costs related with restoration efforts, as well as the economic incentives, are fundamental issues that have not been fully considered from a formal standpoint. Through the analysis of restoration trials in collaboration with an indigenous community in western Mexico, we analyzed economic issues related with the restoration trials themselves, and with the economic context that gives incentives for ecological restoration. We reach to the conclusion that the cost-benefit relationship of the restoration process by itself can be straightforward calculated in some cases, calculating economic benefits accrued from the diversity restored to ecosystem is more difficult. In terms of the incentives for biodiversity restoration, we concluded that in many cases, economic variables out of the control of those involved in restoration are determinant.

  3. Seamounts - characteristics, formation, mineral deposits and biodiversity

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Mehta, C.M.; Das, P.; Kalangutkar, N.G.

    t a , V o l . 1 0 , N º 3 , S e p t e m b e r 2 0 1 2 , 2 9 5 - 3 0 8 D O I : 1 0 . 1 3 4 4 / 1 0 5 . 0 0 0 0 0 1 7 5 8 A v a i l a b l e o n l i n e a t w w w. g e o l o g i c a - a c t a . c o m Seamounts – characteristics, formation... and phenomena such as seismicity, hydrothermal deposits, biodiversity and possibly atmospheric oxygen (Iyer, 2009). Review works pertaining to seamounts independently concern the geological, biological or physical 1 2 1 1 S . D . I Y E R e t a l . G e o...

  4. Ecological stability and biodiversity of disturbed land

    International Nuclear Information System (INIS)

    Tewary, B.K.; Singh, R.S.; Dhar, B.B.

    1996-01-01

    Ecosystems destruction by mining is an inevitable part of industrialisation. Disposal of debris and low grade ore and minerals reduces the vegetation cover and population of wild animals. Further it causes an unprecedented increase in the rate of accumulation of waste dumps, depleted topsoil, increase in sedimentation load and ultimately prevention of natural succession of native vegetation of the area. Revegetation of overburden dumps through systematic means increase slope stability, enhances the infiltration rate of rain water, increase in soil fertility and natural succession of the native plant species which maintain the long term stability of the ecosystems. Rapid growing population followed with extensive land clearing by the mineral and other industries have caused rapid increase in the extinction of biological diversity. In this paper an attempt is made to portray the natural succession process to preserve the biodiversity of the area. A case study for a coal mining area in India is given. 9 refs., 4 tabs

  5. The circumpolar biodiversity monitoring program - Terrestrial plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    , northern communities, and scientists to detect, understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity. This presentation will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based...... monitoring with survey-based monitoring and remotely sensed data. The CBMP Terrestrial Plan intends to build upon and expand existing monitoring networks, engaging participants across a range of capacity and interests. The presentation will summarize the recommended focal soil ecosystem components...... and attributes to monitor in the plan related to soil invertebrates. Focal Ecosystem Components (FECs) of the soil decomposer system include the soil living invertebrates such as microarthropods, enchytraeids and earthworms and the functions performed by microorganisms such as nitrification, decomposition...

  6. Evolution and Biodiversity: the evolutionary basis of biodiversity and its potential for adaptation to global change

    OpenAIRE

    Mergeay, Joachim; Santamaria, Luis

    2012-01-01

    Biodiversity has a key role in maintaining healthy ecosystems and thereby sustaining ecosystem services to the ever-growing human population. To get an idea of the range of ecosystem services that we use daily, think of how much energy and time it would cost to make Mars (or some other Earth-like planet) hospitable for human life, for example, in terms of atmosphere regulation, freshwater production, soil formation, nutrient cycles, regulation of climate, etc. On our own planet, that process ...

  7. Plant biodiversity in French Mediterranean vineyards

    Science.gov (United States)

    Cohen, Marianne; Bilodeau, Clelia; Alexandre, Frédéric; Godron, Michel; Gresillon, Etienne

    2017-04-01

    In a context of agricultural intensification and increasing urbanization, the biodiversity of farmed plots is a key to improve the sustainability of farmed landscapes. The medium life-duration of the vineyards as well as their location in Mediterranean region are favorable to plant biodiversity. We studied 35 vineyards and if present, their edges, located in three French Mediterranean terroirs: Bandol, Pic Saint Loup and Terrasses du Larzac. We collected botanical information (floral richness et diversity, biological traits), and analyzed their relationships with different factors: social (management, heritage or professional concern), environmental (slope, exposition, geology), spatial (edges, surrounding landscape in a 500 meters radius, distance to the nearest large city). Vineyards are generally heavily disturbed by intensive practices like tilling and application of herbicides, and for this reason their floral diversity is low. This is particularly true in Bandol terroir, in accordance with the standards of the Bandol PDO wine sector. Farmed landscapes and proximity to a large town impact on functional groups, generalist species being overrepresented. If vineyards are surrounded with natural edges, it doubles the floral richness at the plot and edges scale. Species present in vineyards edges are perennial herbaceous species with Euro- Asian and Mediterranean distribution ranges characteristic of prairie and wasteland stages, increasing the functional diversity of vineyards (generalist species). Environmental factors have a lower influence: vineyards are generally located on flat lands. These results suggest that some practices should be encouraged to avoid the biological degradation of vineyards: conservation of tree-lined edges and their extensive management, reduction of chemical weeding, grass-growing using non-cosmopolitan species. These recommendations should also contribute to soil conservation.

  8. New Mediterranean Biodiversity Records (April 2015

    Directory of Open Access Journals (Sweden)

    Α. ΖΕΝΕΤΟΣ

    2015-01-01

    Full Text Available The Collective Article ‘New Mediterranean Biodiversity Records’ of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of native and alien species respectively. The new records of native fish species include: the slender sunfish Ranzania laevis and the scalloped ribbonfish Zu cristatus in Calabria; the Azores rockling Gaidropsarus granti in Calabria and Sicily; the agujon needlefish Tylosurus acus imperialis in the Northern Aegean; and the amphibious behaviour of Gouania willdenowi in Southern Turkey. As regards molluscs, the interesting findings include Ischnochiton usticensis in Calabria and Thordisa filix in the bay of Piran (Slovenia. The stomatopod Parasquilla ferussaci was collected from Lesvos island (Greece; the isopod Anilocra frontalis was observed parasitizing the alien Pteragogus trispilus in the Rhodes area. The asteroid Tethyaster subinermis and the butterfly ray Gymnura altavela were reported from several localities in the Greek Ionian and Aegean Seas. The new records of alien species include: the antenna codlet Bregmaceros atlanticus in Saronikos Gulf; three  new fish records and two decapods from Egypt; the establishment of the two spot cardinal fish Cheilodipterus novemstriatus and the first record of the Indo-Pacific marble shrimp Saron marmoratus in semi-dark caves along the Lebanese coastline; the finding of Lagocephalus sceleratus, Sargocentron rubrum, Fistularia commersonii and Stephanolepis diaspros around Lipsi island (Aegean Sea, Greece; the decapod Penaeus hathor in Aegean waters; the decapod Penaeus aztecus and the nudibranch Melibe viridis in the Dodecanese islands; the finding of Pinctada imbricata radiata in the Mar Grande of Taranto (Ionian Sea, Italy and the Maliakos Gulf (Greece.

  9. New Mediterranean Biodiversity Records (October, 2014

    Directory of Open Access Journals (Sweden)

    S. KATSANEVAKIS

    2014-11-01

    Full Text Available The Collective Article ‘New Mediterranean Biodiversity Records’ of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of alien and native species respectively. The new records of alien species include: the red alga Asparagopsis taxiformis (Crete and Lakonicos Gulf (Greece; the red alga Grateloupia turuturu (along the Israeli Mediterranean shore; the mantis shrimp Clorida albolitura (Gulf of Antalya, Turkey; the mud crab Dyspanopeus sayi (Mar Piccolo of Taranto, Ionian Sea; the blue crab Callinectes sapidus (Chios Island, Greece; the isopod Paracerceis sculpta (northern Aegean Sea, Greece; the sea urchin Diadema setosum (Gökova Bay, Turkey; the molluscs Smaragdia souverbiana, Murex forskoehlii, Fusinus verrucosus, Circenita callipyga, and Aplysia dactylomela (Syria; the cephalaspidean mollusc Haminoea cyanomarginata (Baia di Puolo, Massa Lubrense, Campania, southern Italy; the topmouth gudgeon Pseudorasbora parva (Civitavecchia, Tyrrhenian Sea; the fangtooth moray Enchelycore anatine (Plemmirio marine reserve, Sicily; the silver-cheeked toadfish Lagocephalus sceleratus (Saros Bay, Turkey; and Ibiza channel, Spain; the Indo-Pacific ascidian Herdmania momusin Kastelorizo Island (Greece; and the foraminiferal Clavulina multicam erata (Saronikos Gulf, Greece. The record of L. sceleratus in Spain consists the deepest (350-400m depth record of the species in the Mediterranean Sea. The new records of native species include: first record of the ctenophore Cestum veneris in Turkish marine waters; the presence of Holothuria tubulosa and Holothuria polii in the Bay of Igoumenitsa (Greece; the first recorded sighting of the bull ray Pteromylaeus bovinus in Maltese waters; and a new record of the fish Lobotes surinamensis from Maliakos Gulf.

  10. Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World's Biodiversity Priorities.

    Science.gov (United States)

    Aukema, Juliann E; Pricope, Narcisa G; Husak, Gregory J; Lopez-Carr, David

    2017-01-01

    Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1) Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2) Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change-largely wetting-in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka), posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being.

  11. Key Biodiversity Areas identification in the Upper Guinea forest biodiversity hotspot

    Directory of Open Access Journals (Sweden)

    O.M.L. Kouame

    2012-08-01

    Full Text Available Priority-setting approaches and tools are commons ways to support the rapid extinction of species and their habitats and the effective allocation of resources for their conservation. The Key Biodiversity Area (KBA approach is a method for the identification of fine-scale priority areas for conservation. This process led bottom-up has been used in the Upper Guinea Forest Ecosystem of West Africa where human-induced changes have increased the extinction risk of several endemic and threatened species. The irreplaceability and vulnerability criteria commonly used in conservation planning have been used to identify key biodiversity areas in Ghana, Cote d’Ivoire, Liberia, Guinea and Sierra Leone. Point locality data were compiled from scientific reports, papers published in scientific journals and museum records. The delineation was conducted following a series of decision rules. In most cases existing IBA polygons and protected areas boundaries were used. For the new sites, temporary boundaries have been drawn and will be confirmed with land-use data. Preliminary KBA data were reviewed by specialists during formal workshops. One hundred and fifty four KBA have been identified in the five countries with 202 globally threatened species. Currently 63% of the KBA are protected. Two AZE sites still exist in the region. This assessment is a first step and is driven from the best available data at the time. There is a need to refine it with recent biodiversity surveys to assist decision-makers in achieving their conservation management goals.

  12. Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World's Biodiversity Priorities.

    Directory of Open Access Journals (Sweden)

    Juliann E Aukema

    Full Text Available Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1 Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2 Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change-largely wetting-in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka, posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being.

  13. Reductions in global biodiversity loss predicted from conservation spending

    Science.gov (United States)

    Waldron, Anthony; Miller, Daniel C.; Redding, Dave; Mooers, Arne; Kuhn, Tyler S.; Nibbelink, Nate; Roberts, J. Timmons; Tobias, Joseph A.; Gittleman, John L.

    2017-11-01

    Halting global biodiversity loss is central to the Convention on Biological Diversity and United Nations Sustainable Development Goals, but success to date has been very limited. A critical determinant of success in achieving these goals is the financing that is committed to maintaining biodiversity; however, financing decisions are hindered by considerable uncertainty over the likely impact of any conservation investment. For greater effectiveness, we need an evidence-based model that shows how conservation spending quantitatively reduces the rate of biodiversity loss. Here we demonstrate such a model, and empirically quantify how conservation investment between 1996 and 2008 reduced biodiversity loss in 109 countries (signatories to the Convention on Biological Diversity and Sustainable Development Goals), by a median average of 29% per country. We also show that biodiversity changes in signatory countries can be predicted with high accuracy, using a dual model that balances the effects of conservation investment against those of economic, agricultural and population growth (human development pressures). Decision-makers can use this model to forecast the improvement that any proposed biodiversity budget would achieve under various scenarios of human development pressure, and then compare these forecasts to any chosen policy target. We find that the impact of spending decreases as human development pressures grow, which implies that funding may need to increase over time. The model offers a flexible tool for balancing the Sustainable Development Goals of human development and maintaining biodiversity, by predicting the dynamic changes in conservation finance that will be needed as human development proceeds.

  14. Biodiversity at risk under future cropland expansion and intensification.

    Science.gov (United States)

    Kehoe, Laura; Romero-Muñoz, Alfredo; Polaina, Ester; Estes, Lyndon; Kreft, Holger; Kuemmerle, Tobias

    2017-08-01

    Agriculture is the leading driver of biodiversity loss. However, its future impact on biodiversity remains unclear, especially because agricultural intensification is often neglected, and high path-dependency is assumed when forecasting agricultural development-although the past suggests that shock events leading to considerable agricultural change occur frequently. Here, we investigate the possible impacts on biodiversity of pathways of expansion and intensification. Our pathways are not built to reach equivalent production targets, and therefore they should not be directly compared; they instead highlight areas at risk of high biodiversity loss across the entire option space of possible agricultural change. Based on an extensive database of biodiversity responses to agriculture, we find 30% of species richness and 31% of species abundances potentially lost because of agricultural expansion across the Amazon and Afrotropics. Only 21% of high-risk expansion areas in the Afrotropics overlap with protected areas (compared with 43% of the Neotropics). Areas at risk of biodiversity loss from intensification are found in India, Eastern Europe and the Afromontane region (7% species richness, 13% abundance loss). Many high-risk regions are not adequately covered by conservation prioritization schemes, and have low national conservation spending and high agricultural growth. Considering rising agricultural demand, we highlight areas where timely land-use planning may proactively mitigate biodiversity loss.

  15. Biodiversity enhances reef fish biomass and resistance to climate change.

    Science.gov (United States)

    Duffy, J Emmett; Lefcheck, Jonathan S; Stuart-Smith, Rick D; Navarrete, Sergio A; Edgar, Graham J

    2016-05-31

    Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey's global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean.

  16. Reductions in global biodiversity loss predicted from conservation spending.

    Science.gov (United States)

    Waldron, Anthony; Miller, Daniel C; Redding, Dave; Mooers, Arne; Kuhn, Tyler S; Nibbelink, Nate; Roberts, J Timmons; Tobias, Joseph A; Gittleman, John L

    2017-11-16

    Halting global biodiversity loss is central to the Convention on Biological Diversity and United Nations Sustainable Development Goals, but success to date has been very limited. A critical determinant of success in achieving these goals is the financing that is committed to maintaining biodiversity; however, financing decisions are hindered by considerable uncertainty over the likely impact of any conservation investment. For greater effectiveness, we need an evidence-based model that shows how conservation spending quantitatively reduces the rate of biodiversity loss. Here we demonstrate such a model, and empirically quantify how conservation investment reduced biodiversity loss in 109 countries (signatories to the Convention on Biological Diversity and Sustainable Development Goals), by a median average of 29% per country between 1996 and 2008. We also show that biodiversity changes in signatory countries can be predicted with high accuracy, using a dual model that balances the effects of conservation investment against those of economic, agricultural and population growth (human development pressures). Decision-makers can use this model to forecast the improvement that any proposed biodiversity budget would achieve under various scenarios of human development pressure, and then compare these forecasts to any chosen policy target. We find that the impact of spending decreases as human development pressures grow, which implies that funding may need to increase over time. The model offers a flexible tool for balancing the Sustainable Development Goals of human development and maintaining biodiversity, by predicting the dynamic changes in conservation finance that will be needed as human development proceeds.

  17. Climate constrains the evolutionary history and biodiversity of crocodylians.

    Science.gov (United States)

    Mannion, Philip D; Benson, Roger B J; Carrano, Matthew T; Tennant, Jonathan P; Judd, Jack; Butler, Richard J

    2015-09-24

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A 'modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions.

  18. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    Science.gov (United States)

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  19. Large conservation gains possible for global biodiversity facets.

    Science.gov (United States)

    Pollock, Laura J; Thuiller, Wilfried; Jetz, Walter

    2017-06-01

    Different facets of biodiversity other than species numbers are increasingly appreciated as critical for maintaining the function of ecosystems and their services to humans. While new international policy and assessment processes such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) recognize the importance of an increasingly global, quantitative and comprehensive approach to biodiversity protection, most insights are still focused on a single facet of biodiversity-species. Here we broaden the focus and provide an evaluation of how much of the world's species, functional and phylogenetic diversity of birds and mammals is currently protected and the scope for improvement. We show that the large existing gaps in the coverage for each facet of diversity could be remedied by a slight expansion of protected areas: an additional 5% of the land has the potential to more than triple the protected range of species or phylogenetic or functional units. Further, the same areas are often priorities for multiple diversity facets and for both taxa. However, we find that the choice of conservation strategy has a fundamental effect on outcomes. It is more difficult (that is, requires more land) to maximize basic representation of the global biodiversity pool than to maximize local diversity. Overall, species and phylogenetic priorities are more similar to each other than they are to functional priorities, and priorities for the different bird biodiversity facets are more similar than those of mammals. Our work shows that large gains in biodiversity protection are possible, while also highlighting the need to explicitly link desired conservation objectives and biodiversity metrics. We provide a framework and quantitative tools to advance these goals for multi-faceted biodiversity conservation.

  20. Conserving critical sites for biodiversity provides disproportionate benefits to people

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Turner, Will R.; Brooks, Thomas M.

    2012-01-01

    Protecting natural habitats in priority areas is essential to halt the loss of biodiversity. Yet whether these benefits for biodiversity also yield benefits for human well-being remains controversial. Here we assess the potential human well-being benefits of safeguarding a global network of sites......) benefits to maintenance of human cultural diversity - significantly exceeding those anticipated from randomly selected sites within the same countries and ecoregions. Results suggest that safeguarding sites important for biodiversity conservation provides substantial benefits to human well-being....

  1. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  2. Reconciling biodiversity conservation and marine capture fisheries production

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    Pathways for moving towards the goals of biodiversity conservation and food security in terrestrial systems include the application of trait-based ecology to develop highly productive agroecosystems with less negative effects on biodiversity. Although marine ecosystems have been impacted by human...... activity over several centuries, the changes have been unintentional and undirected; we have not learned how to enhance food production from the sea and are reliant, as hunter-gatherers, on natural production. The goals of maximising fisheries production and maintaining biodiversity may be difficult...

  3. Possible Origin of Stagnation and Variability of Earth's Biodiversity

    Science.gov (United States)

    Stollmeier, Frank; Geisel, Theo; Nagler, Jan

    2014-06-01

    The magnitude and variability of Earth's biodiversity have puzzled scientists ever since paleontologic fossil databases became available. We identify and study a model of interdependent species where both endogenous and exogenous impacts determine the nonstationary extinction dynamics. The framework provides an explanation for the qualitative difference of marine and continental biodiversity growth. In particular, the stagnation of marine biodiversity may result from a global transition from an imbalanced to a balanced state of the species dependency network. The predictions of our framework are in agreement with paleontologic databases.

  4. New Mediterranean Biodiversity Records (October 2015

    Directory of Open Access Journals (Sweden)

    F. CROCETTA

    2015-11-01

    Full Text Available The Collective Article “New Mediterranean Biodiversity Records” of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided per countries, listed according to a Mediterranean west-east geographic position. New biodiversity data are reported for 7 different countries, although one species hereby reported from Malta is overall new for the entire Mediterranean basin, and is presumably present also in Israel and Lebanon (see below in Malta. Italy: the rare native fish Gobius kolombatovici is first reported from the Ionian Sea, whilst the alien jellyfish Rhopilema nomadica and the alien fish Oplegnathus fasciatus are first reported from the entire country. The presence of O. fasciatus from Trieste is concomitantly the first for the entire Adriatic Sea. Finally, the alien bivalve Arcuatula senhousia is hereby first reported from Campania (Tyrrhenian Sea. Tunisia: a bloom of the alien crab Portunus segnis is first reported from the Gulf of Gabes, from where it was considered as casual. Malta: the alien flatworm Maritigrella fuscopunctata is first recorded from the Mediterranean Sea on the basis of 25 specimens. At the same time, web researches held possible unpublished records from Israel and Lebanon. The alien crab P. segnis, already mentioned above, is first formally reported from Malta based on specimens collected in 1972. Concomitantly, the presence of Callinectes sapidus in Maltese waters is excluded since based on misidentifications. Greece: the Atlantic northern brown shrimp Penaeus atzecus, previously known from the Ionian Sea from sporadic records only, is now well established in Greek and international Ionian waters. The alien sea urchin Diadema setosum is reported from the second time from Greece, and its first record date from the country is backdated to 2010 in Rhodes Island. The alien lionfish Pterois miles is first reported from Greece and

  5. Plant biodiversity patterns on Helan Mountain, China

    Science.gov (United States)

    Jiang, Yuan; Kang, Muyi; Zhu, Yuan; Xu, Guangcai

    2007-09-01

    A case study was conducted to mountainous ecosystems in the east side of Helan Mountain, located in the transitional zone between steppe and desert regions of China, aiming to reveal the influences of four environmental factors on features of plant biodiversity—the spatial pattern of vegetation types, and the variation of α- and β-diversities in vegetation and flora. Field surveys on vegetation and flora and on environmental factors were conducted, and those field data were analyzed through CCA (Canonical Correspondence Analysis), and through Shannon-Weiner index for α-diversity and Sørensen index for β-diversity. The preliminary results are: (1) Ranked in terms of their impacts on spatial patterns of plant biodiversity, the four selected environmental factors would be: elevation > location > slope > exposure. (2) The variation of Shannon-Weiner index along the altitudinal gradient is similar to that of species amount within altitudinal belts spanning 200 m each, which suggests a unimodal relationship between the species richness and the environmental condition with regards to altitudinal factors. Both the Shannon-Weiner index and the species richness within each altitudinal belt reach their maximum at elevation range from about 1700 to 2000 m a.s.l. (3) The altitudinal extent with the highest Shannon-Weiner index is identical to the range, where both the deciduous broad-leaved forest, and the temperate evergreen coniferous and deciduous broad-leaved mixed forest distribute. The altitudinal range from 1700 to 2200 m a.s.l. is the sector with both high level of species richness and diversified vegetation types. (4) The variation of β-diversity along the altitude is consistent with the vegetation vertical zones. According to the Sørensen index between each pair of altitudinal belts, the transition of vegetation spectrum from one zone to another, as from the base horizontal zone, the desert steppe, to the first vertical zone, the mountain open forest and

  6. Human impact gradient on mammalian biodiversity

    Directory of Open Access Journals (Sweden)

    Mariana Munguía

    2016-04-01

    Full Text Available Drastic changes have been caused by human influence in natural landscapes, which may exert an intensive effect on species loss. However, species loss from human pressure is not random but depends on a series of environmentally associated factors. Linking species traits to environmental attributes may allow us to detect the ecological impacts of habitat so that meaningful habitat degradation gradients can be identified. The relationships between environmental factors and species traits provide the basis for identifying those biological traits that make species more sensitive to disturbance. These relationships are also helpful to detect the geographic distribution of latent risk to reveal areas where biodiversity is threatened. Here, we identify a “Human Impact Gradient for Biodiversity (HIGB” based on a three-table ordination method (RLQ analysis and fourth-corner analysis to identify key species traits that are associated with environmental gradient. Species distribution and environmental geographic data were gathered nationwide to analyze 68 localities, which represent 27% of Mexico’s surface, including 211 species of mammals. Nine environmental variables (including biophysical, geophysical and land-use impacts were analyzed by using the Geographic Information System. Three types of species’ traits were evaluated: locomotion, trophic habit and body size. We identified a human impact gradient, which was mainly determined by the percentage of the area that was covered by seedlings, the plant richness, the understory coverage percentage and the human settlement index. The most important species traits that are associated with non-human-impacted sites were carnivores, frugivores–herbivores and a body size that was greater than 17.8 kg; 25 species were selected by the decision criteria framework for species that were sensitive to degradation based on ecological function information. Conversely, granivores, fossorial and semifossorial

  7. Refuges, flower strips, biodiversity and agronomic interest.

    Science.gov (United States)

    Roy, Grégory; Wateau, Karine; Legrand, Mickaël; Oste, Sandrine

    2008-01-01

    Several arthropods are natural predators of pests, and they are able to reduce and control their population development. FREDON Nord Pas-de-Calais (Federation Regionate de Defense contre les Organismes Nuisibles = Regional Federation for Pest Control) has begun for a long time to form farmers to the recognition of beneficial arthropods and to show them their usefulness. These beneficial insects or arachnids are present everywhere, in orchards and even in fields which are areas relatively poor in biodiversity. Adults feed in the flower strips instead larvae and some adults feed on preys such as aphids or caterpillars. Most of the time, beneficial insects can regulate pest but sometimes, in agricultural area, they can't make it early enough and efficiently. Their action begin too late and there biodiversity and number are too low. It's possible to enhance their action by manipulating the ecological infrastructures, like sewing flower strips or installing refuges. Flower strips increase the density of natural enemies and make them be present earlier in the field in order to control pests. Refuges permit beneficial's to spend winter on the spot. So they're able to be active and to grow in number earlier. From 2004 to 2007, on the one hand, FREDON Nord Pas-de-Calais has developed a research program. Its purpose was to inventory practices and also tools and means available and to judge the advisability of using such or such beneficial refuge in orchards. On the second hand, it studied the impact in orchard of refuges on population of beneficial's and the difference there were between manufactured refuges and homemade refuges. Interesting prospects were obtained with some of them. Otherwise, since 2003, FREDON has studied flower strips influence on beneficial population and their impact on pest control. In cabbage fields, results of trials have shown that flower strips lead to a reduction of aphid number under acceptable economic level, up to 50 meters from flower strips

  8. Systematic temporal patterns in the relationship between housing development and forest bird biodiversity

    Science.gov (United States)

    Anna M. Pidgeon; Curtis H. Flather; Volker C. Radeloff; Christopher A. Lepczyk; Nicholas S. Keuler; Eric M. Wood; Susan I. Stewart; Roger B. Hammer

    2014-01-01

    As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale-dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated...

  9. Contribution to the study of the biodiversity of benthic invertebrates ...

    African Journals Online (AJOL)

    Contribution to the study of the biodiversity of benthic invertebrates and the biological quality of some rivers in the watershed boumerzoug (east of Algeria) ... benthic macro invertebrates, allows characterizing the biological quality of river water.

  10. Enhanced biodiversity and pollination in UK agroforestry systems.

    Science.gov (United States)

    Varah, Alexa; Jones, Hannah; Smith, Jo; Potts, Simon G

    2013-07-01

    Monoculture farming systems have had serious environmental impacts such as loss of biodiversity and pollinator decline. The authors explain how temperate agroforestry systems show potential in being able to deliver multiple environmental benefits. © 2013 Society of Chemical Industry.

  11. Bioenergy and biodiversity: Key lessons from the Pan American region

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinelli, Fernanda Silva [UFRRJ/Conservation International Brazil, Seropedica (Brazil); Mayer, Audrey L. [Michigan Technological Univ., Houghton, MI (United States); Medeiros, Rodrigo [Federal Rural Univ. of Rio de Janeiro, Rio de Janeiro (Brazil); Oliveira, Camila Ortolan F. [Univ. of Campinas, Campinas (Brazil); Sparovek, Gerd [Univ. of Sao Paulo, Piracicaba (Brazil); Walter, Arnaldo [Univ. of Campinas, Campinas (Brazil); Venier, Lisa A. [Canadian Forest Service, Sault Ste. Marie (Canada). Great Lakes Forestry Centre

    2015-06-24

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. Lastly, we propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  12. Marine Biodiversity, Climate Change, and Governance of the Oceans

    Directory of Open Access Journals (Sweden)

    Robin Kundis Craig

    2012-05-01

    Full Text Available Governance of marine biodiversity has long suffered from lack of adequate information about the ocean’s many species and ecosystems. Nevertheless, even as we are learning much more about the ocean’s biodiversity and the impacts to it from stressors such as overfishing, habitat destruction, and marine pollution, climate change is imposing new threats and exacerbating existing threats to marine species and ecosystems. Coastal nations could vastly improve their fragmented approaches to ocean governance in order to increase the protections for marine biodiversity in the climate change era. Specifically, three key governance improvements would include: (1 incorporation of marine spatial planning as a key organizing principle of marine governance; (2 working to increase the resilience of marine ecosystems be reducing or eliminating existing stressors on those ecosystems; and (3 anticipation of climate change’s future impacts on marine biodiversity through the use of anticipatory zoning and more precautionary regulation.

  13. Biodiversity losses and conservation responses in the Anthropocene.

    Science.gov (United States)

    Johnson, Christopher N; Balmford, Andrew; Brook, Barry W; Buettel, Jessie C; Galetti, Mauro; Guangchun, Lei; Wilmshurst, Janet M

    2017-04-21

    Biodiversity is essential to human well-being, but people have been reducing biodiversity throughout human history. Loss of species and degradation of ecosystems are likely to further accelerate in the coming years. Our understanding of this crisis is now clear, and world leaders have pledged to avert it. Nonetheless, global goals to reduce the rate of biodiversity loss have mostly not been achieved. However, many examples of conservation success show that losses can be halted and even reversed. Building on these lessons to turn the tide of biodiversity loss will require bold and innovative action to transform historical relationships between human populations and nature. Copyright © 2017, American Association for the Advancement of Science.

  14. Environmental sustainability model and biodiversity preservation in Central Rhodopes

    Directory of Open Access Journals (Sweden)

    Zlatka Grigorova

    2013-03-01

    In fact that model is composed of many components and considers a number of important aspects. Its application will contribute to the sustainable use of natural resources and preserved biodiversity for future generations.

  15. Investigating the challenges of biodiversity management of Sefidkuh ...

    African Journals Online (AJOL)

    Investigating the challenges of biodiversity management of Sefidkuh Khoramabad protected area ... Journal of Fundamental and Applied Sciences ... The basis of managing protected areas in Iran is based on protection, research, training and ...

  16. Brown World Invertebrates Contradict Green World Biodiversity Theory

    International Nuclear Information System (INIS)

    Patrick, L.B.; Kershner, M.W.; Fraser, L.H.

    2008-01-01

    Biodiversity-productivity theory predicts that ecosystems with increased productivity due to excessive limiting-nutrient loading will have decreased taxonomic diversity. In this 4-year study, we elevated productivity by adding NPK fertilizer to 20 m diameter plots in an old-field grassland to test the effects of anthropogenically mediated nutrient loading on plant and epigeal arthropod communities. While plants responded as predicted by the biodiversity-productivity theory, the epigeal arthropod community had highest species richness within the fertilized high-productivity treatments. We conclude that the contradictory response of the largely detrital-based epigeal community should alter conventional biodiversity-productivity theory and could affect terrestrial biodiversity conservation strategies.

  17. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses....... These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses...

  18. Phylogenies support out-of-equilibrium models of biodiversity.

    Science.gov (United States)

    Manceau, Marc; Lambert, Amaury; Morlon, Hélène

    2015-04-01

    There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium. © 2015 John Wiley & Sons Ltd/CNRS.

  19. Improving the key biodiversity areas approach for effective conservation planning

    CSIR Research Space (South Africa)

    Knight, AT

    2007-03-01

    Full Text Available The key biodiversity areas (KBA) approach aims to identify globally important areas for species conservation. Although a similar methodology has been used successfully to identify important Bird Areas, the authors have identified five limitations...

  20. Look both ways: mainstreaming biodiversity and poverty reduction

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Steve; Roe, Dilys; Smith, Jessica

    2010-10-15

    The world's failure to meet its 2010 target to significantly reduce the rate of biodiversity loss demonstrates that conservation efforts have so far been insufficient. They are too often undermined by seemingly more pressing economic and poverty goals — despite the frequent correlation of high biodiversity with high incidence of poverty. But it shouldn't be a competition. Biodiversity and poverty reduction are intrinsically linked and demand an integrated approach. The Convention on Biological Diversity has long emphasised the need for integrating, or 'mainstreaming', biodiversity into national and local development and poverty reduction strategies, most recently in its new Strategic Plan. Lessons learnt from wider experience of environmental mainstreaming can help parties to the Convention achieve this target in practice — they point to a six-step plan for the task.

  1. Ecological strategies shapes the insurance potential of biodiversity

    Directory of Open Access Journals (Sweden)

    Miguel eMatias

    2013-01-01

    Full Text Available Biodiversity is thought to provide insurance for ecosystem functioning under heterogeneous environments, however, such insurance potential is under serious threat following unprecedented loss of biodiversity. One of the key mechanism underlying ecological insurance is that niche differentiation allows asynchronous responses to fluctuating environments; although, the role of different ecological strategies (e.g. specialists vs generalists has yet to be formally evaluated. We combine here a simple model and experimental study to illustrate how different specialization-performance strategies shape the biodiversity-insurance relationship. We assembled microcosm of generalists and specialist bacteria over a gradient of salinity and found that, bacterial communities made up of generalists were more productive and more stable over time under environmental fluctuations. We argue that beyond species richness itself, it is essential to incorporate the distribution of ecological strategies across relevant environmental gradients as predictors of the insurance potential of biodiversity in natural ecosystems.

  2. Biodiversity and Biological Degradation of Soil -2A ...

    Indian Academy of Sciences (India)

    biodiversity, conservation .... excavation of ores containing iron sulfides leads to oxidative production of sulfates. ... oxide, a significant greenhouse gas, may also occur. In addition to the ... ganisms rely on organic matter for food. Thus, a rich ...

  3. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    Science.gov (United States)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  4. Food Sovereignty and Uncultivated Biodiversity in South Asia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2007-01-01

    Jan 1, 2007 ... Based on extensive field research in India and Bangladesh, with and ... the very poor, and the ongoing contribution of biodiversity to livelihoods. ... IDRC congratulates first cohort of Women in Climate Change Science Fellows.

  5. Baltic Sea biodiversity status vs. cumulative human pressures

    DEFF Research Database (Denmark)

    Andersen, Jesper H.; Halpern, Benjamin S.; Korpinen, Samuli

    2015-01-01

    Abstract Many studies have tried to explain spatial and temporal variations in biodiversity status of marine areas from a single-issue perspective, such as fishing pressure or coastal pollution, yet most continental seas experience a wide range of human pressures. Cumulative impact assessments have...... been developed to capture the consequences of multiple stressors for biodiversity, but the ability of these assessments to accurately predict biodiversity status has never been tested or ground-truthed. This relationship has similarly been assumed for the Baltic Sea, especially in areas with impaired...... status, but has also never been documented. Here we provide a first tentative indication that cumulative human impacts relate to ecosystem condition, i.e. biodiversity status, in the Baltic Sea. Thus, cumulative impact assessments offer a promising tool for informed marine spatial planning, designation...

  6. Marine Caves of the Mediterranean Sea: A Sponge Biodiversity Reservoir within a Biodiversity Hotspot

    Science.gov (United States)

    Gerovasileiou, Vasilis; Voultsiadou, Eleni

    2012-01-01

    Marine caves are widely acknowledged for their unique biodiversity and constitute a typical feature of the Mediterranean coastline. Herein an attempt was made to evaluate the ecological significance of this particular ecosystem in the Mediterranean Sea, which is considered a biodiversity hotspot. This was accomplished by using Porifera, which dominate the rocky sublittoral substrata, as a reference group in a meta-analytical approach, combining primary research data from the Aegean Sea (eastern Mediterranean) with data derived from the literature. In total 311 species from all poriferan classes were recorded, representing 45.7% of the Mediterranean Porifera. Demospongiae and Homoscleromorpha are highly represented in marine caves at the family (88%), generic (70%), and species level (47.5%), the latter being the most favored group along with Dictyoceratida and Lithistida. Several rare and cave-exclusive species were reported from only one or few caves, indicating the fragmentation and peculiarity of this unique ecosystem. Species richness and phylogenetic diversity varied among Mediterranean areas; the former was positively correlated with research effort, being higher in the northern Mediterranean, while the latter was generally higher in caves than in the overall sponge assemblages of each area. Resemblance analysis among areas revealed that cavernicolous sponge assemblages followed a pattern quite similar to that of the overall Mediterranean assemblages. The same pattern was exhibited by the zoogeographic affinities of cave sponges: species with Atlanto-Mediterranean distribution and Mediterranean endemics prevailed (more than 40% each), 70% of them having warm-water affinities, since most caves were studied in shallow waters. According to our findings, Mediterranean marine caves appear to be important sponge biodiversity reservoirs of high representativeness and great scientific interest, deserving further detailed study and protection. PMID:22808070

  7. Co-occurrence of linguistic and biological diversity in biodiversity hotspots and high biodiversity wilderness areas.

    Science.gov (United States)

    Gorenflo, L J; Romaine, Suzanne; Mittermeier, Russell A; Walker-Painemilla, Kristen

    2012-05-22

    As the world grows less biologically diverse, it is becoming less linguistically and culturally diverse as well. Biologists estimate annual loss of species at 1,000 times or more greater than historic rates, and linguists predict that 50-90% of the world's languages will disappear by the end of this century. Prior studies indicate similarities in the geographic arrangement of biological and linguistic diversity, although conclusions have often been constrained by use of data with limited spatial precision. Here we use greatly improved datasets to explore the co-occurrence of linguistic and biological diversity in regions containing many of the Earth's remaining species: biodiversity hotspots and high biodiversity wilderness areas. Results indicate that these regions often contain considerable linguistic diversity, accounting for 70% of all languages on Earth. Moreover, the languages involved are frequently unique (endemic) to particular regions, with many facing extinction. Likely reasons for co-occurrence of linguistic and biological diversity are complex and appear to vary among localities, although strong geographic concordance between biological and linguistic diversity in many areas argues for some form of functional connection. Languages in high biodiversity regions also often co-occur with one or more specific conservation priorities, here defined as endangered species and protected areas, marking particular localities important for maintaining both forms of diversity. The results reported in this article provide a starting point for focused research exploring the relationship between biological and linguistic-cultural diversity, and for developing integrated strategies designed to conserve species and languages in regions rich in both.

  8. Status of biodiversity in the Baltic Sea.

    Science.gov (United States)

    Ojaveer, Henn; Jaanus, Andres; Mackenzie, Brian R; Martin, Georg; Olenin, Sergej; Radziejewska, Teresa; Telesh, Irena; Zettler, Michael L; Zaiko, Anastasija

    2010-09-01

    The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system's diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity.

  9. Fair Biodiversity Politics With and Beyond Rawls

    Directory of Open Access Journals (Sweden)

    John Bernhard Kleba

    2013-09-01

    Full Text Available The access and benefit-sharing regime (ABS of the Convention on Biological Diversity has been criticised for focusing on entitlements and asset exchanges. In this regard, the Nagoya Protocol provides little advance. This work introduces new paths of research and reasoning debating the tensions between the Rawlsian concept of justice and the realm of ABS. A new original position to debate fair biodiversity politics would include the concepts of justice of non-Western cultures. Taking the case of indigenous and traditional peoples, the issue of cultural minority rights is raised, challenging the institutionalisation of legal pluralism and political recognition. Against Bell, and with and beyond Rawls, arguments are provided favouring an environmental constitutionalism. The least advantaged concept shifts from an economical focus towards realising citizenship and applied to the ABS regime. Concerning the destination of benefits in ABS agreements, I advocate a complement between entitlements and the systemic aims of the Convention, prioritising the latter. Finally, controversies about the equity of benefit sharing are examined. Whereas the difference principle is helpful in tackling the economical and political asymmetries in ABS negotiations, it leaves core questions open. The Nagoya Protocol has advanced in providing legal tools to realise citizenship. However, political justice demands more. Concerns to benefit the least advantaged should be included in policy, bioprospecting project design and ABS contracts.

  10. Inferring biodiversity maintenance mechanisms from ecological pattern

    Science.gov (United States)

    Ostling, Annette

    Among a set of competitors for a single common resource, the best will simply exclude the others. Yet in nature we can see astounding diversity of competing species. Do close similarities in species' response to the local environment primarily explain their coexistence? Or is this diversity possible because of differences between species that stabilize their coexistence? And if so, what particular differences between species are important in particular communities? Some ecological communities lend themselves to experimental manipulation to begin to answer these questions. Yet for many other communities, such as tree species in forests, the logistical hurdles to this approach are daunting. Faster progress could be made in ecology if insight into biodiversity maintenance mechanisms could be gained from patterns exhibited in local ecological communities, such as how coexisting species are distributed in their ecological traits and relative abundance. Hurdles that we need to overcome to be able to gain such insight include: 1) further developing neutral theory, a quantitative process-based null model of community pattern resulting when species similarities are what allow their coexistence, and 2) better understanding what patterns to expect when species differences dominate instead, particularly in the context of stochasticity and immigration. I will describe our ongoing research to overcome these hurdles, to provide better tools for analyzing observed pattern. National Science Foundation Advancing Theory in Biology Grant 1038678, Danish National Research Foundation Grant DNRF 96 for the Center of Macroecology, Evolution and Climate.

  11. New Mediterranean Marine biodiversity records (December, 2013

    Directory of Open Access Journals (Sweden)

    M. BILECENOGLU

    2013-10-01

    Full Text Available Based on recent biodiversity studies carried out in different parts of the Mediterranean, the following 19 species are included as new records on the floral or faunal lists of the relevant ecosystems: the green algae Penicillus capitatus (Maltese waters; the nemertean Amphiporus allucens (Iberian Peninsula, Spain; the salp Salpa maxima (Syria; the opistobranchs Felimida britoi and Berghia coerulescens (Aegean Sea, Greece; the dusky shark Carcharhinus obscurus (central-west Mediterranean and Ionian Sea, Italy; Randall’s threadfin bream Nemipterus randalli, the broadbanded cardinalfish Apogon fasciatus and the goby Gobius kolombatovici (Aegean Sea, Turkey; the reticulated leatherjack Stephanolepis diaspros and the halacarid Agaue chevreuxi (Sea of Marmara, Turkey; the slimy liagora Ganonema farinosum, the yellowstripe barracuda Sphyraena chrysotaenia, the rayed pearl oyster Pinctada imbricata radiata and the Persian conch Conomurex persicus (south-eastern Crete, Greece; the blenny Microlipophrys dalmatinus and the bastard grunt Pomadasys incisus (Ionian Sea, Italy; the brown shrimp Farfantepenaeus aztecus (north-eastern Levant, Turkey; the blue-crab Callinectes sapidus (Corfu, Ionian Sea, Greece. In addition, the findings of the following rare species improve currently available biogeographical knowledge: the oceanic pufferfish Lagocephalus lagocephalus (Malta; the yellow sea chub Kyphosus incisor (Almuñécar coast of Spain; the basking shark Cetorhinus maximus and the shortfin mako Isurus oxyrinchus (north-eastern Levant, Turkey.

  12. Biofuels and biodiversity in South Africa

    Directory of Open Access Journals (Sweden)

    Patrick J. O’Farrell

    2011-05-01

    Full Text Available The South African government, as part of its efforts to mitigate the effects of the ongoing energy crisis, has proposed that biofuels should form an important part of the country’s energy supply. The contribution of liquid biofuels to the national fuel supply is expected to be at least 2% by 2013. The Biofuels Industrial Strategy of the Republic of South Africa of 2007 outlines key incentives for reaching this target and promoting the development of a sustainable biofuels industry. This paper discusses issues relating to this strategy as well as key drivers in biofuel processing with reference to potential impacts on South Africa’s rich biological heritage.

    Our understanding of many of the broader aspects of biofuels needs to be enhanced. We identify key areas where challenges exist, such as the link between technology, conversion processes and feedstock selection. The available and proposed processing technologies have important implications for land use and the use of different non-native plant species as desired feedstocks. South Africa has a long history of planting non-native plant species for commercial purposes, notably for commercial forestry. Valuable lessons can be drawn from this experience on mitigation against potential impacts by considering plausible scenarios and the appropriate management framework and policies. We conceptualise key issues embodied in the biofuels strategy, adapting a framework developed for assessing and quantifying impacts of invasive alien species. In so doing, we provide guidelines for minimising the potential impacts of biofuel projects on biodiversity.

  13. African Fish Biodiversity, Fishbase and Fishculture

    Directory of Open Access Journals (Sweden)

    Boden, G.

    2004-01-01

    Full Text Available At present, about 28 600 fish species are considered valid, whilst the total number is estimated at 30 000 to 35 000. For Africa, about 3 000 valid fresh- and brackish water species are currently recognized. Conserving the biodiversity of these fishes and at the same time managing their exploitation in a sustainable way is a difficult exercise. In sub-Saharan Africa, the importance of aquaculture is not very high. Nonetheless, 18 different species are used commercially, of which six have a non-African origin. Documenting and characterizing the ichthyodiversity is vital for conservation and sustainable development purposes. The presence of a large collection, a specialised library and a considerable know-how in the Africa Museum has led to various revisions, checklists, species (redescriptions and regional guides. All the information on African fishes is currently being entered in FishBase, a huge freely accessible database with information on the taxonomy, ecology and various other aspects of the biology of fishes, based on scientific publications and reviewed by specialists. FishBase also includes high quality tools for applied research on fishes, such as a disease wizard, biogeography tools, trophic pyramids, and the species invasiveness tool.

  14. Joint implementation: Biodiversity and greenhouse gas offsets

    Science.gov (United States)

    Cutright, Noel J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.

  15. Biodiversity, biotechnologies and the philosophy of biology.

    Science.gov (United States)

    Galleni, Lodovico

    2004-01-01

    The thesis of this paper is that in front of the development of biotechnology and of the capacity of techniques of altering the living, there is still a very old philosophy of biology. A rapid historical view is given where the rise and diffusion of the reductionistic paradigm is presented and the connections between this paradigm and biotechnologies are traced. Curiously biotechnologies are still based on the philosophy of F. Bacon. Then the necessity of a new paradigm in biology based on the recent discoveries of complexity is underlined. It is reminded that the main discovery of science of the XX century is that we are living in a small planet of limited resources and frail equilibriums. This discovery asks for a different view of the scientific progress, more linked to the conservation of the Biosphere than to its alteration. Stability is the task for the future interactions of human-kind with nature. For this reason the relationships between stability and diversity are summarised. Finally, as the species is the main step of Biodiversity, a brief discussion of the problems posed by the altering of species barriers is presented.

  16. Microbial biodiversity of Sardinian oleic ecosystems.

    Science.gov (United States)

    Santona, Mario; Sanna, Maria Lina; Multineddu, Chiara; Fancello, Francesco; de la Fuente, Sara Audije; Dettori, Sandro; Zara, Severino

    2018-04-01

    The olives are rich in microorganisms that, during the extraction process may persist in the oils and can influence their physicochemical and sensory characteristics. In this work, and for the first time, we isolated and identified microbial species, yeast and bacteria, present during the production process in four Sardinian (Italy) oleic ecosystems. Among these varieties, we found that Nera di Gonnos was associated to the highest microbial biodiversity, which was followed by Bosana, Nocellara del Belice and Semidana. Among the different microbial species isolated, some are specific of olive ecological niches, such as Cryptococcus spp and Serratia spp; and others to olive oils such as Candida spp and Saccharomyces. Some other species identified in this work were not found before in oleic ecosystems. The enzymatic analyses of yeast and bacteria showed that they have good β-glucosidase activity and yeast also showed good β-glucanase activity. The majority of bacteria presented lipolytic and catalase activities while in yeast were species-specific. Interestingly, yeast and bacteria isolates presented a high resistance to bile acid, and about 65% of the yeast were able to resist at pH 2.5 for 2 h. Finally, bacteria showed no biofilm activity compared to yeast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    Science.gov (United States)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    Biodiversity has been described as the diversity of life on earth within species, between species and in ecosystems. Biodiversity contributes to regulating ecosystem services like climate, flood, disease, and water quality regulation. Biodiversity also supports and sustains ecosystem services that provide material goods like food, fiber, fuel, timber and water, and to non-material benefits like educational, recreational, spiritual, and aesthetic ecosystem services. The Millennium Ecosystem Assessment estimated that the rate of biodiversity loss due to human activity in the last 50 years has been more rapid than at any other time in human history, and that many of the drivers of biodiversity loss are increasing. The strongest drivers of biodiversity loss include habitat loss, overexploitation, invasive species, climate change, and pollution, including pollution from reactive nitrogen. Of these stressors, climate change and reactive nitrogen from anthropogenic activities are causing some of the most rapid changes. Climate change is causing warming trends that result in consistent patterns of poleward and elevational range shifts of flora and fauna, causing changes in biodiversity. Warming has also resulted in changes in phenology, particularly the earlier onset of spring events, migration, and lengthening of the growing season, disrupting predator-prey and plant-pollinator interactions. In addition to warming, elevated carbon dioxide by itself can affect biodiversity by influencing plant growth, soil water, tissue stoichiometry, and trophic interactions. Nitrogen enrichment also impacts ecosystems and biodiversity in a variety of ways. Nitrogen enhances plant growth, but has been shown to favor invasive, fast-growing species over native species adapted to low nitrogen conditions. Although there have been a limited number of empirical studies on climate change and nitrogen interactions, inferences can be drawn from observed responses to each stressor by itself. For

  18. Large conservation gains possible for global biodiversity facets

    Science.gov (United States)

    Pollock, Laura J.; Thuiller, Wilfried; Jetz, Walter

    2017-06-01

    Different facets of biodiversity other than species numbers are increasingly appreciated as critical for maintaining the function of ecosystems and their services to humans. While new international policy and assessment processes such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) recognize the importance of an increasingly global, quantitative and comprehensive approach to biodiversity protection, most insights are still focused on a single facet of biodiversity—species. Here we broaden the focus and provide an evaluation of how much of the world’s species, functional and phylogenetic diversity of birds and mammals is currently protected and the scope for improvement. We show that the large existing gaps in the coverage for each facet of diversity could be remedied by a slight expansion of protected areas: an additional 5% of the land has the potential to more than triple the protected range of species or phylogenetic or functional units. Further, the same areas are often priorities for multiple diversity facets and for both taxa. However, we find that the choice of conservation strategy has a fundamental effect on outcomes. It is more difficult (that is, requires more land) to maximize basic representation of the global biodiversity pool than to maximize local diversity. Overall, species and phylogenetic priorities are more similar to each other than they are to functional priorities, and priorities for the different bird biodiversity facets are more similar than those of mammals. Our work shows that large gains in biodiversity protection are possible, while also highlighting the need to explicitly link desired conservation objectives and biodiversity metrics. We provide a framework and quantitative tools to advance these goals for multi-faceted biodiversity conservation.

  19. Biodiversity, ecosystem function and forest management. Part I

    International Nuclear Information System (INIS)

    Le Tacon, F.; Selosse, M-A.; Gosselin, F.

    2000-01-01

    In part one, the authors dealt first with the foundations of biodiversity and its role in forest ecosystems. They then go on to the problems relating to its level of expression and the measurements and indicators for assessing it. Following a section on ethical considerations, the authors explore the possible impact of factors involving human activities other than forest management on biodiversity - fragmentation and structuring of space, forest occupancy, picking, disappearance of carnivorous species, depositions and pollution, global warming and forest fires. (authors)

  20. Conservation of biodiversity in mountain ecosystems -- At a glance

    OpenAIRE

    MacKinnon, K.

    2002-01-01

    Metadata only record Mountains are especially important for biodiversity conservation since many harbor unique assemblages of plants and animals, including high levels of endemic species. Mountain biodiversity and natural habitats bestow multiple ecosystem, soil conservation, and watershed benefits. Mountains are often centers of endemism, where species are prevalent in or peculiar to a particular region, and Pleistocene refuges, which are hypothesized to have high levels of diversity wher...

  1. Place prioritization for biodiversity content using species ecological niche modeling

    OpenAIRE

    Víctor Sánchez-Cordero; Verónica Cirelli; Mariana Munguial; Sahotra Sarkar

    2005-01-01

    Place prioritization for biodiversity representation is essential for conservation planning, particularly in megadiverse countries where high deforestation threatens biodiversity. Given the collecting biases and uneven sampling of biological inventories, there is a need to develop robust models of species’ distributions. By modeling species’ ecological niches using point occurrence data and digitized environmental feature maps, we can predict potential and extant distributions of species in u...

  2. Evaluation of predator-proof fenced biodiversity projects

    OpenAIRE

    Doelle, Sebastian

    2012-01-01

    There has been recent debate over the role of predator-proof fences in the management of New Zealand’s biodiversity. The debate has arisen due to concern that investments in fenced sanctuaries are less productive than are alternative ways to manage biodiversity. Predator-proof fences are costly and budget constraints limit the area of habitat that can be fenced. The area of habitat enclosed within fences, and number of individuals of species supported, determines project’s ability to contribu...

  3. Marine Biodiversity, Climate Change, and Governance of the Oceans

    OpenAIRE

    Craig, Robin Kundis

    2012-01-01

    Governance of marine biodiversity has long suffered from lack of adequate information about the ocean’s many species and ecosystems. Nevertheless, even as we are learning much more about the ocean’s biodiversity and the impacts to it from stressors such as overfishing, habitat destruction, and marine pollution, climate change is imposing new threats and exacerbating existing threats to marine species and ecosystems. Coastal nations could vastly improve their fragmented approaches to ocean gov...

  4. Group Decisions in Biodiversity Conservation: Implications from Game Theory

    OpenAIRE

    Frank, David M.; Sarkar, Sahotra

    2010-01-01

    Background Decision analysis and game theory [1], [2] have proved useful tools in various biodiversity conservation planning and modeling contexts [3]?[5]. This paper shows how game theory may be used to inform group decisions in biodiversity conservation scenarios by modeling conflicts between stakeholders to identify Pareto?inefficient Nash equilibria. These are cases in which each agent pursuing individual self?interest leads to a worse outcome for all, relative to other feasible outcomes....

  5. Biodiversity information system of the national parks administration of Argentina

    Directory of Open Access Journals (Sweden)

    Leonidas Lizarraga

    2014-06-01

    Full Text Available Introduction The Biodiversity Information System (BIS of the National Parks Administration of Argentina (NPA was launched in 2002, with the support of the Global Environmental Fund (GEF through the Biodiversity Conservation Project in Argentina. The BIS consists of a set of thematic databases and Geographic Information System (GIS set to support management decisions, and to provide information to the general public on the national protected areas of Argentina. Currently, the BIS-NPA progr...

  6. Can we detect oceanic biodiversity hotspots from space?

    Science.gov (United States)

    De Monte, Silvia; Soccodato, Alice; Alvain, Séverine; d'Ovidio, Francesco

    2013-10-01

    Understanding the variability of marine biodiversity is a central issue in microbiology. Current observational programs are based on in situ studies, but their implementation at the global scale is particularly challenging, owing to the ocean extent, its temporal variability and the heterogeneity of the data sources on which compilations are built. Here, we explore the possibility of identifying phytoplanktonic biodiversity hotspots from satellite. We define a Shannon entropy index based on patchiness in ocean color bio-optical anomalies. This index provides a high resolution (1 degree) global coverage. It shows a relation to temperature and mid-latitude maxima in accordance with those previously evidenced in microbiological biodiversity model and observational studies. Regional maxima are in remarkable agreement with several known biodiversity hotspots for plankton organisms and even for higher levels of the marine trophic chain, as well as with some in situ planktonic biodiversity estimates (from Atlantic Meridional Transect cruise). These results encourage to explore marine biodiversity with a coordinated effort of the molecular, ecological and remote sensing communities.

  7. Economic prosperity, biodiversity conservation, and the environmental Kuznets curve

    International Nuclear Information System (INIS)

    Mills, Julianne H.; Waite, Thomas A.

    2009-01-01

    Many conservationists contend that economic growth and biodiversity conservation are incompatible goals. Some economists contest this viewpoint, arguing that wealthier countries have the luxury of investing more heavily in efforts to conserve biodiversity. Under this assumption, we expect a U-shaped relationship between per capita wealth and proportion of species conserved. We test this environmental Kuznets curve (EKC) using estimates of per capita income and deforestation rates (index of biodiversity threat) for 35 tropical countries. A prior analysis [Dietz, S., Adger, W.N., 2003. Economic growth, biodiversity loss and conservation effort. Journal of Environmental Management, 68:23-35] using conventional regression techniques failed to provide any support for the parabolic relationship predicted by the EKC hypothesis. Here, we introduce the use of quantile regression and spatial filtering to reanalyze this data, addressing issues of heteroskedasticity and spatial autocorrelation. We note that preliminary analysis using these methods provides some initial evidence for an EKC. However, a series of panel analyses with country-specific dummy variables eliminated or even reversed much of this support. A closer examination of conservation practices and environmental indicators within the countries, particularly those countries that drove our initial support, suggests that wealth is not a reliable indicator of improved conservation practice. Our findings indicate that an EKC for biodiversity is overly simplistic and further exploration is required to fully understand the mechanisms by which income affects biodiversity. (author)

  8. Understanding how biodiversity unfolds through time under neutral theory.

    Science.gov (United States)

    Missa, Olivier; Dytham, Calvin; Morlon, Hélène

    2016-04-05

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. © 2016 The Author(s).

  9. Economic prosperity, biodiversity conservation, and the environmental Kuznets curve

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Julianne H.; Waite, Thomas A. [Department of Evolution, Ecology and Organismal Biology, Ohio State University, 300 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH, 43210 (United States)

    2009-05-15

    Many conservationists contend that economic growth and biodiversity conservation are incompatible goals. Some economists contest this viewpoint, arguing that wealthier countries have the luxury of investing more heavily in efforts to conserve biodiversity. Under this assumption, we expect a U-shaped relationship between per capita wealth and proportion of species conserved. We test this environmental Kuznets curve (EKC) using estimates of per capita income and deforestation rates (index of biodiversity threat) for 35 tropical countries. A prior analysis [Dietz, S., Adger, W.N., 2003. Economic growth, biodiversity loss and conservation effort. Journal of Environmental Management, 68:23-35] using conventional regression techniques failed to provide any support for the parabolic relationship predicted by the EKC hypothesis. Here, we introduce the use of quantile regression and spatial filtering to reanalyze this data, addressing issues of heteroskedasticity and spatial autocorrelation. We note that preliminary analysis using these methods provides some initial evidence for an EKC. However, a series of panel analyses with country-specific dummy variables eliminated or even reversed much of this support. A closer examination of conservation practices and environmental indicators within the countries, particularly those countries that drove our initial support, suggests that wealth is not a reliable indicator of improved conservation practice. Our findings indicate that an EKC for biodiversity is overly simplistic and further exploration is required to fully understand the mechanisms by which income affects biodiversity. (author)

  10. PEMBANGUNAN DATABASE MANGROVE UNTUK BIODIVERSITY INFORMATICS BIOFARMAKA IPB

    Directory of Open Access Journals (Sweden)

    Yeni Herdiyeni

    2014-12-01

    Full Text Available Mangroves are a source of traditional medicine that can be used as a source of bioactive compounds. With the conversion of mangrove ecosystem into another designation led to the extinction of mangrove ecosystems. Therefore we need a good management of natural resources. In natural resource management, biodiversity information is needed to sustain the species utilization, exploration potential of the species and their biological and ecological monitoring, policy making, and for the development of biotechnology innovation. Research center of IPB Biopharmaca (Institute for Research and Community Services of Bogor Agricultural University has the mandate to conduct research from upstream to downstream in the medicinal field. This study develops Indonesian mangrove biodiversity database for Biodiversity Informatics. Biodiversity informatics (BI is the development of computer-based technologies for the management of biodiversity information. BI can be used to improve the knowledge management (knowledge management, exploration, analysis, synthesis, and interpretation of data ranging from the level of genomic biodiversity, species level to the ecosystem level. From the results of this study are expected data, information and knowledge of natural wealth mangroves can be managed properly so that the preservation of natural resources can be properly maintained and can be used in particular to the field of medicinal studies.

  11. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    International Nuclear Information System (INIS)

    Powell, Thomas W R; Lenton, Timothy M

    2013-01-01

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species–energy and species–area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect. (letter)

  12. Potential impacts of global warming on Australia's unique tropical biodiversity and implications for tropical biodiversity in general

    International Nuclear Information System (INIS)

    Hilbert, David W

    2007-01-01

    Full text: Full text: Globally, forest clearing is often thought to be the greatest threat to biodiversity in the tropics, and rates of clearing are certainly highest there, particularly in tropical South-East Asia. Climate change in the tropics has been less studied in tropical regions than in temperate, boreal or arctic ecosystems. However, modelling studies in Australian rainforests indicate that climate change may be a particularly significant threat to the long-term preservation of the biodiversity of tropical, rainforest biodiversity. Our research has shown that global warming can have a particularly strong impact on the biodiversity of mountainous tropical regions, including the Wet Tropics of north-east Queensland. Here, the mountain tops and higher tablelands are relatively cool islands in a sea of warmer climates. These species-rich islands, mostly limited in their biodiversity by warm interglacial periods, are separated from each other by the warmer valleys and form a scattered archipelago of habitat for organisms that are unable to survive and reproduce in warmer climates. Many of the endemic Australian Wet Tropics species live only in these cooler regions. Similar situations occur throughout south-east Asia and in the highlands of the Neotropics. Unfortunately, these upland and highland areas represent the majority of biodiversity conservation areas because they are less suitable for clearing for agriculture. This presentation will summarise research about the potential impacts of climate change on the biodiversity in Australia's rainforests, the potential implications for tropical biodiversity in general and discuss the limitations of these projections and the need for further research that could reduce uncertainties and inform effective adaptation strategies

  13. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    DEFF Research Database (Denmark)

    Naeem, S.; Prager, Case; Weeks, Brian

    2016-01-01

    on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional...... approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we...

  14. Integrating Biodiversity Data into Botanic Collections.

    Science.gov (United States)

    Horn, Thomas

    2016-01-01

    Today's species names are entry points into a web of publicly available knowledge and are integral parts of legislation concerning biological conservation and consumer safety. Species information usually is fragmented, can be misleading due to the existence of different names and might even be biased because of an identical name that is used for a different species. Safely navigating through the name space is one of the most challenging tasks when associating names with data and when decisions are made which name to include in legislation. Integrating publicly available dynamic data to characterise plant genetic resources of botanic gardens and other facilities will significantly increase the efficiency of recovering relevant information for research projects, identifying potentially invasive taxa, constructing priority lists and developing DNA-based specimen authentication. To demonstrate information availability and discuss integration into botanic collections, scientific names derived from botanic gardens were evaluated using the Encyclopedia of Life, The Catalogue of Life and The Plant List. 98.5% of the names could be verified by the combined use of these providers. Comparing taxonomic status information 13 % of the cases were in disagreement. About 7 % of the verified names were found to be included in the International Union for Conservation of Nature Red List, including one extinct taxon and three taxa with the status "extinct in the wild". As second most important factor for biodiversity loss, potential invasiveness was determined. Approximately 4 % of the verified names were detected using the Global Invasive Species Information Network, including 208 invasive taxa. According to Delivering Alien Invasive Species Inventories for Europe around 20 % of the verified names are European alien taxa including 15 of the worst European invasive taxa. Considering alternative names in the data recovery process, success increased up to 18 %.

  15. Conference on wind energy development and biodiversity

    International Nuclear Information System (INIS)

    Gossement, Arnaud; Prevors, Lionel; Nagel, Paul-Bastian; Otto, Iris; Gourat, Fabrice; Sornin-Petit, Nicolas; Kelm, Volker; Beucher, Yannick; Rosenthal, Sonja; Strobl, Reinhard; Kozlowski, Sonia; Herrholz, Thomas; Hannemann, Thomas; Lange, Helmut; Behr, Oliver; Hochradel, Klaus; Mages, Juergen; Nagy, Martina; Korner-Nievergelt, Fraenzi; Niermann, Ivo; Simon, Ralph; Stiller, Florian; Weber, Natalie; Brinkmann, Robert

    2013-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on wind energy development and biodiversity. In the framework of this French-German exchange of experience, about 90 participants exchanged views on the existing regulatory systems for nature protection in a wind energy context in both countries. In particular, birds fauna and chiropters protection were in the center of the debates. The question of wind energy development in a forest environment was addressed as well. This document brings together the available presentations (slides) made during this event: 1 - The development of onshore wind farms and the French environmental Code (Arnaud Gossement); 2 - Wind energy development priority - recent advances in environmental regulation (Lionel Prevors); 3 - environmental legislation and wind power deployment in Germany: An overview (Paul-Bastian Nagel); 4 - Avifauna and wind energy plants - To bring the expansion of wind energy in line with environmental issues (Iris Otto) 5 - environmental impact study in France and Germany: what challenges and what bird fauna specificities? (Fabrice Gourat); 6 - How to take into account the chiropters' aspect in authorization procedures? Regional scale experience feedback: the Champagne-Ardenne case (Nicolas Sornin-Petit); 7 - France and Germany - a comparison of bat monitoring experience (Volker Kelm, Yannick Beucher); 8 - Bat-friendly operation algorithms: reducing bat fatalities at wind turbines in central Europe (Oliver Behr); 9 - Wind energy use in forests? specifics from an environmental planning perspective (Sonja Rosenthal); 10 - expansion of wind energy in the Bavarian State Forest (Reinhard Strobl); 11 - Environmental impact assessment and environmental follow-up study for the forest wind farms: experience feedback (Sonia Kozlowski); 12 - German aviation light regulations - German aviation light regulations. Case study: eno 92 at wind farm Schoenerlinde (Thomas Herrholz); 13 - Welcome to

  16. Large-area mapping of biodiversity

    Science.gov (United States)

    Scott, J.M.; Jennings, M.D.

    1998-01-01

    The age of discovery, description, and classification of biodiversity is entering a new phase. In responding to the conservation imperative, we can now supplement the essential work of systematics with spatially explicit information on species and assemblages of species. This is possible because of recent conceptual, technical, and organizational progress in generating synoptic views of the earth's surface and a great deal of its biological content, at multiple scales of thematic as well as geographic resolution. The development of extensive spatial data on species distributions and vegetation types provides us with a framework for: (a) assessing what we know and where we know it at meso-scales, and (b) stratifying the biological universe so that higher-resolution surveys can be more efficiently implemented, coveting, for example, geographic adequacy of specimen collections, population abundance, reproductive success, and genetic dynamics. The land areas involved are very large, and the questions, such as resolution, scale, classification, and accuracy, are complex. In this paper, we provide examples from the United States Gap Analysis Program on the advantages and limitations of mapping the occurrence of terrestrial vertebrate species and dominant land-cover types over large areas as joint ventures and in multi-organizational partnerships, and how these cooperative efforts can be designed to implement results from data development and analyses as on-the-ground actions. Clearly, new frameworks for thinking about biogeographic information as well as organizational cooperation are needed if we are to have any hope of documenting the full range of species occurrences and ecological processes in ways meaningful to their management. The Gap Analysis experience provides one model for achieving these new frameworks.

  17. Landscape moderation of biodiversity patterns and processes - eight hypotheses.

    Science.gov (United States)

    Tscharntke, Teja; Tylianakis, Jason M; Rand, Tatyana A; Didham, Raphael K; Fahrig, Lenore; Batáry, Péter; Bengtsson, Janne; Clough, Yann; Crist, Thomas O; Dormann, Carsten F; Ewers, Robert M; Fründ, Jochen; Holt, Robert D; Holzschuh, Andrea; Klein, Alexandra M; Kleijn, David; Kremen, Claire; Landis, Doug A; Laurance, William; Lindenmayer, David; Scherber, Christoph; Sodhi, Navjot; Steffan-Dewenter, Ingolf; Thies, Carsten; van der Putten, Wim H; Westphal, Catrin

    2012-08-01

    Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscape-moderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on

  18. Development of Extended Content Standards for Biodiversity Data

    Science.gov (United States)

    Hugo, Wim; Schmidt, Jochen; Saarenmaa, Hannu

    2013-04-01

    Interoperability in the field of Biodiversity observation has been strongly driven by the development of a number of global initiatives (GEO, GBIF, OGC, TDWG, GenBank, …) and its supporting standards (OGC-WxS, OGC-SOS, Darwin Core (DwC), NetCDF, …). To a large extent, these initiatives have focused on discoverability and standardization of syntactic and schematic interoperability. Semantic interoperability is more complex, requiring development of domain-dependent conceptual data models, and extension of these models with appropriate ontologies (typically manifested as controlled vocabularies). Biodiversity content has been standardized partly, for example through Darwin Core for occurrence data and associated taxonomy, and through Genbank for genetic data, but other contexts of biodiversity observation have lagged behind - making it difficult to achieve semantic interoperability between distributed data sources. With this in mind, WG8 of GEO BON (charged with data and systems interoperability) has started a work programme to address a number of concerns, one of which is the gap in content standards required to make Biodiversity data truly interoperable. The paper reports on the framework developed by WG8 for the classification of Biodiversity observation data into 'families' of use cases and its supporting data schema, where gaps, if any, in the availability if content standards have been identified, and how these are to be addressed by way of an abstract data model and the development of associated content standards. It is proposed that a minimum set of standards (1) will be required to address the scope of Biodiversity content, aligned with levels and dimensions of observation, and based on the 'Essential Biodiversity Variables' (2) being developed by GEO BON . The content standards are envisaged as loosely separated from the syntactic and schematic standards used for the base data exchange: typically, services would offer an existing data standard (DwC, WFS

  19. Assessing the impact of plantation forestry on plant biodiversity

    Directory of Open Access Journals (Sweden)

    Andreas Ch. Braun

    2017-04-01

    Full Text Available Effects of plantation forestry on biodiversity are controversially discussed in literature. While some authors stress positive effects, others tend to attribute a largely negative influence to plantations. One important factor steering the influence on biodiversity are management practices. A second important factor is the environmental matrix. Chile offers the option to analyse both factors jointly. The coastal range of central Chile has experienced rapid and widespread replacement of native Nothofagus spp. forests in favour of Pinus radiata plantations. Here, native forests remain limited to small patches surrounded by an environmental matrix of plantations. Management is rather intensive and not designed to maintain biodiversity. While in the coastal range of central Chile the transformation from native forests to non-native tree plantations has almost come to an end, spatial extension of P. contorta and P. ponderosa plantations has just recently begun in Chilean Patagonia. While the management is similar to central Chile, plantations rather exist as small patches surrounded by an environmental matrix of native plant formations (e.g. Nothofagus spp. forests and Nothofagus spp. scrublands. In the framework of this work, effects of the two diametric land usages on biodiversity are assessed and compared. Biodiversity is assessed at the α-, β- and γ-scale. At the α-scale, biodiversity impacts are inferred statistically, using one-way ANOVA and Tukey’s PostHoc test. Biodiversity of plants at both sites is significantly reduced in plantations when compared to native forests or scrublands. Plantation forestry lowers α-biodiversity and does not provide additional habitats for specialists. At the β-scale, weak edge effects due to the presence of native forests are observed. In total, plantation forestry tends to promote plant invasions and impairs the survival of endemics. At the γ-scale, plant species communities where predominantly native

  20. New Mediterranean Biodiversity Records (July 2016

    Directory of Open Access Journals (Sweden)

    T. DAILIANIS

    2016-07-01

    Full Text Available This contribution forms part of a series of collective articles published regularly in Mediterranean Marine Science that report on new biodiversity records from the Mediterranean basin. The current article presents 51 geographically distinct records for 21 taxa belonging to 6 Phyla, extending from the western Mediterranean to the Levantine. The new records, per country, are as follows: Spain: the cryptogenic calcareous sponge Paraleucilla magna is reported from a new location in the Alicante region. Algeria: the rare Atlanto-Mediterranean bivalve Cardium indicum is reported from Annaba. Tunisia: new distribution records for the Indo-Pacific lionfish Pterois miles from Zembra Island and Cape Bon. Italy: the ark clam Anadara transversa is reported from mussel cultures in the Gulf of Naples, while the amphipod Caprella scaura and the isopods Paracerceis sculpta and Paranthura japonica are reported as associated to the –also allochthonous–bryozoan Amathia verticillata in the Adriatic Sea; in the latter region, the cosmopolitan Atlantic tripletail Lobotes surinamensisis also reported, a rare finding for the Mediterranean. Slovenia: a new record of the non-indigenous nudibranch Polycera hedgpethi in the Adriatic. Greece: several new reports of the introduced scleractinian Oculina patagonica, the fangtooth moray Enchelycore anatina, the blunthead puffer Sphoeroides pachygaster (all Atlantic, and the lionfish Pterois miles (Indo-Pacific suggest their ongoing establishment in the Aegean Sea; the deepest bathymetric record of the invasive alga Caulerpa cylindracea in the Mediterranean Sea is also registered in the Kyklades, at depths exceeding 70 m. Turkey: new distribution records for two non indigenous crustaceans, the blue crab Callinectes sapidus (Atlantic origin and the moon crab Matuta victor (Indo-Pacific origin from the Bay of Izmir and Antalya, respectively; in the latter region, the Red Sea goatfish Parupeneus forsskali, is also reported

  1. The silent mass extinction of insect herbivores in biodiversity hotspots.

    Science.gov (United States)

    Fonseca, Carlos Roberto

    2009-12-01

    Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species-host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant-feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971-1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3-10.6 monophages per plant species. I calculated that 213,830-547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.

  2. Effects of household dynamics on resource consumption and biodiversity.

    Science.gov (United States)

    Liu, Jianguo; Daily, Gretchen C; Ehrlich, Paul R; Luck, Gary W

    2003-01-30

    Human population size and growth rate are often considered important drivers of biodiversity loss, whereas household dynamics are usually neglected. Aggregate demographic statistics may mask substantial changes in the size and number of households, and their effects on biodiversity. Household dynamics influence per capita consumption and thus biodiversity through, for example, consumption of wood for fuel, habitat alteration for home building and associated activities, and greenhouse gas emissions. Here we report that growth in household numbers globally, and particularly in countries with biodiversity hotspots (areas rich in endemic species and threatened by human activities), was more rapid than aggregate population growth between 1985 and 2000. Even when population size declined, the number of households increased substantially. Had the average household size (that is, the number of occupants) remained static, there would have been 155 million fewer households in hotspot countries in 2000. Reduction in average household size alone will add a projected 233 million additional households to hotspot countries during the period 2000-15. Rapid increase in household numbers, often manifested as urban sprawl, and resultant higher per capita resource consumption in smaller households pose serious challenges to biodiversity conservation.

  3. Analysis of Reptile Biodiversity and Ecosystem Services within ...

    Science.gov (United States)

    A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challenge has been to integrate ecology with economics to better understand the effects of human policies and actions and their subsequent impacts on human well-being and ecosystem function. Biodiversity is valued by humans in varied ways, and thus is an important input to include in assessing the benefits of ecosystems to humans. Some biodiversity metrics more clearly reflect ecosystem services (e.g., game species, threatened and endangered species), whereas others may indicate indirect and difficult to quantify relationships to services (e.g., taxa richness and cultural value). In the present study, we identify and map reptile biodiversity and ecosystem services metrics. The importance of reptiles to biodiversity and ecosystems services is not often described. We used species distribution models for reptiles in the conterminous United States from the U.S. Geological Survey’s Gap Analysis Program. We focus on species richness metrics including all reptile species richness, taxa groupings of lizards, snakes and turtles, NatureServe conservation status (G1, G2, G3) species, IUCN listed reptiles, threatened and endangered species, Partners in Amphibian and Reptile Conservation listed reptiles, and rare species. These metrics were analyzed with the Protected Areas Database of the United States to

  4. [Landscape planning approaches for biodiversity conservation in agriculture].

    Science.gov (United States)

    Liu, Yun-hui; Li, Liang-tao; Yu, Zhen-rong

    2008-11-01

    Biodiversity conservation in agriculture not only relates to the sustainable development of agriculture, but also is an essential part of species conservation. In recent years, the landscape planning approach for biodiversity was highlighted instead of species-focused approach. In this paper, the landscape factors affecting the biodiversity in agriculture were reviewed, and the possible landscape approaches at three different scales for more efficient conservation of biodiversity in agro-landscape were suggested, including: (1) the increase of the proportion of natural or semi-natural habitats in agriculture, diversification of land use or crop pattern, and protection or construction of corridor at landscape level; (2) the establishment of non-cropping elements such as field margin at between-field level; and (3) the application of reasonable crop density, crop distribution pattern and rotation, and intercrop etc. at within-field level. It was suggested that the relevant policies for natural conservation, land use planning, and ecological compensation should be made to apply the landscape approaches for biodiversity conservation at larger scale.

  5. The Value of Tropical Biodiversity in Rural Melanesia

    Directory of Open Access Journals (Sweden)

    Simon Foale

    2016-11-01

    Full Text Available In this paper we discuss differences in the ways transnational conservationists and Melanesian farmers, hunters and fishers value "biodiversity". The money for conservation projects in developing countries originates from people who are embedded in a capitalist system, which allows engagement with nature as an abstract entity. Their western education has given them a scientific/ evolutionary-based worldview, which attributes intrinsic value to all species (and particular arrangements of species, e.g. rainforests and coral reefs, irrespective of economic value or ecosystem function. Because this value system is mostly not shared by the custodians of the biodiversity that conservationists want to save, alternative tactics and arguments are utilised. These inevitably take the form of so-called "win-win" economic rationales for preserving biodiversity, most of which do not work well (e.g. bioprospecting, ecotourism, non-timber forest products, environmental certification schemes, payments for ecosystem services, etc., for reasons which we detail. Agriculture- and aquaculture-based livelihoods appear to enjoy more success than the "win-win" options but do not necessarily obviate or deter further biodiversity loss. Artisanal use of species-poor but productive and resilient pelagic fisheries is increasing. These ecological and economic realities bring into sharp focus the importance of understanding differences in value systems for successful biodiversity conservation in the tropics.

  6. Biodiversity patterns along ecological gradients: unifying β-diversity indices.

    Science.gov (United States)

    Szava-Kovats, Robert C; Pärtel, Meelis

    2014-01-01

    Ecologists have developed an abundance of conceptions and mathematical expressions to define β-diversity, the link between local (α) and regional-scale (γ) richness, in order to characterize patterns of biodiversity along ecological (i.e., spatial and environmental) gradients. These patterns are often realized by regression of β-diversity indices against one or more ecological gradients. This practice, however, is subject to two shortcomings that can undermine the validity of the biodiversity patterns. First, many β-diversity indices are constrained to range between fixed lower and upper limits. As such, regression analysis of β-diversity indices against ecological gradients can result in regression curves that extend beyond these mathematical constraints, thus creating an interpretational dilemma. Second, despite being a function of the same measured α- and γ-diversity, the resultant biodiversity pattern depends on the choice of β-diversity index. We propose a simple logistic transformation that rids beta-diversity indices of their mathematical constraints, thus eliminating the possibility of an uninterpretable regression curve. Moreover, this transformation results in identical biodiversity patterns for three commonly used classical beta-diversity indices. As a result, this transformation eliminates the difficulties of both shortcomings, while allowing the researcher to use whichever beta-diversity index deemed most appropriate. We believe this method can help unify the study of biodiversity patterns along ecological gradients.

  7. Biodiversity hotspots: A shortcut for a more complicated concept

    Directory of Open Access Journals (Sweden)

    Christian Marchese

    2015-01-01

    Full Text Available In an era of human activities, global environmental changes, habitat loss and species extinction, conservation strategies are a crucial step toward minimizing biodiversity loss. For instance, oceans acidification and land use are intensifying in many places with negative and often irreversible consequences for biodiversity. Biodiversity hotspots, despite some criticism, have become a tool for setting conservation priorities and play an important role in decision-making for cost-effective strategies to preserve biodiversity in terrestrial and, to some extent, marine ecosystems. This area-based approach can be applied to any geographical scale and it is considered to be one of the best approaches for maintaining a large proportion of the world’s biological diversity. However, delineating hotspots includes quantitative criteria along with subjective considerations and the risk is to neglect areas, such as coldspots, with other types of conservation value. Nowadays, it is widely acknowledged that biodiversity is much more than just the number of species in a region and a conservation strategy cannot be based merely on the number of taxa present in an ecosystem. Therefore, the idea that strongly emerges is the need to reconsider conservation priorities and to go toward an interdisciplinary approach through the creation of science-policy partnerships.

  8. Can vineyard biodiversity be beneficial for viticulture and tourism?

    Science.gov (United States)

    Hervé, Morgane; Kratschmer, Sophie; Gregorich, Claudia; Silvia, Winter; Montembault, David; Zaller, Johann G.; Guernion, Muriel; Jung, Vincent; Schuette, Rebekka; Paredes, Daniel; Guzman Diaz, Gema; Cabezas Luque, Jose Manuel; Hoble, Adela; Popescu, Daniela; Burel, Françoise; Cluzeau, Daniel; Bergmann, Holger; Potthoff, Martin; Nicolai, Annegret

    2017-04-01

    The European research BiodivERsA project VineDivers aims to link ecosystem services and vine production, in an integrative approach that considers both landscape structure and cultural practices (cover-crops versus bare soils), in vineyards of Austria, France, Romania and Spain. Such services studied are (i) provisioning and regulation services by soil biota and pollinators, and (ii) landscape cultural services. In this study, we want to know if landscape beneficial for biodiversity providing ecosystem services at a plot scale also have an aesthetical value. An interdisciplinary approach was chosen to include both ecological and sociological data. First, we analyzed the influence of soil management practices and landscape complexity on soil biota, inter-row flora and bees. Second, we implemented a questionnaire based on photographs about biodiversity perception and visual aesthetic evaluation. Our results highlighted the effect of landscape complexity and soil management intensity on biodiversity and their ecological and cultural ecosystem services. This allows us to discuss the global importance of biodiversity for a wine-producing region. Further analysis within the VineDivers project will focus on an assessment of the biodiversity importance for local viticulture economy.

  9. Taxonomic bias in biodiversity data and societal preferences.

    Science.gov (United States)

    Troudet, Julien; Grandcolas, Philippe; Blin, Amandine; Vignes-Lebbe, Régine; Legendre, Frédéric

    2017-08-22

    Studying and protecting each and every living species on Earth is a major challenge of the 21 st century. Yet, most species remain unknown or unstudied, while others attract most of the public, scientific and government attention. Although known to be detrimental, this taxonomic bias continues to be pervasive in the scientific literature, but is still poorly studied and understood. Here, we used 626 million occurrences from the Global Biodiversity Information Facility (GBIF), the biggest biodiversity data portal, to characterize the taxonomic bias in biodiversity data. We also investigated how societal preferences and taxonomic research relate to biodiversity data gathering. For each species belonging to 24 taxonomic classes, we used the number of publications from Web of Science and the number of web pages from Bing searches to approximate research activity and societal preferences. Our results show that societal preferences, rather than research activity, strongly correlate with taxonomic bias, which lead us to assert that scientists should advertise less charismatic species and develop societal initiatives (e.g. citizen science) that specifically target neglected organisms. Ensuring that biodiversity is representatively sampled while this is still possible is an urgent prerequisite for achieving efficient conservation plans and a global understanding of our surrounding environment.

  10. Strategies and guidelines for scholarly publishing of biodiversity data

    Directory of Open Access Journals (Sweden)

    Lyubomir Penev

    2017-02-01

    Full Text Available The present paper describes policies and guidelines for scholarly publishing of biodiversity and biodiversity-related data, elaborated and updated during the Framework Program 7 EU BON project, on the basis of an earlier version published on Pensoft's website in 2011. The document discusses some general concepts, including a definition of datasets, incentives to publish data and licenses for data publishing. Further, it defines and compares several routes for data publishing, namely as (1 supplementary files to research articles, which may be made available directly by the publisher, or (2 published in a specialized open data repository with a link to it from the research article, or (3 as a data paper, i.e., a specific, stand-alone publication describing a particular dataset or a collection of datasets, or (4 integrated narrative and data publishing through online import/download of data into/from manuscripts, as provided by the Biodiversity Data Journal. The paper also contains detailed instructions on how to prepare and peer review data intended for publication, listed under the Guidelines for Authors and Reviewers, respectively. Special attention is given to existing standards, protocols and tools to facilitate data publishing, such as the Integrated Publishing Toolkit of the Global Biodiversity Information Facility (GBIF IPT and the DarwinCore Archive (DwC-A. A separate section describes most leading data hosting/indexing infrastructures and repositories for biodiversity and ecological data.

  11. Global forest loss disproportionately erodes biodiversity in intact landscapes.

    Science.gov (United States)

    Betts, Matthew G; Wolf, Christopher; Ripple, William J; Phalan, Ben; Millers, Kimberley A; Duarte, Adam; Butchart, Stuart H M; Levi, Taal

    2017-07-27

    Global biodiversity loss is a critical environmental crisis, yet the lack of spatial data on biodiversity threats has hindered conservation strategies. Theory predicts that abrupt biodiversity declines are most likely to occur when habitat availability is reduced to very low levels in the landscape (10-30%). Alternatively, recent evidence indicates that biodiversity is best conserved by minimizing human intrusion into intact and relatively unfragmented landscapes. Here we use recently available forest loss data to test deforestation effects on International Union for Conservation of Nature Red List categories of extinction risk for 19,432 vertebrate species worldwide. As expected, deforestation substantially increased the odds of a species being listed as threatened, undergoing recent upgrading to a higher threat category and exhibiting declining populations. More importantly, we show that these risks were disproportionately high in relatively intact landscapes; even minimal deforestation has had severe consequences for vertebrate biodiversity. We found little support for the alternative hypothesis that forest loss is most detrimental in already fragmented landscapes. Spatial analysis revealed high-risk hot spots in Borneo, the central Amazon and the Congo Basin. In these regions, our model predicts that 121-219 species will become threatened under current rates of forest loss over the next 30 years. Given that only 17.9% of these high-risk areas are formally protected and only 8.9% have strict protection, new large-scale conservation efforts to protect intact forests are necessary to slow deforestation rates and to avert a new wave of global extinctions.

  12. Mutualism Disruption Threatens Global Plant Biodiversity: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Clare E Aslan

    Full Text Available As global environmental change accelerates, biodiversity losses can disrupt interspecific interactions. Extinctions of mutualist partners can create "widow" species, which may face reduced ecological fitness. Hypothetically, such mutualism disruptions could have cascading effects on biodiversity by causing additional species coextinctions. However, the scope of this problem - the magnitude of biodiversity that may lose mutualist partners and the consequences of these losses - remains unknown.We conducted a systematic review and synthesis of data from a broad range of sources to estimate the threat posed by vertebrate extinctions to the global biodiversity of vertebrate-dispersed and -pollinated plants. Though enormous research gaps persist, our analysis identified Africa, Asia, the Caribbean, and global oceanic islands as geographic regions at particular risk of disruption of these mutualisms; within these regions, percentages of plant species likely affected range from 2.1-4.5%. Widowed plants are likely to experience reproductive declines of 40-58%, potentially threatening their persistence in the context of other global change stresses.Our systematic approach demonstrates that thousands of species may be impacted by disruption in one class of mutualisms, but extinctions will likely disrupt other mutualisms, as well. Although uncertainty is high, there is evidence that mutualism disruption directly threatens significant biodiversity in some geographic regions. Conservation measures with explicit focus on mutualistic functions could be necessary to bolster populations of widowed species and maintain ecosystem functions.

  13. Circumpolar biodiversity monitoring program (CBMP): Coastal expert workshop meeting report

    Science.gov (United States)

    Anderson, Rebecca D.; McLennan, Donald; Thomson, Laura; Wegeberg, Susse; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, Stacey; Christensen, Thomas K.; Price, Courtney

    2016-01-01

    The Coastal Expert Workshop, which took place in Ottawa, Canada from March 1 to 3, 2016, initiated the development of the Arctic Coastal Biodiversity Monitoring Plan (Coastal Plan). Meeting participants, including northern residents, representatives from industry, non-governmental organisations (NGOs), academia, and government regulators and agencies from across the circumpolar Arctic, discussed current biodiversity monitoring efforts, key issues facing biodiversity in Arctic coastal areas, and collectively identified monitoring indicators, or Focal Ecosystem Components (FECs). On February 29, the day before the workshop, a full day was allocated to Traditional Knowledge (TK) holders to meet and elucidate how this important knowledge can be included in the process of building the Coastal Plan and monitoring biodiversity in Arctic coastal areas, along with scientific data and variables. This document provides 1) background information about the Circumpolar Biodiversity Monitoring Programme and the Coastal Expert Monitoring Group, 2) overviews on workshop presentations and breakout sessions, and 3) details regarding outcomes of the workshop that will inform the drafting of the Coastal Plan.

  14. Landscape Visual Quality and Meiofauna Biodiversity on Sandy Beaches

    Science.gov (United States)

    Felix, Gabriela; Marenzi, Rosemeri C.; Polette, Marcos; Netto, Sérgio A.

    2016-10-01

    Sandy beaches are central economic assets, attracting more recreational users than other coastal ecosystems. However, urbanization and landscape modification can compromise both the functional integrity and the attractiveness of beach ecosystems. Our study aimed at investigating the relationship between sandy beach artificialization and the landscape perception by the users, and between sandy beach visual attractiveness and biodiversity. We conducted visual and biodiversity assessments of urbanized and semiurbanized sandy beaches in Brazil and Uruguay. We specifically examined meiofauna as an indicator of biodiversity. We hypothesized that urbanization of sandy beaches results in a higher number of landscape detractors that negatively affect user evaluation, and that lower-rated beach units support lower levels of biodiversity. We found that urbanized beach units were rated lower than semiurbanized units, indicating that visual quality was sensitive to human interventions. Our expectations regarding the relationship between landscape perception and biodiversity were only partially met; only few structural and functional descriptors of meiofauna assemblages differed among classes of visual quality. However, lower-rated beach units exhibited signs of lower environmental quality, indicated by higher oligochaete densities and significant differences in meiofauna structure. We conclude that managing sandy beaches needs to advance beyond assessment of aesthetic parameters to also include the structure and function of beach ecosystems. Use of such supporting tools for managing sandy beaches is particularly important in view of sea level rise and increasing coastal development.

  15. Biodiversity data provision and decision-making - addressing the challenges

    Directory of Open Access Journals (Sweden)

    Katherine Despot-Belmonte

    2017-02-01

    Full Text Available Essential Biodiversity Variables (EBVs are measurements required for study, reporting, and management of biodiversity change. They are being developed to support consistency, from the collection to the reporting of biodiversity data at the national, regional and global scales. However, "EBV stakeholders" need to strike a balance between 'doing innovative research' and 'having positive impact' on biodiversity management decisions. This paper reports on a workshop entitled Identifying joint pathways to address the challenges of biodiversity data provision and decision-making and presents the main workshop’s output, a “researcher’s brief” entitled Guiding principles for promoting the application of EBVs for current and future needs of decision-makers. These guiding principles are: Speak with a common voice; Clearly define what is an EBV and how it relates to indicators; Engage beyond the research world; Be realistic about what can be done now and later; Define criteria for good EBVs; Use EBV as a clearing house; Convey the limitations of EBVs; Clarify what impact EBVs should have; Be salient, credible, legitimate, iterative; Don't put an EBV skin on everything you do; Don't create too many EBVs; and Don't reduce EBVs to building blocks of indicators. This brief is of relevance to the wider GEO BON (Group on Earth Observation Biodoversity Observation Network community, and in particular those scientists/researchers interested in the application of EBVs.

  16. Making Sense of Biodiversity: The Affordances of Systems Ecology.

    Science.gov (United States)

    Andersson, Erik; McPhearson, Timon

    2018-01-01

    We see two related, but not well-linked fields that together could help us better understand biodiversity and how it, over time, provides benefits to people. The affordances approach in environmental psychology offers a way to understand our perceptual appraisal of landscapes and biodiversity and, to some extent, intentional choice or behavior, i.e., a way of relating the individual to the system s/he/it lives in. In the field of ecology, organism-specific functional traits are similarly understood as the physiological and behavioral characteristics of an organism that informs the way it interacts with its surroundings. Here, we review the often overlooked role of traits in the provisioning of ecosystem services as a potential bridge between affordance theory and applied systems ecology. We propose that many traits can be understood as the basis for the affordances offered by biodiversity, and that they offer a more fruitful way to discuss human-biodiversity relations than do the taxonomic information most often used. Moreover, as emerging transdisciplinary studies indicate, connecting affordances to functional traits allows us to ask questions about the temporal and two-way nature of affordances and perhaps most importantly, can serve as a starting point for more fully bridging the fields of ecology and environmental psychology with respect to how we understand human-biodiversity relationships.

  17. A new freshwater biodiversity indicator based on fish community assemblages.

    Directory of Open Access Journals (Sweden)

    Joanne Clavel

    Full Text Available Biodiversity has reached a critical state. In this context, stakeholders need indicators that both provide a synthetic view of the state of biodiversity and can be used as communication tools. Using river fishes as model, we developed community indicators that aim at integrating various components of biodiversity including interactions between species and ultimately the processes influencing ecosystem functions. We developed indices at the species level based on (i the concept of specialization directly linked to the niche theory and (ii the concept of originality measuring the overall degree of differences between a species and all other species in the same clade. Five major types of originality indices, based on phylogeny, habitat-linked and diet-linked morphology, life history traits, and ecological niche were analyzed. In a second step, we tested the relationship between all biodiversity indices and land use as a proxy of human pressures. Fish communities showed no significant temporal trend for most of these indices, but both originality indices based on diet- and habitat- linked morphology showed a significant increase through time. From a spatial point of view, all indices clearly singled out Corsica Island as having higher average originality and specialization. Finally, we observed that the originality index based on niche traits might be used as an informative biodiversity indicator because we showed it is sensitive to different land use classes along a landscape artificialization gradient. Moreover, its response remained unchanged over two other land use classifications at the global scale and also at the regional scale.

  18. Biodiversity conservation and armed conflict: a warfare ecology perspective.

    Science.gov (United States)

    Hanson, Thor

    2018-04-23

    The activities involved in preparing for, executing, and recovering from armed conflict are globally pervasive and consequential, with significant impacts on natural systems. Effects on biodiversity are predominantly negative, produced by direct and indirect battlefield impacts, as well as the general breakdown of social, economic, and governance systems during wartime. Certain conservation opportunities do occur, however, particularly on lands set aside for training exercises, buffer zones, and peace parks. Here, the relationship between armed conflict and biodiversity is reviewed using the temporal framework of warfare ecology, which defines warfare as an ongoing process of three overlapping stages: preparations, war (armed conflict), and postwar activities. Several themes emerge from recent studies, including a heightened awareness of biodiversity conservation on military lands, the potential for scientific and conservation engagement to mitigate negative biodiversity impacts in war zones, and the importance of the postwar period for incorporating biodiversity priorities into reconstruction and recovery efforts. Research limitations and knowledge gaps are also discussed. © 2018 New York Academy of Sciences.

  19. Sparing land for biodiversity at multiple spatial scales

    Directory of Open Access Journals (Sweden)

    Johan eEkroos

    2016-01-01

    Full Text Available A common approach to the conservation of farmland biodiversity and the promotion of multifunctional landscapes, particularly in landscapes containing only small remnants of non-crop habitats, has been to maintain landscape heterogeneity and reduce land-use intensity. In contrast, it has recently been shown that devoting specific areas of non-crop habitats to conservation, segregated from high-yielding farmland (‘land sparing’, can more effectively conserve biodiversity than promoting low-yielding, less intensively managed farmland occupying larger areas (‘land sharing’. In the present paper we suggest that the debate over the relative merits of land sparing or land sharing is partly blurred by the differing spatial scales at which it is suggested that land sparing should be applied. We argue that there is no single correct spatial scale for segregating biodiversity protection and commodity production in multifunctional landscapes. Instead we propose an alternative conceptual construct, which we call ‘multiple-scale land sparing’, targeting biodiversity and ecosystem services in transformed landscapes. We discuss how multiple-scale land sparing may overcome the apparent dichotomy between land sharing and land sparing and help to find acceptable compromises that conserve biodiversity and landscape multifunctionality.

  20. [Advances in the research on hyperspectral remote sensing in biodiversity and conservation].

    Science.gov (United States)

    He, Cheng; Feng, Zhong-Ke; Yuan, Jin-Jun; Wang, Jia; Gong, Yin-Xi; Dong, Zhi-Hai

    2012-06-01

    With the species reduction and the habitat destruction becoming serious increasingly, the biodiversity conservation has become one of the hottest topics. Remote sensing, the science of non-contact collection information, has the function of corresponding estimates of biodiversity, building model between species diversity relationship and mapping the index of biodiversity, which has been used widely in the field of biodiversity conservation. The present paper discussed the application of hyperspectral technology to the biodiversity conservation from two aspects, remote sensors and remote sensing techniques, and after, enumerated successful applications for emphasis. All these had a certain reference value in the development of biodiversity conservation.

  1. Uncertainty in biodiversity science, policy and management: a conceptual overview

    Directory of Open Access Journals (Sweden)

    Yrjö Haila

    2014-10-01

    Full Text Available The protection of biodiversity is a complex societal, political and ultimately practical imperative of current global society. The imperative builds upon scientific knowledge on human dependence on the life-support systems of the Earth. This paper aims at introducing main types of uncertainty inherent in biodiversity science, policy and management, as an introduction to a companion paper summarizing practical experiences of scientists and scholars (Haila et al. 2014. Uncertainty is a cluster concept: the actual nature of uncertainty is inherently context-bound. We use semantic space as a conceptual device to identify key dimensions of uncertainty in the context of biodiversity protection; these relate to [i] data; [ii] proxies; [iii] concepts; [iv] policy and management; and [v] normative goals. Semantic space offers an analytic perspective for drawing critical distinctions between types of uncertainty, identifying fruitful resonances that help to cope with the uncertainties, and building up collaboration between different specialists to support mutual social learning.

  2. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    Science.gov (United States)

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  3. Resobio. Management of forest residues: preserving soils and biodiversity

    International Nuclear Information System (INIS)

    Rantien, Caroline; Charasse, Laurent; Wlerick, Lise; Landmann, Guy; Nivet, Cecile; Jallais, Anais; Augusto, Laurent; Bigot, Maryse; Thivolle Cazat, Alain; Bouget, Christophe; Brethes, Alain; Boulanger, Vincent; Richter, Claudine; Cornu, Sophie; Rakotoarison, Hanitra; Ulrich, Erwin; Deleuze, Christine; Michaud, Daniel; Cacot, Emmanuel; Pousse, Noemie; Ranger, Jacques; Saint-Andre, Laurent; Zeller, Bernd; Achat, David; Cabral, Anne-Sophie; Akroume, Emila; Aubert, Michael; Bailly, Alain; Fraysse, Jean-Yves; Fraud, Benoit; Gardette, Yves-Marie; Gibaud, Gwenaelle; Helou, Tammouz-Enaut; Pitocchi, Sophie; Vivancos, Caroline

    2014-03-01

    The Resobio project (management of forest slash: preservation of soils and biodiversity) aimed at updating knowledge available at the international level (with a focus on temperate areas) on the potential consequences of forest slash sampling on fertility and on biodiversity, and at identifying orientations for recommendations for a revision of the ADEME guide of 2006 on wise collecting of forest slash. The first part of this report is a synthesis report which gives an overview of results about twenty issues dealing with the nature of wood used for energy production and the role of slash, about the consequences of this type of collecting for soil fertility and species productivity, and about impacts on biodiversity. Based on these elements, recommendations are made for slash management and for additional follow-up and research. The second part contains five scientific and technical reports which more deeply analyse the issue of fertility, and technical documents on slash management (guides) published in various countries

  4. Towards a data publishing framework for primary biodiversity data

    DEFF Research Database (Denmark)

    Ingwersen, Peter; Chavan, Vishwas S

    2009-01-01

      Background Currently primary scientific data, especially that dealing with biodiversity, is neither easily discoverable nor accessible. Amongst several impediments, one is a lack of professional recognition of scientific data publishing efforts. A possible solution is establishment of a ‘Data...... Publishing Framework' which would encourage and recognise investments and efforts by institutions and individuals towards management, and publishing of primary scientific data potentially on a par with recognitions received for scholarly publications.   Discussion This paper reviews the state......-of-the-art of primary biodiversity data publishing, and conceptualises a ‘Data Publishing Framework' that would help incentivise efforts and investments by institutions and individuals in facilitating free and open access to biodiversity data. It further postulates the institutionalisation of  a ‘Data Usage Index (DUI...

  5. Opportunities for biodiversity gains under the world's largest reforestation programme

    Science.gov (United States)

    Hua, Fangyuan; Wang, Xiaoyang; Zheng, Xinlei; Fisher, Brendan; Wang, Lin; Zhu, Jianguo; Tang, Ya; Yu, Douglas W.; Wilcove, David S.

    2016-01-01

    Reforestation is a critical means of addressing the environmental and social problems of deforestation. China's Grain-for-Green Program (GFGP) is the world's largest reforestation scheme. Here we provide the first nationwide assessment of the tree composition of GFGP forests and the first combined ecological and economic study aimed at understanding GFGP's biodiversity implications. Across China, GFGP forests are overwhelmingly monocultures or compositionally simple mixed forests. Focusing on birds and bees in Sichuan Province, we find that GFGP reforestation results in modest gains (via mixed forest) and losses (via monocultures) of bird diversity, along with major losses of bee diversity. Moreover, all current modes of GFGP reforestation fall short of restoring biodiversity to levels approximating native forests. However, even within existing modes of reforestation, GFGP can achieve greater biodiversity gains by promoting mixed forests over monocultures; doing so is unlikely to entail major opportunity costs or pose unforeseen economic risks to households. PMID:27598524

  6. Biodiversity Analysis of Vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    W. K. Ostler; D. J. Hansen

    2001-01-01

    The Nevada Test Site (NTS) located in south central Nevada encompasses approximately 3,561 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996-1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. These data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Species diversity maps (species richness vs. species abundance) have been produced. Differences in ecosystem diversity at the ecoregion, alliance, association, and ecological landform unit levels are presented. Spatial distribution maps of species presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors (elevation, soil, precipitation) and anthropogenic disturbance on biodiversity are assessed

  7. Darwin Core: An Evolving Community-Developed Biodiversity Data Standard

    Science.gov (United States)

    Wieczorek, John; Bloom, David; Guralnick, Robert; Blum, Stan; Döring, Markus; Giovanni, Renato; Robertson, Tim; Vieglais, David

    2012-01-01

    Biodiversity data derive from myriad sources stored in various formats on many distinct hardware and software platforms. An essential step towards understanding global patterns of biodiversity is to provide a standardized view of these heterogeneous data sources to improve interoperability. Fundamental to this advance are definitions of common terms. This paper describes the evolution and development of Darwin Core, a data standard for publishing and integrating biodiversity information. We focus on the categories of terms that define the standard, differences between simple and relational Darwin Core, how the standard has been implemented, and the community processes that are essential for maintenance and growth of the standard. We present case-study extensions of the Darwin Core into new research communities, including metagenomics and genetic resources. We close by showing how Darwin Core records are integrated to create new knowledge products documenting species distributions and changes due to environmental perturbations. PMID:22238640

  8. Circumpolar Biodiversity Monitoring Programme: Coastal Expert Workshop meeting summary

    Science.gov (United States)

    Thomson, L.; McLennan, Donald; Anderson, Rebecca D.; Wegeberg, S.; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, S.; Christensen, T.; Price, C.

    2016-01-01

    The Coastal Expert Workshop brought together a diverse group of coastal experts with the common goal of developing a biodiversity monitoring program for coastal ecosystems across the circumpolar Arctic. Meeting participants, including northern residents, industry and Non-Governmental Organization (NGO) representatives, scientists, and government regulators from across the circumpolar Arctic, gathered at the Lord Elgin Hotel in Ottawa from March 1 to 3, 2016, to discuss current biodiversity monitoring efforts, understand key issues facing biodiversity in the Arctic coastal areas and suggest monitoring indicators, or Focal Ecosystem Components, for the program. A Traditional Knowledge Holders meeting was held on February 29, 2016 in conjunction with the workshop. The following document provides a summary of the workshop activities and outcomes, and will be followed by a more complete Workshop Report.

  9. A comparison of proxy performance in coral biodiversity monitoring

    Science.gov (United States)

    Richards, Zoe T.

    2013-03-01

    The productivity and health of coral reef habitat is diminishing worldwide; however, the effect that habitat declines have on coral reef biodiversity is not known. Logistical and financial constraints mean that surveys of hard coral communities rarely collect data at the species level; hence it is important to know if there are proxy metrics that can reliably predict biodiversity. Here, the performances of six proxy metrics are compared using regression analyses on survey data from a location in the northern Great Barrier Reef. Results suggest generic richness is a strong explanatory variable for spatial patterns in species richness (explaining 82 % of the variation when measured on a belt transect). The most commonly used metric of reef health, percentage live coral cover, is not positively or linearly related to hard coral species richness. This result raises doubt as to whether management actions based on such reefscape information will be effective for the conservation of coral biodiversity.

  10. The interaction of human population, food production, and biodiversity protection.

    Science.gov (United States)

    Crist, Eileen; Mora, Camilo; Engelman, Robert

    2017-04-21

    Research suggests that the scale of human population and the current pace of its growth contribute substantially to the loss of biological diversity. Although technological change and unequal consumption inextricably mingle with demographic impacts on the environment, the needs of all human beings-especially for food-imply that projected population growth will undermine protection of the natural world. Numerous solutions have been proposed to boost food production while protecting biodiversity, but alone these proposals are unlikely to staunch biodiversity loss. An important approach to sustaining biodiversity and human well-being is through actions that can slow and eventually reverse population growth: investing in universal access to reproductive health services and contraceptive technologies, advancing women's education, and achieving gender equality. Copyright © 2017, American Association for the Advancement of Science.

  11. Spatial relationship between climatic diversity and biodiversity conservation value.

    Science.gov (United States)

    Wang, Junjun; Wu, Ruidong; He, Daming; Yang, Feiling; Hu, Peijun; Lin, Shiwei; Wu, Wei; Diao, Yixin; Guo, Yang

    2018-06-04

    Capturing the full range of climatic diversity in a reserve network is expected to improve the resilience of biodiversity to climate change. Therefore, a study on systematic conservation planning for climatic diversity that explicitly or implicitly hypothesizes that regions with higher climatic diversity will support greater biodiversity is needed. However, little is known about the extent and generality of this hypothesis. This study utilized the case of Yunnan, southwest China, to quantitatively classify climatic units and modeled 4 climatic diversity indicators, including the variety of climatic units (VCU), rarity of climatic units (RCU), endemism of climatic units (ECU) and a composite index of climatic units (CICD). We used 5 reliable priority conservation area (PCA) schemes to represent the areas with high biodiversity conservation value. We then investigated the spatial relationships between the 4 climatic diversity indicators and the 5 PCA schemes and assessed the representation of climatic diversity within the existing nature reserves. The CICD exhibited the best performance for indicating high conservation value areas, followed by the ECU and RCU. However, contrary to conventional knowledge, VCU did not show a positive association with biodiversity conservation value. The rarer or more endemic climatic units tended to have higher reserve coverage than the more common units. However, only 28 units covering 10.5% of the land in Yunnan had more than 17% of their areas protected. In addition to climatic factors, topography and human disturbances also significantly affected the relationship between climatic diversity and biodiversity conservation value. This analysis suggests that climatic diversity can be an effective surrogate for establishing a more robust reserve network under climate change in Yunnan. Our study improves the understanding of the relationship between climatic diversity and biodiversity and helps build an evidence-based foundation for

  12. Enhanced biodiversity beyond marine reserve boundaries: the cup spillith over.

    Science.gov (United States)

    Russ, Garry R; Alcala, Angel C

    2011-01-01

    Overfishing can have detrimental effects on marine biodiversity and the structure of marine ecosystems. No-take marine reserves (NTMRs) are much advocated as a means of protecting biodiversity and ecosystem structure from overharvest. In contrast to terrestrial protected areas, NTMRs are not only expected to conserve or recover biodiversity and ecosystems within their boundaries, but also to enhance biodiversity beyond their boundaries by exporting species richness and more complex biological communities. Here we show that species richness of large predatory reef fish increased fourfold and 11-fold inside two Philippine no-take marine reserves over 14 and 25 years, respectively. Outside one reserve (Apo) the species richness also increased. This increase beyond the Apo reserve boundary was 78% higher closer to the boundary (200-250 m) than farther from it (250-500 m). The increase in richness beyond the boundary could not be explained by improvements over time in habitat or prey availability. Furthermore, community composition of predatory fish outside but close to (200-250 m) the Apo reserve became very similar to that inside the reserve over time, almost converging with it in multivariate space after 26 years of reserve protection. This is consistent with the suggestion that, as community composition inside Apo reserve increased in complexity, this complexity spilled over the boundary into nearby fished areas. Clearly, the spillover of species richness and community complexity is a direct consequence of the spillover of abundance of multiple species. However, this spillover of species richness and community complexity demonstrates an important benefit of biodiversity and ecosystem export from reserves, and it provides hope that reserves can help to reverse the decline of marine ecosystems and biodiversity.

  13. Conservation, biodiversity and infectious disease: scientific evidence and policy implications

    Science.gov (United States)

    Young, Hillary S.; Wood, Chelsea L.; Kilpatrick, A. Marm; Lafferty, Kevin D.; Nunn, Charles L.; Vincent, Jeffrey R.

    2017-01-01

    Habitat destruction and infectious disease are dual threats to nature and people. The potential to simultaneously advance conservation and human health has attracted considerable scientific and popular interest; in particular, many authors have justified conservation action by pointing out potential public health benefits . One major focus of this debate—that biodiversity conservation often decreases infectious disease transmission via the dilution effect—remains contentious. Studies that test for a dilution effect often find a negative association between a diversity metric and a disease risk metric, but how such associations should inform conservation policy remains unclear for several reasons. For one, diversity and infection risk have many definitions, making it possible to identify measures that conform to expectations. Furthermore, the premise that habitat destruction consistently reduces biodiversity is in question, and disturbance or conservation can affect disease in many ways other than through biodiversity change. To date, few studies have examined the broader set of mechanisms by which anthropogenic disturbance or conservation might increase or decrease infectious disease risk to human populations. Due to interconnections between biodiversity change, economics and human behaviour, moving from ecological theory to policy action requires understanding how social and economic factors affect conservation.This Theme Issue arose from a meeting aimed at synthesizing current theory and data on ‘biodiversity, conservation and infectious disease’ (4–6 May 2015). Ecologists, evolutionary biologists, economists, epidemiologists, veterinary scientists, public health professionals, and conservation biologists from around the world discussed the latest research on the ecological and socio-economic links between conservation, biodiversity and infectious disease, and the open questions and controversies in these areas. By combining ecological understanding

  14. Biodiversity influences plant productivity through niche-efficiency.

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C; McGuire, A David; Reich, Peter B

    2015-05-05

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity-ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche-efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche-efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species' inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  15. A decadal view of biodiversity informatics: challenges and priorities

    Science.gov (United States)

    2013-01-01

    Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species. It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible. This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens’ science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike. PMID:23587026

  16. A decadal view of biodiversity informatics: challenges and priorities.

    Science.gov (United States)

    Hardisty, Alex; Roberts, Dave; Addink, Wouter; Aelterman, Bart; Agosti, Donat; Amaral-Zettler, Linda; Ariño, Arturo H; Arvanitidis, Christos; Backeljau, Thierry; Bailly, Nicolas; Belbin, Lee; Berendsohn, Walter; Bertrand, Nic; Caithness, Neil; Campbell, David; Cochrane, Guy; Conruyt, Noël; Culham, Alastair; Damgaard, Christian; Davies, Neil; Fady, Bruno; Faulwetter, Sarah; Feest, Alan; Field, Dawn; Garnier, Eric; Geser, Guntram; Gilbert, Jack; Grosche; Grosser, David; Hardisty, Alex; Herbinet, Bénédicte; Hobern, Donald; Jones, Andrew; de Jong, Yde; King, David; Knapp, Sandra; Koivula, Hanna; Los, Wouter; Meyer, Chris; Morris, Robert A; Morrison, Norman; Morse, David; Obst, Matthias; Pafilis, Evagelos; Page, Larry M; Page, Roderic; Pape, Thomas; Parr, Cynthia; Paton, Alan; Patterson, David; Paymal, Elisabeth; Penev, Lyubomir; Pollet, Marc; Pyle, Richard; von Raab-Straube, Eckhard; Robert, Vincent; Roberts, Dave; Robertson, Tim; Rovellotti, Olivier; Saarenmaa, Hannu; Schalk, Peter; Schaminee, Joop; Schofield, Paul; Sier, Andy; Sierra, Soraya; Smith, Vince; van Spronsen, Edwin; Thornton-Wood, Simon; van Tienderen, Peter; van Tol, Jan; Tuama, Éamonn Ó; Uetz, Peter; Vaas, Lea; Vignes Lebbe, Régine; Vision, Todd; Vu, Duong; De Wever, Aaike; White, Richard; Willis, Kathy; Young, Fiona

    2013-04-15

    Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species.It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible.This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens' science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike.

  17. Biodiversity governance: a Tower of Babel of scales and cultures.

    Directory of Open Access Journals (Sweden)

    Jorge Soberón

    2015-03-01

    Full Text Available The recently created Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES, originally focused on multilateral and global issues, is shifting its focus to address local issues and to include in its assessments local stakeholders and indigenous and traditional systems of knowledge. Acknowledging that full biodiversity governance is unavoidably rooted in participation of local actors and their problems and knowledge, we suggest that to deal successfully with the complexity and diversity of local issues, including indigenous knowledge systems, IPBES must recognize a key role of local institutions.

  18. Entangled in the web of life: biodiversity and the media

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Mike

    2008-05-15

    Biodiversity — the variety of genes, species and ecosystems on the planet — is disappearing faster than at any time since the demise of the dinosaurs. The implications are profound, for humanity and for our efforts to tackle poverty and climate change. Yet the media has under-reported this urgent environmental challenge, partly because researchers and policymakers have failed to communicate the issues in a way that is relevant to most people. This briefing explains why biodiversity loss will be an increasingly important story in the coming years. It suggests ways for journalists to improve their reporting and make it mean more to their audiences.

  19. Do European agroforestry systems enhance biodiversity and ecosystem services?

    DEFF Research Database (Denmark)

    Torralba Viorreta, Mario; Fagerholm, Nora; Burgess, Paul J.

    2016-01-01

    Agroforestry has been proposed as a sustainable agricultural system over conventional agriculture and forestry, conserving biodiversity and enhancing ecosystem service provision while not compromising productivity. However, the available evidence for the societal benefits of agroforestry...... is fragmented and does often not integrate diverse ecosystem services into the assessment. To upscale existing case-study insights to the European level, we conducted a meta-analysis on the effects of agroforestry on ecosystem service provision and on biodiversity levels. From 53 publications we extracted...... a total of 365 comparisons that were selected for the meta-analysis. Results revealed an overall positive effect of agroforestry (effect size = 0.454, p agroforestry practices...

  20. Rocky road in the Rockies: Challenges to biodiversity

    Science.gov (United States)

    Tomback, Diana F.; Kendall, Katherine C.; Baron, Jill S.

    2002-01-01

    To people worldwide, the Rocky Mountains of the United States and Canada represent a last bastion of nature in its purest and rawest form-unspoiled forests teeming with elk and deer stalked by mountain lions and grizzly bears; bald eagles nesting near lakes and rivers; fat, feisty native trout in rushing mountain streams; and dazzling arrays of wildflowers in lush meadows. In fact, the total biodiversity of the Rocky Mountains is considerable, with relatively high diversity in birds, mammals, butterflies, reptiles, and conifers (Ricketts et al. 1999) and with geographic variation in the flora and fauna of alpine, forest, foothill, and adjacent shortgrass prairie and shrub communities over more than 20 degrees of latitude and more than 10' of longitude. Although the biodiversity of most North American regions has declined because of anthropogenic influences, the perception remains that the biodiversity of the Rocky Mountains is intact. This view exists in part because the Rocky Mountains are remote from urban centers, in part because so much of the land comprises protected areas such as national parks and wilderness areas, and in part because of wishful thinking-that nothing bad could happen to the biodiversity that is so much a part of the history, national self-image, legends, nature films, and movies of the United States and Canada. Despite modern technology and the homogenization and globalization of their cities and towns, at heart North Americans still regard their land as the New World, with pristine nature and untamed landscapes epitomized by the Rockies. The reality is that the biodiversity of the Rocky Mountains has not been free of anthropogenic influences since the West was settled in the 1800s, and in fact it was altered by Native Americans for centuries prior to settlement. A number of escalating problems and consequences of management choices are currently changing Rocky Mountain ecological communities at a dizzying pace. In Order to maintain some

  1. DNA Barcodes for Marine Biodiversity: Moving Fast Forward?

    Directory of Open Access Journals (Sweden)

    Adriana E. Radulovici

    2010-03-01

    Full Text Available ‘Biodiversity’ means the variety of life and it can be studied at different levels (genetic, species, ecosystem and scales (spatial and temporal. Last decades showed that marine biodiversity has been severely underestimated at all levels. In order to investigate diversity patterns and underlying processes, there is a need to know what species live in the marine environment. An emerging tool for species identification, DNA barcoding can reliably assign unknown specimens to known species, also flagging potential cryptic species and genetically distant populations. This paper will review the role of DNA barcoding for the study of marine biodiversity at the species level.

  2. Agroecology and biodiversity of the catchment area of Swat River

    International Nuclear Information System (INIS)

    Ahmad, H.; Ahmed, R.

    2003-01-01

    Agroecological studies of the of the Swat River catchment area showed that the terrestrial ecosystem of the area is divided into subtropical, humid temperate, cool temperate, cold temperate, subalpine, alpine and cold desert zones. Indicator species along with their altitudinal limits are specified for each zone. Unplanned population growth, agriculture extension, habitat losses, deforestation, environmental pollution and unwise use of natural resources are threats to the natural biodiversity of these zones. Its severity is very evident in the subtropical and humid temperate zones. The losses encountered to the biodiversity of the area under the influence of various anthropogenic stresses are highlighted. (author)

  3. Enriched biodiversity data as a resource and service.

    Science.gov (United States)

    Vos, Rutger Aldo; Biserkov, Jordan Valkov; Balech, Bachir; Beard, Niall; Blissett, Matthew; Brenninkmeijer, Christian; van Dooren, Tom; Eades, David; Gosline, George; Groom, Quentin John; Hamann, Thomas D; Hettling, Hannes; Hoehndorf, Robert; Holleman, Ayco; Hovenkamp, Peter; Kelbert, Patricia; King, David; Kirkup, Don; Lammers, Youri; DeMeulemeester, Thibaut; Mietchen, Daniel; Miller, Jeremy A; Mounce, Ross; Nicolson, Nicola; Page, Rod; Pawlik, Aleksandra; Pereira, Serrano; Penev, Lyubomir; Richards, Kevin; Sautter, Guido; Shorthouse, David Peter; Tähtinen, Marko; Weiland, Claus; Williams, Alan R; Sierra, Soraya

    2014-01-01

    Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source "data enrichment" workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species) from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i) mobilising heritage biodiversity knowledge; ii) formalising and linking concepts; and iii) addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further such integration in this research domain

  4. Enriched biodiversity data as a resource and service

    Directory of Open Access Journals (Sweden)

    Rutger Vos

    2014-06-01

    Full Text Available Background: Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source “data enrichment” workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. Results: The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i mobilising heritage biodiversity knowledge; ii formalising and linking concepts; and iii addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further

  5. Ecosystem simplification, biodiversity loss and plant virus emergence.

    Science.gov (United States)

    Roossinck, Marilyn J; García-Arenal, Fernando

    2015-02-01

    Plant viruses can emerge into crops from wild plant hosts, or conversely from domestic (crop) plants into wild hosts. Changes in ecosystems, including loss of biodiversity and increases in managed croplands, can impact the emergence of plant virus disease. Although data are limited, in general the loss of biodiversity is thought to contribute to disease emergence. More in-depth studies have been done for human viruses, but studies with plant viruses suggest similar patterns, and indicate that simplification of ecosystems through increased human management may increase the emergence of viral diseases in crops. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Forestry practices and aquatic biodiversity: Fish

    Science.gov (United States)

    Gresswell, Robert E.

    2005-01-01

    In the Pacific Northwest, fish communities are found in a diverse array of aquatic habitats ranging from the large coastal rivers of the temperate rainforests, to the fragmented and sometimes ephemeral streams of the xeric interior basins, and high-elevation streams and lakes in the mountainous areas (Rieman et al. 2003). Only high-elevation lakes and streams isolated above barriers to fish passage remained historically devoid of fish because they were never invaded following Pleistocene glaciation (Smith 1981). Despite this widespread distribution and once great population abundances, taxonomic diversity of fishes in these forested systems is naturally lower than in aquatic habitats in the eastern U.S. (Reeves, Bisson, and Dambacher 1998). Interactions among factors that influence species richness in aquatic systems (e.g., basin size, long-term stability of habitat, and barriers to colonization; Smith 1981) continue to influence the occurrence and persistence of fishes in these systems today. Consequently, the larger low-elevation rivers and estuaries support the greatest variety of fish species. In the high-elevation tributary streams, fish communities are less complex because these aquatic systems were less climatically and geologically stable, and fish populations were smaller and more prone to local extirpation. Furthermore, barriers to fish passage inhibited dispersal and colonization (Smith 1981). Streams in forested landscapes generally support salmon and trout, Oncorhynchus spp., whitefish Prosopium spp., sculpins Cottus spp., suckers Catostomus spp., and minnows (Cyprinidae), but in some of the colder streams, chars (e.g., Salvelinus confluentus and Salvelinus malma) and lampreys (Petromyzontidae)may also occur (Rieman et al. 2003).Although biodiversity defined in terms of fish species richness is low in the Pacific Northwest, intraspecific variability is high, and polytypic fish species are common in the diverse aquatic habitats of the region. For

  7. Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe–A review

    NARCIS (Netherlands)

    Henle, K.; Alard, D.; Clitherow, J.; Cobb, P.; Firbank, L.G.; Kull, T.; McCracken, D.; Moritz, R.F.A.; Niemelä, J.; Rebane, M.; Wascher, D.M.; Watt, A.; Young, J.

    2008-01-01

    This paper reviews conflicts between biodiversity conservation and agricultural activities in agricultural landscapes and evaluates strategies to reconcile such conflicts. Firstly, a historical perspective on the development of conflicts related to biodiversity in agricultural landscapes is

  8. Biodiversity conservation and climate mitigation: What role can economic instruments play?

    NARCIS (Netherlands)

    Ring, I.; Drechsler, M.; Teeffelen, van A.J.A.; Irawan, S.; Venter, O.

    2010-01-01

    Tradable permits and intergovernmental fiscal transfers play an increasing role in both biodiversity conservation and climate mitigation. In comparison to regulatory and planning approaches these economic instruments offer a more flexible and cost-effective approach to biodiversity conservation.

  9. User's Manual for the Biodiversity and Threatened and Endangered Species Experts (BioTES) Tool

    National Research Council Canada - National Science Library

    Sebesta, Georgia

    1996-01-01

    The Biodiversity and Threatened and Endangered Species Experts (BioTES), version 1.0 helps installation and government personnel locate points of contact for experts in the areas of biodiversity and threatened and endangered species...

  10. How much would it cost to monitor farmland biodiversity in Europe?

    NARCIS (Netherlands)

    Geijzendorffer, Ilse R.; Targetti, Stefano; Schneider, Manuel K.; Brus, Dick J.; Jongman, Robert H.G.; Knotters, Martin; Bogers, Marion M.B.; Staritsky, Igor

    2016-01-01

    To evaluate progress on political biodiversity objectives, biodiversity monitoring provides information on whether intended results are being achieved. Despite scientific proof that monitoring and evaluation increase the (cost) efficiency of policy measures, cost estimates for monitoring schemes

  11. Data from: How much would it cost to monitor farmland biodiversity in Europe?

    NARCIS (Netherlands)

    Geijzendorffer, I.R.; Targetti, Stefano; Schneider, Manuel K.; Brus, D.J.; Jongman, R.H.G.; Knotters, M.; Bogers, M.M.B.; Staritsky, I.G.

    2015-01-01

    To evaluate progress on political biodiversity objectives, biodiversity monitoring provides information on whether intended results are being achieved. Despite scientific proof that monitoring and evaluation increase the (cost) efficiency of policy measures, cost estimates for monitoring schemes are

  12. Potential biodiversity benefits from international programs to reduce carbon emissions from deforestation.

    Science.gov (United States)

    Siikamäki, Juha; Newbold, Stephen C

    2012-01-01

    Deforestation is the second largest anthropogenic source of carbon dioxide emissions and options for its reduction are integral to climate policy. In addition to providing potentially low cost and near-term options for reducing global carbon emissions, reducing deforestation also could support biodiversity conservation. However, current understanding of the potential benefits to biodiversity from forest carbon offset programs is limited. We compile spatial data on global forest carbon, biodiversity, deforestation rates, and the opportunity cost of land to examine biodiversity conservation benefits from an international program to reduce carbon emissions from deforestation. Our results indicate limited geographic overlap between the least-cost areas for retaining forest carbon and protecting biodiversity. Therefore, carbon-focused policies will likely generate substantially lower benefits to biodiversity than a more biodiversity-focused policy could achieve. These results highlight the need to systematically consider co-benefits, such as biodiversity in the design and implementation of forest conservation programs to support international climate policy.

  13. A new model of dynamic of plant biodiversity in changing farmlands ...

    African Journals Online (AJOL)

    A new model of dynamic of plant biodiversity in changing farmlands: Implications for the management of plant biodiversity along differential environmental gradient in the Yellow River of Henan Province in the spring.

  14. Testing the Efficacy of Global Biodiversity Hotspots for Insect Conservation: The Case of South African Katydids

    OpenAIRE

    Bazelet, Corinna S.; Thompson, Aileen C.; Naskrecki, Piotr

    2016-01-01

    The use of endemism and vascular plants only for biodiversity hotspot delineation has long been contested. Few studies have focused on the efficacy of global biodiversity hotspots for the conservation of insects, an important, abundant, and often ignored component of biodiversity. We aimed to test five alternative diversity measures for hotspot delineation and examine the efficacy of biodiversity hotspots for conserving a non-typical target organism, South African katydids. Using a 1° fishnet...

  15. Re-thinking on the role of business in biodiversity conservation

    OpenAIRE

    Barna, Cristina

    2008-01-01

    Today we face the challenge of building biodiversity business. There is a need to develop new business models and market mechanisms for biodiversity conservation, while also raising awareness and persuading the public and policy-makers that biodiversity can be conserved on a commercial basis. In this context the present paper is analyzing the arise of a new economic concept ‘business biodiversity’, focusing on the strategic importance of biodiversity for business and also presenting some busi...

  16. Counterintuitive proposals for trans-boundary ecological compensation under "No Net Loss" biodiversity policy

    DEFF Research Database (Denmark)

    Bull, Joseph William; Abatayo, Anna Lou; Strange, Niels

    2017-01-01

    ‘No net loss’ (NNL) policies involve quantifying biodiversity impacts associated with economic development, and implementing commensurate conservation gains to balance losses. Local stakeholders are often affected by NNL biodiversity trades. But to what extent are NNL principles intuitive...... compensation should be: close to development impacts; greater than losses; smaller, given a background trend of biodiversity decline; and, smaller when gains have co-benefits for biodiversity. However, survey participant proposals violated all four principles. Participants proposed substantial forest...

  17. Biodiversity of chaetognaths of the Andaman Sea, Indian Ocean.

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.; Gireesh, R.

    Andaman Sea is a prominent biodiversity hotspot in the Indian Ocean. Stratified zooplankton collections were taken at 33 locations during 2003-2006. Average density of chaetognaths was 8.5/msup(3) in open ocean and 41.6/m sup(3) in coastal waters...

  18. Identifying biodiversity hotspots for threatened mammal species in Iran

    NARCIS (Netherlands)

    Farashi, Azita; Shariati Najafabadi, Mitra; Hosseini, Mahshid

    2017-01-01

    Conservation biology has much more attention for biodiversity hot spots than before. In order to recognize the hotspots for Iranian terrestrial mammal species that are listed in any red list, nationally or globally, ten Species Distribution Models (SDMs) have been applied. The SDMs evaluation

  19. The zero-sum assumption in neutral biodiversity theory

    NARCIS (Netherlands)

    Etienne, R.S.; Alonso, D.; McKane, A.J.

    2007-01-01

    The neutral theory of biodiversity as put forward by Hubbell in his 2001 monograph has received much criticism for its unrealistic simplifying assumptions. These are the assumptions of functional equivalence among different species (neutrality), the assumption of point mutation speciation, and the

  20. Landscape moderation of biodiversity patterns and processes - eight hypotheses

    NARCIS (Netherlands)

    Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batary, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.; Ewers, R.M.; Frund, J.; Holt, R.D.; Holzschuh, A.; Klein, A.M.; Kleijn, D.; Kremen, C.; Landis, D.A.; Laurance, W.F.; Lindenmayer, D.B.; Scherber, C.; Sodhi, N.; Steffan-Dewenter, I.; Thies, C.; Putten, van der W.H.; Westphal, C.

    2012-01-01

    Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which

  1. Biodiversity of Terrestrial Vegetation during Past Warm Periods

    Science.gov (United States)

    Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.

    2016-12-01

    Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.

  2. Influence of Water quality on the biodiversity of phytoplankton in ...

    African Journals Online (AJOL)

    Dhamra estuarine ecosystem is a hotspot of rich biological diversity which supports a patch of mangrove along with unique flora and fauna. In this study, the diversity of phytoplankton population and other factors that control their growth and biodiversity were investigated. The samples were collected monthly from Dhamra ...

  3. The evolution of coleoid cephalopods and their present biodiversity ...

    African Journals Online (AJOL)

    The present status of phylogeny and classification in coleoid cephalopods and the effect of evolution on the present ecology and biodiversity in the group are examined. The basis of knowledge of cephalopod phylogeny was formulated by Naef in the early 1920s, and his ideas and the progress made in the intervening 75 ...

  4. Guidelines for Using Movement Science to Inform Biodiversity Policy

    Science.gov (United States)

    Barton, Philip S.; Lentini, Pia E.; Alacs, Erika; Bau, Sana; Buckley, Yvonne M.; Burns, Emma L.; Driscoll, Don A.; Guja, Lydia K.; Kujala, Heini; Lahoz-Monfort, José J.; Mortelliti, Alessio; Nathan, Ran; Rowe, Ross; Smith, Annabel L.

    2015-10-01

    Substantial advances have been made in our understanding of the movement of species, including processes such as dispersal and migration. This knowledge has the potential to improve decisions about biodiversity policy and management, but it can be difficult for decision makers to readily access and integrate the growing body of movement science. This is, in part, due to a lack of synthesis of information that is sufficiently contextualized for a policy audience. Here, we identify key species movement concepts, including mechanisms, types, and moderators of movement, and review their relevance to (1) national biodiversity policies and strategies, (2) reserve planning and management, (3) threatened species protection and recovery, (4) impact and risk assessments, and (5) the prioritization of restoration actions. Based on the review, and considering recent developments in movement ecology, we provide a new framework that draws links between aspects of movement knowledge that are likely the most relevant to each biodiversity policy category. Our framework also shows that there is substantial opportunity for collaboration between researchers and government decision makers in the use of movement science to promote positive biodiversity outcomes.

  5. Distributional (in)congruence of biodiversity-ecosystem functioning

    NARCIS (Netherlands)

    Mulder, C.; Boit, A.; Mori, S.; Vonk, J.A.; Dyer, S.D.; Faggiano, L.; Geisen, S.; González, A.L.; Kaspari, M.; Lavorel, S.; Marquet, P.A.; Rossberg, A.G.; Sterner, R.W.; Voigt, W.; Wall, D.H.

    2012-01-01

    The majority of research on biodiversity-ecosystem functioning in laboratories has concentrated on a few traits, but there is increasing evidence from the field that functional diversity controls ecosystem functioning more often than does species number. Given the importance of traits as predictors

  6. Deep-sea sponge grounds: Reservoirs of biodiversity

    NARCIS (Netherlands)

    Hogg, M.M.; Tendal, O.S.; Conway, K.W.; Pomponi, S.A.; van Soest, R.W.M.; Gutt, J.; Krautter, M.; Roberts, J.M.

    2010-01-01

    This report draws together scientific understanding of deep-water sponge grounds alongside the threats they face and ways in which they can be conserved. Beginning with a summary of research approaches, sponge biology and biodiversity, the report also gives up-to-date case studies of particular

  7. Linkages between biodiversity attributes and ecosystem services: A systematic review

    NARCIS (Netherlands)

    Harrison, P.A.; Berry, P.M.; Simpson, G.; Haslett, J.R.; Blicharska, M.; Bucur, M.; Dunford, R.; Egoh, B.; Garcia-llorente, M.; Geamănă, N.; Geertsema, W.; Lommelen, E.; Meiresonne, L.; Turkelboom, F.

    2014-01-01

    A systematic literature review was undertaken to analyse the linkages between different biodiversity attributes and 11 ecosystem services. The majority of relationships between attributes and ecosystem services cited in the 530 studies were positive. For example, the services of water quality

  8. Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia

    Directory of Open Access Journals (Sweden)

    Jane Fromont

    2016-10-01

    Full Text Available This study assessed the biodiversity of sponges within the Integrated Marine and Coastal Regionalisation for Australia (IMCRA bioregions of the Pilbara using datasets amalgamated from the Western Australian Museum and the Atlas of Living Australia. The Pilbara accounts for a total of 1164 Linnean and morphospecies. A high level of “apparent endemism” was recorded with 78% of species found in only one of six bioregions, with less than 10% confirmed as widely distributed. The Ningaloo, Pilbara Nearshore and Pilbara Offshore bioregions are biodiversity hotspots (>250 species and are recognised as having the highest conservation value, followed by North West Shelf containing 232 species. Species compositions differed between bioregions, with those that are less spatially separated sharing more species. Notably, the North West Province bioregion (110 species exhibited the most distinct species composition, highlighting it as a unique habitat within the Pilbara. While sponge biodiversity is apparently high, incomplete sampling effort for the region was identified, with only two sampling events recorded for the Central West Transition bioregion. Furthermore, only 15% of records in the dataset are presently described (Linnean species, highlighting the continuing need for taxonomic expertise for the conservation and management of marine biodiversity resources.

  9. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity.

    Science.gov (United States)

    Vavrek, Matthew J

    2016-09-01

    During the Mesozoic (242-66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species-area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity. © 2016 The Author(s).

  10. Quantifying biodiversity and asymptotics for a sequence of random strings.

    Science.gov (United States)

    Koyano, Hitoshi; Kishino, Hirohisa

    2010-06-01

    We present a methodology for quantifying biodiversity at the sequence level by developing the probability theory on a set of strings. Further, we apply our methodology to the problem of quantifying the population diversity of microorganisms in several extreme environments and digestive organs and reveal the relation between microbial diversity and various environmental parameters.

  11. Biological Invasion and Loss of Endemic Biodiversity in the Thar ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Nature Watch - Biological Invasion and Loss of Endemic Biodiversity in the Thar Desert. Ishwar Prakash. Feature Article Volume 6 Issue 3 March 2001 pp 76-85. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Invertebrates: Revealing a Hidden World in the Year of Biodiversity

    Science.gov (United States)

    Sanders, Dawn

    2010-01-01

    Biodiversity means the variety of life in all its forms. It includes the variety of species and ecosystems in the world, and genetic variation. Invertebrates are one of the largest and most accessible groups of animals for primary children to study. In this article, the author explains why and how children should engage with the idea of…

  13. Biodiversity studies in three Coastal Wetlands in Ghana, West Africa ...

    African Journals Online (AJOL)

    Plant biodiversity studies of three coastal wetlands in Ghana were made. The wetlands are the Sakumo, Muni-Pomadze and Densu Delta Ramsar sites. Each wetland is made up of a flood plain which consists of salt marsh (about 20%), mangrove swamps (between 15 and 30%), fresh water swamp (about 40 - 45%), and in ...

  14. Biodiversity, carbon stocks and community monitoring in traditional agroforestry practices

    DEFF Research Database (Denmark)

    Hartoyo, Adisti Permatasari Putri; Siregar, Iskandar Z.; Supriyanto

    2016-01-01

    Traditional agroforestry practices in Berau, East Kalimantan, are suitable land use types to conserve that potentially support the implementation of REDD+. The objectives of this research are to assess biodiversity and carbon stock in various traditional agroforestry practices, also to determine...

  15. The biodiversity cost of carbon sequestration in tropical savanna.

    Science.gov (United States)

    Abreu, Rodolfo C R; Hoffmann, William A; Vasconcelos, Heraldo L; Pilon, Natashi A; Rossatto, Davi R; Durigan, Giselda

    2017-08-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha -1 year -1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

  16. Conserving biodiversity using risk management: hoax or hope?

    Science.gov (United States)

    Susan Hummel; Geoffrey H. Donovan; Thomas A. Spies; Miles A. Hemstrom

    2008-01-01

    Biodiversity has been called a form of ecosystem insurance. According to the "insurance hypothesis", the presence of many species protects against system decline, because built-in redundancies guarantee that some species will maintain key functions even if others fail. The hypothesis might have merit, but calling it "insurance" promotes an ambiguous...

  17. Conservation of biodiversity through taxonomy, data publication, and collaborative infrastructures.

    Science.gov (United States)

    Costello, Mark J; Vanhoorne, Bart; Appeltans, Ward

    2015-08-01

    Taxonomy is the foundation of biodiversity science because it furthers discovery of new species. Globally, there have never been so many people involved in naming species new to science. The number of new marine species described per decade has never been greater. Nevertheless, it is estimated that tens of thousands of marine species, and hundreds of thousands of terrestrial species, are yet to be discovered; many of which may already be in specimen collections. However, naming species is only a first step in documenting knowledge about their biology, biogeography, and ecology. Considering the threats to biodiversity, new knowledge of existing species and discovery of undescribed species and their subsequent study are urgently required. To accelerate this research, we recommend, and cite examples of, more and better communication: use of collaborative online databases; easier access to knowledge and specimens; production of taxonomic revisions and species identification guides; engagement of nonspecialists; and international collaboration. "Data-sharing" should be abandoned in favor of mandated data publication by the conservation science community. Such a step requires support from peer reviewers, editors, journals, and conservation organizations. Online data publication infrastructures (e.g., Global Biodiversity Information Facility, Ocean Biogeographic Information System) illustrate gaps in biodiversity sampling and may provide common ground for long-term international collaboration between scientists and conservation organizations. © 2015 Society for Conservation Biology.

  18. Typology of public outreach for biodiversity conservation projects in Spain.

    Science.gov (United States)

    Jiménez, Amanda; Iniesta-Arandia, Irene; Muñoz-Santos, Maria; Martín-López, Berta; Jacobson, Susan K; Benayas, Javier

    2014-06-01

    Conservation education and outreach programs are a key approach to promote public understanding of the importance of biodiversity conservation. We reviewed 85 biodiversity conservation projects supported by the Spanish Ministry of Environment's Biodiversity Foundation. Through content analysis and descriptive statistics, we examined how the projects carried out communication, education, and public awareness and participation (CEPA) actions. We also used multivariate statistical analysis to develop a typology of 4 classes of biodiversity conservation projects on the basis of CEPA implementation. The classifications were delineated by purpose of CEPA, level of integration of CEPA actions, type of CEPA goals, main CEPA stakeholders, and aim of conservation. Our results confirm the existence of 2 key positions: CEPA has intrinsic value (i.e., they supposed the implementation of any CEPA action indirectly supported conservation) and CEPA is an instrument for achieving conservation goals. We also found that most CEPA actions addressed general audiences and school children, ignored minority groups and women, and did not include evaluation. The characteristics of the 4 types of projects and their frequency of implementation in the sample reflect the need for better integration of different types of actions (communication, education, and participation) and improved fostering of participation of multiple stakeholders in developing policy and implementing management strategies. © 2014 Society for Conservation Biology.

  19. Targeting global conservation funding to limit immediate biodiversity declines.

    Science.gov (United States)

    Waldron, Anthony; Mooers, Arne O; Miller, Daniel C; Nibbelink, Nate; Redding, David; Kuhn, Tyler S; Roberts, J Timmons; Gittleman, John L

    2013-07-16

    Inadequate funding levels are a major impediment to effective global biodiversity conservation and are likely associated with recent failures to meet United Nations biodiversity targets. Some countries are more severely underfunded than others and therefore represent urgent financial priorities. However, attempts to identify these highly underfunded countries have been hampered for decades by poor and incomplete data on actual spending, coupled with uncertainty and lack of consensus over the relative size of spending gaps. Here, we assemble a global database of annual conservation spending. We then develop a statistical model that explains 86% of variation in conservation expenditures, and use this to identify countries where funding is robustly below expected levels. The 40 most severely underfunded countries contain 32% of all threatened mammalian diversity and include neighbors in some of the world's most biodiversity-rich areas (Sundaland, Wallacea, and Near Oceania). However, very modest increases in international assistance would achieve a large improvement in the relative adequacy of global conservation finance. Our results could therefore be quickly applied to limit immediate biodiversity losses at relatively little cost.

  20. Young People's Views on the Importance of Conserving Biodiversity.

    Science.gov (United States)

    Grace, Marcus; Sharp, John

    2000-01-01

    Discusses the findings of a study of the views of 15 and 16 year-olds on the importance of biodiversity conservation. Reports general disapproval for human economic activities that might threaten wildlife with extinction, although significantly fewer boys than girls held this view. (Contains 16 references.) (Author/YDS)

  1. Financial costs of meeting global biodiversity conservation targets

    DEFF Research Database (Denmark)

    McCarthy, Donal P.; Donald, Paul F.; Scharlemann, Jörn P.W.

    2012-01-01

    World governments have committed to halting human-induced extinctions and safeguarding important sites for biodiversity by 2020, but the financial costs of meeting these targets are largely unknown. We estimate the cost of reducing the extinction risk of all globally threatened bird species (by ≥1...

  2. The major importance of 'minor' resources: Women and plant biodiversity

    NARCIS (Netherlands)

    Howard, P.L.

    2003-01-01

    Understanding women’s influence on plant biodiversity is essential to our ability to conserve plant genetic resources, especially those plants that are useful to humans. Contrary to previous thinking, it is becoming clear that women know most about these plants because, throughout history, women’s

  3. The geomatic like a tool for biodiversity analysis in Colombia

    International Nuclear Information System (INIS)

    Galindo, G; Armenteras, D; Franco, C; Sua S and others

    2006-01-01

    Current biodiversity research recognizes geographic information and its variability in space as an essential characteristic that helps understand the relationships between the components of biological communities and their environment. The description and quantification of their spatial and temporal attributes adds important elements for their adequate management. The biological diversity convention (biological diversity convention, law 165 of 1994) reassured the importance of biodiversity and the necessity of its conservation and sustainable use and emphasized that its components should be characterized and monitored, and the data and information related with them should be maintained and organized. The biological research institute Alexander von Humboldt is the Colombian entity in charge of promoting, coordinating and undertaking research that helps in the conservation and sustainable use of biodiversity, this institution has defined the inventory of all the fauna and flora resources in the country as one of its priority research lines. Using geomatic techniques, Humboldt institute has implemented and developed technologies to capture, debug, geocode and analyze geographic data related with biodiversity (Armenteras, 2001) among others, this has helped in the development, structure and management of projects such as the ecosystems mapping of the Colombian amazonic, Andean and Orinoco ecosystems (GIS -RS), finding conservation opportunities in rural landscapes (GIS-RS) biological localities Gazetteer (GIS, databases, programming), development of models that predict and explain species distribution (GIS, database management, modeling techniques), conservation weakness (GIS-RS) and environmental indicators (GIS, geostatistical analysis)

  4. A National System to Map and Quantify Terrestrial Vertebrate Biodiversity

    Science.gov (United States)

    Biodiversity is crucial for the functioning of ecosystems and the products and services from which we transform natural assets of the Earth for human survival, security, and well-being. The ability to assess, report, map, and forecast the life support functions of ecosystems is a...

  5. A National Approach to Map and Quantify Terrestrial Vertebrate Biodiversity

    Science.gov (United States)

    Biodiversity is crucial for the functioning of ecosystems and the products and services from which we transform natural assets of the Earth for human survival, security, and well-being. The ability to assess, report, map, and forecast the life support functions of ecosystems is a...

  6. Protecting biodiversity in coastal environments: Introduction and overview

    International Nuclear Information System (INIS)

    Beatley, T.

    1991-01-01

    Much less attention has been paid in recent years to the threats to coastal and marine biodiversity, compared to biodiversity in more terrestrial habitats. The tremendous biodiversity at risk and the severity and magnitude of the pressures being exerted on coastal habitats suggest the need for much greater attention to be focused here by both the policy and scientific communities. The threats to coastal biodiversity are numerous and include air and water pollution; over exploitation and harvesting; the introduction of exotic species; the dramatic loss of habitat due to urbanization, agricultural expansion, and other land use changes; and the potentially serious effects of global climate change. These threats suggest the need for swift action at a number of jurisdictional and governmental levels. Major components of such an effort are identified and described. These include the need for comprehensive management approaches, the expansion of parks and protected areas, restoration and mitigation, multinational and international initiatives, and efforts to promote sustainable development and sustainable lifestyles. Suggestions for future research are also provided

  7. Restoring biodiversity and forest ecosystem services in degraded tropical landscapes

    Science.gov (United States)

    John A. Parrotta

    2010-01-01

    Over the past century, an estimated 850 million ha of the world’s tropical forests have been lost or severely degraded, with serious impacts on local and regional biodiversity. A significant proportion of these lands were originally cleared of their forest cover for agricultural development or other economic uses. Today, however, they provide few if any environmental...

  8. Averting biodiversity collapse in tropical forest protected areas

    Science.gov (United States)

    W.F. Laurance; D.C. Useche; J. Rendeiro; and others NO-VALUE; Ariel Lugo

    2012-01-01

    The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon1–3. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment...

  9. To what extent can ecosystem services motivate protecting biodiversity?

    Science.gov (United States)

    Dee, Laura E; De Lara, Michel; Costello, Christopher; Gaines, Steven D

    2017-08-01

    Society increasingly focuses on managing nature for the services it provides people rather than for the existence of particular species. How much biodiversity protection would result from this modified focus? Although biodiversity contributes to ecosystem services, the details of which species are critical, and whether they will go functionally extinct in the future, are fraught with uncertainty. Explicitly considering this uncertainty, we develop an analytical framework to determine how much biodiversity protection would arise solely from optimising net value from an ecosystem service. Using stochastic dynamic programming, we find that protecting a threshold number of species is optimal, and uncertainty surrounding how biodiversity produces services makes it optimal to protect more species than are presumed critical. We define conditions under which the economically optimal protection strategy is to protect all species, no species, and cases in between. We show how the optimal number of species to protect depends upon different relationships between species and services, including considering multiple services. Our analysis provides simple criteria to evaluate when managing for particular ecosystem services could warrant protecting all species, given uncertainty. Evaluating this criterion with empirical estimates from different ecosystems suggests that optimising some services will be more likely to protect most species than others. © 2017 John Wiley & Sons Ltd/CNRS.

  10. The Biodiversity Community Action Project: An STS Investigation

    Science.gov (United States)

    Aidin, Amirshokoohi; Mahsa, Kazempour

    2010-01-01

    The Biodiversity Community Action Project is a stimulating and vigorous project that allows students to gain an in-depth understanding of the interconnection between organisms and their environments as well as the connection of science to their lives and society. It addresses key content standards in the National Science Education Standards and…

  11. The efficiency of voluntary incentive policies for preventing biodiversity loss

    Science.gov (United States)

    David J. Lewis; Andrew J. Plantinga; Erik Nelson; Stephen Polasky

    2011-01-01

    Habitat loss is a primary cause of loss of biodiversity but conserving habitat for species presents challenges. Land parcels differ in their ability to produce returns for landowners and landowners may have private information about the value of the land to them. Land parcels also differ in the type and quality of habitat and the spatial pattern of land use across...

  12. Investigating the biodiversity of ciliates in the 'Age of Integration'.

    Science.gov (United States)

    Clamp, John C; Lynn, Denis H

    2017-10-01

    Biology is now turning toward a more integrative approach to research, distinguished by projects that depend on collaboration across hierarchical levels of organization or across disciplines. This trend is prompted by the need to solve complex, large-scale problems and includes disciplines that could be defined as integrative biodiversity. Integrative biodiversity of protists, including that of ciliates, is still partially in its infancy. This is the result of a shortage of historical data resources such as curated museum collections. Major areas of integrative biodiversity of ciliates that have begun to emerge can be categorized as integrative systematics, phenotypic plasticity, and integrative ecology. Integrative systematics of ciliates is characterized by inclusion of diverse sources of data in treatment of taxonomy of species and phylogenetic investigations. Integrative research in phenotypic plasticity combines investigation of functional roles of individual species of ciliates with genetic and genomic data. Finally, integrative ecology focuses on genetic identity of species in communities of ciliates and their collective functional roles in ecosystems. A review of current efforts toward integrative research into biodiversity of ciliates reveals a single, overarching concern-rapid progress will be achieved only by implementing a comprehensive strategy supported by one or more groups of active researchers. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. The cryogenic collection of fruit biodiversity in Kazakhstan

    Science.gov (United States)

    Conservation of the biodiversity of fruit crops is important to the future of horticulture in Kazakhstan. A field collection of fruit germplasm with more than 4000 cultivars and wild selections is grown in the Pomological Garden of the Institute of Horticulture and Viticulture near Almaty, to preser...

  14. International cooperation for biodiversity conservation : an economic analysis

    NARCIS (Netherlands)

    Alvarado Quesada, I.

    2015-01-01

    Biodiversity decline poses significant threats to current and future generations. Although species extinction has been a natural process since the formation of Earth, recent rates of extinction are estimated to be from 100 to 1000 times larger when compared to fossil records. Almost all of the

  15. Does sex speed up evolutionary rate and increase biodiversity?

    Directory of Open Access Journals (Sweden)

    Carlos J Melián

    Full Text Available Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  16. Biodiversity, Ecosystem Services, and Climate Change : The Economic Problem

    OpenAIRE

    World Bank

    2010-01-01

    Climate change is both a cause and an effect of biodiversity change. Along with anthropogenic dispersion, climate change is the main driver of change in the geographical distribution of both beneficial and harmful species, crops, livestock, harvested wild species, pests, predators and pathogens. And the capacity of ecosystems to adapt to climate change depends on the diversity of species t...

  17. Does sex speed up evolutionary rate and increase biodiversity?

    Science.gov (United States)

    Melián, Carlos J; Alonso, David; Allesina, Stefano; Condit, Richard S; Etienne, Rampal S

    2012-01-01

    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  18. Global imprint of historical connectivity on freshwater fish biodiversity.

    Science.gov (United States)

    Dias, Murilo S; Oberdorff, Thierry; Hugueny, Bernard; Leprieur, Fabien; Jézéquel, Céline; Cornu, Jean-François; Brosse, Sébastien; Grenouillet, Gael; Tedesco, Pablo A

    2014-09-01

    The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo-drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo-connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo-disconnected basins. Palaeo-connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo-river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo-connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity. © 2014 John Wiley & Sons Ltd/CNRS.

  19. The role of biodiversity in the provision of ecosystem services.

    NARCIS (Netherlands)

    Vermaat, J.E.; Ellers, J.; Helmus, M.R.; Bouma, J.A.; van Beukering, P.J.H.

    2015-01-01

    Ecosystem services have become a popular concept for policymakers and practioners to explain the societal value of ecosystems and biodiversity to the general public. However, in translating the concept into practice, policymakers are struggling as the measurement, valuation and governance of

  20. Comparative biodiversity and effect of different media on growth and ...

    African Journals Online (AJOL)

    Haematococcus pluvialis is a unicellular green volvocale alga living in temporary shallow freshwater ponds. It has many applications for humans, poultry and fishes due to its ability to produce astaxanthin. The main objective of this study was to evaluate the biodiversity and growth of nine strains of H. pluvialis originating ...