WorldWideScience

Sample records for biodiversity

  1. Biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, A. (Princeton Univ., Princeton, NJ (United States)); Carper, R. (John Hopkins Univ., Baltimore, MD (United States))

    1993-10-30

    Traditional herbalists act as a first-level screen for plants which may contain chemicals with significant pharmaceutical potential. Unfortunately, the destruction of rain forests is likely to lead to the extinction of many plant species before their potential can be explored. 165,000 km[sup 2] of tropical forest and 90,000 km[sup 2] of range land are destroyed or degraded each year, an annual attrition rate of about 1% for tropical forest. If these losses continue until only land set aside in parks is left, 66% of plant and 69% of animal species may be lost. The burning of forests to clear land for human settlement also makes a significant contribution to the greenhouse gases that are raising global mean temperatures. There are synergisms--here between rainforest destruction, loss of biodiversity, and global climate change--with potential impacts on health. Some aspects will be explored more fully in the contributions on vector-borne diseases and direct impacts and in the collaborative review of monitoring with which the series ends.

  2. Biodiversity Prospecting.

    Science.gov (United States)

    Sittenfeld, Ana; Lovejoy, Annie

    1994-01-01

    Examines the use of biodiversity prospecting as a method for tropical countries to value biodiversity and contribute to conservation upkeep costs. Discusses the first agreement between a public interest organization and pharmaceutical company for the extraction of plant and animal materials in Costa Rica. (LZ)

  3. Biodiversity Conservation in Asia

    OpenAIRE

    Dale Squires

    2014-01-01

    Asian's remarkable economic growth brought many benefits but also fuelled threats to its ecosystems and biodiversity. Economic growth brings biodiversity threats but also conservation opportunities. Continued biodiversity loss is inevitable, but the types, areas and rates of biodiversity loss are not. Prioritising biodiversity conservation, tempered by what is tractable, remains a high priority. Policy and market distortions and failures significantly underprice biodiversity, undermine ecosys...

  4. Biodiversity Is Life

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Greater numbers of species are disappearing from the planet. Biodiversity protection has become an urgent task for all of us.Given this,the UN declared 2010 the International Year of Biodiversity. Chinese conservationists call for increased awareness of the importance of saving the biodiversity.The following are the perspectives of some Chinese scientists on the significance of,and measures for,biodiversity protection:

  5. Progress in Biodiversity Informatics

    Directory of Open Access Journals (Sweden)

    Keping Ma

    2010-09-01

    Full Text Available Biodiversity Informatics is a young and rapidly growing field that brings information science and technologies to bear on the data and information generated by the study of biodiversity and related subjects. Recent years, biodiversity informatics community has made an extraordinary effort to digitize primary biodiversity data, and develop modelling tools, data integration, and county/ regional/ global biodiversity networks. In doing so, the community is creating an unprecedented global sharing of information and data produced by biodiversity science, and encouraging people to consider, survey and monitor natural biodiversity. Due to success of several international biodiversity informatics projects, such as Species 2000, Global Biodiversity Information Facility, Barcoding of Life and Encyclopedia of Life, digitized information on species inventories, herbarium specimens, multimedia and literature is available through internet. These projects not only make great contributions to sharing digitized biodiversity data, but also in prompting the implementation of important biodiversity information standards, such as Darwin Core, and in the establishment of regional and national biodiversity networks. These efforts will facilitate the future establishment of a strong information infrastructure for data sharing and exchange at a global scale. Besides focusing on browsing and searching digitized data, scientists should also work on building data mining and modeling, such as MAXENT for Ecological Niche Modelling and LifeDesk for taxonomist’s knowledge management. At the same time, the idea of citizen sciences gains popularity showing us the benefit of the public working closely with the scientific community in completing internet-based biodiversity informatics activities. Therefore, biodiversity informatics has broad prospects, and is helping to build strong facilities that will aid in implementing the goals set by Global Plant Conservation Strategy and

  6. Biodiversity and globalization

    OpenAIRE

    Heal, Geoffrey

    2002-01-01

    Reduction of the earth’s biodiversity as a result of human activities is a matter of great concern to prominent scientists. What are the economic aspects of this loss? In economic terms, what is biodiversity and why might it matter? And is the loss of biodiversity in any way connected with globalization of the economy?

  7. The value of biodiversity

    OpenAIRE

    CJR. Alho

    2008-01-01

    In addition to its intrinsic value (nature working as it is; species are the product of a long history of continuing evolution by means of ecological processes, and so they have the right to continued existence), biodiversity also plays a fundamental role as ecosystem services in the maintenance of natural ecological processes. The economic or utilitarian values of biodiversity rely upon the dependence of man on biodiversity; products that nature can provide: wood, food, fibers to make paper,...

  8. Recovering biodiversity knowledge

    NARCIS (Netherlands)

    Meijerink, G.W.; Smolders, H.; Sours, S.; Pou, S.

    2005-01-01

    Cambodian¿s civil wars have seriously affected the country¿s agro-biodiversity and the farmers¿ traditional knowledge in this field. The PEDIGREA project aims at conserving on-farm agro-biodiversity conservation and in Cambodia it focuses on vegetable diversity. It tries to link the preservation of

  9. Biodiversity: Luxury or necessity

    NARCIS (Netherlands)

    Rotmans, J.; Groot, de R.S.; Vliet, van A.J.H.

    2002-01-01

    Because biodiversity is so complex and varied, knowledge in this area is still relatively limited. It can be stated that this complexity, combined with structural uncertainty, may well lead to an unpredictable future and further loss of biodiversity which will be characterised by non-linearity, thre

  10. Funding begets biodiversity

    DEFF Research Database (Denmark)

    Ahrends, Antje; Burgess, Neil David; Gereau, Roy E.

    2011-01-01

    Aim Effective conservation of biodiversity relies on an unbiased knowledge of its distribution. Conservation priority assessments are typically based on the levels of species richness, endemism and threat. Areas identified as important receive the majority of conservation investments, often...... facilitating further research that results in more species discoveries. Here, we test whether there is circularity between funding and perceived biodiversity, which may reinforce the conservation status of areas already perceived to be important while other areas with less initial funding may remain overlooked......, and variances decomposed in partial regressions. Cross-correlations are used to assess whether perceived biodiversity drives funding or vice versa. Results Funding explained 65% of variation in perceived biodiversity patterns – six times more variation than accounted for by 34 candidate environmental factors...

  11. Business and biodiversity

    DEFF Research Database (Denmark)

    Andersen, Rasmus Meyer; Lehmann, Martin; Christensen, Per

    - a challenge that needs to be shared between conservationists, green organisations, public authorities, as well as the private sector. A new wave of green initiatives has emerged within the culture of business and marketing. The reasons for why businesses should engage in environmental actions are many......, but the effort has until now considered biodiversity actions relatively little, compared to other areas such as e.g. climate related actions. Nevertheless, the opportunity for businesses to meet their responsibilities and lift a share of the challenge is far from being just a romantic thought. Nor...... is the challenge of engaging businesses in responsible actions. The core challenge is to create awareness of the environmental phenomenon biodiversity, inform about the significance of business involvement, and encourage the business world to participate in this process of protecting biodiversity as the valuable...

  12. Operationalizing biodiversity for conservation planning

    Indian Academy of Sciences (India)

    Sahotra Sarkar; Chris Margules

    2002-07-01

    Biodiversity has acquired such a general meaning that people now find it difficult to pin down a precise sense for planning and policy-making aimed at biodiversity conservation. Because biodiversity is rooted in place, the task of conserving biodiversity should target places for conservation action; and because all places contain biodiversity, but not all places can be targeted for action, places have to be prioritized. What is needed for this is a measure of the extent to which biodiversity varies from place to place. We do not need a precise measure of biodiversity to prioritize places. Relative estimates of similarity or difference can be derived using partial measures, or what have come to be called biodiversity surrogates. Biodiversity surrogates are supposed to stand in for general biodiversity in planning applications. We distinguish between true surrogates, those that might truly stand in for general biodiversity, and estimator surrogates, which have true surrogates as their target variable. For example, species richness has traditionally been the estimator surrogate for the true surrogate, species diversity. But species richness does not capture the differences in composition between places; the essence of biodiversity. Another measure, called complementarity, explicitly captures the differences between places as we iterate the process of place prioritization, starting with an initial place. The relative concept of biodiversity built into the definition of complementarity has the level of precision needed to undertake conservation planning.

  13. When Leeches reveal Biodiversity

    DEFF Research Database (Denmark)

    Schnell, Ida Bærholm

    to provide information about vertebrate biodiversity. This thesis covers the development of a monitoring method based on iDNA extracted from terrestrial haematophagous leeches, a continuation of the work presented in Schnell et al., 2012. The chapters investigate and/or discuss different subjects regarding...

  14. Biodiversity in Benthic Ecology

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Carl, J. D.

    Foreword: This proceeding is based on a set of papers presented at the second Nordic Benthological Meeting held in Silkeborg, November 13-14, 1997. The main theme of the meeting was biodiversity in benthic ecology and the majority of contributions touch on this subject. In addition, the proceeding...

  15. Books, Biodiversity, and Beyond!

    Science.gov (United States)

    Governor, Donna; Helms, Sarah

    2007-01-01

    Reading in science class does not have to be boring, but it is no secret to students or teachers that textbooks are not much fun to read. It is always a challenge for teachers to find reading materials that would grab the interests of their students. In this article, the author relates how she used Biodiversity, a nonfiction book by Dorothy…

  16. Biodiversity in the Anthropocene

    Science.gov (United States)

    Ellis, E. C.

    2012-12-01

    Humans have altered or replaced native ecosystems across more than three quarters of the terrestrial biosphere, creating new global patterns of biodiversity as a result of native species extinctions, domestication and anthropogenic introductions of nonnative species. These anthropogenic global changes in biodiversity have been portrayed as resulting primarily from recent and unprecedented human disturbances that are potentially indicative of catastrophic changes in the Earth system. Yet anthropogenic changes in species richness and community structure caused by human populations and their use of land have been widespread and profound in many regions since before the Holocene, and have been sustained for millennia in many regions, especially in the Temperate Zone. Beyond the anthropogenic megafaunal extinctions of the Pleistocene, habitat loss and fragmentation by agricultural land use has been sustained throughout the Holocene in many biomes at levels theoretically associated with major species extinctions. Anthropogenic patterns of species extinction differ greatly among taxa, with mammals and other larger fauna showing the greatest impacts. However, spatially explicit observations and models of contemporary global patterns of vascular plant species richness confirm that while native losses are likely significant across at least half of Earth's ice-free land, species richness has increased overall in most regional landscapes, mostly because nonnative species invasions tend to exceed native losses. Effective stewardship of biodiversity in the Anthropocene will require integrated global frameworks for observing, modeling and forecasting anthropogenic biodiversity change processes within the novel biotic communities created and sustained by human systems.; Percentage of terrestrial biomes converted to agricultural land over time. ; Conceptual diagram of biodiversity patterns associated with variations in population density, land use and land cover.

  17. Birds as biodiversity surrogates

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Bladt, Jesper Stentoft; Balmford, Andrew

    2012-01-01

    1. Most biodiversity is still unknown, and therefore, priority areas for conservation typically are identified based on the presence of surrogates, or indicator groups. Birds are commonly used as surrogates of biodiversity owing to the wide availability of relevant data and their broad popular...... appeal. However, some studies have found birds to perform relatively poorly as indicators. We therefore ask how the effectiveness of this approach can be improved by supplementing data on birds with information on other taxa. 2. Here, we explore two strategies using (i) species data for other taxa...... areas identified on the basis of birds alone performed well in representing overall species diversity where birds were relatively speciose compared to the other taxa in the data sets. Adding species data for one taxon increased surrogate effectiveness better than adding genus- and family-level data...

  18. Educating for preserving biodiversity

    Directory of Open Access Journals (Sweden)

    Méndez, I. E.

    2014-01-01

    Full Text Available The notion of “culture of diversity” is presented in a new dimension. “That of educating for preserving biodiversity” is advanced together with its main challenges. The need of educating the masses for preserving biodiversity is perhaps the most outstanding to be faced, particularly if pedagogic requirements and the diversity of population is to be met. Likewise, it should help to put individuals in contact with the many elements conforming biodiversity and lead them to recognize its value ethically and esthetically. The research presents the framework for designing educating programs enhancing the genetic level, the ecosystem and the qualitative dimension and including materials and energy flood and its meaning for the homeostasis and autopoiesis of the system, together with its interactions with other components for achieving an equilibrium and stability. The importance of the natural evolution tendency is highlighted.

  19. Landscape Management and Biodiversity

    OpenAIRE

    Başkent, Emin Zeki

    1998-01-01

    For the protection, enhancement and management of forests for today's and future generations, an understanding of the spatial structure of forest ecosystems along with base forest management planning are necessary. In this study are presented an introduction, a description, an explanation of different approaches and the basic principles of landscape management or ecosystems management within the evolution of the forest management process. Furthermore, the issue of biodiversity or biologi...

  20. Biodiversity, globalisation and poverty.

    Science.gov (United States)

    Olorode, Omotoye

    2007-06-10

    The erosion of the stock of biodiversity on earth developed historically with the so-called voyages of discovery (and their antecedents), colonial conquests and the accompanying movements of natural products and peoples, i.e. movements of populations and genetic materials. These events happened with the development of technology and the so-called conquest, by man, of his environment and the appertaining development of specialization not only in industry but also in agriculture and environmental management. The development of specialization resulted in the homogenization of processes, products, inputs and input industries; this increased homogenization had the corollary of arrested heterogeneity across the board; what they call globalization is part of this process. The efficiency of homogenization, however, engendered new problems of fragility of human environment and of production and social relations and processes. The effects of this complex situation, in general terms and in terms of biodiversity in particular, have been more devastating for the more vulnerable regions, classes of people, and peoples of the world. A continuous rethinking of the epistemology and the social and political bases of existing policies on environment in general, and of biodiversity conservation in particular, has become imperative.

  1. European mountain biodiversity

    Directory of Open Access Journals (Sweden)

    Nagy, Jennifer

    1998-12-01

    Full Text Available This paper, originally prepared as a discussion document for the ESF Exploratory Workshop «Trends in European Mountain Biodiversity - Research Planning Workshop», provides an overview of current mountain biodiversity research in Europe. It discusses (a biogeographical trends, (b the general properties of biodiversity, (c environmental factors and the regulation of biodiversity with respect to ecosystem function, (d the results of research on mountain freshwater ecosystems, and (e climate change and air pollution dominated environmental interactions.- The section on biogeographical trends highlights the importance of altitude and latitude on biodiversity. The implications of the existence of different scales over the different levels of biodiversity and across organism groups are emphasised as an inherent complex property of biodiversity. The discussion on ecosystem function and the regulation of biodiversity covers the role of environmental factors, productivity, perturbation, species migration and dispersal, and species interactions in the maintenance of biodiversity. Regional and long-term temporal patterns are also discussed. A section on the relatively overlooked topic of mountain freshwater ecosystems is presented before the final topic on the implications of recent climate change and air pollution for mountain biodiversity.

    [fr] Ce document a été préparé à l'origine comme une base de discussion pour «ESF Exploratory Workshop» intitulé «Trends in European Mountain Biodiversity - Research Planning Workshop»; il apporte une vue d'ensemble sur les recherches actuelles portant sur la biodiversité des montagnes en Europe. On y discute les (a traits biogéographiques, (b les caractéristiques générales- de la biodiversité, (c les facteurs environnementaux et la régulation de la biodiversité par rapport à la fonction des écosystèmes, (d les résultats des études sur les écosystèmes aquatiques des montagnes et (e les

  2. The value of biodiversity.

    Science.gov (United States)

    Alho, C J R

    2008-11-01

    In addition to its intrinsic value (nature working as it is; species are the product of a long history of continuing evolution by means of ecological processes, and so they have the right to continued existence), biodiversity also plays a fundamental role as ecosystem services in the maintenance of natural ecological processes. The economic or utilitarian values of biodiversity rely upon the dependence of man on biodiversity; products that nature can provide: wood, food, fibers to make paper, resins, chemical organic products, genes as well as knowledge for biotechnology, including medicine and cosmetic sub-products. It also encompasses ecosystem services, such as climate regulation, reproductive and feeding habitats for commercial fish, some organisms that can create soil fertility through complex cycles and interactions, such as earthworms, termites and bacteria, in addition to fungi responsible for cycling nutrients like nitrogen, phosphorus and sulfur and making them available to plant absorption. These services are the benefits that people indirectly receive from natural ecosystem functions (air quality maintenance, regional climate, water quality, nutrient cycling, reproductive habitats of commercial fish, etc.) with their related economic values.

  3. The value of biodiversity

    Directory of Open Access Journals (Sweden)

    CJR. Alho

    Full Text Available In addition to its intrinsic value (nature working as it is; species are the product of a long history of continuing evolution by means of ecological processes, and so they have the right to continued existence, biodiversity also plays a fundamental role as ecosystem services in the maintenance of natural ecological processes. The economic or utilitarian values of biodiversity rely upon the dependence of man on biodiversity; products that nature can provide: wood, food, fibers to make paper, resins, chemical organic products, genes as well as knowledge for biotechnology, including medicine and cosmetic sub-products. It also encompasses ecosystem services, such as climate regulation, reproductive and feeding habitats for commercial fish, some organisms that can create soil fertility through complex cycles and interactions, such as earthworms, termites and bacteria, in addition to fungi responsible for cycling nutrients like nitrogen, phosphorus and sulfur and making them available to plant absorption. These services are the benefits that people indirectly receive from natural ecosystem functions (air quality maintenance, regional climate, water quality, nutrient cycling, reproductive habitats of commercial fish, etc. with their related economic values.

  4. Biofuels and biodiversity.

    Science.gov (United States)

    Wiens, John; Fargione, Joseph; Hill, Jason

    2011-06-01

    The recent increase in liquid biofuel production has stemmed from a desire to reduce dependence on foreign oil, mitigate rising energy prices, promote rural economic development, and reduce greenhouse gas emissions. The growth of this industry has important implications for biodiversity, the effects of which depend largely on which biofuel feedstocks are being grown and the spatial extent and landscape pattern of land requirements for growing these feedstocks. Current biofuel production occurs largely on croplands that have long been in agricultural production. The additional land area required for future biofuels production can be met in part by reclaiming reserve or abandoned croplands and by extending cropping into lands formerly deemed marginal for agriculture. In the United States, many such marginal lands have been enrolled in the Conservation Reserve Program (CRP), providing important habitat for grassland species. The demand for corn ethanOl has changed agricultural commodity economics dramatically, already contributing to loss of CRP lands as contracts expire and lands are returned to agricultural production. Nevertheless, there are ways in which biofuels can be developed to enhance their coexistence with biodiversity. Landscape heterogeneity can be improved by interspersion of land uses, which is easier around facilities with smaller or more varied feedstock demands. The development of biofuel feedstocks that yield high net energy returns with minimal carbon debts or that do not require additional land for production, such as residues and wastes, should be encouraged. Competing land uses, including both biofuel production and biodiversity protection, should be subjected to comprehensive cost-benefit analysis, so that incentives can be directed where they will do the most good.

  5. Biodiversity conservation including uncharismatic species

    DEFF Research Database (Denmark)

    Muñoz, Joaquin

    2007-01-01

    Recent papers mention ideas on the topics of biodiversity conservation strategies and priorities (Redford et al. 2003; Lamoreux et al. 2006; Rodrı´guez et al. 2006), the current status of biodiversity (Loreau et al. 2006), the obligations of conservation biologists regarding management policies...... (Chapron 2006; Schwartz 2006), and the main threats to biodiversity (including invasive species) (Bawa 2006). I suggest, however, that these articles do not really deal with biodiversity. Rather, they all focus on a few obviously charismatic groups (mammals, birds, some plants, fishes, human culture...

  6. Soil biodiversity and human health

    Science.gov (United States)

    Wall, Diana H.; Nielsen, Uffe N.; Six, Johan

    2015-12-01

    Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health.

  7. Patterns in Biodiversity: Spatial organisation of biodiversity in the Netherland

    NARCIS (Netherlands)

    Schouten, M.A.

    2007-01-01

    A better understanding of biodiversity and its current threats is urgently needed, especially in the Netherlands where high population density, industrialisation, and intensive land-use have radically altered the natural landscape. Often, biodiversity research is seriously hampered by a lack of data

  8. Net present biodiversity value and the design of biodiversity offsets.

    Science.gov (United States)

    Overton, Jacob McC; Stephens, R T Theo; Ferrier, Simon

    2013-02-01

    There is an urgent need to develop sound theory and practice for biodiversity offsets to provide a better basis for offset multipliers, to improve accounting for time delays in offset repayments, and to develop a common framework for evaluating in-kind and out-of-kind offsets. Here, we apply concepts and measures from systematic conservation planning and financial accounting to provide a basis for determining equity across type (of biodiversity), space, and time. We introduce net present biodiversity value (NPBV) as a theoretical and practical measure for defining the offset required to achieve no-net-loss. For evaluating equity in type and space we use measures of biodiversity value from systematic conservation planning. Time discount rates are used to address risk of non-repayment, and loss of utility. We illustrate these concepts and measures with two examples of biodiversity impact-offset transactions. Considerable further work is required to understand the characteristics of these approaches.

  9. Linking soil biodiversity and agricultural soil management

    NARCIS (Netherlands)

    Thiele-Bruhn, S.; Bloem, J.; Vries, de F.T.; Kalbitz, K.; Wagg, C.

    2012-01-01

    Soil biodiversity vastly exceeds aboveground biodiversity, and is prerequisite for ecosystem stability and services. This review presents recent findings in soil biodiversity research focused on interrelations with agricultural soil management. Richness and community structure of soil biota depend o

  10. Undergraduate Students' Attitudes toward Biodiversity

    Science.gov (United States)

    Huang, Hui-Ju; Lin, Yu-Teh Kirk

    2014-01-01

    The study investigated American and Taiwan undergraduate students' attitudes toward biodiversity. The survey questionnaire consisted of statements prompted by the question "To what extent do you agree with the following statements about problems with the biodiversity issues." Students indicated strongly disagree, disagree, agree,…

  11. Biodiversity: Who Knows, Who Cares?

    Science.gov (United States)

    Zemits, Birut

    2006-01-01

    Biodiversity is an abstract concept, attracting various responses from different people according to where they have come from and what ecosystems they have been closely linked to. In theory, most people would agree that protecting biodiversity is an important process, but in practice, few people commit to actions on a local level. This paper…

  12. Biodiversity: past, present, and future

    Science.gov (United States)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1997-01-01

    Data from the fossil record are used to illustrate biodiversity in the past and estimate modern biodiversity and loss. This data is used to compare current rates of extinction with past extinction events. Paleontologists are encouraged to use this data to understand the course and consequences of current losses and to share this knowledge with researchers interested in conservation and ecology.

  13. Soil biodiversity for agricultural sustainability

    NARCIS (Netherlands)

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does conf

  14. European Atlas of Soil Biodiversity

    DEFF Research Database (Denmark)

    Krogh (contributor), Paul Henning

    on Earth, life within the soil is often hidden away and suffers by being 'out of sight and out of mind'. What kind of life is there in soil? What do we mean by soil biodiversity? What is special about soil biology? How do our activities affect soil ecosystems? What are the links between soil biota...... and climate change? The first ever European Atlas of Soil Biodiversity uses informative texts, stunning photographs and maps to answer these questions and other issues. The European Atlas of Soil Biodiversity functions as a comprehensive guide allowing non-specialists to access information about this unseen...... Biodiversity'. Starting with the smallest organisms such as the bacteria, this segment works through a range of taxonomic groups such as fungi, nematodes, insects and macro-fauna to illustrate the astonishing levels of heterogeneity of life in soil. The European Atlas of Soil Biodiversity is more than just...

  15. The Biodiversity Informatics Potential Index

    Directory of Open Access Journals (Sweden)

    Ariño Arturo H

    2011-12-01

    Full Text Available Abstract Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a the intrinsic biodiversity potential (the biological richness or ecological diversity of a country; (b the capacity of the country to generate biodiversity data records; and (c the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a identifying

  16. Urban biodiversity: patterns and mechanisms.

    Science.gov (United States)

    Faeth, Stanley H; Bang, Christofer; Saari, Susanna

    2011-03-01

    The patterns of biodiversity changes in cities are now fairly well established, although diversity changes in temperate cities are much better studied than cities in other climate zones. Generally, plant species richness often increases in cities due to importation of exotic species, whereas animal species richness declines. Abundances of some groups, especially birds and arthropods, often increase in urban areas despite declines in species richness. Although several models have been proposed for biodiversity change, the processes underlying the patterns of biodiversity in cities are poorly understood. We argue that humans directly control plants but relatively few animals and microbes-the remaining biological community is determined by this plant "template" upon which natural ecological and evolutionary processes act. As a result, conserving or reconstructing natural habitats defined by vegetation within urban areas is no guarantee that other components of the biological community will follow suit. Understanding the human-controlled and natural processes that alter biodiversity is essential for conserving urban biodiversity. This urban biodiversity will comprise a growing fraction of the world's repository of biodiversity in the future.

  17. Indicators for Monitoring Soil Biodiversity

    DEFF Research Database (Denmark)

    Bispo, A.; Cluzeau, D.; Creamer, R.

    2009-01-01

    is made for a set of suitable indicators for monitoring the decline in soil biodiversity (Bispo et al. 2007). These indicators were selected both from a literature review and an inventory of national monitoring programmes. Decline in soil biodiversity was defined as the reduction of forms of life living...... indicators are actually measured.   For monitoring application it was considered in ENVASSO that only three key indicators per soil stress were practical. For indicating biodiversity decline it was difficult to arrive at a small set of indicators due to the complexity of soil biota and functions. Therefore...

  18. Economic inequality predicts biodiversity loss.

    Science.gov (United States)

    Mikkelson, Gregory M; Gonzalez, Andrew; Peterson, Garry D

    2007-05-16

    Human activity is causing high rates of biodiversity loss. Yet, surprisingly little is known about the extent to which socioeconomic factors exacerbate or ameliorate our impacts on biological diversity. One such factor, economic inequality, has been shown to affect public health, and has been linked to environmental problems in general. We tested how strongly economic inequality is related to biodiversity loss in particular. We found that among countries, and among US states, the number of species that are threatened or declining increases substantially with the Gini ratio of income inequality. At both levels of analysis, the connection between income inequality and biodiversity loss persists after controlling for biophysical conditions, human population size, and per capita GDP or income. Future research should explore potential mechanisms behind this equality-biodiversity relationship. Our results suggest that economic reforms would go hand in hand with, if not serving as a prerequisite for, effective conservation.

  19. MCBS Sites of Biodiversity Significance

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data layer represents areas with varying levels of native biodiversity that may contain high quality native plant communities, rare plants, rare animals, and/or...

  20. An international biodiversity observation year.

    Science.gov (United States)

    Wall; Adams; Mooney; Boxshall; Dobson; Nakashizuka

    2001-01-01

    The International Geophysical Year (IGY), which took place between July 1957 and December 1958, helped us to rethink the world. At a time when there was a major paradigm shift in our understanding of the physical world, the international collaboration of the IGY helped to reset the discipline. The International Biodiversity Observation Year (IBOY) is now occurring at a time when our dependence on, and understanding of, biodiversity is being acknowledged as a paradigm shift in our present view of the world. Although the benefits of IGY were initially intellectual with practical effects remaining unknown until many years later, the benefits of greater knowledge of biodiversity will support efforts towards sustainability and affect the quality of life, both now and in the future. By providing the framework for international collaborations between scientists involved in every aspect of life on Earth, IBOY has the potential to redefine our current understanding of biodiversity in a manner similar to how IGY helped redefine the geophysical world.

  1. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  2. Ecotoxicology & Impact on Biodiversity

    Directory of Open Access Journals (Sweden)

    Shanky Bhat

    2013-07-01

    Full Text Available Ecotoxicology can be defined as the ‘study of impacts of pollutants on the structure and function of ecosystems’ it can be by manmade poisonous chemicals and their effect on the environment, it does not include the study of naturally occurring toxins or it is a scientific discipline combining the methods of ecology and toxicology in studying the effects of toxic substances and especially pollutants on the environment. Ecotoxicology is a mix of various discipline ecology, toxicology, analytical chemistry, physiology, molecular biology, and mathematics. Ecotoxicology looks at the impacts of contaminants including populations, pesticides on individuals, natural communities, and ecosystems. Communities of living things and the environments they live in form ecosystems.Ecosystems include rivers, ponds, deserts, grasslands, and forests, and they too can be affected by pesticides. Ecotoxicologists also study what happens to the pesticides themselves, where they go in the environment, how long they last, and how they finally break down. Herein we review what is ecotoxicology, different kinds of toxicants their impact on biodiversity, assessment of toxicity of environmental toxicant.

  3. Filling in biodiversity threat gaps

    DEFF Research Database (Denmark)

    Joppa, L. N.; O'Connor, Brian; Visconti, Piero

    2016-01-01

    increase to 10,000 times the background rate should species threatened with extinction succumb to pressures they face (4). Reversing these trends is a focus of the Convention on Biological Diversity's 2020 Strategic Plan for Biodiversity and its 20 Aichi Targets and is explicitly incorporated...... into the United Nations' 2030 Agenda for Sustainable Development and its 17 Sustainable Development Goals (SDGs). We identify major gaps in data available for assessing global biodiversity threats and suggest mechanisms for closing them....

  4. Biodiversity of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    stream_size 2 stream_content_type text/plain stream_name Biodiversity_Western_Ghats_Inf_Kit_1994_3.1_1.pdf.txt stream_source_info Biodiversity_Western_Ghats_Inf_Kit_1994_3.1_1.pdf.txt Content-Encoding ISO-8859-1 Content-Type text.../plain; charset=ISO-8859-1 ...

  5. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  6. Motivations for conserving urban biodiversity.

    Science.gov (United States)

    Dearborn, Donald C; Kark, Salit

    2010-04-01

    In a time of increasing urbanization, the fundamental value of conserving urban biodiversity remains controversial. How much of a fixed budget should be spent on conservation in urban versus nonurban landscapes? The answer should depend on the goals that drive our conservation actions, yet proponents of urban conservation often fail to specify the motivation for protecting urban biodiversity. This is an important shortcoming on several fronts, including a missed opportunity to make a stronger appeal to those who believe conservation biology should focus exclusively on more natural, wilder landscapes. We argue that urban areas do offer an important venue for conservation biology, but that we must become better at choosing and articulating our goals. We explored seven possible motivations for urban biodiversity conservation: preserving local biodiversity, creating stepping stones to nonurban habitat, understanding and facilitating responses to environmental change, conducting environmental education, providing ecosystem services, fulfilling ethical responsibilities, and improving human well-being. To attain all these goals, challenges must be faced that are common to the urban environment, such as localized pollution, disruption of ecosystem structure, and limited availability of land. There are, however, also challenges specific only to particular goals, meaning that different goals will require different approaches and actions. This highlights the importance of specifying the motivations behind urban biodiversity conservation. If the goals are unknown, progress cannot be assessed.

  7. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... network of scientists, conservation organizations, government agencies, Permanent Participants Arctic community experts and leaders. Using an ecosystem-based monitoring approach which includes species, ecological functions, ecosystems, their interactions, and potential drivers, the CBMP focuses...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP...

  8. Data intensive computing for biodiversity

    CERN Document Server

    Dhillon, Sarinder K

    2013-01-01

    This book is focused on the development of a data integration framework for retrieval of biodiversity information from heterogeneous and distributed data sources. The data integration system proposed in this book links remote databases in a networked environment, supports heterogeneous databases and data formats, links databases hosted on multiple platforms, and provides data security for database owners by allowing them to keep and maintain their own data and to choose information to be shared and linked. The book is a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development for data integration in biodiversity.

  9. Biodiversity Risk Assessment of Protected Ecosystems

    Directory of Open Access Journals (Sweden)

    Vitalija Rudzkienė

    2013-10-01

    Full Text Available Forest ecosystems are characterised by the most abundant biodiversity because there are the best conditions for existence of various species of plants, animals and various other organisms there. Generally, in the last decades a lot of attention is given to biodiversity, and scientific research draws attention to an increasing loss of biodiversity. Biodiversity measurements are needed in order to understand biodiversity changes and to control them. Measurements and assessments of biodiversity of ecosystems reveal the condition of an ecosystem of a certain territory as well as create the basis for a strategy of preserving separate species. A lot of indices for assessing biodiversity risk have been created in the last decades. Integrated indices are composed when joining indices, and one of them is the integrated biodiversity risk assessment index NABRAI (National Biodiversity Risk Assessment Index. This article analyses the principles of creating biodiversity risk indices, possible alternatives of components (variables of biodiversity resources, impact and response indices, and their suitability at the national level. Assessment and ranking methodology, adapted for assessment of biodiversity risk of local protected territories and for ranking of territories, is presented. Report data of directorates of Lithuanian national and regional parks are used for the analysis, as well as the data served as a basis to calculate integrated biodiversity risk indices of several protected territories of Lithuania.DOI: http://dx.doi.org/10.5755/j01.erem.65.3.4478

  10. Global biodiversity monitoring: from data sources to essential biodiversity variables

    Science.gov (United States)

    Proenca, Vania; Martin, Laura J.; Pereira, Henrique M.; Fernandez, Miguel; McRae, Louise; Belnap, Jayne; Böhm, Monika; Brummitt, Neil; Garcia-Moreno, Jaime; Gregory, Richard D.; Honrado, Joao P; Jürgens, Norbert; Opige, Michael; Schmeller, Dirk S.; Tiago, Patricia; van Sway, Chris A

    2016-01-01

    Essential Biodiversity Variables (EBVs) consolidate information from varied biodiversity observation sources. Here we demonstrate the links between data sources, EBVs and indicators and discuss how different sources of biodiversity observations can be harnessed to inform EBVs. We classify sources of primary observations into four types: extensive and intensive monitoring schemes, ecological field studies and satellite remote sensing. We characterize their geographic, taxonomic and temporal coverage. Ecological field studies and intensive monitoring schemes inform a wide range of EBVs, but the former tend to deliver short-term data, while the geographic coverage of the latter is limited. In contrast, extensive monitoring schemes mostly inform the population abundance EBV, but deliver long-term data across an extensive network of sites. Satellite remote sensing is particularly suited to providing information on ecosystem function and structure EBVs. Biases behind data sources may affect the representativeness of global biodiversity datasets. To improve them, researchers must assess data sources and then develop strategies to compensate for identified gaps. We draw on the population abundance dataset informing the Living Planet Index (LPI) to illustrate the effects of data sources on EBV representativeness. We find that long-term monitoring schemes informing the LPI are still scarce outside of Europe and North America and that ecological field studies play a key role in covering that gap. Achieving representative EBV datasets will depend both on the ability to integrate available data, through data harmonization and modeling efforts, and on the establishment of new monitoring programs to address critical data gaps.

  11. Biodiverse planting for carbon and biodiversity on indigenous land.

    Science.gov (United States)

    Renwick, Anna R; Robinson, Catherine J; Martin, Tara G; May, Tracey; Polglase, Phil; Possingham, Hugh P; Carwardine, Josie

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes.

  12. Children prioritize virtual exotic biodiversity over local biodiversity.

    Directory of Open Access Journals (Sweden)

    Jean-Marie Ballouard

    Full Text Available Environmental education is essential to stem current dramatic biodiversity loss, and childhood is considered as the key period for developing awareness and positive attitudes toward nature. Children are strongly influenced by the media, notably the internet, about biodiversity and conservation issues. However, most media focus on a few iconic, appealing, and usually exotic species. In addition, virtual activities are replacing field experiences. This situation may curb children knowledge and concerns about local biodiversity. Focusing our analyses on local versus exotic species, we examined the level of knowledge and the level of diversity of the animals that French schoolchildren are willing to protect, and whether these perceptions are mainly guided by information available in the internet. For that, we collected and compared two complementary data sets: 1 a questionnaire was administered to schoolchildren to assess their knowledge and consideration to protect animals, 2 an internet content analysis (i.e. Google searching sessions using keywords was performed to assess which animals are the most often represented. Our results suggest that the knowledge of children and their consideration to protect animal are mainly limited to internet contents, represented by a few exotic and charismatic species. The identification rate of local animals by schoolchildren was meager, suggesting a worrying disconnection from their local environment. Schoolchildren were more prone to protect "virtual" (unseen, exotic rather than local animal species. Our results reinforce the message that environmental education must also focus on outdoor activities to develop conservation consciousness and concerns about local biodiversity.

  13. Analysis of Forest Biodiversity Changes in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    By reference of the evaluative data of forest biodiversity changes in China from 1973 to 1998, the variation analysis models of the pressure index of forest biodiversity, forest ecosystem diversity and forest species diversity, as well as the general index of forest biodiversity are developed using Statistical Package for the Social Sciences (SPSS). Furthermore established is the relevant model of mutation of forest diversity potential functions. This paper points out that changes of forest biodiversity...

  14. Business Meets Biodiversity Conference 2012

    NARCIS (Netherlands)

    Vollaard, B.; Man, M. de; Verweij, P.A.

    2012-01-01

    How can companies successfully integrate the sustainable management of ecosystems and biodiversity into their business models? This was the central question at the international conference ‘Business Meets Biodiversity’ held in Utrecht, The Netherlands, on June 27th 2012. The organizing committee, co

  15. Teaching Biodiversity: A Successful Approach

    Science.gov (United States)

    Gilbert, Lynne; Brown, Lucy

    2010-01-01

    This article takes you on a journey through the authors' school course unit, the "Variety of Life," which aims to unpick the idea of biodiversity and its many facets. The aims and principles of each teaching topic are defined, teaching activities suggested, resources described and the skills each topic develops listed. Whilst aimed at…

  16. Biodiversity in Word and Meaning

    Science.gov (United States)

    Slingsby, David

    2010-01-01

    This article argues that we need to abandon the word "biodiversity", to rediscover the biology that it obscures and to rethink how to introduce this biology to young people. We cannot go back to the systematics that once made up a large part of a biology A-level course (ages 16-18), so we need to find alternative ways of introducing the…

  17. Biodiversity Conservation in the REDD

    Directory of Open Access Journals (Sweden)

    Ferry Slik JW

    2010-11-01

    Full Text Available Abstract Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics.

  18. Africa's hotspots of biodiversity redefined

    NARCIS (Netherlands)

    Küper, W.; Sommer, J.H.; Lovett, J.C.; Beentje, H.J.; Rompaey, van R.S.A.R.; Chatelain, C.; Sosef, M.S.M.; Barthlott, W.

    2004-01-01

    A key problem for conservation is the coincidence of regions of high biodiversity with regions of high human impact. Twenty-five of the most threatened centers of plant diversity were identified by Myers et al., and these "hotspots" play a crucial role in international conservation strategies. The p

  19. Trading biodiversity for pest problems

    Science.gov (United States)

    Recent shifts in agricultural practices have resulted in increased pesticide use, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic a...

  20. Assessing biodiversity funding during the sixth extinction.

    Science.gov (United States)

    Amato, George; DeSalle, Rob

    2012-08-01

    Funding for understanding biodiversity on this planet has had a checkered and unsatisfactory history. There have been some true successes in developing models for assessing biodiversity, but satisfactory governmental and international support has been piecemeal and unsatisfactory. A true solution to the biodiversity crisis will require greater attention from governmental and international funding agencies.

  1. Delayed biodiversity change: no time to waste.

    Science.gov (United States)

    Essl, Franz; Dullinger, Stefan; Rabitsch, Wolfgang; Hulme, Philip E; Pyšek, Petr; Wilson, John R U; Richardson, David M

    2015-07-01

    Delayed biodiversity responses to environmental forcing mean that rates of contemporary biodiversity changes are underestimated, yet these delays are rarely addressed in conservation policies. Here, we identify mechanisms that lead to such time lags, discuss shifting human perceptions, and propose how these phenomena should be addressed in biodiversity management and science.

  2. Biology Student Teachers' Conceptual Frameworks regarding Biodiversity

    Science.gov (United States)

    Dikmenli, Musa

    2010-01-01

    In recent years, biodiversity has received a great deal of attention worldwide, especially in environmental education. The reasons for this attention are the increase of human activities on biodiversity and environmental problems. The purpose of this study is to investigate biology student teachers' conceptual frameworks regarding biodiversity.…

  3. Biodiversity optimal sampling: an algorithmic solution

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2012-03-01

    Full Text Available Biodiversity sampling is a very serious task. When biodiversity sampling is not representative of the biodiversity spatial pattern due to few data or uncorrected sampling point locations, successive analyses, models and simulations are inevitably biased. In this work, I propose a new solution to the problem of biodiversity sampling. The proposed approach is proficient for habitats, plant and animal species, in addition it is able to answer the two pivotal questions of biodiversity sampling: 1 how many sampling points and 2 where are the sampling points.

  4. Options for promoting high-biodiversity REDD+

    Energy Technology Data Exchange (ETDEWEB)

    Swan, Steve; Mcnally, Richard; Grieg-Gran, Maryanne; Roe, Dilys; Mohammed, Essam Yassin

    2011-11-15

    International climate and biodiversity conventions agree that to be effective in the long term, strategies to reduce emissions from deforestation, forest degradation, conservation and enhancement of forest carbon stocks, and sustainable forest management (REDD+), must not undermine biodiversity. But how do countries achieve 'high-biodiversity REDD+' in practice? At a global level, options include immediate policy strengthening in international negotiations; promotion of co-benefit standards; and financial incentives and preferences for buying countries. At a national level, developing countries can also promote high-biodiversity REDD+ through more coherent policies; integrated planning; regulatory and economic instruments; and improved monitoring of biodiversity impacts.

  5. Accounting for biodiversity in the dairy industry.

    Science.gov (United States)

    Sizemore, Grant C

    2015-05-15

    Biodiversity is an essential part of properly functioning ecosystems, yet the loss of biodiversity currently occurs at rates unparalleled in the modern era. One of the major causes of this phenomenon is habitat loss and modification as a result of intensified agricultural practices. This paper provides a starting point for considering biodiversity within dairy production, and, although focusing primarily on the United States, findings are applicable broadly. Biodiversity definitions and assessments (e.g., indicators, tools) are proposed and reviewed. Although no single indicator or tool currently meets all the needs of comprehensive assessment, many sustainable practices are readily adoptable as ways to conserve and promote biodiversity. These practices, as well as potential funding opportunities are identified. Given the state of uncertainty in addressing the complex nature of biodiversity assessments, the adoption of generally sustainable environmental practices may be the best currently available option for protecting biodiversity on dairy lands.

  6. Place prioritization for biodiversity content

    Indian Academy of Sciences (India)

    Sahotra Sarkar; Anshu Aggarwal; Justin Garson; Chris R Margules; Juliane Zeidler

    2002-07-01

    The prioritization of places on the basis of biodiversity content is part of any systematic biodiversity conservation planning process. The place prioritization procedure implemented in the ResNet software package is described. This procedure is primarily based on the principles of rarity and complementarity. Application of the procedure is demonstrated with two analyses, one data set consisting of the distributions of termite genera in Namibia, and the other consisting of the distributions of bird species in the Islas Malvinas/Falkland Islands. The attributes that data sets should have for the effective and reliable application of such procedures are discussed. The procedure used here is compared to some others that are also currently in use.

  7. Urban lifestyle and urban biodiversity

    DEFF Research Database (Denmark)

    Petersen, L. K.; Lyytimäki, J.; Normander, B.

    2007-01-01

    the green needs of urban lifestyle in the planning process does not come by itself. Nor does finding the synergies between urban lifestyle and urban biodiversity. Careful planning including stakeholder involvement is required. In this process various mapping techniques and use of indicators can be most...... be important habitats and valuable corridors for both common and less common species. At the same time a comprehensive, functional and viable green structure is important for urban populations to whom it serves many functions and offers a whole range of benefits. Urban green structure should serve both...... biodiversity, recreational, educational and other needs. However, uncovered and unsealed space is constantly under pressure for building and infrastructure development in the urban landscape, and the design and usages of urban green structure is a matter of differing interests and expectations. Integrating...

  8. ANTHROPIC RISK ASSESSMENT ON BIODIVERSITY

    OpenAIRE

    2014-01-01

    This paper presents a methodology for risk assessment of anthropic activities on habitats and species. The method has been developed for Veneto Region, in order to simplify and improve the quality of EIA procedure (VINCA). Habitats and species, animals and plants, are protected by European Directive 92/43/EEC and 2009/147/EC but they are subject at hazard due to pollution produced by human activities. Biodiversity risks may conduct to deterioration and disturbance in ecological niche...

  9. Grasshopper (Orthoptera: Acrididae) biodiversity and grassland ecosystems

    Institute of Scientific and Technical Information of China (English)

    ZHONG-WEI GUO; HONG-CHANG LI; YA-LING GAN

    2006-01-01

    Interesting results may arise by combining studies on the structure and function of ecosystems with that of biodiversity for certain species. Grasshopper biodiversity is the result of the evolution of grassland ecosystems; however, it also impacts on the structure and the function of those ecosystems. We consider there to be a close relationship between the health of grassland ecosystems and grasshopper biodiversity. The main problems involved in this relationship are likely to include: (i) grasshopper biodiversity and its spatial pattern; (ii) the effect of grasshopper biodiversity on the ecological processes of grassland ecosystems; (iii) the biodiversity threshold of grasshopper population explosions;(iv) the relationship between grasshopper biodiversity and the natural and human factors that affect grassland ecosystems; and (v) grasshopper biodiversity and the health of grassland ecosystems. The solutions to these problems may provide sound bases for controlling disasters caused by grasshoppers and managing grassland ecosystems in the west of China. In this paper, we introduced two concepts for grasshopper biodiversity, that is, "spatial pattern" and "biodiversity threshold". It is helpful to understand the action of the spatial pattern of grasshopper biodiversity on the ecological processes of grassland ecosystems and the effect of this spatial pattern on the health of those ecosystems, owing to the fact that, in the west of China, grasslands are vast and grasshoppers are widely distributed. Moreover, we inferred that the change in the level of component richness at each type of grasshopper biodiversity can make an impact on grassland ecosystems, and therefore, there is likely to be a threshold to grasshopper biodiversity for the stability and the sustainability of those ecosystems.

  10. Economic growth, biodiversity loss and conservation effort.

    Science.gov (United States)

    Dietz, Simon; Adger, W Neil

    2003-05-01

    This paper investigates the relationship between economic growth, biodiversity loss and efforts to conserve biodiversity using a combination of panel and cross section data. If economic growth is a cause of biodiversity loss through habitat transformation and other means, then we would expect an inverse relationship. But if higher levels of income are associated with increasing real demand for biodiversity conservation, then investment to protect remaining diversity should grow and the rate of biodiversity loss should slow with growth. Initially, economic growth and biodiversity loss are examined within the framework of the environmental Kuznets hypothesis. Biodiversity is represented by predicted species richness, generated for tropical terrestrial biodiversity using a species-area relationship. The environmental Kuznets hypothesis is investigated with reference to comparison of fixed and random effects models to allow the relationship to vary for each country. It is concluded that an environmental Kuznets curve between income and rates of loss of habitat and species does not exist in this case. The role of conservation effort in addressing environmental problems is examined through state protection of land and the regulation of trade in endangered species, two important means of biodiversity conservation. This analysis shows that the extent of government environmental policy increases with economic development. We argue that, although the data are problematic, the implications of these models is that conservation effort can only ever result in a partial deceleration of biodiversity decline partly because protected areas serve multiple functions and are not necessarily designated to protect biodiversity. Nevertheless institutional and policy response components of the income biodiversity relationship are important but are not well captured through cross-country regression analysis.

  11. Harnessing private sector conservation of biodiversity

    OpenAIRE

    Productivity Commission

    2002-01-01

    'Harnessing Private Sector Conservation of Biodiversity' was released on 4 December 2001. This paper provides an economic perspective on the role the private sector can play in conservation of biodiversity. It focuses on opportunities for governments to facilitate biodiversity conservation by enabling markets to allocate resources better. With more than 60 per cent of Australia's land area under private management, conservation cannot be adequately addressed without private sector participati...

  12. Marine biodiversity and ecosystem functioning: A perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Anil, A.C.

    and promoting high biodiversity. The importance of such grazers in biodiversity processes is worthy of future studies. Diseases may constitute a nother major cause of distu r- bance, having profound effects on biodiversity. Several recent studies have... shown that phytoplankton diversity in the water column may be significantly affected by viral diseases. Disturbances and diversity Predation and disease s may be considered as different mechanisms of disturbance. Underwood 8 has discussed...

  13. Biodiversity and its fragility in Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    PU Ying-shan; ZHANG Zhi-yi; PU Li-na; HUI Chao-mao

    2007-01-01

    In Yunnan, 8 major aspects of biodiversity and fragility in landforms, ecosystems, distribution populations, alien invasion, segregation, pollution and maladministration with various menace factors causing biodiversity loss have been described. It is revealed that the facts that the biodiversity and fragility coexists in this paper. Accordingly, 6 major countermeasures for effective conservation and rational utilization of the provincial biodiversity were suggested on the basis of thescientific development concepts, principles of nature protection,conservation biology, resource management and ethnobotany and present status in Yunnan with rich intangible resources such as climatic,ethnical and cultural diversity, etc.

  14. Sites for priority biodiversity conservation in the Caribbean Islands Biodiversity Hotspot

    OpenAIRE

    V. Anadon-Irizarry; D.C. Wege; A. Upgren; Young, R.; Boom, B; Leon, Y.M.; Y. Arias; Koenig, K.; Morales, A. L.; Burke, W.

    2012-01-01

    The Caribbean Islands Biodiversity Hotspot is exceptionally important for global biodiversity conservation due to high levels of species endemism and threat. A total of 755 Caribbean plant and vertebrate species are considered globally threatened, making it one of the top Biodiversity Hotspots in terms of threat levels. In 2009, Key Biodiversity Areas (KBAs) were identified for the Caribbean Islands through a regional-level analysis of accessible data and literature, followed by extensive nat...

  15. Coral reef resilience through biodiversity

    Science.gov (United States)

    Rogers, Caroline S.

    2013-01-01

    Irrefutable evidence of coral reef degradation worldwide and increasing pressure from rising seawater temperatures and ocean acidification associated with climate change have led to a focus on reef resilience and a call to “manage” coral reefs for resilience. Ideally, global action to reduce emission of carbon dioxide and other greenhouse gases will be accompanied by local action. Effective management requires reduction of local stressors, identification of the characteristics of resilient reefs, and design of marine protected area networks that include potentially resilient reefs. Future research is needed on how stressors interact, on how climate change will affect corals, fish, and other reef organisms as well as overall biodiversity, and on basic ecological processes such as connectivity. Not all reef species and reefs will respond similarly to local and global stressors. Because reef-building corals and other organisms have some potential to adapt to environmental changes, coral reefs will likely persist in spite of the unprecedented combination of stressors currently affecting them. The biodiversity of coral reefs is the basis for their remarkable beauty and for the benefits they provide to society. The extraordinary complexity of these ecosystems makes it both more difficult to predict their future and more likely they will have a future.

  16. Does biodiversity protect humans against infectious disease?

    Science.gov (United States)

    Wood, Chelsea L; Lafferty, Kevin D; DeLeo, Giulio; Young, Hillary S; Hudson, Peter J; Kuris, Armand M

    2014-04-01

    Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

  17. Digital Geogames to Foster Local Biodiversity

    Science.gov (United States)

    Schaal, Sonja; Schaal, Steffen; Lude, Armin

    2015-01-01

    The valuing of biodiversity is considered to be a first step towards its conservation. Therefore, the aim of the BioDiv2Go project is to combine sensuous experiences discovering biodiversity with mobile technology and a game-based learning approach. Following the competence model for environmental education (Roczen et al, 2014), Geogames (location…

  18. Marine biodiversity survey of St. Eustatius, 2015

    NARCIS (Netherlands)

    Hoeksema, B.W.

    2016-01-01

    The Statia Marine Biodiversity Expedition (2015) was organized by Naturalis Biodiversity Center in Leiden (the national museum of natural history of the Netherlands) and ANEMOON Foundation (a Dutch organisation of citizen scientists) in Bennebroek, The Netherlands. This field survey served as a base

  19. Collapse of biodiversity in fractured metacommunities

    Science.gov (United States)

    Fisher, Charles; Mehta, Pankaj

    2014-03-01

    The increasing threat to global biodiversity from climate change, habitat destruction, and other anthropogenic factors motivates the search for features that increase the resistance of ecological communities to destructive disturbances. Recently, Gibson et al (Science 2013) observed that the damming of the Khlong Saeng river in Thailand caused a rapid collapse of biodiversity in the remaining tropical forests. Using a theoretical model that maps the distribution of coexisting species in an ecological community to a disordered system of Ising spins, we show that fracturing a metacommunity by inhibiting species dispersal leads to a collapse in biodiversity in the constituent local communities. The biodiversity collapse can be modeled as a diffusion on a rough energy landscape, and the resulting estimate for the rate of extinction highlights the role of species functional diversity in maintaining biodiversity following a disturbance.

  20. Focus on biodiversity, health and wellbeing

    Science.gov (United States)

    Stephens, Carolyn; Athias, Renato

    2015-12-01

    In 2012 Environmental Research Letters (ERL) launched a focus series of research papers on the theme of biodiversity, health and well-being. It was the year of the second Rio Summit on Sustainable Development, a huge number of species had been made extinct and conservationists were making increasingly urgent calls for the protection of biodiversity. The situation is ever more critical. Since we started the issue more species have become extinct, and hundreds more have now become critically endangered. The focus issue highlighted the complexity of the links of biodiversity and health, and provides more evidence for the importance to human health of biodiversity on our planet. Research papers contrasted anthropocentric western scientific views of biodiversity and its ecosystem service to humans, with the more horizontal conceptions of indigenous communities in the Amazon—and as many cultures have recognized throughout history, they recognize that we are part of nature: nature does not exist for us.

  1. The origins of tropical marine biodiversity.

    Science.gov (United States)

    Bowen, Brian W; Rocha, Luiz A; Toonen, Robert J; Karl, Stephen A

    2013-06-01

    Recent phylogeographic studies have overturned three paradigms for the origins of marine biodiversity. (i) Physical (allopatric) isolation is not the sole avenue for marine speciation: many species diverge along ecological boundaries. (ii) Peripheral habitats such as oceanic archipelagos are not evolutionary graveyards: these regions can export biodiversity. (iii) Speciation in marine and terrestrial ecosystems follow similar processes but are not the same: opportunities for allopatric isolation are fewer in the oceans, leaving greater opportunity for speciation along ecological boundaries. Biodiversity hotspots such as the Caribbean Sea and the Indo-Pacific Coral Triangle produce and export species, but can also accumulate biodiversity produced in peripheral habitats. Both hotspots and peripheral ecosystems benefit from this exchange in a process dubbed biodiversity feedback.

  2. Evaluating Temporal Consistency in Marine Biodiversity Hotspots.

    Science.gov (United States)

    Piacenza, Susan E; Thurman, Lindsey L; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lindsley, Amy J; Nelson, Jake; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Heppell, Selina S

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  3. Monitoring Biodiversity using Environmental DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis

    was less successful than acoustic detections. However, at one site, long-finned pilot whale – a species rarely sighted in the target area – was detected. Another study examines DNA extracted from leeches to account for biodiversity of terrestrial mammals, on which they have been feeding. The persistence......, a study tests the applicability of non-destructive DNA extraction from old and ancient insect remains. DNA is successfully retrieved, amplified and equenced from dried museum beetle specimens up to 188 years old, ermafrost-preserved macrofossils up to 26.000 years old and directly from 1800-3000 years old......As any species interacts with its environment, most of them will at some point expel DNA to their surroundings. Such DNA can be picked up in environmental samples, isolated and analysed. Within the last decade, this has become a multidisciplinary research field known as Environmental DNA (eDNA...

  4. Biodiversity of cryopegs in permafrost.

    Science.gov (United States)

    Gilichinsky, David; Rivkina, Elizaveta; Bakermans, Corien; Shcherbakova, Viktoria; Petrovskaya, Lada; Ozerskaya, Svetlana; Ivanushkina, Natalia; Kochkina, Galina; Laurinavichuis, Kyastus; Pecheritsina, Svetlana; Fattakhova, Rushania; Tiedje, James M

    2005-06-01

    This study describes the biodiversity of the indigenous microbial community in the sodium-chloride water brines (cryopegs) derived from ancient marine sediments and sandwiched within permafrost 100-120,000 years ago after the Arctic Ocean regression. Cryopegs remain liquid at the in situ temperature of -9 to -11 degrees C and make up the only habitat on the Earth that is characterized by permanently subzero temperatures, high salinity, and the absence of external influence during geological time. From these cryopegs, anaerobic and aerobic, spore-less and spore-forming, halotolerant and halophilic, psychrophilic and psychrotrophic bacteria, mycelial fungi and yeast were isolated and their activity was detected below 0 degrees C.

  5. Biodiversity mapping in sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Tor; Ulssnes, Amund; Nissen-Lie, Torild [DNV, Oslo (Norway)

    2008-07-01

    When oil companies are entering new unexplored areas their potential footprint on the environment should be measured in a way that necessary action could be included in the planning of the activity. These actions should reduce the impact to accepted levels. Traditional baseline studies, including sediment and macro fauna sampling, are carried out in homogeneous areas. In heterogeneous and unexplored areas there is a need for more information than these traditional sediment analyses can give. To increase the knowledge from specific areas biodiversity mapping has been carried out. To combine the knowledge from ROV surveys, modelling, current measurements, sediment characteristics, seismic, macro fauna and background levels of chemicals contents in the sediments, both prior to the exploration, and after the drilling have taken place the operator can document their footprint on the marine environment. (author)

  6. Cycad diversification and tropical biodiversity

    Directory of Open Access Journals (Sweden)

    Rull, V.

    2012-12-01

    Full Text Available The recent unexpected discovery that living Cycadales are not Jurassic-Cretaceous (200– 65 Mya relicts, as all their extant genera began to diversify during the Late Miocene (12 Mya, has challenged a classical evolutionary myth. This brief note shows how this finding may also provide new clues on the shaping of the high tropical biodiversity

    El reciente e inesperado descubrimiento de que las Cycadales actuales no son relictos Jurásico-Cretácicos (200-65 Mya, ya que todos sus géneros iniciaron su diversificación durante el Mioceno Tardío (12 Mya, ha puesto en entredicho un mito evolutivo clásico. En esta nota se expone como este hallazgo puede, además, proporcionar nuevas pistas sobre el origen de la elevada biodiversidad tropical.

  7. Biodiversity effects on plant stoichiometry.

    Science.gov (United States)

    Abbas, Maike; Ebeling, Anne; Oelmann, Yvonne; Ptacnik, Robert; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang W; Wilcke, Wolfgang; Hillebrand, Helmut

    2013-01-01

    In the course of the biodiversity-ecosystem functioning debate, the issue of multifunctionality of species communities has recently become a major focus. Elemental stoichiometry is related to a variety of processes reflecting multiple plant responses to the biotic and abiotic environment. It can thus be expected that the diversity of a plant assemblage alters community level plant tissue chemistry. We explored elemental stoichiometry in aboveground plant tissue (ratios of carbon, nitrogen, phosphorus, and potassium) and its relationship to plant diversity in a 5-year study in a large grassland biodiversity experiment (Jena Experiment). Species richness and functional group richness affected community stoichiometry, especially by increasing C:P and N:P ratios. The primacy of either species or functional group richness effects depended on the sequence of testing these terms, indicating that both aspects of richness were congruent and complementary to expected strong effects of legume presence and grass presence on plant chemical composition. Legumes and grasses had antagonistic effects on C:N (-27.7% in the presence of legumes, +32.7% in the presence of grasses). In addition to diversity effects on mean ratios, higher species richness consistently decreased the variance of chemical composition for all elemental ratios. The diversity effects on plant stoichiometry has several non-exclusive explanations: The reduction in variance can reflect a statistical averaging effect of species with different chemical composition or a optimization of nutrient uptake at high diversity, leading to converging ratios at high diversity. The shifts in mean ratios potentially reflect higher allocation to stem tissue as plants grew taller at higher richness. By showing a first link between plant diversity and stoichiometry in a multiyear experiment, our results indicate that losing plant species from grassland ecosystems will lead to less reliable chemical composition of forage for

  8. Threats to China's Biodiversity by Contradictions Policy.

    Science.gov (United States)

    Zheng, Heran; Cao, Shixiong

    2015-02-01

    China has among the highest biodiversities in the world, but faces extreme biodiversity losses due to the country's huge population and its recent explosive socioeconomic development. Despite huge efforts and investments by the government and Chinese society to conserve biodiversity, especially in recent decades, biodiversity losses may not have been reversed, and may even have been exacerbated by unintended consequences resulting from these projects. China's centralized approach to biodiversity conservation, with limited local participation, creates an inflexible and inefficient approach because of conflicts between local communities and national administrators over the benefits. Although community-based conservation may be an imperfect approach, it is an essential component of a successful future national conservation plan. Biodiversity conservation should be considered from the perspective of systems engineering and a governance structure that combines centralization with community-level conservation. In this paper, we describe China's complex challenge: how to manage interactions between humans and nature to find win-win solutions that can ensure long-term biodiversity conservation without sacrificing human concerns.

  9. Late Quaternary climate change shapes island biodiversity

    DEFF Research Database (Denmark)

    Weigelt, Patrick; Steinbauer, Manuel; Cabral, Juliano

    2016-01-01

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration–extinction dynamics1, or as geologically dynamic with biodiversity resulting from immigration–speciation–extinction dynamics influenced by changes in island...... sea levels3, 4 and caused massive changes in island area, isolation and connectivity5, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory2, 6. Consequences of these oscillations for present biodiversity remain unassessed5, 7...

  10. Challenges of Biodiversity Education: A Review of Education Strategies for Biodiversity Education

    Directory of Open Access Journals (Sweden)

    Keith G. Tidball

    2012-01-01

    Full Text Available Biodiversity conservation has increasingly gained recognition in national and international agendas. The Convention on Biological Diversity (CBD has positioned biodiversity as a key asset to be protected to ensure our well-being and that of future generations. Nearly 20 years after its inception, results are not as expected, as shown in the latest revision of the 2010 CBD target. Various factors may affect the implementation of the CBD, including lack of public education and awareness on biodiversity-related issues. This paper explores how biodiversity education has been carried out and documents successes and failures in the field. Based on a comprehensive literature review, we identified four main challenges: the need to define an approach for biodiversity education, biodiversity as an ill-defined concept, appropriate communication, and the disconnection between people and nature. These represent obstacles to the achievement of educational targets, and therefore, to accomplishing conservation goals as set forth by the CBD.

  11. The Circumpolar Biodiversity Monitoring Program Terrestrial Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments in terrestrial, marine, freshwater...... and coastal environments. The CBMP Terrestrial Plan is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect......, understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity, and to identify knowledge gaps and priorities. This poster will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based monitoring...

  12. Biodiversity Information Serving Our Nation (BISON)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Biodiversity Information Serving Our Nation (BISON) project is an online mapping information system consisting of a large collection of species occurrence...

  13. Hollow rhodoliths increase Svalbard's shelf biodiversity

    Science.gov (United States)

    Teichert, Sebastian

    2014-11-01

    Rhodoliths are coralline red algal assemblages that commonly occur in marine habitats from the tropics to polar latitudes. They form rigid structures of high-magnesium calcite and have a good fossil record. Here I show that rhodoliths are ecosystem engineers in a high Arctic environment that increase local biodiversity by providing habitat. Gouged by boring mussels, originally solid rhodoliths become hollow ecospheres intensely colonised by benthic organisms. In the examined shelf areas, biodiversity in rhodolith-bearing habitats is significantly greater than in habitats without rhodoliths and hollow rhodoliths yield a greater biodiversity than solid ones. This biodiversity, however, is threatened because hollow rhodoliths take a long time to form and are susceptible to global change and anthropogenic impacts such as trawl net fisheries that can destroy hollow rhodoliths. Rhodoliths and other forms of coralline red algae play a key role in a plurality of environments and need improved management and protection plans.

  14. Coastal and marine biodiversity of India

    Digital Repository Service at National Institute of Oceanography (India)

    Venkataraman, K.; Wafar, M.V.M.

    This paper summarizes what is known of the coastal and marine biodiversity of the Indian seas and their various ecosystems, from past literature, museum records and other lesser-known sources of information. The synthesis suggests that the number...

  15. Ecosystem function and biodiversity on coral reefs

    OpenAIRE

    1994-01-01

    The article highlights a workshop held in Key West, Florida in November 1993 attended by a group of 35 international scientists where topics of ecosystem function and biodiversity on coral reefs were discussed.

  16. Scientific contributions of extensive biodiversity monitoring.

    Science.gov (United States)

    Couvet, Denis; Devictor, Vincent; Jiguet, Frédéric; Julliard, Romain

    2011-05-01

    To develop a complete and informative biodiversity observation system, it is necessary to compare the strengths and limits of various monitoring schemes. In this article, we examine the various advantages of extensively monitoring fine-grained spatial variations of biodiversity, where the prominent traits of many species within a community (abundance, phenology, etc.) are regularly recorded at numerous sites over a large territory, usually via human observation networks. Linking these variations with environmental factors sheds lights on the major mechanisms leading to changes in biodiversity, thus increasing our knowledge of macroecology and community ecology. This extensive monitoring allows us to assess diffuse effects, contributing to the sound use of the precautionary principle. Combined with site-focused monitoring, information gathered from extensive monitoring provides the raw material necessary to build biodiversity scenarios.

  17. Antarctica and the strategic plan for biodiversity

    Science.gov (United States)

    Chown, Steven L.; Brooks, Cassandra M.; Terauds, Aleks; Le Bohec, Céline; van Klaveren-Impagliazzo, Céline; Whittington, Jason D.; Butchart, Stuart H. M.; Coetzee, Bernard W. T.; Collen, Ben; Convey, Peter; Gaston, Kevin J.; Gilbert, Neil; Gill, Mike; Höft, Robert; Johnston, Sam; Kennicutt, Mahlon C.; Kriesell, Hannah J.; Le Maho, Yvon; Lynch, Heather J.; Palomares, Maria; Puig-Marcó, Roser; Stoett, Peter; McGeoch, Melodie A.

    2017-01-01

    The Strategic Plan for Biodiversity, adopted under the auspices of the Convention on Biological Diversity, provides the basis for taking effective action to curb biodiversity loss across the planet by 2020—an urgent imperative. Yet, Antarctica and the Southern Ocean, which encompass 10% of the planet’s surface, are excluded from assessments of progress against the Strategic Plan. The situation is a lost opportunity for biodiversity conservation globally. We provide such an assessment. Our evidence suggests, surprisingly, that for a region so remote and apparently pristine as the Antarctic, the biodiversity outlook is similar to that for the rest of the planet. Promisingly, however, much scope for remedial action exists. PMID:28350825

  18. Biodiversity: modelling angiosperms as networks.

    Science.gov (United States)

    Gottlieb, O R; Borin, M R

    2000-11-01

    In the neotropics, one of the last biological frontiers, the major ecological concern should not involve local strategies, but global effects often responsible for irreparable damage. For a holistic approach, angiosperms are ideal model systems dominating most land areas of the present world in an astonishing variety of form and function. Recognition of biogeographical patterns requires new methodologies and entails several questions, such as their nature, dynamics and mechanism. Demographical patterns of families, modelled via species dominance, reveal the existence of South American angiosperm networks converging at the central Brazilian plateau. Biodiversity of habitats, measured via taxonomic uniqueness, reveal higher creative power at this point of convergence than in more peripheral regions. Compositional affinities of habitats, measured via bioconnectivity, reveal the decisive role of ecotones in the exchange or redistribution of information, energy and organisms among the ecosystems. Forming dynamic boundaries, ecotones generate and relay evolutionary novelty, and integrate all neotropical ecosystems into a single vegetation net. Connectivity in such plant webs may depend on mycorrhizal links. If sufficiently general such means of metabolic transfer will require revision of the chemical composition of many plants.

  19. Breaking boundaries for biodiversity : expanding the policy agenda to halt biodiversity loss

    OpenAIRE

    Veen, M.P.; Sanders, M E; Tekelenburg, A.; Gerritsen, A.L.; Lörzing, J.A.; Brink, Th.

    2010-01-01

    Our assessment from the perspective of the Netherlands, a country in the temperate zone, showed a slightly positive picture, in line with the overall results for this zone. The loss of biodiversity in the Netherlands has been slowed down, but the European target – halting the loss of biodiversity – could not be met. The picture in the Netherlands is less positive if the average low quality of the remaining Dutch biodiversity is taken into account. If the impacts on biodiversity abroad of impo...

  20. Responses of alpine biodiversity to climate change

    OpenAIRE

    Yang Liu; Jian Zhang; Wanqin Yang

    2009-01-01

    The alpine belt is the temperature-driven treeless region between the timberline and the snowline. Alpine belts are ideal sites for monitoring climate change because species in mountain habitats are especially sensitive to climate change. Global warming is shifting the distribution of alpine biodiversity and is leading to glacial retreat, implying that alterations in alpine biodiversity are indicators of climate change. Therefore, more attention has been given to changes in species compositio...

  1. Marine biodiversity survey of St. Eustatius, 2015

    OpenAIRE

    Hoeksema, B. W.

    2016-01-01

    The Statia Marine Biodiversity Expedition (2015) was organized by Naturalis Biodiversity Center in Leiden (the national museum of natural history of the Netherlands) and ANEMOON Foundation (a Dutch organisation of citizen scientists) in Bennebroek, The Netherlands. This field survey served as a baseline study to explore the marine biota of St. Eustatius, a small island on the boundary between the eastern Caribbean and the West Atlantic. Since 2010, St. Eustatius is part of the Caribbean Nethe...

  2. The integration of biodiversity into One Health.

    Science.gov (United States)

    Romanelli, C; Cooper, H D; de Souza Dias, B F

    2014-08-01

    A better understanding of the links between biodiversity, health and disease presents major opportunities for policy development, and can enhance our understanding of how health-focused measures affect biodiversity, and conservation measures affect health. The breadth and complexity of these relationships, and the socio-economic drivers by which they are influenced, in the context of rapidly shifting global trends, reaffirm the need for an integrative, multidisciplinary and systemic approach to the health of people, livestock and wildlife within the ecosystem context. Loss of biodiversity, habitat fragmentation and the loss of natural environments threaten the full range of life-supporting services provided by ecosystems at all levels of biodiversity, including species, genetic and ecosystem diversity. The disruption of ecosystem services has direct and indirect implications for public health, which are likely to exacerbate existing health inequities, whether through exposure to environmental hazards or through the loss of livelihoods. One Health provides a valuable framework for the development of mutually beneficial policies and interventions at the nexus between health and biodiversity, and it is critical that One Health integrates biodiversity into its strategic agenda.

  3. The biodiversity-dependent ecosystem service debt.

    Science.gov (United States)

    Isbell, Forest; Tilman, David; Polasky, Stephen; Loreau, Michel

    2015-02-01

    Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity-dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2-21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity-dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services.

  4. Towards a Duty of Care for Biodiversity

    Science.gov (United States)

    Earl, G.; Curtis, A.; Allan, C.

    2010-04-01

    The decline in biodiversity is a worldwide phenomenon, with current rates of species extinction more dramatic than any previously recorded. Habitat loss has been identified as the major cause of biodiversity decline. In this article we suggest that a statutory duty of care would complement the current mix of policy options for biodiversity conservation. Obstacles hindering the introduction of a statutory duty of care include linguistic ambiguity about the terms ‘duty of care’ and ‘stewardship’ and how they are applied in a natural resource management context, and the absence of a mechanism to guide its implementation. Drawing on international literature and key informant interviews we have articulated characteristics of duty of care to reduce linguistic ambiguity, and developed a framework for implementing a duty of care for biodiversity at the regional scale. The framework draws on key elements of the common law ‘duty of care’, the concepts of ‘taking reasonable care’ and ‘avoiding foreseeable harm’, in its logic. Core elements of the framework include desired outcomes for biodiversity, supported by current recommended practices. The focus on outcomes provides opportunities for the development of innovative management practices. The framework incorporates multiple pathways for the redress of non-compliance including tiered negative sanctions, and positive measures to encourage compliance. Importantly, the framework addresses the need for change and adaptation that is a necessary part of biodiversity management.

  5. Achievements and Prospects of Biodiversity Informatics in China

    Institute of Scientific and Technical Information of China (English)

    JI Liqiang

    2010-01-01

    @@ Biodiversity information is the basis for conservation and sustainable use of biodiversity.It not only helps us understand the status quo of biodiversity,but also reveals the relationships between its different components and hence their dynamic variations.Furthermore,it will help us predict the trend of future biodiversity development,and lay the basis for related analyses and scientific decision making on biodiversity conservation.

  6. A model of provenance applied to biodiversity datasets

    OpenAIRE

    Amanqui, Flor K; De Nies, Tom; Dimou, Anastasia; Verborgh, Ruben; Mannens, Erik; Van De Walle, Rik; Moreira, Dilvan

    2016-01-01

    Nowadays, the Web has become one of the main sources of biodiversity information. An increasing number of biodiversity research institutions add new specimens and their related information to their biological collections and make this information available on the Web. However, mechanisms which are currently available provide insufficient provenance of biodiversity information. In this paper, we propose a new biodiversity provenance model extending the W3C PROV Data Model. Biodiversity data is...

  7. Compensation for biodiversity loss – Advice to the Netherlands' Taskforce on Biodiversity and Natural Resources

    NARCIS (Netherlands)

    Bie, de S.; Dessel, van B.

    2011-01-01

    Compensation of damage to biodiversity is one of the mechanisms to settle environmental costs. It concerns creating new opportunities for biodiversity, which as a minimum equals the residual impact after a company or organization has attempted to avoid, prevent and mitigate that impact. In the Nethe

  8. Breaking boundaries for biodiversity : expanding the policy agenda to halt biodiversity loss

    NARCIS (Netherlands)

    Veen, M.P.; Sanders, M.E.; Tekelenburg, A.; Gerritsen, A.L.; Lörzing, J.A.; Brink, Th.

    2010-01-01

    Our assessment from the perspective of the Netherlands, a country in the temperate zone, showed a slightly positive picture, in line with the overall results for this zone. The loss of biodiversity in the Netherlands has been slowed down, but the European target – halting the loss of biodiversity

  9. Challenges of Biodiversity Education: A Review of Education Strategies for Biodiversity Education

    Science.gov (United States)

    Navarro-Perez, Moramay; Tidball, Keith G.

    2012-01-01

    Biodiversity conservation has increasingly gained recognition in national and international agendas. The Convention on Biological Diversity (CBD) has positioned biodiversity as a key asset to be protected to ensure our well-being and that of future generations. Nearly 20 years after its inception, results are not as expected, as shown in the…

  10. Biodiversity of Jinggangshan Mountain: the importance of topography and geographical location in supporting higher biodiversity.

    Science.gov (United States)

    Zhou, Ting; Chen, Bao-Ming; Liu, Gang; Huang, Fang-Fang; Liu, Jin-Gang; Liao, Wen-Bo; Wang, Ying-Yong; Ren, Si-Jie; Chen, Chun-Quan; Peng, Shao-Lin

    2015-01-01

    Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM), an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason's richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM's area was in the mid-altitude region and approximately 40% of JGM's area was in the 10°-20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM.

  11. Biodiversity of Jinggangshan Mountain: the importance of topography and geographical location in supporting higher biodiversity.

    Directory of Open Access Journals (Sweden)

    Ting Zhou

    Full Text Available Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM, an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason's richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM's area was in the mid-altitude region and approximately 40% of JGM's area was in the 10°-20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM.

  12. Biodiversity of Jinggangshan Mountain: The Importance of Topography and Geographical Location in Supporting Higher Biodiversity

    Science.gov (United States)

    Liu, Gang; Huang, Fang-Fang; Liu, Jin-Gang; Liao, Wen-Bo; Wang, Ying-Yong; Ren, Si-Jie; Chen, Chun-Quan; Peng, Shao-Lin

    2015-01-01

    Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM), an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason’s richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM’s area was in the mid-altitude region and approximately 40% of JGM’s area was in the 10°–20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM. PMID:25763820

  13. Climate-smart management of biodiversity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.; Rosenblatt, Daniel L.

    2015-01-01

    Determining where biodiversity is likely to be most vulnerable to climate change and methods to reduce that vulnerability are necessary first steps to incorporate climate change into biodiversity management plans. Here, we use a spatial climate change vulnerability assessment to (1) map the potential vulnerability of terrestrial biodiversity to climate change in the northeastern United States and (2) provide guidance on how and where management actions for biodiversity could provide long-term benefits under climate change (i.e., climate-smart management considerations). Our model suggests that biodiversity will be most vulnerable in Delaware, Maryland, and the District of Columbia due to the combination of high climate change velocity, high landscape resistance, and high topoclimate homogeneity. Biodiversity is predicted to be least vulnerable in Vermont, Maine, and New Hampshire because large portions of these states have low landscape resistance, low climate change velocity, and low topoclimate homogeneity. Our spatial climate-smart management considerations suggest that: (1) high topoclimate diversity could moderate the effects of climate change across 50% of the region; (2) decreasing local landscape resistance in conjunction with other management actions could increase the benefit of those actions across 17% of the region; and (3) management actions across 24% of the region could provide long-term benefits by promoting short-term population persistence that provides a source population capable of moving in the future. The guidance and framework we provide here should allow conservation organizations to incorporate our climate-smart management considerations into management plans without drastically changing their approach to biodiversity conservation.

  14. Biodiversity information platforms: From standards to interoperability

    Directory of Open Access Journals (Sweden)

    Walter Berendsohn

    2011-11-01

    Full Text Available One of the most serious bottlenecks in the scientific workflows of biodiversity sciences is the need to integrate data from different sources, software applications, and services for analysis, visualisation and publication. For more than a quarter of a century the TDWG Biodiversity Information Standards organisation has a central role in defining and promoting data standards and protocols supporting interoperability between disparate and locally distributed systems. Although often not sufficiently recognized, TDWG standards are the foundation of many popular Biodiversity Informatics applications and infrastructures ranging from small desktop software solutions to large scale international data networks. However, individual scientists and groups of collaborating scientist have difficulties in fully exploiting the potential of standards that are often notoriously complex, lack non-technical documentations, and use different representations and underlying technologies. In the last few years, a series of initiatives such as Scratchpads, the EDIT Platform for Cybertaxonomy, and biowikifarm have started to implement and set up virtual work platforms for biodiversity sciences which shield their users from the complexity of the underlying standards. Apart from being practical work-horses for numerous working processes related to biodiversity sciences, they can be seen as information brokers mediating information between multiple data standards and protocols. The ViBRANT project will further strengthen the flexibility and power of virtual biodiversity working platforms by building software interfaces between them, thus facilitating essential information flows needed for comprehensive data exchange, data indexing, web-publication, and versioning. This work will make an important contribution to the shaping of an international, interoperable, and user-oriented biodiversity information infrastructure.

  15. Macroecology of biodiversity: disentangling local and regional effects.

    Science.gov (United States)

    Pärtel, Meelis; Bennett, Jonathan A; Zobel, Martin

    2016-07-01

    Contents 404 I. 404 II. 404 III. 405 IV. 406 V. 407 VI. 408 409 References 409 SUMMARY: Macroecology of biodiversity disentangles local and regional drivers of biodiversity by exploring large-scale biodiversity relationships with environmental or biotic gradients, generalizing local biodiversity relationships across regions, or comparing biodiversity patterns among species groups. A macroecological perspective is also important at local scales: a full understanding of local biodiversity drivers, including human impact, demands that regional processes be taken into account. This requires knowledge of which species could inhabit a site (the species pool), including those that are currently absent (dark diversity). Macroecology of biodiversity is currently advancing quickly owing to an unprecedented accumulation of biodiversity data, new sampling techniques and analytical methods, all of which better equip us to face current and future challenges in ecology and biodiversity conservation.

  16. Making the case for biodiversity in South Africa: Re-framing biodiversity communications

    Directory of Open Access Journals (Sweden)

    Kristal Maze

    2016-05-01

    Full Text Available Background: Biodiversity education and public awareness do not always contain the motivational messages that inspire action amongst decision-makers. Traditional messages from the biodiversity sector are often framed around threat, with a generally pessimistic tone. Aspects of social marketing can be used to support positive messaging that is more likely to inspire action amongst the target audience.Objectives: The South African biodiversity sector embarked on a market research process to better understand the target audiences for its messages and develop a communications strategy that would reposition biodiversity as integral to the development trajectory of South Africa.Method: The market research process combined stakeholder analysis, market research, engagement and facilitated dialogue. Eight concept messages were developed that framed biodiversity communications in different ways. These messages were tested with the target audience to assess which were most relevant in a developing-world context.Results: The communications message that received the highest ranking in the market research process was the concept of biodiversity as a ‘national asset’. This frame places biodiversity as an equivalent national priority to other economic and social imperatives. Other messages that ranked highly were the emotional message of biodiversity as ‘our children’s legacy’ and the action-based ‘practical solutions’.Conclusion: Based on the findings, a communications strategy known as ‘Making the case for biodiversity’ was developed that re-framed the economic, emotional and practical value propositions for biodiversity. The communications strategy has already resulted in greater political and economic attention towards biodiversity in South Africa.

  17. Mapping and Quantifying Terrestrial Vertebrate Biodiversity at ...

    Science.gov (United States)

    The ability to assess, report, map, and forecast functions of ecosystems is critical to our capacity to make informed decisions to maintain the sustainable nature of our environment. Because of the variability among living organisms and levels of organization (e.g. genetic, species, ecosystem), biodiversity has always been difficult to measure precisely, especially within a systematic manner and over multiple scales. In answer to this challenge, the U.S. Environmental Protection Agency has created a partnership with other Federal agencies, academic institutions, and Non-Governmental Organizations to develop the EnviroAtlas (https://www.epa.gov/enviroatlas), an online national Decision Support Tool that allows users to view and analyze the geographical description of the supply and demand for ecosystem services, as well as the drivers of change. As part of the EnviroAtlas, an approach has been developed that uses deductive habitat models for all terrestrial vertebrates of the conterminous United States and clusters them into biodiversity metrics that relate to ecosystem service-relevant categories. Metrics, such as species and taxon richness, have been developed and integrated with other measures of biodiversity. Collectively, these metrics provide a consistent scalable process from which to make geographic comparisons, provide thematic assessments, and to monitor status and trends in biodiversity. The national biodiversity component operates across approximatel

  18. Species ages in neutral biodiversity models.

    Science.gov (United States)

    Chisholm, Ryan A; O'Dwyer, James P

    2014-05-01

    Biogeography seeks to understand the mechanisms that drive biodiversity across long temporal and large spatial scales. Theoretical models of biogeography can be tested by comparing their predictions of quantities such as species ages against empirical estimates. It has previously been claimed that the neutral theory of biodiversity and biogeography predicts species ages that are unrealistically long. Any improved theory of biodiversity must rectify this problem, but first it is necessary to quantify the problem precisely. Here we provide analytical expressions for species ages in neutral biodiversity communities. We analyse a spatially implicit metacommunity model and solve for both the zero-sum and non-zero-sum cases. We explain why our new expressions are, in the context of biodiversity, usually more appropriate than those previously imported from neutral molecular evolution. Because of the time symmetry of the spatially implicit neutral model, our expressions also lead directly to formulas for species persistence times and species lifetimes. We use our new expressions to estimate species ages of forest trees under a neutral model and find that they are about an order of magnitude shorter than those predicted previously but still unrealistically long. In light of our results, we discuss different models of biogeography that may solve the problem of species ages.

  19. Ecology and evolution of mammalian biodiversity.

    Science.gov (United States)

    Jones, Kate E; Safi, Kamran

    2011-09-12

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future.

  20. Ecology and evolution of mammalian biodiversity

    Science.gov (United States)

    Jones, Kate E.; Safi, Kamran

    2011-01-01

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future. PMID:21807728

  1. Geography of conservation spending, biodiversity, and culture.

    Science.gov (United States)

    McClanahan, T R; Rankin, P S

    2016-10-01

    We used linear and multivariate models to examine the associations between geography, biodiversity, per capita economic output, national spending on conservation, governance, and cultural traits in 55 countries. Cultural traits and social metrics of modernization correlated positively with national spending on conservation. The global distribution of this spending culture was poorly aligned with the distribution of biodiversity. Specifically, biodiversity was greater in the tropics where cultures tended to spend relatively less on conservation and tended to have higher collectivism, formalized and hierarchical leadership, and weaker governance. Consequently, nations lacking social traits frequently associated with modernization, environmentalism, and conservation spending have the largest component of Earth's biodiversity. This has significant implications for setting policies and priorities for resource management given that biological diversity is rapidly disappearing and cultural traits change slowly. Therefore, we suggest natural resource management adapt to and use characteristics of existing social organization rather than wait for or promote social values associated with conservation spending. Supporting biocultural traditions, engaging leaders to increase conservation commitments, cross-national efforts that complement attributes of cultures, and avoiding interference with nature may work best to conserve nature in collective and hierarchical societies. Spending in modernized nations may be a symbolic response to a symptom of economic development and environmental degradation, and here conservation actions need to ensure that biodiversity is not being lost.

  2. Biodiversity at the Ecosystem Level - Patterns and Processes

    DEFF Research Database (Denmark)

    This publication contains the presentations and discussions from the second DanBIF conference, entitled Biodiversity at the Ecosystem Level – Patterns and Processes. The questions asked at this conference were: What is biodiversity at the ecosystem level? How is it related to biodiversity at other...... levels of organization? How may GBIF (Global Biodiversity Information Facility) deal with ecosystem level data and informatics? The conference had two important goals. The first was to present an overview of contemporary research related to ecosystem level biodiversity and the second was to help GBIF...... formulate a strategy for dealing with biodiversity above the species and molecular levels and make data available for the end-users....

  3. Biodiversity and Resilience of Ecosystem Functions.

    Science.gov (United States)

    Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M

    2015-11-01

    Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin.

  4. Fossil Biodiversity: Red Noise Plus Signal

    CERN Document Server

    Melott, A L; Melott, Adrian L.; Lieberman, Bruce S.

    2006-01-01

    We have examined the Fourier power spectrum as well as the Hurst exponent of extinction, origination, and total biodiversity in the marine fossil record, using a recently improved geologic timescale. We find all of them strongly inconsistent with past claims of self-similarity as well as inconsistent with random walk behavior. Instead, they are dominated by low-frequency power, with approximate f^-2 power over one decade in frequency. The spectrum turns over at about 10^5 y, lending plausibility to connections with galactic dynamics. Even in the background of this low-frequency dominance, a previously noted 62 My biodiversity cycle stands out with better than 99% confidence above the noise level, accounting for about 35% of the total variance in the fossil biodiversity record.

  5. Biodiversity and the feel-good factor

    DEFF Research Database (Denmark)

    Dallimer, Martin; Irvine, Katherine N.; Skinner, Andrew M. J.

    2012-01-01

    Over half of the world's human population lives in cities, and for many, urban greenspaces are the only places where they encounter biodiversity. This is of particular concern because there is growing evidence that human well-being is enhanced by exposure to nature. However, the specific qualities...... of greenspaces that offer the greatest benefits remain poorly understood. One possibility is that humans respond positively to increased levels of biodiversity. Here, we demonstrate the lack of a consistent relationship between actual plant, butterfly, and bird species richness and the psychological well......-being of urban greenspace visitors. instead, well-being shows a positive relationship with the richness that the greenspace users perceived to be present. One plausible explanation for this discrepancy, which we investigate, is that people generally have poor biodiversity-identification skills. The apparent...

  6. Molecular biodiversity of Red Sea demosponges.

    Science.gov (United States)

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M; Berumen, Michael L; Büttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schätzle, Simone; Wörheide, Gert

    2016-04-30

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.

  7. Plate tectonics drive tropical reef biodiversity dynamics

    Science.gov (United States)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-01-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103

  8. A conservation agenda for the Pantanal's biodiversity

    Directory of Open Access Journals (Sweden)

    CJR Alho

    Full Text Available The Pantanal's biodiversity constitutes a valuable natural resource, in economic, cultural, recreational, aesthetic, scientific and educational terms. The vegetation plus the seasonal productivity support a diverse and abundant fauna. Many endangered species occur in the region, and waterfowl are exceptionally abundant during the dry season. Losses of biodiversity and its associated natural habitats within the Pantanal occur as a result of unsustainable land use. Implementation of protected areas is only a part of the conservation strategy needed. We analyse biodiversity threats to the biome under seven major categories: 1 conversion of natural vegetation into pasture and agricultural crops, 2 destruction or degradation of habitat mainly due to wild fire, 3 overexploitation of species mainly by unsustainable fishing, 4 water pollution, 5 river flow modification with implantation of small hydroelectric plants, 6 unsustainable tourism, and 7 introduction of invasive exotic species.

  9. The circumpolar biodiversity monitoring program - Terrestrial plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Circumpolar Biodiversity Monitoring Program, CBMP, Terrestrial Plan, www.caff.is/terrestrial, is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders......, northern communities, and scientists to detect, understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity. This presentation will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based...... monitoring with survey-based monitoring and remotely sensed data. The CBMP Terrestrial Plan intends to build upon and expand existing monitoring networks, engaging participants across a range of capacity and interests. The presentation will summarize the recommended focal soil ecosystem components...

  10. Biodiversity analysis in the digital era

    Science.gov (United States)

    2016-01-01

    This paper explores what the virtual biodiversity e-infrastructure will look like as it takes advantage of advances in ‘Big Data’ biodiversity informatics and e-research infrastructure, which allow integration of various taxon-level data types (genome, morphology, distribution and species interactions) within a phylogenetic and environmental framework. By overcoming the data scaling problem in ecology, this integrative framework will provide richer information and fast learning to enable a deeper understanding of biodiversity evolution and dynamics in a rapidly changing world. The Atlas of Living Australia is used as one example of the advantages of progressing towards this future. Living in this future will require the adoption of new ways of integrating scientific knowledge into societal decision making. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481789

  11. Molecular biodiversity of Red Sea demosponges

    KAUST Repository

    Erpenbeck, Dirk

    2016-01-07

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.

  12. Biodiversity analysis in the digital era.

    Science.gov (United States)

    La Salle, John; Williams, Kristen J; Moritz, Craig

    2016-09-05

    This paper explores what the virtual biodiversity e-infrastructure will look like as it takes advantage of advances in 'Big Data' biodiversity informatics and e-research infrastructure, which allow integration of various taxon-level data types (genome, morphology, distribution and species interactions) within a phylogenetic and environmental framework. By overcoming the data scaling problem in ecology, this integrative framework will provide richer information and fast learning to enable a deeper understanding of biodiversity evolution and dynamics in a rapidly changing world. The Atlas of Living Australia is used as one example of the advantages of progressing towards this future. Living in this future will require the adoption of new ways of integrating scientific knowledge into societal decision making.This article is part of the themed issue 'From DNA barcodes to biomes'.

  13. Educating for biodiversity conservation in urban parks

    Directory of Open Access Journals (Sweden)

    Guerra, M. C.

    2014-01-01

    Full Text Available This article is intended to propose a procedure for learning about biodiversity in urban parks, as a contribution for educating conservation of natural resources. The procedure was named “Diagnosis of biodiversity conservation status in urban parks”. It comprises for stages describing the physic, geographic, socio-historic, and cultural study of the park as well as a taxonomic inventory of species, its distribution, presence in Cuba, and menaces they are subjected to. This facilitates to carry out educative activities. The introduction of the procedure is thought of from an ethno-biological and interdisciplinary perspective for training students in biological, geographical, historical, cultural and ethnological procedures, seeking a holistic approach to environment. The effectiveness of the proposal was appraised by accounting the experience of a class at “Casino Campestre” park in Camagüey City. Key words: biodiversity, urban parks, procedures, conservation training

  14. Plate tectonics drive tropical reef biodiversity dynamics

    Science.gov (United States)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-05-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

  15. Impact of GM crops on biodiversity.

    Science.gov (United States)

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  16. Bats, Blood-Feeders and Biodiversity

    DEFF Research Database (Denmark)

    Bohmann, Kristine

    DNA metabarcoding of environmental samples has rapidly become a valuable tool for ecological studies such as biodiversity and diet studies. To reveal the diversity in environmental samples such as soil, water, and faeces, this approach principally employs PCR amplification of environmental DNA...... minimising the occurrence of errors. Centered around metabarcoding dietary studies of bat droppings and leech gut contents, this continuous exploration and refinement is reflected in both the work and structure of this thesis. After a thesis introduction and two chapters on environmental DNA and biodiversity...

  17. Biodiversity in a Florida Sandhill Ecosystem

    Directory of Open Access Journals (Sweden)

    Samantha Robertson

    2009-01-01

    Full Text Available This project compares two transects of land in the University of South Florida's Botanical Gardens for their biodiversity. The transects were chosen to represent a Florida sandhill ecosystem and the individual Longleaf Pine, Saw Palmetto, Turkey Oak, Laurel Oak and Live Oak specimens were counted. All other species above waist height were counted as "other"?. Once the individuals were counted, the Simpson's and Shannon-Wiener indices were calculated. Since the Shannon-Wiener index incorporates several diversity characteristics, it is typically more reliable than Simpson's. However, both biodiversity indices agreed that transect B was more diverse than transect A.

  18. Correcting the disconnect between phylogenetics and biodiversity informatics.

    Science.gov (United States)

    Miller, Joseph T; Jolley-Rogers, Garry

    2014-01-14

    Rich collections of biodiversity data are now synthesized in publically available databases and phylogenetic knowledge now provides a sound understanding of the origin of organisms and their place in the tree of life. However, these knowledge bases are poorly linked, leading to underutilization or worse, an incorrect understanding of biodiversity because there is poor evolutionary context. We address this problem by integrating biodiversity information aggregated from many sources onto phylogenetic trees. PhyloJIVE connects biodiversity and phylogeny knowledge bases by providing an integrated evolutionary view of biodiversity data which in turn can improve biodiversity research and the conservation decision making process. Biodiversity science must assert the centrality of evolution to provide effective data to counteract global change and biodiversity loss.

  19. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.

    Science.gov (United States)

    Lefcheck, Jonathan S; Byrnes, Jarrett E K; Isbell, Forest; Gamfeldt, Lars; Griffin, John N; Eisenhauer, Nico; Hensel, Marc J S; Hector, Andy; Cardinale, Bradley J; Duffy, J Emmett

    2015-04-24

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.

  20. Why financial incentives can destroy economically valuable biodiversity in Ethiopia

    NARCIS (Netherlands)

    Gatzweiler, F.; Reichhuber, A.; Hein, L.G.

    2007-01-01

    Ethiopian montane rainforests are economically valuable repositories of biodiversity, especially of wild Coffea arabica populations, and they are vanishing at accelerating rates. Our research results confirm theory which explains biodiversity loss by diverging private and social net benefits from la

  1. Core issues in the economics of biodiversity conservation.

    Science.gov (United States)

    Tisdell, Clement A

    2011-02-01

    Economic evaluations are essential for assessing the desirability of biodiversity conservation. This article highlights significant advances in theories and methods of economic evaluation and their relevance and limitations as a guide to biodiversity conservation; considers the implications of the phylogenetic similarity principle for the survival of species; discusses consequences of the Noah's Ark problem for selecting features of biodiversity to be saved; analyzes the extent to which the precautionary principle can be rationally used to support the conservation of biodiversity; explores the impact of market extensions, market and other institutional failures, and globalization on biodiversity loss; examines the relationship between the rate of interest and biodiversity depletion; and investigates the implications of intergenerational equity for biodiversity conservation. The consequences of changes in biodiversity for sustainable development are given particular attention.

  2. Status and strategies for marine biodiversity of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    The status of marine biodiversity and factors responsible for the degradation and loss of marine biodiversity are discussed. Goa has abundant marine wealth. Phytoplankton, marine algae, manglicolous fungi, seagrasses, mangrove flora and other...

  3. Banning Trophy Hunting Will Exacerbate Biodiversity Loss.

    Science.gov (United States)

    Di Minin, Enrico; Leader-Williams, Nigel; Bradshaw, Corey J A

    2016-02-01

    International pressure to ban trophy hunting is increasing. However, we argue that trophy hunting can be an important conservation tool, provided it can be done in a controlled manner to benefit biodiversity conservation and local people. Where political and governance structures are adequate, trophy hunting can help address the ongoing loss of species.

  4. Plant biodiversity changes in Carboniferous tropical wetlands

    DEFF Research Database (Denmark)

    Cleal, C.J.; Uhl, D.; Cascales-Miñana, B.

    2012-01-01

    Using a combination of species richness, polycohort and constrained cluster analyses, the plant biodiversity of Pennsylvanian (late Carboniferous) tropical wetlands (“coal swamps”) has been investigated in five areas in Western Europe and eastern North America: South Wales, Pennines, Ruhr, Saarland...

  5. Calculating Biodiversity in the Real World

    Science.gov (United States)

    Schen, Melissa; Berger, Leslie

    2014-01-01

    One of the standards for life science addressed in the "Next Generation Science Standards" (NGSS Lead States 2013) is "Ecosystems: Interactions, Energy, and Dynamics" (HS-LS2). A critical concept included in this core idea is biodiversity. To show competency, students are expected to design investigations, collect data, and…

  6. Endangered Species & Biodiversity: A Classroom Project & Theme

    Science.gov (United States)

    Lauro, Brook

    2012-01-01

    Students discover the factors contributing to species losses worldwide by conducting a project about endangered species as a component of a larger classroom theme of biodiversity. Groups conduct research using online endangered- species databases and present results to the class using PowerPoint. Students will improve computer research abilities…

  7. Optimal fire histories for biodiversity conservation.

    Science.gov (United States)

    Kelly, Luke T; Bennett, Andrew F; Clarke, Michael F; McCarthy, Michael A

    2015-04-01

    Fire is used as a management tool for biodiversity conservation worldwide. A common objective is to avoid population extinctions due to inappropriate fire regimes. However, in many ecosystems, it is unclear what mix of fire histories will achieve this goal. We determined the optimal fire history of a given area for biological conservation with a method that links tools from 3 fields of research: species distribution modeling, composite indices of biodiversity, and decision science. We based our case study on extensive field surveys of birds, reptiles, and mammals in fire-prone semi-arid Australia. First, we developed statistical models of species' responses to fire history. Second, we determined the optimal allocation of successional states in a given area, based on the geometric mean of species relative abundance. Finally, we showed how conservation targets based on this index can be incorporated into a decision-making framework for fire management. Pyrodiversity per se did not necessarily promote vertebrate biodiversity. Maximizing pyrodiversity by having an even allocation of successional states did not maximize the geometric mean abundance of bird species. Older vegetation was disproportionately important for the conservation of birds, reptiles, and small mammals. Because our method defines fire management objectives based on the habitat requirements of multiple species in the community, it could be used widely to maximize biodiversity in fire-prone ecosystems.

  8. Soil phosphorus constrains biodiversity across European grasslands.

    Science.gov (United States)

    Ceulemans, Tobias; Stevens, Carly J; Duchateau, Luc; Jacquemyn, Hans; Gowing, David J G; Merckx, Roel; Wallace, Hilary; van Rooijen, Nils; Goethem, Thomas; Bobbink, Roland; Dorland, Edu; Gaudnik, Cassandre; Alard, Didier; Corcket, Emmanuel; Muller, Serge; Dise, Nancy B; Dupré, Cecilia; Diekmann, Martin; Honnay, Olivier

    2014-12-01

    Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies have indicated that phosphorus pollution may be detrimental for biodiversity as well. On the basis of a dataset covering 501 grassland plots throughout Europe, we demonstrate that, independent of the level of atmospheric nitrogen deposition and soil acidity, plant species richness was consistently negatively related to soil phosphorus. We also identified thresholds in soil phosphorus above which biodiversity appears to remain at a constant low level. Our results indicate that nutrient management policies biased toward reducing nitrogen pollution will fail to preserve biodiversity. As soil phosphorus is known to be extremely persistent and we found no evidence for a critical threshold below which no environmental harm is expected, we suggest that agro-environmental schemes should include grasslands that are permanently free from phosphorus fertilization.

  9. A biosystematic basis for pelagic biodiversity

    NARCIS (Netherlands)

    Spoel, van der S.

    1994-01-01

    Biodiversity can be considered to be a human appreciation of the biological entity diversity. Diversity can be expressed numerically on the basis of taxa found, but it can also be expressed as the contribution of a specimen to the diversity, for which a formula is proposed. Diversity is the sum of t

  10. Visual Analytics for Exploring Changes in Biodiversity

    NARCIS (Netherlands)

    Slingsby, A.; van Loon, E.; Kolditz, O.; Rink, K.; Scheuermann, G.

    2013-01-01

    We report on ongoing work in which we are designing a visual interface to a large database of species observation data. Our design allows the data to be explored and visually summarised by space, time and species, helping assess the data’s suitability for helping answer questions about biodiversity.

  11. Is biofuel policy harming biodiversity in Europe?

    NARCIS (Netherlands)

    Eggers, J.; Tröltzsch, K.; Falcucci, A.; Verburg, P.H.; Ozinga, W.A.

    2009-01-01

    We assessed the potential impacts of land-use changes resulting from a change in the current biofuel policy on biodiversity in Europe. We evaluated the possible impact of both arable and woody biofuel crops on changes in distribution of 313 species pertaining to different taxonomic groups. Using spe

  12. Multifunctional floodplain management and biodiversity effects

    NARCIS (Netherlands)

    Schindler, Stefan; O’Neill, Fionnuala H.; Biró, Marianna; Damm, Christian; Gasso, Viktor; Kanka, Robert; Sluis, van der Theo; Krug, Andreas; Lauwaars, Sophie G.; Sebesvari, Zita; Pusch, Martin; Baranovsky, Boris; Ehlert, Thomas; Neukirchen, Bernd; Martin, James R.; Euller, Katrin; Mauerhofer, Volker; Wrbka, Thomas

    2016-01-01

    Floodplain ecosystems are biodiversity hotspots and supply multiple ecosystem services. At the same time they are often prone to human pressures that increasingly impact their intactness. Multifunctional floodplain management can be defined as a management approach aimed at a balanced supply of m

  13. Biodiversity, conservation biology, and rational choice.

    Science.gov (United States)

    Frank, David

    2014-03-01

    This paper critically discusses two areas of Sahotra Sarkar's recent work in environmental philosophy: biodiversity and conservation biology and roles for decision theory in incorporating values explicitly in the environmental policy process. I argue that Sarkar's emphasis on the practices of conservation biologists, and especially the role of social and cultural values in the choice of biodiversity constituents, restricts his conception of biodiversity to particular practical conservation contexts. I argue that life scientists have many reasons to measure many types of diversity, and that biodiversity metrics could be value-free. I argue that Sarkar's emphasis on the limitations of normative decision theory is in tension with his statement that decision theory can "put science and ethics together." I also challenge his claim that multi-criteria decision tools lacking axiomatic foundations in preference and utility theory are "without a rational basis," by presenting a case of a simple "outranking" multi-criteria decision rule that can violate a basic normative requirement of preferences (transitivity) and ask whether there may nevertheless be contexts in which such a procedure might assist decision makers.

  14. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes.

  15. Temperature Impacts on Deep-Sea Biodiversity

    Science.gov (United States)

    Yasuhara, M.; Danovaro, R.

    2015-12-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes.

  16. An Investigation on Students' Perceptions of Biodiversity

    Science.gov (United States)

    Yorek, Nurettin; Aydin, Halil; Ugulu, Ilker; Dogan, Yunus

    2008-01-01

    In this study, pupils' constructions of some concepts related to biodiversity like classifying living things, variation in living things and ecosystem elements, and the concept of life were investigated in the light of constructivist theory of learning. For this purpose, a biological diversity conceptual understanding test formed by a series of…

  17. Business and Biodiversity: a frame analysis

    NARCIS (Netherlands)

    Burg, van den S.W.K.; Bogaardt, M.J.

    2014-01-01

    It is often stated that business has a key role to play in the protection of biodiversity and ecosystems. Various instruments are developed that enable businesses to assess their impact and dependence on ecosystem services. Actual use of these instruments remains limited. This paper uses discourse a

  18. A review of marine biodiversity information resources

    Directory of Open Access Journals (Sweden)

    Kwangtsao Shao

    2014-05-01

    Full Text Available Although biodiversity of marine remains high, it increasingly suffers from human interference and destruction. The world’s largest open, online, georeferenced database is the Ocean Biogeographic Information System (OBIS; it has information on a total of 120,000 species with 37 million records. The World Register of Marine Species (WoRMS has collected taxonomic information on 220,000 global marine species. Besides these two large databases, three single-taxa databases were established for marine organisms—FishBase, AlgaeBase, and Hexacorallians of the World. Many databases on organisms are cross-taxa and include both terrestrial and marine species, such as Encyclopedia of Life (EOL, CoL (Species 2000 , Integrated Taxonomic Information System (ITIS, Wikispecies, ETI Bioinformatics, Barcode of Life (BOL, GenBank, Biodiversity Heritage Library (BHL, SeaLifeBase, Marine Species Identification Portal, and FAO Fisheries and Aquaculture Fact Sheets. Above databases were mainly established to focus on taxonomy and species descriptions. The Global Biodiversity Information Facility (GBIF, Discover Life, AquaMaps, etc. can provide integrated ecological distribution data, user customized maps, and data for download. By changing the values of environmental factors such as water temperature and salinity in an established distribution model, the distribution of a species can be predicted with different parameters. Websites of other organizations, such as Google Earth Ocean, National Geographic, and NGOs such as ReefBase, aim to raise public awareness on ocean conservation with rich and diversified content. Google Images and Google Scholar are very useful in cooperating with keywords provided by marine biodiversity websites to complement the lack of images or references. Most of the above websites are linked to each other, and thus users can access and query data conveniently. To be useful for conservation, biodiversity databases need both to promote public

  19. Biodiversity and Edge Effects: An Activity in Landscape Ecology

    Science.gov (United States)

    Hart, Justin L.

    2007-01-01

    Biodiversity and the conservation of biodiversity have received increased attention during the last few decades and these topics have been implemented into many G7-12 science curricula. This work presents an exercise that may be used in middle and high school classrooms to help students better understand spatial aspects of biodiversity. The…

  20. Biodiversity data obsolescence and land uses changes

    Directory of Open Access Journals (Sweden)

    Nora Escribano

    2016-12-01

    Full Text Available Background Primary biodiversity records (PBR are essential in many areas of scientific research as they document the biodiversity through time and space. However, concerns about PBR quality and fitness-for-use have grown, especially as derived from taxonomical, geographical and sampling effort biases. Nonetheless, the temporal bias stemming from data ageing has received less attention. We examine the effect of changes in land use in the information currentness, and therefore data obsolescence, in biodiversity databases. Methods We created maps of land use changes for three periods (1956–1985, 1985–2000 and 2000–2012 at 5-kilometres resolution. For each cell we calculated the percentage of land use change within each period. We then overlaid distribution data about small mammals, and classified each data as ‘non-obsolete or ‘obsolete,’ depending on both the amount of land use changes in the cell, and whether changes occurred at or after the data sampling’s date. Results A total of 14,528 records out of the initial 59,677 turned out to be non-obsolete after taking into account the changes in the land uses in Navarra. These obsolete data existed in 115 of the 156 cells analysed. Furthermore, more than one half of the remaining cells holding non-obsolete records had not been visited at least for the last fifteen years. Conclusion Land use changes challenge the actual information obtainable from biodiversity datasets and therefore its potential uses. With the passage of time, one can expect a steady increase in the availability and use of biological records—but not without them becoming older and likely to be obsolete by land uses changes. Therefore, it becomes necessary to assess records’ obsolescence, as it may jeopardize the knowledge and perception of biodiversity patterns.

  1. Sites for priority biodiversity conservation in the Caribbean Islands Biodiversity Hotspot

    Directory of Open Access Journals (Sweden)

    V. Anadon-Irizarry

    2012-08-01

    Full Text Available The Caribbean Islands Biodiversity Hotspot is exceptionally important for global biodiversity conservation due to high levels of species endemism and threat. A total of 755 Caribbean plant and vertebrate species are considered globally threatened, making it one of the top Biodiversity Hotspots in terms of threat levels. In 2009, Key Biodiversity Areas (KBAs were identified for the Caribbean Islands through a regional-level analysis of accessible data and literature, followed by extensive national-level stakeholder consultation. By applying the Vulnerability criterion, a total of 284 Key Biodiversity Areas were defined and mapped as holding 409 (54% of the region’s threatened species. Of these, 144 (or 51% overlapped partially or completely with protected areas. Cockpit Country, followed by Litchfield Mountain - Matheson’s Run, Blue Mountains (all Jamaica and Massif de la Hotte (Haiti were found to support exceptionally high numbers of globally threatened taxa, with more than 40 such species at each site. Key Biodiversity Areas, building from Important Bird Areas, provide a valuable framework against which to review the adequacy of existing national protected-area systems and also to prioritize which species and sites require the most urgent conservation attention.

  2. Informing and influencing the interface between biodiversity science and biodiversity policy in South Africa.

    Science.gov (United States)

    Crouch, Neil R; Smith, Gideon F

    2011-01-01

    South Africa, as a megadiverse country (±21 700 vascular plants, 4800 vertebrates and 68 900 invertebrates described), is presently engaged with an extended, modified Global Strategy for Plant Conservation (GSPC). The country is fortunate in having a strong tradition of systematics research and, inter alia, houses several million preserved plant specimens (±1 million databased and georeferenced), allowing taxonomists and conservationists to track both the occurrence and distribution of indigenous and naturalized plant species. These rich local resources have been extensively drawn upon to deliver, with varying degrees of success, the 16 outcome-oriented GSPC 2010 Targets. The National Environmental Management: Biodiversity Act (NEMBA, 2004), the National Biodiversity Strategy and Action Plan (NBSAP) and the National Biodiversity Framework (NBF) have provided a robust legislative, enabling and policy framework for making operational and advancing GSPC-related efforts. However, within an emerging economy, the conservation of biodiversity has competed for government resources with housing, sanitation, primary education, basic health care and crime prevention, delivery of which translates to the currency of politicians: votes. A key challenge identified by local (and global) biodiversity scientists for the current GSPC phase is broad-scale advocacy, communicating the changing state of nature, and the inter-relatedness of biodiversity and human well-being. The nature of meeting this challenge is explored.

  3. What is marine biodiversity? Towards common concepts and their implications for assessing biodiversity status

    Directory of Open Access Journals (Sweden)

    Sabine Cochrane

    2016-12-01

    Full Text Available ‘Biodiversity’ is one of the most common keywords used in environmental sciences, spanning from research to management, nature conservation and consultancy. Despite this, our understanding of the underlying concepts varies greatly, between and within disciplines as well as among the scientists themselves. Biodiversity can refer to descriptions or assessments of the status and condition of all or selected groups of organisms, from the genetic variability, to the species, populations, communities, and ecosystems. However, a concept of biodiversity also must encompass understanding the interactions and functions on all levels from individuals up to the whole ecosystem, including changes related to natural and anthropogenic environmental pressures. While biodiversity as such is an abstract and relative concept rooted in the spatial domain, it is central to most international, European and national governance initiatives aimed at protecting the marine environment. These rely on status assessments of biodiversity which typically require numerical targets and specific reference values, to allow comparison in space and/or time, often in association with some external structuring factors such as physical and biogeochemical conditions. Given that our ability to apply and interpret such assessments requires a solid conceptual understanding of marine biodiversity, here we define this and show how the abstract concept can and needs to be interpreted and subsequently applied in biodiversity assessments.

  4. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity

    NARCIS (Netherlands)

    Meyer, S.; Ebeling, A.; Eisenhauer, Nico; Mommer, L.; Ravenek, Janneke M.; Weigelt, Alexandra

    2016-01-01

    Abstract. Human-caused declines in biodiversity have stimulated intensive research on the consequences
    of biodiversity loss for ecosystem services and policy initiatives to preserve the functioning of
    ecosystems. Short-term biodiversity experiments have documented positive effects of plant s

  5. Student Teachers' Understanding of the Terminology, Distribution, and Loss of Biodiversity: Perspectives from a Biodiversity Hotspot and an Industrialized Country

    Science.gov (United States)

    Fiebelkorn, Florian; Menzel, Susanne

    2013-01-01

    The loss of biodiversity is one of the most urgent global environmental problems of our time. Public education and awareness building is key to successful biodiversity protection. Knowledgeable and skilled student teachers are a key component for the successful implementation of biodiversity education in schools. Yet, little empirical evidence…

  6. A one ocean model of biodiversity

    Science.gov (United States)

    O'Dor, Ronald K.; Fennel, Katja; Berghe, Edward Vanden

    2009-09-01

    The history of life is written in the ocean, and the history of the ocean is written in DNA. Geologists have shown us that hundreds of millions of years of ocean history can be revealed from records of a single phylum in cores of mud from abyssal plains. We are now accumulating genetic tools to unravel the relationships of hundreds of phyla to track this history back billions of years. The technologies demonstrated by the Census of Marine Life (CoML) mean that the ocean is no longer opaque or unknowable. The secrets of the largest component of the biosphere are knowable. The cost of understanding the history of ocean life is not cheap, but it is also not prohibitive. A transparent, open ocean is available for us to use to understand ourselves. This article develops a model of biodiversity equilibration in a single, physically static ocean as a step towards biodiversity in physically complex real oceans. It attempts to be quantitative and to simultaneously account for biodiversity patterns from bacteria to whales focusing on emergent properties rather than details. Biodiversity reflects long-term survival of DNA sequences, stabilizing "ecosystem services" despite environmental change. In the ocean, mechanisms for ensuring survival range from prokaryotes maintaining low concentrations of replicable DNA throughout the ocean volume, anticipating local change, to animals whose mobility increases with mass to avoid local change through movement. Whales can reach any point in the ocean in weeks, but prokaryotes can only diffuse. The high metabolic costs of mobility are offset by the dramatically lower number of DNA replicates required to ensure survival. Reproduction rates probably scale more or less inversely with body mass. Bacteria respond in a week, plankton in a year, whales in a century. We generally lack coherent theories to explain the origins of animals (metazoans) and the contributions of biodiversity to ecosystems. The One Ocean Model suggests that mobile

  7. Databases, Scaling Practices, and the Globalization of Biodiversity

    Directory of Open Access Journals (Sweden)

    Esther Turnhout

    2011-03-01

    Full Text Available Since the Convention on Biological Diversity in 1992, biodiversity has become an important topic for scientific research. Much of this research is focused on measuring and mapping the current state of biodiversity, in terms of which species are present at which places and in which abundance, and making extrapolations and future projections, that is, determining the trends. Biodiversity databases are crucial components of these activities because they store information about biodiversity and make it digitally available. Useful biodiversity databases require data that are reliable, standardized, and fit for up-scaling. This paper uses material from the EBONE-project (European Biodiversity Observation Network to illustrate how biodiversity databases are constructed, how data are negotiated and scaled, and how biodiversity is globalized. The findings show a continuous interplay between scientific ideals related to objectivity and pragmatic considerations related to feasibility and data availability. Statistics was a crucial feature of the discussions. It also proved to be the main device in up-scaling the data. The material presented shows that biodiversity is approached in an abstract, quantitative, and technical way, disconnected from the species and habitats that make up biodiversity and the people involved in collecting the data. Globalizing biodiversity involves decontextualization and standardization. This paper argues that while this is important if the results of projects like EBONE are to be usable in different contexts, there is a risk involved as it may lead to the alienation from the organizations and volunteers who collect the data upon which these projects rely.

  8. Disaggregating the evidence linking biodiversity and ecosystem services

    Science.gov (United States)

    Ricketts, Taylor H.; Watson, Keri B.; Koh, Insu; Ellis, Alicia M.; Nicholson, Charles C.; Posner, Stephen; Richardson, Leif L.; Sonter, Laura J.

    2016-01-01

    Ecosystem services (ES) are an increasingly popular policy framework for connecting biodiversity with human well-being. These efforts typically assume that biodiversity and ES covary, but the relationship between them remains remarkably unclear. Here we analyse >500 recent papers and show that reported relationships differ among ES, methods of measuring biodiversity and ES, and three different approaches to linking them (spatial correlations, management comparisons and functional experiments). For spatial correlations, biodiversity relates more strongly to measures of ES supply than to resulting human benefits. For management comparisons, biodiversity of ‘service providers' predicts ES more often than biodiversity of functionally unrelated taxa, but the opposite is true for spatial correlations. Functional experiments occur at smaller spatial scales than management and spatial studies, which show contrasting responses to scale. Our results illuminate the varying dynamics relating biodiversity to ES, and show the importance of matching management efforts to the most relevant scientific evidence. PMID:27713429

  9. Economic valuation for the conservation of marine biodiversity.

    Science.gov (United States)

    Beaumont, N J; Austen, M C; Mangi, S C; Townsend, M

    2008-03-01

    Policy makers are increasingly recognising the role of environmental valuation to guide and support the management and conservation of biodiversity. This paper presents a goods and services approach to determine the economic value of marine biodiversity in the UK, with the aim of clarifying the role of valuation in the management of marine biodiversity. The goods and services resulting from UK marine biodiversity are detailed, and 8 of the 13 services are valued in monetary terms. It is found that a decline in UK marine biodiversity could result in a varying, and at present unpredictable, change in the provision of goods and services, including reduced resilience and resistance to change, declining marine environmental health, reduced fisheries potential, and loss of recreational opportunities. The results suggest that this approach can facilitate biodiversity management by enabling the optimal allocation of limited management resources and through raising awareness of the importance of marine biodiversity.

  10. Disaggregating the evidence linking biodiversity and ecosystem services

    Science.gov (United States)

    Ricketts, Taylor H.; Watson, Keri B.; Koh, Insu; Ellis, Alicia M.; Nicholson, Charles C.; Posner, Stephen; Richardson, Leif L.; Sonter, Laura J.

    2016-10-01

    Ecosystem services (ES) are an increasingly popular policy framework for connecting biodiversity with human well-being. These efforts typically assume that biodiversity and ES covary, but the relationship between them remains remarkably unclear. Here we analyse >500 recent papers and show that reported relationships differ among ES, methods of measuring biodiversity and ES, and three different approaches to linking them (spatial correlations, management comparisons and functional experiments). For spatial correlations, biodiversity relates more strongly to measures of ES supply than to resulting human benefits. For management comparisons, biodiversity of `service providers' predicts ES more often than biodiversity of functionally unrelated taxa, but the opposite is true for spatial correlations. Functional experiments occur at smaller spatial scales than management and spatial studies, which show contrasting responses to scale. Our results illuminate the varying dynamics relating biodiversity to ES, and show the importance of matching management efforts to the most relevant scientific evidence.

  11. Macroeconomic policy, growth, and biodiversity conservation.

    Science.gov (United States)

    Lawn, Philip

    2008-12-01

    To successfully achieve biodiversity conservation, the amount of ecosystem structure available for economic production must be determined by, and subject to, conservation needs. As such, the scale of economic systems must remain within the limits imposed by the need to preserve critical ecosystems and the regenerative and waste assimilative capacities of the ecosphere. These limits are determined by biophysical criteria, yet macroeconomics involves the use of economic instruments designed to meet economic criteria that have no capacity to achieve biophysically based targets. Macroeconomic policy cannot, therefore, directly solve the biodiversity erosion crisis. Nevertheless, good macroeconomic policy is still important given that bad macroeconomy policy is likely to reduce human well-being and increase the likelihood of social upheaval that could undermine conservation efforts.

  12. Key Biodiversity Areas identification in Japan Hotspot

    Directory of Open Access Journals (Sweden)

    Y. Natori

    2012-08-01

    Full Text Available Priority sites within Japan Hotspot were identified using Key Biodiversity Area (KBA criteria, based on vulnerability and irreplaceability. The identification process considered 217 trigger species from mammals, birds, reptiles, amphibians, freshwater and brackish water fishes and odonates, and focused on identifying gaps in Japan’s protected-area system. We identified 228 sites as KBAs and 50 rivers as candidate KBAs. Collectively, KBAs occupy 18% of the land, about half is not protected. Sites selected include natural and semi-natural environments, and appropriate form of protection is site-dependent. Twenty percent of Japanese terrestrial area is already protected, although to varying degrees, but additional 8% should also receive protection or proper management to strengthen the conservation of biodiversity in Japan.

  13. Agroforestry: a refuge for tropical biodiversity?

    Science.gov (United States)

    Bhagwat, Shonil A; Willis, Katherine J; Birks, H John B; Whittaker, Robert J

    2008-05-01

    As rates of deforestation continue to rise in many parts of the tropics, the international conservation community is faced with the challenge of finding approaches which can reduce deforestation and provide rural livelihoods in addition to conserving biodiversity. Much of modern-day conservation is motivated by a desire to conserve 'pristine nature' in protected areas, while there is growing recognition of the long-term human involvement in forest dynamics and of the importance of conservation outside protected areas. Agroforestry -- intentional management of shade trees with agricultural crops -- has the potential for providing habitats outside formally protected land, connecting nature reserves and alleviating resource-use pressure on conservation areas. Here we examine the role of agroforestry systems in maintaining species diversity and conclude that these systems can play an important role in biodiversity conservation in human-dominated landscapes.

  14. Reframing the Food-Biodiversity Challenge.

    Science.gov (United States)

    Fischer, Joern; Abson, David J; Bergsten, Arvid; French Collier, Neil; Dorresteijn, Ine; Hanspach, Jan; Hylander, Kristoffer; Schultner, Jannik; Senbeta, Feyera

    2017-03-08

    Given the serious limitations of production-oriented frameworks, we offer here a new conceptual framework for how to analyze the nexus of food security and biodiversity conservation. We introduce four archetypes of social-ecological system states corresponding to win-win (e.g., agroecology), win-lose (e.g., intensive agriculture), lose-win (e.g., fortress conservation), and lose-lose (e.g., degraded landscapes) outcomes for food security and biodiversity conservation. Each archetype is shaped by characteristic external drivers, exhibits characteristic internal social-ecological features, and has characteristic feedbacks that maintain it. This framework shifts the emphasis from focusing on production only to considering social-ecological dynamics, and enables comparison among landscapes. Moreover, examining drivers and feedbacks facilitates the analysis of possible transitions between system states (e.g., from a lose-lose outcome to a more preferred outcome).

  15. The underestimated biodiversity of tropical grassy biomes.

    Science.gov (United States)

    Murphy, Brett P; Andersen, Alan N; Parr, Catherine L

    2016-09-19

    For decades, there has been enormous scientific interest in tropical savannahs and grasslands, fuelled by the recognition that they are a dynamic and potentially unstable biome, requiring periodic disturbance for their maintenance. However, that scientific interest has not translated into widespread appreciation of, and concern about threats to, their biodiversity. In terms of biodiversity, grassy biomes are considered poor cousins of the other dominant biome of the tropics-forests. Simple notions of grassy biomes being species-poor cannot be supported; for some key taxa, such as vascular plants, this may be valid, but for others it is not. Here, we use an analysis of existing data to demonstrate that high-rainfall tropical grassy biomes (TGBs) have vertebrate species richness comparable with that of forests, despite having lower plant diversity. The Neotropics stand out in terms of both overall vertebrate species richness and number of range-restricted vertebrate species in TGBs. Given high rates of land-cover conversion in Neotropical grassy biomes, they should be a high priority for conservation and greater inclusion in protected areas. Fire needs to be actively maintained in these systems, and in many cases re-introduced after decades of inappropriate fire exclusion. The relative intactness of TGBs in Africa and Australia make them the least vulnerable to biodiversity loss in the immediate future. We argue that, like forests, TGBs should be recognized as a critical-but increasingly threatened-store of global biodiversity.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'.

  16. DNA barcoding the floras of biodiversity hotspots

    OpenAIRE

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G.; Savolainen, Vincent

    2008-01-01

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern A...

  17. A Catalogue of marine biodiversity indicators

    Directory of Open Access Journals (Sweden)

    Heliana Teixeira

    2016-11-01

    Full Text Available A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD, this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g. EU policies, research projects and in national and international contexts (e.g. Regional Seas Conventions, and assessments in non-European seas. The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity.The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs.Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat or pressure in a marine area of interest.This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists and any person interested in marine environmental assessment. It allows users to

  18. Coastal biodiversity and bioresources: variation and sustainability

    Science.gov (United States)

    Qin, Song; Liu, Zhengyi; Yu, Roger Ziye

    2016-03-01

    The 1st International Coastal Biology Congress (1st ICBC) was held in Yantai, China, in Sep. 26-30, 2014. Eighteen manuscripts of the meeting presentations were selected in this special issue. According to the four themes set in the ICBC meeting, this special issue include four sections, i.e., Coastal Biodiversity under Global Change, Adaptation and Evolution to Special Environment of Coastal Zone, Sustainable Utilization of Coastal Bioresources, and Coastal Biotechnology. Recent advances in these filed are presented.

  19. Engaging the public in biodiversity issues

    OpenAIRE

    2008-01-01

    To engage people in biodiversity and other environmental issues, one must provide the opportunity for enhanced understanding that empowers individuals to make choices and take action based on sound science and reliable recommendations. To this end, we must acknowledge some real challenges. Recent surveys show that, despite growing public concern, environmental issues still rank below many other problems, such as terrorism, health care, the economy, and (in the U.S.) family values. Moreover, m...

  20. The Role of Corporations in Ensuring Biodiversity

    Science.gov (United States)

    KELLY; HODGE

    1996-11-01

    / Corporations own approximately 25% of all private land in the United States and, therefore, play an essential role in protecting biodiversity and maintaining natural habitats. The Wildlife Habitat Council (WHC) is a unique joint venture between conservation organizations and corporations to utilize corporate lands for ensuring biodiversity. The following case studies demonstrate how corporations have helped ensure healthy ecosystems and provided critical leadership in regional efforts. Amoco Chemical Company's Cooper River Plant has been instrumental in developing a cooperative project that involves numerous corporations, plantation owners, private citizens, nonprofit organizations, government agencies, and community groups to develop a comprehensive, ecosystem-based management plan for part of the Cooper River in Charleston, South Carolina, USA. The second case focuses on the Morie Company, a national sand quarry operator headquartered in southern New Jersey, USA. Morie Company is working with WHC, community groups, the Pinelands Commission, and other state regulatory agencies to explore sustainable development opportunities for companies within the Pinelands regulations. The third case takes us to DuPont Company's Asturias, Spain, site. A win-win success story of improved habitat and cost savings is the result of DuPont's concern for the environment, ability to work with a variety of groups, and willingness to consider innovative restoration techniques. The fourth case discusses Consumers Power Company's Campbell Plant in West Olive, Michigan, USA. In addition to implementing projects that contribute to biodiversity, Consumers Power has developed an environmental education field station to teach others about the importance of natural habitats. The final case highlights Baltimore Gas & Electric Company's efforts to maintain habitat for endangered species at their Calvert Cliffs site in Maryland.KEY WORDS: Partnerships; Stewardship; International; Habitats

  1. Biodiversity and chemodiversity: future perspectives in bioprospecting.

    Science.gov (United States)

    Ramesha, B T; Gertsch, Jürg; Ravikanth, G; Priti, V; Ganeshaiah, K N; Uma Shaanker, R

    2011-10-01

    Biological diversity and its constituent chemical diversity have served as one of the richest sources of bioprospecting leading to the discovery of some of the most important bioactive molecules for mankind. Despite this excellent record, in the recent past, however, bioprospecting of biological resources has met with little success; there has been a perceptible decline in the discovery of novel bioactive compounds. Several arguments have been proposed to explain the current poor success in bioprospecting. Among them, it has been argued that to bioprospect more biodiversity may not necessarily be productive, considering that chemical and functional diversity might not scale with biological diversity. In this paper, we offer a critique on the current perception of biodiversity and chemodiversity and ask to what extent it is relevant in the context of bioprospecting. First, using simple models, we analyze the relation among biodiversity, chemodiversity and functional redundancies in chemical plans of plants and argue that the biological space for exploration might still be wide open. Second, in the context of future bioprospecting, we argue that brute-force high throughput screening approaches alone are insufficient and cost ineffective in realizing bioprospecting success. Therefore, intelligent or non-random approaches to bioprospecting need to be adopted. We review here few examples of such approaches and show how these could be further developed and used in the future to accelerate the pace of discovery.

  2. Conservation easements: biodiversity protection and private use.

    Science.gov (United States)

    Rissman, Adena R; Lozier, Lynn; Comendant, Tosha; Kareiva, Peter; Kiesecker, Joseph M; Shaw, M Rebecca; Merenlender, Adina M

    2007-06-01

    Conservation easements are one of the primary tools for conserving biodiversity on private land. Despite their increasing use, little quantitative data are available on what species and habitats conservation easements aim to protect, how much structural development they allow, or what types of land use they commonly permit. To address these knowledge gaps, we surveyed staff responsible for 119 conservation easements established by the largest nonprofit easement holder, The Nature Conservancy, between 1985 and 2004. Most easements (80%) aimed to provide core habitat to protect species or communities on-site, and nearly all were designed to reduce development. Conservation easements also allowed for a wide range of private uses, which may result in additional fragmentation and habitat disturbance. Some residential or commercial use, new structures, or subdivision of the property were permitted on 85% of sampled conservation easements. Over half (56%) allowed some additional buildings, of which 60% restricted structure size or building area. Working landscape easements with ranching, forestry, or farming made up nearly half (46%) of the easement properties sampled and were more likely than easements without these uses to be designated as buffers to enhance biodiversity in the surrounding area. Our results demonstrate the need for clear restrictions on building and subdivision in easements, research on the compatibility of private uses on easement land, and greater public understanding of the trade-offs implicit in the use of conservation easements for biodiversity conservation.

  3. Invasion ecology: Origin and biodiversity effects

    Directory of Open Access Journals (Sweden)

    John C. Briggs

    2013-09-01

    Full Text Available The history of invasion ecology, with respect to its mid-19th century beginning and its extended relationship with island biogeography, has not been investigated. In fact, most historical accounts begin with the publication of Charles Elton's book in 1958. Since that time, the field has undergone a phenomenal growth until it has become a major specialty area related to ecology, biogeography, and macroecology. Over the years, invasion studies have made significant contributions to knowledge in the areas of colonization, adaptation, biodiversity, evolution, and species relationships. But also, many ecologists became convinced that invasive species were responsible for native extinctions and the loss of biodiversity. However, new studies, based upon documented extinctions and their causes, have shown that invaders are rarely implicated. Instead, successful (colonizing invaders are almost invariably accommodated by the native species that occupy the necessary habitat. Accommodation results in a gain in species diversity of the invaded area. Diversity gain generally results in a more stable system with higher productivity and a greater resistance to invasion. Furthermore, as the fossil data indicate, invasions may eventually result in additional speciation that adds to global biodiversity. These data provide evidence of a dynamic, global system consisting of successful invasions that extend from high species diversity centers outward to where diversity is less and the competition weaker.

  4. Late Quaternary climate change shapes island biodiversity.

    Science.gov (United States)

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-07

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.

  5. Global priorities for marine biodiversity conservation.

    Science.gov (United States)

    Selig, Elizabeth R; Turner, Will R; Troëng, Sebastian; Wallace, Bryan P; Halpern, Benjamin S; Kaschner, Kristin; Lascelles, Ben G; Carpenter, Kent E; Mittermeier, Russell A

    2014-01-01

    In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs) and Areas Beyond National Jurisdiction (ABNJ). Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity.

  6. How does economic risk aversion affect biodiversity?

    Science.gov (United States)

    Mouysset, L; Doyen, L; Jiguet, F

    2013-01-01

    Significant decline of biodiversity in farmlands has been reported for several decades. To limit the negative impact of agriculture, many agro-environmental schemes have been implemented, but their effectiveness remains controversial. In this context, the study of economic drivers is helpful to understand the role played by farming on biodiversity. The present paper analyzes the impact of risk aversion on farmland biodiversity. Here "risk aversion" means a cautious behavior of farmers facing uncertainty. We develop a bio-economic model that articulates bird community dynamics and representative farmers selecting land uses within an uncertain macro-economic context. It is specialized and calibrated at a regional scale for France through national databases. The influence of risk aversion is assessed on ecological, agricultural, and economic outputs through projections at the 2050 horizon. A high enough risk aversion appears sufficient to both manage economic risk and promote ecological performance. This occurs through a diversification mechanism on regional land uses. However, economic calibration leads to a weak risk-aversion parameter, which is consistent with the current decline of farmland birds. Spatial disparities however suggest that public incentives could be necessary to reinforce the diversification and bio-economic effectiveness.

  7. Climate change patterns in Amazonia and biodiversity.

    Science.gov (United States)

    Cheng, Hai; Sinha, Ashish; Cruz, Francisco W; Wang, Xianfeng; Edwards, R Lawrence; d'Horta, Fernando M; Ribas, Camila C; Vuille, Mathias; Stott, Lowell D; Auler, Augusto S

    2013-01-01

    Precise characterization of hydroclimate variability in Amazonia on various timescales is critical to understanding the link between climate change and biodiversity. Here we present absolute-dated speleothem oxygen isotope records that characterize hydroclimate variation in western and eastern Amazonia over the past 250 and 20 ka, respectively. Although our records demonstrate the coherent millennial-scale precipitation variability across tropical-subtropical South America, the orbital-scale precipitation variability between western and eastern Amazonia exhibits a quasi-dipole pattern. During the last glacial period, our records imply a modest increase in precipitation amount in western Amazonia but a significant drying in eastern Amazonia, suggesting that higher biodiversity in western Amazonia, contrary to 'Refugia Hypothesis', is maintained under relatively stable climatic conditions. In contrast, the glacial-interglacial climatic perturbations might have been instances of loss rather than gain in biodiversity in eastern Amazonia, where forests may have been more susceptible to fragmentation in response to larger swings in hydroclimate.

  8. Biodiversity Information Serving Our Nation (BISON)

    Science.gov (United States)

    ,

    2013-01-01

    Researchers collect species occurrence data, records of an organism at a particular time in a particular place, as a primary or ancillary function of many biological field investigations. Presently, these data reside in numerous distributed systems and formats (including publications) and are consequently not being used to their full potential. As a step toward addressing this challenge, the Core Science Analytics and Synthesis (CSAS) program of the US Geological Survey (USGS) is developing Biodiversity Information Serving Our Nation (BISON), an integrated and permanent resource for biological occurrence data from the United States. BISON will leverage the accumulated human and infrastructural resources of the long-term USGS investment in research and information management and delivery. CSAS is also the U.S. Node of the Global Biodiversity Information Facility (GBIF), an international, government-initiated and funded effort focused on making biodiversity data freely available for scientific research, conservation and sustainable development. CSAS, with its partners at Department of Energy's Oak Ridge National Laboratory (ORNL), hosts a full mirror of the hundreds of millions of global records to which GBIF provides access. BISON has been initiated with the 110 million records GBIF makes available from the U.S. and is integrating millions more records from other sources each year.

  9. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots.

    Science.gov (United States)

    Katouzian, Ahmad-Reza; Sari, Alireza; Macher, Jan N; Weiss, Martina; Saboori, Alireza; Leese, Florian; Weigand, Alexander M

    2016-03-01

    Biodiversity hotspots are centers of biological diversity and particularly threatened by anthropogenic activities. Their true magnitude of species diversity and endemism, however, is still largely unknown as species diversity is traditionally assessed using morphological descriptions only, thereby ignoring cryptic species. This directly limits evidence-based monitoring and management strategies. Here we used molecular species delimitation methods to quantify cryptic diversity of the montane amphipods in the Irano-Anatolian and Caucasus biodiversity hotspots. Amphipods are ecosystem engineers in rivers and lakes. Species diversity was assessed by analysing two genetic markers (mitochondrial COI and nuclear 28S rDNA), compared with morphological assignments. Our results unambiguously demonstrate that species diversity and endemism is dramatically underestimated, with 42 genetically identified freshwater species in only five reported morphospecies. Over 90% of the newly recovered species cluster inside Gammarus komareki and G. lacustris; 69% of the recovered species comprise narrow range endemics. Amphipod biodiversity is drastically underestimated for the studied regions. Thus, the risk of biodiversity loss is significantly greater than currently inferred as most endangered species remain unrecognized and/or are only found locally. Integrative application of genetic assessments in monitoring programs will help to understand the true magnitude of biodiversity and accurately evaluate its threat status.

  10. Forest restoration, biodiversity and ecosystem functioning

    Directory of Open Access Journals (Sweden)

    Aerts Raf

    2011-11-01

    Full Text Available Abstract Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an

  11. Biodiversity, climate change and poverty: exploring the links

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Swiderska, Krystyna

    2008-02-15

    Biodiversity — the variety of all life, from genes and species to ecosystems — is intimately linked to Earth's climate and, inevitably, to climate change. Biodiversity and poverty are also inextricably connected. For instance, changes to natural ecosystems influence both climate change and people's ability to cope with some of its damaging impacts. And in their turn climate change, as well as people's responses to it, affect biodiversity. Unpicking all these strands clearly shows that conserving and managing biodiversity can help natural systems and vulnerable people cope with a shifting global climate. Yet compared to activities such as forest conservation and afforestation — widely noted as a way of sequestering carbon and cutting greenhouse gas emissions — biodiversity conservation is a neglected area. That must change: urgent support is needed for local solutions to biodiversity loss that provide benefits on all counts.

  12. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    Science.gov (United States)

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  13. Biodiversity offsets and the challenge of achieving no net loss.

    Science.gov (United States)

    Gardner, Toby A; VON Hase, Amrei; Brownlie, Susie; Ekstrom, Jonathan M M; Pilgrim, John D; Savy, Conrad E; Stephens, R T Theo; Treweek, Jo; Ussher, Graham T; Ward, Gerri; Ten Kate, Kerry

    2013-12-01

    Businesses, governments, and financial institutions are increasingly adopting a policy of no net loss of biodiversity for development activities. The goal of no net loss is intended to help relieve tension between conservation and development by enabling economic gains to be achieved without concomitant biodiversity losses. biodiversity offsets represent a necessary component of a much broader mitigation strategy for achieving no net loss following prior application of avoidance, minimization, and remediation measures. However, doubts have been raised about the appropriate use of biodiversity offsets. We examined what no net loss means as a desirable conservation outcome and reviewed the conditions that determine whether, and under what circumstances, biodiversity offsets can help achieve such a goal. We propose a conceptual framework to substitute the often ad hoc approaches evident in many biodiversity offset initiatives. The relevance of biodiversity offsets to no net loss rests on 2 fundamental premises. First, offsets are rarely adequate for achieving no net loss of biodiversity alone. Second, some development effects may be too difficult or risky, or even impossible, to offset. To help to deliver no net loss through biodiversity offsets, biodiversity gains must be comparable to losses, be in addition to conservation gains that may have occurred in absence of the offset, and be lasting and protected from risk of failure. Adherence to these conditions requires consideration of the wider landscape context of development and offset activities, timing of offset delivery, measurement of biodiversity, accounting procedures and rule sets used to calculate biodiversity losses and gains and guide offset design, and approaches to managing risk. Adoption of this framework will strengthen the potential for offsets to provide an ecologically defensible mechanism that can help reconcile conservation and development. Balances de Biodiversidad y el Reto de No Obtener P

  14. Core Issues in the Economics of Biodiversity Conservation

    OpenAIRE

    Tisdell, Clement A.

    2010-01-01

    Critically reviews the following core issues in the economics of biodiversity conservation: reliance on the stated preferences of individuals as a guide to biodiversity conservation, the relevance of the phylogenetic similarity principle (and other attributes of organisms) for the survival of species; the implications of the Noah’s ark problem for selecting features of biodiversity to be saved and the difficulties raised by criteria based on safe minimum populations of species or on minimum e...

  15. Study of Value Assessment Model of Forest Biodiversity Based on the Habitat Area in China

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2014-03-01

    Full Text Available Forest biodiversity is an important part of biodiversity. There is an essential significance of studying forest biodiversity assessment for promoting the conservation of biodiversity and enhancing biodiversity management in China. This study collected forest biodiversity habitat area, output value of forestry and so on forest biodiversity assessment-related data from 2001 to 2010 in China and using optimal control methods in cybernetics to establish value assessment model of forest biodiversity based on the data of habitat area, as well as calculated the optimal price for forest biodiversity assessment. The result showed that forest biodiversity habitat assessment of the optimal price is 9,970 RMB Yuan/ha and there is a dynamic model for forest biodiversity assessment. Finally, the study suggested that studies of forest biodiversity assessment in China, in particular, studying of valuation of forest biodiversity should consider using shadow price and the social, economic and other factors should be taken into account

  16. Biodiversity of Fungi : Inventory and Monitoring Methods

    Science.gov (United States)

    Mueller, G.M.; Bills, G.F.; Foster, M.S.

    2004-01-01

    Biodiversity of Fungi is essential for anyone collecting and/or monitoring any fungi. Fascinating and beautiful, fungi are vital components of nearly all ecosystems and impact human health and our economy in a myriad of ways. Standardized methods for documenting diversity and distribution have been lacking. An wealth of information, especially regrading sampling protocols, compiled by an international team of fungal biologists, make Biodiversity of Fungi an incredible and fundamental resource for the study of organismal biodiversity. Chapters cover everything from what is a fungus, to maintaining and organizing a permanent study collection with associated databases; from protocols for sampling slime molds to insect associated fungi; from fungi growing on and in animals and plants to mushrooms and truffles. The chapters are arranged both ecologically and by sampling method rather than by taxonomic group for ease of use. The information presented here is intended for everyone interested in fungi, anyone who needs tools to study them in nature including naturalists, land managers, ecologists, mycologists, and even citizen scientists and sophiscated amateurs. Fungi are among the most important organisms in the world; they play vital roles in ecosystem functions and have wide-ranging effects, both positive and negative, on humans and human-related activities. There are about 1.5 million species of fungi. The combination of fungal species and abundances in an ecosystem are often used as indicators of ecosystem health and as indicators of the effects of pollution and of different management and use plans. Because of their significance, it is important that these organisms be monitored. This book is the first comprehensive treatment of fungal inventory and monitoring, including standardized sampling protocols as well as information on study design, sample preservation, and data analysis.

  17. Biodiversity in cultivated Panax notoginseng populations

    Institute of Scientific and Technical Information of China (English)

    Dong WANG; Deborah HONG; Hwee-ling KOH; Ying-jun ZHANG; Chong-ren YANG; Yan HONG

    2008-01-01

    Aim:Panax notoginseng is a cultivated ginseng species highly valued for its various pharmacological activities mostly associated with triterpenoid saponin glycosides. It would be of great interest to understand biodiversity in this gin-seng species after its long history of domestication. Methods: We collected 92 random sampled 3-year-old P notoginseng plants from 4 counties of Wenshan prefecture in Yunnan province, China and documented their morphological fea-tures of plant height, stem color, number of leaves/leaflets and dry weight of tap root. Their genetic diversity was evaluated by fluorescent amplified fragment length polymorphism (fAFLP) analysis. Results: Among the samples collected, variable morphological features were observed. For these 4 populations (Zhulijie, Shangliuhe, Bazai and Jinbuhuan) analyzed by fAFLP, percentage of polymor-phic bands among the total number of 582 discrete bands were 74.05%, 45.36%, 38.83% and 51.89% respectively. Mean genetic heterozygosity were 0.166, 0.093, 0.094 and 0.125. On the other hand, Nei genetic distances among populations were all <0.03. Further analysis of molecular variance (AMOVA) attributed most (93.5%) genetic diversity to within population variation. Principal coordi-nates analysis (PCA) did not group any population distinctively. Conclusion: This domesticated ginseng species still maintains a fair level of biodiversity and this conclusion is consistent with the local practice of non-selective collection of seeds for next season planting. There was no genetic drift in populations. Biodi-versity ofP notoginseng can be exploited to improve this important herb through breeding. Two possible strategies include inbreeding for pure lines and hybrid breeding with genetic divergent parents for hybrid vigor.

  18. Plant biodiversity impacts on soil stability

    Science.gov (United States)

    Gould, Iain; Quinton, John; Bardgett, Richard

    2014-05-01

    In recent times, growing threats to global biodiversity have raised awareness from the scientific community, with particular interest on how plant diversity impacts on ecosystem functioning. In the field of plant-soil interactions, much work has been done to research the implications of species loss, primarily focussing on biological processes such as plant productivity, microbial activity and carbon cycling. Consequently, virtually nothing is known about how plant diversity might impact on soil physical properties, and what mechanisms might be involved. This represents a serious gap in knowledge, given that maintaining soils with good structural integrity can reduce soil erosion and water pollution, and can lead to improved plant yield. Therefore, there is a need for a greater understanding of how plant communities and ecological interactions between plant roots and soils can play a role in regulating soil physical structure. Soil aggregation is an important process in determining soil stability by regulating soil water infiltration and having consequences for erodibility. This is influenced by both soil physical constituents and biological activity; including soil organic carbon content, microbial growth, and increased plant rooting. As previously mentioned, plant diversity influences carbon dynamics, microbial activity and plant growth, therefore could have substantial consequences for soil aggregate stability. Here, we present results from a series of plant manipulation experiments, on a range of scales, to understand more about how plant diversity could impact on soil aggregate stability. Soils from both a plant manipulation mesocosm experiment, and a long term biodiversity field study, were analysed using the Le Bissonnais method of aggregate stability breakdown. Increasing plant species richness was found to have a significant positive impact on soil aggregate stability at both scales. In addition to this, the influence of species identity, functional group

  19. Geocoding LCSH in the Biodiversity Heritage Library

    Directory of Open Access Journals (Sweden)

    Marc Crozier

    2008-03-01

    Full Text Available Reusing metadata generated through years of cataloging practice is a natural and pragmatic way of leveraging an institution's investment in describing its resources. Using Library of Congress Subject Headings (LCSH, the Biodiversity Heritage Library generates new interfaces for browsing and navigating books in a digital library. LCSH are grouped into tag clouds and plotted on interactive maps using methods available within the Google Maps Application Programming Interface (API. Code examples are included, and issues related to these interfaces and the underlying LCSH data are examined.

  20. Global biodiversity loss: Exaggerated versus realistic estimates

    OpenAIRE

    John C. Briggs

    2016-01-01

    For the past 50 years, the public has been made to feel guilty about the tragedy of human-caused biodiversity loss due to the extinction of hundreds or thousands of species every year. Numerous articles and books from the scientific and popular press and publicity on the internet have contributed to a propaganda wave about our grievous loss and the beginning of a sixth mass extinction. However, within the past few years, questions have arisen about the validity of the data which led to the do...

  1. Forecasting effects of global warming on biodiversity

    DEFF Research Database (Denmark)

    Botkin, D.B.; Saxe, H.; Araújo, M.B.

    2007-01-01

    The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. In this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche...... and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions...

  2. Accounting for changes in biodiversity and ecosystem services from a business perspective : Preliminary guidelines towards a biodiversity accountability framework

    OpenAIRE

    Houdet, Joël; Pavageau, Charlotte; Trommetter, Michel; Weber, Jacques

    2009-01-01

    Biodiversity refers to the dynamics of interactions between organisms in changing environments. Within the context of accelerating biodiversity loss worldwide, firms are under increasing pressures from stakeholders to develop appropriate tools to account for the nature and consequences of their actions, inclusive of their influences on ecosystem services used by other agents. This paper presents a two-pronged approach towards accounting for changes in biodiversity and ecosystem services from ...

  3. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation.

    Science.gov (United States)

    Beninde, Joscha; Veith, Michael; Hochkirch, Axel

    2015-06-01

    Understanding varying levels of biodiversity within cities is pivotal to protect it in the face of global urbanisation. In the early stages of urban ecology studies on intra-urban biodiversity focused on the urban-rural gradient, representing a broad generalisation of features of the urban landscape. Increasingly, studies classify the urban landscape in more detail, quantifying separately the effects of individual urban features on biodiversity levels. However, while separate factors influencing biodiversity variation among cities worldwide have recently been analysed, a global analysis on the factors influencing biodiversity levels within cities is still lacking. We here present the first meta-analysis on intra-urban biodiversity variation across a large variety of taxonomic groups of 75 cities worldwide. Our results show that patch area and corridors have the strongest positive effects on biodiversity, complemented by vegetation structure. Local, biotic and management habitat variables were significantly more important than landscape, abiotic or design variables. Large sites greater than 50 ha are necessary to prevent a rapid loss of area-sensitive species. This indicates that, despite positive impacts of biodiversity-friendly management, increasing the area of habitat patches and creating a network of corridors is the most important strategy to maintain high levels of urban biodiversity.

  4. Towards a Mathematical Description of Biodiversity Evolution

    Science.gov (United States)

    Horvath, Jorge E.

    2014-09-01

    We outline in this work a mathematical description of biodiversity evolution based on a second-order differential equation (also known as the "inertial/Galilean view"). After discussing the motivations and explicit forms of the simplest "forces", we are lead to an equation analogue to a harmonic oscillator. The known solutions for the homogeneous problem are then tentatively related to the biodiversity curves of Sepkoski and Alroy et al., suggesting mostly an inertial behavior of the time evolution of the number of genera and a quadratic behavior in some long-term evolution after extinction events. We present the Green function for the dynamical system and apply it to the description of the recovery curve after the Permo-Triassic extinction, as recently analyzed by Burgess, Bowring and Shen. Even though the agreement is not satisfactory, we point out direct connections between observed drop times after massive extinctions and mathematical constants and discuss why the failure ensues, suggesting a more complex form of the second-order mathematical description.

  5. Fungal Biodiversity in the Alpine Tarfala Valley

    Directory of Open Access Journals (Sweden)

    Claudia Coleine

    2015-10-01

    Full Text Available Biological soil crusts (BSCs are distributed worldwide in all semiarid and arid lands, where they play a determinant role in element cycling and soil development. Although much work has concentrated on BSC microbial communities, free-living fungi have been hitherto largely overlooked. The aim of this study was to examine the fungal biodiversity, by cultural-dependent and cultural-independent approaches, in thirteen samples of Arctic BSCs collected at different sites in the Alpine Tarfala Valley, located on the slopes of Kebnekaise, the highest mountain in northern Scandinavia. Isolated fungi were identified by both microscopic observation and molecular approaches. Data revealed that the fungal assemblage composition was homogeneous among the BSCs analyzed, with low biodiversity and the presence of a few dominant species; the majority of fungi isolated belonged to the Ascomycota, and Cryptococcus gilvescens and Pezoloma ericae were the most frequently-recorded species. Ecological considerations for the species involved and the implication of our findings for future fungal research in BSCs are put forward.

  6. PYCNOIB: biodiversity and biogeography of Iberian pycnogonids.

    Directory of Open Access Journals (Sweden)

    Anna Soler-Membrives

    Full Text Available Biodiversity and biogeographic studies comparing the distribution patterns of benthic marine organisms across the Iberian Atlantic and Mediterranean waters are scarce. The Pycnogonida (sea spiders are a clear example of both endemicity and diversity, and are considered a key taxon to study and monitor biogeographic and biodiversity patterns. This is the first review that compiles data about abundance and diversity of Iberian pycnogonids and examines their biogeographic patterns and bathymetric constraints using GIS tools. A total of 17,762 pycnogonid records from 343 localities were analyzed and were found to contain 65 species, 21 genera and 12 families. Achelia echinata and Ammothella longipes (family Acheliidae were the most abundant comprising ~80% of the total records. The Acheliidae is also the most speciose in Iberian waters with 15 species. In contrast, the family Nymphonidae has 7 species but is significantly less abundant (<1% of the total records than Acheliidae. Species accumulation curves indicate that further sampling would increase the number of Iberian species records. Current sampling effort suggests that the pycnogonid fauna of the Mediterranean region may be richer than that of the Atlantic. The Strait of Gibraltar and the Alboran Sea are recognized as species-rich areas that act as buffer zones between the Atlantic and Mediterranean boundaries. The deep waters surrounding the Iberian Peninsula are poorly surveyed, with only 15% of the sampling sites located below 1000 m. Further deep-water sampling is needed mainly on the Iberian Mediterranean side.

  7. Global biodiversity loss: Exaggerated versus realistic estimates

    Directory of Open Access Journals (Sweden)

    John C. Briggs

    2016-06-01

    Full Text Available For the past 50 years, the public has been made to feel guilty about the tragedy of human-caused biodiversity loss due to the extinction of hundreds or thousands of species every year. Numerous articles and books from the scientific and popular press and publicity on the internet have contributed to a propaganda wave about our grievous loss and the beginning of a sixth mass extinction. However, within the past few years, questions have arisen about the validity of the data which led to the doom scenario. Here I show that, for the past 500 years, terrestrial animals (insects and vertebrates have been losing less than two species per year due to human causes. The majority of the extinctions have occurred on oceanic islands with little effect on continental ecology. In the marine environment, losses have also been very low. At the same time, speciation has continued to occur and biodiversity gain by this means may have equaled or even surpassed the losses. While species loss is not, so far, a global conservation problem, ongoing population declines within thousands of species that are at risk on land and in the sea constitute an extinction debt that will be paid unless those species can be rescued.

  8. Characteristics and conservation of biodiversity in Xinjiang

    Institute of Scientific and Technical Information of China (English)

    潘伯荣; 张元明

    2002-01-01

    The Xinjiang Uygur Autonomous Region covers nearly 1/6 territory of China, with vari-ous landscape patterns, environmental conditions and three key regions of biodiversity of China.The ecosystem here has a relatively simple structure and fragile ecological stability. The coverageof sparse vegetation here is only 2.1% which is far lower than 14%, the average coverage all overthe country. Although the fragile and unstable ecosystems are improved partly in the past, the totalsituation in Xinjiang has worsened (such as drying up of rivers and lakes, desertification andsalinization of soil, deterioration of meadow, reduction of biodiversity, etc.). Although the speciesnumbers of Xinjiang are few, the diversity of taxa is very high. The types of plant communities areabundant, and the flora abounds in one-species genus, one-genus family and few-species genus.Also, the fauna abounds in endangered species and endemic species, of which 108 species ofvertebrates were listed as nationally protected species. In addition, there are abundantanti-adversity gene pools. The present paper puts forwards several suggestions for biodiversityconservation in Xinjiang.

  9. GEOSPATIAL CHARACTERIZATION OF BIODIVERSITY: NEED AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    P. S. Roy

    2012-08-01

    Full Text Available Explaining the distribution of species and understanding their abundance and spatial distribution at multiple scales using remote sensing and ground based observation have been the central aspect of the meeting of COP10 for achieving CBD 2020 targets. In this respect the Biodiveristy Characterization at Landscape Level for India is a milestone in biodiversity study in this country. Satellite remote sensing has been used to derive the spatial extent and vegetation composition patterns. Sensitivity of different multi-scale landscape metrics, species composition, ecosystem uniqueness and diversity in distribution of biological diversity is assessed through customized landscape analysis software to generate the biological richness surface. The uniqueness of the study lies in the creation of baseline geo-spatial data on vegetation types using multi-temporal satellite remote sensing data (IRS LISS III, deriving biological richness based on spatial landscape analysis and inventory of location specific information about 7964 unique plant species recorded in 20,000 sample plots in India and their status with respect to endemic, threatened and economic/medicinal importance. The results generated will serve as a baseline database for various assessment of the biodiversity for addressing CBD 2020 targets.

  10. Facilitation as a ubiquitous driver of biodiversity.

    Science.gov (United States)

    McIntire, Eliot J B; Fajardo, Alex

    2014-01-01

    Models describing the biotic drivers that create and maintain biological diversity within trophic levels have focused primarily on negative interactions (i.e. competition), leaving marginal room for positive interactions (i.e. facilitation). We show facilitation to be a ubiquitous driver of biodiversity by first noting that all species use resources and thus change the local biotic or abiotic conditions, altering the available multidimensional niches. This can cause a shift in local species composition, which can cause an increase in beta, and sometimes alpha, diversity. We show that these increases are ubiquitous across ecosystems. These positive effects on diversity occur via a broad host of disparate direct and indirect mechanisms. We identify and unify several of these facilitative mechanisms and discuss why it has been easy to underappreciate the importance of facilitation. We show that net positive effects have a long history of being considered ecologically or evolutionarily unstable, and we present recent evidence of its potential stability. Facilitation goes well beyond the common case of stress amelioration and it probably gains importance as community complexity increases. While biodiversity is, in part, created by species exploiting many niches, many niches are available to exploit only because species create them.

  11. Towards a Mathematical Description of Biodiversity Evolution

    Directory of Open Access Journals (Sweden)

    Jorge E. Horvath

    2014-09-01

    Full Text Available We outline in this work a mathematical description of biodiversity evolution based on a second-order differential equation (also known as the “inertial/Galilean view”. After discussing the motivations and explicit forms of the simplest “forces”, we are lead to an equation analogue to a harmonic oscillator. The known solutions for the homogeneous problem are then tentatively related to the biodiversity curves of Sepkoski and Alroy et al., suggesting mostly an inertial behavior of the time evolution of the number of genera and a quadratic behavior in some long-term evolution after extinction events. We present the Green function for the dynamical system and apply it to the description of the recovery curve after the Permo-Triassic extinction, as recently analyzed by Burgess, Bowring and Shen. Even though the agreement is not satisfactory, we point out direct connections between observed drop times after massive extinctions and mathematical constants and discuss why the failure ensues, suggesting a more complex form of the second-order mathematical description.

  12. Toward meaningful end points of biodiversity in life cycle assessment.

    Science.gov (United States)

    Curran, Michael; de Baan, Laura; De Schryver, An M; Van Zelm, Rosalie; Hellweg, Stefanie; Koellner, Thomas; Sonnemann, Guido; Huijbregts, Mark A J

    2011-01-01

    Halting current rates of biodiversity loss will be a defining challenge of the 21st century. To assess the effectiveness of strategies to achieve this goal, indicators and tools are required that monitor the driving forces of biodiversity loss, the changing state of biodiversity, and evaluate the effectiveness of policy responses. Here, we review the use of indicators and approaches to model biodiversity loss in Life Cycle Assessment (LCA), a methodology used to evaluate the cradle-to-grave environmental impacts of products. We find serious conceptual shortcomings in the way models are constructed, with scale considerations largely absent. Further, there is a disproportionate focus on indicators that reflect changes in compositional aspects of biodiversity, mainly changes in species richness. Functional and structural attributes of biodiversity are largely neglected. Taxonomic and geographic coverage remains problematic, with the majority of models restricted to one or a few taxonomic groups and geographic regions. On a more general level, three of the five drivers of biodiversity loss as identified by the Millennium Ecosystem Assessment are represented in current impact categories (habitat change, climate change and pollution), while two are missing (invasive species and overexploitation). However, methods across all drivers can be greatly improved. We discuss these issues and make recommendations for future research to better reflect biodiversity loss in LCA.

  13. Soil biodiversity and soil community composition determine ecosystem multifunctionality.

    Science.gov (United States)

    Wagg, Cameron; Bender, S Franz; Widmer, Franco; van der Heijden, Marcel G A

    2014-04-08

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth's biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability.

  14. Forsaking Nature? Contesting "Biodiversity" through Competing Discourses of Sustainability

    Science.gov (United States)

    Kopnina, Helen

    2013-01-01

    The Convention on Biodiversity has developed the concept of "ecosystem services" and "natural resources" in order to describe ways in which humans benefit from healthy ecosystems. Biodiversity, conceived through the economic approach, was recognized to be of great social and economic value to both present and future…

  15. The Global Genome Biodiversity Network (GGBN) Data Portal.

    Science.gov (United States)

    Droege, Gabriele; Barker, Katharine; Astrin, Jonas J; Bartels, Paul; Butler, Carol; Cantrill, David; Coddington, Jonathan; Forest, Félix; Gemeinholzer, Birgit; Hobern, Donald; Mackenzie-Dodds, Jacqueline; Ó Tuama, Éamonn; Petersen, Gitte; Sanjur, Oris; Schindel, David; Seberg, Ole

    2014-01-01

    The Global Genome Biodiversity Network (GGBN) was formed in 2011 with the principal aim of making high-quality well-documented and vouchered collections that store DNA or tissue samples of biodiversity, discoverable for research through a networked community of biodiversity repositories. This is achieved through the GGBN Data Portal (http://data.ggbn.org), which links globally distributed databases and bridges the gap between biodiversity repositories, sequence databases and research results. Advances in DNA extraction techniques combined with next-generation sequencing technologies provide new tools for genome sequencing. Many ambitious genome sequencing projects with the potential to revolutionize biodiversity research consider access to adequate samples to be a major bottleneck in their workflow. This is linked not only to accelerating biodiversity loss and demands to improve conservation efforts but also to a lack of standardized methods for providing access to genomic samples. Biodiversity biobank-holding institutions urgently need to set a standard of collaboration towards excellence in collections stewardship, information access and sharing and responsible and ethical use of such collections. GGBN meets these needs by enabling and supporting accessibility and the efficient coordinated expansion of biodiversity biobanks worldwide.

  16. What Lives Where & Why? Understanding Biodiversity through Geospatial Exploration

    Science.gov (United States)

    Trautmann, Nancy M.; Makinster, James G.; Batek, Michael

    2013-01-01

    Using an interactive map-based PDF, students learn key concepts related to biodiversity while developing data-analysis and critical-thinking skills. The Bird Island lesson provides students with experience in translating geospatial data into bar graphs, then interpreting these graphs to compare biodiversity across ecoregions on a fictional island.…

  17. Participation in Biodiversity Conservation: Motivations and Barriers of Australian Landholders

    Science.gov (United States)

    Moon, Katie; Cocklin, Chris

    2011-01-01

    Biodiversity conservation programs that appeal to landholders' motivations and minimise their barriers to participation may result in both increased uptake rates and improved ecological outcomes. To understand their motivations and barriers to conserve biodiversity, qualitative interviews were conducted with 45 landholders who had participated in…

  18. Engaging Pupils in Decision-Making about Biodiversity Conservation Issues

    Science.gov (United States)

    Grace, Marcus; Byrne, Jenny

    2010-01-01

    Our pupils' generation will eventually have the daunting responsibility of making decisions about local and global biodiversity. School provides an early opportunity for them to enter into formal discussion about the science and values associated with biodiversity conservation; but the crowded curriculum offers little time for such activities.…

  19. Desirable mathematical properties of indicators for biodiversity change

    NARCIS (Netherlands)

    van Strien, A.J.; Soldaat, L.L.; Gregory, R.D.

    2012-01-01

    Numerous indicator approaches are found in the scientific literature to describe changes in biodiversity. It is however far from clear which indicators are most appropriate and which are less suitable to summarize trends in biodiversity. One reason for this lack of clarity is that so far the mathema

  20. Towards a global platform for linking soil biodiversity data

    NARCIS (Netherlands)

    Ramirez, Kelly S; Döring, Markus; Eisenhauer, Nio; Gardi, Ciro; Ladau, Josh; Leff, Jonathan W; Lentendu, Guillaume; Lindo, Zoë; Rillig, Matthias C; Russell, David; Scheu, Stefan; St. John, Mark G; de Vries, Franciska T; Wubet, Tesfaye; van der Putten, Wim H; Wall, Diana H

    2015-01-01

    BACKGROUND: Soil biodiversity is immense, with an estimated 10-100 million organisms belonging to over 5000 taxa in a handful of soil. In spite of the importance of soil biodiversity for ecosystem functions and services, information on soil species, from taxonomy to biogeographical patterns, is inco

  1. Land use impacts on biodiversity in LCA: a global approach

    NARCIS (Netherlands)

    Baan, de L.; Alkemade, J.R.M.; Koellner, T.

    2013-01-01

    Land use is a main driver of global biodiversity loss and its environmental relevance is widely recognized in research on life cycle assessment (LCA). The inherent spatial heterogeneity of biodiversity and its non-uniform response to land use requires a regionalized assessment, whereas many LCA appl

  2. Conserving critical sites for biodiversity provides disproportionate benefits to people

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Turner, Will R.; Brooks, Thomas M.

    2012-01-01

    Protecting natural habitats in priority areas is essential to halt the loss of biodiversity. Yet whether these benefits for biodiversity also yield benefits for human well-being remains controversial. Here we assess the potential human well-being benefits of safeguarding a global network of sites...

  3. Virginia Tech to host Biodiversity Conservation in Agriculture Symposium

    OpenAIRE

    Felker, Susan B.

    2006-01-01

    Virginia Tech will host the Biodiversity Conservation in Agriculture Symposium at its Caribbean Center for Education and Research in Punta Cana, the Dominican Republic, May 31 - June 2. The symposium is designed to promote inclusion of biodiversity conservation objectives in agricultural development activities.

  4. Databases, scaling practices, and the globalization of biodiversity

    NARCIS (Netherlands)

    Turnhout, E.; Boonman-Berson, S.H.

    2011-01-01

    Since the Convention on Biological Diversity in 1992, biodiversity has become an important topic for scientific research. Much of this research is focused on measuring and mapping the current state of biodiversity, in terms of which species are present at which places and in which abundance, and mak

  5. BIODIVERSITY CONSERVATION INCENTIVE PROGRAMS FOR PRIVATELY OWNED FORESTS

    Science.gov (United States)

    In many countries, a large proportion of forest biodiversity exists on private land. Legal restrictions are often inadequate to prevent loss of habitat and encourage forest owners to manage areas for biodiversity, especially when these management actions require time, money, and ...

  6. Projecting Global Biodiversity Indicators under Future Development Scenarios

    NARCIS (Netherlands)

    Visconti, Piero; Bakkenes, Michel; Baisero, Daniele; Brooks, Thomas; Butchart, Stuart H M; Joppa, Lucas; Alkemade, Rob; Di Marco, Moreno; Santini, Luca; Hoffmann, Michael; Maiorano, Luigi; Pressey, Robert L.; Arponen, Anni; Boitani, Luigi; Reside, April E.; van Vuuren, Detlef P.; Rondinini, Carlo

    2016-01-01

    To address the ongoing global biodiversity crisis, governments have set strategic objectives and have adopted indicators to monitor progress toward their achievement. Projecting the likely impacts on biodiversity of different policy decisions allows decision makers to understand if and how these tar

  7. Projecting Global Biodiversity Indicators under Future Development Scenarios

    NARCIS (Netherlands)

    Visconti, Piero; Bakkenes, Michel; Baisero, Daniele; Brooks, Thomas; Butchart, Stuart H.M.; Joppa, Lucas; Alkemade, Rob; Marco, Di Moreno; Santini, Luca; Hoffmann, Michael; Maiorano, Luigi; Pressey, Robert L.; Arponen, Anni; Boitani, Luigi; Reside, April E.; Vuuren, van Detlef P.; Rondinini, Carlo

    2016-01-01

    To address the ongoing global biodiversity crisis, governments have set strategic objectives and have adopted indicators to monitor progress toward their achievement. Projecting the likely impacts on biodiversity of different policy decisions allows decision makers to understand if and how these

  8. Climate impacts on global hot spots of marine biodiversity

    Science.gov (United States)

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S.; Chiaradia, André

    2017-01-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world’s richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation. PMID:28261659

  9. Towards a data publishing framework for primary biodiversity data

    DEFF Research Database (Denmark)

    Ingwersen, Peter; Chavan, Vishwas S

    2009-01-01

    -of-the-art of primary biodiversity data publishing, and conceptualises a ‘Data Publishing Framework' that would help incentivise efforts and investments by institutions and individuals in facilitating free and open access to biodiversity data. It further postulates the institutionalisation of  a ‘Data Usage Index (DUI...

  10. National forest inventory contributions to forest biodiversity monitoring

    DEFF Research Database (Denmark)

    Chirici, Cherardo; McRoberts, Ronald; Winter, Susanne;

    2012-01-01

    Forests are the most biodiverse terrestrial ecosystems. National forest inventories (NFIs) are the main source of information on the status and trends of forests, but they have traditionally been designed to assess land coverage and the production value of forests rather than forest biodiversity....

  11. The complexity of biodiversity: a biological perspective on economic valuation

    NARCIS (Netherlands)

    Farnsworth, K.; Adenuga, A.H.; Groot, de R.S.

    2015-01-01

    To value something, you first have to know what it is. Bartkowski et al. (2015) reveal a critical weakness: that biodiversity has rarely, if ever, been defined in economic valuations of putative biodiversity. Here we argue that a precise definition is available and could help focus valuation studies

  12. Conserving Earth's Biodiversity. [CD-ROM and] Instructor's Manual.

    Science.gov (United States)

    2000

    This CD-ROM is designed as an interactive learning tool to support teaching in highly interdisciplinary fields such as conservation of biodiversity. Topics introduced in the software include the impact of humans on natural landscapes, threats to biodiversity, methods and theories of conservation biology, environmental laws, and relevant economic…

  13. Taxonomy, biodiversity and management of knowledge in Asia

    NARCIS (Netherlands)

    Ng, F.S.P.

    2002-01-01

    At the Biodiversity 2000 Kuching Conference in November 2000, I put forward the thesis that biodiversity is a knowledge resource, and that Asian societies have an attitude problem with respect to the management of knowledge (Ng, 2001). I offered the following evidence: In AD 304, Chi Han published h

  14. An analytical framework for linking biodiversity to poverty

    NARCIS (Netherlands)

    Hengsdijk, H.; Meijerink, G.W.; Tonneijck, A.E.G.; Bindraban, P.S.

    2005-01-01

    This report aims to develop a framework linking poverty reduction and biodiversity conservation in order to identify research questions and to contribute to improved policy formulation. A general overview of the subject, definitions and concepts of poverty and biodiversity are described.

  15. A biodiversity indicators dashboard: addressing challenges to monitoring progress towards the Aichi biodiversity targets using disaggregated global data.

    Science.gov (United States)

    Han, Xuemei; Smyth, Regan L; Young, Bruce E; Brooks, Thomas M; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H M; Larsen, Frank W; Hamilton, Healy; Hansen, Matthew C; Turner, Will R

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity "dashboard"--a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the protection of

  16. Positive biodiversity-productivity relationship predominant in global forests.

    Science.gov (United States)

    Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B

    2016-10-14

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.

  17. Curbing UK impacts on global biodiversity: an agenda for action

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steve [Scott Wilson Ltd (United Kingdom); Craeynest, Lies [WWF (United Kingdom); Bass, Steve

    2008-05-15

    Stemming the tide of biodiversity loss is a global issue with national implications. The UK has set up initiatives to reduce its impacts on biodiversity worldwide — but as a government review found in 2006, these have yet to add up to a comprehensive strategy. How can the gaps be filled? New research suggests that action on a number of fronts is key. Many UK policies and practices clearly affect biodiversity even though they do not directly address it. For instance, UK imports such as coffee, cocoa and sugar are linked to biodiversity loss. By integrating relevant mainstream concerns such as trade and exploitation of natural resources into an overall strategy, the UK government could better demonstrate its commitment to reducing biodiversity loss significantly by the target date of 2010.

  18. The biodiversity of the deep Southern Ocean benthos.

    Science.gov (United States)

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K E; Gooday, A J; Hilbig, B; Linse, K; Thomson, M R A; Tyler, P A

    2007-01-29

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.

  19. Biodiversity scenarios neglect future land-use changes.

    Science.gov (United States)

    Titeux, Nicolas; Henle, Klaus; Mihoub, Jean-Baptiste; Regos, Adrián; Geijzendorffer, Ilse R; Cramer, Wolfgang; Verburg, Peter H; Brotons, Lluís

    2016-07-01

    Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge.

  20. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity.

    Science.gov (United States)

    Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-12-14

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future.

  1. Maintenance of Brazilian Biodiversity by germplasm bank

    Directory of Open Access Journals (Sweden)

    Luciana C. Machado

    2016-01-01

    Full Text Available Abstract: Currently the importance of using alternative strategies for biodiversity conservation is emphasized and since the establishment of germplasm bank is an alternative to the conservation of endangered species. This is a technique of great importance for the maintenance of Brazilian fauna. Since the early70'sthere was a growing concern about the need to preserve essential genetic resources for food and agriculture, mainly for conservation of genetic material from farm animals. Thus was created the Brasilia Zoo, in July 2010, the first Germplasm Bank of Wild Animals in Latin America, as an alternative strategy for the conservation of threatened or endangered species, using both gametes and somatic cells and stem cells. Then we argue to create new banks or research networks among different regions with aimed to tissue preservation.

  2. Coccolithophores: Functional Biodiversity, Enzymes and Bioprospecting

    Directory of Open Access Journals (Sweden)

    Michael J. Allen

    2011-04-01

    Full Text Available Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an ‘in house‘ enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.

  3. Coccolithophores: functional biodiversity, enzymes and bioprospecting.

    Science.gov (United States)

    Reid, Emma L; Worthy, Charlotte A; Probert, Ian; Ali, Sohail T; Love, John; Napier, Johnathan; Littlechild, Jenny A; Somerfield, Paul J; Allen, Michael J

    2011-01-01

    Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an 'in house' enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.

  4. Do recreational activities affect coastal biodiversity?

    Science.gov (United States)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  5. Biodiversity and conservation in the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Tibetan Plateau (Qinghai-Xizang Plateau) is a unique biogeographic region in the world, where various landscapes, altitudinal belts, alpine ecosystems, and endangered and endemic species have been developed. A total of 26 altitudinal belts, 28 spectra of altitudinal belts, 12,000 species of vascular plant, 5,000 species of epiphytes, 210 species of mammals, and 532 species of birds have been recorded. The plateau is also one of the centers of species formation and differentiation in the world. To protect the biodiversity of the plateau, about 80 nature reserves have been designated, of which 45 are national or provincial, covering about 22% of the plateau area. Most of the nature reserves are distributed in the southeastern plateau. Recently, the Chinese government has initiated the "Natural Forests Protection Project of China,' mainly in the upper reaches of the Yangtze and Yellow rivers. "No logging" policies have been made and implemented for these areas.

  6. Costa rican international cooperative biodiversity group: using insects and other arthropods in biodiversity prospecting

    OpenAIRE

    Sittenfeld-Appel, Ana; Tamayo-Castillo, Giselle; Nielsen-Muñoz, Vanessa; Jiménez, Allan; Hurtado, Priscilla; Chinchilla-Carmona, Misael; Guerrero-Bermúdez, Olga Marta; Mora, María Auxiliadora; Rojas, Miguel; Blanco, Roger; Alvarado, Eugenio; Gutiérrez Gutiérrez, José María; Janzen, Daniel Hunt

    1999-01-01

    artículo -- Universidad de Costa Rica. Escuela de Química, Universidad de Costa Rica. Facultad de Microbiología. Departmento Parasitología, Universidad de Costa Rica. Instituto Clodomiro Picado, 1999. Este documento es privado debido a limitaciones de derechos de autor. This paper describes the Costa Rican International Collaborative Biodiversity Group (ICBG), which was designed to introduce insects and other arthropods as a source of pharmaceutical compounds, and to generate knowledge and...

  7. New Mediterranean Biodiversity Records (April 2015

    Directory of Open Access Journals (Sweden)

    Α. ΖΕΝΕΤΟΣ

    2015-01-01

    Full Text Available The Collective Article ‘New Mediterranean Biodiversity Records’ of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of native and alien species respectively. The new records of native fish species include: the slender sunfish Ranzania laevis and the scalloped ribbonfish Zu cristatus in Calabria; the Azores rockling Gaidropsarus granti in Calabria and Sicily; the agujon needlefish Tylosurus acus imperialis in the Northern Aegean; and the amphibious behaviour of Gouania willdenowi in Southern Turkey. As regards molluscs, the interesting findings include Ischnochiton usticensis in Calabria and Thordisa filix in the bay of Piran (Slovenia. The stomatopod Parasquilla ferussaci was collected from Lesvos island (Greece; the isopod Anilocra frontalis was observed parasitizing the alien Pteragogus trispilus in the Rhodes area. The asteroid Tethyaster subinermis and the butterfly ray Gymnura altavela were reported from several localities in the Greek Ionian and Aegean Seas. The new records of alien species include: the antenna codlet Bregmaceros atlanticus in Saronikos Gulf; three  new fish records and two decapods from Egypt; the establishment of the two spot cardinal fish Cheilodipterus novemstriatus and the first record of the Indo-Pacific marble shrimp Saron marmoratus in semi-dark caves along the Lebanese coastline; the finding of Lagocephalus sceleratus, Sargocentron rubrum, Fistularia commersonii and Stephanolepis diaspros around Lipsi island (Aegean Sea, Greece; the decapod Penaeus hathor in Aegean waters; the decapod Penaeus aztecus and the nudibranch Melibe viridis in the Dodecanese islands; the finding of Pinctada imbricata radiata in the Mar Grande of Taranto (Ionian Sea, Italy and the Maliakos Gulf (Greece.  

  8. New Mediterranean Biodiversity Records (July 2015

    Directory of Open Access Journals (Sweden)

    K. TSIAMIS

    2015-07-01

    Full Text Available The Collective Article ‘New Mediterranean Biodiversity Records’ of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of native and alien species respectively. The new records of native species include: the neon flying squid Ommastrephes bartramii in Capri Island, Thyrrenian Sea; the bigeye thresher shark Alopias superciliosus in the Adriatic Sea; a juvenile basking shark Cetorhinus maximus caught off Piran (northern Adriatic; the deep-sea Messina rockfish Scorpaenodes arenai in the National Marine Park of Zakynthos (East Ionian Sea, Greece; and the oceanic puffer Lagocephalus lagocephalus in the Adriatic Sea.The new records of alien species include: the red algae Antithamnionella elegans and Palisada maris-rubri, found for the first time in Israel and Greece respectively; the green alga Codium parvulum reported from Turkey (Aegean Sea; the first record of the alien sea urchin Diadema setosum in Greece; the nudibranch Goniobranchus annulatus reported from South-Eastern Aegean Sea (Greece; the opisthobranch Melibe viridis found in Lebanon; the new records of the blue spotted cornetfish Fistularia commersonii in the Alicante coast (Eastern Spain; the alien fish Siganus luridus and Siganus rivulatus in Lipsi Island, Dodecanese (Greece; the first record of Stephanolepis diaspros from the Egadi Islands Marine Protected Area (western Sicily; a northward expansion of the alien pufferfish Torquigener flavimaculosus along the southeastern Aegean coasts of Turkey; and data on the occurrence of the Lessepsian immigrants Alepes djedaba, Lagocephalus sceleratus and Fistularia commersonii in Zakynthos Island (SE Ionian Sea, Greece.

  9. Epidemiological and taxonomic impact of Pneumocystis biodiversity.

    Science.gov (United States)

    Mazars, E; Dei-Cas, E

    1998-09-01

    A cluster of antigenic, genomic, karyotypic, isoenzymatic and morphological differences have been reported among Pneumocystis populations. Multilocus enzyme electrophoresis revealed strong linkage disequilibrium suggesting that Pneumocystis genotypes from different hosts have been genetically isolated from each other for a very long time. At least in some cases, genetic diversity is associated with phenotypic differences as revealed by in vitro, ultrastructural and cross infection studies. Thus, biodiversity in Pneumocystis has obvious epidemiological implications. Cross infection experiments revealed that Pneumocystis host species-related genetic differences are associated with close host species specificity, which suggests that transmission cannot take place between hosts of different species and that immunocompromised patients contract the infection primarily from infected humans. But these affirmations do not preclude other reservoirs for human pneumocystosis and research has to be extended to natural populations of synanthropic or wild mammals. Transmission of human pneumocystosis was also approached by typing human Pneumocystis isolates from patients or carriers, which should allow the follow up of parasite strains in human populations. As the strains of Pneumocystis found in different host species were considered for a long time to be morphologically indistinguishable, only one species of Pneumocystis was accepted for almost one century. At present, the scientific community is progressively accepting that the terminology 'P. carinii' is hiding a heterogeneous group of microorganisms. As available data made it impossible to establish if genetic divergence derives from clonal reproduction or speciation, no new species names have been attributed to Pneumocystis populations, but a trinomial nomenclature, including the Latin name of the host, was adopted in 1994. It has to be outlined finally that works on biodiversity of Pneumocystis populations are basically

  10. New Mediterranean Biodiversity Records (October, 2014

    Directory of Open Access Journals (Sweden)

    S. KATSANEVAKIS

    2014-09-01

    Full Text Available The Collective Article ‘New Mediterranean Biodiversity Records’ of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of alien and native species respectively. The new records of alien species include: the red alga Asparagopsis taxiformis (Crete and Lakonicos Gulf (Greece; the red alga Grateloupia turuturu (along the Israeli Mediterranean shore; the mantis shrimp Clorida albolitura (Gulf of Antalya, Turkey; the mud crab Dyspanopeus sayi (Mar Piccolo of Taranto, Ionian Sea; the blue crab Callinectes sapidus (Chios Island, Greece; the isopod Paracerceis sculpta (northern Aegean Sea, Greece; the sea urchin Diadema setosum (Gökova Bay, Turkey; the molluscs Smaragdia souverbiana, Murex forskoehlii, Fusinus verrucosus, Circenita callipyga, and Aplysia dactylomela (Syria; the cephalaspidean mollusc Haminoea cyanomarginata (Baia di Puolo, Massa Lubrense, Campania, southern Italy; the topmouth gudgeon Pseudorasbora parva (Civitavecchia, Tyrrhenian Sea; the fangtooth moray Enchelycore anatine (Plemmirio marine reserve, Sicily; the silver-cheeked toadfish Lagocephalus sceleratus (Saros Bay, Turkey; and Ibiza channel, Spain; the Indo-Pacific ascidian Herdmania momusin Kastelorizo Island (Greece; and the foraminiferal Clavulina multicam erata (Saronikos Gulf, Greece. The record of L. sceleratus in Spain consists the deepest (350-400m depth record of the species in the Mediterranean Sea. The new records of native species include: first record of the ctenophore Cestum veneris in Turkish marine waters; the presence of Holothuria tubulosa and Holothuria polii in the Bay of Igoumenitsa (Greece; the first recorded sighting of the bull ray Pteromylaeus bovinus in Maltese waters; and a new record of the fish Lobotes surinamensis from Maliakos Gulf. 

  11. Biodiversity enhances reef fish biomass and resistance to climate change.

    Science.gov (United States)

    Duffy, J Emmett; Lefcheck, Jonathan S; Stuart-Smith, Rick D; Navarrete, Sergio A; Edgar, Graham J

    2016-05-31

    Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey's global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean.

  12. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    Science.gov (United States)

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  13. Climate constrains the evolutionary history and biodiversity of crocodylians.

    Science.gov (United States)

    Mannion, Philip D; Benson, Roger B J; Carrano, Matthew T; Tennant, Jonathan P; Judd, Jack; Butler, Richard J

    2015-09-24

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A 'modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions.

  14. Biodiversity Loss and the Ecological Footprint of Trade

    Directory of Open Access Journals (Sweden)

    Elias Lazarus

    2015-06-01

    Full Text Available Human pressure on ecosystems is among the major drivers of biodiversity loss. As biodiversity plays a key role in supporting the human enterprise, its decline puts the well-being of human societies at risk. Halting biodiversity loss is therefore a key policy priority, as reflected in the 2020 Aichi Biodiversity Targets under strategic goal A. The Ecological Footprint has become a widely used metric for natural capital and ecosystem accounting, and is frequently cited in the sustainability debate, where it is often used for tracking human-induced pressures on ecosystems and biodiversity. Given its potential role as an indirect metric for biodiversity-related policies, this paper breaks down the Ecological Footprint into its components and analyzes resource and ecosystem service flows at an international level. We discuss its usefulness in tracking the underlying drivers of habitat impacts and biodiversity loss. We find that: China is a major net importer of all biomass biocapacity components; the largest net exporters of forest biocapacity are not low-income countries; a very high proportion of the Ecological Footprint of fishing grounds is traded internationally; Singapore and at least three Middle East countries are almost wholly reliant on net imports for the cropland biocapacity they consume.

  15. Towards a global platform for linking soil biodiversity data

    Directory of Open Access Journals (Sweden)

    Kelly S Ramirez

    2015-07-01

    Full Text Available Soil biodiversity is immense, with an estimated 10-100 million organisms belonging to over 5000 taxa in a handful of soil. In spite of the importance of soil biodiversity for ecosystem functions and services, information on soil species, from taxonomy to biogeographical patterns, is incomplete and there is no infrastructure to connect pre-existing or future data. Here, we propose a global platform to allow for greater access to soil biodiversity information by linking databases and repositories through a single open portal. The proposed platform would for the first time, link data on soil organisms from different global sites and biomes, and will be inclusive of all data types, from molecular sequences to morphology measurements and other supporting information. Access to soil biodiversity species records and information will be instrumental to progressing scientific research and education. Further, as demonstrated by previous biodiversity synthesis efforts, data availability is key for adapting to, and creating mitigation plans in response to global changes. With the rapid influx of soil biodiversity data, now is the time to take the first steps forward in establishing a global soil biodiversity information platform.

  16. Positive biodiversity-productivity relationship predominant in global forests

    Science.gov (United States)

    Liang, Jingjing; Crowther, Thomas W.; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, Anthony David; ,

    2016-01-01

    The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs.

  17. Mangrove exploitation effects on biodiversity and ecosystem services

    DEFF Research Database (Denmark)

    Malik, Abdul; Fensholt, Rasmus; Mertz, Ole

    2015-01-01

    Mangrove forests are one of the most important coastal ecosystems as they support many local communities. However, over the last two decades harvesting of mangrove forests has been extensive with effects on mangrove biodiversity and ecosystem services. We investigate the effect of mangrove...... harvesting on tree biodiversity in South Sulawesi, Indonesia. Using two line transects each in ten mangrove forests, mangrove composition, species dominance, density, frequency, coverage, and stem diameter and diversity were recorded. Interviews detailing provisioning ecosystem services were also conducted....... Despite the decrease in biodiversity, the mangroves still provide a wide range of ecosystem services to the communities in the area....

  18. Baltic Sea biodiversity status vs. cumulative human pressures

    DEFF Research Database (Denmark)

    Andersen, Jesper H.; Halpern, Benjamin S.; Korpinen, Samuli

    2015-01-01

    been developed to capture the consequences of multiple stressors for biodiversity, but the ability of these assessments to accurately predict biodiversity status has never been tested or ground-truthed. This relationship has similarly been assumed for the Baltic Sea, especially in areas with impaired...... status, but has also never been documented. Here we provide a first tentative indication that cumulative human impacts relate to ecosystem condition, i.e. biodiversity status, in the Baltic Sea. Thus, cumulative impact assessments offer a promising tool for informed marine spatial planning, designation...

  19. Reconciling biodiversity conservation and marine capture fisheries production

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    activity over several centuries, the changes have been unintentional and undirected; we have not learned how to enhance food production from the sea and are reliant, as hunter-gatherers, on natural production. The goals of maximising fisheries production and maintaining biodiversity may be difficult......Pathways for moving towards the goals of biodiversity conservation and food security in terrestrial systems include the application of trait-based ecology to develop highly productive agroecosystems with less negative effects on biodiversity. Although marine ecosystems have been impacted by human...

  20. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  1. The effect of buffer zone width on biodiversity

    DEFF Research Database (Denmark)

    Navntoft, Søren; Sigsgaard, Lene; Kristensen, Kristian

    2012-01-01

    Field margin management for conservation purposes is a way to protect both functional biodiversity and biodiversity per se without considerable economical loss as field margins are less productive. However, the effect of width of the buffer zone on achievable biodiversity gains has received little...... attention in previous studies. In this paper we report on finding for syrphids, spiders and carabids, three taxonomic groups with different mobility, all important for conservation biological control. For all groups we found an effect of buffer zone width on their density. A buffer width of 6m...

  2. [Biodiversity and civil liability: the role of assessment].

    Science.gov (United States)

    Boutonnet, Mathilde

    2014-03-01

    The purpose of this paper is to make the link between expertise and biodiversity through the civil liability Law. Indeed, since Erika Case (Cour de Cassation, Crim. 25 septembre 2012), this Law recognised the ecological damage. This one is defined as an damage caused to Nature and especially Biodiversity. Thus, the expertise has to play a major role. In this paper, two roles are studied: first all all, the expertise allows to assess the damage of Biodiversity itself, to define and to prove it. Secondly, the expertise is an instrument which is very important for prescribing the measures of compensation, in kind or pecuniary compensation.

  3. Freshwater biodiversity: importance, threats, status and conservation challenges.

    Science.gov (United States)

    Dudgeon, David; Arthington, Angela H; Gessner, Mark O; Kawabata, Zen-Ichiro; Knowler, Duncan J; Lévêque, Christian; Naiman, Robert J; Prieur-Richard, Anne-Hélène; Soto, Doris; Stiassny, Melanie L J; Sullivan, Caroline A

    2006-05-01

    Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge

  4. New Mediterranean Biodiversity Records (October 2015

    Directory of Open Access Journals (Sweden)

    F. CROCETTA

    2015-11-01

    Full Text Available The Collective Article “New Mediterranean Biodiversity Records” of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided per countries, listed according to a Mediterranean west-east geographic position. New biodiversity data are reported for 7 different countries, although one species hereby reported from Malta is overall new for the entire Mediterranean basin, and is presumably present also in Israel and Lebanon (see below in Malta. Italy: the rare native fish Gobius kolombatovici is first reported from the Ionian Sea, whilst the alien jellyfish Rhopilema nomadica and the alien fish Oplegnathus fasciatus are first reported from the entire country. The presence of O. fasciatus from Trieste is concomitantly the first for the entire Adriatic Sea. Finally, the alien bivalve Arcuatula senhousia is hereby first reported from Campania (Tyrrhenian Sea. Tunisia: a bloom of the alien crab Portunus segnis is first reported from the Gulf of Gabes, from where it was considered as casual. Malta: the alien flatworm Maritigrella fuscopunctata is first recorded from the Mediterranean Sea on the basis of 25 specimens. At the same time, web researches held possible unpublished records from Israel and Lebanon. The alien crab P. segnis, already mentioned above, is first formally reported from Malta based on specimens collected in 1972. Concomitantly, the presence of Callinectes sapidus in Maltese waters is excluded since based on misidentifications. Greece: the Atlantic northern brown shrimp Penaeus atzecus, previously known from the Ionian Sea from sporadic records only, is now well established in Greek and international Ionian waters. The alien sea urchin Diadema setosum is reported from the second time from Greece, and its first record date from the country is backdated to 2010 in Rhodes Island. The alien lionfish Pterois miles is first reported from Greece and

  5. Refuges, flower strips, biodiversity and agronomic interest.

    Science.gov (United States)

    Roy, Grégory; Wateau, Karine; Legrand, Mickaël; Oste, Sandrine

    2008-01-01

    Several arthropods are natural predators of pests, and they are able to reduce and control their population development. FREDON Nord Pas-de-Calais (Federation Regionate de Defense contre les Organismes Nuisibles = Regional Federation for Pest Control) has begun for a long time to form farmers to the recognition of beneficial arthropods and to show them their usefulness. These beneficial insects or arachnids are present everywhere, in orchards and even in fields which are areas relatively poor in biodiversity. Adults feed in the flower strips instead larvae and some adults feed on preys such as aphids or caterpillars. Most of the time, beneficial insects can regulate pest but sometimes, in agricultural area, they can't make it early enough and efficiently. Their action begin too late and there biodiversity and number are too low. It's possible to enhance their action by manipulating the ecological infrastructures, like sewing flower strips or installing refuges. Flower strips increase the density of natural enemies and make them be present earlier in the field in order to control pests. Refuges permit beneficial's to spend winter on the spot. So they're able to be active and to grow in number earlier. From 2004 to 2007, on the one hand, FREDON Nord Pas-de-Calais has developed a research program. Its purpose was to inventory practices and also tools and means available and to judge the advisability of using such or such beneficial refuge in orchards. On the second hand, it studied the impact in orchard of refuges on population of beneficial's and the difference there were between manufactured refuges and homemade refuges. Interesting prospects were obtained with some of them. Otherwise, since 2003, FREDON has studied flower strips influence on beneficial population and their impact on pest control. In cabbage fields, results of trials have shown that flower strips lead to a reduction of aphid number under acceptable economic level, up to 50 meters from flower strips

  6. Plant biodiversity patterns on Helan Mountain, China

    Science.gov (United States)

    Jiang, Yuan; Kang, Muyi; Zhu, Yuan; Xu, Guangcai

    2007-09-01

    A case study was conducted to mountainous ecosystems in the east side of Helan Mountain, located in the transitional zone between steppe and desert regions of China, aiming to reveal the influences of four environmental factors on features of plant biodiversity—the spatial pattern of vegetation types, and the variation of α- and β-diversities in vegetation and flora. Field surveys on vegetation and flora and on environmental factors were conducted, and those field data were analyzed through CCA (Canonical Correspondence Analysis), and through Shannon-Weiner index for α-diversity and Sørensen index for β-diversity. The preliminary results are: (1) Ranked in terms of their impacts on spatial patterns of plant biodiversity, the four selected environmental factors would be: elevation > location > slope > exposure. (2) The variation of Shannon-Weiner index along the altitudinal gradient is similar to that of species amount within altitudinal belts spanning 200 m each, which suggests a unimodal relationship between the species richness and the environmental condition with regards to altitudinal factors. Both the Shannon-Weiner index and the species richness within each altitudinal belt reach their maximum at elevation range from about 1700 to 2000 m a.s.l. (3) The altitudinal extent with the highest Shannon-Weiner index is identical to the range, where both the deciduous broad-leaved forest, and the temperate evergreen coniferous and deciduous broad-leaved mixed forest distribute. The altitudinal range from 1700 to 2200 m a.s.l. is the sector with both high level of species richness and diversified vegetation types. (4) The variation of β-diversity along the altitude is consistent with the vegetation vertical zones. According to the Sørensen index between each pair of altitudinal belts, the transition of vegetation spectrum from one zone to another, as from the base horizontal zone, the desert steppe, to the first vertical zone, the mountain open forest and

  7. Human impact gradient on mammalian biodiversity

    Directory of Open Access Journals (Sweden)

    Mariana Munguía

    2016-04-01

    Full Text Available Drastic changes have been caused by human influence in natural landscapes, which may exert an intensive effect on species loss. However, species loss from human pressure is not random but depends on a series of environmentally associated factors. Linking species traits to environmental attributes may allow us to detect the ecological impacts of habitat so that meaningful habitat degradation gradients can be identified. The relationships between environmental factors and species traits provide the basis for identifying those biological traits that make species more sensitive to disturbance. These relationships are also helpful to detect the geographic distribution of latent risk to reveal areas where biodiversity is threatened. Here, we identify a “Human Impact Gradient for Biodiversity (HIGB” based on a three-table ordination method (RLQ analysis and fourth-corner analysis to identify key species traits that are associated with environmental gradient. Species distribution and environmental geographic data were gathered nationwide to analyze 68 localities, which represent 27% of Mexico’s surface, including 211 species of mammals. Nine environmental variables (including biophysical, geophysical and land-use impacts were analyzed by using the Geographic Information System. Three types of species’ traits were evaluated: locomotion, trophic habit and body size. We identified a human impact gradient, which was mainly determined by the percentage of the area that was covered by seedlings, the plant richness, the understory coverage percentage and the human settlement index. The most important species traits that are associated with non-human-impacted sites were carnivores, frugivores–herbivores and a body size that was greater than 17.8 kg; 25 species were selected by the decision criteria framework for species that were sensitive to degradation based on ecological function information. Conversely, granivores, fossorial and semifossorial

  8. Environmental sustainability model and biodiversity preservation in Central Rhodopes

    Directory of Open Access Journals (Sweden)

    Zlatka Grigorova

    2013-03-01

    In fact that model is composed of many components and considers a number of important aspects. Its application will contribute to the sustainable use of natural resources and preserved biodiversity for future generations.

  9. Phylogenies support out-of-equilibrium models of biodiversity.

    Science.gov (United States)

    Manceau, Marc; Lambert, Amaury; Morlon, Hélène

    2015-04-01

    There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium.

  10. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses....... These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...

  11. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    Science.gov (United States)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  12. Global imprint of historical connectivity on freshwater fish biodiversity.

    Science.gov (United States)

    Dias, Murilo S; Oberdorff, Thierry; Hugueny, Bernard; Leprieur, Fabien; Jézéquel, Céline; Cornu, Jean-François; Brosse, Sébastien; Grenouillet, Gael; Tedesco, Pablo A

    2014-09-01

    The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo-drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo-connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo-disconnected basins. Palaeo-connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo-river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo-connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity.

  13. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    Science.gov (United States)

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  14. EnviroAtlas - Biodiversity Conservation Metrics for Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Biodiversity Conservation...

  15. Preliminary survey of biodiversity in New Chicago Marsh

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the late winter and early springs 1995, we conducted a preliminary survey of biodiversity in New Chicago Marsh (NCM), at the south end of San Francisco Bay,...

  16. Enhanced biodiversity and pollination in UK agroforestry systems.

    Science.gov (United States)

    Varah, Alexa; Jones, Hannah; Smith, Jo; Potts, Simon G

    2013-07-01

    Monoculture farming systems have had serious environmental impacts such as loss of biodiversity and pollinator decline. The authors explain how temperate agroforestry systems show potential in being able to deliver multiple environmental benefits.

  17. Look both ways: mainstreaming biodiversity and poverty reduction

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Steve; Roe, Dilys; Smith, Jessica

    2010-10-15

    The world's failure to meet its 2010 target to significantly reduce the rate of biodiversity loss demonstrates that conservation efforts have so far been insufficient. They are too often undermined by seemingly more pressing economic and poverty goals — despite the frequent correlation of high biodiversity with high incidence of poverty. But it shouldn't be a competition. Biodiversity and poverty reduction are intrinsically linked and demand an integrated approach. The Convention on Biological Diversity has long emphasised the need for integrating, or 'mainstreaming', biodiversity into national and local development and poverty reduction strategies, most recently in its new Strategic Plan. Lessons learnt from wider experience of environmental mainstreaming can help parties to the Convention achieve this target in practice — they point to a six-step plan for the task.

  18. CULTURAL VALUES OF WETLANDS IN BIODIVERSITY CONSERVATION IN NEPAL

    Institute of Scientific and Technical Information of China (English)

    Kirat Kamal Sampang Rai

    2006-01-01

    Nepal is rich in wetlands and its biodiversity due to diverse geography, ecology, ecosystem, and cultures. Participatory research methodology was used. More than 59 different traditional societies reside in various geographical belts with diverse and distinct language, culture, custom, religion, beliefs, social norms, knowledge and practices have significant roles in the protection and wise use of wetland biodiversity. Wetland ecology, landscape and cultural values may be accordance with the geographic and human dimension. The bio - cultural diversity supports to enhance wetlands and biodiversity richness from millennia. Traditional cultural, religious, spiritual values, customary lore, folklore, knowledge of the societies are playing important responsibility in wetland ecology, landscapes and biodiversity restoration, conservation and sustainable use, and they should be recognised, respected in National legislation.Themes of CBD, and RAMSAR should be respected and implemented to protect the cultural, religious, ritual, and customary contribution of the society.

  19. Marine Biodiversity, Climate Change, and Governance of the Oceans

    Directory of Open Access Journals (Sweden)

    Robin Kundis Craig

    2012-05-01

    Full Text Available Governance of marine biodiversity has long suffered from lack of adequate information about the ocean’s many species and ecosystems. Nevertheless, even as we are learning much more about the ocean’s biodiversity and the impacts to it from stressors such as overfishing, habitat destruction, and marine pollution, climate change is imposing new threats and exacerbating existing threats to marine species and ecosystems. Coastal nations could vastly improve their fragmented approaches to ocean governance in order to increase the protections for marine biodiversity in the climate change era. Specifically, three key governance improvements would include: (1 incorporation of marine spatial planning as a key organizing principle of marine governance; (2 working to increase the resilience of marine ecosystems be reducing or eliminating existing stressors on those ecosystems; and (3 anticipation of climate change’s future impacts on marine biodiversity through the use of anticipatory zoning and more precautionary regulation.

  20. Marine caves of the Mediterranean Sea: a sponge biodiversity reservoir within a biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Vasilis Gerovasileiou

    Full Text Available Marine caves are widely acknowledged for their unique biodiversity and constitute a typical feature of the Mediterranean coastline. Herein an attempt was made to evaluate the ecological significance of this particular ecosystem in the Mediterranean Sea, which is considered a biodiversity hotspot. This was accomplished by using Porifera, which dominate the rocky sublittoral substrata, as a reference group in a meta-analytical approach, combining primary research data from the Aegean Sea (eastern Mediterranean with data derived from the literature. In total 311 species from all poriferan classes were recorded, representing 45.7% of the Mediterranean Porifera. Demospongiae and Homoscleromorpha are highly represented in marine caves at the family (88%, generic (70%, and species level (47.5%, the latter being the most favored group along with Dictyoceratida and Lithistida. Several rare and cave-exclusive species were reported from only one or few caves, indicating the fragmentation and peculiarity of this unique ecosystem. Species richness and phylogenetic diversity varied among Mediterranean areas; the former was positively correlated with research effort, being higher in the northern Mediterranean, while the latter was generally higher in caves than in the overall sponge assemblages of each area. Resemblance analysis among areas revealed that cavernicolous sponge assemblages followed a pattern quite similar to that of the overall Mediterranean assemblages. The same pattern was exhibited by the zoogeographic affinities of cave sponges: species with Atlanto-Mediterranean distribution and Mediterranean endemics prevailed (more than 40% each, 70% of them having warm-water affinities, since most caves were studied in shallow waters. According to our findings, Mediterranean marine caves appear to be important sponge biodiversity reservoirs of high representativeness and great scientific interest, deserving further detailed study and protection.

  1. Biodiversity of entomopathogenic nematodes in Italy.

    Science.gov (United States)

    Tarasco, E; Clausi, M; Rappazzo, G; Panzavolta, T; Curto, G; Sorino, R; Oreste, M; Longo, A; Leone, D; Tiberi, R; Vinciguerra, M T; Triggiani, O

    2015-05-01

    An investigation was carried out on the distribution and biodiversity of steinernematid and heterorhabdtid entomopathogenic nematodes (EPN) in nine regions of Italy in the period 1990-2010. More than 2000 samples were collected from 580 localities and 133 of them yielded EPN specimens. A mapping of EPN distribution in Italy showed 133 indigenous EPN strains belonging to 12 species: 43 isolates of Heterorhabditis bacteriophora, 1 of H. downesi, 1 of H. megidis, 51 of Steinernema feltiae, 12 of S. affine, 4 of S. kraussei, 8 of S. apuliae, 5 of S. ichnusae, 3 of S. carpocapsae, 1 of S. vulcanicum, 3 of Steinernema 'isolate S.sp.MY7' of 'S. intermedium group' and 1 of S. arenarium. Steinernematids are more widespread than heterorhabditids and S. feltiae and H. bacteriophora are the most commonly encountered species. Sampling sites were grouped into 11 habitats: uncultivated land, orchard, field, sea coast, pinewood, broadleaf wood, grasslands, river and lake borders, caves, salt pan and moist zones; the soil texture of each site was defined and the preferences of habitat and soil texture of each species was assessed. Except for the two dominant species, S. feltiae and H. bacteriophora, EPN occurrence tends to be correlated with a specific vegetation habitat. Steinernema kraussei, H. downesi and H. megidis were collected only in Sicily and three of the species recently described - S. apuliae, S. ichnusae and S. vulcanicum - are known only from Italy and seem to be endemic.

  2. Fair Biodiversity Politics With and Beyond Rawls

    Directory of Open Access Journals (Sweden)

    John Bernhard Kleba

    2013-09-01

    Full Text Available The access and benefit-sharing regime (ABS of the Convention on Biological Diversity has been criticised for focusing on entitlements and asset exchanges. In this regard, the Nagoya Protocol provides little advance. This work introduces new paths of research and reasoning debating the tensions between the Rawlsian concept of justice and the realm of ABS. A new original position to debate fair biodiversity politics would include the concepts of justice of non-Western cultures. Taking the case of indigenous and traditional peoples, the issue of cultural minority rights is raised, challenging the institutionalisation of legal pluralism and political recognition. Against Bell, and with and beyond Rawls, arguments are provided favouring an environmental constitutionalism. The least advantaged concept shifts from an economical focus towards realising citizenship and applied to the ABS regime. Concerning the destination of benefits in ABS agreements, I advocate a complement between entitlements and the systemic aims of the Convention, prioritising the latter. Finally, controversies about the equity of benefit sharing are examined. Whereas the difference principle is helpful in tackling the economical and political asymmetries in ABS negotiations, it leaves core questions open. The Nagoya Protocol has advanced in providing legal tools to realise citizenship. However, political justice demands more. Concerns to benefit the least advantaged should be included in policy, bioprospecting project design and ABS contracts.

  3. Effect of streambed substrate on macroinvertebrate biodiversity

    Institute of Scientific and Technical Information of China (English)

    Xuehua DUAN; Zhaoyin WANG; Shimin TIAN

    2008-01-01

    Macroinvertebrates are important components of stream ecosystems, and are often used as indicator spe-cies for the assessment of river ecology. Numerous studies have shown that substrate is the primary physical envir-onmental variable affecting the taxa richness and density of macroinvertebrates. The aim of this work is to study the effects of the characteristics of streambed substrate, such as grain size, shape, and roughness, on the composition and biodiversity of macroinvertebrates. A field experi-ment was done on the Juma River, a second-order moun-tain stream in northern China. Substrata of cobbles, hewn stones, pebbles, coarse sand, and fine sand were used to replace the original gravel and sand bed in a stretch of 30 m in length. The sampling results indicated that the macroinvertebrate assemblage is significantly affected by the grain size, porosity and interstitial dimension of the substrate, while it is rarely affected by the shape and the surface roughness of the experimental substrata. Macroinvertebrate compositions in cobbles and hewn stones were stable and changed least over time. The taxa richness and density of individuals in the substrata of cobbles, hewn stones, and pebbles are much higher than in those of the coarse sand and fine sand.

  4. New Mediterranean Marine biodiversity records (December, 2013

    Directory of Open Access Journals (Sweden)

    M. BILECENOGLU

    2013-07-01

    Full Text Available Based on recent biodiversity studies carried out in different parts of the Mediterranean, the following 19 species are included as new records on the floral or faunal lists of the relevant ecosystems: the green algae Penicillus capitatus (Maltese waters; the nemertean Amphiporus allucens (Iberian Peninsula, Spain; the salp Salpa maxima (Syria; the opistobranchs Felimida britoi and Berghia coerulescens (Aegean Sea, Greece; the dusky shark Carcharhinus obscurus (central-west Mediterranean and Ionian Sea, Italy; Randall’s threadfin bream Nemipterus randalli, the broadbanded cardinalfish Apogon fasciatus and the goby Gobius kolombatovici (Aegean Sea, Turkey; the reticulated leatherjack Stephanolepis diaspros and the halacarid Agaue chevreuxi (Sea of Marmara, Turkey; the slimy liagora Ganonema farinosum, the yellowstripe barracuda Sphyraena chrysotaenia, the rayed pearl oyster Pinctada imbricata radiata and the Persian conch Conomurex persicus (south-eastern Crete, Greece; the blenny Microlipophrys dalmatinus and the bastard grunt Pomadasys incisus (Ionian Sea, Italy; the brown shrimp Farfantepenaeus aztecus (north-eastern Levant, Turkey; the blue-crab Callinectes sapidus (Corfu, Ionian Sea, Greece. In addition, the findings of the following rare species improve currently available biogeographical knowledge: the oceanic pufferfish Lagocephalus lagocephalus (Malta; the yellow sea chub Kyphosus incisor (Almuñécar coast of Spain; the basking shark Cetorhinus maximus and the shortfin mako Isurus oxyrinchus (north-eastern Levant, Turkey.

  5. Biofuels and biodiversity in South Africa

    Directory of Open Access Journals (Sweden)

    Patrick J. O’Farrell

    2011-05-01

    Full Text Available The South African government, as part of its efforts to mitigate the effects of the ongoing energy crisis, has proposed that biofuels should form an important part of the country’s energy supply. The contribution of liquid biofuels to the national fuel supply is expected to be at least 2% by 2013. The Biofuels Industrial Strategy of the Republic of South Africa of 2007 outlines key incentives for reaching this target and promoting the development of a sustainable biofuels industry. This paper discusses issues relating to this strategy as well as key drivers in biofuel processing with reference to potential impacts on South Africa’s rich biological heritage.

    Our understanding of many of the broader aspects of biofuels needs to be enhanced. We identify key areas where challenges exist, such as the link between technology, conversion processes and feedstock selection. The available and proposed processing technologies have important implications for land use and the use of different non-native plant species as desired feedstocks. South Africa has a long history of planting non-native plant species for commercial purposes, notably for commercial forestry. Valuable lessons can be drawn from this experience on mitigation against potential impacts by considering plausible scenarios and the appropriate management framework and policies. We conceptualise key issues embodied in the biofuels strategy, adapting a framework developed for assessing and quantifying impacts of invasive alien species. In so doing, we provide guidelines for minimising the potential impacts of biofuel projects on biodiversity.

  6. Biodiversity and cold adaptive mechanisms of psychrophiles

    Directory of Open Access Journals (Sweden)

    Yuhua Xin

    2013-07-01

    Full Text Available Cold-adapted bacteria and archaea are widely distributed in cold environments on Earth, such as permafrost, cold soils and deserts, glaciers, lakes, sea ice in the Arctic, Antarctic and high mountains, as well as the deep sea, ice caves and the atmospheric stratosphere etc. Cold-adapted organisms inhabiting these environments exhibit rich diversity. Studies on the biogeography of psychrophiles will enable us to understand their biodiversity, distribution and origins. Due to long-term living in cold regions, cold-adapted bacteria and archeae have developed specific physiological mechanisms of adaptation to cold environments. These mechanisms include: regulating the fluidity of the cytoplasmic membrane through adjusting the composition of membrane lipids; achieving low-temperature protection through compatibility solute, antifreeze proteins, ice-binding proteins, ice-nucleation proteins and anti-nucleating proteins; production of heat-shock and coldshock proteins, cold acclimation protein and DEAD-box RNA helicase at low temperatures; production of cold-active enzymes; increasing energy generation and conservation. With the rapid development of sequencing technology, various omics-based approaches have been used to reveal cold-adaptive mechanisms of psychrophiles at the genomic level.

  7. African Fish Biodiversity, Fishbase and Fishculture

    Directory of Open Access Journals (Sweden)

    Boden, G.

    2004-01-01

    Full Text Available At present, about 28 600 fish species are considered valid, whilst the total number is estimated at 30 000 to 35 000. For Africa, about 3 000 valid fresh- and brackish water species are currently recognized. Conserving the biodiversity of these fishes and at the same time managing their exploitation in a sustainable way is a difficult exercise. In sub-Saharan Africa, the importance of aquaculture is not very high. Nonetheless, 18 different species are used commercially, of which six have a non-African origin. Documenting and characterizing the ichthyodiversity is vital for conservation and sustainable development purposes. The presence of a large collection, a specialised library and a considerable know-how in the Africa Museum has led to various revisions, checklists, species (redescriptions and regional guides. All the information on African fishes is currently being entered in FishBase, a huge freely accessible database with information on the taxonomy, ecology and various other aspects of the biology of fishes, based on scientific publications and reviewed by specialists. FishBase also includes high quality tools for applied research on fishes, such as a disease wizard, biogeography tools, trophic pyramids, and the species invasiveness tool.

  8. Impact of Olive Cultivation on Biodiversity in Messenia, Greece

    OpenAIRE

    Kjellström, Felicia

    2014-01-01

    The biggest threat and cause to loss of biodiversity have been found to be the intensification of agriculture under the 20th century. Messenia is one of the oldest olive cultivation areas in Greece and the landscape is dominated by olive groves characterized by extensive tillage, which causes serious erosion and might be a threat to plant diversity. Organic olive cultivation is an alternative that aims to preserve and support biodiversity. In this study the plant composition in the edge zones...

  9. A Future for Small Farms? Biodiversity and Sustainable Agriculture

    OpenAIRE

    James K. Boyce

    2004-01-01

    Small farms play a crucial role in conserving the agricultural biodiversity that underpins long-term food security worldwide. Particularly in centers of crop genetic diversity – such as Mesoamerica in the case of maize (corn) and the Andean region in the case of potatoes – small farmers are the ‘keystone species’ in agricultural ecosystems of great value to humankind. Today, however, a formidable nexus of market forces and political forces threatens both small farmers and the biodiversity the...

  10. All is not loss: plant biodiversity in the anthropocene.

    Science.gov (United States)

    Ellis, Erle C; Antill, Erica C; Kreft, Holger

    2012-01-01

    Anthropogenic global changes in biodiversity are generally portrayed in terms of massive native species losses or invasions caused by recent human disturbance. Yet these biodiversity changes and others caused directly by human populations and their use of land tend to co-occur as long-term biodiversity change processes in the Anthropocene. Here we explore contemporary anthropogenic global patterns in vascular plant species richness at regional landscape scales by combining spatially explicit models and estimates for native species loss together with gains in exotics caused by species invasions and the introduction of agricultural domesticates and ornamental exotic plants. The patterns thus derived confirm that while native losses are likely significant across at least half of Earth's ice-free land, model predictions indicate that plant species richness has increased overall in most regional landscapes, mostly because species invasions tend to exceed native losses. While global observing systems and models that integrate anthropogenic species loss, introduction and invasion at regional landscape scales remain at an early stage of development, integrating predictions from existing models within a single assessment confirms their vast global extent and significance while revealing novel patterns and their potential drivers. Effective global stewardship of plant biodiversity in the Anthropocene will require integrated frameworks for observing, modeling and forecasting the different forms of anthropogenic biodiversity change processes at regional landscape scales, towards conserving biodiversity within the novel plant communities created and sustained by human systems.

  11. Selection for niche differentiation in plant communities increases biodiversity effects.

    Science.gov (United States)

    Zuppinger-Dingley, Debra; Schmid, Bernhard; Petermann, Jana S; Yadav, Varuna; De Deyn, Gerlinde B; Flynn, Dan F B

    2014-11-06

    In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant-soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive this increasing biodiversity effect. Growing 12 grassland species in test monocultures and mixtures, we found character displacement between species and increased biodiversity effects when plants had been selected over 8 years in species mixtures rather than in monocultures. When grown in mixtures, relative differences in height and specific leaf area between plant species selected in mixtures (mixture types) were greater than between species selected in monocultures (monoculture types). Furthermore, net biodiversity and complementarity effects were greater in mixtures of mixture types than in mixtures of monoculture types. Our study demonstrates a novel mechanism for the increase in biodiversity effects: selection for increased niche differentiation through character displacement. Selection in diverse mixtures may therefore increase species coexistence and ecosystem functioning in natural communities and may also allow increased mixture yields in agriculture or forestry. However, loss of biodiversity and prolonged selection of crops in monoculture may compromise this potential for selection in the longer term.

  12. Economic prosperity, biodiversity conservation, and the environmental Kuznets curve

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Julianne H.; Waite, Thomas A. [Department of Evolution, Ecology and Organismal Biology, Ohio State University, 300 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH, 43210 (United States)

    2009-05-15

    Many conservationists contend that economic growth and biodiversity conservation are incompatible goals. Some economists contest this viewpoint, arguing that wealthier countries have the luxury of investing more heavily in efforts to conserve biodiversity. Under this assumption, we expect a U-shaped relationship between per capita wealth and proportion of species conserved. We test this environmental Kuznets curve (EKC) using estimates of per capita income and deforestation rates (index of biodiversity threat) for 35 tropical countries. A prior analysis [Dietz, S., Adger, W.N., 2003. Economic growth, biodiversity loss and conservation effort. Journal of Environmental Management, 68:23-35] using conventional regression techniques failed to provide any support for the parabolic relationship predicted by the EKC hypothesis. Here, we introduce the use of quantile regression and spatial filtering to reanalyze this data, addressing issues of heteroskedasticity and spatial autocorrelation. We note that preliminary analysis using these methods provides some initial evidence for an EKC. However, a series of panel analyses with country-specific dummy variables eliminated or even reversed much of this support. A closer examination of conservation practices and environmental indicators within the countries, particularly those countries that drove our initial support, suggests that wealth is not a reliable indicator of improved conservation practice. Our findings indicate that an EKC for biodiversity is overly simplistic and further exploration is required to fully understand the mechanisms by which income affects biodiversity. (author)

  13. Understanding how biodiversity unfolds through time under neutral theory.

    Science.gov (United States)

    Missa, Olivier; Dytham, Calvin; Morlon, Hélène

    2016-04-05

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time.

  14. Can we detect oceanic biodiversity hotspots from space?

    Science.gov (United States)

    De Monte, Silvia; Soccodato, Alice; Alvain, Séverine; d'Ovidio, Francesco

    2013-10-01

    Understanding the variability of marine biodiversity is a central issue in microbiology. Current observational programs are based on in situ studies, but their implementation at the global scale is particularly challenging, owing to the ocean extent, its temporal variability and the heterogeneity of the data sources on which compilations are built. Here, we explore the possibility of identifying phytoplanktonic biodiversity hotspots from satellite. We define a Shannon entropy index based on patchiness in ocean color bio-optical anomalies. This index provides a high resolution (1 degree) global coverage. It shows a relation to temperature and mid-latitude maxima in accordance with those previously evidenced in microbiological biodiversity model and observational studies. Regional maxima are in remarkable agreement with several known biodiversity hotspots for plankton organisms and even for higher levels of the marine trophic chain, as well as with some in situ planktonic biodiversity estimates (from Atlantic Meridional Transect cruise). These results encourage to explore marine biodiversity with a coordinated effort of the molecular, ecological and remote sensing communities.

  15. PEMBANGUNAN DATABASE MANGROVE UNTUK BIODIVERSITY INFORMATICS BIOFARMAKA IPB

    Directory of Open Access Journals (Sweden)

    Yeni Herdiyeni

    2014-12-01

    Full Text Available Mangroves are a source of traditional medicine that can be used as a source of bioactive compounds. With the conversion of mangrove ecosystem into another designation led to the extinction of mangrove ecosystems. Therefore we need a good management of natural resources. In natural resource management, biodiversity information is needed to sustain the species utilization, exploration potential of the species and their biological and ecological monitoring, policy making, and for the development of biotechnology innovation. Research center of IPB Biopharmaca (Institute for Research and Community Services of Bogor Agricultural University has the mandate to conduct research from upstream to downstream in the medicinal field. This study develops Indonesian mangrove biodiversity database for Biodiversity Informatics. Biodiversity informatics (BI is the development of computer-based technologies for the management of biodiversity information. BI can be used to improve the knowledge management (knowledge management, exploration, analysis, synthesis, and interpretation of data ranging from the level of genomic biodiversity, species level to the ecosystem level. From the results of this study are expected data, information and knowledge of natural wealth mangroves can be managed properly so that the preservation of natural resources can be properly maintained and can be used in particular to the field of medicinal studies.

  16. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    DEFF Research Database (Denmark)

    Naeem, S.; Prager, Case; Weeks, Brian

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversi...

  17. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    Science.gov (United States)

    Powell, Thomas W. R.; Lenton, Timothy M.

    2013-06-01

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species-energy and species-area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect.

  18. Large-area mapping of biodiversity

    Science.gov (United States)

    Scott, J.M.; Jennings, M.D.

    1998-01-01

    The age of discovery, description, and classification of biodiversity is entering a new phase. In responding to the conservation imperative, we can now supplement the essential work of systematics with spatially explicit information on species and assemblages of species. This is possible because of recent conceptual, technical, and organizational progress in generating synoptic views of the earth's surface and a great deal of its biological content, at multiple scales of thematic as well as geographic resolution. The development of extensive spatial data on species distributions and vegetation types provides us with a framework for: (a) assessing what we know and where we know it at meso-scales, and (b) stratifying the biological universe so that higher-resolution surveys can be more efficiently implemented, coveting, for example, geographic adequacy of specimen collections, population abundance, reproductive success, and genetic dynamics. The land areas involved are very large, and the questions, such as resolution, scale, classification, and accuracy, are complex. In this paper, we provide examples from the United States Gap Analysis Program on the advantages and limitations of mapping the occurrence of terrestrial vertebrate species and dominant land-cover types over large areas as joint ventures and in multi-organizational partnerships, and how these cooperative efforts can be designed to implement results from data development and analyses as on-the-ground actions. Clearly, new frameworks for thinking about biogeographic information as well as organizational cooperation are needed if we are to have any hope of documenting the full range of species occurrences and ecological processes in ways meaningful to their management. The Gap Analysis experience provides one model for achieving these new frameworks.

  19. Plant biodiversity changes in Carboniferous tropical wetlands

    Science.gov (United States)

    Cleal, C. J.; Uhl, D.; Cascales-Miñana, B.; Thomas, B. A.; Bashforth, A. R.; King, S. C.; Zodrow, E. L.

    2012-08-01

    Using a combination of species richness, polycohort and constrained cluster analyses, the plant biodiversity of Pennsylvanian (late Carboniferous) tropical wetlands ("coal swamps") has been investigated in five areas in Western Europe and eastern North America: South Wales, Pennines, Ruhr, Saarland and Sydney coal basins. In all cases, species richness expansion followed an essentially logistic curve typical of that associated with ecologically closed habitats, with niche saturation being achieved in about three million years. The resulting steady-state ("climax") coal swamp vegetation had a local-scale (within an area of c. 0.1 ha) species diversity in South Wales of 16 ± 7 and Simpson Diversity Indices of 4.53 ± 2.55, which are very similar to values obtained from studies on North American coal swamp vegetation. Landscape diversity (within an area 105 km2) varied between 50 and 100 species in the lower to middle Westphalian Stage, falling to about 40-50 species in the upper Westphalian Stage. Regional-scale diversity (within an area > 105 km2) is difficult to estimate but was at least 120 species. Species turn-over was typically very low, at about 4 species per million years, but there were a number of intervals of more rapid species turn-over in the early Langsettian, late Duckmantian, early Bolsovian and middle Asturian times, which are recognised today as biozonal boundaries. The swamps were mostly subject to ecological stasis during early and middle Westphalian times, although they contracted locally in response to drying of substrates. Later in Westphalian times, however, the swamps were subject to regional-scale changes in composition and aerial extent, probably in response to climate change. The coal swamps had a much lower species diversity compared to modern-day tropical rain forests.

  20. Status of biodiversity in the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Henn Ojaveer

    Full Text Available The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data, the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system's diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity.

  1. Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    Science.gov (United States)

    Gilroy, James J; Woodcock, Paul; Edwards, Felicity A; Wheeler, Charlotte; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2014-07-01

    With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape ('land-sharing' agriculture) or a few large contiguous blocks alongside intensive farmland ('land-sparing' agriculture). In this study, we are the first to integrate carbon storage alongside multi-taxa biodiversity assessments to compare land-sparing and land-sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó-Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land-sparing strategies would be more beneficial for both carbon storage and biodiversity than land-sharing strategies across a range of production levels. Biodiversity benefits of land-sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land-sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem

  2. Biodiversity and ecosystem services science for a sustainable planet: the DIVERSITAS vision for 2012–20

    Science.gov (United States)

    Larigauderie, Anne; Prieur-Richard, Anne-Hélène; Mace, Georgina M; Lonsdale, Mark; Mooney, Harold A; Brussaard, Lijbert; Cooper, David; Cramer, Wolfgang; Daszak, Peter; Díaz, Sandra; Duraiappah, Anantha; Elmqvist, Thomas; Faith, Daniel P; Jackson, Louise E; Krug, Cornelia; Leadley, Paul W; Le Prestre, Philippe; Matsuda, Hiroyuki; Palmer, Margaret; Perrings, Charles; Pulleman, Mirjam; Reyers, Belinda; Rosa, Eugene A; Scholes, Robert J; Spehn, Eva; Turner, BL; Yahara, Tetsukazu

    2013-01-01

    DIVERSITAS, the international programme on biodiversity science, is releasing a strategic vision presenting scientific challenges for the next decade of research on biodiversity and ecosystem services: “Biodiversity and Ecosystem Services Science for a Sustainable Planet”. This new vision is a response of the biodiversity and ecosystem services scientific community to the accelerating loss of the components of biodiversity, as well as to changes in the biodiversity science-policy landscape (establishment of a Biodiversity Observing Network — GEO BON, of an Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services — IPBES, of the new Future Earth initiative; and release of the Strategic Plan for Biodiversity 2011–2020). This article presents the vision and its core scientific challenges. PMID:25104977

  3. Biodiversity Conservation through Environmental Education for Sustainable Development - A Case Study from Puducherry, India

    Directory of Open Access Journals (Sweden)

    Alexandar RAMADOSS

    2011-01-01

    Full Text Available Promoting students commitment to protect local biodiversity is an important goal of education for sustainable development in India and elsewhere. The main focus of the biodiversity education was to create knowledge, interest and necessary skills to solve various biodiversity problems with reference to the local context. In order to develop the biodiversity consciousness among students, the action oriented biodiversity education methods were identified in this study such as active classroom sessions, hands-onactivities,experiential education, and field exposures that are vital to achieve sustainable biodiversity knowledge and motivate to protect and conserve local biodiversity. We developed a comprehensive framework to assess the efficacy of biodiversity educationmodules in enhancing teaching and training in biodiversity conservation at high school level. Since the pre-test indicated little lesser than average interest in the relevance ofbiodiversity, the observed increase in post-test phase could be attributed to our education for sustainable development efforts.

  4. Development of Extended Content Standards for Biodiversity Data

    Science.gov (United States)

    Hugo, Wim; Schmidt, Jochen; Saarenmaa, Hannu

    2013-04-01

    Interoperability in the field of Biodiversity observation has been strongly driven by the development of a number of global initiatives (GEO, GBIF, OGC, TDWG, GenBank, …) and its supporting standards (OGC-WxS, OGC-SOS, Darwin Core (DwC), NetCDF, …). To a large extent, these initiatives have focused on discoverability and standardization of syntactic and schematic interoperability. Semantic interoperability is more complex, requiring development of domain-dependent conceptual data models, and extension of these models with appropriate ontologies (typically manifested as controlled vocabularies). Biodiversity content has been standardized partly, for example through Darwin Core for occurrence data and associated taxonomy, and through Genbank for genetic data, but other contexts of biodiversity observation have lagged behind - making it difficult to achieve semantic interoperability between distributed data sources. With this in mind, WG8 of GEO BON (charged with data and systems interoperability) has started a work programme to address a number of concerns, one of which is the gap in content standards required to make Biodiversity data truly interoperable. The paper reports on the framework developed by WG8 for the classification of Biodiversity observation data into 'families' of use cases and its supporting data schema, where gaps, if any, in the availability if content standards have been identified, and how these are to be addressed by way of an abstract data model and the development of associated content standards. It is proposed that a minimum set of standards (1) will be required to address the scope of Biodiversity content, aligned with levels and dimensions of observation, and based on the 'Essential Biodiversity Variables' (2) being developed by GEO BON . The content standards are envisaged as loosely separated from the syntactic and schematic standards used for the base data exchange: typically, services would offer an existing data standard (DwC, WFS

  5. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity.

    Science.gov (United States)

    Isbell, Forest; Reich, Peter B; Tilman, David; Hobbie, Sarah E; Polasky, Stephen; Binder, Seth

    2013-07-16

    Anthropogenic drivers of environmental change often have multiple effects, including changes in biodiversity, species composition, and ecosystem functioning. It remains unknown whether such shifts in biodiversity and species composition may, themselves, be major contributors to the total, long-term impacts of anthropogenic drivers on ecosystem functioning. Moreover, although numerous experiments have shown that random losses of species impact the functioning of ecosystems, human-caused losses of biodiversity are rarely random. Here we use results from long-term grassland field experiments to test for direct effects of chronic nutrient enrichment on ecosystem productivity, and for indirect effects of enrichment on productivity mediated by resultant species losses. We found that ecosystem productivity decreased through time most in plots that lost the most species. Chronic nitrogen addition also led to the nonrandom loss of initially dominant native perennial C4 grasses. This loss of dominant plant species was associated with twice as great a loss of productivity per lost species than occurred with random species loss in a nearby biodiversity experiment. Thus, although chronic nitrogen enrichment initially increased productivity, it also led to loss of plant species, including initially dominant species, which then caused substantial diminishing returns from nitrogen fertilization. In contrast, elevated CO2 did not decrease grassland plant diversity, and it consistently promoted productivity over time. Our results support the hypothesis that the long-term impacts of anthropogenic drivers of environmental change on ecosystem functioning can strongly depend on how such drivers gradually decrease biodiversity and restructure communities.

  6. Biodiversity data provision and decision-making - addressing the challenges

    Directory of Open Access Journals (Sweden)

    Katherine Despot-Belmonte

    2017-02-01

    Full Text Available Essential Biodiversity Variables (EBVs are measurements required for study, reporting, and management of biodiversity change. They are being developed to support consistency, from the collection to the reporting of biodiversity data at the national, regional and global scales. However, "EBV stakeholders" need to strike a balance between 'doing innovative research' and 'having positive impact' on biodiversity management decisions. This paper reports on a workshop entitled Identifying joint pathways to address the challenges of biodiversity data provision and decision-making and presents the main workshop’s output, a “researcher’s brief” entitled Guiding principles for promoting the application of EBVs for current and future needs of decision-makers. These guiding principles are: Speak with a common voice; Clearly define what is an EBV and how it relates to indicators; Engage beyond the research world; Be realistic about what can be done now and later; Define criteria for good EBVs; Use EBV as a clearing house; Convey the limitations of EBVs; Clarify what impact EBVs should have; Be salient, credible, legitimate, iterative; Don't put an EBV skin on everything you do; Don't create too many EBVs; and Don't reduce EBVs to building blocks of indicators. This brief is of relevance to the wider GEO BON (Group on Earth Observation Biodoversity Observation Network community, and in particular those scientists/researchers interested in the application of EBVs.

  7. Grassland biodiversity bounces back from long-term nitrogen addition.

    Science.gov (United States)

    Storkey, J; Macdonald, A J; Poulton, P R; Scott, T; Köhler, I H; Schnyder, H; Goulding, K W T; Crawley, M J

    2015-12-17

    The negative effect of increasing atmospheric nitrogen (N) pollution on grassland biodiversity is now incontrovertible. However, the recent introduction of cleaner technologies in the UK has led to reductions in the emissions of nitrogen oxides, with concomitant decreases in N deposition. The degree to which grassland biodiversity can be expected to 'bounce back' in response to these improvements in air quality is uncertain, with a suggestion that long-term chronic N addition may lead to an alternative low biodiversity state. Here we present evidence from the 160-year-old Park Grass Experiment at Rothamsted Research, UK, that shows a positive response of biodiversity to reducing N addition from either atmospheric pollution or fertilizers. The proportion of legumes, species richness and diversity increased across the experiment between 1991 and 2012 as both wet and dry N deposition declined. Plots that stopped receiving inorganic N fertilizer in 1989 recovered much of the diversity that had been lost, especially if limed. There was no evidence that chronic N addition has resulted in an alternative low biodiversity state on the Park Grass plots, except where there has been extreme acidification, although it is likely that the recovery of plant communities has been facilitated by the twice-yearly mowing and removal of biomass. This may also explain why a comparable response of plant communities to reduced N inputs has yet to be observed in the wider landscape.

  8. Circumpolar biodiversity monitoring program (CBMP): Coastal expert workshop meeting report

    Science.gov (United States)

    Anderson, Rebecca D.; McLennan, Donald; Thomson, Laura; Wegeberg, Susse; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, Stacey; Christensen, Thomas K.; Price, Courtney

    2016-01-01

    The Coastal Expert Workshop, which took place in Ottawa, Canada from March 1 to 3, 2016, initiated the development of the Arctic Coastal Biodiversity Monitoring Plan (Coastal Plan). Meeting participants, including northern residents, representatives from industry, non-governmental organisations (NGOs), academia, and government regulators and agencies from across the circumpolar Arctic, discussed current biodiversity monitoring efforts, key issues facing biodiversity in Arctic coastal areas, and collectively identified monitoring indicators, or Focal Ecosystem Components (FECs). On February 29, the day before the workshop, a full day was allocated to Traditional Knowledge (TK) holders to meet and elucidate how this important knowledge can be included in the process of building the Coastal Plan and monitoring biodiversity in Arctic coastal areas, along with scientific data and variables. This document provides 1) background information about the Circumpolar Biodiversity Monitoring Programme and the Coastal Expert Monitoring Group, 2) overviews on workshop presentations and breakout sessions, and 3) details regarding outcomes of the workshop that will inform the drafting of the Coastal Plan.

  9. Dedicated biomass crops can enhance biodiversity in the arable landscape.

    Science.gov (United States)

    Haughton, Alison J; Bohan, David A; Clark, Suzanne J; Mallott, Mark D; Mallott, Victoria; Sage, Rufus; Karp, Angela

    2016-11-01

    Suggestions that novel, non-food, dedicated biomass crops used to produce bioenergy may provide opportunities to diversify and reinstate biodiversity in intensively managed farmland have not yet been fully tested at the landscape scale. Using two of the largest, currently available landscape-scale biodiversity data sets from arable and biomass bioenergy crops, we take a taxonomic and functional trait approach to quantify and contrast the consequences for biodiversity indicators of adopting dedicated biomass crops on land previously cultivated under annual, rotational arable cropping. The abundance and community compositions of biodiversity indicators in fields of break and cereal crops changed when planted with the dedicated biomass crops, miscanthus and short rotation coppiced (SRC) willow. Weed biomass was consistently greater in the two dedicated biomass crops than in cereals, and invertebrate abundance was similarly consistently higher than in break crops. Using canonical variates analysis, we identified distinct plant and invertebrate taxa and trait-based communities in miscanthus and SRC willows, whereas break and cereal crops tended to form a single, composite community. Seedbanks were shown to reflect the longer term effects of crop management. Our study suggests that miscanthus and SRC willows, and the management associated with perennial cropping, would support significant amounts of biodiversity when compared with annual arable crops. We recommend the strategic planting of these perennial, dedicated biomass crops in arable farmland to increase landscape heterogeneity and enhance ecosystem function, and simultaneously work towards striking a balance between energy and food security.

  10. CForBio: a network monitoring Chinese forest biodiversity

    Institute of Scientific and Technical Information of China (English)

    Gang Feng; Xiangcheng Mi; Hui Yan; Frank Yonghong Li; Jens-Christian Svenning; Keping Ma

    2016-01-01

    China harbors a rich variety of forest types and forest-associated biodiversity,linked to both historical and contemporary environmental factors.However,being a country with a large population and rapid economic development,its diverse forest is facing unprecedent challenges.The Chinese Forest Biodiversity Network (CForBio) was initiated 12 years ago to study the maintenance of biodiversity in China's forest ecosystems.In this review,we first summarize research progress in CForBio,and then give suggestions for future research.In the past 12 years,the research based on CForBio mainly focused on local ecological factors,such as environment filtering,biotic interactions and small-scale dispersal limitation.We suggest that future studies in CForBio should (1) continue research on trees,but expand more on insects,birds,mammals,microbes and other organism groups;(2)investigate the effects of widespread defaunation on forest biodiversity,structure and functioning;(3) evaluate the diverse effects of climate change on forest composition,structure and functioning;(4) include new technologies,such as remote sensing,to better monitor and study forest biodiversity change and maintenance.

  11. Mutualism Disruption Threatens Global Plant Biodiversity: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Clare E Aslan

    Full Text Available As global environmental change accelerates, biodiversity losses can disrupt interspecific interactions. Extinctions of mutualist partners can create "widow" species, which may face reduced ecological fitness. Hypothetically, such mutualism disruptions could have cascading effects on biodiversity by causing additional species coextinctions. However, the scope of this problem - the magnitude of biodiversity that may lose mutualist partners and the consequences of these losses - remains unknown.We conducted a systematic review and synthesis of data from a broad range of sources to estimate the threat posed by vertebrate extinctions to the global biodiversity of vertebrate-dispersed and -pollinated plants. Though enormous research gaps persist, our analysis identified Africa, Asia, the Caribbean, and global oceanic islands as geographic regions at particular risk of disruption of these mutualisms; within these regions, percentages of plant species likely affected range from 2.1-4.5%. Widowed plants are likely to experience reproductive declines of 40-58%, potentially threatening their persistence in the context of other global change stresses.Our systematic approach demonstrates that thousands of species may be impacted by disruption in one class of mutualisms, but extinctions will likely disrupt other mutualisms, as well. Although uncertainty is high, there is evidence that mutualism disruption directly threatens significant biodiversity in some geographic regions. Conservation measures with explicit focus on mutualistic functions could be necessary to bolster populations of widowed species and maintain ecosystem functions.

  12. A new freshwater biodiversity indicator based on fish community assemblages.

    Science.gov (United States)

    Clavel, Joanne; Poulet, Nicolas; Porcher, Emmanuelle; Blanchet, Simon; Grenouillet, Gaël; Pavoine, Sandrine; Biton, Anne; Seon-Massin, Nirmala; Argillier, Christine; Daufresne, Martin; Teillac-Deschamps, Pauline; Julliard, Romain

    2013-01-01

    Biodiversity has reached a critical state. In this context, stakeholders need indicators that both provide a synthetic view of the state of biodiversity and can be used as communication tools. Using river fishes as model, we developed community indicators that aim at integrating various components of biodiversity including interactions between species and ultimately the processes influencing ecosystem functions. We developed indices at the species level based on (i) the concept of specialization directly linked to the niche theory and (ii) the concept of originality measuring the overall degree of differences between a species and all other species in the same clade. Five major types of originality indices, based on phylogeny, habitat-linked and diet-linked morphology, life history traits, and ecological niche were analyzed. In a second step, we tested the relationship between all biodiversity indices and land use as a proxy of human pressures. Fish communities showed no significant temporal trend for most of these indices, but both originality indices based on diet- and habitat- linked morphology showed a significant increase through time. From a spatial point of view, all indices clearly singled out Corsica Island as having higher average originality and specialization. Finally, we observed that the originality index based on niche traits might be used as an informative biodiversity indicator because we showed it is sensitive to different land use classes along a landscape artificialization gradient. Moreover, its response remained unchanged over two other land use classifications at the global scale and also at the regional scale.

  13. The Value of Tropical Biodiversity in Rural Melanesia

    Directory of Open Access Journals (Sweden)

    Simon Foale

    2016-11-01

    Full Text Available In this paper we discuss differences in the ways transnational conservationists and Melanesian farmers, hunters and fishers value "biodiversity". The money for conservation projects in developing countries originates from people who are embedded in a capitalist system, which allows engagement with nature as an abstract entity. Their western education has given them a scientific/ evolutionary-based worldview, which attributes intrinsic value to all species (and particular arrangements of species, e.g. rainforests and coral reefs, irrespective of economic value or ecosystem function. Because this value system is mostly not shared by the custodians of the biodiversity that conservationists want to save, alternative tactics and arguments are utilised. These inevitably take the form of so-called "win-win" economic rationales for preserving biodiversity, most of which do not work well (e.g. bioprospecting, ecotourism, non-timber forest products, environmental certification schemes, payments for ecosystem services, etc., for reasons which we detail. Agriculture- and aquaculture-based livelihoods appear to enjoy more success than the "win-win" options but do not necessarily obviate or deter further biodiversity loss. Artisanal use of species-poor but productive and resilient pelagic fisheries is increasing. These ecological and economic realities bring into sharp focus the importance of understanding differences in value systems for successful biodiversity conservation in the tropics.

  14. Evolutionary history and the effect of biodiversity on plant productivity.

    Science.gov (United States)

    Cadotte, Marc W; Cardinale, Bradley J; Oakley, Todd H

    2008-11-04

    Loss of biological diversity because of extinction is one of the most pronounced changes to the global environment. For several decades, researchers have tried to understand how changes in biodiversity might impact biomass production by examining how biomass correlates with a number of biodiversity metrics (especially the number of species and functional groups). This body of research has focused on species with the implicit assumption that they are independent entities. However, functional and ecological similarities are shaped by patterns of common ancestry, such that distantly related species might contribute more to production than close relatives, perhaps by increasing niche breadth. Here, we analyze 2 decades of experiments performed in grassland ecosystems throughout the world and examine whether the evolutionary relationships among the species comprising a community predict how biodiversity impacts plant biomass production. We show that the amount of phylogenetic diversity within communities explained significantly more variation in plant community biomass than other measures of diversity, such as the number of species or functional groups. Our results reveal how evolutionary history can provide critical information for understanding, predicting, and potentially ameliorating the effects of biodiversity loss and should serve as an impetus for new biodiversity experiments.

  15. [Landscape planning approaches for biodiversity conservation in agriculture].

    Science.gov (United States)

    Liu, Yun-hui; Li, Liang-tao; Yu, Zhen-rong

    2008-11-01

    Biodiversity conservation in agriculture not only relates to the sustainable development of agriculture, but also is an essential part of species conservation. In recent years, the landscape planning approach for biodiversity was highlighted instead of species-focused approach. In this paper, the landscape factors affecting the biodiversity in agriculture were reviewed, and the possible landscape approaches at three different scales for more efficient conservation of biodiversity in agro-landscape were suggested, including: (1) the increase of the proportion of natural or semi-natural habitats in agriculture, diversification of land use or crop pattern, and protection or construction of corridor at landscape level; (2) the establishment of non-cropping elements such as field margin at between-field level; and (3) the application of reasonable crop density, crop distribution pattern and rotation, and intercrop etc. at within-field level. It was suggested that the relevant policies for natural conservation, land use planning, and ecological compensation should be made to apply the landscape approaches for biodiversity conservation at larger scale.

  16. Functional consequences of realistic biodiversity changes in a marine ecosystem.

    Science.gov (United States)

    Bracken, Matthew E S; Friberg, Sara E; Gonzalez-Dorantes, Cirse A; Williams, Susan L

    2008-01-22

    Declines in biodiversity have prompted concern over the consequences of species loss for the goods and services provided by natural ecosystems. However, relatively few studies have evaluated the functional consequences of realistic, nonrandom changes in biodiversity. Instead, most designs have used randomly selected assemblages from a local species pool to construct diversity gradients. It is therefore difficult, based on current evidence, to predict the functional consequences of realistic declines in biodiversity. In this study, we used tide pool microcosms to demonstrate that the effects of real-world changes in biodiversity may be very different from those of random diversity changes. Specifically, we measured the relationship between the diversity of a seaweed assemblage and its ability to use nitrogen, a key limiting nutrient in nearshore marine systems. We quantified nitrogen uptake using both experimental and model seaweed assemblages and found that natural increases in diversity resulted in enhanced rates of nitrogen use, whereas random diversity changes had no effect on nitrogen uptake. Our results suggest that understanding the real-world consequences of declining biodiversity will require addressing changes in species performance along natural diversity gradients and understanding the relationships between species' susceptibility to loss and their contributions to ecosystem functioning.

  17. Landscape Visual Quality and Meiofauna Biodiversity on Sandy Beaches

    Science.gov (United States)

    Felix, Gabriela; Marenzi, Rosemeri C.; Polette, Marcos; Netto, Sérgio A.

    2016-10-01

    Sandy beaches are central economic assets, attracting more recreational users than other coastal ecosystems. However, urbanization and landscape modification can compromise both the functional integrity and the attractiveness of beach ecosystems. Our study aimed at investigating the relationship between sandy beach artificialization and the landscape perception by the users, and between sandy beach visual attractiveness and biodiversity. We conducted visual and biodiversity assessments of urbanized and semiurbanized sandy beaches in Brazil and Uruguay. We specifically examined meiofauna as an indicator of biodiversity. We hypothesized that urbanization of sandy beaches results in a higher number of landscape detractors that negatively affect user evaluation, and that lower-rated beach units support lower levels of biodiversity. We found that urbanized beach units were rated lower than semiurbanized units, indicating that visual quality was sensitive to human interventions. Our expectations regarding the relationship between landscape perception and biodiversity were only partially met; only few structural and functional descriptors of meiofauna assemblages differed among classes of visual quality. However, lower-rated beach units exhibited signs of lower environmental quality, indicated by higher oligochaete densities and significant differences in meiofauna structure. We conclude that managing sandy beaches needs to advance beyond assessment of aesthetic parameters to also include the structure and function of beach ecosystems. Use of such supporting tools for managing sandy beaches is particularly important in view of sea level rise and increasing coastal development.

  18. Analysis of Reptile Biodiversity and Ecosystem Services within ...

    Science.gov (United States)

    A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challenge has been to integrate ecology with economics to better understand the effects of human policies and actions and their subsequent impacts on human well-being and ecosystem function. Biodiversity is valued by humans in varied ways, and thus is an important input to include in assessing the benefits of ecosystems to humans. Some biodiversity metrics more clearly reflect ecosystem services (e.g., game species, threatened and endangered species), whereas others may indicate indirect and difficult to quantify relationships to services (e.g., taxa richness and cultural value). In the present study, we identify and map reptile biodiversity and ecosystem services metrics. The importance of reptiles to biodiversity and ecosystems services is not often described. We used species distribution models for reptiles in the conterminous United States from the U.S. Geological Survey’s Gap Analysis Program. We focus on species richness metrics including all reptile species richness, taxa groupings of lizards, snakes and turtles, NatureServe conservation status (G1, G2, G3) species, IUCN listed reptiles, threatened and endangered species, Partners in Amphibian and Reptile Conservation listed reptiles, and rare species. These metrics were analyzed with the Protected Areas Database of the United States to

  19. Sparing land for biodiversity at multiple spatial scales

    Directory of Open Access Journals (Sweden)

    Johan eEkroos

    2016-01-01

    Full Text Available A common approach to the conservation of farmland biodiversity and the promotion of multifunctional landscapes, particularly in landscapes containing only small remnants of non-crop habitats, has been to maintain landscape heterogeneity and reduce land-use intensity. In contrast, it has recently been shown that devoting specific areas of non-crop habitats to conservation, segregated from high-yielding farmland (‘land sparing’, can more effectively conserve biodiversity than promoting low-yielding, less intensively managed farmland occupying larger areas (‘land sharing’. In the present paper we suggest that the debate over the relative merits of land sparing or land sharing is partly blurred by the differing spatial scales at which it is suggested that land sparing should be applied. We argue that there is no single correct spatial scale for segregating biodiversity protection and commodity production in multifunctional landscapes. Instead we propose an alternative conceptual construct, which we call ‘multiple-scale land sparing’, targeting biodiversity and ecosystem services in transformed landscapes. We discuss how multiple-scale land sparing may overcome the apparent dichotomy between land sharing and land sparing and help to find acceptable compromises that conserve biodiversity and landscape multifunctionality.

  20. A new freshwater biodiversity indicator based on fish community assemblages.

    Directory of Open Access Journals (Sweden)

    Joanne Clavel

    Full Text Available Biodiversity has reached a critical state. In this context, stakeholders need indicators that both provide a synthetic view of the state of biodiversity and can be used as communication tools. Using river fishes as model, we developed community indicators that aim at integrating various components of biodiversity including interactions between species and ultimately the processes influencing ecosystem functions. We developed indices at the species level based on (i the concept of specialization directly linked to the niche theory and (ii the concept of originality measuring the overall degree of differences between a species and all other species in the same clade. Five major types of originality indices, based on phylogeny, habitat-linked and diet-linked morphology, life history traits, and ecological niche were analyzed. In a second step, we tested the relationship between all biodiversity indices and land use as a proxy of human pressures. Fish communities showed no significant temporal trend for most of these indices, but both originality indices based on diet- and habitat- linked morphology showed a significant increase through time. From a spatial point of view, all indices clearly singled out Corsica Island as having higher average originality and specialization. Finally, we observed that the originality index based on niche traits might be used as an informative biodiversity indicator because we showed it is sensitive to different land use classes along a landscape artificialization gradient. Moreover, its response remained unchanged over two other land use classifications at the global scale and also at the regional scale.

  1. Economic valuation of biodiversity conservation: the meaning of numbers.

    Science.gov (United States)

    Martín-López, Berta; Montes, Carlos; Benayas, Javier

    2008-06-01

    Recognition of the need to include economic criteria in the conservation policy decision-making process has encouraged the use of economic-valuation techniques. Nevertheless, whether it is possible to accurately assign economic values to biodiversity and if so what these values really represent is being debated. We reviewed 60 recent papers on economic valuation of biodiversity and carried out a meta-analysis of these studies to determine what factors affect willingness to pay for biodiversity conservation. We analyzed the internal variables of the contingent-valuation method (measure of benefits, vehicle of payment, elicitation format, or timing of payment) and anthropomorphic, anthropocentric and scientific factors. Funding allocation mostly favored the conservation of species with anthropomorphic and anthropocentric characteristics instead of considering scientific factors. We recommend researchers and policy makers contemplate economic valuations of biodiversity carefully, considering the inherent biases of the contingent-valuation method and the anthropomorphic and anthropocentric factors resulting from the public's attitude toward species. Because of the increasing trend of including economic considerations in conservation practices, we suggest that in the future interdisciplinary teams of ecologists, economists, and social scientists collaborate and conduct comparative analyses, such as we have done here. Use of the contingent-valuation method in biodiversity conservation policies can provide useful information about alternative conservation strategies if questionnaires are carefully constructed, respondents are sufficiently informed, and the underlying factors that influence willingness to pay are identified.

  2. Biodiversity hotspots: A shortcut for a more complicated concept

    Directory of Open Access Journals (Sweden)

    Christian Marchese

    2015-01-01

    Full Text Available In an era of human activities, global environmental changes, habitat loss and species extinction, conservation strategies are a crucial step toward minimizing biodiversity loss. For instance, oceans acidification and land use are intensifying in many places with negative and often irreversible consequences for biodiversity. Biodiversity hotspots, despite some criticism, have become a tool for setting conservation priorities and play an important role in decision-making for cost-effective strategies to preserve biodiversity in terrestrial and, to some extent, marine ecosystems. This area-based approach can be applied to any geographical scale and it is considered to be one of the best approaches for maintaining a large proportion of the world’s biological diversity. However, delineating hotspots includes quantitative criteria along with subjective considerations and the risk is to neglect areas, such as coldspots, with other types of conservation value. Nowadays, it is widely acknowledged that biodiversity is much more than just the number of species in a region and a conservation strategy cannot be based merely on the number of taxa present in an ecosystem. Therefore, the idea that strongly emerges is the need to reconsider conservation priorities and to go toward an interdisciplinary approach through the creation of science-policy partnerships.

  3. Landscape Visual Quality and Meiofauna Biodiversity on Sandy Beaches.

    Science.gov (United States)

    Felix, Gabriela; Marenzi, Rosemeri C; Polette, Marcos; Netto, Sérgio A

    2016-10-01

    Sandy beaches are central economic assets, attracting more recreational users than other coastal ecosystems. However, urbanization and landscape modification can compromise both the functional integrity and the attractiveness of beach ecosystems. Our study aimed at investigating the relationship between sandy beach artificialization and the landscape perception by the users, and between sandy beach visual attractiveness and biodiversity. We conducted visual and biodiversity assessments of urbanized and semiurbanized sandy beaches in Brazil and Uruguay. We specifically examined meiofauna as an indicator of biodiversity. We hypothesized that urbanization of sandy beaches results in a higher number of landscape detractors that negatively affect user evaluation, and that lower-rated beach units support lower levels of biodiversity. We found that urbanized beach units were rated lower than semiurbanized units, indicating that visual quality was sensitive to human interventions. Our expectations regarding the relationship between landscape perception and biodiversity were only partially met; only few structural and functional descriptors of meiofauna assemblages differed among classes of visual quality. However, lower-rated beach units exhibited signs of lower environmental quality, indicated by higher oligochaete densities and significant differences in meiofauna structure. We conclude that managing sandy beaches needs to advance beyond assessment of aesthetic parameters to also include the structure and function of beach ecosystems. Use of such supporting tools for managing sandy beaches is particularly important in view of sea level rise and increasing coastal development.

  4. Loss of native rocky reef biodiversity in Australian metropolitan embayments.

    Science.gov (United States)

    Stuart-Smith, Rick D; Edgar, Graham J; Stuart-Smith, Jemina F; Barrett, Neville S; Fowles, Amelia E; Hill, Nicole A; Cooper, Antonia T; Myers, Andrew P; Oh, Elizabeth S; Pocklington, Jacqui B; Thomson, Russell J

    2015-06-15

    Urbanisation of the coastal zone represents a key threat to marine biodiversity, including rocky reef communities which often possess disproportionate ecological, recreational and commercial importance. The nature and magnitude of local urban impacts on reef biodiversity near three Australian capital cities were quantified using visual census methods. The most impacted reefs in urbanised embayments were consistently characterised by smaller, faster growing species, reduced fish biomass and richness, and reduced mobile invertebrate abundance and richness. Reef faunal distribution varied significantly with heavy metals, local population density, and proximity to city ports, while native fish and invertebrate communities were most depauperate in locations where invasive species were abundant. Our study adds impetus for improved urban planning and pollution management practises, while also highlighting the potential for skilled volunteers to improve the tracking of changes in marine biodiversity values and the effectiveness of management intervention.

  5. Biodiversity and ecosystem stability across scales in metacommunities.

    Science.gov (United States)

    Wang, Shaopeng; Loreau, Michel

    2016-05-01

    Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here, we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilising effects for regional ecosystems, through local and spatial insurance effects respectively. We further show that at the regional scale, the stabilising effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenisation) and biodiversity loss on ecosystem sustainability at large scales.

  6. FAO/INFOODS food composition database for biodiversity.

    Science.gov (United States)

    Ruth Charrondière, U; Stadlmayr, Barbara; Rittenschober, Doris; Mouille, Beatrice; Nilsson, Emma; Medhammar, Elinor; Olango, Temesgen; Eisenwagen, Sandra; Persijn, Diedelinde; Ebanks, Kristy; Nowak, Verena; Du, Juan; Burlingame, Barbara

    2013-10-01

    Nutrient content can vary as much between different varieties of the same foods, as they do among different foods. Knowledge of varietal differences can therefore mean the difference between nutrient adequacy and inadequacy. The FAO/INFOODS food composition database for biodiversity has been developed with analytical data for foods described at the level of variety, cultivar and breed, and for underutilized and wild foods. It contains 6411 food entries and values for 451 components together with the bibliographic references and other information. The database is in MS Excel format and can be downloaded free-of-charge from the INFOODS website http://www.fao.org/infoods/biodiversity/index_en.stm. It is intended to annually publish new editions, making these data available for national and regional food composition databases. This database could be used to raise the awareness, promote and investigate food biodiversity and help to better estimate nutrient intakes.

  7. Headwater biodiversity among different levels of stream habitat hierarchy

    DEFF Research Database (Denmark)

    Göthe, Emma; Friberg, Nikolai; Kahlert, Maria

    2014-01-01

    With the current loss of biodiversity and threats to freshwater ecosystems, it is crucial to identify hot-spots of biodiversity and on which spatial scale they can be resolved. Conservation and management of these important ecosystems needs insight into whether most of the regional biodiversity (i...... of a- and b-diversity to y-diversity between two levels of stream habitat hierarchy (catchment and region level). The relationship between species community structure and local environmental factors was also assessed. Our results show that both a- and b-diversity made a significant contribution to y......-diversity. b-diversity remained relatively constant between the two levels of habitat hierarchy even though local environmental control of the biota decreased from the catchment to the region level. To capture most of headwater y-diversity, management should therefore target sites that are locally diverse...

  8. A comparison of proxy performance in coral biodiversity monitoring

    Science.gov (United States)

    Richards, Zoe T.

    2013-03-01

    The productivity and health of coral reef habitat is diminishing worldwide; however, the effect that habitat declines have on coral reef biodiversity is not known. Logistical and financial constraints mean that surveys of hard coral communities rarely collect data at the species level; hence it is important to know if there are proxy metrics that can reliably predict biodiversity. Here, the performances of six proxy metrics are compared using regression analyses on survey data from a location in the northern Great Barrier Reef. Results suggest generic richness is a strong explanatory variable for spatial patterns in species richness (explaining 82 % of the variation when measured on a belt transect). The most commonly used metric of reef health, percentage live coral cover, is not positively or linearly related to hard coral species richness. This result raises doubt as to whether management actions based on such reefscape information will be effective for the conservation of coral biodiversity.

  9. Food webs: reconciling the structure and function of biodiversity.

    Science.gov (United States)

    Thompson, Ross M; Brose, Ulrich; Dunne, Jennifer A; Hall, Robert O; Hladyz, Sally; Kitching, Roger L; Martinez, Neo D; Rantala, Heidi; Romanuk, Tamara N; Stouffer, Daniel B; Tylianakis, Jason M

    2012-12-01

    The global biodiversity crisis concerns not only unprecedented loss of species within communities, but also related consequences for ecosystem function. Community ecology focuses on patterns of species richness and community composition, whereas ecosystem ecology focuses on fluxes of energy and materials. Food webs provide a quantitative framework to combine these approaches and unify the study of biodiversity and ecosystem function. We summarise the progression of food-web ecology and the challenges in using the food-web approach. We identify five areas of research where these advances can continue, and be applied to global challenges. Finally, we describe what data are needed in the next generation of food-web studies to reconcile the structure and function of biodiversity.

  10. Do European agroforestry systems enhance biodiversity and ecosystem services?

    DEFF Research Database (Denmark)

    Torralba Viorreta, Mario; Fagerholm, Nora; Burgess, Paul J.;

    2016-01-01

    is fragmented and does often not integrate diverse ecosystem services into the assessment. To upscale existing case-study insights to the European level, we conducted a meta-analysis on the effects of agroforestry on ecosystem service provision and on biodiversity levels. From 53 publications we extracted......Agroforestry has been proposed as a sustainable agricultural system over conventional agriculture and forestry, conserving biodiversity and enhancing ecosystem service provision while not compromising productivity. However, the available evidence for the societal benefits of agroforestry...... and ecosystem services assessed. Erosion control, biodiversity, and soil fertility are enhanced by agroforestry while there is no clear effect on provisioning services. The effect of agroforestry on biomass production is negative. Comparisons between agroforestry types and reference land-uses showed that both...

  11. Uncertainty in biodiversity science, policy and management: a conceptual overview

    Directory of Open Access Journals (Sweden)

    Yrjö Haila

    2014-10-01

    Full Text Available The protection of biodiversity is a complex societal, political and ultimately practical imperative of current global society. The imperative builds upon scientific knowledge on human dependence on the life-support systems of the Earth. This paper aims at introducing main types of uncertainty inherent in biodiversity science, policy and management, as an introduction to a companion paper summarizing practical experiences of scientists and scholars (Haila et al. 2014. Uncertainty is a cluster concept: the actual nature of uncertainty is inherently context-bound. We use semantic space as a conceptual device to identify key dimensions of uncertainty in the context of biodiversity protection; these relate to [i] data; [ii] proxies; [iii] concepts; [iv] policy and management; and [v] normative goals. Semantic space offers an analytic perspective for drawing critical distinctions between types of uncertainty, identifying fruitful resonances that help to cope with the uncertainties, and building up collaboration between different specialists to support mutual social learning.

  12. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    Science.gov (United States)

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  13. Restoration of ecosystem services and biodiversity: conflicts and opportunities.

    Science.gov (United States)

    Bullock, James M; Aronson, James; Newton, Adrian C; Pywell, Richard F; Rey-Benayas, Jose M

    2011-10-01

    Ecological restoration is becoming regarded as a major strategy for increasing the provision of ecosystem services as well as reversing biodiversity losses. Here, we show that restoration projects can be effective in enhancing both, but that conflicts can arise, especially if single services are targeted in isolation. Furthermore, recovery of biodiversity and services can be slow and incomplete. Despite this uncertainty, new methods of ecosystem service valuation are suggesting that the economic benefits of restoration can outweigh costs. Payment for Ecosystem Service schemes could therefore provide incentives for restoration, but require development to ensure biodiversity and multiple services are enhanced and the needs of different stakeholders are met. Such approaches must be implemented widely if new global restoration targets are to be achieved.

  14. Opportunities for biodiversity gains under the world's largest reforestation programme

    Science.gov (United States)

    Hua, Fangyuan; Wang, Xiaoyang; Zheng, Xinlei; Fisher, Brendan; Wang, Lin; Zhu, Jianguo; Tang, Ya; Yu, Douglas W.; Wilcove, David S.

    2016-01-01

    Reforestation is a critical means of addressing the environmental and social problems of deforestation. China's Grain-for-Green Program (GFGP) is the world's largest reforestation scheme. Here we provide the first nationwide assessment of the tree composition of GFGP forests and the first combined ecological and economic study aimed at understanding GFGP's biodiversity implications. Across China, GFGP forests are overwhelmingly monocultures or compositionally simple mixed forests. Focusing on birds and bees in Sichuan Province, we find that GFGP reforestation results in modest gains (via mixed forest) and losses (via monocultures) of bird diversity, along with major losses of bee diversity. Moreover, all current modes of GFGP reforestation fall short of restoring biodiversity to levels approximating native forests. However, even within existing modes of reforestation, GFGP can achieve greater biodiversity gains by promoting mixed forests over monocultures; doing so is unlikely to entail major opportunity costs or pose unforeseen economic risks to households. PMID:27598524

  15. Conserving critical sites for biodiversity provides disproportionate benefits to people.

    Directory of Open Access Journals (Sweden)

    Frank W Larsen

    Full Text Available Protecting natural habitats in priority areas is essential to halt the loss of biodiversity. Yet whether these benefits for biodiversity also yield benefits for human well-being remains controversial. Here we assess the potential human well-being benefits of safeguarding a global network of sites identified as top priorities for the conservation of threatened species. Conserving these sites would yield benefits--in terms of a climate change mitigation through avoidance of CO(2 emissions from deforestation; b freshwater services to downstream human populations; c retention of option value; and d benefits to maintenance of human cultural diversity--significantly exceeding those anticipated from randomly selected sites within the same countries and ecoregions. Results suggest that safeguarding sites important for biodiversity conservation provides substantial benefits to human well-being.

  16. Darwin Core: an evolving community-developed biodiversity data standard.

    Directory of Open Access Journals (Sweden)

    John Wieczorek

    Full Text Available Biodiversity data derive from myriad sources stored in various formats on many distinct hardware and software platforms. An essential step towards understanding global patterns of biodiversity is to provide a standardized view of these heterogeneous data sources to improve interoperability. Fundamental to this advance are definitions of common terms. This paper describes the evolution and development of Darwin Core, a data standard for publishing and integrating biodiversity information. We focus on the categories of terms that define the standard, differences between simple and relational Darwin Core, how the standard has been implemented, and the community processes that are essential for maintenance and growth of the standard. We present case-study extensions of the Darwin Core into new research communities, including metagenomics and genetic resources. We close by showing how Darwin Core records are integrated to create new knowledge products documenting species distributions and changes due to environmental perturbations.

  17. Regional boreal biodiversity peaks at intermediate human disturbance.

    Science.gov (United States)

    Mayor, S J; Cahill, J F; He, F; Sólymos, P; Boutin, S

    2012-01-01

    The worldwide biodiversity crisis has intensified the need to better understand how biodiversity and human disturbance are related. The 'intermediate disturbance hypothesis' suggests that disturbance regimes generate predictable non-linear patterns in species richness. Evidence often contradicts intermediate disturbance hypothesis at small scales, and is generally lacking at large regional scales. Here, we present the largest extent study of human impacts on boreal plant biodiversity to date. Disturbance extent ranged from 0 to 100% disturbed in vascular plant communities, varying from intact forest to agricultural fields, forestry cut blocks and oil sands. We show for the first time that across a broad region species richness peaked in communities with intermediate anthropogenic disturbance, as predicted by intermediate disturbance hypothesis, even when accounting for many environmental covariates. Intermediate disturbance hypothesis was consistently supported across trees, shrubs, forbs and grasses, with temporary and perpetual disturbances. However, only native species fit this pattern; exotic species richness increased linearly with disturbance.

  18. Biodiversity Analysis of Vegetation on the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler; D. J. Hansen

    2001-06-01

    The Nevada Test Site (NTS) located in south central Nevada encompasses approximately 3,561 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996-1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. These data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Species diversity maps (species richness vs. species abundance) have been produced. Differences in ecosystem diversity at the ecoregion, alliance, association, and ecological landform unit levels are presented. Spatial distribution maps of species presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors (elevation, soil, precipitation) and anthropogenic disturbance on biodiversity are assessed.

  19. A decadal view of biodiversity informatics: challenges and priorities.

    Science.gov (United States)

    Hardisty, Alex; Roberts, Dave; Addink, Wouter; Aelterman, Bart; Agosti, Donat; Amaral-Zettler, Linda; Ariño, Arturo H; Arvanitidis, Christos; Backeljau, Thierry; Bailly, Nicolas; Belbin, Lee; Berendsohn, Walter; Bertrand, Nic; Caithness, Neil; Campbell, David; Cochrane, Guy; Conruyt, Noël; Culham, Alastair; Damgaard, Christian; Davies, Neil; Fady, Bruno; Faulwetter, Sarah; Feest, Alan; Field, Dawn; Garnier, Eric; Geser, Guntram; Gilbert, Jack; Grosche; Grosser, David; Hardisty, Alex; Herbinet, Bénédicte; Hobern, Donald; Jones, Andrew; de Jong, Yde; King, David; Knapp, Sandra; Koivula, Hanna; Los, Wouter; Meyer, Chris; Morris, Robert A; Morrison, Norman; Morse, David; Obst, Matthias; Pafilis, Evagelos; Page, Larry M; Page, Roderic; Pape, Thomas; Parr, Cynthia; Paton, Alan; Patterson, David; Paymal, Elisabeth; Penev, Lyubomir; Pollet, Marc; Pyle, Richard; von Raab-Straube, Eckhard; Robert, Vincent; Roberts, Dave; Robertson, Tim; Rovellotti, Olivier; Saarenmaa, Hannu; Schalk, Peter; Schaminee, Joop; Schofield, Paul; Sier, Andy; Sierra, Soraya; Smith, Vince; van Spronsen, Edwin; Thornton-Wood, Simon; van Tienderen, Peter; van Tol, Jan; Tuama, Éamonn Ó; Uetz, Peter; Vaas, Lea; Vignes Lebbe, Régine; Vision, Todd; Vu, Duong; De Wever, Aaike; White, Richard; Willis, Kathy; Young, Fiona

    2013-04-15

    Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species.It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible.This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens' science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike.

  20. Biodiversity influences plant productivity through niche-efficiency.

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C; McGuire, A David; Reich, Peter B

    2015-05-05

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity-ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche-efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche-efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species' inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  1. Ecosystem simplification, biodiversity loss and plant virus emergence.

    Science.gov (United States)

    Roossinck, Marilyn J; García-Arenal, Fernando

    2015-02-01

    Plant viruses can emerge into crops from wild plant hosts, or conversely from domestic (crop) plants into wild hosts. Changes in ecosystems, including loss of biodiversity and increases in managed croplands, can impact the emergence of plant virus disease. Although data are limited, in general the loss of biodiversity is thought to contribute to disease emergence. More in-depth studies have been done for human viruses, but studies with plant viruses suggest similar patterns, and indicate that simplification of ecosystems through increased human management may increase the emergence of viral diseases in crops.

  2. Data requirements and data sources for biodiversity priority area selection

    Indian Academy of Sciences (India)

    P H Williams; C R Margules; D W Hilbert

    2002-07-01

    The data needed to prioritize areas for biodiversity protection are records of biodiversity features – species, species assemblages, environmental classes – for each candidate area. Prioritizing areas means comparing candidate areas, so the data used to make such comparisons should be comparable in quality and quantity. Potential sources of suitable data include museums, herbariums and natural resource management agencies. Issues of data precision, accuracy and sampling bias in data sets from such sources are discussed and methods for treating data to minimize bias are reviewed.

  3. Rocky road in the Rockies: Challenges to biodiversity

    Science.gov (United States)

    Tomback, Diana F.; Kendall, Katherine C.

    2002-01-01

    To people worldwide, the Rocky Mountains of the United States and Canada represent a last bastion of nature in its purest and rawest form-unspoiled forests teeming with elk and deer stalked by mountain lions and grizzly bears; bald eagles nesting near lakes and rivers; fat, feisty native trout in rushing mountain streams; and dazzling arrays of wildflowers in lush meadows. In fact, the total biodiversity of the Rocky Mountains is considerable, with relatively high diversity in birds, mammals, butterflies, reptiles, and conifers (Ricketts et al. 1999) and with geographic variation in the flora and fauna of alpine, forest, foothill, and adjacent shortgrass prairie and shrub communities over more than 20 degrees of latitude and more than 10' of longitude. Although the biodiversity of most North American regions has declined because of anthropogenic influences, the perception remains that the biodiversity of the Rocky Mountains is intact. This view exists in part because the Rocky Mountains are remote from urban centers, in part because so much of the land comprises protected areas such as national parks and wilderness areas, and in part because of wishful thinking-that nothing bad could happen to the biodiversity that is so much a part of the history, national self-image, legends, nature films, and movies of the United States and Canada. Despite modern technology and the homogenization and globalization of their cities and towns, at heart North Americans still regard their land as the New World, with pristine nature and untamed landscapes epitomized by the Rockies. The reality is that the biodiversity of the Rocky Mountains has not been free of anthropogenic influences since the West was settled in the 1800s, and in fact it was altered by Native Americans for centuries prior to settlement. A number of escalating problems and consequences of management choices are currently changing Rocky Mountain ecological communities at a dizzying pace. In Order to maintain some

  4. Enriched biodiversity data as a resource and service

    Science.gov (United States)

    Balech, Bachir; Beard, Niall; Blissett, Matthew; Brenninkmeijer, Christian; van Dooren, Tom; Eades, David; Gosline, George; Groom, Quentin John; Hamann, Thomas D.; Hettling, Hannes; Hoehndorf, Robert; Holleman, Ayco; Hovenkamp, Peter; Kelbert, Patricia; King, David; Kirkup, Don; Lammers, Youri; DeMeulemeester, Thibaut; Mietchen, Daniel; Miller, Jeremy A.; Mounce, Ross; Nicolson, Nicola; Page, Rod; Pawlik, Aleksandra; Pereira, Serrano; Penev, Lyubomir; Richards, Kevin; Sautter, Guido; Shorthouse, David Peter; Tähtinen, Marko; Weiland, Claus; Williams, Alan R.; Sierra, Soraya

    2014-01-01

    Abstract Background: Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source “data enrichment” workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. Results: The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species) from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i) mobilising heritage biodiversity knowledge; ii) formalising and linking concepts; and iii) addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further such

  5. DNA Barcodes for Marine Biodiversity: Moving Fast Forward?

    Directory of Open Access Journals (Sweden)

    Adriana E. Radulovici

    2010-03-01

    Full Text Available ‘Biodiversity’ means the variety of life and it can be studied at different levels (genetic, species, ecosystem and scales (spatial and temporal. Last decades showed that marine biodiversity has been severely underestimated at all levels. In order to investigate diversity patterns and underlying processes, there is a need to know what species live in the marine environment. An emerging tool for species identification, DNA barcoding can reliably assign unknown specimens to known species, also flagging potential cryptic species and genetically distant populations. This paper will review the role of DNA barcoding for the study of marine biodiversity at the species level.

  6. Entangled in the web of life: biodiversity and the media

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Mike

    2008-05-15

    Biodiversity — the variety of genes, species and ecosystems on the planet — is disappearing faster than at any time since the demise of the dinosaurs. The implications are profound, for humanity and for our efforts to tackle poverty and climate change. Yet the media has under-reported this urgent environmental challenge, partly because researchers and policymakers have failed to communicate the issues in a way that is relevant to most people. This briefing explains why biodiversity loss will be an increasingly important story in the coming years. It suggests ways for journalists to improve their reporting and make it mean more to their audiences.

  7. Enriched biodiversity data as a resource and service

    Directory of Open Access Journals (Sweden)

    Rutger Vos

    2014-06-01

    Full Text Available Background: Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source “data enrichment” workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. Results: The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i mobilising heritage biodiversity knowledge; ii formalising and linking concepts; and iii addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further

  8. Adaptive Management on Danube Delta’s Biodiversity

    Directory of Open Access Journals (Sweden)

    Ildiko Ioan

    2014-04-01

    Full Text Available Biodiversity is a heritage of life that could hold the information needed for the wellbeing of human kind. The challenge of biodiversity preservation was addressed by various management solutions, the newest being the adaptive management. The paper aims to give insights for the application of adaptive management and to reveal its potential for increasing the effectiveness of ecosystem management in the Danube Delta. Carefully designed adaptive management action plans could allow important improvements in the information base that support decisions related to reed valuation.

  9. Forestry practices and aquatic biodiversity: Fish

    Science.gov (United States)

    Gresswell, Robert E.

    2005-01-01

    In the Pacific Northwest, fish communities are found in a diverse array of aquatic habitats ranging from the large coastal rivers of the temperate rainforests, to the fragmented and sometimes ephemeral streams of the xeric interior basins, and high-elevation streams and lakes in the mountainous areas (Rieman et al. 2003). Only high-elevation lakes and streams isolated above barriers to fish passage remained historically devoid of fish because they were never invaded following Pleistocene glaciation (Smith 1981). Despite this widespread distribution and once great population abundances, taxonomic diversity of fishes in these forested systems is naturally lower than in aquatic habitats in the eastern U.S. (Reeves, Bisson, and Dambacher 1998). Interactions among factors that influence species richness in aquatic systems (e.g., basin size, long-term stability of habitat, and barriers to colonization; Smith 1981) continue to influence the occurrence and persistence of fishes in these systems today. Consequently, the larger low-elevation rivers and estuaries support the greatest variety of fish species. In the high-elevation tributary streams, fish communities are less complex because these aquatic systems were less climatically and geologically stable, and fish populations were smaller and more prone to local extirpation. Furthermore, barriers to fish passage inhibited dispersal and colonization (Smith 1981). Streams in forested landscapes generally support salmon and trout, Oncorhynchus spp., whitefish Prosopium spp., sculpins Cottus spp., suckers Catostomus spp., and minnows (Cyprinidae), but in some of the colder streams, chars (e.g., Salvelinus confluentus and Salvelinus malma) and lampreys (Petromyzontidae)may also occur (Rieman et al. 2003).Although biodiversity defined in terms of fish species richness is low in the Pacific Northwest, intraspecific variability is high, and polytypic fish species are common in the diverse aquatic habitats of the region. For

  10. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture

    NARCIS (Netherlands)

    Brussaard, L.; Caron, P.; Campbell, B.; Lipper, L.; Mainka, S.; Rabbinge, R.; Didier, D.; Pulleman, M.M.

    2010-01-01

    Production ecology and conservation biology have long focused on providing the knowledge base for intensive food production and biodiversity conservation, respectively. With increasing global food insecurity and continuing biodiversity decline, we show that the largely separate development of these

  11. Potential biodiversity benefits from international programs to reduce carbon emissions from deforestation.

    Science.gov (United States)

    Siikamäki, Juha; Newbold, Stephen C

    2012-01-01

    Deforestation is the second largest anthropogenic source of carbon dioxide emissions and options for its reduction are integral to climate policy. In addition to providing potentially low cost and near-term options for reducing global carbon emissions, reducing deforestation also could support biodiversity conservation. However, current understanding of the potential benefits to biodiversity from forest carbon offset programs is limited. We compile spatial data on global forest carbon, biodiversity, deforestation rates, and the opportunity cost of land to examine biodiversity conservation benefits from an international program to reduce carbon emissions from deforestation. Our results indicate limited geographic overlap between the least-cost areas for retaining forest carbon and protecting biodiversity. Therefore, carbon-focused policies will likely generate substantially lower benefits to biodiversity than a more biodiversity-focused policy could achieve. These results highlight the need to systematically consider co-benefits, such as biodiversity in the design and implementation of forest conservation programs to support international climate policy.

  12. Free and open-access satellite data are key to biodiversity conservation

    NARCIS (Netherlands)

    Turner, W.; Rondinini, C.; Pettorelli, N.; Mora, B.; Leidner, A.K.; Szantoi, Z.; Buchanan, G.; Dech, S.; Dwyer, J.; Herold, M.; Koh, L.P.; Leimgruber, P.; Taubenboeck, H.; Wegmann, M.; Wikelski, M.; Woodcock, C.

    2015-01-01

    Satellite remote sensing is an important tool for monitoring the status of biodiversity and associated environmental parameters, including certain elements of habitats. However, satellite data are currently underused within the biodiversity research and conservation communities. Three factors have s

  13. The interdependence between biodiversity and socioeconomic variables on a local level: evidence for german counties

    OpenAIRE

    Münch, Angela; Völkl, Wolfgang

    2011-01-01

    This paper explores possible interdependence of biodiversity and several socioeconomic and political factors at the county level. It is aimed at the empirical identification of direct and indirect effects between biodiversity (loss) and their theoretical major impact factors. To date, research shows that in addition to geography, agriculture is one major determinant of biodiversity status. However, the impact of regional socioeconomic structures on biodiversity should not be underestimated. S...

  14. Biodiversity Risk and Opportunity Assessment in BAT Cooperative Tobacco-growing Areas

    Institute of Scientific and Technical Information of China (English)

    Long XU; Jingming WANG; Kun FENG; Yanfa CAI; Bin LI; Honghui YIN; Dafei LI; Lianchuan ZHOU; Ying MA; Gang WANG; Pengcheng LIU; Runtao LI; Changhua ZHOU; Ke YANG; Jian CHEN

    2016-01-01

    Using the method in Biodiversity Risk and Opportunity Assessment Handbook of British American Tobacco Biodiversity Partnership,we assess biodiversity risks and opportunities in BAT and China’s cooperative tobacco-growing areas. The assessment results indicate that there are 8 risks and 1 opportunity. Action and monitoring plans have been made for medium and high risks as well as opportunity,to reduce impact on biodiversity.

  15. Measurement Models of Forest Biodiversity Variation and Its Controlling Study in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to the evaluative data of forest biodiversity variation in China from 1973 to 1998, not only the gray model GM( 1,2), but also the status spatial characterization model with the optimal control model for forest biodiversity variation is developed by using some mathematic approaches and knowledge in economic cybernetics. Furthermore, the structural characteristics of forest biodiversity variation are analyzed. The paper points out that the variation of forest biodiversity is instable, but it ca...

  16. Cost Assessment of the Field Measurement of Biodiversity: a Farm-scale Case Study

    OpenAIRE

    Targetti, Stefano; Viaggi, Davide; Cuming, David

    2010-01-01

    Attention to the effects of agriculture on biodiversity is currently increasing. Yet the measurement of biodiversity is both time-consuming and costly. Considering the limited budgets available for biodiversity conservation, it is timely to focus on the cost analysis of biodiversity indicators in order to ensure the optimization of the scarce funds available. We present the cost analysis of operational data from the fieldwork efforts undertaken in the measurement of biodiver...

  17. Global effects of land use on local terrestrial biodiversity.

    Science.gov (United States)

    Newbold, Tim; Hudson, Lawrence N; Hill, Samantha L L; Contu, Sara; Lysenko, Igor; Senior, Rebecca A; Börger, Luca; Bennett, Dominic J; Choimes, Argyrios; Collen, Ben; Day, Julie; De Palma, Adriana; Díaz, Sandra; Echeverria-Londoño, Susy; Edgar, Melanie J; Feldman, Anat; Garon, Morgan; Harrison, Michelle L K; Alhusseini, Tamera; Ingram, Daniel J; Itescu, Yuval; Kattge, Jens; Kemp, Victoria; Kirkpatrick, Lucinda; Kleyer, Michael; Correia, David Laginha Pinto; Martin, Callum D; Meiri, Shai; Novosolov, Maria; Pan, Yuan; Phillips, Helen R P; Purves, Drew W; Robinson, Alexandra; Simpson, Jake; Tuck, Sean L; Weiher, Evan; White, Hannah J; Ewers, Robert M; Mace, Georgina M; Scharlemann, Jörn P W; Purvis, Andy

    2015-04-01

    Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

  18. Distributional (in)congruence of biodiversity-ecosystem functioning

    NARCIS (Netherlands)

    C. Mulder; A. Boit; S. Mori; J.A. Vonk; S.D. Dyer; L. Faggiano; S. Geisen; A.L. González; M. Kaspari; S. Lavorel; P.A. Marquet; A.G. Rossberg; R.W. Sterner; W. Voigt; D.H. Wall

    2012-01-01

    The majority of research on biodiversity-ecosystem functioning in laboratories has concentrated on a few traits, but there is increasing evidence from the field that functional diversity controls ecosystem functioning more often than does species number. Given the importance of traits as predictors

  19. The Biodiversity Community Action Project: An STS Investigation

    Science.gov (United States)

    Aidin, Amirshokoohi; Mahsa, Kazempour

    2010-01-01

    The Biodiversity Community Action Project is a stimulating and vigorous project that allows students to gain an in-depth understanding of the interconnection between organisms and their environments as well as the connection of science to their lives and society. It addresses key content standards in the National Science Education Standards and…

  20. Invertebrates: Revealing a Hidden World in the Year of Biodiversity

    Science.gov (United States)

    Sanders, Dawn

    2010-01-01

    Biodiversity means the variety of life in all its forms. It includes the variety of species and ecosystems in the world, and genetic variation. Invertebrates are one of the largest and most accessible groups of animals for primary children to study. In this article, the author explains why and how children should engage with the idea of…

  1. Biodiversity inhibits parasites: Broad evidence for the dilution effect.

    Science.gov (United States)

    Civitello, David J; Cohen, Jeremy; Fatima, Hiba; Halstead, Neal T; Liriano, Josue; McMahon, Taegan A; Ortega, C Nicole; Sauer, Erin Louise; Sehgal, Tanya; Young, Suzanne; Rohr, Jason R

    2015-07-14

    Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant-herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.

  2. Sample Course Material for Biodiversity and Sustainable Education

    Science.gov (United States)

    Erten, Sinan

    2015-01-01

    This study was done in a period when there are attempts to develop a framework for the sustainable development and sustainable education in order to emphasize the universal significance of biodiversity, sustainable development, and sustainable education. The research reported here is a case study carried out in the spring semester of 2012-2013…

  3. Biodiversity and its use at taunsa barrage wildlife sanctuary, Pakistan

    NARCIS (Netherlands)

    Bibi, F.; Ali, Z.; Qaisrani, S.N.; Shelly, S.Y.; Andleeb, S.

    2013-01-01

    This study determined the livelihood conditions of the peoples of three villages (Bait Qaimwala, Basti Allahwali and Jannu) and their dependency on biodiversity of Taunsa Barrage Wildlife Sanctuary, Pakistan from 2009 to 2011. For socio-economic status, Participatory Human Resource Interaction Appra

  4. Consequences of biodiversity loss for litter decomposition across biomes.

    Science.gov (United States)

    Handa, I Tanya; Aerts, Rien; Berendse, Frank; Berg, Matty P; Bruder, Andreas; Butenschoen, Olaf; Chauvet, Eric; Gessner, Mark O; Jabiol, Jérémy; Makkonen, Marika; McKie, Brendan G; Malmqvist, Björn; Peeters, Edwin T H M; Scheu, Stefan; Schmid, Bernhard; van Ruijven, Jasper; Vos, Veronique C A; Hättenschwiler, Stephan

    2014-05-08

    The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.

  5. Relating costs to the user value of farmland biodiversity measurements.

    Science.gov (United States)

    Targetti, S; Herzog, F; Geijzendorffer, I R; Pointereau, P; Viaggi, D

    2016-01-01

    The impact of agricultural management on global biodiversity highlights the need for farm-scale monitoring programmes capable of determining the performance of agriculture practices. Yet the identification of appropriate indicators is a challenging process and one that involves considering a number of different aspects and requirements. Besides the attention given to scientific effectiveness, relevant but less studied issues related to biodiversity measurements include the economic feasibility of monitoring programmes and the relevance of indicators for different end-users. In this paper, we combine an analytic assessment of costs and a stakeholder-based evaluation of the usefulness of a set of biodiversity-related parameters (habitat mapping, vegetation, bees, earthworms, spiders, and a farmer questionnaire) tested for scientific consistency in 12 European case studies and on more than 14,000 ha of farmland. The results point to the possibility of meeting the expectations of different end-users (administrators, farmers and consumers) with a common indicator set. Combining costs and usefulness also suggests the possibility of designing more efficient monitoring approaches involving private agencies and networks of volunteers and farmers for the field data collection at different stages of a monitoring programme. Although complex, such an approach would make it possible to enhance the effectiveness of available funds for farmland biodiversity monitoring.

  6. Why Go Native? Landscaping for Biodiversity and Sustainability Education

    Science.gov (United States)

    Kermath, Brian

    2007-01-01

    Purpose: The purpose of this paper is to illustrate that campus and urban landscaping has important connections to biodiversity conservation, perceptions of natural heritage, sense-of-place, ecological literacy and the role of campus landscapes in the larger community. It also aims to show how campus landscapes express values and perform as a…

  7. Biodiversity conservation in tropical agroecosystems: a new conservation paradigm.

    Science.gov (United States)

    Perfecto, Ivette; Vandermeer, John

    2008-01-01

    It is almost certainly the case that many populations have always existed as metapopulations, leading to the conclusion that local extinctions are common and normally balanced by migrations. This conclusion has major consequences for biodiversity conservation in fragmented tropical forests and the agricultural matrices in which they are embedded. Here we make the argument that the conservation paradigm that focuses on setting aside pristine forests while ignoring the agricultural landscape is a failed strategy in light of what is now conventional wisdom in ecology. Given the fragmented nature of most tropical ecosystems, agricultural landscapes should be an essential component of any conservation strategy. We review the literature on biodiversity in tropical agricultural landscapes and present evidence that many tropical agricultural systems have high levels of biodiversity (planned and associated). These systems represent, not only habitat for biodiversity, but also a high-quality matrix that permits the movement of forest organisms among patches of natural vegetation. We review a variety of agroecosystem types and conclude that diverse, low-input systems using agroecological principles are probably the best option for a high-quality matrix. Such systems are most likely to be constructed by small farmers with land titles, who, in turn, are normally the consequence of grassroots social movements. Therefore, the new conservation paradigm should incorporate a landscape approach in which small farmers, through their social organizations, work with conservationists to create a landscape matrix dominated by productive agroecological systems that facilitate interpatch migration while promoting a sustainable and dignified livelihood for rural communities.

  8. US Environmental Legislation and Biodiversity over the 20th Century

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    The U.S. Endangered Species Act is held up both as an example of strict legislation working to guard biodiversity preservation (Yaffee, 1982) and an uneconomical law that creates perverse incentives that may actually reduce such preservation (Brown and Shogren, 1998; Lueck & Michael, 2003; List e...

  9. Land Use Change Around Nature Reserves: Implications for Sustaining Biodiversity

    Science.gov (United States)

    Hansen, A. J.; Defries, R.; Curran, L.; Liu, J.; Reid, R.; Turner, B.

    2004-12-01

    The effects of land use change outside of reserves on biodiversity within reserves is not well studied. This paper draws on research from Yellowstone, East Africa, Yucatan, Borneo, and Wolong, China to examine land use effects on nature reserves. Objectives are: quantify rates of change in land use around reserves; examine consequences for biodiversity within the context of specific ecological mechanisms; and draw implications for regional management. Within each of the study regions, semi-natural habitats around nature reserves have been converted to agricultural, rural residential, or urban land uses. Rates vary from 0.2-0.4 %/yr in Yucatan, to 9.5 %/yr in Borneo. Such land use changes may be important because nature reserves are often parts of larger ecosystems that are defined by flows in energy, materials, and organisms. Land use outside of reserves may disrupt these flows and alter biodiversity within reserves. Ecological mechanisms that connect biodiversity to these land use changes include habitat size, ecological flows, crucial habitats, and edge effects. For example, the effective size of the East African study area has been reduced by 45% by human activities. Based on the species area relationship, this reduction in habitat area will lead to a loss of 14% of bird and mammal species. A major conclusion is that the viability of nature reserves can best be ensured by managing them in the context of the surrounding region. Knowledge of the ecological mechanisms by which land use influences nature reserves provides design criteria for this regional management.

  10. Interpreting Biodiversity: A Manual for Environmental Educators in the Tropics.

    Science.gov (United States)

    Domroese, Margret C.; Sterling, Eleanor J.

    This manual was developed for educators and natural resource managers who are establishing interpretive programs where biodiversity is the richest and most threatened. The manual contains five units which are based on the experiences of staff at the American Museum of Natural History and represent the key steps of designing an interpretation…

  11. Soil biodiversity: functions, threats and tools for policy makers

    NARCIS (Netherlands)

    Putten, van der W.H.; Mudgal, S.; Turbé, A.; Toni, de A.; Lavelle, P.; Benito, P.; Ruiz, N.

    2010-01-01

    Human societies rely on the vast diversity of benefits provided by nature, such as food, fibres, construction materials, clean water, clean air and climate regulation. All the elements required for these ecosystem services depend on soil, and soil biodiversity is the driving force behind their regul

  12. Deep-sea sponge grounds: Reservoirs of biodiversity

    NARCIS (Netherlands)

    Hogg, M.M.; Tendal, O.S.; Conway, K.W.; Pomponi, S.A.; van Soest, R.W.M.; Gutt, J.; Krautter, M.; Roberts, J.M.

    2010-01-01

    This report draws together scientific understanding of deep-water sponge grounds alongside the threats they face and ways in which they can be conserved. Beginning with a summary of research approaches, sponge biology and biodiversity, the report also gives up-to-date case studies of particular deep

  13. Prehistoric human impact on rainforest biodiversity in highland New Guinea.

    Science.gov (United States)

    Haberle, Simon G

    2007-02-28

    In the highlands of New Guinea, the development of agriculture as an indigenous innovation during the Early Holocene is considered to have resulted in rapid loss of forest cover, a decrease in forest biodiversity and increased land degradation over thousands of years. But how important is human activity in shaping the diversity of vegetation communities over millennial time-scales? An evaluation of the change in biodiversity of forest habitats through the Late Glacial transition to the present in five palaeoecological sites from highland valleys, where intensive agriculture is practised today, is presented. A detailed analysis of the longest and most continuous record from Papua New Guinea is also presented using available biodiversity indices (palynological richness and biodiversity indicator taxa) as a means of identifying changes in diversity. The analysis shows that the collapse of key forest habitats in the highland valleys is evident during the Mid - Late Holocene. These changes are best explained by the adoption of new land management practices and altered disturbance regimes associated with agricultural activity, though climate change may also play a role. The implications of these findings for ecosystem conservation and sustainability of agriculture in New Guinea are discussed.

  14. The neutral theory of biodiversity with random fission speciation

    NARCIS (Netherlands)

    Etienne, Rampal S.; Haegeman, Bart

    2011-01-01

    The neutral theory of biodiversity and biogeography emphasizes the importance of dispersal and speciation to macro-ecological diversity patterns. While the influence of dispersal has been studied quite extensively, the effect of speciation has not received much attention, even though it was already

  15. A decadal view of biodiversity informatics : challenges and priorities

    NARCIS (Netherlands)

    Hardisty, Alex; Roberts, Dave; Addink, Wouter; Aelterman, Bart; Agosti, Donat; Amaral-Zettler, Linda; Ariño, Arturo H; Arvanitidis, Christos; Backeljau, Thierry; Bailly, Nicolas; Belbin, Lee; Berendsohn, Walter; Bertrand, Nic; Caithness, Neil; Campbell, David; Cochrane, Guy; Conruyt, Noël; Culham, Alastair; Damgaard, Christian; Davies, Neil; Fady, Bruno; Faulwetter, Sarah; Feest, Alan; Field, Dawn; Garnier, Eric; Geser, Guntram; Gilbert, Jack; Grosche, [No Value; Grosser, David; Hardisty, Alex; Herbinet, Bénédicte; Hobern, Donald; Jones, Andrew; de Jong, Yde; King, David; Knapp, Sandra; Koivula, Hanna; Los, Wouter; Meyer, Chris; Morris, Robert A; Morrison, Norman; Morse, David; Obst, Matthias; Pafilis, Evagelos; Page, Larry M; Page, Roderic; Pape, Thomas; Parr, Cynthia; Paton, Alan; Patterson, David; Paymal, Elisabeth; Penev, Lyubomir; Pollet, Marc; Pyle, Richard; von Raab-Straube, Eckhard; Robert, Vincent; Roberts, Dave; Robertson, Tim; Rovellotti, Olivier; Saarenmaa, Hannu; Schalk, Peter; Schaminee, Joop; Schofield, Paul; Sier, Andy; Sierra, Soraya; Smith, Vince; van Spronsen, Edwin; Thornton-Wood, Simon; van Tienderen, Peter; van Tol, Jan; Tuama, Éamonn Ó; Uetz, Peter; Vaas, Lea; Vignes Lebbe, Régine; Vision, Todd; Vu, Duong; De Wever, Aaike; White, Richard; Willis, Kathy; Young, Fiona

    2013-01-01

    Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the

  16. A decadal view of biodiversity informatics: challenges and priorities

    NARCIS (Netherlands)

    Hardisty, A.; Roberts, D.; Addink, W.; Aelterman, B; Agosti, D.; Amaral-Zettler, L.; Ariño, A.H.; Arvanitidis, C.; Backeljau, T.; Bailly, N.; Belbin, L.; Berendsohn, W.; Bertrand, N.; Caithness, N.; Campbell, D.; Cochrane, G.; Conruyt, N.; Culham, A.; Damgaard, C.; Davies, N.; Fady, B.; Faulwetter, S.; Feest, A.; Field, D.; Garnier, E.; Geser, G.; Gilbert, J.; Grosche, B.; Grosser, D.; Herbinet, B.; Hobern, D.; Jones, A.; de Jong, Y.; King, D.; Knapp, S.; Koivula, H.; Los, W.; Meyer, C; Morris, R.A.; Morrison, N.; Morse, D.; Obst, M.; Pafilis, E.; Page, L.M.; Page, R.; Pape, T.; Parr, C.; Paton, A.; Patterson, D.; Paymal, E.; Penev, L.; Pollet, M.; Pyle, R.; von Raab-Straube, E.; Robert, V.; Robertson, T.; Rovellotti, O.; Saarenmaa, H.; Schalk, P.; Schaminee, J.; Schofield, P.; Sier, A.; Sierra, S.; Smith, V.; van Spronsen, E.; Thornton-Wood, S.; van Tienderen, P.; van Tol, J.; Tuama, É.Ó.; Uetz, P.; Vaas, L.; Vignes Lebbe, R.; Vision, T.; Vu, D.; De Wever, A.; White, R.; Willis, K.; Young, F.

    2013-01-01

    Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the

  17. The zero-sum assumption in neutral biodiversity theory

    NARCIS (Netherlands)

    Etienne, Rampal S.; Alonso, David; McKane, Alan J.

    2007-01-01

    The neutral theory of biodiversity as put forward by Hubbell in his 2001 monograph has received much criticism for its unrealistic simplifying assumptions. These are the assumptions of functional equivalence among different species (neutrality), the assumption of point mutation speciation, and the a

  18. Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture

    Science.gov (United States)

    Garcia, Maria Alice; Altieri, Miguel A.

    2005-01-01

    The potential for genetically modified (GM) crops to threaten biodiversity conservation and sustainable agriculture is substantial. Megadiverse countries and centers of origin and/or diversity of crop species are particularly vulnerable regions. The future of sustainable agriculture may be irreversibly jeopardized by contamination of in situ…

  19. Preliminary Assessment of Sponge Biodiversity on Saba Bank, Netherlands Antilles

    NARCIS (Netherlands)

    Thacker, R.W.; Díaz, M.C.; de Voogd, N.J.; van Soest, R.W.M.; Freeman, C.J.; Mobley, A.S.; LaPietra, J.; Cope, K.; McKenna, S.

    2010-01-01

    Background Saba Bank Atoll, Netherlands Antilles, is one of the three largest atolls on Earth and provides habitat for an extensive coral reef community. To improve our knowledge of this vast marine resource, a survey of biodiversity at Saba Bank included a multi-disciplinary team that sampled fishe

  20. Thresholds of logging intensity to maintain tropical forest biodiversity.

    Science.gov (United States)

    Burivalova, Zuzana; Sekercioğlu, Cağan Hakkı; Koh, Lian Pin

    2014-08-18

    Primary tropical forests are lost at an alarming rate, and much of the remaining forest is being degraded by selective logging. Yet, the impacts of logging on biodiversity remain poorly understood, in part due to the seemingly conflicting findings of case studies: about as many studies have reported increases in biodiversity after selective logging as have reported decreases. Consequently, meta-analytical studies that treat selective logging as a uniform land use tend to conclude that logging has negligible effects on biodiversity. However, selectively logged forests might not all be the same. Through a pantropical meta-analysis and using an information-theoretic approach, we compared and tested alternative hypotheses for key predictors of the richness of tropical forest fauna in logged forest. We found that the species richness of invertebrates, amphibians, and mammals decreases as logging intensity increases and that this effect varies with taxonomic group and continental location. In particular, mammals and amphibians would suffer a halving of species richness at logging intensities of 38 m(3) ha(-1) and 63 m(3) ha(-1), respectively. Birds exhibit an opposing trend as their total species richness increases with logging intensity. An analysis of forest bird species, however, suggests that this pattern is largely due to an influx of habitat generalists into heavily logged areas while forest specialist species decline. Our study provides a quantitative analysis of the nuanced responses of species along a gradient of logging intensity, which could help inform evidence-based sustainable logging practices from the perspective of biodiversity conservation.

  1. A National System to Map and Quantify Terrestrial Vertebrate Biodiversity

    Science.gov (United States)

    Biodiversity is crucial for the functioning of ecosystems and the products and services from which we transform natural assets of the Earth for human survival, security, and well-being. The ability to assess, report, map, and forecast the life support functions of ecosystems is a...

  2. Biodiversity, carbon stocks and community monitoring in traditional agroforestry practices

    DEFF Research Database (Denmark)

    Hartoyo, Adisti Permatasari Putri; Siregar, Iskandar Z.; Supriyanto;

    2016-01-01

    Traditional agroforestry practices in Berau, East Kalimantan, are suitable land use types to conserve that potentially support the implementation of REDD+. The objectives of this research are to assess biodiversity and carbon stock in various traditional agroforestry practices, also to determine...

  3. Impacts of climate change on the future of biodiversity.

    Science.gov (United States)

    Bellard, Céline; Bertelsmeier, Cleo; Leadley, Paul; Thuiller, Wilfried; Courchamp, Franck

    2012-04-01

    Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub-continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst-case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth.

  4. Young People's Views on the Importance of Conserving Biodiversity.

    Science.gov (United States)

    Grace, Marcus; Sharp, John

    2000-01-01

    Discusses the findings of a study of the views of 15 and 16 year-olds on the importance of biodiversity conservation. Reports general disapproval for human economic activities that might threaten wildlife with extinction, although significantly fewer boys than girls held this view. (Contains 16 references.) (Author/YDS)

  5. International cooperation for biodiversity conservation : an economic analysis

    NARCIS (Netherlands)

    Alvarado Quesada, I.

    2015-01-01

    Biodiversity decline poses significant threats to current and future generations. Although species extinction has been a natural process since the formation of Earth, recent rates of extinction are estimated to be from 100 to 1000 times larger when compared to fossil records. Almost all of the Earth

  6. Biodiversity, Factor Endowments and National Security: The Next Great Game?

    Science.gov (United States)

    2009-11-08

    CIBER , 47pp. 16 Dore, Mohammed H.I. and Webb, David, 2003. Valuing biodiversity: reality or mirage? Environmental Monitoring and...Scale Invariant growth, CIBER , 47pp. 47 Goettle, Richard J., Ho, Mun S., Jorgenson, Dale W., Slesnoick, Daniel T., Wilcoxen, Peter J., 2007. IGEM

  7. Poor prospects for avian biodiversity in Amazonian oil palm.

    Science.gov (United States)

    Lees, Alexander C; Moura, Nárgila G; de Almeida, Arlete Silva; Vieira, Ima C G

    2015-01-01

    Expansion of oil palm plantations across the humid tropics has precipitated massive loss of tropical forest habitats and their associated speciose biotas. Oil palm plantation monocultures have been identified as an emerging threat to Amazonian biodiversity, but there are no quantitative studies exploring the impact of these plantations on the biome's biota. Understanding these impacts is extremely important given the rapid projected expansion of oil palm cultivation in the basin. Here we investigate the biodiversity value of oil palm plantations in comparison with other dominant regional land-uses in Eastern Amazonia. We carried out bird surveys in oil palm plantations of varying ages, primary and secondary forests, and cattle pastures. We found that oil palm plantations retained impoverished avian communities with a similar species composition to pastures and agrarian land-uses and did not offer habitat for most forest-associated species, including restricted range species and species of conservation concern. On the other hand, the forests that the oil palm companies are legally obliged to protect hosted a relatively species-rich community including several globally-threatened bird species. We consider oil palm to be no less detrimental to regional biodiversity than other agricultural land-uses and that political pressure exerted by large landowners to allow oil palm to count as a substitute for native forest vegetation in private landholdings with forest restoration deficits would have dire consequences for regional biodiversity.

  8. Data-Intensive Science: A New Paradigm for Biodiversity Studies

    Science.gov (United States)

    Kelling, Steve; Hochachka, Wesley M.; Fink, Daniel; Riedewald, Mirek; Caruana, Rich; Ballard, Grant; Hooker, Giles

    2009-01-01

    The increasing availability of massive volumes of scientific data requires new synthetic analysis techniques to explore and identify interesting patterns that are otherwise not apparent. For biodiversity studies, a "data-driven" approach is necessary because of the complexity of ecological systems, particularly when viewed at large spatial and…

  9. Observations of Everyday Biodiversity: a New Perspective for Conservation?

    Directory of Open Access Journals (Sweden)

    Anne-Caroline Prevot-Julliard

    2012-12-01

    Full Text Available Public involvement is one of the keys to achieving biodiversity conservation goals. Increasing public involvement in conservation activities requires investigation into what makes people more aware of nature, especially in an ordinary and local context, in their everyday lives. Among the initiatives developed to increase the public's awareness of conservation issues and individual environmental practices, citizen-science programs are based on an invitation to observe and survey nature. In our study, we examined the consequences of participation in a participative citizen-science program that takes place in an everyday-life context on individuals' knowledge and beliefs about biodiversity. This program, the French Garden Butterflies Watch, is addressed to the non-scientifically literate public and is run by the French National Museum of Natural History (MNHN. We examined the ways increased knowledge or strengthened beliefs or ideas about biodiversity can foster pro-conservation attitudes and behavior. We explored how repeated interactions with nature influence the development of knowledge in this area, and how these repeated observations of biodiversity become integrated into complex cognitive processes over time and space. We showed that repeated observations of nature can increase individual knowledge and beliefs. Our results brought out three important conclusions: (1 conservation issues must be integrated into a wider network of social relationships; (2 observing everyday nature often makes people consider its functional and evolutionary characteristics; and (3 scientific knowledge seems necessary to help people to develop their own position on ecosystems.

  10. Does biodiversity of estuarine phytoplankton depend on hydrology?

    NARCIS (Netherlands)

    Ferreira, JG; Wolff, WJ; Simas, TC; Bricker, SB

    2005-01-01

    Phytoplankton growth in estuaries is controlled by factors such as flushing, salinity tolerance, light, nutrients and grazing. Here, we show that biodiversity of estuarine phytoplankton is related to flushing, and illustrate this for some European estuaries. The implications for the definition of re

  11. Compulsory purchase for biodiversity conservation in the Netherlands

    NARCIS (Netherlands)

    Van Straalen, F. M.; Korthals Altes, W. K.

    2014-01-01

    Policy instruments are the building blocks of land use policies. Instrumentation of policies relates to values. Compulsory purchase is a direct government instrument that may be an effective way to implement policies of biodiversity conservation and the allocation of land for recreational use. It is

  12. Cumulative human threats on fish biodiversity components in Tunisian waters

    Directory of Open Access Journals (Sweden)

    F. BEN RAIS LASRAM

    2014-06-01

    Full Text Available Human activities are increasingly impacting biodiversity. To improve conservation planning measures in an ecosystem-based management context, we need to explore how the effects of these activities interact with different biodiversity components. In this study, we used a semi-quantitative method to assess the cumulative impacts of human activities on three biodiversity components (species richness, phylogenetic diversity, and functional diversity in Tunisia’s exclusive economic zone. For each of the nine activities considered, we developed an understanding of their effects from local studies and the expert opinion of stakeholders with country-specific experience. We mapped the cumulative effects and the three biodiversity components and then assessed the degree to which these elements overlapped using an overlap index. This is the first time such an assessment has been made for Tunisia’s marine ecosystems and our assessment highlight the inappropriateness of current conservation measures. The results of this study have specific application for the prioritization of future management actions.

  13. [From biodiversity to biodiversification: a new economy of nature?].

    Science.gov (United States)

    Höhler, Sabine

    2014-03-01

    This paper explores the relations between economy and ecology in the last quarter of the 20th century with the example of biodiversity. From its definition in the 1980s, the concept of biodiversity responded not only to conservational concerns but also to hopes and demands of economic profitability. The paper argues that archival systems of inventorying and surveying nature, the biodiversity database and the biodiversity portfolio, changed the view on nature from a resource to an investment. The paper studies the alliances of ecologists and environmental economists in managing nature according to economic principles of successful asset management, "diversification", with the aim to distribute risk, minimize ecological loss and maximize overall ecosystem performance. Finally, the paper discusses the assumptions and the consequences of transferring principles from financial risk management to landscape management. How has the substitution of the existential values of nature by shareholder value affected the relations between ecology, environment, and ecosystem conservation? Who gains and who looses in exchanging natural capital and financial capital, yields, and profits?

  14. Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia

    Directory of Open Access Journals (Sweden)

    Jane Fromont

    2016-10-01

    Full Text Available This study assessed the biodiversity of sponges within the Integrated Marine and Coastal Regionalisation for Australia (IMCRA bioregions of the Pilbara using datasets amalgamated from the Western Australian Museum and the Atlas of Living Australia. The Pilbara accounts for a total of 1164 Linnean and morphospecies. A high level of “apparent endemism” was recorded with 78% of species found in only one of six bioregions, with less than 10% confirmed as widely distributed. The Ningaloo, Pilbara Nearshore and Pilbara Offshore bioregions are biodiversity hotspots (>250 species and are recognised as having the highest conservation value, followed by North West Shelf containing 232 species. Species compositions differed between bioregions, with those that are less spatially separated sharing more species. Notably, the North West Province bioregion (110 species exhibited the most distinct species composition, highlighting it as a unique habitat within the Pilbara. While sponge biodiversity is apparently high, incomplete sampling effort for the region was identified, with only two sampling events recorded for the Central West Transition bioregion. Furthermore, only 15% of records in the dataset are presently described (Linnean species, highlighting the continuing need for taxonomic expertise for the conservation and management of marine biodiversity resources.

  15. Can biodiversity, human wellbeing and sustainable development indicators be linked?

    Directory of Open Access Journals (Sweden)

    S.A. Mainka

    2010-12-01

    Full Text Available A mission to reduce the rate of loss of biodiversity as a contribution to poverty reduction was agreed as part of the Strategic Plan for the Convention on Biological Diversity, adopted by the Conference of the Parties in 2002. As 2010 draws to a close it is clear that this target will not be met. To continue and build on momentum generated by the 2010 target, the conservation community has been discussing a potential post-2010 framework that again includes explicit reference to the link between human wellbeing and conservation, and also considers the links with human wellbeing and sustainable development. Given this agreement, we reviewed several human wellbeing and sustainable development indicators compared to existing biodiversity status and trends indicators to determine if clear correlations can be found that could be used to track progress in a new framework. We undertook this review at both the global and continental levels. The indicators for protected area and forest cover showed significant positive correlation across all continents. We found a significant negative correlation between changes in protected area (PA cover and tonnage of greenhouse gas emissions released (GHGe between 1990 and 2005 for all the continents. At the global level we found no other correlation across the indicators reviewed. However, we found that correlations between the biodiversity and human wellbeing and sustainable development indicators varied across continents. As the only indicators for which global level correlations exist, we suggest that either protected area coverage or forest cover may be relevant biodiversity indicators for global analyses of biodiversity-human wellbeing or sustainable development relationships, and that the relationship between protected area cover and greenhouse gases could be one indicator for links between biodiversity and sustainable development. More research is needed to better understand factors involved in the

  16. Status of marine biodiversity of the China seas.

    Directory of Open Access Journals (Sweden)

    J Y Liu

    Full Text Available China's seas cover nearly 5 million square kilometers extending from the tropical to the temperate climate zones and bordering on 32,000 km of coastline, including islands. Comprehensive systematic study of the marine biodiversity within this region began in the early 1950s with the establishment of the Qingdao Marine Biological Laboratory of the Chinese Academy of Sciences. Since that time scientists have carried out intensive multidisciplinary research on marine life in the China seas and have recorded 22,629 species belonging to 46 phyla. The marine flora and fauna of the China seas are characterized by high biodiversity, including tropical and subtropical elements of the Indo-West Pacific warm-water fauna in the South and East China seas, and temperate elements of North Pacific temperate fauna mainly in the Yellow Sea. The southern South China Sea fauna is characterized by typical tropical elements paralleled with the Philippine-New Guinea-Indonesia Coral triangle typical tropical faunal center. This paper summarizes advances in studies of marine biodiversity in China's seas and discusses current research mainly on characteristics and changes in marine biodiversity, including the monitoring, assessment, and conservation of endangered species and particularly the strengthening of effective management. Studies of (1 a tidal flat in a semi-enclosed embayment, (2 the impact of global climate change on a cold-water ecosystem, (3 coral reefs of Hainan Island and Xisha-Nansha atolls, (4 mangrove forests of the South China Sea, (5 a threatened seagrass field, and (6 an example of stock enhancement practices of the Chinese shrimp fishery are briefly introduced. Besides the overexploitation of living resources (more than 12.4 million tons yielded in 2007, the major threat to the biodiversity of the China seas is environmental deterioration (pollution, coastal construction, particularly in the brackish waters of estuarine environments, which are

  17. Status of marine biodiversity of the China seas.

    Science.gov (United States)

    Liu, J Y

    2013-01-01

    China's seas cover nearly 5 million square kilometers extending from the tropical to the temperate climate zones and bordering on 32,000 km of coastline, including islands. Comprehensive systematic study of the marine biodiversity within this region began in the early 1950s with the establishment of the Qingdao Marine Biological Laboratory of the Chinese Academy of Sciences. Since that time scientists have carried out intensive multidisciplinary research on marine life in the China seas and have recorded 22,629 species belonging to 46 phyla. The marine flora and fauna of the China seas are characterized by high biodiversity, including tropical and subtropical elements of the Indo-West Pacific warm-water fauna in the South and East China seas, and temperate elements of North Pacific temperate fauna mainly in the Yellow Sea. The southern South China Sea fauna is characterized by typical tropical elements paralleled with the Philippine-New Guinea-Indonesia Coral triangle typical tropical faunal center. This paper summarizes advances in studies of marine biodiversity in China's seas and discusses current research mainly on characteristics and changes in marine biodiversity, including the monitoring, assessment, and conservation of endangered species and particularly the strengthening of effective management. Studies of (1) a tidal flat in a semi-enclosed embayment, (2) the impact of global climate change on a cold-water ecosystem, (3) coral reefs of Hainan Island and Xisha-Nansha atolls, (4) mangrove forests of the South China Sea, (5) a threatened seagrass field, and (6) an example of stock enhancement practices of the Chinese shrimp fishery are briefly introduced. Besides the overexploitation of living resources (more than 12.4 million tons yielded in 2007), the major threat to the biodiversity of the China seas is environmental deterioration (pollution, coastal construction), particularly in the brackish waters of estuarine environments, which are characterized by

  18. Recent trends in local-scale marine biodiversity reflect community structure and human impacts

    NARCIS (Netherlands)

    Elahi, Robin; O'Connor, Mary I; Byrnes, Jarrett E K; Dunic, Jillian; Eriksson, Britas Klemens; Hensel, Marc J S; Kearns, Patrick J

    2015-01-01

    The modern biodiversity crisis reflects global extinctions and local introductions. Human activities have dramatically altered rates and scales of processes that regulate biodiversity at local scales [1-7]. Reconciling the threat of global biodiversity loss [2, 4, 6-9] with recent evidence of stabil

  19. Biodiversity Conservation through Environmental Education for Sustainable Development--A Case Study from Puducherry, India

    Science.gov (United States)

    Ramadoss, Alexandar; Poyya Moli, Gopalsamy

    2011-01-01

    Promoting students commitment to protect local biodiversity is an important goal of education for sustainable development in India and elsewhere. The main focus of the biodiversity education was to create knowledge, interest and necessary skills to solve various biodiversity problems with reference to the local context. In order to develop the…

  20. 77 FR 6820 - Proposed Information Collection; Comment Request: Creating Stewardship Through Biodiversity...

    Science.gov (United States)

    2012-02-09

    ... Biodiversity Discovery in National Parks AGENCY: National Park Service (NPS), Interior. ACTION: Notice; request... of Biodiversity Discovery efforts. To comply with the Paperwork Reduction Act of 1995 and as a part...). SUPPLEMENTARY INFORMATION: I. Abstract Biodiversity Discovery refers to a variety of efforts to discover...

  1. 78 FR 19353 - Biodiversity Beyond National Jurisdiction; Notice of Public Meeting

    Science.gov (United States)

    2013-03-29

    ... Biodiversity Beyond National Jurisdiction; Notice of Public Meeting ACTION: Notice of public meeting. SUMMARY... biodiversity in areas beyond national jurisdiction. DATES: The public meeting will be held on April 23, 2013... negotiations on marine biodiversity beyond national jurisdiction, such as the meeting of the UN BBNJ...

  2. Biodiversity in School Grounds: Auditing, Monitoring and Managing an Action Plan

    Science.gov (United States)

    Mansell, Michelle

    2010-01-01

    The idea of using site biodiversity action plans to introduce biodiversity management initiatives into school grounds is outlined. Selected parts of a case study, involving the use of such an action plan to record, monitor and plan for biodiversity on a university campus, are described and ideas for applying a similar plan to a school setting are…

  3. Experiencing biodiversity as a bridge over the science-society communication gap.

    Science.gov (United States)

    Meinard, Yves; Quétier, Fabien

    2014-06-01

    Drawing on the idea that biodiversity is simply the diversity of living things, and that everyone knows what diversity and living things mean, most conservation professionals eschew the need to explain the many complex ways in which biodiversity is understood in science. On many biodiversity-related issues, this lack of clarity leads to a communication gap between science and the general public, including decision makers who must design and implement biodiversity policies. Closing this communication gap is pivotal to the ability of science to inform sound environmental decision making. To address this communication gap, we propose a surrogate of biodiversity for communication purposes that captures the scientific definition of biodiversity yet can be understood by nonscientists; that is, biodiversity as a learning experience. The prerequisites of this or any other biodiversity communication surrogate are that it should have transdisciplinary relevance; not be measurable; be accessible to a wide audience; be usable to translate biodiversity issues; and understandably encompass biodiversity concepts. Biodiversity as a learning experience satisfies these prerequisites and is philosophically robust. More importantly, it can effectively contribute to closing the communication gap between biodiversity science and society at large.

  4. Biodiversity and ecosystem services science for a sustainable planet: The DIVERSITAS vision for 2012-20 .

    NARCIS (Netherlands)

    Larigauderie, A.; Prieur-Richard, A.; Mace, G.M.; Lonsdale, M.; Brussaard, L.; Pulleman, M.M.

    2012-01-01

    DIVERSITAS, the international programme on biodiversity science, is releasing a strategic vision presenting scientific challenges for the next decade of research on biodiversity and ecosystem services: "Biodiversity and Ecosystem Services Science for a Sustainable Planet". This new vision is a respo

  5. Enhancing the Biodiversity of Ditches in Intensively Managed UK Farmland.

    Science.gov (United States)

    Shaw, Rosalind F; Johnson, Paul J; Macdonald, David W; Feber, Ruth E

    2015-01-01

    Drainage ditches, either seasonally flooded or permanent, are commonly found on intensively managed lowland farmland in the UK. They are potentially important for wetland biodiversity but, despite their ubiquity, information on their biodiversity and management in the wider countryside is scarce. We surveyed 175 ditches for their physical and chemical characteristics, spatial connectivity, plant communities and aquatic invertebrates in an area of intensively managed farmland in Oxfordshire, UK and collected information on ditch management from farmer interviews. Water depth and shade had a small impact on the diversity of plant and invertebrate communities in ditches. Increased shade over the ditch channel resulted in reduced taxonomic richness of both channel vegetation and aquatic invertebrates and channel vegetation cover was lower at shaded sites. Invertebrate taxonomic richness was higher when water was deeper. Spatial connectivity had no detectable impact on the aquatic invertebrate or plant communities found in ditches. The number of families within the orders Ephemeroptera, Plecoptera and Trichoptera (EPT), which contain many pollution-sensitive species, declined with decreasing pH of ditch water. As time since dredging increased, the number of EPT families increased in permanent ditches but decreased in temporary ditches. Whether or not a ditch was in an agri-environment scheme had little impact on the reported management regime or biodiversity value of the ditch. Measures for increasing the amount of water in ditches, by increasing the water depth or promoting retention of water in ditches, could increase the biodiversity value of ditches in agricultural land. Some temporary ditches for specialised species should be retained. Reducing the amount of shade over narrow ditches by managing adjacent hedgerows is also likely to increase the species diversity of plant and invertebrate communities within the ditch. We recommend that to preserve or enhance the

  6. Current and future patterns of global marine mammal biodiversity.

    Science.gov (United States)

    Kaschner, Kristin; Tittensor, Derek P; Ready, Jonathan; Gerrodette, Tim; Worm, Boris

    2011-01-01

    Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available.

  7. Group decisions in biodiversity conservation: implications from game theory.

    Directory of Open Access Journals (Sweden)

    David M Frank

    Full Text Available BACKGROUND: Decision analysis and game theory have proved useful tools in various biodiversity conservation planning and modeling contexts. This paper shows how game theory may be used to inform group decisions in biodiversity conservation scenarios by modeling conflicts between stakeholders to identify Pareto-inefficient Nash equilibria. These are cases in which each agent pursuing individual self-interest leads to a worse outcome for all, relative to other feasible outcomes. Three case studies from biodiversity conservation contexts showing this feature are modeled to demonstrate how game-theoretical representation can inform group decision-making. METHODOLOGY AND PRINCIPAL FINDINGS: The mathematical theory of games is used to model three biodiversity conservation scenarios with Pareto-inefficient Nash equilibria: (i a two-agent case involving wild dogs in South Africa; (ii a three-agent raptor and grouse conservation scenario from the United Kingdom; and (iii an n-agent fish and coral conservation scenario from the Philippines. In each case there is reason to believe that traditional mechanism-design solutions that appeal to material incentives may be inadequate, and the game-theoretical analysis recommends a resumption of further deliberation between agents and the initiation of trust--and confidence--building measures. CONCLUSIONS AND SIGNIFICANCE: Game theory can and should be used as a normative tool in biodiversity conservation contexts: identifying scenarios with Pareto-inefficient Nash equilibria enables constructive action in order to achieve (closer to optimal conservation outcomes, whether by policy solutions based on mechanism design or otherwise. However, there is mounting evidence that formal mechanism-design solutions may backfire in certain cases. Such scenarios demand a return to group deliberation and the creation of reciprocal relationships of trust.

  8. Current and future patterns of global marine mammal biodiversity.

    Directory of Open Access Journals (Sweden)

    Kristin Kaschner

    Full Text Available Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available.

  9. The forest biodiversity artery: towards forest management for saproxylic conservation

    Directory of Open Access Journals (Sweden)

    Mason F

    2016-04-01

    Full Text Available One of the objectives of forest conservation is the set aside of unharvested areas. However, the fragmentation and lack of connectivity of protected areas make the integration of conservation measures in productive forests essential. Strategies to integrate conservation of saproxylic biodiversity in forest management have been developed, but often considering only specific aspects or remaining preliminary otherwise. As the impact of climate change and anthropogenic stresses increases, the development and the synthesis of this approach is crucial. We reviewed the key literature on forest management for biodiversity conservation, integrating forest science perspective to provide a practical management framework. Our goal is to present a management framework that could contribute to the effective preservation of forest insect biodiversity at the landscape scale, without high economic efforts, and addressing the conflicts that still jeopardize sustainable forest management. The results of our review support the creation of micro-reserves inside productive forests, to support large reserves in landscape conservation strategies. Micro-reserves increase the resilience of forest ecosystems to anthropogenic disturbances, through the development of a heterogeneous structure, maximizing microhabitat availability. Modeling forest management and harvest on local natural disturbance would extend the benefits of spatio-temporal heterogeneity in productive forests. Variable retention harvest systems, applied at the landscape scale, are a feasible and adaptable strategy to preserve and increase biodiversity, safeguarding structural legacies such as senescent trees and deadwood inside the productive matrix. The operational shift, from the stand to the forest landscape, is fundamental to extend the benefits of conservation measures. The Forest Biodiversity Artery, composed by several micro-reserves or îlots de senescence, connected by corridors of habitat trees

  10. Biodiversity, Urban Areas, and Agriculture: Locating Priority Ecoregions for Conservation

    Directory of Open Access Journals (Sweden)

    Taylor Ricketts

    2003-12-01

    Full Text Available Urbanization and agriculture are two of the most important threats to biodiversity worldwide. The intensities of these land-use phenomena, however, as well as levels of biodiversity itself, differ widely among regions. Thus, there is a need to develop a quick but rigorous method of identifying where high levels of human threats and biodiversity coincide. These areas are clear priorities for biodiversity conservation. In this study, we combine distribution data for eight major plant and animal taxa (comprising over 20,000 species with remotely sensed measures of urban and agricultural land use to assess conservation priorities among 76 terrestrial ecoregions in North America. We combine the species data into overall indices of richness and endemism. We then plot each of these indices against the percent cover of urban and agricultural land in each ecoregion, resulting in four separate comparisons. For each comparison, ecoregions that fall above the 66th quantile on both axes are identified as priorities for conservation. These analyses yield four "priority sets" of 6-16 ecoregions (8-21% of the total number where high levels of biodiversity and human land use coincide. These ecoregions tend to be concentrated in the southeastern United States, California, and, to a lesser extent, the Atlantic coast, southern Texas, and the U.S. Midwest. Importantly, several ecoregions are members of more than one priority set and two ecoregions are members of all four sets. Across all 76 ecoregions, urban cover is positively correlated with both species richness and endemism. Conservation efforts in densely populated areas therefore may be equally important (if not more so as preserving remote parks in relatively pristine regions.

  11. Averting biodiversity collapse in tropical forest protected areas.

    Science.gov (United States)

    Laurance, William F; Useche, D Carolina; Rendeiro, Julio; Kalka, Margareta; Bradshaw, Corey J A; Sloan, Sean P; Laurance, Susan G; Campbell, Mason; Abernethy, Kate; Alvarez, Patricia; Arroyo-Rodriguez, Victor; Ashton, Peter; Benítez-Malvido, Julieta; Blom, Allard; Bobo, Kadiri S; Cannon, Charles H; Cao, Min; Carroll, Richard; Chapman, Colin; Coates, Rosamond; Cords, Marina; Danielsen, Finn; De Dijn, Bart; Dinerstein, Eric; Donnelly, Maureen A; Edwards, David; Edwards, Felicity; Farwig, Nina; Fashing, Peter; Forget, Pierre-Michel; Foster, Mercedes; Gale, George; Harris, David; Harrison, Rhett; Hart, John; Karpanty, Sarah; Kress, W John; Krishnaswamy, Jagdish; Logsdon, Willis; Lovett, Jon; Magnusson, William; Maisels, Fiona; Marshall, Andrew R; McClearn, Deedra; Mudappa, Divya; Nielsen, Martin R; Pearson, Richard; Pitman, Nigel; van der Ploeg, Jan; Plumptre, Andrew; Poulsen, John; Quesada, Mauricio; Rainey, Hugo; Robinson, Douglas; Roetgers, Christiane; Rovero, Francesco; Scatena, Frederick; Schulze, Christian; Sheil, Douglas; Struhsaker, Thomas; Terborgh, John; Thomas, Duncan; Timm, Robert; Urbina-Cardona, J Nicolas; Vasudevan, Karthikeyan; Wright, S Joseph; Arias-G, Juan Carlos; Arroyo, Luzmila; Ashton, Mark; Auzel, Philippe; Babaasa, Dennis; Babweteera, Fred; Baker, Patrick; Banki, Olaf; Bass, Margot; Bila-Isia, Inogwabini; Blake, Stephen; Brockelman, Warren; Brokaw, Nicholas; Brühl, Carsten A; Bunyavejchewin, Sarayudh; Chao, Jung-Tai; Chave, Jerome; Chellam, Ravi; Clark, Connie J; Clavijo, José; Congdon, Robert; Corlett, Richard; Dattaraja, H S; Dave, Chittaranjan; Davies, Glyn; Beisiegel, Beatriz de Mello; da Silva, Rosa de Nazaré Paes; Di Fiore, Anthony; Diesmos, Arvin; Dirzo, Rodolfo; Doran-Sheehy, Diane; Eaton, Mitchell; Emmons, Louise; Estrada, Alejandro; Ewango, Corneille; Fedigan, Linda; Feer, François; Fruth, Barbara; Willis, Jacalyn Giacalone; Goodale, Uromi; Goodman, Steven; Guix, Juan C; Guthiga, Paul; Haber, William; Hamer, Keith; Herbinger, Ilka; Hill, Jane; Huang, Zhongliang; Sun, I Fang; Ickes, Kalan; Itoh, Akira; Ivanauskas, Natália; Jackes, Betsy; Janovec, John; Janzen, Daniel; Jiangming, Mo; Jin, Chen; Jones, Trevor; Justiniano, Hermes; Kalko, Elisabeth; Kasangaki, Aventino; Killeen, Timothy; King, Hen-biau; Klop, Erik; Knott, Cheryl; Koné, Inza; Kudavidanage, Enoka; Ribeiro, José Lahoz da Silva; Lattke, John; Laval, Richard; Lawton, Robert; Leal, Miguel; Leighton, Mark; Lentino, Miguel; Leonel, Cristiane; Lindsell, Jeremy; Ling-Ling, Lee; Linsenmair, K Eduard; Losos, Elizabeth; Lugo, Ariel; Lwanga, Jeremiah; Mack, Andrew L; Martins, Marlucia; McGraw, W Scott; McNab, Roan; Montag, Luciano; Thompson, Jo Myers; Nabe-Nielsen, Jacob; Nakagawa, Michiko; Nepal, Sanjay; Norconk, Marilyn; Novotny, Vojtech; O'Donnell, Sean; Opiang, Muse; Ouboter, Paul; Parker, Kenneth; Parthasarathy, N; Pisciotta, Kátia; Prawiradilaga, Dewi; Pringle, Catherine; Rajathurai, Subaraj; Reichard, Ulrich; Reinartz, Gay; Renton, Katherine; Reynolds, Glen; Reynolds, Vernon; Riley, Erin; Rödel, Mark-Oliver; Rothman, Jessica; Round, Philip; Sakai, Shoko; Sanaiotti, Tania; Savini, Tommaso; Schaab, Gertrud; Seidensticker, John; Siaka, Alhaji; Silman, Miles R; Smith, Thomas B; de Almeida, Samuel Soares; Sodhi, Navjot; Stanford, Craig; Stewart, Kristine; Stokes, Emma; Stoner, Kathryn E; Sukumar, Raman; Surbeck, Martin; Tobler, Mathias; Tscharntke, Teja; Turkalo, Andrea; Umapathy, Govindaswamy; van Weerd, Merlijn; Rivera, Jorge Vega; Venkataraman, Meena; Venn, Linda; Verea, Carlos; de Castilho, Carolina Volkmer; Waltert, Matthias; Wang, Benjamin; Watts, David; Weber, William; West, Paige; Whitacre, David; Whitney, Ken; Wilkie, David; Williams, Stephen; Wright, Debra D; Wright, Patricia; Xiankai, Lu; Yonzon, Pralad; Zamzani, Franky

    2012-09-13

    The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world’s major tropical regions. Our analysis reveals great variation in reserve ‘health’: about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.

  12. Comparing wildlife habitat and biodiversity across green roof type

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, R.R. [Oklahoma Univ., Tulsa, OK (United States). Dept. of Landscape Architecture

    2007-07-01

    Green roofs represent restorative practices within human dominated ecosystems. They create habitat, increase local biodiversity, and restore ecosystem function. Cities are now promoting this technology as a part of mitigation for the loss of local habitat, making the green roof necessary in sustainable development. While most green roofs create some form of habitat for local and migratory fauna, some systems are designed to provide specific habitat for species of concern. Despite this, little is actually known about the wildlife communities inhabiting green roofs. Only a few studies have provided broad taxa descriptions across a range of green roof habitats, and none have attempted to measure the biodiversity across green roof class. Therefore, this study examined two different vegetated roof systems representative of North America. They were constructed under alternative priorities such as energy, stormwater and aesthetics. The wildlife community appears to be a result of the green roof's physical composition. Wildlife community composition and biodiversity is expected be different yet comparable between the two general types of green roofs, known as extensive and intensive. This study recorded the community composition found in the two classes of ecoroofs and assessed biodiversity and similarity at the community and group taxa levels of insects, spiders and birds. Renyi family of diversity indices were used to compare the communities. They were further described through indices and ratios such as Shannon's, Simpson's, Sorenson and Morsita's. In general, community biodiversity was found to be slightly higher in the intensive green roof than the extensive green roof. 26 refs., 4 tabs., 4 figs.

  13. Assessing the Cost of Global Biodiversity and Conservation Knowledge.

    Science.gov (United States)

    Juffe-Bignoli, Diego; Brooks, Thomas M; Butchart, Stuart H M; Jenkins, Richard B; Boe, Kaia; Hoffmann, Michael; Angulo, Ariadne; Bachman, Steve; Böhm, Monika; Brummitt, Neil; Carpenter, Kent E; Comer, Pat J; Cox, Neil; Cuttelod, Annabelle; Darwall, William R T; Di Marco, Moreno; Fishpool, Lincoln D C; Goettsch, Bárbara; Heath, Melanie; Hilton-Taylor, Craig; Hutton, Jon; Johnson, Tim; Joolia, Ackbar; Keith, David A; Langhammer, Penny F; Luedtke, Jennifer; Nic Lughadha, Eimear; Lutz, Maiko; May, Ian; Miller, Rebecca M; Oliveira-Miranda, María A; Parr, Mike; Pollock, Caroline M; Ralph, Gina; Rodríguez, Jon Paul; Rondinini, Carlo; Smart, Jane; Stuart, Simon; Symes, Andy; Tordoff, Andrew W; Woodley, Stephen; Young, Bruce; Kingston, Naomi

    2016-01-01

    Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US$160 million (range: US$116-204 million), plus 293 person-years of volunteer time (range: 278-308 person-years) valued at US$ 14 million (range US$12-16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013) is US$6.5 million in total (range: US$6.2-6.7 million). We estimated that an additional US$114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US$12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision-making for

  14. Compensating biodiversity loss : Dutch companies’ experience with biodiversity compensation, including their supply chain : the ‘BioCom’ project

    NARCIS (Netherlands)

    Bie, de S.; Schaick, van J.

    2011-01-01

    Compensation for damage to biodiversity is a relatively new topic in the business environment. Most private sector companies dealing with compensation do so because of a legal obligation. Companies are increasingly becoming aware, though, that our welfare and well-being depend on healthy ecosystems

  15. A new system for understanding the biodiversity in different nature reserves:capacity,connectivity and quality of biodiversity

    Institute of Scientific and Technical Information of China (English)

    Zhenji LI; Jiakuan CHEN; Yunqiu RUAN; Ying CHANG; Wen WE; Luzhen CHEN; Dongliang ZHOU

    2009-01-01

    In this paper,we propose a new system for understanding the biodiversity in different conservation areas.It includes three aspects:the capacity,the connectivity and the quality.The capacity refers to the numbers of biodiversity,including absolute and relative richness of the vegetation types Nv and Dv = (Nv-1)/lnA,species numbers S and richness of species dGI = (S- 1)/lnA,and germ plasm resources within a nature reserve,and also the potential biological living space offered by the natural resource.It comprises the total biological resources in a nature reserve.The connectivity refers to the flux of biodiversity,including similarity and connected status of the vegetation types SILi = 2z/(x + y) and species numbers SIc = 2z/(x + y) among different nature reserves.The quality refers to the stability of biodiversity,including relative species richness index RSLi = d/dmax,relative vegetation richness index RVLi =Dv/Dmaxv,fastness to invasion species fLi = 1-Si/St,weighted values,representativeness and vulnerability of special vegetations,special species,CITES species and rare species as the protected targets.

  16. Biodiversity, climate change and complexity: An opportunity for securing co-benefits?

    Energy Technology Data Exchange (ETDEWEB)

    Roe, Dilys

    2006-10-15

    Climate change and biodiversity loss are both major environmental concerns, yet the links between them often go unrecognised. Not only does the science of climate change and biodiversity share similar characteristics, but climate change both affects, and is affected by biodiversity. Diversity confers far greater resilience on natural systems, thus reducing their vulnerability – and the vulnerability of the people that depend upon them – to climate change. Yet climate adaptation and mitigation strategies that are blind to biodiversity can undermine this natural and social resilience. Ignoring the links between biodiversity and climate risks exacerbates the problems associated with climate change and represents a missed opportunity for maximising co-benefits.

  17. From sea to sea: Canada's three oceans of biodiversity.

    Directory of Open Access Journals (Sweden)

    Philippe Archambault

    Full Text Available Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea, and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to

  18. Spatially explicit analyses of gastropod biodiversity in ancient Lake Ohrid

    Directory of Open Access Journals (Sweden)

    T. Hauffe

    2010-07-01

    Full Text Available Spatial heterogeneity of biodiversity arises from evolutionary processes, constraints of environmental factors and the interaction of communities. The quality of such spatial analyses of biodiversity is improved by (i utilizing study areas with well defined physiogeographical boundaries, (ii limiting the impact of widespread species, and (iii using taxa with heterogeneous distributions. These conditions are typically met by ecosystems such as oceanic islands or ancient lakes and their biota. While research on ancient lakes has contributed significantly to our understanding of evolutionary processes, statistically sound studies of spatial variation of extant biodiversity have been hampered by the frequently vast size of ancient lakes, their limited accessibility, and the lack of infrastructure around them. The small European ancient Lake Ohrid provides a rare opportunity for such a reliable spatial study. The comprehensive horizontal and vertical sampling of a species-rich taxon, the Gastropoda, presented here, revealed interesting patterns of biodiversity, which, in part, have not been shown before for other ancient lakes.

    In a total of 224 locations throughout the Ohrid Basin, representatives of 68 gastropod species with 50 of them being endemic (=73.5% could be reported. The spatial distribution of these species shows the following characteristics:

    (i within Lake Ohrid, the most frequent species are endemic taxa with a wide depth range, (ii widespread species (i.e. those occurring throughout the Balkans or beyond are rare and mainly occur in the upper layer of the lake, (iii while the total number of species decreases with water depth, the share of endemics increases, (iv the deeper layers of Lake Ohrid appear to have a higher spatial homogeneity of biodiversity and related environmental factors, (v biotic interaction due to possible spillover effects may contribute to the establishment of hotspots, and (vi eco

  19. The potential for biodiversity offsetting to fund effective invasive species control.

    Science.gov (United States)

    Norton, David A; Warburton, Bruce

    2015-02-01

    Compensating for biodiversity losses in 1 location by conserving or restoring biodiversity elsewhere (i.e., biodiversity offsetting) is being used increasingly to compensate for biodiversity losses resulting from development. We considered whether a form of biodiversity offsetting, enhancement offsetting (i.e., enhancing the quality of degraded natural habitats through intensive ecological management), can realistically secure additional funding to control biological invaders at a scale and duration that results in enhanced biodiversity outcomes. We suggest that biodiversity offsetting has the potential to enhance biodiversity values through funding of invasive species control, but it needs to meet 7 key conditions: be technically possible to reduce invasive species to levels that enhance native biodiversity; be affordable; be sufficiently large to compensate for the impact; be adaptable to accommodate new strategic and tactical developments while not compromising biodiversity outcomes; acknowledge uncertainties associated with managing pests; be based on an explicit risk assessment that identifies the cost of not achieving target outcomes; and include financial mechanisms to provide for in-perpetuity funding. The challenge then for conservation practitioners, advocates, and policy makers is to develop frameworks that allow for durable and effective partnerships with developers to realize the full potential of enhancement offsets, which will require a shift away from traditional preservation-focused approaches to biodiversity management.

  20. The relationship among biodiversity, governance, wealth, and scientific capacity at a country level: Disaggregation and prioritization.

    Science.gov (United States)

    Lira-Noriega, Andrés; Soberón, Jorge

    2015-09-01

    At a global level, the relationship between biodiversity importance and capacity to manage it is often assumed to be negative, without much differentiation among the more than 200 countries and territories of the world. We examine this relationship using a database including terrestrial biodiversity, wealth and governance indicators for most countries. From these, principal components analysis was used to construct aggregated indicators at global and regional scales. Wealth, governance, and scientific capacity represent different skills and abilities in relation to biodiversity importance. Our results show that the relationship between biodiversity and the different factors is not simple: in most regions wealth and capacity varies positively with biodiversity, while governance vary negatively with biodiversity. However, these trends, to a certain extent, are concentrated in certain groups of nations and outlier countries. We discuss our results in the context of collaboration and joint efforts among biodiversity-rich countries and foreign agencies.

  1. Biodiversity Indicators for Sustainability Evaluation of Conventional and Organic Agro-ecosystems

    Directory of Open Access Journals (Sweden)

    Concetta Vazzana

    2007-06-01

    Full Text Available Previous studies suggest widespread positive responses of biodiversity to organic farming. However, the effect of organic farming management on biodiversity over time needs to be better understood and this paper aims to compare agricultural biodiversity in a long-term experiment including three different agroecosystem management patterns (old organic, young organic and conventional. The level of agroecosystem sustainability related to plants has been assessed both for the structural and the associated biodiversity, using biodiversity Indicators. The data collected in three years (2003-2005 show that the system under organic agriculture management is better than conventional one for every indicator and it improves each aspect over the time. This trend holds especially for the associated biodiversity while the planned biodiversity can still be improved.

  2. Stochastic properties of generalised Yule models, with biodiversity applications.

    Science.gov (United States)

    Gernhard, Tanja; Hartmann, Klaas; Steel, Mike

    2008-11-01

    The Yule model is a widely used speciation model in evolutionary biology. Despite its simplicity many aspects of the Yule model have not been explored mathematically. In this paper, we formalise two analytic approaches for obtaining probability densities of individual branch lengths of phylogenetic trees generated by the Yule model. These methods are flexible and permit various aspects of the trees produced by Yule models to be investigated. One of our methods is applicable to a broader class of evolutionary processes, namely the Bellman-Harris models. Our methods have many practical applications including biodiversity and conservation related problems. In this setting the methods can be used to characterise the expected rate of biodiversity loss for Yule trees, as well as the expected gain of including the phylogeny in conservation management. We briefly explore these applications.

  3. Assemblage time series reveal biodiversity change but not systematic loss.

    Science.gov (United States)

    Dornelas, Maria; Gotelli, Nicholas J; McGill, Brian; Shimadzu, Hideyasu; Moyes, Faye; Sievers, Caya; Magurran, Anne E

    2014-04-18

    The extent to which biodiversity change in local assemblages contributes to global biodiversity loss is poorly understood. We analyzed 100 time series from biomes across Earth to ask how diversity within assemblages is changing through time. We quantified patterns of temporal α diversity, measured as change in local diversity, and temporal β diversity, measured as change in community composition. Contrary to our expectations, we did not detect systematic loss of α diversity. However, community composition changed systematically through time, in excess of predictions from null models. Heterogeneous rates of environmental change, species range shifts associated with climate change, and biotic homogenization may explain the different patterns of temporal α and β diversity. Monitoring and understanding change in species composition should be a conservation priority.

  4. On the decline of biodiversity due to area loss.

    Science.gov (United States)

    Keil, Petr; Storch, David; Jetz, Walter

    2015-11-17

    Predictions of how different facets of biodiversity decline with habitat loss are broadly needed, yet challenging. Here we provide theory and a global empirical evaluation to address this challenge. We show that extinction estimates based on endemics-area and backward species-area relationships are complementary, and the crucial difference comprises the geometry of area loss. Across three taxa on four continents, the relative loss of species, and of phylogenetic and functional diversity, is highest when habitable area disappears inward from the edge of a region, lower when it disappears from the centre outwards, and lowest when area is lost at random. In inward destruction, species loss is almost proportional to area loss, although the decline in phylogenetic and functional diversity is less severe. These trends are explained by the geometry of species ranges and the shape of phylogenetic and functional trees, which may allow baseline predictions of biodiversity decline for underexplored taxa.

  5. Mutualism supports biodiversity when the direct competition is weak

    Science.gov (United States)

    Pascual-García, Alberto; Bastolla, Ugo

    2017-02-01

    A key question of theoretical ecology is which properties of ecosystems favour their stability and help maintaining biodiversity. This question recently reconsidered mutualistic systems, generating intense controversy about the role of mutualistic interactions and their network architecture. Here we show analytically and verify with simulations that reducing the effective interspecific competition and the propagation of perturbations positively influences structural stability against environmental perturbations, enhancing persistence. Noteworthy, mutualism reduces the effective interspecific competition only when the direct interspecific competition is weaker than a critical value. This critical competition is in almost all cases larger in pollinator networks than in random networks with the same connectance. Highly connected mutualistic networks reduce the propagation of environmental perturbations, a mechanism reminiscent of MacArthur's proposal that ecosystem complexity enhances stability. Our analytic framework rationalizes previous contradictory results, and it gives valuable insight on the complex relationship between mutualism and biodiversity.

  6. Backbones of evolutionary history test biodiversity theory for microbes.

    Science.gov (United States)

    O'Dwyer, James P; Kembel, Steven W; Sharpton, Thomas J

    2015-07-07

    Identifying the ecological and evolutionary mechanisms that determine biological diversity is a central question in ecology. In microbial ecology, phylogenetic diversity is an increasingly common and relevant means of quantifying community diversity, particularly given the challenges in defining unambiguous species units from environmental sequence data. We explore patterns of phylogenetic diversity across multiple bacterial communities drawn from different habitats and compare these data to evolutionary trees generated using theoretical models of biodiversity. We have two central findings. First, although on finer scales the empirical trees are highly idiosyncratic, on coarse scales the backbone of these trees is simple and robust, consistent across habitats, and displays bursts of diversification dotted throughout. Second, we find that these data demonstrate a clear departure from the predictions of standard neutral theories of biodiversity and that an alternative family of generalized models provides a qualitatively better description. Together, these results lay the groundwork for a theoretical framework to connect ecological mechanisms to observed phylogenetic patterns in microbial communities.

  7. Uncertainty in projected impacts of climate change on biodiversity

    DEFF Research Database (Denmark)

    Garcia, Raquel A.

    Evidence for shifts in the phenologies and distributions of species over recent decades has often been attributed to climate change. The prospect of greater and faster changes in climate during the 21st century has spurred a stream of studies anticipating future biodiversity impacts. Yet, uncerta......Evidence for shifts in the phenologies and distributions of species over recent decades has often been attributed to climate change. The prospect of greater and faster changes in climate during the 21st century has spurred a stream of studies anticipating future biodiversity impacts. Yet...... with alternative climate data and model algorithms. Ensemble forecasting provides a means for exploring the breadth and spatial variation of uncertainties, and for building consensus among projections. Several consensus methodologies are compared here, including a newly proposed methodology that preserves...

  8. [Effect of transgenic plants on biodiversity of agroecosystem].

    Science.gov (United States)

    Nie, Chengrong; Wang, Jianwu; Luo, Shiming

    2003-08-01

    The effect of transgenic plants on the biodiversity of agroecosystem is an important environmental issue. There are many researches in this field at home and abroad recently. This paper reviewed the advances of the researches based on three levels of biodiversity as genetic diversity, species diversity and ecosystem diversity. They included following aspects: the effect of insect-resistant transgenic crops on target pest; the effect of herbicide-resistant transgenic crops on crops and wild weedy relatives; the effect of virus-resistant transgenic crops on virus; and the effect of transgenic crops on non-target organisms. This paper also discussed the effect of transgenic crops on soil ecosystem and crop genetic diversity. Their potential risks included uncontrolled flows of genes to wild relatives; development of herbicide, insect, and virus resistance in wild relatives; reduced crop genetic diversity; and adverse effects on organisms that were not pests, such as beneficial insects.

  9. To each participatory sciences. Conditions for a participatory biodiversity

    Directory of Open Access Journals (Sweden)

    Denis SALLES

    2014-07-01

    Full Text Available This paper considers the social and scientific requirements for a citizen science monitoring programme on biodiversity in Arcachon Bay (France. The sociological study reveals tensions between different conceptions of what a citizen science programme should be: a means for storing oriented-data; a new way to co-create scientific knowledge; a political communication tool; a way to develop citizen stewardship; or a place for expressing activist environmental demands. Citizen science programmes also tend to reveal tensions between participatory governance and classical management of environmental issues. Despite a seeming consensus amongst actors on biodiversity conservation, in practice contests over different citizen science conceptions have the potential to re-define environmental issues, to re-specify relationships between science and society and outline new management priorities.

  10. Can retention forestry help conserve biodiversity? A meta-analysis.

    Science.gov (United States)

    Fedrowitz, Katja; Koricheva, Julia; Baker, Susan C; Lindenmayer, David B; Palik, Brian; Rosenvald, Raul; Beese, William; Franklin, Jerry F; Kouki, Jari; Macdonald, Ellen; Messier, Christian; Sverdrup-Thygeson, Anne; Gustafsson, Lena

    2014-12-01

    Industrial forestry typically leads to a simplified forest structure and altered species composition. Retention of trees at harvest was introduced about 25 years ago to mitigate negative impacts on biodiversity, mainly from clearcutting, and is now widely practiced in boreal and temperate regions. Despite numerous studies on response of flora and fauna to retention, no comprehensive review has summarized its effects on biodiversity in comparison to clearcuts as well as un-harvested forests. Using a systematic review protocol, we completed a meta-analysis of 78 studies including 944 comparisons of biodiversity between retention cuts and either clearcuts or un-harvested forests, with the main objective of assessing whether retention forestry helps, at least in the short term, to moderate the negative effects of clearcutting on flora and fauna. Retention cuts supported higher richness and a greater abundance of forest species than clearcuts as well as higher richness and abundance of open-habitat species than un-harvested forests. For all species taken together (i.e. forest species, open-habitat species, generalist species and unclassified species), richness was higher in retention cuts than in clearcuts. Retention cuts had negative impacts on some species compared to un-harvested forest, indicating that certain forest-interior species may not survive in retention cuts. Similarly, retention cuts were less suitable for some open-habitat species compared with clearcuts. Positive effects of retention cuts on richness of forest species increased with proportion of retained trees and time since harvest, but there were not enough data to analyse possible threshold effects, that is, levels at which effects on biodiversity diminish. Spatial arrangement of the trees (aggregated vs. dispersed) had no effect on either forest species or open-habitat species, although limited data may have hindered our capacity to identify responses. Results for different comparisons were largely

  11. Botanical Literature Goes Global: The Biodiversity Heritage Library

    Institute of Scientific and Technical Information of China (English)

    Judith A. WARNEMENT

    2011-01-01

    Scholars in the natural sciences rely on historic literature more than any other branch of science. Yet much of this material has limited global distribution and much of it is available in only a few select libraries. This wealth of knowledge is availahle only to those few who can gain direct access to significant library collections, a situation that is considered one of the chief impediments to the efficiency of research in the field. Community support and new technologies led to the formation of the Biodiversity Heritage Library. The BHL is an international collaboration of natural history libraries working together to make biodiversity literature available for use by the widest possible audience through open access and sustainable management.

  12. Ephemeral ecological speciation and the latitudinal biodiversity gradient.

    Science.gov (United States)

    Cutter, Asher D; Gray, Jeremy C

    2016-10-01

    The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity.

  13. Improving the forecast for biodiversity under climate change.

    Science.gov (United States)

    Urban, M C; Bocedi, G; Hendry, A P; Mihoub, J-B; Pe'er, G; Singer, A; Bridle, J R; Crozier, L G; De Meester, L; Godsoe, W; Gonzalez, A; Hellmann, J J; Holt, R D; Huth, A; Johst, K; Krug, C B; Leadley, P W; Palmer, S C F; Pantel, J H; Schmitz, A; Zollner, P A; Travis, J M J

    2016-09-09

    New biological models are incorporating the realistic processes underlying biological responses to climate change and other human-caused disturbances. However, these more realistic models require detailed information, which is lacking for most species on Earth. Current monitoring efforts mainly document changes in biodiversity, rather than collecting the mechanistic data needed to predict future changes. We describe and prioritize the biological information needed to inform more realistic projections of species' responses to climate change. We also highlight how trait-based approaches and adaptive modeling can leverage sparse data to make broader predictions. We outline a global effort to collect the data necessary to better understand, anticipate, and reduce the damaging effects of climate change on biodiversity.

  14. Combined impacts of global changes on biodiversity across the USA.

    Science.gov (United States)

    Bellard, C; Leclerc, C; Courchamp, F

    2015-07-07

    Most studies of the effects of global changes on biodiversity focus on a single threat, but multiple threats lead to species extinction. We lack spatially explicit assessments of the intensity of multiple threats and their impacts on biodiversity. Here, we used a novel metric of cumulative threats and impacts to assess the consequences of multiple threats on 196 endemic species across the USA. We predict that large areas with high cumulative impact scores for amphibians, birds, mammals, and reptiles will be concentrated in the eastern part of the USA by the 2050 s and 2080  . These high cumulative impact values are due mainly to the presence of invasive species, climate change, cropland and pasture areas; additionally, a significant proportion of endemic species are vulnerable to some of these threats where they occur. This analysis provides a useful means of identifying where conservation measures and monitoring programs that should consider multiple threats should be implemented in the future.

  15. THE IMPACT OF DEFORESTATION ON BIODIVERSITY LOSS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    I Putu Gede Ardhana

    2016-09-01

    Full Text Available The purpose of this study was to examine the impact of deforestation on biodiversity loss in Indonesia. Firstly author presented information about deforestation trends that spread across Indonesia. And presented information about forest fires that triggered off the continuous deforestation and occurred one after another throughout the year. The collected data showed deforestation and forest fires have occurred since 1960 to 2015, and deforestation and forest fires implicated in the extinction of species diversity, genetics, and ecosystems that spreads from Sunda region to Sahul region. Author used descriptive regulation and legislation methods, used literature approach, as well as arranged with descriptive and interpretational form in papers. From the results of this study author concluded that deforestation rate implicates in forest fires that occur continuously throughout the year and can not be inevitable possibility of extinction of biodiversity spread across Indonesia.

  16. Biodiversity As An Ecological Safety Condition. The European Dimension

    Directory of Open Access Journals (Sweden)

    RZEŃCA AGNIESZKA

    2015-03-01

    Full Text Available Contemporary research concerning the benefits (services of the ecosystems (environment confirm the rank and significance of the natural environment and its resources for shaping humanity's well-being. Particularly highlighted is the need to protection of live natural resources to preserve biodiversity, which is essential for retaining the basic ecological processes and providing the sustainability of usage of these resources. Consequently, protection of biodiversity is not only an environmental issue, but also an economic and social issue involving the well-being and quality of life of society. Thus, biological diversity is an essential condition for providing ecological safety, retaining the continuity of natural processes, and conditions the quality of life and economic potential.

  17. Farming Approaches for Greater Biodiversity, Livelihoods, and Food Security.

    Science.gov (United States)

    Garibaldi, Lucas A; Gemmill-Herren, Barbara; D'Annolfo, Raffaele; Graeub, Benjamin E; Cunningham, Saul A; Breeze, Tom D

    2017-01-01

    Scientists and policy-makers globally are calling for alternative approaches to conventional intensification of agriculture that enhance ecosystem services provided by biodiversity. The evidence reviewed here suggests that alternative approaches can achieve high crop yields and profits, but the performance of other socioeconomic indicators (as well as long-term trends) is surprisingly poorly documented. Consequently, the implementation of conventional intensification and the discussion of alternative approaches are not based on quantitative evidence of their simultaneous ecological and socioeconomic impacts across the globe. To close this knowledge gap, we propose a participatory assessment framework. Given the impacts of conventional intensification on biodiversity loss and greenhouse gas emissions, such evidence is urgently needed to direct science-policy initiatives, such as the United Nations (UN) 2030 Agenda for Sustainable Development.

  18. Bio-diversity: an effective safety net against environmental pollution.

    Science.gov (United States)

    Swaminathan, M S

    2003-01-01

    Biodiversity is the feedstock for the biotechnology industry. Hence, the conservation, enhancement and sustainable and equitable use of biodiversity should be accorded high priority in all national environment protection programmes. Lichens serve as useful indicators of environmental health. Similarly, several blue green algae help to sequester salt from water. There is need for the more widespread use of such biomonitoring and bioremediation agents. Bioprospecting research designed to identify novel metabolites must be rooted in the principle of equity in sharing benefits with the holders of traditional knowledge. There is need for greater vigil against alien invasive species, since with growing world trade in food grains and other agricultural commodities, there is an increasing possibility of introducing new pests, weeds and harmful micro-organisms. Finally, biological scientists should place emphasis on their ethical responsibility for the consequences of their research, since otherwise bioterrorism could become a major threat to human security.

  19. Mining Hot Springs for Biodiversity and Novel Enzymes

    DEFF Research Database (Denmark)

    Islin, Sóley Ruth

    The existence of microbial life at extreme environments, such as hot springs, has been known for a few decades. The remarkable ability of microorganisms to withstand the extreme conditions of their habitats, has astounded scientist and pushed the limits of what was considered possible. Thermophilic...... culture-dependent as well as culture-independent methods. Each hot spring sample was enriched on various polymeric substrates at high temperatures in the search of thermophilic microorganism with the ability to degrade the substrate. Enzymatic activity of the cultures was confirmed, the most promising...... the biodiversity within the environment. By comparing several metagenomic data sets from hot spring from around the world, we could analyze community structures of cellular microorganisms as well as the biodiversity of viral sequences. We found that crenarchaeal viruses are dominant in these environments...

  20. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.

    Science.gov (United States)

    Soliveres, Santiago; van der Plas, Fons; Manning, Peter; Prati, Daniel; Gossner, Martin M; Renner, Swen C; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul C; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-08-25

    Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services

  1. A landscape ecology approach identifies important drivers of urban biodiversity.

    Science.gov (United States)

    Turrini, Tabea; Knop, Eva

    2015-04-01

    Cities are growing rapidly worldwide, yet a mechanistic understanding of the impact of urbanization on biodiversity is lacking. We assessed the impact of urbanization on arthropod diversity (species richness and evenness) and abundance in a study of six cities and nearby intensively managed agricultural areas. Within the urban ecosystem, we disentangled the relative importance of two key landscape factors affecting biodiversity, namely the amount of vegetated area and patch isolation. To do so, we a priori selected sites that independently varied in the amount of vegetated area in the surrounding landscape at the 500-m scale and patch isolation at the 100-m scale, and we hold local patch characteristics constant. As indicator groups, we used bugs, beetles, leafhoppers, and spiders. Compared to intensively managed agricultural ecosystems, urban ecosystems supported a higher abundance of most indicator groups, a higher number of bug species, and a lower evenness of bug and beetle species. Within cities, a high amount of vegetated area increased species richness and abundance of most arthropod groups, whereas evenness showed no clear pattern. Patch isolation played only a limited role in urban ecosystems, which contrasts findings from agro-ecological studies. Our results show that urban areas can harbor a similar arthropod diversity and abundance compared to intensively managed agricultural ecosystems. Further, negative consequences of urbanization on arthropod diversity can be mitigated by providing sufficient vegetated space in the urban area, while patch connectivity is less important in an urban context. This highlights the need for applying a landscape ecological approach to understand the mechanisms shaping urban biodiversity and underlines the potential of appropriate urban planning for mitigating biodiversity loss.

  2. Detectability counts when assessing populations for biodiversity targets.

    Directory of Open Access Journals (Sweden)

    Silviu O Petrovan

    Full Text Available Efficient, practical and accurate estimates of population parameters are a necessary basis for effective conservation action to meet biodiversity targets. The brown hare is representative of many European farmland species: historically widespread and abundant but having undergone rapid declines as a result of agricultural intensification. As a priority species in the UK Biodiversity Action Plan, it has national targets for population increase that are part of wider national environmental indicators. Previous research has indicated that brown hare declines have been greatest in pastural landscapes and that gains might be made by focussing conservation effort there. We therefore used hares in pastural landscapes to examine how basic changes in survey methodology can affect the precision of population density estimates and related these to national targets for biodiversity conservation in the UK. Line transects for hares carried out at night resulted in higher numbers of detections, had better-fitting detection functions and provided more robust density estimates with lower effort than those during the day, due primarily to the increased probability of detection of hares at night and the nature of hare responses to the observer. Hare spring densities varied widely within a single region, with a pooled mean of 20.6 hares km(-2, significantly higher than the reported national average of hares in pastures of 3.3 hares km(-2. The high number of encounters allowed us to resolve hare densities at site, season and year scales. We demonstrate how survey conduct can impact on data quantity and quality with implications for setting and monitoring biodiversity targets. Our case study of the brown hare provides evidence that for wildlife species with low detectability, large scale volunteer-based monitoring programmes, either species specific or generalist, might be more successfully and efficiently carried out by a small number of trained personnel able to

  3. The Importance of Biodiversity E-infrastructures for Megadiverse Countries.

    Science.gov (United States)

    Canhos, Dora A L; Sousa-Baena, Mariane S; de Souza, Sidnei; Maia, Leonor C; Stehmann, João R; Canhos, Vanderlei P; De Giovanni, Renato; Bonacelli, Maria B M; Los, Wouter; Peterson, A Townsend

    2015-07-01

    Addressing the challenges of biodiversity conservation and sustainable development requires global cooperation, support structures, and new governance models to integrate diverse initiatives and achieve massive, open exchange of data, tools, and technology. The traditional paradigm of sharing scientific knowledge through publications is not sufficient to meet contemporary demands that require not only the results but also data, knowledge, and skills to analyze the data. E-infrastructures are key in facilitating access to data and providing the framework for collaboration. Here we discuss the importance of e-infrastructures of public interest and the lack of long-term funding policies. We present the example of Brazil's speciesLink network, an e-infrastructure that provides free and open access to biodiversity primary data and associated tools. SpeciesLink currently integrates 382 datasets from 135 national institutions and 13 institutions from abroad, openly sharing ~7.4 million records, 94% of which are associated to voucher specimens. Just as important as the data is the network of data providers and users. In 2014, more than 95% of its users were from Brazil, demonstrating the importance of local e-infrastructures in enabling and promoting local use of biodiversity data and knowledge. From the outset, speciesLink has been sustained through project-based funding, normally public grants for 2-4-year periods. In between projects, there are short-term crises in trying to keep the system operational, a fact that has also been observed in global biodiversity portals, as well as in social and physical sciences platforms and even in computing services portals. In the last decade, the open access movement propelled the development of many web platforms for sharing data. Adequate policies unfortunately did not follow the same tempo, and now many initiatives may perish.

  4. Quantifying the relative irreplaceability of important bird and biodiversity areas.

    Science.gov (United States)

    Di Marco, Moreno; Brooks, Thomas; Cuttelod, Annabelle; Fishpool, Lincoln D C; Rondinini, Carlo; Smith, Robert J; Bennun, Leon; Butchart, Stuart H M; Ferrier, Simon; Foppen, Ruud P B; Joppa, Lucas; Juffe-Bignoli, Diego; Knight, Andrew T; Lamoreux, John F; Langhammer, Penny F; May, Ian; Possingham, Hugh P; Visconti, Piero; Watson, James E M; Woodley, Stephen

    2016-04-01

    World governments have committed to increase the global protected areas coverage by 2020, but the effectiveness of this commitment for protecting biodiversity depends on where new protected areas are located. Threshold- and complementarity-based approaches have been independently used to identify important sites for biodiversity. We brought together these approaches by performing a complementarity-based analysis of irreplaceability in important bird and biodiversity areas (IBAs), which are sites identified using a threshold-based approach. We determined whether irreplaceability values are higher inside than outside IBAs and whether any observed difference depends on known characteristics of the IBAs. We focused on 3 regions with comprehensive IBA inventories and bird distribution atlases: Australia, southern Africa, and Europe. Irreplaceability values were significantly higher inside than outside IBAs, although differences were much smaller in Europe than elsewhere. Higher irreplaceability values in IBAs were associated with the presence and number of restricted-range species; number of criteria under which the site was identified; and mean geographic range size of the species for which the site was identified (trigger species). In addition, IBAs were characterized by higher irreplaceability values when using proportional species representation targets, rather than fixed targets. There were broadly comparable results when measuring irreplaceability for trigger species and when considering all bird species, which indicates a good surrogacy effect of the former. Recently, the International Union for Conservation of Nature has convened a consultation to consolidate global standards for the identification of key biodiversity areas (KBAs), building from existing approaches such as IBAs. Our results informed this consultation, and in particular a proposed irreplaceability criterion that will allow the new KBA standard to draw on the strengths of both threshold- and

  5. Conservation narratives in Peru: envisioning biodiversity in sustainable development

    Directory of Open Access Journals (Sweden)

    Yves M. Zinngrebe

    2016-06-01

    In a second step, a comparative analysis of the dominant and diverging political perspectives is made. I argue that by deconstructing underlying premises and ideologies, common ground and possible opportunities for collaboration can be identified. Moreover, although the presented results can serve as a discussion scaffold to organize conservation debates in Peru, this example demonstrates how the terms biodiversity and sustainability are operationalized in conservation narratives.

  6. Marine biodiversity in the Caribbean: regional estimates and distribution patterns.

    Directory of Open Access Journals (Sweden)

    Patricia Miloslavich

    Full Text Available This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles and the northern coast of South America (Venezuela-Colombia, while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1 highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2 high variability among collecting methods, (3 limited taxonomic expertise for many groups, and (4 differing levels of activity in the study

  7. Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    OpenAIRE

    Patricia Miloslavich; Juan Manuel Díaz; Eduardo Klein; Juan José Alvarado; Cristina Díaz,; Judith Gobin; Elva Escobar-Briones; Juan José Cruz-Motta; Ernesto Weil; Jorge Cortés; Ana Carolina Bastidas; Ross Robertson; Fernando Zapata; Alberto Martín; Julio Castillo

    2010-01-01

    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Car...

  8. Marine biodiversity in the Caribbean: regional estimates and distribution patterns.

    Science.gov (United States)

    Miloslavich, Patricia; Díaz, Juan Manuel; Klein, Eduardo; Alvarado, Juan José; Díaz, Cristina; Gobin, Judith; Escobar-Briones, Elva; Cruz-Motta, Juan José; Weil, Ernesto; Cortés, Jorge; Bastidas, Ana Carolina; Robertson, Ross; Zapata, Fernando; Martín, Alberto; Castillo, Julio; Kazandjian, Aniuska; Ortiz, Manuel

    2010-08-02

    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela-Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different

  9. Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Science.gov (United States)

    Miloslavich, Patricia; Díaz, Juan Manuel; Klein, Eduardo; Alvarado, Juan José; Díaz, Cristina; Gobin, Judith; Escobar-Briones, Elva; Cruz-Motta, Juan José; Weil, Ernesto; Cortés, Jorge; Bastidas, Ana Carolina; Robertson, Ross; Zapata, Fernando; Martín, Alberto; Castillo, Julio; Kazandjian, Aniuska; Ortiz, Manuel

    2010-01-01

    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of

  10. Biodiversity increases the productivity and stability of phytoplankton communities.

    Directory of Open Access Journals (Sweden)

    Alina A Corcoran

    Full Text Available Global biodiversity losses provide an immediate impetus to elucidate the relationships between biodiversity, productivity and stability. In this study, we quantified the effects of species richness and species combination on the productivity and stability of phytoplankton communities subject to predation by a single rotifer species. We also tested one mechanism of the insurance hypothesis: whether large, slow-growing, potentially-defended cells would compensate for the loss of small, fast-growing, poorly-defended cells after predation. There were significant effects of species richness and species combination on the productivity, relative yield, and stability of phytoplankton cultures, but the relative importance of species richness and combination varied with the response variables. Species combination drove patterns of productivity, whereas species richness was more important for stability. Polycultures containing the most productive single species, Dunaliella, were consistently the most productive. Yet, the most species rich cultures were the most stable, having low temporal variability in measures of biomass. Polycultures recovered from short-term negative grazing effects, but this recovery was not due to the compensation of large, slow-growing cells for the loss of small, fast-growing cells. Instead, polyculture recovery was the result of reduced rotifer grazing rates and persisting small species within the polycultures. Therefore, although an insurance effect in polycultures was found, this effect was indirect and unrelated to grazing tolerance. We hypothesize that diverse phytoplankton assemblages interfered with efficient rotifer grazing and that this "interference effect" facilitated the recovery of the most productive species, Dunaliella. In summary, we demonstrate that both species composition and species richness are important in driving patterns of productivity and stability, respectively, and that stability in biodiverse

  11. Making robust policy decisions using global biodiversity indicators.

    Science.gov (United States)

    Nicholson, Emily; Collen, Ben; Barausse, Alberto; Blanchard, Julia L; Costelloe, Brendan T; Sullivan, Kathryn M E; Underwood, Fiona M; Burn, Robert W; Fritz, Steffen; Jones, Julia P G; McRae, Louise; Possingham, Hugh P; Milner-Gulland, E J

    2012-01-01

    In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.

  12. How global is the global biodiversity information facility?

    Directory of Open Access Journals (Sweden)

    Chris Yesson

    Full Text Available There is a concerted global effort to digitize biodiversity occurrence data from herbarium and museum collections that together offer an unparalleled archive of life on Earth over the past few centuries. The Global Biodiversity Information Facility provides the largest single gateway to these data. Since 2004 it has provided a single point of access to specimen data from databases of biological surveys and collections. Biologists now have rapid access to more than 120 million observations, for use in many biological analyses. We investigate the quality and coverage of data digitally available, from the perspective of a biologist seeking distribution data for spatial analysis on a global scale. We present an example of automatic verification of geographic data using distributions from the International Legume Database and Information Service to test empirically, issues of geographic coverage and accuracy. There are over 1/2 million records covering 31% of all Legume species, and 84% of these records pass geographic validation. These data are not yet a global biodiversity resource for all species, or all countries. A user will encounter many biases and gaps in these data which should be understood before data are used or analyzed. The data are notably deficient in many of the world's biodiversity hotspots. The deficiencies in data coverage can be resolved by an increased application of resources to digitize and publish data throughout these most diverse regions. But in the push to provide ever more data online, we should not forget that consistent data quality is of paramount importance if the data are to be useful in capturing a meaningful picture of life on Earth.

  13. China:a key region for marine biodiversity studies

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ There are nearly 24,000 validated marine species in China,accounting for one sixth of the world total,which makes the country a key area for studies of marine biodiversity in the world,says Dr.lan Poiner,chair of the International Scientific Steering Committee of the Census of Marine Life (CoML),the largestever global marine biology research project.

  14. Minimizing the biodiversity impact of Neotropical oil palm development.

    Science.gov (United States)

    Gilroy, James J; Prescott, Graham W; Cardenas, Johann S; Castañeda, Pamela González del Pliego; Sánchez, Andrés; Rojas-Murcia, Luis E; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2015-04-01

    Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland-forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region--improved cattle pasture--together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian 'spill-over' effects into oil palm plantations.

  15. Limitations of outsourcing on-the-ground biodiversity conservation.

    Science.gov (United States)

    Iacona, Gwenllian D; Bode, Michael; Armsworth, Paul R

    2016-12-01

    To counteract global species decline, modern biodiversity conservation engages in large projects, spends billions of dollars, and includes many organizations working simultaneously within regions. To add to this complexity, the conservation sector has hierarchical structure, where conservation actions are often outsourced by funders (foundations, government, etc.) to local organizations that work on-the-ground. In contrast, conservation science usually assumes that a single organization makes resource allocation decisions. This discrepancy calls for theory to understand how the expected biodiversity outcomes change when interactions between organizations are accounted for. Here, we used a game theoretic model to explore how biodiversity outcomes are affected by vertical and horizontal interactions between 3 conservation organizations: a funder that outsourced its actions and 2 local conservation organizations that work on-the-ground. Interactions between the organizations changed the spending decisions made by individual organizations, and thereby the magnitude and direction of the conservation benefits. We showed that funders would struggle to incentivize recipient organizations with set priorities to perform desired actions, even when they control substantial amounts of the funding and employ common contracting approaches to enhance outcomes. Instead, biodiversity outcomes depended on priority alignment across the organizations. Conservation outcomes for the funder were improved by strategic interactions when organizational priorities were well aligned, but decreased when priorities were misaligned. Meanwhile, local organizations had improved outcomes regardless of alignment due to additional funding in the system. Given that conservation often involves the aggregate actions of multiple organizations with different objectives, strategic interactions between organizations need to be considered if we are to predict possible outcomes of conservation programs or

  16. Biodiversity decreases disease through predictable changes in host community competence.

    Science.gov (United States)

    Johnson, Pieter T J; Preston, Daniel L; Hoverman, Jason T; Richgels, Katherine L D

    2013-02-14

    Accelerating rates of species extinctions and disease emergence underscore the importance of understanding how changes in biodiversity affect disease outcomes. Over the past decade, a growing number of studies have reported negative correlations between host biodiversity and disease risk, prompting suggestions that biodiversity conservation could promote human and wildlife health. Yet the generality of the diversity-disease linkage remains conjectural, in part because empirical evidence of a relationship between host competence (the ability to maintain and transmit infections) and the order in which communities assemble has proven elusive. Here we integrate high-resolution field data with multi-scale experiments to show that host diversity inhibits transmission of the virulent pathogen Ribeiroia ondatrae and reduces amphibian disease as a result of consistent linkages among species richness, host composition and community competence. Surveys of 345 wetlands indicated that community composition changed nonrandomly with species richness, such that highly competent hosts dominated in species-poor assemblages whereas more resistant species became progressively more common in diverse assemblages. As a result, amphibian species richness strongly moderated pathogen transmission and disease pathology among 24,215 examined hosts, with a 78.4% decline in realized transmission in richer assemblages. Laboratory and mesocosm manipulations revealed an approximately 50% decrease in pathogen transmission and host pathology across a realistic diversity gradient while controlling for host density, helping to establish mechanisms underlying the diversity-disease relationship and their consequences for host fitness. By revealing a consistent link between species richness and community competence, these findings highlight the influence of biodiversity on infection risk and emphasize the benefit of a community-based approach to understanding infectious diseases.

  17. Global change and biodiversity loss: Some impediments to response

    Science.gov (United States)

    Borza, Karen; Jamieson, Dale

    1991-01-01

    Discussed here are the effects of anthropogenic global climate change on biodiversity. The focus is on human responses to the problem. Greenhouse warming-induced climate change may shift agricultural growing belts, reduce forests of the Northern Hemisphere and drive many species to extinction, among other effects. If these changes occur together with the mass extinctions already occurring, we may suffer a profound loss of biological diversity.

  18. The governance of biodiversity in Kakamega Forest, Kenya

    OpenAIRE

    Wambui Kariuki, Judy

    2012-01-01

    Kenya derives enormous economic, social and cultural benefits from its biological resources. However, it is clear that Kenya’s biodiversity is under threat. An expanding population is putting severe pressure on the environment. Impoverished people with no alternative means of a livelihood are forced to use natural resources unsustainably. Natural habitats continue to be cleared and converted. Land is degraded and water polluted; ecosystems are damaged and their functions impaired. An ...

  19. Closing yield gaps: perils and possibilities for biodiversity conservation

    OpenAIRE

    Phalan, Ben; Green, Rhys; Balmford, Andrew

    2014-01-01

    This is the accepted manuscript of a paper which was published in the Philosophical Transactions of the Royal Society B: Biological Sciences (B Phalan, R Green, A Balmford, Phil. Trans. R. Soc. B 2014, 369, 20120285) Increasing agricultural productivity to ‘close yield gaps’ creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimise furt...

  20. Linking Agro-ecology, Biodiversity conservation and Agro-tourism

    OpenAIRE

    Goel, Anurag

    2014-01-01

    Small organic farmers must adopt innovative strategies in order to survive in today’s competitive marketplace. The Mojo spice farm is a small family-run enterprise located in the rainforests of the Western Ghats in southern India. Over the years we have evolved a strategy that successfully combines organic agriculture with biodiversity conservation and sustainable agro-tourism. The linkages between these 3 areas and how they can benefit small organic farmers will be shown using our farm as a...

  1. On the decline of biodiversity due to area loss

    OpenAIRE

    Keil Petr; Storch David; Jetz Walter

    2015-01-01

    Predictions of how different facets of biodiversity decline with habitat loss are broadly needed, yet challenging. Here we provide theory and a global empirical evaluation to address this challenge. We show that extinction estimates based on endemics–area and backward species–area relationships are complementary, and the crucial difference comprises the geometry of area loss. Across three taxa on four continents, the relative loss of species, and of phylogenetic and functional div...

  2. How global is the global biodiversity information facility?

    Science.gov (United States)

    Yesson, Chris; Brewer, Peter W; Sutton, Tim; Caithness, Neil; Pahwa, Jaspreet S; Burgess, Mikhaila; Gray, W Alec; White, Richard J; Jones, Andrew C; Bisby, Frank A; Culham, Alastair

    2007-11-07

    There is a concerted global effort to digitize biodiversity occurrence data from herbarium and museum collections that together offer an unparalleled archive of life on Earth over the past few centuries. The Global Biodiversity Information Facility provides the largest single gateway to these data. Since 2004 it has provided a single point of access to specimen data from databases of biological surveys and collections. Biologists now have rapid access to more than 120 million observations, for use in many biological analyses. We investigate the quality and coverage of data digitally available, from the perspective of a biologist seeking distribution data for spatial analysis on a global scale. We present an example of automatic verification of geographic data using distributions from the International Legume Database and Information Service to test empirically, issues of geographic coverage and accuracy. There are over 1/2 million records covering 31% of all Legume species, and 84% of these records pass geographic validation. These data are not yet a global biodiversity resource for all species, or all countries. A user will encounter many biases and gaps in these data which should be understood before data are used or analyzed. The data are notably deficient in many of the world's biodiversity hotspots. The deficiencies in data coverage can be resolved by an increased application of resources to digitize and publish data throughout these most diverse regions. But in the push to provide ever more data online, we should not forget that consistent data quality is of paramount importance if the data are to be useful in capturing a meaningful picture of life on Earth.

  3. Mapping of biodiversity in the Mumbai port using GIS

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Joglekar, V.V.

    , 2003). The various ballast water discharge, environmental matching and risk species data were processed by the database with other risk factors including voyage duration and tank size, to provide preliminary indication of the relative over all risk... posed by each ballast water source port, and which destination ports appeared most at risk from any ballast water uplifted at the demonstration site. This paper presents how GIS is used to characterize biodiversity of the marine ecosystem...

  4. The Importance of Biodiversity E-infrastructures for Megadiverse Countries

    Science.gov (United States)

    Canhos, Dora A. L.; Sousa-Baena, Mariane S.; de Souza, Sidnei; Maia, Leonor C.; Stehmann, João R.; Canhos, Vanderlei P.; De Giovanni, Renato; Bonacelli, Maria B. M.; Los, Wouter; Peterson, A. Townsend

    2015-01-01

    Addressing the challenges of biodiversity conservation and sustainable development requires global cooperation, support structures, and new governance models to integrate diverse initiatives and achieve massive, open exchange of data, tools, and technology. The traditional paradigm of sharing scientific knowledge through publications is not sufficient to meet contemporary demands that require not only the results but also data, knowledge, and skills to analyze the data. E-infrastructures are key in facilitating access to data and providing the framework for collaboration. Here we discuss the importance of e-infrastructures of public interest and the lack of long-term funding policies. We present the example of Brazil’s speciesLink network, an e-infrastructure that provides free and open access to biodiversity primary data and associated tools. SpeciesLink currently integrates 382 datasets from 135 national institutions and 13 institutions from abroad, openly sharing ~7.4 million records, 94% of which are associated to voucher specimens. Just as important as the data is the network of data providers and users. In 2014, more than 95% of its users were from Brazil, demonstrating the importance of local e-infrastructures in enabling and promoting local use of biodiversity data and knowledge. From the outset, speciesLink has been sustained through project-based funding, normally public grants for 2–4-year periods. In between projects, there are short-term crises in trying to keep the system operational, a fact that has also been observed in global biodiversity portals, as well as in social and physical sciences platforms and even in computing services portals. In the last decade, the open access movement propelled the development of many web platforms for sharing data. Adequate policies unfortunately did not follow the same tempo, and now many initiatives may perish. PMID:26204382

  5. Economic and ecological outcomes of flexible biodiversity offset systems.

    Science.gov (United States)

    Habib, Thomas J; Farr, Daniel R; Schneider, Richard R; Boutin, Stan

    2013-12-01

    The commonly expressed goal of biodiversity offsets is to achieve no net loss of specific biological features affected by development. However, strict equivalency requirements may complicate trading of offset credits, increase costs due to restricted offset placement options, and force offset activities to focus on features that may not represent regional conservation priorities. Using the oil sands industry of Alberta, Canada, as a case study, we evaluated the economic and ecological performance of alternative offset systems targeting either ecologically equivalent areas (vegetation types) or regional conservation priorities (caribou and the Dry Mixedwood natural subregion). Exchanging dissimilar biodiversity elements requires assessment via a generalized metric; we used an empirically derived index of biodiversity intactness to link offsets with losses incurred by development. We considered 2 offset activities: land protection, with costs estimated as the net present value of profits of petroleum and timber resources to be paid as compensation to resource tenure holders, and restoration of anthropogenic footprint, with costs estimated from existing restoration projects. We used the spatial optimization tool MARXAN to develop hypothetical offset networks that met either the equivalent-vegetation or conservation-priority targets. Networks that required offsetting equivalent vegetation cost 2-17 times more than priority-focused networks. This finding calls into question the prudence of equivalency-based systems, particularly in relatively undeveloped jurisdictions, where conservation focuses on limiting and directing future losses. Priority-focused offsets may offer benefits to industry and environmental stakeholders by allowing for lower-cost conservation of valued ecological features and may invite discussion on what land-use trade-offs are acceptable when trading biodiversity via offsets. Resultados Económicos y Ecológicos de Sistemas de Compensación de

  6. An overview of marine biodiversity in United States waters

    Science.gov (United States)

    Fautin, Daphne G.; Delton, Penelope; Incze, Lewis S.; Leong, Jo-Ann C.; Pautzke, Clarence; Rosenberg, Andrew A.; Sandifer, Paul; Sedberry, George R.; Tunnell, John W.; Abbott, Isabella; Brainard, Russell E.; Brodeur, Melissa; Eldredge, Lucius G.; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S.; Wainstein, Michelle; Wolff, Nicholas

    2010-01-01

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

  7. An overview of marine biodiversity in United States waters.

    Directory of Open Access Journals (Sweden)

    Daphne Fautin

    Full Text Available Marine biodiversity of the United States (U.S. is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics, but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

  8. Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology

    OpenAIRE

    2003-01-01

    The importance of biodiversity (below and above ground) is increasingly considered for the cleanup of the metal contaminated and polluted ecosystems. This subject is emerging as a cutting edge area of research gaining commercial significance in the contemporary field of environmental biotechnology. Several microbes, including mycorrhizal and non-mycorrhizal fungi, agricultural and vegetable crops, ornamentals, and wild metal hyperaccumulating plants are being tested both in lab and field cond...

  9. Making robust policy decisions using global biodiversity indicators.

    Directory of Open Access Journals (Sweden)

    Emily Nicholson

    Full Text Available In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.

  10. Biodiversity loss decreases parasite diversity: theory and patterns.

    Science.gov (United States)

    Lafferty, Kevin D

    2012-10-19

    Past models have suggested host-parasite coextinction could lead to linear, or concave down relationships between free-living species richness and parasite richness. I explored several models for the relationship between parasite richness and biodiversity loss. Life cycle complexity, low generality of parasites and sensitivity of hosts reduced the robustness of parasite species to the loss of free-living species diversity. Food-web complexity and the ordering of extinctions altered these relationships in unpredictable ways. Each disassembly of a food web resulted in a unique relationship between parasite richness and the richness of free-living species, because the extinction trajectory of parasites was sensitive to the order of extinctions of free-living species. However, the average of many disassemblies tended to approximate an analytical model. Parasites of specialist hosts and hosts higher on food chains were more likely to go extinct in food-web models. Furthermore, correlated extinctions between hosts and parasites (e.g. if parasites share a host with a specialist predator) led to steeper declines in parasite richness with biodiversity loss. In empirical food webs with random removals of free-living species, the relationship between free-living species richness and parasite richness was, on average, quasi-linear, suggesting biodiversity loss reduces parasite diversity more than previously thought.

  11. Phylogenetic approaches reveal biodiversity threats under climate change

    Science.gov (United States)

    González-Orozco, Carlos E.; Pollock, Laura J.; Thornhill, Andrew H.; Mishler, Brent D.; Knerr, Nunzio; Laffan, Shawn W.; Miller, Joseph T.; Rosauer, Dan F.; Faith, Daniel P.; Nipperess, David A.; Kujala, Heini; Linke, Simon; Butt, Nathalie; Külheim, Carsten; Crisp, Michael D.; Gruber, Bernd

    2016-12-01

    Predicting the consequences of climate change for biodiversity is critical to conservation efforts. Extensive range losses have been predicted for thousands of individual species, but less is known about how climate change might impact whole clades and landscape-scale patterns of biodiversity. Here, we show that climate change scenarios imply significant changes in phylogenetic diversity and phylogenetic endemism at a continental scale in Australia using the hyper-diverse clade of eucalypts. We predict that within the next 60 years the vast majority of species distributions (91%) across Australia will shrink in size (on average by 51%) and shift south on the basis of projected suitable climatic space. Geographic areas currently with high phylogenetic diversity and endemism are predicted to change substantially in future climate scenarios. Approximately 90% of the current areas with concentrations of palaeo-endemism (that is, places with old evolutionary diversity) are predicted to disappear or shift their location. These findings show that climate change threatens whole clades of the phylogenetic tree, and that the outlined approach can be used to forecast areas of biodiversity losses and continental-scale impacts of climate change.

  12. Linking indices for biodiversity monitoring to extinction risk theory.

    Science.gov (United States)

    McCarthy, Michael A; Moore, Alana L; Krauss, Jochen; Morgan, John W; Clements, Christopher F

    2014-12-01

    Biodiversity indices often combine data from different species when used in monitoring programs. Heuristic properties can suggest preferred indices, but we lack objective ways to discriminate between indices with similar heuristics. Biodiversity indices can be evaluated by determining how well they reflect management objectives that a monitoring program aims to support. For example, the Convention on Biological Diversity requires reporting about extinction rates, so simple indices that reflect extinction risk would be valuable. We developed 3 biodiversity indices that are based on simple models of population viability that relate extinction risk to abundance. We based the first index on the geometric mean abundance of species and the second on a more general power mean. In a third index, we integrated the geometric mean abundance and trend. These indices require the same data as previous indices, but they also relate directly to extinction risk. Field data for butterflies and woodland plants and experimental studies of protozoan communities show that the indices correlate with local extinction rates. Applying the index based on the geometric mean to global data on changes in avian abundance suggested that the average extinction probability of birds has increased approximately 1% from 1970 to 2009.

  13. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat

    Science.gov (United States)

    Sunday, Jennifer M.; Fabricius, Katharina E.; Kroeker, Kristy J.; Anderson, Kathryn M.; Brown, Norah E.; Barry, James P.; Connell, Sean D.; Dupont, Sam; Gaylord, Brian; Hall-Spencer, Jason M.; Klinger, Terrie; Milazzo, Marco; Munday, Philip L.; Russell, Bayden D.; Sanford, Eric; Thiyagarajan, Vengatesen; Vaughan, Megan L. H.; Widdicombe, Stephen; Harley, Christopher D. G.

    2017-01-01

    The effects of ocean acidification (OA) on the structure and complexity of coastal marine biogenic habitat have been broadly overlooked. Here we explore how declining pH and carbonate saturation may affect the structural complexity of four major biogenic habitats. Our analyses predict that indirect effects driven by OA on habitat-forming organisms could lead to lower species diversity in coral reefs, mussel beds and some macroalgal habitats, but increases in seagrass and other macroalgal habitats. Available in situ data support the prediction of decreased biodiversity in coral reefs, but not the prediction of seagrass bed gains. Thus, OA-driven habitat loss may exacerbate the direct negative effects of OA on coastal biodiversity; however, we lack evidence of the predicted biodiversity increase in systems where habitat-forming species could benefit from acidification. Overall, a combination of direct effects and community-mediated indirect effects will drive changes in the extent and structural complexity of biogenic habitat, which will have important ecosystem effects.

  14. Using landscape history to predict biodiversity patterns in fragmented landscapes.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Pearse, William D; Lefebvre, Véronique; Rosa, Isabel M D; Carreiras, João M B; Lucas, Richard M; Reuman, Daniel C

    2013-10-01

    Landscape ecology plays a vital role in understanding the impacts of land-use change on biodiversity, but it is not a predictive discipline, lacking theoretical models that quantitatively predict biodiversity patterns from first principles. Here, we draw heavily on ideas from phylogenetics to fill this gap, basing our approach on the insight that habitat fragments have a shared history. We develop a landscape 'terrageny', which represents the historical spatial separation of habitat fragments in the same way that a phylogeny represents evolutionary divergence among species. Combining a random sampling model with a terrageny generates numerical predictions about the expected proportion of species shared between any two fragments, the locations of locally endemic species, and the number of species that have been driven locally extinct. The model predicts that community similarity declines with terragenetic distance, and that local endemics are more likely to be found in terragenetically distinctive fragments than in large fragments. We derive equations to quantify the variance around predictions, and show that ignoring the spatial structure of fragmented landscapes leads to over-estimates of local extinction rates at the landscape scale. We argue that ignoring the shared history of habitat fragments limits our ability to understand biodiversity changes in human-modified landscapes.

  15. [Effect of transgenic insect-resistant rice on biodiversity].

    Science.gov (United States)

    Zhang, Lei; Zhu, Zhen

    2011-05-01

    Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.

  16. Policy development for biodiversity offsets: a review of offset frameworks.

    Science.gov (United States)

    McKenney, Bruce A; Kiesecker, Joseph M

    2010-01-01

    Biodiversity offsets seek to compensate for residual environmental impacts of planned developments after appropriate steps have been taken to avoid, minimize or restore impacts on site. Offsets are emerging as an increasingly employed mechanism for achieving net environmental benefits, with offset policies being advanced in a wide range of countries (i.e., United States, Australia, Brazil, Colombia, and South Africa). To support policy development for biodiversity offsets, we review a set of major offset policy frameworks-US wetlands mitigation, US conservation banking, EU Natura 2000, Australian offset policies in New South Wales, Victoria, and Western Australia, and Brazilian industrial and forest offsets. We compare how the frameworks define offset policy goals, approach the mitigation process, and address six key issues for implementing offsets: (1) equivalence of project impacts with offset gains; (2) location of the offset relative to the impact site; (3) "additionality" (a new contribution to conservation) and acceptable types of offsets; (4) timing of project impacts versus offset benefits; (5) offset duration and compliance; and (6) "currency" and mitigation replacement ratios. We find substantial policy commonalities that may serve as a sound basis for future development of biodiversity offsets policy. We also identify issues requiring further policy guidance, including how best to: (1) ensure conformance with the mitigation hierarchy; (2) identify the most environmentally preferable offsets within a landscape context; and (3) determine appropriate mitigation replacement ratios.

  17. Patenting bioactive molecules from biodiversity: the Brazilian experience.

    Science.gov (United States)

    Nogueira, Renata Campos; de Cerqueira, Harley Ferreira; Soares, Milena Botelho Pereira

    2010-02-01

    The use of natural compounds from biodiversity, as well as ethnobotanical knowledge, for the development of new drugs is the gate leading to support the conservation of natural resources in developing countries. Recent technological advances and the development of new methods are revolutionizing the screening of natural products and offer a unique opportunity to replace natural products as major source of drug leads. Over the past decades, the Brazilian government established a legislation aiming to grant patent protection in all technological fields. The Convention on Biological Diversity, an international agreement that recognizes the sovereign rights of States over their natural resources, and the Brazilian legislation (Decreto n degree 2186-12/01) set for legislative, administrative or policy measures regarding the share of research and product development benefits could be the key for progress in issues related to rational employment of the Brazilian biodiversity and economy, but are far from being effective. Based on literature review, this article provides a brief description of the Brazilian legislation policy regarding intellectual property and biodiversity access, places natural drug discovery in context, analyzes patent cases and highlights critical key issues responsible for the drawback of the whole process that has a direct impact on industrial and research development, nature protection and benefit share with our society.

  18. Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability

    Directory of Open Access Journals (Sweden)

    Yufeng Luo

    2014-09-01

    Full Text Available Rice paddies are artificial wetlands that supply people with food and provide wildlife with habitats, breeding areas, shelters, feeding grounds and other services, and rice paddies play an important part in agricultural ecological systems. However, modern agricultural practices with large-scale intensive farming have significantly accelerated the homogenization of the paddy field ecosystem. Modern agriculture mostly relies on chemically-driven modern varieties and irrigation to ensure high production, resulting in the deterioration and imbalance of the ecosystem. Consequently, outbreaks of diseases, insects and weeds have become more frequent in paddy fields. This paper describes the current situation of rice paddy biodiversity in China and analyzes the community characteristics of arthropods and weedy plants. Meanwhile, we discuss how biodiversity was affected by modern agriculture changes, which have brought about a mounting crisis threatening to animals and plants once common in rice paddies. Measures should be focused to firstly preventing further deterioration and, then, also, promoting restoration processes. Ecological sustainability can be achieved by restoring paddy field biodiversity through protecting the ecological environment surrounding the paddy fields, improving paddy cropping patterns, growing rice with less agricultural chemicals and chemical fertilizers, constructing paddy systems with animals and plants and promoting ecological education and public awareness.

  19. Biodiversity loss decreases parasite diversity: theory and patterns

    Science.gov (United States)

    Lafferty, Kevin D.

    2012-01-01

    Past models have suggested host–parasite coextinction could lead to linear, or concave down relationships between free-living species richness and parasite richness. I explored several models for the relationship between parasite richness and biodiversity loss. Life cycle complexity, low generality of parasites and sensitivity of hosts reduced the robustness of parasite species to the loss of free-living species diversity. Food-web complexity and the ordering of extinctions altered these relationships in unpredictable ways. Each disassembly of a food web resulted in a unique relationship between parasite richness and the richness of free-living species, because the extinction trajectory of parasites was sensitive to the order of extinctions of free-living species. However, the average of many disassemblies tended to approximate an analytical model. Parasites of specialist hosts and hosts higher on food chains were more likely to go extinct in food-web models. Furthermore, correlated extinctions between hosts and parasites (e.g. if parasites share a host with a specialist predator) led to steeper declines in parasite richness with biodiversity loss. In empirical food webs with random removals of free-living species, the relationship between free-living species richness and parasite richness was, on average, quasi-linear, suggesting biodiversity loss reduces parasite diversity more than previously thought.

  20. Axillary Bud Proliferation Approach for Plant Biodiversity Conservation and Restoration

    Directory of Open Access Journals (Sweden)

    F. Ngezahayo

    2014-01-01

    Full Text Available Due to mainly human population pressure and activities, global biodiversity is getting reduced and particularly plant biodiversity is becoming at high risk of extinction. Consequently, many efforts have been deployed to develop conservation methods. Because it does not involve cell dedifferentiation of differentiated cells but rather the development and growth of new shoots from preexisting meristems, the axillary bud proliferation approach is the method offering least risk of genetic instability. Indeed, meristems are more resistant to genetic changes than disorganized tissues. The present review explored through the scientific literature the axillary bud proliferation approach and the possible somaclonal variation that could arise from it. Almost genetic stability or low level of genetic variation is often reported. On the contrary, in a few cases studied to date, DNA methylation alterations often appeared in the progenies, showing epigenetic variations in the regenerated plants from axillary bud culture. Fortunately, epigenetic changes are often temporary and plants may revert to the normal phenotype. Thus, in the absence of genetic variations and the existence of reverting epigenetic changes over time, axillary bud culture can be adopted as an alternative nonconventional way of conserving and restoring of plant biodiversity.

  1. Towards a unification of unified theories of biodiversity.

    Science.gov (United States)

    McGill, Brian J

    2010-05-01

    A unified theory in science is a theory that shows a common underlying set of rules that regulate processes previously thought to be distinct. Unified theories have been important in physics including the unification of electricity and magnetism and the unification of the electromagnetic with the weak nuclear force. Surprisingly, ecology, specifically the subfields of biodiversity and macroecology, also possess not one but at least six unified theories. This is problematic as only one unified theory is desirable. Superficially, the six unified theories seem very different. However, I show that all six theories use the same three rules or assertions to describe a stochastic geometry of biodiversity. The three rules are: (1) intraspecifically individuals are clumped together; (2) interspecifically global or regional abundance varies according to a hollow curve distribution; and (3) interspecifically individuals are placed without regard to individuals of other species. These three rules appear sufficient to explain local species abundance distributions, species-area relationships, decay of similarity of distance and possibly other patterns of biodiversity. This provides a unification of the unified theories. I explore implications of this unified theory for future research.

  2. Current situation of geoengineering and its impact on biodiversity

    Directory of Open Access Journals (Sweden)

    Senlu Yin

    2013-05-01

    Full Text Available Interests in the process of geoengineering have grown and geoengineering is a focus for the Convention on Biological Diversity now. Geoengineering programs and experiments have been carried out tovarying extent globally and are of significance to Chinese interests. This paper originates from a review of a conference discussion and of relevant literatures. It introduces the concept of geoengineering, describes the current status of its development and discusses the potential impacts geoengineering may have on biodiversity. Arguments about geoengineering in the Convention on Biological Diversity are also discussed. Researches show that geoengineering programs mainly affect biodiversity by changing the local or regional climate and environment. Large scale geoengineering programs may be prohibited in future due to uncertainty over their potential impacts on biodiversity. However, the necessity for energy saving and obligationsto reduce emissions will drive the progress of geoenginering. The future development of geoengineering is also examined. It is concluded that the techniques involved need to be of a high standard, highly efficient, low in cost and environmentally safe. Precautionary measures should be taken in the implementation of geoenginering related activities, and mechanisms for monitoring their effects should be thoroughly explored.

  3. BIODIVERSITY AND THE PROTECTED AREAS SYSTEM IN ALBANIA

    Directory of Open Access Journals (Sweden)

    Mehmet Metaj

    2009-06-01

    Full Text Available Albania possesses a wide range of ecological systems including coastal zones, estuaries and lagoons, lakes and wetlands, grasslands, middle-low altitude coppice forests, high altitude forests, alpine vegetation and glacial areas. The country possesses about 3,250 species of vascular plants, 165 families and more than 900 genera. Medicinal plants (botanicals and non-timber forest products have a long history of importance in the culture and traditional knowledge of Albania. Proper legislation and especially legal and regulatory framework enforcement for the regulation of this developing industry remains lacking. A Strategy of Biodiversity plan developed in 2000 calls for an increase in the Protected Areas system which currently covers some 6 % of Albania's area to a total area of 435,600 ha, approximately 15 % of the country's territory. Changes in the legal and policy framework as well as institutional structures is required to move forward and provide an environment for biodiversity conservation and a sustainable protected areas system. The various threats to biodiversity and constraints to improvement are outlined as well as recommendations for sustainable use, assessment and regulation.

  4. The Global Genome Biodiversity Network (GGBN) Data Standard specification

    Science.gov (United States)

    Droege, G.; Barker, K.; Seberg, O.; Coddington, J.; Benson, E.; Berendsohn, W. G.; Bunk, B.; Butler, C.; Cawsey, E. M.; Deck, J.; Döring, M.; Flemons, P.; Gemeinholzer, B.; Güntsch, A.; Hollowell, T.; Kelbert, P.; Kostadinov, I.; Kottmann, R.; Lawlor, R. T.; Lyal, C.; Mackenzie-Dodds, J.; Meyer, C.; Mulcahy, D.; Nussbeck, S. Y.; O'Tuama, É.; Orrell, T.; Petersen, G.; Robertson, T.; Söhngen, C.; Whitacre, J.; Wieczorek, J.; Yilmaz, P.; Zetzsche, H.; Zhang, Y.; Zhou, X.

    2016-01-01

    Genomic samples of non-model organisms are becoming increasingly important in a broad range of studies from developmental biology, biodiversity analyses, to conservation. Genomic sample definition, description, quality, voucher information and metadata all need to be digitized and disseminated across scientific communities. This information needs to be concise and consistent in today’s ever-increasing bioinformatic era, for complementary data aggregators to easily map databases to one another. In order to facilitate exchange of information on genomic samples and their derived data, the Global Genome Biodiversity Network (GGBN) Data Standard is intended to provide a platform based on a documented agreement to promote the efficient sharing and usage of genomic sample material and associated specimen information in a consistent way. The new data standard presented here build upon existing standards commonly used within the community extending them with the capability to exchange data on tissue, environmental and DNA sample as well as sequences. The GGBN Data Standard will reveal and democratize the hidden contents of biodiversity biobanks, for the convenience of everyone in the wider biobanking community. Technical tools exist for data providers to easily map their databases to the standard. Database URL: http://terms.tdwg.org/wiki/GGBN_Data_Standard

  5. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is d

  6. The Marine Food Chain in Relation to Biodiversity

    Directory of Open Access Journals (Sweden)

    Andrew R.G. Price

    2001-01-01

    Full Text Available Biodiversity provides “raw materials” for the food chain and seafood production, and also influences the capacity of ecosystems to perform these and other services. Harvested marine seafood species now exceed 100 million t y -1 and provide about 6% of all protein and 17% of animal protein consumed by humans. These resources include representatives from about nine biologically diverse groups of plants and animals. Fish account for most of the world’s marine catches, of which only 40 species are taken in abundance. Highest primary productivity and the richest fisheries are found within Exclusive Economic Zones (EEZ. This narrow strip (200 nautical mile/370 km wide is not only the site of coastal “food factories” but also the area associated with heaviest perturbation to the marine environment. Structural redundancy is evident in marine ecosystems, in that many species are interchangeable in the way they characterise assemblage composition. While there is probably functional redundancy within groups, the effects of species loss on ecosystem performance cannot be easily predicted. In particular, the degree to which biodiversity per se is needed for ecosystem services, including seafood/fishery production, is poorly understood. Many human activities, including unsustainable fishing and mariculture, lead to erosion of marine biodiversity. This can undermine the biophysical cornerstones of fisheries and have other undesirable environmental side effects. Of direct concern are “species effects”, in particular the removal of target and non-target fishery species, as well as conservationally important fauna. Equally disrupting but less immediate are “ecosystem effects”, such as fishing down the food web, following a shift from harvested species of high to low trophic level. Physical and biological disturbances from trawl nets and dynamite fishing on coral reefs can also severely impact ecosystem structure and function.

  7. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats.

    Directory of Open Access Journals (Sweden)

    Marta Coll

    Full Text Available The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet-undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular

  8. The marine food chain in relation to biodiversity.

    Science.gov (United States)

    Price, A R

    2001-10-19

    Biodiversity provides "raw materials" for the food chain and seafood production, and also influences the capacity of ecosystems to perform these and other services. Harvested marine seafood species now exceed 100 million t y(-1) and provide about 6% of all protein and 17% of animal protein consumed by humans. These resources include representatives from about nine biologically diverse groups of plants and animals. Fish account for most of the world"s marine catches, of which only 40 species are taken in abundance. Highest primary productivity and the richest fisheries are found within Exclusive Economic Zones (EEZ). This narrow strip (200 nautical mile/370 km wide) is not only the site of coastal "food factories" but also the area associated with heaviest perturbation to the marine environment. Structural redundancy is evident in marine ecosystems, in that many species are interchangeable in the way they characterise assemblage composition. While there is probably functional redundancy within groups, the effects of species loss on ecosystem performance cannot be easily predicted. In particular, the degree to which biodiversity per se is needed for ecosystem services, including seafood/fishery production, is poorly understood. Many human activities, including unsustainable fishing and mariculture, lead to erosion of marine biodiversity. This can undermine the biophysical cornerstones of fisheries and have other undesirable environmental side effects. Of direct concern are "species effects", in particular the removal of target and non-target fishery species, as well as conservationally important fauna. Equally disrupting but less immediate are "ecosystem effects", such as fishing down the food web, following a shift from harvested species of high to low trophic level. Physical and biological disturbances from trawl nets and dynamite fishing on coral reefs can also severely impact ecosystem structure and function. "Broadscale" biological and social effects brought

  9. Assessing the Cost of Global Biodiversity and Conservation Knowledge

    Science.gov (United States)

    Juffe-Bignoli, Diego; Brooks, Thomas M.; Butchart, Stuart H. M.; Jenkins, Richard B.; Boe, Kaia; Hoffmann, Michael; Angulo, Ariadne; Bachman, Steve; Böhm, Monika; Brummitt, Neil; Carpenter, Kent E.; Comer, Pat J.; Cox, Neil; Cuttelod, Annabelle; Darwall, William R. T.; Fishpool, Lincoln D. C.; Goettsch, Bárbara; Heath, Melanie; Hilton-Taylor, Craig; Hutton, Jon; Johnson, Tim; Joolia, Ackbar; Keith, David A.; Langhammer, Penny F.; Luedtke, Jennifer; Nic Lughadha, Eimear; Lutz, Maiko; May, Ian; Miller, Rebecca M.; Oliveira-Miranda, María A.; Parr, Mike; Pollock, Caroline M.; Ralph, Gina; Rodríguez, Jon Paul; Rondinini, Carlo; Smart, Jane; Stuart, Simon; Symes, Andy; Tordoff, Andrew W.; Young, Bruce; Kingston, Naomi

    2016-01-01

    Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US$160 million (range: US$116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US$ 14 million (range US$12–16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013) is US$6.5 million in total (range: US$6.2–6.7 million). We estimated that an additional US$114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US$12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision

  10. Importance of baseline specification in evaluating conservation interventions and achieving no net loss of biodiversity.

    Science.gov (United States)

    Bull, J W; Gordon, A; Law, E A; Suttle, K B; Milner-Gulland, E J

    2014-06-01

    There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no-development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may

  11. Strategic studies on the biodiversity sustainability in Yunnan Province,Southwest China

    Institute of Scientific and Technical Information of China (English)

    Pu Ying-shan; Zhang Zhi-yi; Pu Li-na

    2007-01-01

    With an area of 394,000 km2 (4.1% of China's total area) and specific diversified geographical environments, Yunnan houses over 18,000 species of higher plants (51.6% of China's total), 1,836 vertebrate species (54.8% of China's total) and multitudinous species of rare, endemic and epibiotic wildlife, ranking first in species richness value and endemicity rate of China's biodiversity, thus becoming a rare gene bank of wildlife species with the most concentrated distribution of important wildlife taxa and a key terrestrial biodiversity region of global significance. Despite its evident abundance and endemism, however, the biodiversity is faced with threats of ecological fragility and human disturbances in socioeconomic development resulting in attenuation of biodiversity,degradation of ecosystems and serious loss of species, thus, it needs to be carefully studied for its sustainability. Based on the analyses of the geographical diversity, the macro material bases of Yunnan's biodiversity were reviewed and six characteristics of the provincial biodiversity were described in the ecosystems, forest types, species compositions, endemic species, genetic resources, etc. By appraising the present status of the provincial biodiversity conservation, the facts that the biodiversity coexisted with fragility were revealed so that eight key disadvantageous factors in the provincial ecological fragility causing serious biodiversity loss were summarized and described in this paper. In order to satisfy the two-fold needs of biodiversity sustainability and socioeconomic development, eight strategies for the sustainable development were intensively elaborated by borrowing certain theories in modem conservation biology, recycling economics and some successful innovations, and by giving comprehensive consideration to the ecological fragility mechanism, nature reserve construction, environmental protection and the exploitability of resources for biodiversity sustainability and

  12. Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World’s Biodiversity Priorities

    Science.gov (United States)

    Pricope, Narcisa G.; Husak, Gregory J.; Lopez-Carr, David

    2017-01-01

    Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1) Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2) Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change–largely wetting–in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka), posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being. PMID:28125659

  13. Biodiversity and global health—hubris, humility and the unknown

    Science.gov (United States)

    Stephens, Carolyn

    2012-03-01

    In November 2011, botanists on a remote island off Papua New Guinea discovered a new species of orchid—uniquely and mysteriously night-flowering [1]. New to science, and with so much more to understand, this flower is threatened by deforestation [2]. Also in November 2011, a survey of 583 conservation scientists reported a unanimous (99.5%) view that 'it is likely a serious loss of biological diversity is underway at a global extent' and that, for scientists, 'protection of biological diversity for its cultural and spiritual values and because of its usefulness to humans were low priorities, which suggests that many scientists do not fully support the utilitarian concept of ecosystem services' [3]. In terms of management, some scientists now advocate controversial conservation strategies such as triage (prioritization of species that provide unique or necessary functions to ecosystems) [4, 5]. Meanwhile, there are many scientists who contend that there is an urgent need to improve our understanding of the importance of biodiversity for human health and well-being, arguing that only an anthropocentric view of biodiversity within a paradigm 'ecosystem service' will enable decision-makers to prioritize the theme [6-9]. A 2011 UN report argues that this need for understanding is especially urgent in fragile and vulnerable ecosystems where communities depend directly on the resources of their environment [10]. Here we have a paradox: international conservation scientists think that we cannot protect biodiversity on the basis of its cultural and spiritual value, nor its usefulness to humans. Other scientists argue that using a utilitarian ecosystem services framework is the only way to get humans to protect biodiversity. Meanwhile, communities directly dependent on biodiverse ecosystems are often those who best understand and protect biodiversity, for exactly these reasons of use and spiritual connection, but they do not hold only a utilitarian view of their

  14. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment.

    Science.gov (United States)

    Newbold, Tim; Hudson, Lawrence N; Arnell, Andrew P; Contu, Sara; De Palma, Adriana; Ferrier, Simon; Hill, Samantha L L; Hoskins, Andrew J; Lysenko, Igor; Phillips, Helen R P; Burton, Victoria J; Chng, Charlotte W T; Emerson, Susan; Gao, Di; Pask-Hale, Gwilym; Hutton, Jon; Jung, Martin; Sanchez-Ortiz, Katia; Simmons, Benno I; Whitmee, Sarah; Zhang, Hanbin; Scharlemann, Jörn P W; Purvis, Andy

    2016-07-15

    Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary ("safe limit"). We estimate that land use and related pressures have already reduced local biodiversity intactness--the average proportion of natural biodiversity remaining in local ecosystems--beyond its recently proposed planetary boundary across 58.1% of the world's land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development.

  15. The CC-Bio Project: Studying the Effects of Climate Change on Quebec Biodiversity

    Directory of Open Access Journals (Sweden)

    Luc Vescovi

    2010-11-01

    Full Text Available Anticipating the effects of climate change on biodiversity is now critical for managing wild species and ecosystems. Climate change is a global driver and thus affects biodiversity globally. However, land-use planners and natural resource managers need regional or even local predictions. This provides scientists with formidable challenges given the poor documentation of biodiversity and its complex relationships with climate. We are approaching this problem in Quebec, Canada, through the CC-Bio Project (http://cc‑bio.uqar.ca/, using a boundary organization as a catalyst for team work involving climate modelers, biologists, naturalists, and biodiversity managers. In this paper we present the CC-Bio Project and its general approach, some preliminary results, the emerging hypothesis of the northern biodiversity paradox (a potential increase of biodiversity in northern ecosystems due to climate change, and an early assessment of the conservation implications generated by our team work.

  16. Biodiversity funds and conservation needs in the EU under climate change.

    Science.gov (United States)

    Lung, Tobias; Meller, Laura; van Teeffelen, Astrid J A; Thuiller, Wilfried; Cabeza, Mar

    2014-07-01

    Despite ambitious biodiversity policy goals, less than a fifth of the European Union's (EU) legally protected species and habitats show a favorable conservation status. The recent EU biodiversity strategy recognizes that climate change adds to the challenge of halting biodiversity loss, and that an optimal distribution of financial resources is needed. Here, we analyze recent EU biodiversity funding from a climate change perspective. We compare the allocation of funds to the distribution of both current conservation priorities (within and beyond Natura 2000) and future conservation needs at the level of NUTS-2 regions, using modelled bird distributions as indicators of conservation value. We find that funding is reasonably well aligned with current conservation efforts but poorly fit with future needs under climate change, indicating obstacles for implementing adaptation measures. We suggest revising EU biodiversity funding instruments for the 2014-2020 budget period to better account for potential climate change impacts on biodiversity.

  17. Local Perspectives on Environmental Insecurity and Its Influence on Illegal Biodiversity Exploitation.

    Science.gov (United States)

    Gore, Meredith L; Lute, Michelle L; Ratsimbazafy, Jonah H; Rajaonson, Andry

    2016-01-01

    Environmental insecurity is a source and outcome of biodiversity declines and social conflict. One challenge to scaling insecurity reduction policies is that empirical evidence about local attitudes is overwhelmingly missing. We set three objectives: determine how local people rank risk associated with different sources of environmental insecurity; assess perceptions of environmental insecurity, biodiversity exploitation, myths of nature and risk management preferences; and explore relationships between perceptions and biodiversity exploitation. We conducted interviews (N = 88) with residents of Madagascar's Torotorofotsy Protected Area, 2014. Risk perceptions had a moderate effect on perceptions of environmental insecurity. We found no effects of environmental insecurity on biodiversity exploitation. Results offer one if not the first exploration of local perceptions of illegal biodiversity exploitation and environmental security. Local people's perception of risk seriousness associated with illegal biodiversity exploitation such as lemur hunting (low overall) may not reflect perceptions of policy-makers (considered to be high). Discord is a key entry point for attention.

  18. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity.

    Science.gov (United States)

    Sattler, T; Pezzatti, G B; Nobis, M P; Obrist, M K; Roth, T; Moretti, M

    2014-04-01

    Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty-one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within- and across-taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity.

  19. Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands

    DEFF Research Database (Denmark)

    Quenta, Estefania; Molina-Rodriguez, Jorge; Gonzales, Karina

    2016-01-01

    The rapid melting of glacier cover is one of the most obvious impacts of climate change on alpine ecosystems and biodiversity. Our understanding of the impact of a decrease in glacier runoff on aquatic biodiversity is currently based on the 'glacier-heterogeneity-diversity' paradigm, according....... These findings provide new insight into the potential effects of glacial retreat on the aquatic environment and biodiversity in the peatlands of the tropical Andes....

  20. A strategic framework for biodiversity monitoring in South African National Parks

    Directory of Open Access Journals (Sweden)

    Melodie A. McGeoch

    2011-05-01

    Full Text Available Protected areas are under increasing threat from a range of external and internal pressures on biodiversity. With a primary mandate being the conservation of biodiversity, monitoring is an essential component of measuring the performance of protected areas. Here we present a framework for guiding the structure and development of a Biodiversity Monitoring System (BMS for South African National Parks (SANParks. Monitoring activities in the organisation are currently unevenly distributed across parks, taxa and key concerns: they do not address the full array of biodiversity objectives, and have largely evolved in the absence of a coherent, overarching framework. The requirement for biodiversity monitoring in national parks is clearly specified in national legislation and international policy, as well as by SANParks’ own adaptive management philosophy. Several approaches available for categorising the multitude of monitoring requirements were considered in the development of the BMS, and 10 Biodiversity Monitoring Programmes (BMPs were selected that provide broad coverage of higher-level biodiversity objectives of parks. A set of principles was adopted to guide the development of BMPs (currently underway, and data management, resource and capacity needs will be considered during their development. It is envisaged that the BMS will provide strategic direction for future investment in this core component of biodiversity conservation and management in SANParks. Conservation implications: Monitoring biodiversity in protected areas is essential to assessing their performance. Here we provide a coordinated framework for biodiversity monitoring in South African National Parks. The proposed biodiversity monitoring system addresses the broad range of park management plan derived biodiversity objectives.