WorldWideScience

Sample records for biodiversity groups icbg

  1. Group decisions in biodiversity conservation: implications from game theory.

    Directory of Open Access Journals (Sweden)

    David M Frank

    Full Text Available BACKGROUND: Decision analysis and game theory have proved useful tools in various biodiversity conservation planning and modeling contexts. This paper shows how game theory may be used to inform group decisions in biodiversity conservation scenarios by modeling conflicts between stakeholders to identify Pareto-inefficient Nash equilibria. These are cases in which each agent pursuing individual self-interest leads to a worse outcome for all, relative to other feasible outcomes. Three case studies from biodiversity conservation contexts showing this feature are modeled to demonstrate how game-theoretical representation can inform group decision-making. METHODOLOGY AND PRINCIPAL FINDINGS: The mathematical theory of games is used to model three biodiversity conservation scenarios with Pareto-inefficient Nash equilibria: (i a two-agent case involving wild dogs in South Africa; (ii a three-agent raptor and grouse conservation scenario from the United Kingdom; and (iii an n-agent fish and coral conservation scenario from the Philippines. In each case there is reason to believe that traditional mechanism-design solutions that appeal to material incentives may be inadequate, and the game-theoretical analysis recommends a resumption of further deliberation between agents and the initiation of trust--and confidence--building measures. CONCLUSIONS AND SIGNIFICANCE: Game theory can and should be used as a normative tool in biodiversity conservation contexts: identifying scenarios with Pareto-inefficient Nash equilibria enables constructive action in order to achieve (closer to optimal conservation outcomes, whether by policy solutions based on mechanism design or otherwise. However, there is mounting evidence that formal mechanism-design solutions may backfire in certain cases. Such scenarios demand a return to group deliberation and the creation of reciprocal relationships of trust.

  2. Group decisions in biodiversity conservation: implications from game theory.

    Science.gov (United States)

    Frank, David M; Sarkar, Sahotra

    2010-05-27

    Decision analysis and game theory have proved useful tools in various biodiversity conservation planning and modeling contexts. This paper shows how game theory may be used to inform group decisions in biodiversity conservation scenarios by modeling conflicts between stakeholders to identify Pareto-inefficient Nash equilibria. These are cases in which each agent pursuing individual self-interest leads to a worse outcome for all, relative to other feasible outcomes. Three case studies from biodiversity conservation contexts showing this feature are modeled to demonstrate how game-theoretical representation can inform group decision-making. The mathematical theory of games is used to model three biodiversity conservation scenarios with Pareto-inefficient Nash equilibria: (i) a two-agent case involving wild dogs in South Africa; (ii) a three-agent raptor and grouse conservation scenario from the United Kingdom; and (iii) an n-agent fish and coral conservation scenario from the Philippines. In each case there is reason to believe that traditional mechanism-design solutions that appeal to material incentives may be inadequate, and the game-theoretical analysis recommends a resumption of further deliberation between agents and the initiation of trust--and confidence--building measures. Game theory can and should be used as a normative tool in biodiversity conservation contexts: identifying scenarios with Pareto-inefficient Nash equilibria enables constructive action in order to achieve (closer to) optimal conservation outcomes, whether by policy solutions based on mechanism design or otherwise. However, there is mounting evidence that formal mechanism-design solutions may backfire in certain cases. Such scenarios demand a return to group deliberation and the creation of reciprocal relationships of trust.

  3. Terrestrial Steering Group. 2014. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Aastrup, Peter; Aronsson, Mora; Barry, Tom

    implementation of the Arctic Terrestrial Biodiversity Monitoring Plan for the next two years. Identify expert networks required for successful implementation of the plan. Identify key gaps and opportunities for the TSG related to plan implementation and identify near-term next steps to address gaps.......The Terrestrial Steering Group (TSG), has initiated the implementation phase of the CBMP Terrestrial Plan. The CBMP Terrestrial Steering Group, along with a set of invited experts (see Appendix A for a participants list), met in Iceland from February 25-27th to develop a three year work plan...... to guide implementation of the CBMP-Terrestrial Plan. This report describes the outcome of that workshop. The aim of the workshop was to develop a three year work plan to guide implementation of the CBMP-Terrestrial Plan. The participants were tasked with devising an approach to both (a) determine what...

  4. Towards mainstreaming of biodiversity data publishing: recommendations of the GBIF Data Publishing Framework Task Group

    Science.gov (United States)

    2011-01-01

    can address sociocultural, technical-infrastructural, policy, political and legal constraints, as well as addressing issues of sustainability and financial support. To address these aspects of a data publishing framework - a systematic, standard approach to the formal definition and public disclosure of data - in the context of biodiversity data, the Global Biodiversity Information Facility (GBIF, the single inter-governmental body most clearly mandated to undertake such an effort) convened a Data Publishing Framework Task Group. We conceive this data publishing framework as an environment conducive to ensure free and open access to world's biodiversity data. Here, we present the recommendations of that Task Group, which are intended to encourage free and open access to the worlds' biodiversity data. PMID:22373150

  5. Towards mainstreaming of biodiversity data publishing: recommendations of the GBIF Data Publishing Framework Task Group.

    Science.gov (United States)

    Moritz, Tom; Krishnan, S; Roberts, Dave; Ingwersen, Peter; Agosti, Donat; Penev, Lyubomir; Cockerill, Matthew; Chavan, Vishwas

    2011-01-01

    , technical-infrastructural, policy, political and legal constraints, as well as addressing issues of sustainability and financial support. To address these aspects of a data publishing framework - a systematic, standard approach to the formal definition and public disclosure of data - in the context of biodiversity data, the Global Biodiversity Information Facility (GBIF, the single inter-governmental body most clearly mandated to undertake such an effort) convened a Data Publishing Framework Task Group. We conceive this data publishing framework as an environment conducive to ensure free and open access to world's biodiversity data. Here, we present the recommendations of that Task Group, which are intended to encourage free and open access to the worlds' biodiversity data.

  6. Neotropical Siluriformes as a Model for Insights on Determining Biodiversity of Animal Groups.

    Directory of Open Access Journals (Sweden)

    Renata Rúbia Ota

    Full Text Available We performed an analysis of the descriptions of new species of Neotropical Siluriformes (catfishes to estimate the number of new species that remain to be described for a complete knowledge on biodiversity of this order, to verify the effectiveness of taxonomic support, and to identify trends and present relevant information for future policies. We conducted a literature review of species descriptions between January 1990 and August 2014. The following metadata were recorded from each article: year of publication, number of species, journal and impact factor, family(s of the described species, number of authors, age of the authors and coauthors, country of the first author's institution and ecoregion of the type-locality. From accumulation of descriptions, we built an estimate model for number of species remaining to be described. We found 595 described species in 402 articles. The data demonstrated that there has been an increased understanding of the diversity of Siluriformes over the last 25 years in the Neotropical region, although 35% of the species still remain to be described. The model estimated that with the current trends and incentives, the biodiversity will be known in almost seven decades. We have reinforced the idea that greater joint efforts should be made by society and the scientific community to obtain this knowledge in a shorter period of time through enhanced programs for promoting science, training and the advancement of professionals before undiscovered species become extinct. The model built in this study can be used for similar estimates of other groups of animals.

  7. Evolutionary persistence in Gunnera and the contribution of southern plant groups to the tropical Andes biodiversity hotspot

    Science.gov (United States)

    Velásquez-Puentes, Francisco J.; Hinojosa, Luis Felipe; Schwartz, Thomas; Oxelman, Bengt; Pfeil, Bernard; Arroyo, Mary T.K.; Wanntorp, Livia; Antonelli, Alexandre

    2018-01-01

    Several studies have demonstrated the contribution of northern immigrants to the flora of the tropical Andes—the world’s richest and most diverse biodiversity hotspot. However, much less is known about the biogeographic history and diversification of Andean groups with southern origins, although it has been suggested that northern and southern groups have contributed roughly equally to the high Andean (i.e., páramo) flora. Here we infer the evolutionary history of the southern hemisphere plant genus Gunnera, a lineage with a rich fossil history and an important ecological role as an early colonising species characteristic of wet, montane environments. Our results show striking contrasts in species diversification, where some species may have persisted for some 90 million years, and whereas others date to less than 2 Ma since origination. The outstanding longevity of the group is likely linked to a high degree of niche conservatism across its highly disjunct range, whereby Gunnera tracks damp and boggy soils in cool habitats. Colonisation of the northern Andes is related to Quaternary climate change, with subsequent rapid diversification appearing to be driven by their ability to take advantage of environmental opportunities. This study demonstrates the composite origin of a mega-diverse biota. PMID:29576938

  8. Comparative transcriptome resources of eleven Primulina species, a group of 'stone plants' from a biodiversity hot spot.

    Science.gov (United States)

    Ai, Bin; Gao, Yong; Zhang, Xiaolong; Tao, Junjie; Kang, Ming; Huang, Hongwen

    2015-05-01

    The genus Primulina is an emerging model system in studying the drivers and mechanisms of species diversification, for its high species richness and endemism, together with high degree of habitat specialization. In this study, we sequenced transcriptomes for eleven Primulina species across the phylogeny of the genus using the Illumina HiSeq 2000 platform. A total of 336 million clean reads were processed into 355 573 unigenes with a mean length of 1336 bp and an N50 value of 2191 bp after pooling and reassembling twelve individual pre-assembled unigene sets. Of these unigenes, 249 973 (70%) were successfully annotated and 256 601 (72%) were identified as coding sequences (CDSs). We identified a total of 38 279 simple sequence repeats (SSRs) and 367 123 single nucleotide polymorphisms (SNPs). Marker validation assay revealed that 354 (27.3%) of the 1296 SSR and 795 (39.6%) of the 2008 SNP loci showed successful genotyping performance and exhibited expected polymorphism profiles. We screened 834 putative single-copy nuclear genes and proved their high effectiveness in phylogeny construction and estimation of ancestral population parameters. We identified a total of 85 candidate orthologs under positive selection for 46 of the 66 species pairs. This study provided an efficient application of RNA-seq in development of genomic resources for a group of 'stone plants' from south China Karst regions, a biodiversity hot spot of the World. The assembled unigenes with annotations and the massive gene-associated molecular markers would help guide further molecular systematic, population genetic and ecological genomics studies in Primulina and its relatives. © 2014 John Wiley & Sons Ltd.

  9. Cluster biodiversity as a multidimensional structure evolution strategy: checkerspot butterflies of the group Euphydryas aurinia (Rottemburg, 1775) (Lepidoptera: Nymphalidae)

    Czech Academy of Sciences Publication Activity Database

    Korb, S. K.; Bolshakov, L. V.; Faltýnek Fric, Zdeněk; Bartoňová, Alena

    2016-01-01

    Roč. 41, č. 2 (2016), s. 441-457 ISSN 0307-6970 R&D Projects: GA ČR GB14-36098G Grant - others:GA JU(CZ) 168/2013/P Institutional support: RVO:60077344 Keywords : Euphydryas aurinia * biodiversity * Lepidoptera Subject RIV: EH - Ecology, Behaviour Impact factor: 4.474, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/syen.12167/abstract

  10. Teaching Biodiversity

    Indian Academy of Sciences (India)

    Author Affiliations. Madhav Gadgil1 2. Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India. Biodiversity Unit, Jowaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O. Jakkur, Bangalore 560064, India ...

  11. Teaching Biodiversity

    Indian Academy of Sciences (India)

    Madhav Gadgil1 2. Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India. Biodiversity Unit, Jowaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O. Jakkur, Bangalore 560064, India. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 2 · Current Issue

  12. Biodiversity Conservation in Asia

    OpenAIRE

    Dale Squires

    2014-01-01

    Asian's remarkable economic growth brought many benefits but also fuelled threats to its ecosystems and biodiversity. Economic growth brings biodiversity threats but also conservation opportunities. Continued biodiversity loss is inevitable, but the types, areas and rates of biodiversity loss are not. Prioritising biodiversity conservation, tempered by what is tractable, remains a high priority. Policy and market distortions and failures significantly underprice biodiversity, undermine ecosys...

  13. Molecular systematics and biodiversity of the Cryptotis mexicanus group (Eulipotyphla: Soricidae): two new species from Honduras supported

    Science.gov (United States)

    Baird, Amy B.; McCarthy, Timothy J.; Trujillo, Robert G.; Kang, Yuan Yuan; Esmaeiliyan, Mehdi; Valdez, Joselyn; Woodman, Neal; Bickham, John W.

    2018-01-01

    Small-eared shrews of the genus Cryptotis (Mammalia: Eulipotyphla: Soricidae) are widespread in the northern Neotropics. Systematic studies of these shrews over the past two decades have revealed previously undocumented morphological and species diversity, resulting in a quadrupling of the number of recognized species. Unfortunately, a small proportion of the species in the genus have been included in molecular phylogenetic studies, and evolutionary relationships within the genus are incompletely known. Traditionally, species have been assigned to four or five morphologically defined ‘species groups’, but tests of the monophyly of some of these groups show weak support and relationships amongst species groups remain somewhat speculative. The largest species group is the C. mexicanus group inhabiting Mexico and northern Central America. We studied sequences from mitochondrial cytochrome-b and 16S genes, as well as nuclear ApoB and BRCA1 genes from 22 species of Cryptotis, including 15 species in the C. mexicanus group. Our combined analysis shows that the C. goldmani subgroup is very weakly supported as monophyletic; however, the C. mexicanus group as a whole is not monophyletic. Our molecular phylogenetic analyses confirm the distinctiveness of two newly described species (C. celaque and C. mccarthyi) from isolated highlands of western Honduras and illustrate their relationship with other species formerly considered part of a widespread C. goodwini.

  14. European Atlas of Soil Biodiversity

    DEFF Research Database (Denmark)

    Krogh (contributor), Paul Henning

    on Earth, life within the soil is often hidden away and suffers by being 'out of sight and out of mind'. What kind of life is there in soil? What do we mean by soil biodiversity? What is special about soil biology? How do our activities affect soil ecosystems? What are the links between soil biota...... and climate change? The first ever European Atlas of Soil Biodiversity uses informative texts, stunning photographs and maps to answer these questions and other issues. The European Atlas of Soil Biodiversity functions as a comprehensive guide allowing non-specialists to access information about this unseen...... Biodiversity'. Starting with the smallest organisms such as the bacteria, this segment works through a range of taxonomic groups such as fungi, nematodes, insects and macro-fauna to illustrate the astonishing levels of heterogeneity of life in soil. The European Atlas of Soil Biodiversity is more than just...

  15. Barriers to Eating Traditional Foods Vary by Age Group in Ecuador With Biodiversity Loss as a Key Issue.

    Science.gov (United States)

    Penafiel, Daniela; Termote, Celine; Lachat, Carl; Espinel, Ramon; Kolsteren, Patrick; Van Damme, Patrick

    2016-04-01

    To document the perceptions of indigenous peoples for the sustainable management of natural resources against malnutrition. Initially 4 and then 12 interviews were conducted with 4 different age groups. Eight rural villages in Guasaganda, central Ecuador, were studied in 2011-2012. A total of 75 people (22 children, 18 adolescents, 20 adults, and 15 elders). Benefits, severity, susceptibility, barriers, cues to action, and self-efficacy of eating traditional foods. Qualitative content analysis was completed using NVivo software. Initial analysis was inductive, followed by a content analysis directed by the Health Belief Model. Coding was completed independently by 2 researchers and kappa statistics (κ ≥ 0.65) were used to evaluate agreement. Healthy perceptions toward traditional foods existed and differed by age. Local young people ate traditional foods for their health benefits and good taste; adults cultivated traditional foods that had an economic benefit. Traditional knowledge used for consumption and cultivation of traditional foods was present but needs to be disseminated. Nutrition education in schools is needed that supports traditional knowledge in younger groups and prevents dietary changes toward unhealthy eating. Increased production of traditional food is needed to address current economic realities. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  16. Towards global interoperability for supporting biodiversity research on Essential Biodiversity Variables (EBVs)

    NARCIS (Netherlands)

    Kissling, W.D.; Hardisty, A.; García, E.A.; Santamaria, M.; De Leo, F.; Pesole, G.; Freyhof, J.; Manset, D.; Wissel, S.; Konijn, J.; Los, W.

    2015-01-01

    Essential biodiversity variables (EBVs) have been proposed by the Group on Earth Observations Biodiversity Observation Network (GEO BON) to identify a minimum set of essential measurements that are required for studying, monitoring and reporting biodiversity and ecosystem change. Despite the initial

  17. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  18. Birds as biodiversity surrogates

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Bladt, Jesper Stentoft; Balmford, Andrew

    2012-01-01

    1. Most biodiversity is still unknown, and therefore, priority areas for conservation typically are identified based on the presence of surrogates, or indicator groups. Birds are commonly used as surrogates of biodiversity owing to the wide availability of relevant data and their broad popular...... appeal. However, some studies have found birds to perform relatively poorly as indicators. We therefore ask how the effectiveness of this approach can be improved by supplementing data on birds with information on other taxa. 2. Here, we explore two strategies using (i) species data for other taxa...... and (ii) genus- and family-level data for invertebrates (when available). We used three distinct species data sets for sub-Saharan Africa, Denmark and Uganda, which cover different spatial scales, biogeographic regions and taxa (vertebrates, invertebrates and plants). 3. We found that networks of priority...

  19. New Dimensions in Microbial Ecology—Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment

    Science.gov (United States)

    Imhoff, Johannes F.

    2016-01-01

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5′phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane

  20. New Dimensions in Microbial Ecology—Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment

    Directory of Open Access Journals (Sweden)

    Johannes F. Imhoff

    2016-05-01

    Full Text Available During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA as target for the green sulfur bacteria and of two reaction center proteins (pufLM for the phototrophic purple bacteria, with genes of adenosine-5′phosphosulfate (APS reductase (aprA, sulfate thioesterase (soxB and dissimilatory sulfite reductase (dsrAB for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK for denitrifying bacteria and with genes

  1. New Dimensions in Microbial Ecology-Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment.

    Science.gov (United States)

    Imhoff, Johannes F

    2016-05-24

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5'phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane

  2. 17 years of grassland management leads to parallel local and regional biodiversity shifts among a wide range of taxonomic groups

    NARCIS (Netherlands)

    van Noordwijk, C. G.E.; Baeten, Lander; Turin, Hans; Heijerman, Theodoor; Alders, Kees; Boer, Peter; Mabelis, A. A.; Aukema, Berend; Noordam, Aart; Remke, Eva; Siepel, Henk; Berg, Matty P.; Bonte, Dries

    2017-01-01

    Conservation management is expected to increase local biodiversity, but uniform management may lead to biotic homogenization and diversity losses at the regional scale. We evaluated the effects of renewed grazing and cutting management carried out across a whole region, on the diversity of plants

  3. European mountain biodiversity

    Directory of Open Access Journals (Sweden)

    Nagy, Jennifer

    1998-12-01

    Full Text Available This paper, originally prepared as a discussion document for the ESF Exploratory Workshop «Trends in European Mountain Biodiversity - Research Planning Workshop», provides an overview of current mountain biodiversity research in Europe. It discusses (a biogeographical trends, (b the general properties of biodiversity, (c environmental factors and the regulation of biodiversity with respect to ecosystem function, (d the results of research on mountain freshwater ecosystems, and (e climate change and air pollution dominated environmental interactions.- The section on biogeographical trends highlights the importance of altitude and latitude on biodiversity. The implications of the existence of different scales over the different levels of biodiversity and across organism groups are emphasised as an inherent complex property of biodiversity. The discussion on ecosystem function and the regulation of biodiversity covers the role of environmental factors, productivity, perturbation, species migration and dispersal, and species interactions in the maintenance of biodiversity. Regional and long-term temporal patterns are also discussed. A section on the relatively overlooked topic of mountain freshwater ecosystems is presented before the final topic on the implications of recent climate change and air pollution for mountain biodiversity.

    [fr] Ce document a été préparé à l'origine comme une base de discussion pour «ESF Exploratory Workshop» intitulé «Trends in European Mountain Biodiversity - Research Planning Workshop»; il apporte une vue d'ensemble sur les recherches actuelles portant sur la biodiversité des montagnes en Europe. On y discute les (a traits biogéographiques, (b les caractéristiques générales- de la biodiversité, (c les facteurs environnementaux et la régulation de la biodiversité par rapport à la fonction des écosystèmes, (d les résultats des études sur les écosystèmes aquatiques des montagnes et (e les

  4. Intentional systems management: managing forests for biodiversity.

    Science.gov (United States)

    A.B. Carey; B.R. Lippke; J. Sessions

    1999-01-01

    Conservation of biodiversity provides for economic, social, and environmental sustainability. Intentional management is designed to manage conflicts among groups with conflicting interests. Our goal was to ascertain if intentional management and principles of conservation of biodiversity could be combined into upland and riparian forest management strategies that would...

  5. Livestock biodiversity and sustainability

    NARCIS (Netherlands)

    Hoffmann, I.

    2011-01-01

    Sustainable development equally includes environmental protection including biodiversity, economic growth and social equity, both within and between generations. The paper first reviews different aspects related to the sustainable use of livestock biodiversity and property regimes that influence

  6. Biodiversity in the Marketplace

    OpenAIRE

    Geoffrey Heal

    2000-01-01

    What is the nature of biodiversity as an economic commodity and why does it matter? How would its conservation contribute economically to our well-being? In this article, Geoffrey Heal considers three issues: Why is biodiversity important from an economic perspective? What kind of commodity is it? Does our usual economic mechanism, the market system, have the capacity to appreciate the economic value of biodiversity? The author first tries to characterize biodiversity from an economic perspec...

  7. Paradoxes in Biodiversity Conservation

    OpenAIRE

    David Pearce

    2005-01-01

    Biodiversity is important for human wellbeing, but it is declining. Measures to conserve biodiversity are essential but may be a waste of effort if several paradoxes are not addressed. The highest levels of diversity are in nations least able to practise effective conservation. The flow of funds to international biodiversity conservation appears trivial when compared to the scale of biodiversity loss. International agreements may not actually protect or conserve more than what would have been...

  8. Rio+20, biodiversity marginalized

    OpenAIRE

    Carrière, Stéphanie M.; Rodary, Estienne; Méral, Philippe; Serpantié, Georges; Boisvert, Valérie; Kull, C.A.; Lestrelin, Guillaume; Lhoutellier, Louise; Moizo, Bernard; Smektala, G.; Vandevelde, Jean-Christophe

    2013-01-01

    At the Rio+20 Conference (June 2012), the biodiversity conservation agenda was subsumed into broader environmental issues like sustainable development, “green economy,” and climate change. This shoehorning of biodiversity issues is concomitant with a trend toward market-based instruments and toward standardized biodiversity assessment and monitoring. This article raises concern that these trends can marginalize important and specific aspects of biodiversity governance, including other policy ...

  9. Biodiversity and globalization

    OpenAIRE

    Heal, Geoffrey

    2002-01-01

    Reduction of the earth’s biodiversity as a result of human activities is a matter of great concern to prominent scientists. What are the economic aspects of this loss? In economic terms, what is biodiversity and why might it matter? And is the loss of biodiversity in any way connected with globalization of the economy?

  10. Knowing Agricultural Biodiversity

    OpenAIRE

    Mulvany, P.

    2001-01-01

    The term "agricultural biodiversity" is relatively recent, perhaps post-CBD. Although, the specific nature of the biodiversity used by people was recognised for a long time, the overwhelming emphasis in the CBD was on general biodiversity, mainly 'wild' flora and fauna that inhabit this fragile biosphere in which people also live.

  11. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  12. Biodiversity: past, present and future

    Science.gov (United States)

    Rubidge, Emily M.; Burton, A. Cole; Vamosi, Steven M.

    2012-01-01

    On 12–15 May 2011, a diverse group of students, researchers and practitioners from across Canada and around the world met in Banff, Alberta, to discuss the many facets of biodiversity science at the 6th Annual Meeting of the Canadian Society for Ecology and Evolution. PMID:21733869

  13. How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring

    Directory of Open Access Journals (Sweden)

    Petteri Vihervaara

    2017-04-01

    Full Text Available Essential Biodiversity Variables (EBVs have been suggested to harmonize biodiversity monitoring worldwide. Their aim is to provide a small but comprehensive set of monitoring variables that would give a balanced picture of the development of biodiversity and the reaching of international and national biodiversity targets. Globally, GEO BON (Group on Earth Observations Biodiversity Observation Network has suggested 22 candidate EBVs to be monitored. In this article we regard EBVs as a conceptual tool that may help in making national scale biodiversity monitoring more robust by pointing out where to focus further development resources. We look at one country –Finland –with a relatively advanced biodiversity monitoring scheme and study how well Finland’s current biodiversity state indicators correspond with EBVs. In particular, we look at how national biodiversity monitoring could be improved by using available remote sensing (RS applications. Rapidly emerging new technologies from drones to airborne laser scanning and new satellite sensors providing imagery with very high resolution (VHR open a whole new world of opportunities for monitoring the state of biodiversity and ecosystems at low cost. In Finland, several RS applications already exist that could be expanded into national indicators. These include the monitoring of shore habitats and water quality parameters, among others. We hope that our analysis and examples help other countries with similar challenges. Along with RS opportunities, our analysis revealed also some needs to develop the EBV framework itself.

  14. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

    Science.gov (United States)

    Lefcheck, Jonathan S.; Byrnes, Jarrett E. K.; Isbell, Forest; Gamfeldt, Lars; Griffin, John N.; Eisenhauer, Nico; Hensel, Marc J. S.; Hector, Andy; Cardinale, Bradley J.; Duffy, J. Emmett

    2015-01-01

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. PMID:25907115

  15. Identification and assessment of products of biodiversity with commercial potential in an organized group of producers in the area of influence of the Eco-Archeological Corridor in the South of Huila

    Directory of Open Access Journals (Sweden)

    Martha Cecilia Vinasco Guzmán

    2011-10-01

    Full Text Available In Colombia, despite the wide biodiversity, efforts to find the products that may be involved in bio-activities have been inadequate and communities have not been involved with this proposal for economic and social development. To contribute to the development of these initiatives, an investigation over three groups belonging to the Mashiramo Corporation (Pitalito’s municipalities of San Agustin and Acevedo was carried out since February to September 2010, in seeking of biodiversity products with commercial potential in the south area of Huila, using the methodology of Market Analysis and Development (MA & D. In phase 1, 17 products were selected and classified into 4 groups: forest products and byproducts (species of orchids, native flowers, forest species and seeds, Zoo-breeding (lepidopteron fauna, wild and hydro biological resources, native foods (two legume species and products and services (ecotourism, environmental services and sale of handicrafts. In phase 2 (identification of products, markets and ways of marketing 5 products were analized: ecotourism, incipient handicrafts, black fish farming (Astroblepus chapmani, a nursery of native forest species and Guatin Zoo-breeding (Dasyprocta punctata. In the third phase, the plan was formulated for ecotourism business with emphasis on bird watching. It was concluded that methodological appropriation is needed by the beneficiary community to ensure the development of activities to learn to make decisions based on market data and not for creating false expectations that generate negative experiences in communities.

  16. The value of biodiversity

    OpenAIRE

    Association of Chartered Certified Accountants

    2011-01-01

    In addition to its intrinsic value (nature working as it is; species are the product of a long history of continuing evolution by means of ecological processes, and so they have the right to continued existence), biodiversity also plays a fundamental role as ecosystem services in the maintenance of natural ecological processes. The economic or utilitarian values of biodiversity rely upon the dependence of man on biodiversity; products that nature can provide: wood, food, fibers to make paper,...

  17. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Onyango, J.C.O.; Ojoo-Massawa, E.; Abira, M.A.

    1997-01-01

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  18. Relations between species rarity, vulnerability, and range contraction for a beetle group in a densely populated region in the Mediterranean biodiversity hotspot.

    Science.gov (United States)

    Fattorini, Simone

    2014-02-01

    Rarity is often considered an indication of species extinction risk, and it is frequently used to obtain measures of species vulnerability. However, there is no strong evidence of a correlation between species vulnerability and threat. Moreover, there is no consensus about how rarity should be measured. I used a multidimensional characterization of species rarity to calculate a vulnerability index for tenebrionid beetles inhabiting an Italian region in the Mediterranean biodiversity hotspot. I used different metrics to examine 3 dimensions of rarity: species range, ecology, and population. Species with rarity values below the median were scored as rare for each dimension. I combined rarity scores into a vulnerability index. I then correlated species vulnerability with range trends (expanded vs. contracted). Different measures of the same rarity dimension were strongly correlated and produced similar vulnerability scores. This result indicates rarity-based vulnerability estimates are slightly affected by the way a certain rarity dimension is measured. Vulnerability was correlated with range trends; species with the highest vulnerability had the strongest range contraction. However, a large number of common species also underwent range contraction in the last 50 years, and there was no clear relation between range contraction and their ecology. This indicates that in general human-induced environmental changes affected species irrespective of their assumed vulnerability and that focusing only on rare species may severely bias perceptions of the extent of species decline. © 2013 Society for Conservation Biology.

  19. The Circumpolar Biodiversity Monitoring Program Terrestrial Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    and coastal environments. The CBMP Terrestrial Plan is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect......The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments in terrestrial, marine, freshwater...

  20. Recovering biodiversity knowledge

    NARCIS (Netherlands)

    Meijerink, G.W.; Smolders, H.; Sours, S.; Pou, S.

    2005-01-01

    Cambodian¿s civil wars have seriously affected the country¿s agro-biodiversity and the farmers¿ traditional knowledge in this field. The PEDIGREA project aims at conserving on-farm agro-biodiversity conservation and in Cambodia it focuses on vegetable diversity. It tries to link the preservation of

  1. In Defence of Biodiversity

    NARCIS (Netherlands)

    Archer, Alfred; Burch Brown, Joanna

    2017-01-01

    The concept of biodiversity has played a central role within conservation biology over the last thirty years. Precisely how it should be understood, however, is a matter of ongoing debate. In this paper we defend what we call a classic multidimensional conception of biodiversity. We begin by

  2. Unraveling the diversification history of grasshoppers belonging to the “Trimerotropis pallidipennis” (Oedipodinae: Acrididae species group: a hotspot of biodiversity in the Central Andes

    Directory of Open Access Journals (Sweden)

    Noelia Verónica Guzmán

    2017-09-01

    Full Text Available The Andean Mountain range has been recognized as one of the biodiversity hotspots of the world. The proposed mechanisms for such species diversification, among others, are due to the elevation processes occurring during the Miocene and the intensive glacial action during the Pleistocene. In this study we investigated the diversification history of the grasshopper Trimerotropis pallidipennis species complex which shows a particularly wide latitudinal and altitudinal distribution range across the northern, central and southern Andes in South America. Many genetic lineages of this complex have been so far discovered, making it an excellent model to investigate the role of the central Andes Mountains together with climatic fluctuations as drivers of speciation. Phylogenetics, biogeographic and molecular clock analyses using a multi-locus dataset revealed that in Peru there are at least two, and possibly four genetic lineages. Two different stocks originated from a common ancestor from North/Central America—would have dispersed toward southern latitudes favored by the closure of the Panama Isthmus giving rise to two lineages, the coastal and mountain lineages, which still coexist in Peru (i.e., T. pallidipennis and T. andeana. Subsequent vicariant and dispersal events continued the differentiation process, giving rise to three to six genetic lineages (i.e., clades detected in this study, which were geographically restricted to locations dispersed over the central Andes Mountains in South America. Our results provide another interesting example of “island diversification” motored by the topography plus unstable climatic conditions during the Pleistocene, pointing out the presence of a hotspot of diversification in the Andean region of Peru.

  3. The biodiversity from Bogota

    International Nuclear Information System (INIS)

    Calvachi Zambrano, Byron

    2002-01-01

    It is about the flora biodiversity and fauna that it occupied the savannah of Bogota originally, about the flora and extinct fauna and of the flora and fauna that still persist in spite of the colonization

  4. Business and biodiversity

    DEFF Research Database (Denmark)

    Andersen, Rasmus Meyer; Lehmann, Martin; Christensen, Per

    - a challenge that needs to be shared between conservationists, green organisations, public authorities, as well as the private sector. A new wave of green initiatives has emerged within the culture of business and marketing. The reasons for why businesses should engage in environmental actions are many......Despite the overall importance of biodiversity, the quality measures of biodiversity show worrying figures. Numerous human impacts on nature impose serious hazard to its inherent diversity. This expansion of human activities leaves the battle against loss of biodiversity to be a great challenge......, but the effort has until now considered biodiversity actions relatively little, compared to other areas such as e.g. climate related actions. Nevertheless, the opportunity for businesses to meet their responsibilities and lift a share of the challenge is far from being just a romantic thought. Nor...

  5. Biodiversity and global change

    National Research Council Canada - National Science Library

    Solbrig, Otto Thomas; Emden, H. M. van; Oordt, P. G. W. J. van; Solbrig, Otto T

    1992-01-01

    The IUBS symposium "Biodiversity and Global Change" held during the 24th General Assembly, 1-6 September, 1991, in Amsterdam, the Netherlands, represented the first attempt to address the issue of bio...

  6. Dimensions of biodiversity loss

    NARCIS (Netherlands)

    Palma, De Adriana; Kuhlmann, Michael; Bugter, Rob; Ferrier, Simon; Hoskins, Andrew J.; Potts, Simon G.; Roberts, Stuart P.M.; Schweiger, Oliver; Purvis, Andy

    2017-01-01

    Aim: Agricultural intensification and urbanization are important drivers of biodiversity change in Europe. Different aspects of bee community diversity vary in their sensitivity to these pressures, as well as independently influencing ecosystem service provision (pollination). To obtain a more

  7. Funding begets biodiversity

    DEFF Research Database (Denmark)

    Ahrends, Antje; Burgess, Neil David; Gereau, Roy E.

    2011-01-01

    Aim Effective conservation of biodiversity relies on an unbiased knowledge of its distribution. Conservation priority assessments are typically based on the levels of species richness, endemism and threat. Areas identified as important receive the majority of conservation investments, often...... facilitating further research that results in more species discoveries. Here, we test whether there is circularity between funding and perceived biodiversity, which may reinforce the conservation status of areas already perceived to be important while other areas with less initial funding may remain overlooked......, and variances decomposed in partial regressions. Cross-correlations are used to assess whether perceived biodiversity drives funding or vice versa. Results Funding explained 65% of variation in perceived biodiversity patterns – six times more variation than accounted for by 34 candidate environmental factors...

  8. Circumpolar Biodiversity Monitoring Programme coastal biodiversity monitoring background paper

    Science.gov (United States)

    McLennan, Donald; Anderson, Rebecca D.; Wegeberg, S.; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, S.; Markon, Carl J.; Christensen, T.; Barry, T.; Price, C.

    2016-01-01

    In 2014, the United States (U.S.) and Canada agreed to act as co-lead countries for the initial development of the Coastal Expert Monitoring Group (CEMG) as part of the Circumpolar Biodiversity Monitoring Program (CBMP, www. cbmp.is) under the Arctic Council’s Conservation of Arctic Flora and Fauna (CAFF, www.caff.is) working group. The CAFF Management Board approved Terms of Reference for the CEMG in the spring of 2014. The primary goal of the CEMG is to develop a long term, integrated, multi-disciplinary, circumpolar Arctic Coastal Biodiversity Monitoring Plan (the Coastal Plan) that relies on science and Traditional Knowledge, and has direct and relevant application for communities, industry, government decision makers, and other users. In addition to the monitoring plan, the CAFF working group has asked the CBMP, and thus the CEMG, to develop an implementation plan that identifies timeline, costs, organizational structure and partners. This background paper provides a platform for the guidance for the development of the Coastal Plan and is produced by the CEMG with assistance from a number of experts in multiple countries.

  9. Marine biodiversity in Colombia

    International Nuclear Information System (INIS)

    Diaz, Juan Manuel

    2002-01-01

    One decade ago, the seas and oceans were considered biologically less diverse that the terrestrial environment. Now it is known that it is on the contrary; 33 of the 34 categories of animals (phylum), they are represented in the sea, compared with those solely 15 that exist in earth. The investigation about the diversity of life in the sea has been relatively scorned, but there are big benefits that we can wait if this is protected. The captures of fish depend on it; the species captured by the fisheries are sustained of the biodiversity of their trophic chains and habitats. The marine species are probably the biggest reservoir of chemical substances that can be used in pharmaceutical products. The genetic material of some species can be useful in biotechnical applications. The paper treats topics like the current state of the knowledge in marine biodiversity and it is done a diagnostic of the marine biodiversity in Colombia

  10. Marine biodiversity characteristics.

    Science.gov (United States)

    Boeuf, Gilles

    2011-05-01

    Oceans contain the largest living volume of the "blue" planet, inhabited by approximately 235-250,000 described species, all groups included. They only represent some 13% of the known species on the Earth, but the marine biomasses are really huge. Marine phytoplankton alone represents half the production of organic matter on Earth while marine bacteria represent more than 10%. Life first appeared in the oceans more than 3.8 billion years ago and several determining events took place that changed the course of life, ranging from the development of the cell nucleus to sexual reproduction going through multi-cellular organisms and the capture of organelles. Of the 31 animal phyla currently listed, 12 are exclusively marine phyla and have never left the ocean. An interesting question is to try to understand why there are so few marine species versus land species? This pattern of distribution seems pretty recent in the course of Evolution. From an exclusively marine world, since the beginning until 440 million years ago, land number of species much increased 110 million years ago. Specific diversity and ancestral roles, in addition to organizational models and original behaviors, have made marine organisms excellent reservoirs for identifying and extracting molecules (>15,000 today) with pharmacological potential. They also make particularly relevant models for both fundamental and applied research. Some marine models have been the source of essential discoveries in life sciences. From this diversity, the ocean provides humankind with renewable resources, which are highly threatened today and need more adequate management to preserve ocean habitats, stocks and biodiversity. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Looking beyond superficial knowledge gaps: understanding public representations of biodiversity

    NARCIS (Netherlands)

    Buijs, A.E.; Fischer, A.; Rink, D.; Young, J.C.

    2008-01-01

    Lack of public support for, and protest against, biodiversity management measures have often been explained by the apparently inadequate knowledge of biodiversity in the general public. In stark contrast to this assumption of public ignorance, our results from focus group discussions in The

  12. Biodiversity information platforms: From standards to interoperability

    Directory of Open Access Journals (Sweden)

    Walter Berendsohn

    2011-11-01

    Full Text Available One of the most serious bottlenecks in the scientific workflows of biodiversity sciences is the need to integrate data from different sources, software applications, and services for analysis, visualisation and publication. For more than a quarter of a century the TDWG Biodiversity Information Standards organisation has a central role in defining and promoting data standards and protocols supporting interoperability between disparate and locally distributed systems. Although often not sufficiently recognized, TDWG standards are the foundation of many popular Biodiversity Informatics applications and infrastructures ranging from small desktop software solutions to large scale international data networks. However, individual scientists and groups of collaborating scientist have difficulties in fully exploiting the potential of standards that are often notoriously complex, lack non-technical documentations, and use different representations and underlying technologies. In the last few years, a series of initiatives such as Scratchpads, the EDIT Platform for Cybertaxonomy, and biowikifarm have started to implement and set up virtual work platforms for biodiversity sciences which shield their users from the complexity of the underlying standards. Apart from being practical work-horses for numerous working processes related to biodiversity sciences, they can be seen as information brokers mediating information between multiple data standards and protocols. The ViBRANT project will further strengthen the flexibility and power of virtual biodiversity working platforms by building software interfaces between them, thus facilitating essential information flows needed for comprehensive data exchange, data indexing, web-publication, and versioning. This work will make an important contribution to the shaping of an international, interoperable, and user-oriented biodiversity information infrastructure.

  13. Biodiversity information platforms: From standards to interoperability.

    Science.gov (United States)

    Berendsohn, W G; Güntsch, A; Hoffmann, N; Kohlbecker, A; Luther, K; Müller, A

    2011-01-01

    One of the most serious bottlenecks in the scientific workflows of biodiversity sciences is the need to integrate data from different sources, software applications, and services for analysis, visualisation and publication. For more than a quarter of a century the TDWG Biodiversity Information Standards organisation has a central role in defining and promoting data standards and protocols supporting interoperability between disparate and locally distributed systems.Although often not sufficiently recognized, TDWG standards are the foundation of many popular Biodiversity Informatics applications and infrastructures ranging from small desktop software solutions to large scale international data networks. However, individual scientists and groups of collaborating scientist have difficulties in fully exploiting the potential of standards that are often notoriously complex, lack non-technical documentations, and use different representations and underlying technologies. In the last few years, a series of initiatives such as Scratchpads, the EDIT Platform for Cybertaxonomy, and biowikifarm have started to implement and set up virtual work platforms for biodiversity sciences which shield their users from the complexity of the underlying standards. Apart from being practical work-horses for numerous working processes related to biodiversity sciences, they can be seen as information brokers mediating information between multiple data standards and protocols.The ViBRANT project will further strengthen the flexibility and power of virtual biodiversity working platforms by building software interfaces between them, thus facilitating essential information flows needed for comprehensive data exchange, data indexing, web-publication, and versioning. This work will make an important contribution to the shaping of an international, interoperable, and user-oriented biodiversity information infrastructure.

  14. Biodiversity and productivity

    Science.gov (United States)

    M.R. Willig

    2011-01-01

    Researchers predict that human activities especially landscape modification and climate change will have a considerable impact on the distribution and abundance of species at local, regional, and global scales in the 21st century ( 1, 2). This is a concern for a number of reasons, including the potential loss of goods and services that biodiversity provides to people...

  15. Biodiversity in Benthic Ecology

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Carl, J. D.

    Foreword: This proceeding is based on a set of papers presented at the second Nordic Benthological Meeting held in Silkeborg, November 13-14, 1997. The main theme of the meeting was biodiversity in benthic ecology and the majority of contributions touch on this subject. In addition, the proceeding...

  16. When Leeches reveal Biodiversity

    DEFF Research Database (Denmark)

    Schnell, Ida Bærholm

    to provide information about vertebrate biodiversity. This thesis covers the development of a monitoring method based on iDNA extracted from terrestrial haematophagous leeches, a continuation of the work presented in Schnell et al., 2012. The chapters investigate and/or discuss different subjects regarding...

  17. Caribbean landscapes and their biodiversity

    Science.gov (United States)

    A. E. Lugo; E. H. Helmer; E. Santiago Valentín

    2012-01-01

    Both the biodiversity and the landscapes of the Caribbean have been greatly modified as a consequence of human activity. In this essay we provide an overview of the natural landscapes and biodiversity of the Caribbean and discuss how human activity has affected both. Our Caribbean geographic focus is on the insular Caribbean and the biodiversity focus is on the flora,...

  18. Biodiversity and the lexicon zoo.

    Science.gov (United States)

    B.G. Marcot

    2007-01-01

    Ecologists and natural resource managers struggle to define and relate biodiversity, biocomplexity, ecological integrity, ecosystem services, and related concepts; to describe effects of disturbance dynamics on biodiversity; and to understand how biodiversity relates to resilience, resistance, and stability of ecosystems and sustainability of resource conditions. To...

  19. Forecasting the future of biodiversity

    DEFF Research Database (Denmark)

    Fitzpatrick, M. C.; Sanders, Nate; Ferrier, Simon

    2011-01-01

    , but their application to forecasting climate change impacts on biodiversity has been limited. Here we compare forecasts of changes in patterns of ant biodiversity in North America derived from ensembles of single-species models to those from a multi-species modeling approach, Generalized Dissimilarity Modeling (GDM...... climate change impacts on biodiversity....

  20. Is biofuel policy harming biodiversity in Europe?

    NARCIS (Netherlands)

    Eggers, J.; Tröltzsch, K.; Falcucci, A.; Verburg, P.H.; Ozinga, W.A.

    2009-01-01

    We assessed the potential impacts of land-use changes resulting from a change in the current biofuel policy on biodiversity in Europe. We evaluated the possible impact of both arable and woody biofuel crops on changes in distribution of 313 species pertaining to different taxonomic groups. Using

  1. Enhancing Life Sciences Teachers' Biodiversity Knowledge : A ...

    African Journals Online (AJOL)

    This paper provides insights into how Life Sciences teachers in the Eastern Cape can be supported through professional learning communities (PLCs) as a potential approach to enhancing their biodiversity knowledge. PLCs are communities that provide the setting and necessary support for groups of classroom teachers to ...

  2. Biodiversity and systematics in cephalopods: Unresolved problems ...

    African Journals Online (AJOL)

    Some problems of cephalopod biodiversity are discussed. Many squid species are represented by 2–4 intraspecies groupings that may be wholly or partly sympatric, but differ in spawning season and size at maturity. They may be genetically distinct stock units, but their taxonomic status remains unresolved. Discovery of a ...

  3. Endangered Species & Biodiversity: A Classroom Project & Theme

    Science.gov (United States)

    Lauro, Brook

    2012-01-01

    Students discover the factors contributing to species losses worldwide by conducting a project about endangered species as a component of a larger classroom theme of biodiversity. Groups conduct research using online endangered- species databases and present results to the class using PowerPoint. Students will improve computer research abilities…

  4. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation.

    Science.gov (United States)

    Beninde, Joscha; Veith, Michael; Hochkirch, Axel

    2015-06-01

    Understanding varying levels of biodiversity within cities is pivotal to protect it in the face of global urbanisation. In the early stages of urban ecology studies on intra-urban biodiversity focused on the urban-rural gradient, representing a broad generalisation of features of the urban landscape. Increasingly, studies classify the urban landscape in more detail, quantifying separately the effects of individual urban features on biodiversity levels. However, while separate factors influencing biodiversity variation among cities worldwide have recently been analysed, a global analysis on the factors influencing biodiversity levels within cities is still lacking. We here present the first meta-analysis on intra-urban biodiversity variation across a large variety of taxonomic groups of 75 cities worldwide. Our results show that patch area and corridors have the strongest positive effects on biodiversity, complemented by vegetation structure. Local, biotic and management habitat variables were significantly more important than landscape, abiotic or design variables. Large sites greater than 50 ha are necessary to prevent a rapid loss of area-sensitive species. This indicates that, despite positive impacts of biodiversity-friendly management, increasing the area of habitat patches and creating a network of corridors is the most important strategy to maintain high levels of urban biodiversity. © 2015 John Wiley & Sons Ltd/CNRS.

  5. What is marine biodiversity? Towards common concepts and their implications for assessing biodiversity status

    Directory of Open Access Journals (Sweden)

    Sabine Cochrane

    2016-12-01

    Full Text Available ‘Biodiversity’ is one of the most common keywords used in environmental sciences, spanning from research to management, nature conservation and consultancy. Despite this, our understanding of the underlying concepts varies greatly, between and within disciplines as well as among the scientists themselves. Biodiversity can refer to descriptions or assessments of the status and condition of all or selected groups of organisms, from the genetic variability, to the species, populations, communities, and ecosystems. However, a concept of biodiversity also must encompass understanding the interactions and functions on all levels from individuals up to the whole ecosystem, including changes related to natural and anthropogenic environmental pressures. While biodiversity as such is an abstract and relative concept rooted in the spatial domain, it is central to most international, European and national governance initiatives aimed at protecting the marine environment. These rely on status assessments of biodiversity which typically require numerical targets and specific reference values, to allow comparison in space and/or time, often in association with some external structuring factors such as physical and biogeochemical conditions. Given that our ability to apply and interpret such assessments requires a solid conceptual understanding of marine biodiversity, here we define this and show how the abstract concept can and needs to be interpreted and subsequently applied in biodiversity assessments.

  6. Educating for preserving biodiversity

    Directory of Open Access Journals (Sweden)

    Méndez, I. E.

    2014-01-01

    Full Text Available The notion of “culture of diversity” is presented in a new dimension. “That of educating for preserving biodiversity” is advanced together with its main challenges. The need of educating the masses for preserving biodiversity is perhaps the most outstanding to be faced, particularly if pedagogic requirements and the diversity of population is to be met. Likewise, it should help to put individuals in contact with the many elements conforming biodiversity and lead them to recognize its value ethically and esthetically. The research presents the framework for designing educating programs enhancing the genetic level, the ecosystem and the qualitative dimension and including materials and energy flood and its meaning for the homeostasis and autopoiesis of the system, together with its interactions with other components for achieving an equilibrium and stability. The importance of the natural evolution tendency is highlighted.

  7. In search for a compromise between biodiversity conservation and human health protection in restoration of fly ash deposits: effect of anti-dust treatments on five groups of arthropods.

    Science.gov (United States)

    Tropek, Robert; Cerna, Ilona; Straka, Jakub; Kocarek, Petr; Malenovsky, Igor; Tichanek, Filip; Sebek, Pavel

    2016-07-01

    Recently, fly ash deposits have been revealed as a secondary refuge of critically endangered arthropods specialised on aeolian sands in Central Europe. Simultaneously, these anthropogenic habitats are well known for their negative impact on human health and the surrounding environment. The overwhelming majority of these risks are caused by wind erosion, the substantial decreasing of which is thus necessary. But, any effects of anti-dust treatments on endangered arthropods have never been studied. We surveyed communities of five arthropod groups (wild bees and wasps, leafhoppers, spiders, hoverflies and orthopteroid insects) colonising three fly ash deposits in the western Czech Republic. We focused on two different anti-dust treatments (~70 and 100 % cover of fly ash by barren soil) and their comparison with a control of bare fly ash. Altogether, we recorded 495 species, including 132 nationally threatened species (eight of them were considered to be extinct in the country) and/or 30 species strictly specialised to drift sands. Bees and wasps and leafhoppers contained the overwhelming majority of species of the highest conservation interest; a few other important records were also in spiders and orthopteroids. Total soil cover depleted the unique environment of fly ash and thus destroyed the high conservation potential of the deposits. On the other hand, partial coverage (with ~30 % of bare fly ash) still offered habitats for many of the most threatened species, as we showed by both regression and multivariate analyses, with a decrease of wind erosion. This topic still needs much more research interest, but we consider mosaic-like preservation of smaller spots of fly ash as one of the possible compromises between biodiversity and human health.

  8. The value of biodiversity

    Directory of Open Access Journals (Sweden)

    CJR. Alho

    Full Text Available In addition to its intrinsic value (nature working as it is; species are the product of a long history of continuing evolution by means of ecological processes, and so they have the right to continued existence, biodiversity also plays a fundamental role as ecosystem services in the maintenance of natural ecological processes. The economic or utilitarian values of biodiversity rely upon the dependence of man on biodiversity; products that nature can provide: wood, food, fibers to make paper, resins, chemical organic products, genes as well as knowledge for biotechnology, including medicine and cosmetic sub-products. It also encompasses ecosystem services, such as climate regulation, reproductive and feeding habitats for commercial fish, some organisms that can create soil fertility through complex cycles and interactions, such as earthworms, termites and bacteria, in addition to fungi responsible for cycling nutrients like nitrogen, phosphorus and sulfur and making them available to plant absorption. These services are the benefits that people indirectly receive from natural ecosystem functions (air quality maintenance, regional climate, water quality, nutrient cycling, reproductive habitats of commercial fish, etc. with their related economic values.

  9. The value of biodiversity.

    Science.gov (United States)

    Alho, C J R

    2008-11-01

    In addition to its intrinsic value (nature working as it is; species are the product of a long history of continuing evolution by means of ecological processes, and so they have the right to continued existence), biodiversity also plays a fundamental role as ecosystem services in the maintenance of natural ecological processes. The economic or utilitarian values of biodiversity rely upon the dependence of man on biodiversity; products that nature can provide: wood, food, fibers to make paper, resins, chemical organic products, genes as well as knowledge for biotechnology, including medicine and cosmetic sub-products. It also encompasses ecosystem services, such as climate regulation, reproductive and feeding habitats for commercial fish, some organisms that can create soil fertility through complex cycles and interactions, such as earthworms, termites and bacteria, in addition to fungi responsible for cycling nutrients like nitrogen, phosphorus and sulfur and making them available to plant absorption. These services are the benefits that people indirectly receive from natural ecosystem functions (air quality maintenance, regional climate, water quality, nutrient cycling, reproductive habitats of commercial fish, etc.) with their related economic values.

  10. Biodiversity, globalisation and poverty.

    Science.gov (United States)

    Olorode, Omotoye

    2007-06-10

    The erosion of the stock of biodiversity on earth developed historically with the so-called voyages of discovery (and their antecedents), colonial conquests and the accompanying movements of natural products and peoples, i.e. movements of populations and genetic materials. These events happened with the development of technology and the so-called conquest, by man, of his environment and the appertaining development of specialization not only in industry but also in agriculture and environmental management. The development of specialization resulted in the homogenization of processes, products, inputs and input industries; this increased homogenization had the corollary of arrested heterogeneity across the board; what they call globalization is part of this process. The efficiency of homogenization, however, engendered new problems of fragility of human environment and of production and social relations and processes. The effects of this complex situation, in general terms and in terms of biodiversity in particular, have been more devastating for the more vulnerable regions, classes of people, and peoples of the world. A continuous rethinking of the epistemology and the social and political bases of existing policies on environment in general, and of biodiversity conservation in particular, has become imperative.

  11. Frontiers in research on biodiversity and disease.

    Science.gov (United States)

    Johnson, Pieter T J; Ostfeld, Richard S; Keesing, Felicia

    2015-10-01

    Global losses of biodiversity have galvanised efforts to understand how changes to communities affect ecological processes, including transmission of infectious pathogens. Here, we review recent research on diversity-disease relationships and identify future priorities. Growing evidence from experimental, observational and modelling studies indicates that biodiversity changes alter infection for a range of pathogens and through diverse mechanisms. Drawing upon lessons from the community ecology of free-living organisms, we illustrate how recent advances from biodiversity research generally can provide necessary theoretical foundations, inform experimental designs, and guide future research at the interface between infectious disease risk and changing ecological communities. Dilution effects are expected when ecological communities are nested and interactions between the pathogen and the most competent host group(s) persist or increase as biodiversity declines. To move beyond polarising debates about the generality of diversity effects and develop a predictive framework, we emphasise the need to identify how the effects of diversity vary with temporal and spatial scale, to explore how realistic patterns of community assembly affect transmission, and to use experimental studies to consider mechanisms beyond simple changes in host richness, including shifts in trophic structure, functional diversity and symbiont composition. © 2015 John Wiley & Sons Ltd/CNRS.

  12. Biofuels and biodiversity.

    Science.gov (United States)

    Wiens, John; Fargione, Joseph; Hill, Jason

    2011-06-01

    The recent increase in liquid biofuel production has stemmed from a desire to reduce dependence on foreign oil, mitigate rising energy prices, promote rural economic development, and reduce greenhouse gas emissions. The growth of this industry has important implications for biodiversity, the effects of which depend largely on which biofuel feedstocks are being grown and the spatial extent and landscape pattern of land requirements for growing these feedstocks. Current biofuel production occurs largely on croplands that have long been in agricultural production. The additional land area required for future biofuels production can be met in part by reclaiming reserve or abandoned croplands and by extending cropping into lands formerly deemed marginal for agriculture. In the United States, many such marginal lands have been enrolled in the Conservation Reserve Program (CRP), providing important habitat for grassland species. The demand for corn ethanOl has changed agricultural commodity economics dramatically, already contributing to loss of CRP lands as contracts expire and lands are returned to agricultural production. Nevertheless, there are ways in which biofuels can be developed to enhance their coexistence with biodiversity. Landscape heterogeneity can be improved by interspersion of land uses, which is easier around facilities with smaller or more varied feedstock demands. The development of biofuel feedstocks that yield high net energy returns with minimal carbon debts or that do not require additional land for production, such as residues and wastes, should be encouraged. Competing land uses, including both biofuel production and biodiversity protection, should be subjected to comprehensive cost-benefit analysis, so that incentives can be directed where they will do the most good.

  13. Millennium Ecosystem Assessment: MA Biodiversity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Biodiversity provides data and information on amphibians, disease agents (extent and distribution of infectious and parasitic...

  14. Patterns in Biodiversity: Spatial organisation of biodiversity in the Netherland

    NARCIS (Netherlands)

    Schouten, M.A.

    2007-01-01

    A better understanding of biodiversity and its current threats is urgently needed, especially in the Netherlands where high population density, industrialisation, and intensive land-use have radically altered the natural landscape. Often, biodiversity research is seriously hampered by a lack of

  15. Climate changes and biodiversity

    International Nuclear Information System (INIS)

    Bertelsmeier, C.

    2011-01-01

    As some people forecast an average temperature increase between 1 and 3.5 degrees by the end of the century, with higher increases under high latitudes (it could reach 8 degrees in some regions of Canada), other changes will occur: precipitations, sea level rise, reductions in polar ice, extreme climatic events, glacier melting, and so on. The author discusses how these changes will impact biodiversity as they will threat habitat and living conditions of many species. Some studies assess a loss of 15 to 37 per cent of biodiversity by 2050. Moreover, physiology is influenced by temperature: for some species, higher temperatures favour the development of female embryos, or the increase of their population, or may result in an evolution of their reproduction strategy. Life rhythm will also change, for plants as well as for animals. Species will keep on changing their distribution area, but some others will not be able to and are therefore threatened. Finally, as the evolutions concern their vectors, some diseases will spread in new regions

  16. Net present biodiversity value and the design of biodiversity offsets.

    Science.gov (United States)

    Overton, Jacob McC; Stephens, R T Theo; Ferrier, Simon

    2013-02-01

    There is an urgent need to develop sound theory and practice for biodiversity offsets to provide a better basis for offset multipliers, to improve accounting for time delays in offset repayments, and to develop a common framework for evaluating in-kind and out-of-kind offsets. Here, we apply concepts and measures from systematic conservation planning and financial accounting to provide a basis for determining equity across type (of biodiversity), space, and time. We introduce net present biodiversity value (NPBV) as a theoretical and practical measure for defining the offset required to achieve no-net-loss. For evaluating equity in type and space we use measures of biodiversity value from systematic conservation planning. Time discount rates are used to address risk of non-repayment, and loss of utility. We illustrate these concepts and measures with two examples of biodiversity impact-offset transactions. Considerable further work is required to understand the characteristics of these approaches.

  17. Economic tools for biodiversity. An elaboration of TEEB recommendations with regard to the Taskforce Biodiversity

    International Nuclear Information System (INIS)

    Davidson, M.D.; Bergsma, G.C.; Blom, M.J.

    2011-07-01

    The working group on Economic Instruments of the Biodiversity and Natural Resources Task Force addressed the question how the recommendations of the report of the United Nations 'The Economics of Ecosystems and Biodiversity' (TEEB) can be realized in the Netherlands. A selection of topics has been made for which policy proposals are developed which might be promising and can lead to a better protection of the biodiversity. The following proposals were investigated and/or elaborated: decrease of the social discount rate; further greening of the tax system; import levy on bulk commodities; taxes on non-sustainable wood; levy on the use of open space; differential tax on animal proteins; and a revision of biomass incentives. [nl

  18. Linking soil biodiversity and agricultural soil management

    NARCIS (Netherlands)

    Thiele-Bruhn, S.; Bloem, J.; de Vries, F.T.; Kalbitz, K.; Wagg, C.

    2012-01-01

    Soil biodiversity vastly exceeds aboveground biodiversity, and is prerequisite for ecosystem stability and services. This review presents recent findings in soil biodiversity research focused on interrelations with agricultural soil management. Richness and community structure of soil biota depend

  19. Undergraduate Students' Attitudes toward Biodiversity

    Science.gov (United States)

    Huang, Hui-Ju; Lin, Yu-Teh Kirk

    2014-01-01

    The study investigated American and Taiwan undergraduate students' attitudes toward biodiversity. The survey questionnaire consisted of statements prompted by the question "To what extent do you agree with the following statements about problems with the biodiversity issues." Students indicated strongly disagree, disagree, agree,…

  20. Reconciling biodiversity and carbon conservation.

    Science.gov (United States)

    Thomas, Chris D; Anderson, Barbara J; Moilanen, Atte; Eigenbrod, Felix; Heinemeyer, Andreas; Quaife, Tristan; Roy, David B; Gillings, Simon; Armsworth, Paul R; Gaston, Kevin J

    2013-05-01

    Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process. © 2012 John Wiley & Sons Ltd/CNRS.

  1. Habitat modeling for biodiversity conservation.

    Science.gov (United States)

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  2. Place prioritization for biodiversity content

    Indian Academy of Sciences (India)

    The prioritization of places on the basis of biodiversity content is part of any systematic biodiversity conservation planning process. The place prioritization procedure implemented in the ResNet software package is described. This procedure is primarily based on the principles of rarity and complementarity. Application of the ...

  3. Soil biodiversity for agricultural sustainability

    NARCIS (Netherlands)

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does

  4. Operationalizing biodiversity for conservation planning

    Indian Academy of Sciences (India)

    Biodiversity has acquired such a general meaning that people now find it difficult to pin down a precise sense for planning and policy-making aimed at biodiversity ... Wildlife and Ecology, Tropical Forest Research Centre and the Rainforest Cooperative Research Centre, PO Box 780, Atherton, Queensland, 4883, Australia ...

  5. Biodiversity of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    stream_size 2 stream_content_type text/plain stream_name Biodiversity_Western_Ghats_Inf_Kit_1994_3.1_1.pdf.txt stream_source_info Biodiversity_Western_Ghats_Inf_Kit_1994_3.1_1.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  6. Primary forests are irreplaceable for sustaining tropical biodiversity.

    Science.gov (United States)

    Gibson, Luke; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W; Gardner, Toby A; Barlow, Jos; Peres, Carlos A; Bradshaw, Corey J A; Laurance, William F; Lovejoy, Thomas E; Sodhi, Navjot S

    2011-09-14

    Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.

  7. Biodiversity enhances reef fish biomass and resistance to climate change.

    Science.gov (United States)

    Duffy, J Emmett; Lefcheck, Jonathan S; Stuart-Smith, Rick D; Navarrete, Sergio A; Edgar, Graham J

    2016-05-31

    Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey's global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean.

  8. Biodiversity enhances reef fish biomass and resistance to climate change

    Science.gov (United States)

    Duffy, J. Emmett; Lefcheck, Jonathan S.; Navarrete, Sergio A.; Edgar, Graham J.

    2016-01-01

    Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey’s global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean. PMID:27185921

  9. The Biodiversity Informatics Potential Index

    Directory of Open Access Journals (Sweden)

    Ariño Arturo H

    2011-12-01

    Full Text Available Abstract Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a the intrinsic biodiversity potential (the biological richness or ecological diversity of a country; (b the capacity of the country to generate biodiversity data records; and (c the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a identifying

  10. The Biodiversity Informatics Potential Index

    Science.gov (United States)

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  11. The Biodiversity Informatics Potential Index.

    Science.gov (United States)

    Ariño, Arturo H; Chavan, Vishwas; King, Nick

    2011-01-01

    Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most nonparticipant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. The BIP Index could potentially help in (a) identifying countries most likely to contribute to filling gaps in digitized

  12. The relationship among biodiversity, governance, wealth, and scientific capacity at a country level: Disaggregation and prioritization.

    Science.gov (United States)

    Lira-Noriega, Andrés; Soberón, Jorge

    2015-09-01

    At a global level, the relationship between biodiversity importance and capacity to manage it is often assumed to be negative, without much differentiation among the more than 200 countries and territories of the world. We examine this relationship using a database including terrestrial biodiversity, wealth and governance indicators for most countries. From these, principal components analysis was used to construct aggregated indicators at global and regional scales. Wealth, governance, and scientific capacity represent different skills and abilities in relation to biodiversity importance. Our results show that the relationship between biodiversity and the different factors is not simple: in most regions wealth and capacity varies positively with biodiversity, while governance vary negatively with biodiversity. However, these trends, to a certain extent, are concentrated in certain groups of nations and outlier countries. We discuss our results in the context of collaboration and joint efforts among biodiversity-rich countries and foreign agencies.

  13. Invasive predators and global biodiversity loss.

    Science.gov (United States)

    Doherty, Tim S; Glen, Alistair S; Nimmo, Dale G; Ritchie, Euan G; Dickman, Chris R

    2016-10-04

    Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.

  14. Fogarty International Center

    Science.gov (United States)

    ... Saharan Africa Western Hemisphere Fogarty Programs All Programs Biodiversity (ICBG) Bioethics Bioinformatics Brain Disorders Chronic Diseases Research Chronic Diseases Research Training eCapacity Ecology and Evolution of Infectious Diseases (EEID) Emerging Epidemic Virus Research ...

  15. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  16. Getting the measure of biodiversity.

    Science.gov (United States)

    Purvis, A; Hector, A

    2000-05-11

    The term 'biodiversity' is a simple contraction of 'biological diversity', and at first sight the concept is simple too: biodiversity is the sum total of all biotic variation from the level of genes to ecosystems. The challenge comes in measuring such a broad concept in ways that are useful. We show that, although biodiversity can never be fully captured by a single number, study of particular facets has led to rapid, exciting and sometimes alarming discoveries. Phylogenetic and temporal analyses are shedding light on the ecological and evolutionary processes that have shaped current biodiversity. There is no doubt that humans are now destroying this diversity at an alarming rate. A vital question now being tackled is how badly this loss affects ecosystem functioning. Although current research efforts are impressive, they are tiny in comparison to the amount of unknown diversity and the urgency and importance of the task.

  17. Economic inequality predicts biodiversity loss.

    Directory of Open Access Journals (Sweden)

    Gregory M Mikkelson

    Full Text Available Human activity is causing high rates of biodiversity loss. Yet, surprisingly little is known about the extent to which socioeconomic factors exacerbate or ameliorate our impacts on biological diversity. One such factor, economic inequality, has been shown to affect public health, and has been linked to environmental problems in general. We tested how strongly economic inequality is related to biodiversity loss in particular. We found that among countries, and among US states, the number of species that are threatened or declining increases substantially with the Gini ratio of income inequality. At both levels of analysis, the connection between income inequality and biodiversity loss persists after controlling for biophysical conditions, human population size, and per capita GDP or income. Future research should explore potential mechanisms behind this equality-biodiversity relationship. Our results suggest that economic reforms would go hand in hand with, if not serving as a prerequisite for, effective conservation.

  18. MCBS Sites of Biodiversity Significance

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data layer represents areas with varying levels of native biodiversity that may contain high quality native plant communities, rare plants, rare animals, and/or...

  19. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  20. Biodiversity versus cloning

    International Nuclear Information System (INIS)

    Jaramillo T, Jose Hernan

    1998-01-01

    The announcement has been made on the cloning of mice in these days and he doesn't stop to miss, because the world lives a stage where conscience of the protection is creating that should be given to the biodiversity. It is known that alone we won't subsist and the protection of the means and all that contains that environment is of vital importance for the man. But it is also known that the vegetables and animal transgenic that they come to multiply the species have appeared that we prepare. The transgenic has been altered genetically, for substitution of one or more genes of other species, inclusive human genes. This represents an improvement compared with the investigations that gave origin to the cloning animal. But it is necessary to notice that to it you arrived through the cloning. This year 28 million hectares have been sowed in cultivations of transgenic seeds and there is around 700 bovine transgenic whose milk contains a necessary protein in the treatment of the man's illnesses

  1. Filling in biodiversity threat gaps

    DEFF Research Database (Denmark)

    Joppa, L. N.; O'Connor, Brian; Visconti, Piero

    2016-01-01

    increase to 10,000 times the background rate should species threatened with extinction succumb to pressures they face (4). Reversing these trends is a focus of the Convention on Biological Diversity's 2020 Strategic Plan for Biodiversity and its 20 Aichi Targets and is explicitly incorporated...... into the United Nations' 2030 Agenda for Sustainable Development and its 17 Sustainable Development Goals (SDGs). We identify major gaps in data available for assessing global biodiversity threats and suggest mechanisms for closing them....

  2. Diversity, Biodiversity, Conservation, and Sustainability

    Directory of Open Access Journals (Sweden)

    Joao Carlos Marques

    2001-01-01

    Full Text Available The concepts of diversity and biodiversity are analysed regarding their historical emergence, and their intrinsic meaning and differences are discussed. Through a brief synopsis, difficulties usually experienced by statisticians in capturing the dynamics of diversity are analysed and main problems identified. The shift from diversity to the more holistic biodiversity as a working concept is appraised in terms of the novelty involved. Through a number of examples, the way the two concepts capture natural cyclic changes is analysed, and their reciprocal and complementary relations are approached theoretically. The way diversity could develop from the stores of biodiversity as its active expression through selective and evolutionary processes is described. Through the use of a very simple dynamic model, the concepts of diversity and biodiversity are analysed in extremely opposite hypothetical scenarios. Comparisons with natural situations are made and the theoretical implications from the conservation point of view are discussed. These support the opinion that conservation undertaken in restricted and protected areas is not self-sustainable, needing permanent external intervention to regulate internal processes, and in the long run will most probably lead in the direction of obsolescence and extinction. Finally, the relations between diversity, biodiversity, and sustainability are approached. The vagueness of the sustainability concept is discussed. Preservation of biodiversity is then defended as one of the best available indicators to assist us in fixing boundaries which may help to provide a more precise definition of sustainability.

  3. Biodiversity recovery following delta-wide measures for flood risk reduction.

    Science.gov (United States)

    Straatsma, Menno W; Bloecker, Alexandra M; Lenders, H J Rob; Leuven, Rob S E W; Kleinhans, Maarten G

    2017-11-01

    Biodiversity declined markedly over the past 150 years, with the biodiversity loss in fluvial ecosystems exceeding the global average. River restoration now aims at flood safety while enhancing biodiversity and has had success locally. However, at the scale of large river distributaries, the recovery remained elusive. We quantify changes in biodiversity of protected and endangered species over 15 years of river restoration in the embanked floodplains of an entire river delta. We distinguish seven taxonomic groups and four functional groups in more than 2 million field observations of species presence. Of all 179 fluvial floodplain sections examined, 137 showed an increase in biodiversity, particularly for fast-spreading species. Birds and mammals showed the largest increase, that is, +13 and +3 percentage point saturation of their potential based on habitat. This shows that flood risk interventions were successfully combined with enhancement of biodiversity, whereas flood stage decreased (-24 cm).

  4. Biodiversity impact assessment (BIA+) - methodological framework for screening biodiversity.

    Science.gov (United States)

    Winter, Lisa; Pflugmacher, Stephan; Berger, Markus; Finkbeiner, Matthias

    2018-03-01

    For the past 20 years, the life cycle assessment (LCA) community has sought to integrate impacts on biodiversity into the LCA framework. However, existing impact assessment methods still fail to do so comprehensively because they quantify only a few impacts related to specific species and regions. This paper proposes a methodological framework that will allow LCA practitioners to assess currently missing impacts on biodiversity on a global scale. Building on existing models that seek to quantify the impacts of human activities on biodiversity, the herein proposed methodological framework consists of 2 components: a habitat factor for 14 major habitat types and the impact on the biodiversity status in those major habitat types. The habitat factor is calculated by means of indicators that characterize each habitat. The biodiversity status depends on parameters from impact categories. The impact functions, relating these different parameters to a given response in the biodiversity status, rely on expert judgments. To ensure the applicability for LCA practitioners, the components of the framework can be regionalized on a country scale for which LCA inventory data is more readily available. The weighting factors for the 14 major habitat types range from 0.63 to 1.82. By means of area weighting of the major habitat types in a country, country-specific weighting factors are calculated. In order to demonstrate the main part of the framework, examples of impact functions are given for the categories "freshwater eutrophication" and "freshwater ecotoxicity" in 1 major habitat type. The results confirm suitability of the methodological framework. The major advantages are the framework's user-friendliness, given that data can be used from LCA databases directly, and the complete inclusion of all levels of biodiversity (genetic, species, and ecosystem). It is applicable for the whole world and a wide range of impact categories. Integr Environ Assess Manag 2018;14:282-297.

  5. Biodiversity of Andean potatoes: Morphological, nutritional and functional characterization.

    Science.gov (United States)

    Calliope, Sonia Rosario; Lobo, Manuel Oscar; Sammán, Norma Cristina

    2018-01-01

    Andean potatoes (Solanum tuberosum andigenum) are a staple food for Andean population; there is great biodiversity but only few varieties are cultivated nowadays. In order to contribute to biodiversity conservation of Andean potatoes, information about their morphological, nutritional and functional characteristics was generated. In gene bank (INTA-Balcarce), varieties collected from regional producers were preserved. Forty-four genotypes were multiplied and characterized. Morphological characteristics; proximate composition and functional compounds were analyzed. Cluster analysis separated them into 3 groups according to distinguishing characteristics, which define industrial or nutritional applications. Group 2 was characterized by higher content of macronutrients and Group 3 with the highest antioxidant activity, both would be advisable for direct consumption. Genotype CS 1418 had big size and oval form so it could be destined to potato chips industry. Knowledge on nutritional and functional properties of genotypes contributes to promoting the cultivation depending on properties and also to preserve biodiversity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Urban lifestyle and urban biodiversity

    DEFF Research Database (Denmark)

    Petersen, L. K.; Lyytimäki, J.; Normander, B.

    2007-01-01

    This report is concerned with the relations between lifestyles of urban populations on one hand and protection of biodiversity in urban areas on the other. Urban areas are of importance for the general protection of biodiversity. In the surroundings of cities and within urban sprawls there can...... be important habitats and valuable corridors for both common and less common species. At the same time a comprehensive, functional and viable green structure is important for urban populations to whom it serves many functions and offers a whole range of benefits. Urban green structure should serve both...... biodiversity, recreational, educational and other needs. However, uncovered and unsealed space is constantly under pressure for building and infrastructure development in the urban landscape, and the design and usages of urban green structure is a matter of differing interests and expectations. Integrating...

  7. Monitoring Biodiversity using Environmental DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis

    DNA). Especially the advance in DNA sequencing technology has revolutionized this field and opened new frontiers in ecology, evolution and environmental sciences. Also, it is becoming a powerful tool for field biologist, with new and efficient methods for monitoring biodiversity. This thesis focuses on the use...... of eDNA in monitoring of biodiversity in different settings. First, it is shown that a diversity of rare freshwater animals – representing amphibians, fish, mammals, insects and crustaceans – can be detected based on eDNA obtained directly from 15 ml water samples of lakes, ponds and streams...... setting, showing that eDNA obtained directly from ½ l seawater samples can account for marine fish biodiversity using NGS. Promisingly, eDNA covered the fish diversity better than any of 9 methods, conventionally used in marine fish surveys. Additionally, it is shown that even short 100-bp. fish e...

  8. The effect of buffer zone width on biodiversity

    DEFF Research Database (Denmark)

    Navntoft, Søren; Sigsgaard, Lene; Kristensen, Kristian

    2012-01-01

    attention in previous studies. In this paper we report on finding for syrphids, spiders and carabids, three taxonomic groups with different mobility, all important for conservation biological control. For all groups we found an effect of buffer zone width on their density. A buffer width of 6m......Field margin management for conservation purposes is a way to protect both functional biodiversity and biodiversity per se without considerable economical loss as field margins are less productive. However, the effect of width of the buffer zone on achievable biodiversity gains has received little...... was the narrowest that consistently promoted a higher abundance or activity of arthropods within the field area (outside the hedge bottom). However, a further increase in buffer width always increased the abundance and activity of arthropods a little more....

  9. Measuring temporal trends in biodiversity

    OpenAIRE

    Buckland, S. T.; Yuan, Y.; Marcon, Eric

    2017-01-01

    Yuan was part-funded by EPSRC/NERC Grant EP/1000917/1 and Marcon by ANR-10-LABX-25-01. In 2002, nearly 200 nations signed up to the 2010 target of the Convention for Biological Diversity, ‘to significantly reduce the rate of biodiversity loss by 2010’. In order to assess whether the target was met, it became necessary to quantify temporal trends in measures of diversity. This resulted in a marked shift in focus for biodiversity measurement. We explore the developments in measuring biodiver...

  10. Data intensive computing for biodiversity

    CERN Document Server

    Dhillon, Sarinder K

    2013-01-01

    This book is focused on the development of a data integration framework for retrieval of biodiversity information from heterogeneous and distributed data sources. The data integration system proposed in this book links remote databases in a networked environment, supports heterogeneous databases and data formats, links databases hosted on multiple platforms, and provides data security for database owners by allowing them to keep and maintain their own data and to choose information to be shared and linked. The book is a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development for data integration in biodiversity.

  11. Biodiverse planting for carbon and biodiversity on indigenous land.

    Science.gov (United States)

    Renwick, Anna R; Robinson, Catherine J; Martin, Tara G; May, Tracey; Polglase, Phil; Possingham, Hugh P; Carwardine, Josie

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes.

  12. Global biodiversity monitoring: from data sources to essential biodiversity variables

    Science.gov (United States)

    Proenca, Vania; Martin, Laura J.; Pereira, Henrique M.; Fernandez, Miguel; McRae, Louise; Belnap, Jayne; Böhm, Monika; Brummitt, Neil; Garcia-Moreno, Jaime; Gregory, Richard D.; Honrado, Joao P; Jürgens, Norbert; Opige, Michael; Schmeller, Dirk S.; Tiago, Patricia; van Sway, Chris A

    2016-01-01

    Essential Biodiversity Variables (EBVs) consolidate information from varied biodiversity observation sources. Here we demonstrate the links between data sources, EBVs and indicators and discuss how different sources of biodiversity observations can be harnessed to inform EBVs. We classify sources of primary observations into four types: extensive and intensive monitoring schemes, ecological field studies and satellite remote sensing. We characterize their geographic, taxonomic and temporal coverage. Ecological field studies and intensive monitoring schemes inform a wide range of EBVs, but the former tend to deliver short-term data, while the geographic coverage of the latter is limited. In contrast, extensive monitoring schemes mostly inform the population abundance EBV, but deliver long-term data across an extensive network of sites. Satellite remote sensing is particularly suited to providing information on ecosystem function and structure EBVs. Biases behind data sources may affect the representativeness of global biodiversity datasets. To improve them, researchers must assess data sources and then develop strategies to compensate for identified gaps. We draw on the population abundance dataset informing the Living Planet Index (LPI) to illustrate the effects of data sources on EBV representativeness. We find that long-term monitoring schemes informing the LPI are still scarce outside of Europe and North America and that ecological field studies play a key role in covering that gap. Achieving representative EBV datasets will depend both on the ability to integrate available data, through data harmonization and modeling efforts, and on the establishment of new monitoring programs to address critical data gaps.

  13. Children prioritize virtual exotic biodiversity over local biodiversity.

    Science.gov (United States)

    Ballouard, Jean-Marie; Brischoux, François; Bonnet, Xavier

    2011-01-01

    Environmental education is essential to stem current dramatic biodiversity loss, and childhood is considered as the key period for developing awareness and positive attitudes toward nature. Children are strongly influenced by the media, notably the internet, about biodiversity and conservation issues. However, most media focus on a few iconic, appealing, and usually exotic species. In addition, virtual activities are replacing field experiences. This situation may curb children knowledge and concerns about local biodiversity. Focusing our analyses on local versus exotic species, we examined the level of knowledge and the level of diversity of the animals that French schoolchildren are willing to protect, and whether these perceptions are mainly guided by information available in the internet. For that, we collected and compared two complementary data sets: 1) a questionnaire was administered to schoolchildren to assess their knowledge and consideration to protect animals, 2) an internet content analysis (i.e. Google searching sessions using keywords) was performed to assess which animals are the most often represented. Our results suggest that the knowledge of children and their consideration to protect animal are mainly limited to internet contents, represented by a few exotic and charismatic species. The identification rate of local animals by schoolchildren was meager, suggesting a worrying disconnection from their local environment. Schoolchildren were more prone to protect "virtual" (unseen, exotic) rather than local animal species. Our results reinforce the message that environmental education must also focus on outdoor activities to develop conservation consciousness and concerns about local biodiversity.

  14. Effects of grazing and biogeographic regions on grassland biodiversity in Hungary: analysing assemblages of 1200 species

    NARCIS (Netherlands)

    Báldi, A.; Batáry, P.; Kleijn, D.

    2013-01-01

    Agricultural intensification is a major threat to biodiversity. Agri-environment schemes, the main tools to counteract negative impacts of agriculture on the environment, are having mixed effects on biodiversity. One reason for this may be the limited number of species (groups) covered by most

  15. Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees

    Science.gov (United States)

    S.M. Philpott; W.J. Arendt; I. Armbrecht; P. Bichier; T.V. Diestch; C. Gordon; R. Greenberg; I. Perfecto; R. Reynoso-Santos; L. Soto-Pinto; C. Tejeda-Cruz; G. Williams-Linera; J. Valenzuela; J.M. Zolotoff

    2008-01-01

    Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions.We quantitatively reviewed data from...

  16. Simultaneous loss of soil biodiversity and functions along a copper contamination gradient

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Moldrup, Per; Arthur, Emmanuel

    2014-01-01

    The impact of biodiversity loss on soil functions is well established via laboratory experiments that generally consider soil biota groups in isolation from each other, a condition rarely present in field soils. As a result, our knowledge about anthropogenic induced changes in biodiversity and as...

  17. The Effects of Atmospheric Nitrogen Deposition on Terrestrial and Freshwater Biodiversity

    NARCIS (Netherlands)

    Baron, J.S.; Barber, M.; Adams, M.; Dobben, van H.F.

    2014-01-01

    This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in

  18. An agricultural model for biodiversity conservation

    OpenAIRE

    Travis, A.J.

    2008-01-01

    This presentation discusses the SANREM CRSP long term research activity (LTRA-2), "An Agricultural Markets Model for Biodiversity Conservation," in the Luangwa Valley of Zambia. The objectives are: LTRA-2 (An Agricultural Markets Model for Biodiversity Conservation)

  19. Relationship between biodiversity and agricultural production

    OpenAIRE

    Brunetti, Ilaria; Tidball, Mabel; Couvet, Denis

    2018-01-01

    Agriculture is one of the main causes of biodiversity loss. In this work we model the interdependent relationship between biodiversity and agriculture on a farmed land, supposing that, while agriculture has a negative impact on biodiversity, the latter can increase agricultural production. Farmers act as myopic agents, who maximize their instantaneous profit without considering the negative effects of their practice on the evolution of biodiversity. We find that a tax on inputs can have a pos...

  20. Which instruments to preserve forest biodiversity?

    OpenAIRE

    Elodie Brahic

    2010-01-01

    In general, neither the social norms nor market dynamics stimulate spontaneously activities and practices conducive to biodiversity. The nature of public good of biodiversity leads to its rapid erosion. Even if it can respond positively to social expectations and improve welfare in the long term2, taking into account biodiversity often leads to changes in the way we produce or how to exercise its property right. The consideration of biodiversity may determine production losses and income decr...

  1. The Early Years: Exploring Biodiversity

    Science.gov (United States)

    Ashbrook, Peggy

    2017-01-01

    The importance of biodiversity to human life and the benefits of a diverse ecosystem are not often obvious to young children. This column discusses resources and science topics related to students in grades preK to 2. The objective in this month's issue is to introduce children to the diversity of plant life in a given area through a plant…

  2. Business Meets Biodiversity Conference 2012

    NARCIS (Netherlands)

    Vollaard, B.; Man, M. de; Verweij, P.A.

    2012-01-01

    How can companies successfully integrate the sustainable management of ecosystems and biodiversity into their business models? This was the central question at the international conference ‘Business Meets Biodiversity’ held in Utrecht, The Netherlands, on June 27th 2012. The organizing committee,

  3. Wilderness, biodiversity, and human health

    Science.gov (United States)

    Daniel L. Dustin; Keri A. Schwab; Kelly S. Bricker

    2015-01-01

    This paper illustrates how wilderness, biodiversity, and human health are intertwined. Proceeding from the assumption that humankind is part of, rather than apart from, nature, health is re-imagined as a dynamic relationship that can best be conceived in broad ecological terms. Health, from an ecological perspective, is a measure of the wellness of the individual and...

  4. A forgotten component of biodiversity

    Indian Academy of Sciences (India)

    2011-07-08

    Jul 8, 2011 ... Home; Journals; Journal of Biosciences; Volume 36; Issue 4. Clipboard: Helminth richness in Arunachal Pradesh fishes: A forgotten component of biodiversity. Amit Tripathi. Volume 36 Issue 4 September 2011 pp 559-561. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Trading biodiversity for pest problems

    Science.gov (United States)

    Recent shifts in agricultural practices have resulted in increased pesticide use, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic a...

  6. Nitrogen deposition and terrestrial biodiversity

    Science.gov (United States)

    Christopher M. Clark; Yongfei Bai; William D. Bowman; Jane M. Cowles; Mark E. Fenn; Frank S. Gilliam; Gareth K. Phoenix; Ilyas Siddique; Carly J. Stevens; Harald U. Sverdrup; Heather L. Throop

    2013-01-01

    Nitrogen deposition, along with habitat losses and climate change, has been identified as a primary threat to biodiversity worldwide (Butchart et al., 2010; MEA, 2005; Sala et al., 2000). The source of this stressor to natural systems is generally twofold: burning of fossil fuels and the use of fertilizers in modern intensive agriculture. Each of these human...

  7. Biodiversity in Word and Meaning

    Science.gov (United States)

    Slingsby, David

    2010-01-01

    This article argues that we need to abandon the word "biodiversity", to rediscover the biology that it obscures and to rethink how to introduce this biology to young people. We cannot go back to the systematics that once made up a large part of a biology A-level course (ages 16-18), so we need to find alternative ways of introducing the…

  8. Biodiversity Conservation in the REDD.

    Science.gov (United States)

    Paoli, Gary D; Wells, Philip L; Meijaard, Erik; Struebig, Matthew J; Marshall, Andrew J; Obidzinski, Krystof; Tan, Aseng; Rafiastanto, Andjar; Yaap, Betsy; Ferry Slik, Jw; Morel, Alexandra; Perumal, Balu; Wielaard, Niels; Husson, Simon; D'Arcy, Laura

    2010-11-23

    Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG) emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics.

  9. Biodiversity Conservation in the REDD

    Directory of Open Access Journals (Sweden)

    Ferry Slik JW

    2010-11-01

    Full Text Available Abstract Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics.

  10. Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity

    Science.gov (United States)

    Diego Juffe-Bignoli; Ian Harrison; Stuart HM Butchart; Rebecca Flitcroft; Virgilio Hermoso; Harry Jonas; Anna Lukasiewicz; Michele Thieme; Eren Turak; Heather Bingham; James Dalton; William Darwall; Marine Deguignet; Nigel Dudley; Royal Gardner; Jonathan Higgins; Ritesh Kumar; Simon Linke; G Randy Milton; Jamie Pittock; Kevin G Smith; Arnout van Soesbergen

    2016-01-01

    1. The Strategic Plan for Biodiversity (2011–2020), adopted at the 10th meeting of the Conference of the Parties to the Convention on Biological Diversity, sets 20 Aichi Biodiversity Targets to be met by 2020 to address biodiversity loss and ensure its sustainable and equitable use. Aichi Biodiversity Target 11 describes what an improved conservation network would look...

  11. Teaching Biodiversity & Evolution through Travel Course Experiences

    Science.gov (United States)

    Zervanos, Stam. M.; McLaughlin, Jacqueline S.

    2003-01-01

    Biodiversity is the extraordinary variety of life in this planet. In order to be fully appreciated, biodiversity needs to be experienced firsthand, or "experientially." Thus, the standard classroom lecture format is not the ideal situation for teaching biodiversity and evolutionary concepts, in that student interest and understanding are…

  12. Norms and the Conservation of Biodiversity

    Indian Academy of Sciences (India)

    user

    Biodiversity, conservation biol- ogy, habitat, environmental eth- ics, endangered species. The aim of this article is to discuss the various ways in which norms enter into discussions of biodiversity and its conserva- tion. It will treat both conservation policy and the science behind biodiversity. Introduction. Twenty years ago, the ...

  13. Biology Student Teachers' Conceptual Frameworks regarding Biodiversity

    Science.gov (United States)

    Dikmenli, Musa

    2010-01-01

    In recent years, biodiversity has received a great deal of attention worldwide, especially in environmental education. The reasons for this attention are the increase of human activities on biodiversity and environmental problems. The purpose of this study is to investigate biology student teachers' conceptual frameworks regarding biodiversity.…

  14. The freshwater biodiversity crisis

    African Journals Online (AJOL)

    group of native fishes, the cyprinids, still persist in many of the country's freshwaters. This paper combines review of ... Key words/phrases: Deforestation, Ethiopia, fish diversity, freshwater ecosystems, introduced species ...... Stomach pH, feeding rhythm and ingestion rate in Oreo- chromis niloticus L. (Pisces: Cichlidae) in ...

  15. Soil biodiversity and human health

    Science.gov (United States)

    Six, Johan; Pereg, Lily; Brevik, Eric

    2017-04-01

    Biodiversity is important for the maintenance of soil quality. Healthy, biodiverse soils are crucial for human health and wellbeing from several reasons, for example: biodiversity has been shown to be important in controlling populations of pathogens; healthy, well-covered soils can reduce disease outbreaks; carbon-rich soils may also reduce outbreaks of human and animal parasites; exposure to soil microbes can reduce allergies; soils have provided many of our current antibiotics; soil organisms can provide biological disease and pest control agents, healthy soils mean healthier and more abundant foods; soil microbes can enhance crop plant resilience; healthy soils promote good clean air quality, less prone to wind and water erosion; and healthy soils provide clean and safe water through filtration, decontamination by microbes and removal of pollutants. Soil microbes and other biota provide many benefits to human health. Soil microbes are a source of medicines, such as antibiotics, anticancer drugs and many more. Organisms that affect soil health and thus human health include those involved in nutrient cycling, decomposition of organic matter and determining soil structure (e.g. aggregation). Again these are related to food security but also affect human health in other ways. Many beneficial organisms have been isolated from soil - plant growth promoting and disease suppressive microbes used as inoculants, foliar inoculants for improvement of ruminant digestion systems and inoculants used in bioremediation of toxic compounds in the environment. Soil biodiversity is highly recognised now as an important feature of healthy soil and imbalances have been shown to give advantage to harmful over beneficial organisms. This presentation will highlight the many connections of biodiversity to soil quality and human health.

  16. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems.

    Science.gov (United States)

    Fanin, Nicolas; Gundale, Michael J; Farrell, Mark; Ciobanu, Marcel; Baldock, Jeff A; Nilsson, Marie-Charlotte; Kardol, Paul; Wardle, David A

    2018-02-01

    Understanding how loss of biodiversity affects ecosystem functioning, and thus the delivery of ecosystem goods and services, has become increasingly necessary in a changing world. Considerable recent attention has focused on predicting how biodiversity loss simultaneously impacts multiple ecosystem functions (that is, ecosystem multifunctionality), but the ways in which these effects vary across ecosystems remain unclear. Here, we report the results of two 19-year plant diversity manipulation experiments, each established across a strong environmental gradient. Although the effects of plant and associated fungal diversity loss on individual functions frequently differed among ecosystems, the consequences of biodiversity loss for multifunctionality were relatively invariant. However, the context-dependency of biodiversity effects also worked in opposing directions for different individual functions, meaning that similar multifunctionality values across contrasting ecosystems could potentially mask important differences in the effects of biodiversity on functioning among ecosystems. Our findings highlight that an understanding of the relative contribution of species or functional groups to individual ecosystem functions among contrasting ecosystems and their interactions (that is, complementarity versus competition) is critical for guiding management efforts aimed at maintaining ecosystem multifunctionality and the delivery of multiple ecosystem services.

  17. Circumpolar biodiversity monitoring program (CBMP): Coastal expert workshop meeting report

    Science.gov (United States)

    Anderson, Rebecca D.; McLennan, Donald; Thomson, Laura; Wegeberg, Susse; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, Stacey; Christensen, Thomas K.; Price, Courtney

    2016-01-01

    The Coastal Expert Workshop, which took place in Ottawa, Canada from March 1 to 3, 2016, initiated the development of the Arctic Coastal Biodiversity Monitoring Plan (Coastal Plan). Meeting participants, including northern residents, representatives from industry, non-governmental organisations (NGOs), academia, and government regulators and agencies from across the circumpolar Arctic, discussed current biodiversity monitoring efforts, key issues facing biodiversity in Arctic coastal areas, and collectively identified monitoring indicators, or Focal Ecosystem Components (FECs). On February 29, the day before the workshop, a full day was allocated to Traditional Knowledge (TK) holders to meet and elucidate how this important knowledge can be included in the process of building the Coastal Plan and monitoring biodiversity in Arctic coastal areas, along with scientific data and variables. This document provides 1) background information about the Circumpolar Biodiversity Monitoring Programme and the Coastal Expert Monitoring Group, 2) overviews on workshop presentations and breakout sessions, and 3) details regarding outcomes of the workshop that will inform the drafting of the Coastal Plan.

  18. Analysis of Reptile Biodiversity and Ecosystem Services within ...

    Science.gov (United States)

    A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challenge has been to integrate ecology with economics to better understand the effects of human policies and actions and their subsequent impacts on human well-being and ecosystem function. Biodiversity is valued by humans in varied ways, and thus is an important input to include in assessing the benefits of ecosystems to humans. Some biodiversity metrics more clearly reflect ecosystem services (e.g., game species, threatened and endangered species), whereas others may indicate indirect and difficult to quantify relationships to services (e.g., taxa richness and cultural value). In the present study, we identify and map reptile biodiversity and ecosystem services metrics. The importance of reptiles to biodiversity and ecosystems services is not often described. We used species distribution models for reptiles in the conterminous United States from the U.S. Geological Survey’s Gap Analysis Program. We focus on species richness metrics including all reptile species richness, taxa groupings of lizards, snakes and turtles, NatureServe conservation status (G1, G2, G3) species, IUCN listed reptiles, threatened and endangered species, Partners in Amphibian and Reptile Conservation listed reptiles, and rare species. These metrics were analyzed with the Protected Areas Database of the United States to

  19. Biodiversity data provision and decision-making - addressing the challenges

    Directory of Open Access Journals (Sweden)

    Katherine Despot-Belmonte

    2017-02-01

    Full Text Available Essential Biodiversity Variables (EBVs are measurements required for study, reporting, and management of biodiversity change. They are being developed to support consistency, from the collection to the reporting of biodiversity data at the national, regional and global scales. However, "EBV stakeholders" need to strike a balance between 'doing innovative research' and 'having positive impact' on biodiversity management decisions. This paper reports on a workshop entitled Identifying joint pathways to address the challenges of biodiversity data provision and decision-making and presents the main workshop’s output, a “researcher’s brief” entitled Guiding principles for promoting the application of EBVs for current and future needs of decision-makers. These guiding principles are: Speak with a common voice; Clearly define what is an EBV and how it relates to indicators; Engage beyond the research world; Be realistic about what can be done now and later; Define criteria for good EBVs; Use EBV as a clearing house; Convey the limitations of EBVs; Clarify what impact EBVs should have; Be salient, credible, legitimate, iterative; Don't put an EBV skin on everything you do; Don't create too many EBVs; and Don't reduce EBVs to building blocks of indicators. This brief is of relevance to the wider GEO BON (Group on Earth Observation Biodoversity Observation Network community, and in particular those scientists/researchers interested in the application of EBVs.

  20. The evolution of coleoid cephalopods and their present biodiversity ...

    African Journals Online (AJOL)

    The present status of phylogeny and classification in coleoid cephalopods and the effect of evolution on the present ecology and biodiversity in the group are examined. The basis of knowledge of cephalopod phylogeny was formulated by Naef in the early 1920s, and his ideas and the progress made in the intervening 75 ...

  1. Contribution of chloroplast DNA in the biodiversity of some Aegilops ...

    African Journals Online (AJOL)

    user

    2011-03-21

    Mar 21, 2011 ... Key words: Aegilops, chloroplast DNA, biodiversity, systematic. INTRODUCTION. Several recent traditional and molecular studies reviewed the taxonomic consequences of the family to which. Aegilops belongs. Kawahara (2009) stated that Triticeae is a taxonomically controversial group at both the species.

  2. Main principles and approaches on the Ingushetia republic biodiversity preservation

    Directory of Open Access Journals (Sweden)

    T. U. Tochiev

    2006-01-01

    Full Text Available The paper considers the basic principles and approaches of the maintenance, developing and preservation of Ingushetia biodiversity, which is presented by lots of ecological-fauna and fauna-genetic groups of ancient genetic fund. It has many features presenting a big practical and theoretical interest.

  3. Invertebrates: Revealing a Hidden World in the Year of Biodiversity

    Science.gov (United States)

    Sanders, Dawn

    2010-01-01

    Biodiversity means the variety of life in all its forms. It includes the variety of species and ecosystems in the world, and genetic variation. Invertebrates are one of the largest and most accessible groups of animals for primary children to study. In this article, the author explains why and how children should engage with the idea of…

  4. Circumpolar Biodiversity Monitoring Programme: Coastal Expert Workshop meeting summary

    Science.gov (United States)

    Thomson, L.; McLennan, Donald; Anderson, Rebecca D.; Wegeberg, S.; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, S.; Christensen, T.; Price, C.

    2016-01-01

    The Coastal Expert Workshop brought together a diverse group of coastal experts with the common goal of developing a biodiversity monitoring program for coastal ecosystems across the circumpolar Arctic. Meeting participants, including northern residents, industry and Non-Governmental Organization (NGO) representatives, scientists, and government regulators from across the circumpolar Arctic, gathered at the Lord Elgin Hotel in Ottawa from March 1 to 3, 2016, to discuss current biodiversity monitoring efforts, understand key issues facing biodiversity in the Arctic coastal areas and suggest monitoring indicators, or Focal Ecosystem Components, for the program. A Traditional Knowledge Holders meeting was held on February 29, 2016 in conjunction with the workshop. The following document provides a summary of the workshop activities and outcomes, and will be followed by a more complete Workshop Report.

  5. Speciation gradients and the distribution of biodiversity.

    Science.gov (United States)

    Schluter, Dolph; Pennell, Matthew W

    2017-05-31

    Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.

  6. Options for promoting high-biodiversity REDD+

    Energy Technology Data Exchange (ETDEWEB)

    Swan, Steve; Mcnally, Richard; Grieg-Gran, Maryanne; Roe, Dilys; Mohammed, Essam Yassin

    2011-11-15

    International climate and biodiversity conventions agree that to be effective in the long term, strategies to reduce emissions from deforestation, forest degradation, conservation and enhancement of forest carbon stocks, and sustainable forest management (REDD+), must not undermine biodiversity. But how do countries achieve 'high-biodiversity REDD+' in practice? At a global level, options include immediate policy strengthening in international negotiations; promotion of co-benefit standards; and financial incentives and preferences for buying countries. At a national level, developing countries can also promote high-biodiversity REDD+ through more coherent policies; integrated planning; regulatory and economic instruments; and improved monitoring of biodiversity impacts.

  7. Assessing Undergraduate University Students' Level of Knowledge, Attitudes and Behaviour Towards Biodiversity: A case study in Cyprus

    Science.gov (United States)

    Nisiforou, Olympia; Charalambides, Alexandros George

    2012-05-01

    Biodiversity is a key resource as it provides both goods and services to society. However, humans value these resources differently, especially when biodiversity is exploited for its economic potential; a destruction on a scale rarely seen before. In order to decrease the threats that biodiversity is facing due to human activity, globally (climate change) and locally (economic development), individuals must have fundamental knowledge and exhibit appropriate behaviour towards biodiversity and its values. Nevertheless, the effect of human's knowledge, policies and attitudes towards biodiversity's protection are often limited by insufficient education and public support. A balance between the use of resources and technology, reconciling economic development and the need to maintain biodiversity is a challenge. The current paper looks into the knowledge level, attitudes and behaviour of university students of the Department of Environmental Science and Technology at the Cyprus University of Technology towards biodiversity. The investigation was carried out using a closed format questionnaire on a sample of first- and second-year university students (n = 44), in order to access their perceptions and attitudes towards environmental issues regarding biodiversity. The questionnaire was derived from relevant literature. The test results showed that there are significant differences with regard to the level of knowledge about biodiversity between the two groups. However, no significant differences were found on attitudes and behaviour towards biodiversity. The results have also shown that all students have a positive attitude towards biodiversity, while on the other hand, they find themselves, most of the time, unwilling to engage in environmental behaviour.

  8. Biodiversity in the Anthropocene: prospects and policy

    Science.gov (United States)

    Mace, Georgina M.; Mouillot, David; Vause, James; Walpole, Matt

    2016-01-01

    Meeting the ever-increasing needs of the Earth’s human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum—as well as opposition—is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem’s long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify ‘biodiversity services’ in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach. PMID:27928040

  9. Biodiversity in the Anthropocene: prospects and policy.

    Science.gov (United States)

    Seddon, Nathalie; Mace, Georgina M; Naeem, Shahid; Tobias, Joseph A; Pigot, Alex L; Cavanagh, Rachel; Mouillot, David; Vause, James; Walpole, Matt

    2016-12-14

    Meeting the ever-increasing needs of the Earth's human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum-as well as opposition-is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem's long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify 'biodiversity services' in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach. © 2016 The Author(s).

  10. Accounting for biodiversity in the dairy industry.

    Science.gov (United States)

    Sizemore, Grant C

    2015-05-15

    Biodiversity is an essential part of properly functioning ecosystems, yet the loss of biodiversity currently occurs at rates unparalleled in the modern era. One of the major causes of this phenomenon is habitat loss and modification as a result of intensified agricultural practices. This paper provides a starting point for considering biodiversity within dairy production, and, although focusing primarily on the United States, findings are applicable broadly. Biodiversity definitions and assessments (e.g., indicators, tools) are proposed and reviewed. Although no single indicator or tool currently meets all the needs of comprehensive assessment, many sustainable practices are readily adoptable as ways to conserve and promote biodiversity. These practices, as well as potential funding opportunities are identified. Given the state of uncertainty in addressing the complex nature of biodiversity assessments, the adoption of generally sustainable environmental practices may be the best currently available option for protecting biodiversity on dairy lands. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Intellectual Property and biodiversity: interplay.

    Science.gov (United States)

    Bhola, Ravi; Dave, Shreya

    2017-05-01

    Potentially divergent objectives and thereby obligations under the Convention on Biodiversity and Trade-Related Aspects of Intellectual Property Rights Agreement are also reflected in respective domestic legislations in India. The review article focuses on Biological Diversity Act, 2002 vis-à-vis Patents Act, 1970 of India with intricacies involved thereunder. Authors have analyzed the obligations under these domestic legislations. The article goes on to make a few suggestions to aid effective implementation of both the statutes. The scope of this review article is limited in two aspects; first, it speaks only about Indian landscape and second, it discusses about interplay of biodiversity law only with respect to patent law instead of all the domestic Intellectual Property enactments of India.

  12. Island biodiversity conservation needs palaeoecology

    DEFF Research Database (Denmark)

    Nogué, Sandra; de Nascimento, Lea; Froyd, Cynthia A.

    2017-01-01

    The discovery and colonization of islands by humans has invariably resulted in their widespread ecological transformation. The small and isolated populations of many island taxa, and their evolution in the absence of humans and their introduced taxa, mean that they are particularly vulnerable to ...... and the introduction of non-native species. We provide exemplification of how such approaches can provide valuable information for biodiversity conservation managers of island ecosystems....

  13. Importance of fish biodiversity for the management of fisheries and ecosystems

    NARCIS (Netherlands)

    Hiddink, K.E.; MacKenzie, B.R.; Rijnsdorp, A.D.; Dulvy, N.K.; Nielsen, E.E.; Bekkevold, D.; Heino, M.; Lorance, P.; Ojaveer, H.

    2008-01-01

    group of fisheries scientists participating in a European Union Network of Excellence (MARBEF) summarizes risks to the biodiversity of fish in European seas and recommends ways how existing fish diversity can be conserved, restored and managed.

  14. Enriched biodiversity data as a resource and service

    Science.gov (United States)

    Balech, Bachir; Beard, Niall; Blissett, Matthew; Brenninkmeijer, Christian; van Dooren, Tom; Eades, David; Gosline, George; Groom, Quentin John; Hamann, Thomas D.; Hettling, Hannes; Hoehndorf, Robert; Holleman, Ayco; Hovenkamp, Peter; Kelbert, Patricia; King, David; Kirkup, Don; Lammers, Youri; DeMeulemeester, Thibaut; Mietchen, Daniel; Miller, Jeremy A.; Mounce, Ross; Nicolson, Nicola; Page, Rod; Pawlik, Aleksandra; Pereira, Serrano; Penev, Lyubomir; Richards, Kevin; Sautter, Guido; Shorthouse, David Peter; Tähtinen, Marko; Weiland, Claus; Williams, Alan R.; Sierra, Soraya

    2014-01-01

    Abstract Background: Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source “data enrichment” workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. Results: The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species) from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i) mobilising heritage biodiversity knowledge; ii) formalising and linking concepts; and iii) addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further such

  15. Rocky road in the Rockies: Challenges to biodiversity

    Science.gov (United States)

    Tomback, Diana F.; Kendall, Katherine C.; Baron, Jill S.

    2002-01-01

    degree of natural ecosystem processes and preserve natural biodiversity in light of these challenges, Americans and Canadians are faced with the need for intensive, hands-on management of both ecosystems and selected plant and animal populations. In this chapter, we first discuss the primary issues regarding the biodiversity of the Rocky Mountains, including the Rocky Mountain portions of Arizona, Colorado, Idaho, Montana, New Mexico, Utah, Wyoming, British Columbia, and Alberta. Next, we survey groups of organisms to examine their status and special problems. Finally, we touch on major challenges to biodiversity that loom in the near future. Given that entire books may be written on these issues, the discussion is brief and general, but with case histories for more detailed examples.

  16. Enriched biodiversity data as a resource and service

    Directory of Open Access Journals (Sweden)

    Rutger Vos

    2014-06-01

    Full Text Available Background: Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source “data enrichment” workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. Results: The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i mobilising heritage biodiversity knowledge; ii formalising and linking concepts; and iii addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further

  17. Marine caves of the Mediterranean Sea: a sponge biodiversity reservoir within a biodiversity hotspot.

    Science.gov (United States)

    Gerovasileiou, Vasilis; Voultsiadou, Eleni

    2012-01-01

    Marine caves are widely acknowledged for their unique biodiversity and constitute a typical feature of the Mediterranean coastline. Herein an attempt was made to evaluate the ecological significance of this particular ecosystem in the Mediterranean Sea, which is considered a biodiversity hotspot. This was accomplished by using Porifera, which dominate the rocky sublittoral substrata, as a reference group in a meta-analytical approach, combining primary research data from the Aegean Sea (eastern Mediterranean) with data derived from the literature. In total 311 species from all poriferan classes were recorded, representing 45.7% of the Mediterranean Porifera. Demospongiae and Homoscleromorpha are highly represented in marine caves at the family (88%), generic (70%), and species level (47.5%), the latter being the most favored group along with Dictyoceratida and Lithistida. Several rare and cave-exclusive species were reported from only one or few caves, indicating the fragmentation and peculiarity of this unique ecosystem. Species richness and phylogenetic diversity varied among Mediterranean areas; the former was positively correlated with research effort, being higher in the northern Mediterranean, while the latter was generally higher in caves than in the overall sponge assemblages of each area. Resemblance analysis among areas revealed that cavernicolous sponge assemblages followed a pattern quite similar to that of the overall Mediterranean assemblages. The same pattern was exhibited by the zoogeographic affinities of cave sponges: species with Atlanto-Mediterranean distribution and Mediterranean endemics prevailed (more than 40% each), 70% of them having warm-water affinities, since most caves were studied in shallow waters. According to our findings, Mediterranean marine caves appear to be important sponge biodiversity reservoirs of high representativeness and great scientific interest, deserving further detailed study and protection.

  18. Typology of Cities Based on City Biodiversity Index: Exploring Biodiversity Potentials and Possible Collaborations among Japanese Cities

    Directory of Open Access Journals (Sweden)

    Yuta Uchiyama

    2015-10-01

    Full Text Available A City Biodiversity Index (CBI has been proposed and applied at the international level to enable local municipalities and cities to manage biodiversity and ecosystem services in a sustainable manner. CBI databases are being constructed as global platforms, though the available dataset is limited. The land-use dataset is one of the datasets that can be utilized to apply the CBI on the national level in countries including Japan. To demonstrate the importance and potential of the CBI under the limitation of the available dataset, we attempted to apply the CBI to the 791 Japanese cities by using available land-use indicators, and categorized the cities based on the indicators. The focus of the CBI is self-assessment, but we propose that grouping of cities with similar profiles is possible and can serve as a basis for potential collaboration. Coordinating policies on various scales is necessary in order to enhance biodiversity on a global scale; one option is to increase collaboration among cities. As a result, we found three groups with similar characteristics amongst cities with forests, paddies, and croplands as major compositions in terms of biodiversity. These findings will contribute to policy formation and efficient information sharing for ecosystem services management.

  19. A Bigger Toolbox: Biotechnology in Biodiversity Conservation.

    Science.gov (United States)

    Corlett, Richard T

    2017-01-01

    Conservation biology needs a bigger toolbox to meet unprecedented challenges. Genomics, fueled by declining sequencing costs, offers novel tools with increased precision for genetic questions previously answered with a few molecular markers, as well as completely new possibilities. Metabarcoding promises quicker, cheaper, and more accurate assessments of biodiversity in groups that are difficult to assess by traditional methods, while sequencing low-quality DNA extends the range of useable materials to include museum specimens, archeological remains, and environmental samples. Genomic and transcriptomic data can be used to assess the potential of populations to adapt to new challenges. In the near future, gene-editing tools may help endangered species cope with change, while gene drives control unwanted species and help wanted ones. De-extinction has become a serious prospect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Global biodiversity: indicators of recent declines

    Science.gov (United States)

    Butchart, Stuart H.M.; Walpole, Matt; Collen, Ben; Van Strien, Arco; Scharlemann, Jorn P.W.; Almond, Rosamunde E.A.; Baillie, Jonathan E.M.; Bomhard, Bastian; Brown, Claire; Bruno, John; Carpenter, Kent E.; Carr, Genevieve M.; Chanson, Janice; Chenery, Anna M.; Csirke, Jorge; Davidson, Nick C.; Dentener, Frank; Foster, Matt; Galli, Alessandro; Galloway, James N.; Genovesi, Piero; Gregory, Richard D.; Hockings, Marc; Kapos, Valerie; Lamarque, Jean-Francois; Leverington, Fiona; Loh, Jonathan; McGeoch, Melodie A.; McRae, Louise; Minasyan, Anahit; Morcillo, Monica Hernandez; Oldfield, Thomasina E.E.; Pauly, Daniel; Quader, Suhel; Revenga, Carmen; Sauer, John R.; Skolnik, Benjamin; Spear, Dian; Stanwell-Smith, Damon; Stuart, Simon N.; Symes, Andy; Tierney, Megan; Tyrrell, Tristan D.; Vie, Jean-Christophe; Watson, Reg

    2011-01-01

    In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.

  1. Economic growth, biodiversity loss and conservation effort.

    Science.gov (United States)

    Dietz, Simon; Adger, W Neil

    2003-05-01

    This paper investigates the relationship between economic growth, biodiversity loss and efforts to conserve biodiversity using a combination of panel and cross section data. If economic growth is a cause of biodiversity loss through habitat transformation and other means, then we would expect an inverse relationship. But if higher levels of income are associated with increasing real demand for biodiversity conservation, then investment to protect remaining diversity should grow and the rate of biodiversity loss should slow with growth. Initially, economic growth and biodiversity loss are examined within the framework of the environmental Kuznets hypothesis. Biodiversity is represented by predicted species richness, generated for tropical terrestrial biodiversity using a species-area relationship. The environmental Kuznets hypothesis is investigated with reference to comparison of fixed and random effects models to allow the relationship to vary for each country. It is concluded that an environmental Kuznets curve between income and rates of loss of habitat and species does not exist in this case. The role of conservation effort in addressing environmental problems is examined through state protection of land and the regulation of trade in endangered species, two important means of biodiversity conservation. This analysis shows that the extent of government environmental policy increases with economic development. We argue that, although the data are problematic, the implications of these models is that conservation effort can only ever result in a partial deceleration of biodiversity decline partly because protected areas serve multiple functions and are not necessarily designated to protect biodiversity. Nevertheless institutional and policy response components of the income biodiversity relationship are important but are not well captured through cross-country regression analysis.

  2. Biodiversity and environmental education: A contradiction?

    OpenAIRE

    J.G. Ferreira

    2002-01-01

    The need for the maintenance of biodiversity has become a much-debated environmental concern. However, calling for continued biodiversity exposes one to potential accusations of caring more for the natural environment than for people. This article briefly reviews the development of environmental education and provides an overview of the concepts “biodiversity”, “sustainable development” and “sustainable consumption”. Reasons for maintaining biodiversity while simultaneously allowing for susta...

  3. On biodiversity conservation and poverty traps

    Science.gov (United States)

    Barrett, Christopher B.; Travis, Alexander J.; Dasgupta, Partha

    2011-01-01

    This paper introduces a special feature on biodiversity conservation and poverty traps. We define and explain the core concepts and then identify four distinct classes of mechanisms that define important interlinkages between biodiversity and poverty. The multiplicity of candidate mechanisms underscores a major challenge in designing policy appropriate across settings. This framework is then used to introduce the ensuing set of papers, which empirically explore these various mechanisms linking poverty traps and biodiversity conservation. PMID:21873176

  4. Antarctica and the strategic plan for biodiversity.

    Directory of Open Access Journals (Sweden)

    Steven L Chown

    2017-03-01

    Full Text Available The Strategic Plan for Biodiversity, adopted under the auspices of the Convention on Biological Diversity, provides the basis for taking effective action to curb biodiversity loss across the planet by 2020-an urgent imperative. Yet, Antarctica and the Southern Ocean, which encompass 10% of the planet's surface, are excluded from assessments of progress against the Strategic Plan. The situation is a lost opportunity for biodiversity conservation globally. We provide such an assessment. Our evidence suggests, surprisingly, that for a region so remote and apparently pristine as the Antarctic, the biodiversity outlook is similar to that for the rest of the planet. Promisingly, however, much scope for remedial action exists.

  5. Constructing a biodiversity terminological inventory.

    Directory of Open Access Journals (Sweden)

    Nhung T H Nguyen

    Full Text Available The increasing growth of literature in biodiversity presents challenges to users who need to discover pertinent information in an efficient and timely manner. In response, text mining techniques offer solutions by facilitating the automated discovery of knowledge from large textual data. An important step in text mining is the recognition of concepts via their linguistic realisation, i.e., terms. However, a given concept may be referred to in text using various synonyms or term variants, making search systems likely to overlook documents mentioning less known variants, which are albeit relevant to a query term. Domain-specific terminological resources, which include term variants, synonyms and related terms, are thus important in supporting semantic search over large textual archives. This article describes the use of text mining methods for the automatic construction of a large-scale biodiversity term inventory. The inventory consists of names of species, amongst which naming variations are prevalent. We apply a number of distributional semantic techniques on all of the titles in the Biodiversity Heritage Library, to compute semantic similarity between species names and support the automated construction of the resource. With the construction of our biodiversity term inventory, we demonstrate that distributional semantic models are able to identify semantically similar names that are not yet recorded in existing taxonomies. Such methods can thus be used to update existing taxonomies semi-automatically by deriving semantically related taxonomic names from a text corpus and allowing expert curators to validate them. We also evaluate our inventory as a means to improve search by facilitating automatic query expansion. Specifically, we developed a visual search interface that suggests semantically related species names, which are available in our inventory but not always in other repositories, to incorporate into the search query. An assessment of

  6. Biodiversity

    CSIR Research Space (South Africa)

    Scholes, RJ

    2006-01-01

    Full Text Available four times the size of Spain) (IUCN-WCPA undated). The eco-regions under the best protection tend to be the savannah habitats, particularly those of Eastern and Southern Africa (Burgess and others 2005). Charismatic animals, such as large mammals..., and on freshwater and marine ecosystems. Global trade has intensified the demand for animal products, tropical timbers, cash crops and seafood. At the same time, global connectedness has brought new problems, such as global climate change, IAS, the spread...

  7. Biodiversity monitoring in Europe: the EU FP7 EBONE project. European biodiversity observation NEtwork

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2008-09-01

    Full Text Available submission Presentation Poster presentation A) Title Biodiversity Monitoring in Europe: The EU FP7 EBONE project European Biodiversity Observation NEtwork B) Short title EBONE - European Biodiversity Observation NEtwork C) Author(s) Vogel, M. (1...), Jongman, R. (2) D) Presenting author Melanie Vogel Institution(s) (1) Council for Scientific Research CSIR, Pretoria, South Africa (2) Alterra, Wageningen UR, the Netherlands E) Keywords Biodiversity Monitoring, EBONE FP7, Europe, Mediterranean...

  8. Investigating the biodiversity of ciliates in the 'Age of Integration'.

    Science.gov (United States)

    Clamp, John C; Lynn, Denis H

    2017-10-01

    Biology is now turning toward a more integrative approach to research, distinguished by projects that depend on collaboration across hierarchical levels of organization or across disciplines. This trend is prompted by the need to solve complex, large-scale problems and includes disciplines that could be defined as integrative biodiversity. Integrative biodiversity of protists, including that of ciliates, is still partially in its infancy. This is the result of a shortage of historical data resources such as curated museum collections. Major areas of integrative biodiversity of ciliates that have begun to emerge can be categorized as integrative systematics, phenotypic plasticity, and integrative ecology. Integrative systematics of ciliates is characterized by inclusion of diverse sources of data in treatment of taxonomy of species and phylogenetic investigations. Integrative research in phenotypic plasticity combines investigation of functional roles of individual species of ciliates with genetic and genomic data. Finally, integrative ecology focuses on genetic identity of species in communities of ciliates and their collective functional roles in ecosystems. A review of current efforts toward integrative research into biodiversity of ciliates reveals a single, overarching concern-rapid progress will be achieved only by implementing a comprehensive strategy supported by one or more groups of active researchers. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Impacts of climate change on the future of biodiversity.

    Science.gov (United States)

    Bellard, Céline; Bertelsmeier, Cleo; Leadley, Paul; Thuiller, Wilfried; Courchamp, Franck

    2012-04-01

    Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub-continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst-case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth. © 2012 Blackwell Publishing Ltd/CNRS.

  10. Typology of public outreach for biodiversity conservation projects in Spain.

    Science.gov (United States)

    Jiménez, Amanda; Iniesta-Arandia, Irene; Muñoz-Santos, Maria; Martín-López, Berta; Jacobson, Susan K; Benayas, Javier

    2014-06-01

    Conservation education and outreach programs are a key approach to promote public understanding of the importance of biodiversity conservation. We reviewed 85 biodiversity conservation projects supported by the Spanish Ministry of Environment's Biodiversity Foundation. Through content analysis and descriptive statistics, we examined how the projects carried out communication, education, and public awareness and participation (CEPA) actions. We also used multivariate statistical analysis to develop a typology of 4 classes of biodiversity conservation projects on the basis of CEPA implementation. The classifications were delineated by purpose of CEPA, level of integration of CEPA actions, type of CEPA goals, main CEPA stakeholders, and aim of conservation. Our results confirm the existence of 2 key positions: CEPA has intrinsic value (i.e., they supposed the implementation of any CEPA action indirectly supported conservation) and CEPA is an instrument for achieving conservation goals. We also found that most CEPA actions addressed general audiences and school children, ignored minority groups and women, and did not include evaluation. The characteristics of the 4 types of projects and their frequency of implementation in the sample reflect the need for better integration of different types of actions (communication, education, and participation) and improved fostering of participation of multiple stakeholders in developing policy and implementing management strategies. © 2014 Society for Conservation Biology.

  11. Matches and mismatches between conservation investments and biodiversity values in the European Union.

    Science.gov (United States)

    Sánchez-Fernández, David; Abellán, Pedro; Aragón, Pedro; Varela, Sara; Cabeza, Mar

    2018-02-01

    Recently, the European Commission adopted a new strategy to halt the loss of biodiversity. Member states are expected to favor a more effective collection and redistribution of European Union (EU) funds under the current Multiannual Financial Framework for 2014-2020. Because of the large spatial variation in the distribution of biodiversity and conservation needs at the continental scale, EU instruments should ensure that countries with higher biodiversity values get more funds and resources for the conservation than other countries. Using linear regressions, we assessed the association between conservation investments and biodiversity values across member states, accounting for a variety of conservation investment indicators, taxonomic groups (including groups of plants, vertebrates, and invertebrates), and indicators of biodiversity value. In general, we found clear overall associations between conservation investments and biodiversity variables. However, some countries received more or less investment than would be expected based on biodiversity values in those countries. We also found that the extensive use of birds as unique indicators of conservation effectiveness may lead to biased decisions. Our results can inform future decisions regarding funding allocation and thus improve distribution of EU conservation funds. © 2017 Society for Conservation Biology.

  12. Synthesis of Knowledge on Marine Biodiversity in European Seas: From Census to Sustainable Management

    Science.gov (United States)

    Narayanaswamy, Bhavani E.

    2013-01-01

    The recently completed European Census of Marine Life, conducted within the framework of the global Census of Marine Life programme (2000–2010), markedly enhanced our understanding of marine biodiversity in European Seas, its importance within ecological systems, and the implications for human use. Here we undertake a synthesis of present knowledge of biodiversity in European Seas and identify remaining challenges that prevent sustainable management of marine biodiversity in one of the most exploited continents of the globe. Our analysis demonstrates that changes in faunal standing stock with depth depends on the size of the fauna, with macrofaunal abundance only declining with increasing water depth below 1000 m, whilst there was no obvious decrease in meiofauna with increasing depth. Species richness was highly variable for both deep water macro- and meio- fauna along latitudinal and longitudinal gradients. Nematode biodiversity decreased from the Atlantic into the Mediterranean whilst latitudinal related biodiversity patterns were similar for both faunal groups investigated, suggesting that the same environmental drivers were influencing the fauna. While climate change and habitat degradation are the most frequently implicated stressors affecting biodiversity throughout European Seas, quantitative understanding, both at individual and cumulative/synergistic level, of their influences are often lacking. Full identification and quantification of species, in even a single marine habitat, remains a distant goal, as we lack integrated data-sets to quantify these. While the importance of safeguarding marine biodiversity is recognised by policy makers, the lack of advanced understanding of species diversity and of a full survey of any single habitat raises huge challenges in quantifying change, and facilitating/prioritising habitat/ecosystem protection. Our study highlights a pressing requirement for more complete biodiversity surveys to be undertaken within

  13. How to maximally support local and regional biodiversity in applied conservation? Insights from pond management.

    Directory of Open Access Journals (Sweden)

    Pieter Lemmens

    Full Text Available Biodiversity and nature values in anthropogenic landscapes often depend on land use practices and management. Evaluations of the association between management and biodiversity remain, however, comparatively scarce, especially in aquatic systems. Furthermore, studies also tend to focus on a limited set of organism groups at the local scale, whereas a multi-group approach at the landscape scale is to be preferred. This study aims to investigate the effect of pond management on the diversity of multiple aquatic organism groups (e.g. phytoplankton, zooplankton, several groups of macro-invertebrates, submerged and emergent macrophytes at local and regional spatial scales. For this purpose, we performed a field study of 39 shallow man-made ponds representing five different management types. Our results indicate that fish stock management and periodic pond drainage are crucial drivers of pond biodiversity. Furthermore, this study provides insight in how the management of eutrophied ponds can contribute to aquatic biodiversity. A combination of regular draining of ponds with efforts to keep ponds free of fish seems to be highly beneficial for the biodiversity of many groups of aquatic organisms at local and regional scales. Regular draining combined with a stocking of fish at low biomass is also preferable to infrequent draining and lack of fish stock control. These insights are essential for the development of conservation programs that aim long-term maintenance of regional biodiversity in pond areas across Europe.

  14. How to maximally support local and regional biodiversity in applied conservation? Insights from pond management.

    Science.gov (United States)

    Lemmens, Pieter; Mergeay, Joachim; De Bie, Tom; Van Wichelen, Jeroen; De Meester, Luc; Declerck, Steven A J

    2013-01-01

    Biodiversity and nature values in anthropogenic landscapes often depend on land use practices and management. Evaluations of the association between management and biodiversity remain, however, comparatively scarce, especially in aquatic systems. Furthermore, studies also tend to focus on a limited set of organism groups at the local scale, whereas a multi-group approach at the landscape scale is to be preferred. This study aims to investigate the effect of pond management on the diversity of multiple aquatic organism groups (e.g. phytoplankton, zooplankton, several groups of macro-invertebrates, submerged and emergent macrophytes) at local and regional spatial scales. For this purpose, we performed a field study of 39 shallow man-made ponds representing five different management types. Our results indicate that fish stock management and periodic pond drainage are crucial drivers of pond biodiversity. Furthermore, this study provides insight in how the management of eutrophied ponds can contribute to aquatic biodiversity. A combination of regular draining of ponds with efforts to keep ponds free of fish seems to be highly beneficial for the biodiversity of many groups of aquatic organisms at local and regional scales. Regular draining combined with a stocking of fish at low biomass is also preferable to infrequent draining and lack of fish stock control. These insights are essential for the development of conservation programs that aim long-term maintenance of regional biodiversity in pond areas across Europe.

  15. River networks as biodiversity hotlines.

    Science.gov (United States)

    Décamps, Henri

    2011-05-01

    For several years, measures to insure healthy river functions and to protect biodiversity have focused on management at the scale of drainage basins. Indeed, rivers bear witness to the health of their drainage basins, which justifies integrated basin management. However, this vision should not mask two other aspects of the protection of aquatic and riparian biodiversity as well as services provided by rivers. First, although largely depending on the ecological properties of the surrounding terrestrial environment, rivers are ecological systems by themselves, characterized by their linearity: they are organized in connected networks, complex and ever changing, open to the sea. Second, the structure and functions of river networks respond to manipulations of their hydrology, and are particularly vulnerable to climatic variations. Whatever the scale considered, river networks represent "hotlines" for sharing water between ecological and societal systems, as well as for preserving both systems in the face of global change. River hotlines are characterized by spatial as well as temporal legacies: every human impact to a river network may be transmitted far downstream from its point of origin, and may produce effects only after a more or less prolonged latency period. Here, I review some of the current issues of river ecology in light of the linear character of river networks. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Comparative genomics for biodiversity conservation

    Directory of Open Access Journals (Sweden)

    Catherine E. Grueber

    2015-01-01

    Full Text Available Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem.

  17. Coral reef resilience through biodiversity

    Science.gov (United States)

    Rogers, Caroline S.

    2013-01-01

    Irrefutable evidence of coral reef degradation worldwide and increasing pressure from rising seawater temperatures and ocean acidification associated with climate change have led to a focus on reef resilience and a call to “manage” coral reefs for resilience. Ideally, global action to reduce emission of carbon dioxide and other greenhouse gases will be accompanied by local action. Effective management requires reduction of local stressors, identification of the characteristics of resilient reefs, and design of marine protected area networks that include potentially resilient reefs. Future research is needed on how stressors interact, on how climate change will affect corals, fish, and other reef organisms as well as overall biodiversity, and on basic ecological processes such as connectivity. Not all reef species and reefs will respond similarly to local and global stressors. Because reef-building corals and other organisms have some potential to adapt to environmental changes, coral reefs will likely persist in spite of the unprecedented combination of stressors currently affecting them. The biodiversity of coral reefs is the basis for their remarkable beauty and for the benefits they provide to society. The extraordinary complexity of these ecosystems makes it both more difficult to predict their future and more likely they will have a future.

  18. Plant biodiversity in French Mediterranean vineyards

    Science.gov (United States)

    Cohen, Marianne; Bilodeau, Clelia; Alexandre, Frédéric; Godron, Michel; Gresillon, Etienne

    2017-04-01

    In a context of agricultural intensification and increasing urbanization, the biodiversity of farmed plots is a key to improve the sustainability of farmed landscapes. The medium life-duration of the vineyards as well as their location in Mediterranean region are favorable to plant biodiversity. We studied 35 vineyards and if present, their edges, located in three French Mediterranean terroirs: Bandol, Pic Saint Loup and Terrasses du Larzac. We collected botanical information (floral richness et diversity, biological traits), and analyzed their relationships with different factors: social (management, heritage or professional concern), environmental (slope, exposition, geology), spatial (edges, surrounding landscape in a 500 meters radius, distance to the nearest large city). Vineyards are generally heavily disturbed by intensive practices like tilling and application of herbicides, and for this reason their floral diversity is low. This is particularly true in Bandol terroir, in accordance with the standards of the Bandol PDO wine sector. Farmed landscapes and proximity to a large town impact on functional groups, generalist species being overrepresented. If vineyards are surrounded with natural edges, it doubles the floral richness at the plot and edges scale. Species present in vineyards edges are perennial herbaceous species with Euro- Asian and Mediterranean distribution ranges characteristic of prairie and wasteland stages, increasing the functional diversity of vineyards (generalist species). Environmental factors have a lower influence: vineyards are generally located on flat lands. These results suggest that some practices should be encouraged to avoid the biological degradation of vineyards: conservation of tree-lined edges and their extensive management, reduction of chemical weeding, grass-growing using non-cosmopolitan species. These recommendations should also contribute to soil conservation.

  19. New tools for monitoring biodiversity and environments

    OpenAIRE

    Baker, Edward

    2014-01-01

    How do we do science when the computer of 15 years ago now fits in your pocket and costs less than the battery you need to run it? Should biodiversity scientists work with the hacker and maker community? Should we forge links with engineering departments? Should hardware become a standard tool of the biodiversity informatician?

  20. Does biodiversity protect humans against infectious disease?

    Science.gov (United States)

    Wood, Chelsea L; Lafferty, Kevin D; DeLeo, Giulio; Young, Hillary S; Hudson, Peter J; Kuris, Armand M

    2014-04-01

    Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

  1. Digital Geogames to Foster Local Biodiversity

    Science.gov (United States)

    Schaal, Sonja; Schaal, Steffen; Lude, Armin

    2015-01-01

    The valuing of biodiversity is considered to be a first step towards its conservation. Therefore, the aim of the BioDiv2Go project is to combine sensuous experiences discovering biodiversity with mobile technology and a game-based learning approach. Following the competence model for environmental education (Roczen et al, 2014), Geogames (location…

  2. Bussiness Cases for Biodiversity: the smallholders' perspective

    NARCIS (Netherlands)

    Vollaard, B.; Verweij, P.A.

    2011-01-01

    Market-based instruments are increasingly being promoted as a promising measure to face the twin challenge of biodiversity conservation and development. In the realm of market-based approaches, an important instrument is the creation of biodiversity business: ‘commercial enterprises that generate

  3. Biodiversity and Tourism : Impacts and Interventions

    NARCIS (Netherlands)

    Duim, van der V.R.; Caalders, J.D.A.D.

    2002-01-01

    This paper sets a framework for intervention in the relationship between biodiversity and tourism against the background of the Convention on Biological Diversity. It is argued that intervention cannot and should not only be based on considerations of measurable impacts of tourism on biodiversity

  4. Forest Resilience, Biodiversity, and Climate Change

    Science.gov (United States)

    I. Thompson; B. Mackey; S. McNulty; A. Mosseler

    2009-01-01

    This paper reviews the concepts of ecosystem resilience, resistance, and stability in forests and their relationship to biodiversity, with particular reference to climate change. The report is a direct response to a request by the ninth meeting of the Conference of the Parties to the CBD, in decision IX/51, to explore the links between biodiversity, forest ecosystem...

  5. African Traditional Knowledge Systems and Biodiversity Management

    African Journals Online (AJOL)

    There is a link between African Traditional Knowledge Systems and the management of Biodiversity. These have been passed over from one generation to the next through oral tradition. The lack of documentation of these systems of managing biodiversity has led to the existence of a gap between the scientifi cally based ...

  6. Plantation forests and biodiversity: oxymoron or opportunity?

    Science.gov (United States)

    Eckehard G. Brockerhoff; Hervé Jactel; John A. Parrotta; Christopher Quine; Jeffrey Sayer

    2008-01-01

    Losses of natural and semi-natural forests, mostly to agriculture, are a significant concern for biodiversity. Against this trend, the area of intensively managed plantation forests increases, and there is much debate about the implications for biodiversity. We provide a comprehensive review of the function of plantation forests as habitat compared with other land...

  7. Enhancing Life Sciences Teachers' Biodiversity Knowledge

    African Journals Online (AJOL)

    In the last two decades, South Africa has made efforts to integrate biodiversity content in its Life Sciences curriculum ... the ongoing professional learning and development of teachers through support systems that promote the .... of biodiversity, such as: biomes, taxonomic classification, ecological niche, human impact.

  8. Conserving biodiversity on native rangelands: Symposium proceedings

    Science.gov (United States)

    Daniel W. Uresk; Greg L. Schenbeck; James T. O' Rourke

    1997-01-01

    These proceedings are the result of a symposium, "Conserving biodiversity on native rangelands" held on August 17, 1995 in Fort Robinson State Park, NE. The purpose of this symposium was to provide a forum to discuss how elements of rangeland biodiversity are being conserved today. We asked, "How resilient and sustainable are rangeland systems to the...

  9. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances.

    Science.gov (United States)

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constantí; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Peñuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Marine biodiversity in the Caribbean: regional estimates and distribution patterns.

    Directory of Open Access Journals (Sweden)

    Patricia Miloslavich

    2010-08-01

    Full Text Available This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles and the northern coast of South America (Venezuela-Colombia, while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1 highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2 high variability among collecting methods, (3 limited taxonomic expertise for many groups, and (4 differing levels of activity in the study

  11. Biodiversity and models of evolution

    Directory of Open Access Journals (Sweden)

    S. L. Podvalny

    2016-01-01

    Full Text Available Summary. The paper discusses the evolutionary impact of biodiversity, the backbone of noosphere, which status has been fixed by a UN convention. The examples and role of such diversity are considered the various levels of life arrangement. On the level of standalone organisms, the diversity in question manifests itself in the differentiation and separation of the key physiologic functions which significantly broaden the eco-niche for the species with the consummate type of such separation. However, the organismic level of biodiversity does not work for building any developmental models since the starting point of genetic inheritance and variability processes emerges on the minimum structural unit of the living world only, i.e. the population. It is noted that the sufficient gene pool for species development may accumulate in fairly large populations only, where the general rate of mutation does not yield to the rate of ambient variations. The paper shows that the known formal models of species development based on the Fisher theorem about the impact of genodispersion on species adjustment are not in keeping with the actual existence of the species due to the conventionally finite and steady number of genotypes within a population. On the ecosystem level of life arrangement, the key role pertains to the taxonomic diversity supporting the continuous food chain in the system against any adverse developmental conditions of certain taxons. Also, the progressive evolution of an ecosystem is largely stabilized by its multilayer hierarchic structure and the closed circle of matter and energy. The developmental system models based on the Lotka-Volterra equations describing the interaction of the open-loop ecosystem elements only insufficiently represent the position of biodiversity in the evolutionary processes. The paper lays down the requirements to such models which take into account the mass balance within a system; its trophic structure; the

  12. Focus on biodiversity, health and wellbeing

    Science.gov (United States)

    Stephens, Carolyn; Athias, Renato

    2015-12-01

    In 2012 Environmental Research Letters (ERL) launched a focus series of research papers on the theme of biodiversity, health and well-being. It was the year of the second Rio Summit on Sustainable Development, a huge number of species had been made extinct and conservationists were making increasingly urgent calls for the protection of biodiversity. The situation is ever more critical. Since we started the issue more species have become extinct, and hundreds more have now become critically endangered. The focus issue highlighted the complexity of the links of biodiversity and health, and provides more evidence for the importance to human health of biodiversity on our planet. Research papers contrasted anthropocentric western scientific views of biodiversity and its ecosystem service to humans, with the more horizontal conceptions of indigenous communities in the Amazon—and as many cultures have recognized throughout history, they recognize that we are part of nature: nature does not exist for us.

  13. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions.

    Science.gov (United States)

    Titley, Mark A; Snaddon, Jake L; Turner, Edgar C

    2017-01-01

    Over the last 25 years, research on biodiversity has expanded dramatically, fuelled by increasing threats to the natural world. However, the number of published studies is heavily weighted towards certain taxa, perhaps influencing conservation awareness of and funding for less-popular groups. Few studies have systematically quantified these biases, although information on this topic is important for informing future research and conservation priorities. We investigated: i) which animal taxa are being studied; ii) if any taxonomic biases are the same in temperate and tropical regions; iii) whether the taxon studied is named in the title of papers on biodiversity, perhaps reflecting a perception of what biodiversity is; iv) the geographical distribution of biodiversity research, compared with the distribution of biodiversity and threatened species; and v) the geographical distribution of authors' countries of origin. To do this, we used the search engine Web of Science to systematically sample a subset of the published literature with 'biodiversity' in the title. In total 526 research papers were screened-5% of all papers in Web of Science with biodiversity in the title. For each paper, details on taxonomic group, title phrasing, number of citations, study location, and author locations were recorded. Compared to the proportions of described species, we identified a considerable taxonomic weighting towards vertebrates and an under-representation of invertebrates (particularly arachnids and insects) in the published literature. This discrepancy is more pronounced in highly cited papers, and in tropical regions, with only 43% of biodiversity research in the tropics including invertebrates. Furthermore, while papers on vertebrate taxa typically did not specify the taxonomic group in the title, the converse was true for invertebrate papers. Biodiversity research is also biased geographically: studies are more frequently carried out in developed countries with larger

  14. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions.

    Directory of Open Access Journals (Sweden)

    Mark A Titley

    Full Text Available Over the last 25 years, research on biodiversity has expanded dramatically, fuelled by increasing threats to the natural world. However, the number of published studies is heavily weighted towards certain taxa, perhaps influencing conservation awareness of and funding for less-popular groups. Few studies have systematically quantified these biases, although information on this topic is important for informing future research and conservation priorities. We investigated: i which animal taxa are being studied; ii if any taxonomic biases are the same in temperate and tropical regions; iii whether the taxon studied is named in the title of papers on biodiversity, perhaps reflecting a perception of what biodiversity is; iv the geographical distribution of biodiversity research, compared with the distribution of biodiversity and threatened species; and v the geographical distribution of authors' countries of origin. To do this, we used the search engine Web of Science to systematically sample a subset of the published literature with 'biodiversity' in the title. In total 526 research papers were screened-5% of all papers in Web of Science with biodiversity in the title. For each paper, details on taxonomic group, title phrasing, number of citations, study location, and author locations were recorded. Compared to the proportions of described species, we identified a considerable taxonomic weighting towards vertebrates and an under-representation of invertebrates (particularly arachnids and insects in the published literature. This discrepancy is more pronounced in highly cited papers, and in tropical regions, with only 43% of biodiversity research in the tropics including invertebrates. Furthermore, while papers on vertebrate taxa typically did not specify the taxonomic group in the title, the converse was true for invertebrate papers. Biodiversity research is also biased geographically: studies are more frequently carried out in developed countries

  15. From Sea to Sea: Canada's Three Oceans of Biodiversity

    Science.gov (United States)

    Archambault, Philippe; Snelgrove, Paul V. R.; Fisher, Jonathan A. D.; Gagnon, Jean-Marc; Garbary, David J.; Harvey, Michel; Kenchington, Ellen L.; Lesage, Véronique; Levesque, Mélanie; Lovejoy, Connie; Mackas, David L.; McKindsey, Christopher W.; Nelson, John R.; Pepin, Pierre; Piché, Laurence; Poulin, Michel

    2010-01-01

    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a

  16. From sea to sea: Canada's three oceans of biodiversity.

    Directory of Open Access Journals (Sweden)

    Philippe Archambault

    2010-08-01

    Full Text Available Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea, and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to

  17. Evaluating Temporal Consistency in Marine Biodiversity Hotspots

    Science.gov (United States)

    Barner, Allison K.; Benkwitt, Cassandra E.; Boersma, Kate S.; Cerny-Chipman, Elizabeth B.; Ingeman, Kurt E.; Kindinger, Tye L.; Lindsley, Amy J.; Nelson, Jake; Reimer, Jessica N.; Rowe, Jennifer C.; Shen, Chenchen; Thompson, Kevin A.; Heppell, Selina S.

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon’s diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  18. Evaluating Temporal Consistency in Marine Biodiversity Hotspots.

    Science.gov (United States)

    Piacenza, Susan E; Thurman, Lindsey L; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lindsley, Amy J; Nelson, Jake; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Heppell, Selina S

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  19. Spatial Pattern Determination of Biodiversity Threats at Landscape Level (Case Study: Golestan Province)

    OpenAIRE

    R. Mirzaei; A. Esmaili-Sari; M. R. Hemami; H. R. Rezaei

    2015-01-01

    Mapping spatial patterns of potential biodiversity threats is one of the important steps for effective conservation planning and activities. To determine the spatial patterns of threats in Golestan province, 12 criteria in four main groups including structural (fractal coefficient of perimeter, circularity ratio of area, average slope), compositional aspects of biodiversity (presence of species at risk), non-biological threats (distance to city, distance to village, distance to road, distance...

  20. Freshwater habitats in Plovdiv town and its surroundings and their importance for the biodiversity

    Directory of Open Access Journals (Sweden)

    DILYAN GEORGIEV

    2015-08-01

    Full Text Available The current synopsis reviews the types of aquatic habitats, that are located in the city of Plovdiv and analyses their importance for the biodiversity. Studies of the biodiversity in urban landscapes are of particular importance because they are still scarce. Several plant and animal groups are studied in the city of Plovdiv – mosses, mollusks, fish, amphibians, reptiles, birds and mammals. Their distribution among habitats is presented, as well as specific threats and conservation problems.

  1. Cycad diversification and tropical biodiversity

    Directory of Open Access Journals (Sweden)

    Rull, V.

    2012-12-01

    Full Text Available The recent unexpected discovery that living Cycadales are not Jurassic-Cretaceous (200– 65 Mya relicts, as all their extant genera began to diversify during the Late Miocene (12 Mya, has challenged a classical evolutionary myth. This brief note shows how this finding may also provide new clues on the shaping of the high tropical biodiversity

    El reciente e inesperado descubrimiento de que las Cycadales actuales no son relictos Jurásico-Cretácicos (200-65 Mya, ya que todos sus géneros iniciaron su diversificación durante el Mioceno Tardío (12 Mya, ha puesto en entredicho un mito evolutivo clásico. En esta nota se expone como este hallazgo puede, además, proporcionar nuevas pistas sobre el origen de la elevada biodiversidad tropical.

  2. Biodiversity redistribution under climate change

    DEFF Research Database (Denmark)

    Pecl, Gretta T.; Bastos, Miguel; Bell, Johann D.

    2017-01-01

    Distributions of Earth’s species are changing at accelerating rates, increasingly driven by humanmediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence...... that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered...... by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals....

  3. A landscape ecology approach identifies important drivers of urban biodiversity.

    Science.gov (United States)

    Turrini, Tabea; Knop, Eva

    2015-04-01

    Cities are growing rapidly worldwide, yet a mechanistic understanding of the impact of urbanization on biodiversity is lacking. We assessed the impact of urbanization on arthropod diversity (species richness and evenness) and abundance in a study of six cities and nearby intensively managed agricultural areas. Within the urban ecosystem, we disentangled the relative importance of two key landscape factors affecting biodiversity, namely the amount of vegetated area and patch isolation. To do so, we a priori selected sites that independently varied in the amount of vegetated area in the surrounding landscape at the 500-m scale and patch isolation at the 100-m scale, and we hold local patch characteristics constant. As indicator groups, we used bugs, beetles, leafhoppers, and spiders. Compared to intensively managed agricultural ecosystems, urban ecosystems supported a higher abundance of most indicator groups, a higher number of bug species, and a lower evenness of bug and beetle species. Within cities, a high amount of vegetated area increased species richness and abundance of most arthropod groups, whereas evenness showed no clear pattern. Patch isolation played only a limited role in urban ecosystems, which contrasts findings from agro-ecological studies. Our results show that urban areas can harbor a similar arthropod diversity and abundance compared to intensively managed agricultural ecosystems. Further, negative consequences of urbanization on arthropod diversity can be mitigated by providing sufficient vegetated space in the urban area, while patch connectivity is less important in an urban context. This highlights the need for applying a landscape ecological approach to understand the mechanisms shaping urban biodiversity and underlines the potential of appropriate urban planning for mitigating biodiversity loss. © 2015 John Wiley & Sons Ltd.

  4. Status of biodiversity in the Baltic Sea.

    Science.gov (United States)

    Ojaveer, Henn; Jaanus, Andres; Mackenzie, Brian R; Martin, Georg; Olenin, Sergej; Radziejewska, Teresa; Telesh, Irena; Zettler, Michael L; Zaiko, Anastasija

    2010-09-01

    The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system's diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity.

  5. Local scale processes drive long-term change in biodiversity of sandy beach ecosystems.

    Science.gov (United States)

    Schooler, Nicholas K; Dugan, Jenifer E; Hubbard, David M; Straughan, Dale

    2017-07-01

    Evaluating impacts to biodiversity requires ecologically informed comparisons over sufficient time spans. The vulnerability of coastal ecosystems to anthropogenic and climate change-related impacts makes them potentially valuable indicators of biodiversity change. To evaluate multidecadal change in biodiversity, we compared results from intertidal surveys of 13 sandy beaches conducted in the 1970s and 2009-11 along 500 km of coast (California, USA). Using a novel extrapolation approach to adjust species richness for sampling effort allowed us to address data gaps and has promise for application to other data-limited biodiversity comparisons. Long-term changes in species richness varied in direction and magnitude among beaches and with human impacts but showed no regional patterns. Observed long-term changes in richness differed markedly among functional groups of intertidal invertebrates. At the majority (77%) of beaches, changes in richness were most evident for wrack-associated invertebrates suggesting they have disproportionate vulnerability to impacts. Reduced diversity of this group was consistent with long-term habitat loss from erosion and sea level rise at one beach. Wrack-associated species richness declined over time at impacted beaches (beach fill and grooming), despite observed increases in overall intertidal richness. In contrast richness of these taxa increased at more than half (53%) of the beaches including two beaches recovering from decades of off-road vehicle impacts. Over more than three decades, our results suggest that local scale processes exerted a stronger influence on intertidal biodiversity on beaches than regional processes and highlight the role of human impacts for local spatial scales. Our results illustrate how comparisons of overall biodiversity may mask ecologically important changes and stress the value of evaluating biodiversity change in the context of functional groups. The long-term loss of wrack-associated species, a key

  6. Threats to China's Biodiversity by Contradictions Policy.

    Science.gov (United States)

    Zheng, Heran; Cao, Shixiong

    2015-02-01

    China has among the highest biodiversities in the world, but faces extreme biodiversity losses due to the country's huge population and its recent explosive socioeconomic development. Despite huge efforts and investments by the government and Chinese society to conserve biodiversity, especially in recent decades, biodiversity losses may not have been reversed, and may even have been exacerbated by unintended consequences resulting from these projects. China's centralized approach to biodiversity conservation, with limited local participation, creates an inflexible and inefficient approach because of conflicts between local communities and national administrators over the benefits. Although community-based conservation may be an imperfect approach, it is an essential component of a successful future national conservation plan. Biodiversity conservation should be considered from the perspective of systems engineering and a governance structure that combines centralization with community-level conservation. In this paper, we describe China's complex challenge: how to manage interactions between humans and nature to find win-win solutions that can ensure long-term biodiversity conservation without sacrificing human concerns.

  7. Freshwater Megafauna: Flagships for Freshwater Biodiversity under Threat.

    Science.gov (United States)

    Carrizo, Savrina F; Jähnig, Sonja C; Bremerich, Vanessa; Freyhof, Jörg; Harrison, Ian; He, Fengzhi; Langhans, Simone D; Tockner, Klement; Zarfl, Christiane; Darwall, William

    2017-10-01

    Freshwater biodiversity is highly threatened and is decreasing more rapidly than its terrestrial or marine counterparts; however, freshwaters receive less attention and conservation investment than other ecosystems do. The diverse group of freshwater megafauna, including iconic species such as sturgeons, river dolphins, and turtles, could, if promoted, provide a valuable tool to raise awareness and funding for conservation. We found that freshwater megafauna inhabit every continent except Antarctica, with South America, Central Africa, and South and Southeast Asia being particularly species rich. Freshwater megafauna co-occur with up to 93% of mapped overall freshwater biodiversity. Fifty-eight percent of the 132 megafauna species included in the study are threatened, with 84% of their collective range falling outside of protected areas. Of all threatened freshwater species, 83% are found within the megafauna range, revealing the megafauna's capacity as flagship and umbrella species for fostering freshwater conservation.

  8. Revealing lay people's perceptions of forest biodiversity value components and their application in valuation method

    DEFF Research Database (Denmark)

    Bakhtiari, Fatemeh; Jacobsen, Jette Bredahl; Strange, Niels

    2014-01-01

    discussions revealed that 'diversity of animals and plants', 'natural appearance and dynamics of ecosystem', and 'peace and quietness' were the attributes of forest ecosystems most frequently mentioned by lay people. In addition, it was found that regardless of familiarity with the various ecological...... valuation studies may improve the consistency of outcomes. Using both qualitative and quantitative methods, we investigated lay people's mental constructs about biodiversity and attitudes to biodiversity management.Applying a coding strategy for analysing data from individual interviews and group...... scientific terminologies, lay people had an intuitive understanding of ecological concepts such as biodiversity. The analyses demonstrated that individuals' perceptions and values of biodiversity could be framed in two interlinking categories: (i) as a good in itself, and (ii) its regulatory function...

  9. Plant biodiversity effects in reducing fluvial erosion are limited to low species richness.

    Science.gov (United States)

    Allen, Daniel C; Cardinale, Bradley J; Wynn-Thompson, Theresa

    2016-01-01

    It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance.

  10. Minimizing the biodiversity impact of Neotropical oil palm development.

    Science.gov (United States)

    Gilroy, James J; Prescott, Graham W; Cardenas, Johann S; Castañeda, Pamela González del Pliego; Sánchez, Andrés; Rojas-Murcia, Luis E; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2015-04-01

    Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland-forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region--improved cattle pasture--together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian 'spill-over' effects into oil palm plantations. © 2014 John Wiley & Sons Ltd.

  11. Making robust policy decisions using global biodiversity indicators.

    Directory of Open Access Journals (Sweden)

    Emily Nicholson

    Full Text Available In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.

  12. Conservation of biodiversity in the Sango Bay area, southern Uganda

    African Journals Online (AJOL)

    A series of biodiversity and socio-economic surveys carried out in the Sango Bay area of southern Uganda revealed high biodiversity values for some taxa in some sites. Use of this biodiversity and reliance on it by local communities was widespread. Biodiversity scores were given to all species and these were coupled with ...

  13. Biodiversity of the flora of Mount Papa

    International Nuclear Information System (INIS)

    Yin-Yin-Kyi

    1995-07-01

    Even though Mount Papa is in the dry zone area, it is almost evergreen, due to its elevation of 4981 feet above the sea level and its fertile soil conditions. A has a rich biodiversity with vegetation of many types

  14. Collaborative Networks for biodiversity domain organizations

    NARCIS (Netherlands)

    Ermilova, E.; Afsarmanesh, H.

    2010-01-01

    European scientific research and development organizations, operating in the domains of biology, ecology, and biodiversity, strongly need to cooperate/collaborate with other centers. Unavailability of interoperation infrastructure as well as the needed collaboration environment among research

  15. Biodiversity and the Corporate Social Responsibility Agenda

    NARCIS (Netherlands)

    Overbeek, M.M.M.; Harms, B.; Burg, van den S.W.K.

    2013-01-01

    In this paper, we describe the main findings of an exploratory research about corporate commitment to manage biodiversity and ecosystems. The results are based on literature of sustainability approaches and interviews with sustainability representatives of twelve national and international companies

  16. Antarctica and the strategic plan for biodiversity

    Science.gov (United States)

    Chown, Steven L.; Brooks, Cassandra M.; Terauds, Aleks; Le Bohec, Céline; van Klaveren-Impagliazzo, Céline; Whittington, Jason D.; Butchart, Stuart H. M.; Coetzee, Bernard W. T.; Collen, Ben; Convey, Peter; Gaston, Kevin J.; Gilbert, Neil; Gill, Mike; Höft, Robert; Johnston, Sam; Kennicutt, Mahlon C.; Kriesell, Hannah J.; Le Maho, Yvon; Lynch, Heather J.; Palomares, Maria; Puig-Marcó, Roser; Stoett, Peter; McGeoch, Melodie A.

    2017-01-01

    The Strategic Plan for Biodiversity, adopted under the auspices of the Convention on Biological Diversity, provides the basis for taking effective action to curb biodiversity loss across the planet by 2020—an urgent imperative. Yet, Antarctica and the Southern Ocean, which encompass 10% of the planet’s surface, are excluded from assessments of progress against the Strategic Plan. The situation is a lost opportunity for biodiversity conservation globally. We provide such an assessment. Our evidence suggests, surprisingly, that for a region so remote and apparently pristine as the Antarctic, the biodiversity outlook is similar to that for the rest of the planet. Promisingly, however, much scope for remedial action exists. PMID:28350825

  17. Biodiversity losses: The downward spiral

    Science.gov (United States)

    Tomback, Diana F.; Kendall, Katherine C.; Tomback, Diana F.; Arno, Stephen F.; Keane, Robert E.

    2001-01-01

    The dramatic decline of whitebark pine (Pinus albicaulis) populations in the northwestern United States and southwestern Canada from the combined effects of fire exclusion, mountain pine beetles (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola), and the projected decline of whitebark pine populations rangewide (Chapters 10 and 11) do not simply add up to local extirpations of a single tree species. Instead, the loss of whitebark pine has broad ecosystem-level consequences, eroding local plant and animal biodiversity, changing the time frame of succession, and altering the distribution of subalpine vegetation (Chapter 1). One potential casualty of this decline may be the midcontinental populations of the grizzly bear (Ursus arctos horribilis), which use whitebark pine seeds as a major food source (Chapter 7). Furthermore, whitebark pine is linked to other white pine ecosystems in the West through its seed-disperser, Clark's nutcracker (Nucifraga columbiana) (Chapter 5). Major declines in nutcracker populations ultimately seal the fate of several white pine ecosystems, and raise the question of whether restoration is possible once a certain threshold of decline is reached.

  18. Coastal sea radiation environment and biodiversity protection

    International Nuclear Information System (INIS)

    Tang Senming; Shang Zhaorong

    2009-01-01

    This paper characterizes the types, trend and the potential of radiation contamination in the sea against the development of nuclear power stations. Combined with the present status of radioactive contamination and marine biodiversity in China seas, it is pointed out that non-human radiation protection should be considered on the bases of marine biodiversity protection. Besides, the reference species for marine radiation protection and some viewpoints on the work of marine radiation protection in China are pro- posed. (authors)

  19. Mosquitoes as a Part of Wetland Biodiversity

    OpenAIRE

    Schäfer, Martina

    2004-01-01

    Wetlands contain both aquatic and terrestrial environments which generates high biodiversity. However, they are commonly associated with mosquitoes (Diptera: Culicidae), and mosquitoes are usually regarded as negative by humans because they can cause nuisance and transmit diseases. This thesis aimed to clarify the association between mosquitoes and wetlands and to achieve a more balanced view of biodiversity in wetlands by including mosquito diversity. Studies on adult mosquito diversity and ...

  20. New Mediterranean Biodiversity Records (October, 2014)

    OpenAIRE

    KATSANEVAKIS, S.; ACAR, Ü.; AMMAR, I.; BALCI, B. A.; BEKAS, P.; BELMONTE, M.; CHINTIROGLOU, C. C.; CONSOLI, P.; DIMIZA, M.; FRYGANIOTIS, K.; GEROVASILEIOU, V.; GNISCI, V.; GÜLŞAHIN, N.; HOFFMAN, R.; ISSARIS, Y.

    2014-01-01

    The Collective Article ‘New Mediterranean Biodiversity Records’ of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of alien and native species respectively. The new records of alien species include: the red alga Asparagopsis taxiformis (Crete and Lakonicos Gulf) (Greece); the red alga Grateloupia turuturu (along the Israeli Mediterranean shore); the mantis shrimp Clorid...

  1. Polycladida biodiversity and systematics: an integrative approach

    OpenAIRE

    Bahia Maceira, Juliana

    2017-01-01

    In face of the fact that marine biodiversity is highly threatened by human impacts on the environment, it is important to know what we want to protect. This thesis addresses the biodiversity and systematics of Polycladida, which are free-living Platyhelminthes with highly ramified intestine. Polylclads live in all types of marine environments whereas most areas of the world remain unsampled. From the around 1000 species considered valid many were described based on single or immature specimen...

  2. The biodiversity-dependent ecosystem service debt.

    Science.gov (United States)

    Isbell, Forest; Tilman, David; Polasky, Stephen; Loreau, Michel

    2015-02-01

    Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity-dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2-21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity-dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services. © 2014 John Wiley & Sons Ltd/CNRS.

  3. AMBON - the Arctic Marine Biodiversity Observing Network

    Science.gov (United States)

    Iken, K.; Danielson, S. L.; Grebmeier, J. M.; Cooper, L. W.; Hopcroft, R. R.; Kuletz, K.; Stafford, K.; Mueter, F. J.; Collins, E.; Bluhm, B.; Moore, S. E.; Bochenek, R. J.

    2016-02-01

    The goal of the Arctic Marine Biodiversity Observing Network (AMBON) is to build an operational and sustainable marine biodiversity observing network for the US Arctic Chukchi Sea continental shelf. The AMBON has four main goals: 1. To close current gaps in taxonomic biodiversity observations from microbes to whales, 2. To integrate results of past and ongoing research programs on the US Arctic shelf into a biodiversity observation network, 3. To demonstrate at a regional level how an observing network could be developed, and 4. To link with programs on the pan-Arctic to global scale. The AMBON fills taxonomic (from microbes to mammals), functional (food web structure), spatial and temporal (continuing time series) gaps, and includes new technologies such as state-of-the-art genomic tools, with biodiversity and environmental observations linked through central data management through the Alaska Ocean Observing System. AMBON is a 5-year partnership between university and federal researchers, funded through the National Ocean Partnership Program (NOPP), with partners in the National Oceanographic and Atmospheric Administration (NOAA), the Bureau of Ocean and Energy Management (BOEM), and Shell industry. AMBON will allow us to better coordinate, sustain, and synthesize biodiversity research efforts, and make data available to a broad audience of users, stakeholders, and resource managers.

  4. The integration of biodiversity into One Health.

    Science.gov (United States)

    Romanelli, C; Cooper, H D; de Souza Dias, B F

    2014-08-01

    A better understanding of the links between biodiversity, health and disease presents major opportunities for policy development, and can enhance our understanding of how health-focused measures affect biodiversity, and conservation measures affect health. The breadth and complexity of these relationships, and the socio-economic drivers by which they are influenced, in the context of rapidly shifting global trends, reaffirm the need for an integrative, multidisciplinary and systemic approach to the health of people, livestock and wildlife within the ecosystem context. Loss of biodiversity, habitat fragmentation and the loss of natural environments threaten the full range of life-supporting services provided by ecosystems at all levels of biodiversity, including species, genetic and ecosystem diversity. The disruption of ecosystem services has direct and indirect implications for public health, which are likely to exacerbate existing health inequities, whether through exposure to environmental hazards or through the loss of livelihoods. One Health provides a valuable framework for the development of mutually beneficial policies and interventions at the nexus between health and biodiversity, and it is critical that One Health integrates biodiversity into its strategic agenda.

  5. Towards a Duty of Care for Biodiversity

    Science.gov (United States)

    Earl, G.; Curtis, A.; Allan, C.

    2010-04-01

    The decline in biodiversity is a worldwide phenomenon, with current rates of species extinction more dramatic than any previously recorded. Habitat loss has been identified as the major cause of biodiversity decline. In this article we suggest that a statutory duty of care would complement the current mix of policy options for biodiversity conservation. Obstacles hindering the introduction of a statutory duty of care include linguistic ambiguity about the terms ‘duty of care’ and ‘stewardship’ and how they are applied in a natural resource management context, and the absence of a mechanism to guide its implementation. Drawing on international literature and key informant interviews we have articulated characteristics of duty of care to reduce linguistic ambiguity, and developed a framework for implementing a duty of care for biodiversity at the regional scale. The framework draws on key elements of the common law ‘duty of care’, the concepts of ‘taking reasonable care’ and ‘avoiding foreseeable harm’, in its logic. Core elements of the framework include desired outcomes for biodiversity, supported by current recommended practices. The focus on outcomes provides opportunities for the development of innovative management practices. The framework incorporates multiple pathways for the redress of non-compliance including tiered negative sanctions, and positive measures to encourage compliance. Importantly, the framework addresses the need for change and adaptation that is a necessary part of biodiversity management.

  6. [Mechanism on biodiversity managing crop diseases].

    Science.gov (United States)

    Yang, Jing; Shi, Zhu-Feng; Gao, Dong; Liu, Lin; Zhu, You-Yong; Li, Cheng-Yun

    2012-11-01

    Reasonable utilization of natural resource and protection of ecological environment is the foundation for implementing agricultural sustainable development. Biodiversity research and protection are becoming an important issue concerned commonly in the world. Crop disease is one of the important natural disasters for food production and safety, and is also one of the main reasons that confine sustainable development of agricultural production. Large-scale deployment of single highly resistant variety results in reduction of agro-biodiversity level. In this case, excessive loss of agro-biodiversity has become the main challenge in sustainable agriculture. Biodiversity can not only effectively alleviate disease incidence and loss of crop production, but also reduce pollution of agricultural ecological environment caused by excessive application of pesticides and fertilizers to the agricultural ecological environment. Discovery of the mechanism of biodiversity to control crop diseases can reasonably guide the rational deployment and rotation of different crops and establish optimization combinations of different crops. This review summarizes recent advances of research on molecular, physiological, and ecological mechanisms of biodiversity managing crop diseases, and proposes some research that needs to be strengthened in the future.

  7. Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?

    Science.gov (United States)

    Kessler, Michael; Hertel, Dietrich; Jungkunst, Hermann F.; Kluge, Jürgen; Abrahamczyk, Stefan; Bos, Merijn; Buchori, Damayanti; Gerold, Gerhard; Gradstein, S. Robbert; Köhler, Stefan; Leuschner, Christoph; Moser, Gerald; Pitopang, Ramadhanil; Saleh, Shahabuddin; Schulze, Christian H.; Sporn, Simone G.; Steffan-Dewenter, Ingolf; Tjitrosoedirdjo, Sri S.; Tscharntke, Teja

    2012-01-01

    Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential ‘win-win’ scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227–362 Mg C ha−1 to agroforests with 82–211 Mg C ha−1 showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels. PMID:23077569

  8. Farmers' Interest in Nature and Its Relation to Biodiversity in Arable Fields

    Directory of Open Access Journals (Sweden)

    J. Ahnström

    2013-01-01

    Full Text Available Biodiversity declines in farmland have been attributed to intensification of farming at the field level and loss of heterogeneity at the landscape level. However, farmers are not solely optimizing production; their actions are also influenced by social factors, tradition and interest in nature, which indirectly influence biodiversity but rarely are incorporated in studies of farmland biodiversity. We used social science methods to quantify farmers' interest in nature on 16 farms with winter wheat fields in central Sweden, and combined this with biodiversity inventories of five organism groups (weeds, carabid beetles, bumblebees, solitary bees, and birds and estimates of landscape composition and management intensity at the field level. Agricultural intensity, measured as crop density, and farmers' interest in nature explained variation in biodiversity, measured as the proportion of the regional species richness found on single fields. Interest in nature seemed to incorporate many actions taken by farmers and appeared to be influenced by both physical factors, for example, the surrounding landscape, and social factors, for example, social motivations. This study indicates that conservation of biodiversity in farmland, and design of new agri-environmental subsidy systems, would profit from taking farmers' interest in nature and its relation to agricultural practices into account.

  9. Overlooked mountain rock pools in deserts are critical local hotspots of biodiversity.

    Directory of Open Access Journals (Sweden)

    Cândida Gomes Vale

    Full Text Available The world is undergoing exceptional biodiversity loss. Most conservation efforts target biodiversity hotspots at large scales. Such approach overlooks small-sized local hotspots, which may be rich in endemic and highly threatened species. We explore the importance of mountain rock pools (gueltas as local biodiversity hotspots in the Sahara-Sahel. Specifically, we considered how many vertebrates (total and endemics use gueltas, what factors predict species richness, and which gueltas are of most priority for conservation. We expected to provide management recommendations, improve local biodiversity conservation, and simultaneously contribute with a framework for future enhancement of local communities' economy. The identification of local hotspots of biodiversity is important for revaluating global conservation priorities.We quantified the number of vertebrate species from each taxonomic group and endemics present in 69 gueltas in Mauritania, then compared these with species present in a surrounding area and recorded in the country. We evaluated the predictors of species number's present in each guelta through a multiple regression model. We ranked gueltas by their priority for conservation taking into account the percentage of endemics and threats to each guelta. Within a mere aggregate extent of 43 ha, gueltas hold about 32% and 78% of the total taxa analysed and endemics of Mauritania, respectively. The number of species present in each guelta increased with the primary productivity and area of gueltas and occurrence of permanent water. Droughts and human activities threaten gueltas, while 64% of them are currently unprotected.Gueltas are crucial for local biodiversity conservation and human activities. They require urgent management plans in Mauritania's mountains. They could provide refugia under climate change being important for long-term conservation of Sahara-Sahel biodiversity. Given their disproportional importance in relation to their

  10. Overlooked mountain rock pools in deserts are critical local hotspots of biodiversity.

    Science.gov (United States)

    Vale, Cândida Gomes; Pimm, Stuart L; Brito, José Carlos

    2015-01-01

    The world is undergoing exceptional biodiversity loss. Most conservation efforts target biodiversity hotspots at large scales. Such approach overlooks small-sized local hotspots, which may be rich in endemic and highly threatened species. We explore the importance of mountain rock pools (gueltas) as local biodiversity hotspots in the Sahara-Sahel. Specifically, we considered how many vertebrates (total and endemics) use gueltas, what factors predict species richness, and which gueltas are of most priority for conservation. We expected to provide management recommendations, improve local biodiversity conservation, and simultaneously contribute with a framework for future enhancement of local communities' economy. The identification of local hotspots of biodiversity is important for revaluating global conservation priorities. We quantified the number of vertebrate species from each taxonomic group and endemics present in 69 gueltas in Mauritania, then compared these with species present in a surrounding area and recorded in the country. We evaluated the predictors of species number's present in each guelta through a multiple regression model. We ranked gueltas by their priority for conservation taking into account the percentage of endemics and threats to each guelta. Within a mere aggregate extent of 43 ha, gueltas hold about 32% and 78% of the total taxa analysed and endemics of Mauritania, respectively. The number of species present in each guelta increased with the primary productivity and area of gueltas and occurrence of permanent water. Droughts and human activities threaten gueltas, while 64% of them are currently unprotected. Gueltas are crucial for local biodiversity conservation and human activities. They require urgent management plans in Mauritania's mountains. They could provide refugia under climate change being important for long-term conservation of Sahara-Sahel biodiversity. Given their disproportional importance in relation to their size, they are

  11. The Nature Index: A General Framework for Synthesizing Knowledge on the State of Biodiversity

    Science.gov (United States)

    Certain, Grégoire; Skarpaas, Olav; Bjerke, Jarle-Werner; Framstad, Erik; Lindholm, Markus; Nilsen, Jan-Erik; Norderhaug, Ann; Oug, Eivind; Pedersen, Hans-Christian; Schartau, Ann-Kristin; van der Meeren, Gro I.; Aslaksen, Iulie; Engen, Steinar; Garnåsjordet, Per-Arild; Kvaløy, Pål; Lillegård, Magnar; Yoccoz, Nigel G.; Nybø, Signe

    2011-01-01

    The magnitude and urgency of the biodiversity crisis is widely recognized within scientific and political organizations. However, a lack of integrated measures for biodiversity has greatly constrained the national and international response to the biodiversity crisis. Thus, integrated biodiversity indexes will greatly facilitate information transfer from science toward other areas of human society. The Nature Index framework samples scientific information on biodiversity from a variety of sources, synthesizes this information, and then transmits it in a simplified form to environmental managers, policymakers, and the public. The Nature Index optimizes information use by incorporating expert judgment, monitoring-based estimates, and model-based estimates. The index relies on a network of scientific experts, each of whom is responsible for one or more biodiversity indicators. The resulting set of indicators is supposed to represent the best available knowledge on the state of biodiversity and ecosystems in any given area. The value of each indicator is scaled relative to a reference state, i.e., a predicted value assessed by each expert for a hypothetical undisturbed or sustainably managed ecosystem. Scaled indicator values can be aggregated or disaggregated over different axes representing spatiotemporal dimensions or thematic groups. A range of scaling models can be applied to allow for different ways of interpreting the reference states, e.g., optimal situations or minimum sustainable levels. Statistical testing for differences in space or time can be implemented using Monte-Carlo simulations. This study presents the Nature Index framework and details its implementation in Norway. The results suggest that the framework is a functional, efficient, and pragmatic approach for gathering and synthesizing scientific knowledge on the state of biodiversity in any marine or terrestrial ecosystem and has general applicability worldwide. PMID:21526118

  12. The Marine Food Chain in Relation to Biodiversity

    Directory of Open Access Journals (Sweden)

    Andrew R.G. Price

    2001-01-01

    Full Text Available Biodiversity provides “raw materials” for the food chain and seafood production, and also influences the capacity of ecosystems to perform these and other services. Harvested marine seafood species now exceed 100 million t y -1 and provide about 6% of all protein and 17% of animal protein consumed by humans. These resources include representatives from about nine biologically diverse groups of plants and animals. Fish account for most of the world’s marine catches, of which only 40 species are taken in abundance. Highest primary productivity and the richest fisheries are found within Exclusive Economic Zones (EEZ. This narrow strip (200 nautical mile/370 km wide is not only the site of coastal “food factories” but also the area associated with heaviest perturbation to the marine environment. Structural redundancy is evident in marine ecosystems, in that many species are interchangeable in the way they characterise assemblage composition. While there is probably functional redundancy within groups, the effects of species loss on ecosystem performance cannot be easily predicted. In particular, the degree to which biodiversity per se is needed for ecosystem services, including seafood/fishery production, is poorly understood. Many human activities, including unsustainable fishing and mariculture, lead to erosion of marine biodiversity. This can undermine the biophysical cornerstones of fisheries and have other undesirable environmental side effects. Of direct concern are “species effects”, in particular the removal of target and non-target fishery species, as well as conservationally important fauna. Equally disrupting but less immediate are “ecosystem effects”, such as fishing down the food web, following a shift from harvested species of high to low trophic level. Physical and biological disturbances from trawl nets and dynamite fishing on coral reefs can also severely impact ecosystem structure and function.

  13. Can retention forestry help conserve biodiversity? A meta-analysis

    Science.gov (United States)

    Fedrowitz, Katja; Koricheva, Julia; Baker, Susan C; Lindenmayer, David B; Palik, Brian; Rosenvald, Raul; Beese, William; Franklin, Jerry F; Kouki, Jari; Macdonald, Ellen; Messier, Christian; Sverdrup-Thygeson, Anne; Gustafsson, Lena

    2014-01-01

    consistent among taxonomic groups for forest and open-habitat species, respectively. Synthesis and applications. Our meta-analysis provides support for wider use of retention forestry since it moderates negative harvesting impacts on biodiversity. Hence, it is a promising approach for integrating biodiversity conservation and production forestry, although identifying optimal solutions between these two goals may need further attention. Nevertheless, retention forestry will not substitute for conservation actions targeting certain highly specialized species associated with forest-interior or open-habitat conditions. Our meta-analysis provides support for wider use of retention forestry since it moderates negative harvesting impacts on biodiversity. Hence, it is a promising approach for integrating biodiversity conservation and production forestry, although identifying optimal solutions between these two goals may need further attention. Nevertheless, retention forestry will not substitute for conservation actions targeting certain highly specialized species associated with forest-interior or open-habitat conditions. PMID:25552747

  14. Marine biodiversity in the Australian region.

    Science.gov (United States)

    Butler, Alan J; Rees, Tony; Beesley, Pam; Bax, Nicholas J

    2010-08-02

    The entire Australian marine jurisdictional area, including offshore and sub-Antarctic islands, is considered in this paper. Most records, however, come from the Exclusive Economic Zone (EEZ) around the continent of Australia itself. The counts of species have been obtained from four primary databases (the Australian Faunal Directory, Codes for Australian Aquatic Biota, Online Zoological Collections of Australian Museums, and the Australian node of the Ocean Biogeographic Information System), but even these are an underestimate of described species. In addition, some partially completed databases for particular taxonomic groups, and specialized databases (for introduced and threatened species) have been used. Experts also provided estimates of the number of known species not yet in the major databases. For only some groups could we obtain an (expert opinion) estimate of undiscovered species. The databases provide patchy information about endemism, levels of threat, and introductions. We conclude that there are about 33,000 marine species (mainly animals) in the major databases, of which 130 are introduced, 58 listed as threatened and an unknown percentage endemic. An estimated 17,000 more named species are either known from the Australian EEZ but not in the present databases, or potentially occur there. It is crudely estimated that there may be as many as 250,000 species (known and yet to be discovered) in the Australian EEZ. For 17 higher taxa, there is sufficient detail for subdivision by Large Marine Domains, for comparison with other National and Regional Implementation Committees of the Census of Marine Life. Taxonomic expertise in Australia is unevenly distributed across taxa, and declining. Comments are given briefly on biodiversity management measures in Australia, including but not limited to marine protected areas.

  15. Data hosting infrastructure for primary biodiversity data

    Directory of Open Access Journals (Sweden)

    Goddard Anthony

    2011-12-01

    Full Text Available Abstract Background Today, an unprecedented volume of primary biodiversity data are being generated worldwide, yet significant amounts of these data have been and will continue to be lost after the conclusion of the projects tasked with collecting them. To get the most value out of these data it is imperative to seek a solution whereby these data are rescued, archived and made available to the biodiversity community. To this end, the biodiversity informatics community requires investment in processes and infrastructure to mitigate data loss and provide solutions for long-term hosting and sharing of biodiversity data. Discussion We review the current state of biodiversity data hosting and investigate the technological and sociological barriers to proper data management. We further explore the rescuing and re-hosting of legacy data, the state of existing toolsets and propose a future direction for the development of new discovery tools. We also explore the role of data standards and licensing in the context of data hosting and preservation. We provide five recommendations for the biodiversity community that will foster better data preservation and access: (1 encourage the community's use of data standards, (2 promote the public domain licensing of data, (3 establish a community of those involved in data hosting and archival, (4 establish hosting centers for biodiversity data, and (5 develop tools for data discovery. Conclusion The community's adoption of standards and development of tools to enable data discovery is essential to sustainable data preservation. Furthermore, the increased adoption of open content licensing, the establishment of data hosting infrastructure and the creation of a data hosting and archiving community are all necessary steps towards the community ensuring that data archival policies become standardized.

  16. Data hosting infrastructure for primary biodiversity data

    Science.gov (United States)

    2011-01-01

    Background Today, an unprecedented volume of primary biodiversity data are being generated worldwide, yet significant amounts of these data have been and will continue to be lost after the conclusion of the projects tasked with collecting them. To get the most value out of these data it is imperative to seek a solution whereby these data are rescued, archived and made available to the biodiversity community. To this end, the biodiversity informatics community requires investment in processes and infrastructure to mitigate data loss and provide solutions for long-term hosting and sharing of biodiversity data. Discussion We review the current state of biodiversity data hosting and investigate the technological and sociological barriers to proper data management. We further explore the rescuing and re-hosting of legacy data, the state of existing toolsets and propose a future direction for the development of new discovery tools. We also explore the role of data standards and licensing in the context of data hosting and preservation. We provide five recommendations for the biodiversity community that will foster better data preservation and access: (1) encourage the community's use of data standards, (2) promote the public domain licensing of data, (3) establish a community of those involved in data hosting and archival, (4) establish hosting centers for biodiversity data, and (5) develop tools for data discovery. Conclusion The community's adoption of standards and development of tools to enable data discovery is essential to sustainable data preservation. Furthermore, the increased adoption of open content licensing, the establishment of data hosting infrastructure and the creation of a data hosting and archiving community are all necessary steps towards the community ensuring that data archival policies become standardized. PMID:22373257

  17. Data hosting infrastructure for primary biodiversity data.

    Science.gov (United States)

    Goddard, Anthony; Wilson, Nathan; Cryer, Phil; Yamashita, Grant

    2011-01-01

    Today, an unprecedented volume of primary biodiversity data are being generated worldwide, yet significant amounts of these data have been and will continue to be lost after the conclusion of the projects tasked with collecting them. To get the most value out of these data it is imperative to seek a solution whereby these data are rescued, archived and made available to the biodiversity community. To this end, the biodiversity informatics community requires investment in processes and infrastructure to mitigate data loss and provide solutions for long-term hosting and sharing of biodiversity data. We review the current state of biodiversity data hosting and investigate the technological and sociological barriers to proper data management. We further explore the rescuing and re-hosting of legacy data, the state of existing toolsets and propose a future direction for the development of new discovery tools. We also explore the role of data standards and licensing in the context of data hosting and preservation. We provide five recommendations for the biodiversity community that will foster better data preservation and access: (1) encourage the community's use of data standards, (2) promote the public domain licensing of data, (3) establish a community of those involved in data hosting and archival, (4) establish hosting centers for biodiversity data, and (5) develop tools for data discovery. The community's adoption of standards and development of tools to enable data discovery is essential to sustainable data preservation. Furthermore, the increased adoption of open content licensing, the establishment of data hosting infrastructure and the creation of a data hosting and archiving community are all necessary steps towards the community ensuring that data archival policies become standardized.

  18. Climate-smart management of biodiversity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.; Rosenblatt, Daniel L.

    2015-01-01

    Determining where biodiversity is likely to be most vulnerable to climate change and methods to reduce that vulnerability are necessary first steps to incorporate climate change into biodiversity management plans. Here, we use a spatial climate change vulnerability assessment to (1) map the potential vulnerability of terrestrial biodiversity to climate change in the northeastern United States and (2) provide guidance on how and where management actions for biodiversity could provide long-term benefits under climate change (i.e., climate-smart management considerations). Our model suggests that biodiversity will be most vulnerable in Delaware, Maryland, and the District of Columbia due to the combination of high climate change velocity, high landscape resistance, and high topoclimate homogeneity. Biodiversity is predicted to be least vulnerable in Vermont, Maine, and New Hampshire because large portions of these states have low landscape resistance, low climate change velocity, and low topoclimate homogeneity. Our spatial climate-smart management considerations suggest that: (1) high topoclimate diversity could moderate the effects of climate change across 50% of the region; (2) decreasing local landscape resistance in conjunction with other management actions could increase the benefit of those actions across 17% of the region; and (3) management actions across 24% of the region could provide long-term benefits by promoting short-term population persistence that provides a source population capable of moving in the future. The guidance and framework we provide here should allow conservation organizations to incorporate our climate-smart management considerations into management plans without drastically changing their approach to biodiversity conservation.

  19. CALICE: Calibrating Plant Biodiversity in Glacier Ice

    Science.gov (United States)

    Festi, Daniela; Cristofori, Antonella; Vernesi, Cristiano; Zerbe, Stefan; Wellstein, Camilla; Maggi, Valter; Oeggl, Klaus

    2017-04-01

    The objective of the project is to reconstruct plant biodiversity and its trend archived in Alpine glacier ice by pollen and eDNA (environmental DNA) during the last five decades by analyzing a 40 m ice core. For our study we chose the Adamello glacier (Trentino - Südtirol, Lombardia) because of i) the good preservation conditions for pollen and eDNA in ice, ii) the thickness of the ice cap (270m) and iii) the expected high time resolution. The biodiversity estimates gained by pollen analysis and eDNA will be validated by historical biodiversity assessments mainly based on vegetation maps, aerial photos and vegetation surveys in the catchment area of the Adamello glacier for the last five decades. This historical reconstruction of biodiversity trends will be performed on a micro-, meso- and macro-scale (5, 20-50 and 50-100 Km radius, respectively). The results will serve as a calibration data set on biodiversity for future studies, such as the second step of the coring by the POLLiCE research consortium (pollice.fmach.it). In fact, arrangements are currently been made to drill the complete ice cap and retrieve a 270 m thick core which has the potential to cover a time span of minimum 400 years up to several millennia. This second stage will extend the time scale and enable the evaluation of dissimilarity/similarity of modern biodiversity in relation to Late Holocene trends. Finally, we believe this case study has the potential to be applied in other glaciated areas to evaluate biodiversity for large regions (e.g. central Asian mountain ranges, Tibet and Tian Shan or the Andes).

  20. Challenges of Biodiversity Education: A Review of Education Strategies for Biodiversity Education

    Science.gov (United States)

    Navarro-Perez, Moramay; Tidball, Keith G.

    2012-01-01

    Biodiversity conservation has increasingly gained recognition in national and international agendas. The Convention on Biological Diversity (CBD) has positioned biodiversity as a key asset to be protected to ensure our well-being and that of future generations. Nearly 20 years after its inception, results are not as expected, as shown in the…

  1. Making the case for biodiversity in South Africa: Re-framing biodiversity communications

    Directory of Open Access Journals (Sweden)

    Kristal Maze

    2016-12-01

    Conclusion: Based on the findings, a communications strategy known as ‘Making the case for biodiversity’ was developed that re-framed the economic, emotional and practical value propositions for biodiversity. The communications strategy has already resulted in greater political and economic attention towards biodiversity in South Africa.

  2. Biodiversity of Jinggangshan Mountain: the importance of topography and geographical location in supporting higher biodiversity.

    Directory of Open Access Journals (Sweden)

    Ting Zhou

    Full Text Available Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM, an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason's richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM's area was in the mid-altitude region and approximately 40% of JGM's area was in the 10°-20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM.

  3. Biodiversity informatics: challenges and opportunities for applying biodiversity information to management and conservation

    Science.gov (United States)

    James S. Kagan

    2006-01-01

    Researchers, land managers, and the public currently often are unable to obtain useful biodiversity information because the subject represents such a large component of biology and ecology, and systems to compile and organize this information do not exist. Information on vascular plant taxonomy, as addressed by the Global Biodiversity Information Facility and key...

  4. International Center for Himalayan Biodiversity (ICHB): Conserving Himalayan Biodiversity--A Global Responsibility

    Science.gov (United States)

    Ram Bhandari

    2006-01-01

    Biodiversity is a global endowment of nature. Conservation of biodiversity includes all species of plants, animals and other organisms, the range of genetic stocks within each species, and ecosystem diversity. Food, many types of medicine and industrial products are provided by the biological resources that are the basis of life on Earth. The value of the Earth’s...

  5. Breaking boundaries for biodiversity : expanding the policy agenda to halt biodiversity loss

    NARCIS (Netherlands)

    Veen, M.P.; Sanders, M.E.; Tekelenburg, A.; Gerritsen, A.L.; Lörzing, J.A.; Brink, Th.

    2010-01-01

    Our assessment from the perspective of the Netherlands, a country in the temperate zone, showed a slightly positive picture, in line with the overall results for this zone. The loss of biodiversity in the Netherlands has been slowed down, but the European target – halting the loss of biodiversity

  6. Compensation for biodiversity loss – Advice to the Netherlands' Taskforce on Biodiversity and Natural Resources

    NARCIS (Netherlands)

    Bie, de S.; Dessel, van B.

    2011-01-01

    Compensation of damage to biodiversity is one of the mechanisms to settle environmental costs. It concerns creating new opportunities for biodiversity, which as a minimum equals the residual impact after a company or organization has attempted to avoid, prevent and mitigate that impact. In the

  7. Ecology and evolution of mammalian biodiversity.

    Science.gov (United States)

    Jones, Kate E; Safi, Kamran

    2011-09-12

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future.

  8. Climate change: potential implications for Ireland's biodiversity

    Science.gov (United States)

    Donnelly, Alison

    2018-03-01

    A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.

  9. Mapping and Quantifying Terrestrial Vertebrate Biodiversity at ...

    Science.gov (United States)

    The ability to assess, report, map, and forecast functions of ecosystems is critical to our capacity to make informed decisions to maintain the sustainable nature of our environment. Because of the variability among living organisms and levels of organization (e.g. genetic, species, ecosystem), biodiversity has always been difficult to measure precisely, especially within a systematic manner and over multiple scales. In answer to this challenge, the U.S. Environmental Protection Agency has created a partnership with other Federal agencies, academic institutions, and Non-Governmental Organizations to develop the EnviroAtlas (https://www.epa.gov/enviroatlas), an online national Decision Support Tool that allows users to view and analyze the geographical description of the supply and demand for ecosystem services, as well as the drivers of change. As part of the EnviroAtlas, an approach has been developed that uses deductive habitat models for all terrestrial vertebrates of the conterminous United States and clusters them into biodiversity metrics that relate to ecosystem service-relevant categories. Metrics, such as species and taxon richness, have been developed and integrated with other measures of biodiversity. Collectively, these metrics provide a consistent scalable process from which to make geographic comparisons, provide thematic assessments, and to monitor status and trends in biodiversity. The national biodiversity component operates across approximatel

  10. Geography of conservation spending, biodiversity, and culture.

    Science.gov (United States)

    McClanahan, T R; Rankin, P S

    2016-10-01

    We used linear and multivariate models to examine the associations between geography, biodiversity, per capita economic output, national spending on conservation, governance, and cultural traits in 55 countries. Cultural traits and social metrics of modernization correlated positively with national spending on conservation. The global distribution of this spending culture was poorly aligned with the distribution of biodiversity. Specifically, biodiversity was greater in the tropics where cultures tended to spend relatively less on conservation and tended to have higher collectivism, formalized and hierarchical leadership, and weaker governance. Consequently, nations lacking social traits frequently associated with modernization, environmentalism, and conservation spending have the largest component of Earth's biodiversity. This has significant implications for setting policies and priorities for resource management given that biological diversity is rapidly disappearing and cultural traits change slowly. Therefore, we suggest natural resource management adapt to and use characteristics of existing social organization rather than wait for or promote social values associated with conservation spending. Supporting biocultural traditions, engaging leaders to increase conservation commitments, cross-national efforts that complement attributes of cultures, and avoiding interference with nature may work best to conserve nature in collective and hierarchical societies. Spending in modernized nations may be a symbolic response to a symptom of economic development and environmental degradation, and here conservation actions need to ensure that biodiversity is not being lost. © 2016 Society for Conservation Biology.

  11. Amelioration of soils contaminated with radionuclides: exploiting biodiversity to minimise or maximise soil to plant transfer

    International Nuclear Information System (INIS)

    Willey, N.

    2004-01-01

    Managing the transfer of radionuclides from soils into plants and thence food chains is an important immediate post-accident challenge for radio-ecologists. In the longer term, soil remediation is often necessary to eliminate the environmental impacts of accidents. Until the recent advent of molecular phylogenies for flowering plants there was no scientific framework through which to analyse the contribution of inter-species differences in radionuclide uptake by plants to these processes. We have already carried out such analyses for a variety of heavy metals and here report new biodiversity landscapes across the flowering plant phylum for radionuclides of Cs, Sr, S, Cl, I, Co and Ru that identify groups of plants with particularly low and high uptake. The plant groups are an untapped reservoir of biodiversity that might be exploited for minimising food chain contamination or maximising phyto-extraction of radionuclides. We have recently demonstrated the importance of biodiversity in minimising food chain contamination with 137 Cs and exploiting biodiversity has recently brought spectacular and unexpected advances in phyto-extraction of As. The UK Food Standards Agency food chain model and recent advances in our phyto-extraction field trial at Bradwell Nuclear Power Station, UK will be used to illustrate for the first time the use of biodiversity landscapes for post-accident management and soil remediation. Biodiversity landscapes of inter-species differences in radionuclide uptake are also a foundation for a variety of developments in the genetic engineering of plant uptake and response to radionuclides. Results building on recent work we have carried out using K transport mutants of Arabidopsis and its implications for transport processes and engineering them in flowering plants will be discussed. Further, novel ongoing genomic and proteomic work into the molecular responses of Arabidopsis to ionising radiation and its implications for selecting plants from

  12. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Science.gov (United States)

    Coll, Marta; Piroddi, Chiara; Steenbeek, Jeroen; Kaschner, Kristin; Ben Rais Lasram, Frida; Aguzzi, Jacopo; Ballesteros, Enric; Bianchi, Carlo Nike; Corbera, Jordi; Dailianis, Thanos; Danovaro, Roberto; Estrada, Marta; Froglia, Carlo; Galil, Bella S.; Gasol, Josep M.; Gertwagen, Ruthy; Gil, João; Guilhaumon, François; Kesner-Reyes, Kathleen; Kitsos, Miltiadis-Spyridon; Koukouras, Athanasios; Lampadariou, Nikolaos; Laxamana, Elijah; López-Fé de la Cuadra, Carlos M.; Lotze, Heike K.; Martin, Daniel; Mouillot, David; Oro, Daniel; Raicevich, Saša; Rius-Barile, Josephine; Saiz-Salinas, Jose Ignacio; San Vicente, Carles; Somot, Samuel; Templado, José; Turon, Xavier; Vafidis, Dimitris; Villanueva, Roger; Voultsiadou, Eleni

    2010-01-01

    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of

  13. Biodiversity and parasites of wildlife: helminths of Australasian marsupials.

    Science.gov (United States)

    Beveridge, Ian; Spratt, David M

    2015-04-01

    Despite current attempts to document the extent of biodiversity on Earth, significant problems exist in fully documenting the helminth parasites of wildlife. Using the Australasian marsupials as an example, we examine some of these difficulties, including challenges in collecting uncommon host species, the ongoing description of new species of marsupials, the presence of cryptic species, and the decline in taxonomic expertise in Australia. Although optimistic global predictions have been made concerning the rate of discovery and description of new species of animals, these predictions may not apply in the case of specific groups of animals such as the Australasian marsupials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Biodiversity at the Ecosystem Level - Patterns and Processes

    DEFF Research Database (Denmark)

    This publication contains the presentations and discussions from the second DanBIF conference, entitled Biodiversity at the Ecosystem Level – Patterns and Processes. The questions asked at this conference were: What is biodiversity at the ecosystem level? How is it related to biodiversity at othe...... formulate a strategy for dealing with biodiversity above the species and molecular levels and make data available for the end-users....... levels of organization? How may GBIF (Global Biodiversity Information Facility) deal with ecosystem level data and informatics? The conference had two important goals. The first was to present an overview of contemporary research related to ecosystem level biodiversity and the second was to help GBIF...

  15. The circumpolar biodiversity monitoring program - Terrestrial plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Circumpolar Biodiversity Monitoring Program, CBMP, Terrestrial Plan, www.caff.is/terrestrial, is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders......, northern communities, and scientists to detect, understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity. This presentation will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based...... monitoring with survey-based monitoring and remotely sensed data. The CBMP Terrestrial Plan intends to build upon and expand existing monitoring networks, engaging participants across a range of capacity and interests. The presentation will summarize the recommended focal soil ecosystem components...

  16. Biodiversity and Resilience of Ecosystem Functions.

    Science.gov (United States)

    Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M

    2015-11-01

    Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Biodiversity analysis in the digital era

    Science.gov (United States)

    2016-01-01

    This paper explores what the virtual biodiversity e-infrastructure will look like as it takes advantage of advances in ‘Big Data’ biodiversity informatics and e-research infrastructure, which allow integration of various taxon-level data types (genome, morphology, distribution and species interactions) within a phylogenetic and environmental framework. By overcoming the data scaling problem in ecology, this integrative framework will provide richer information and fast learning to enable a deeper understanding of biodiversity evolution and dynamics in a rapidly changing world. The Atlas of Living Australia is used as one example of the advantages of progressing towards this future. Living in this future will require the adoption of new ways of integrating scientific knowledge into societal decision making. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481789

  18. Plate tectonics drive tropical reef biodiversity dynamics

    Science.gov (United States)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-05-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

  19. A conservation agenda for the Pantanal's biodiversity

    Directory of Open Access Journals (Sweden)

    CJR Alho

    Full Text Available The Pantanal's biodiversity constitutes a valuable natural resource, in economic, cultural, recreational, aesthetic, scientific and educational terms. The vegetation plus the seasonal productivity support a diverse and abundant fauna. Many endangered species occur in the region, and waterfowl are exceptionally abundant during the dry season. Losses of biodiversity and its associated natural habitats within the Pantanal occur as a result of unsustainable land use. Implementation of protected areas is only a part of the conservation strategy needed. We analyse biodiversity threats to the biome under seven major categories: 1 conversion of natural vegetation into pasture and agricultural crops, 2 destruction or degradation of habitat mainly due to wild fire, 3 overexploitation of species mainly by unsustainable fishing, 4 water pollution, 5 river flow modification with implantation of small hydroelectric plants, 6 unsustainable tourism, and 7 introduction of invasive exotic species.

  20. Biodiversity and the feel-good factor

    DEFF Research Database (Denmark)

    Dallimer, Martin; Irvine, Katherine N.; Skinner, Andrew M. J.

    2012-01-01

    Over half of the world's human population lives in cities, and for many, urban greenspaces are the only places where they encounter biodiversity. This is of particular concern because there is growing evidence that human well-being is enhanced by exposure to nature. However, the specific qualities...... of greenspaces that offer the greatest benefits remain poorly understood. One possibility is that humans respond positively to increased levels of biodiversity. Here, we demonstrate the lack of a consistent relationship between actual plant, butterfly, and bird species richness and the psychological well......-being of urban greenspace visitors. instead, well-being shows a positive relationship with the richness that the greenspace users perceived to be present. One plausible explanation for this discrepancy, which we investigate, is that people generally have poor biodiversity-identification skills. The apparent...

  1. Molecular biodiversity of Red Sea demosponges

    KAUST Repository

    Erpenbeck, Dirk

    2016-01-07

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.

  2. Biodiversity and biogeography of the atmosphere

    Science.gov (United States)

    Womack, Ann M.; Bohannan, Brendan J. M.; Green, Jessica L.

    2010-01-01

    The variation of life has predominantly been studied on land and in water, but this focus is changing. There is a resurging interest in the distribution of life in the atmosphere and the processes that underlie patterns in this distribution. Here, we review our current state of knowledge about the biodiversity and biogeography of the atmosphere, with an emphasis on micro-organisms, the numerically dominant forms of aerial life. We present evidence to suggest that the atmosphere is a habitat for micro-organisms, and not purely a conduit for terrestrial and aquatic life. Building on a rich history of research in terrestrial and aquatic systems, we explore biodiversity patterns that are likely to play an important role in the emerging field of air biogeography. We discuss the possibility of a more unified understanding of the biosphere, one that links knowledge about biodiversity and biogeography in the lithosphere, hydrosphere and atmosphere. PMID:20980313

  3. Community ecology theory predicts the effects of agrochemical mixtures on aquatic biodiversity and ecosystem properties.

    Science.gov (United States)

    Halstead, Neal T; McMahon, Taegan A; Johnson, Steve A; Raffel, Thomas R; Romansic, John M; Crumrine, Patrick W; Rohr, Jason R

    2014-08-01

    Ecosystems are often exposed to mixtures of chemical contaminants, but the scientific community lacks a theoretical framework to predict the effects of mixtures on biodiversity and ecosystem properties. We conducted a freshwater mesocosm experiment to examine the effects of pairwise agrochemical mixtures [fertiliser, herbicide (atrazine), insecticide (malathion) and fungicide (chlorothalonil)] on 24 species- and seven ecosystem-level responses. As postulated, the responses of biodiversity and ecosystem properties to agrochemicals alone and in mixtures was predictable by integrating information on each functional group's (1) sensitivity to the chemicals (direct effects), (2) reproductive rates (recovery rates), (3) interaction strength with other functional groups (indirect effects) and (4) links to ecosystem properties. These results show that community ecology theory holds promise for predicting the effects of contaminant mixtures on biodiversity and ecosystem services and yields recommendations on which types of agrochemicals to apply together and separately to reduce their impacts on aquatic ecosystems. © 2014 John Wiley & Sons Ltd/CNRS.

  4. Late Quaternary climate change shapes island biodiversity

    DEFF Research Database (Denmark)

    Weigelt, Patrick; Steinbauer, Manuel; Cabral, Juliano

    2016-01-01

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration–extinction dynamics1, or as geologically dynamic with biodiversity resulting from immigration–speciation–extinction dynamics influenced by changes in island....... Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present...

  5. Biodiversity in a Florida Sandhill Ecosystem

    Directory of Open Access Journals (Sweden)

    Samantha Robertson

    2009-01-01

    Full Text Available This project compares two transects of land in the University of South Florida's Botanical Gardens for their biodiversity. The transects were chosen to represent a Florida sandhill ecosystem and the individual Longleaf Pine, Saw Palmetto, Turkey Oak, Laurel Oak and Live Oak specimens were counted. All other species above waist height were counted as "other"?. Once the individuals were counted, the Simpson's and Shannon-Wiener indices were calculated. Since the Shannon-Wiener index incorporates several diversity characteristics, it is typically more reliable than Simpson's. However, both biodiversity indices agreed that transect B was more diverse than transect A.

  6. The changing form of Antarctic biodiversity.

    Science.gov (United States)

    Chown, Steven L; Clarke, Andrew; Fraser, Ceridwen I; Cary, S Craig; Moon, Katherine L; McGeoch, Melodie A

    2015-06-25

    Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewhere.

  7. Essential Biodiversity Variables: A framework for communication between the biodiversity community and space agencies

    Science.gov (United States)

    Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.

    2017-12-01

    The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.

  8. Biodiversity conservation in agriculture requires a multi-scale approach.

    Science.gov (United States)

    Gonthier, David J; Ennis, Katherine K; Farinas, Serge; Hsieh, Hsun-Yi; Iverson, Aaron L; Batáry, Péter; Rudolphi, Jörgen; Tscharntke, Teja; Cardinale, Bradley J; Perfecto, Ivette

    2014-09-22

    Biodiversity loss--one of the most prominent forms of modern environmental change--has been heavily driven by terrestrial habitat loss and, in particular, the spread and intensification of agriculture. Expanding agricultural land-use has led to the search for strong conservation strategies, with some suggesting that biodiversity conservation in agriculture is best maximized by reducing local management intensity, such as fertilizer and pesticide application. Others highlight the importance of landscape-level approaches that incorporate natural or semi-natural areas in landscapes surrounding farms. Here, we show that both of these practices are valuable to the conservation of biodiversity, and that either local or landscape factors can be most crucial to conservation planning depending on which types of organisms one wishes to save. We performed a quantitative review of 266 observations taken from 31 studies that compared the impacts of localized (within farm) management strategies and landscape complexity (around farms) on the richness and abundance of plant, invertebrate and vertebrate species in agro-ecosystems. While both factors significantly impacted species richness, the richness of sessile plants increased with less-intensive local management, but did not significantly respond to landscape complexity. By contrast, the richness of mobile vertebrates increased with landscape complexity, but did not significantly increase with less-intensive local management. Invertebrate richness and abundance responded to both factors. Our analyses point to clear differences in how various groups of organisms respond to differing scales of management, and suggest that preservation of multiple taxonomic groups will require multiple scales of conservation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Finding common ground for biodiversity and ecosystem services

    CSIR Research Space (South Africa)

    Reyers, B

    2012-05-01

    Full Text Available Recently, some members of the conservation community have used ecosystem services as a strategy to conserve biodiversity. Others in the community have criticized this strategy as a distraction from the mission of biodiversity conservation...

  10. Status and strategies for marine biodiversity of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    The status of marine biodiversity and factors responsible for the degradation and loss of marine biodiversity are discussed. Goa has abundant marine wealth. Phytoplankton, marine algae, manglicolous fungi, seagrasses, mangrove flora and other...

  11. Core issues in the economics of biodiversity conservation.

    Science.gov (United States)

    Tisdell, Clement A

    2011-02-01

    Economic evaluations are essential for assessing the desirability of biodiversity conservation. This article highlights significant advances in theories and methods of economic evaluation and their relevance and limitations as a guide to biodiversity conservation; considers the implications of the phylogenetic similarity principle for the survival of species; discusses consequences of the Noah's Ark problem for selecting features of biodiversity to be saved; analyzes the extent to which the precautionary principle can be rationally used to support the conservation of biodiversity; explores the impact of market extensions, market and other institutional failures, and globalization on biodiversity loss; examines the relationship between the rate of interest and biodiversity depletion; and investigates the implications of intergenerational equity for biodiversity conservation. The consequences of changes in biodiversity for sustainable development are given particular attention. © 2011 New York Academy of Sciences.

  12. Why financial incentives can destroy economically valuable biodiversity in Ethiopia

    NARCIS (Netherlands)

    Gatzweiler, F.; Reichhuber, A.; Hein, L.G.

    2007-01-01

    Ethiopian montane rainforests are economically valuable repositories of biodiversity, especially of wild Coffea arabica populations, and they are vanishing at accelerating rates. Our research results confirm theory which explains biodiversity loss by diverging private and social net benefits from

  13. Correcting the disconnect between phylogenetics and biodiversity informatics.

    Science.gov (United States)

    Miller, Joseph T; Jolley-Rogers, Garry

    2014-01-14

    Rich collections of biodiversity data are now synthesized in publically available databases and phylogenetic knowledge now provides a sound understanding of the origin of organisms and their place in the tree of life. However, these knowledge bases are poorly linked, leading to underutilization or worse, an incorrect understanding of biodiversity because there is poor evolutionary context. We address this problem by integrating biodiversity information aggregated from many sources onto phylogenetic trees. PhyloJIVE connects biodiversity and phylogeny knowledge bases by providing an integrated evolutionary view of biodiversity data which in turn can improve biodiversity research and the conservation decision making process. Biodiversity science must assert the centrality of evolution to provide effective data to counteract global change and biodiversity loss.

  14. The Sweet and the Bitter: Intertwined Positive and Negative Social Impacts of a Biodiversity Offset

    Directory of Open Access Journals (Sweden)

    Cécile Bidaud

    2017-01-01

    Full Text Available Major developments, such as mines, will often have unavoidable environmental impacts. In such cases, investors, governments, or even a company's own standards increasingly require implementation of biodiversity offsets (investment in conservation with a measurable outcome with the aim of achieving 'no net loss' or even a 'net gain' of biodiversity. Where conservation is achieved by changing the behaviour of people directly using natural resources, the offset might be expected to have social impacts but such impacts have received very little attention. Using the case study of Ambatovy, a major nickel mine in the eastern rainforests of Madagascar and a company at the vanguard of developing biodiversity offsets, we explore local perceptions of the magnitude and distribution of impacts of the biodiversity offset project on local wellbeing. We used both qualitative (key informant interviews and focus group discussions and quantitative (household survey methods. We found that the biodiversity offsets, which comprise both conservation restrictions and development activities, influenced wellbeing in a mixture of positive and negative ways. However, overall, respondents felt that they had suffered a net cost from the biodiversity offset. It is a matter of concern that benefits from development activities do not compensate for the costs of the conservation restrictions, that those who bear the costs are not the same people as those who benefit, and that there is a mismatch in timing between the immediate restrictions and the associated development activities which take some time to deliver benefits. These issues matter both from the perspective of environmental justice, and for the long-term sustainability of the biodiversity benefits the offset is supposed to deliver.

  15. Cultural valuation and biodiversity conservation in the Upper Guinea forest, West Africa

    Directory of Open Access Journals (Sweden)

    James A. Fraser

    2016-09-01

    Full Text Available The cultural valuation of biodiversity has taken on renewed importance over the last two decades as the ecosystem services framework has become widely adopted. Conservation initiatives increasingly use ecosystem service frameworks to render tropical forest landscapes and their peoples legible to market-oriented initiatives such as REDD+ and biodiversity offsetting schemes. Ecosystem service approaches have been widely criticized by scholars in the social sciences and humanities for their narrow focus on a small number of easily quantifiable and marketable services and a reductionist and sometimes simplistic approach to culture. We address the need to combine methods from each of the "three cultures" of natural science, quantitative social science, and qualitative social science/humanities in conceptualizing the relationship between cultural valuation and biodiversity conservation. We combine qualitative data with forest inventories and a quantitative index of cultural value to evaluate the relationship between cultural valuation and biodiversity conservation in Upper Guinea forest in Liberia, West Africa. Our study focuses on "sacred agroforests," spaces that are associated with Mande macro-language speaking groups such as the Loma. We demonstrate that sacred agroforests are associated with different cultural values compared with secondary forests. Although biodiversity and biomass are similar, sacred agroforests exhibit a different species composition, especially of culturally salient species, increasing overall landscape agro-biodiversity. Sacred agroforests are also shaped and conserved by local cultural institutions revolving around ancestor worship, ritual, and the metaphysical conceptual category "salɛ." We conclude that to understand the relationship between cultural valuation and biodiversity conservation, interpretivist approaches such as phenomenology should be employed alongside positivist ecosystem service frameworks.

  16. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale

    NARCIS (Netherlands)

    Kissling, W.D.; Ahumada, J.A.; Bowser, A.; Fernandez, M.; Fernández, N.; Garcia, E.A.; Guralnick, R.P.; Isaac, N.J.B.; Kelling, S.; Los, W.; McRae, L.; Mihoub, J.-B.; Obst, M.; Santamaria, M.; Skidmore, A.K.; Williams, K.J.; Agosti, D.; Amariles, D.; Arvanitidis, C.; Bastin, L.; De Leo, F.; Egloff, W.; Elith, J.; Hobern, D.; Martin, D.; Pereira, H.M.; Pesole, G.; Peterseil, J.; Saarenmaa, H.; Schigel, D.; Schmeller, D.S.; Segata, N.; Turak, E.; Uhlir, P.F.; Wee, B.; Hardisty, A.R.

    2018-01-01

    Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and

  17. Parasitism and the biodiversity-functioning relationship

    Science.gov (United States)

    Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.

    2018-01-01

    Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.

  18. Monitoring biodiversity change through effective global coordination

    NARCIS (Netherlands)

    Navarro, Laetitia M.; Fernandez, Nestor; Guerra, Carlos; Guralnick, Rob; Kissling, W. Daniel; Londono, Maria Cecilia; Muller-Karger, Frank; Turak, Eren; El Serafy, G.Y.H.; Balvanera, Patricia; Authors, More

    2017-01-01

    The ability to monitor changes in biodiversity, and their societal impact, is critical to conserving species and managing ecosystems. While emerging technologies increase the breadth and reach of data acquisition, monitoring efforts are still spatially and temporally fragmented, and taxonomically

  19. Assessment of biodiversity based on morphological characteristics ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... Conservation and utilization of the native plant resources is essential for long term sustainability of biodiversity. Wild native resources are adapted to specific and diverse environmental conditions and therefore, these adaptive features can be introduced into modern cultivars either through conventional ...

  20. Making a better case for biodiversity conservation

    NARCIS (Netherlands)

    Bugter, Rob; Harrison, Paula; Haslett, John; Tinch, Rob

    2018-01-01

    This Editorial to the BESAFE special issue introduces the project and its approach and case studies. The BESAFE (EC 7th Framework programme) project investigated how the effectiveness of different types of arguments for biodiversity conservation depends on the context in which they are used. Our

  1. Norms and the Conservation of Biodiversity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 7. Norms and the Conservation of Biodiversity. Sahotra Sarkar. General Article Volume 13 Issue 7 July 2008 pp 627-637. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/013/07/0627-0637 ...

  2. Biodiversity-A Manual for College Teachers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Biodiversity – A Manual for College Teachers. N S Leela. Book Review Volume 2 Issue 10 October 1997 pp 80-81. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/10/0080-0081 ...

  3. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)

    Modern economic activities are heavily dependent on using diversity of biological resources. Africa has a wealth of biodiversity resources which, with the appropriate application of biotechnological tools for conservation and use, can serve as sources of wealth creation. Proper harnessing of the linkages between ...

  4. Banning Trophy Hunting Will Exacerbate Biodiversity Loss.

    Science.gov (United States)

    Di Minin, Enrico; Leader-Williams, Nigel; Bradshaw, Corey J A

    2016-02-01

    International pressure to ban trophy hunting is increasing. However, we argue that trophy hunting can be an important conservation tool, provided it can be done in a controlled manner to benefit biodiversity conservation and local people. Where political and governance structures are adequate, trophy hunting can help address the ongoing loss of species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. PROSPECTS AND CHALLENGES OF BIODIVERSITY IN

    African Journals Online (AJOL)

    losses due to pest and disease attack or unfavourable environmental conditions can be reduced. ... Prospects and challenges biodiversity in small—holder systems 53. It is thought that the subsequent dispersal of .... When measuring genetic diversity on-farm three important aspects should be considered. These.

  6. Bats, Blood-Feeders and Biodiversity

    DEFF Research Database (Denmark)

    Bohmann, Kristine

    minimising the occurrence of errors. Centered around metabarcoding dietary studies of bat droppings and leech gut contents, this continuous exploration and refinement is reflected in both the work and structure of this thesis. After a thesis introduction and two chapters on environmental DNA and biodiversity...

  7. Entomological survey and biodiversity conservation in the ...

    African Journals Online (AJOL)

    Entomological surveys were conducted between 2006 and 2009 to gather biological data on the biodiversity and to point out species of interest. Over 30 species of insects belonging mainly to Coleoptera, Orthoptera and Lepidoptera were collected and identified. The Baobab is one of the most important tree species of ...

  8. Foliar fungal pathogens and grassland biodiversity

    NARCIS (Netherlands)

    Allan, E.; Ruijven, van J.; Crawley, M.J.

    2010-01-01

    By attacking plants, herbivorous mammals, insects, and belowground pathogens are known to play an important role in maintaining biodiversity in grasslands. Foliar fungal pathogens are ubiquitous in grassland ecosystems, but little is known about their role as drivers of community composition and

  9. Reflections: Wildlife, Genetics, and Biodiversity | Twesigywe ...

    African Journals Online (AJOL)

    Reflections: Wildlife, Genetics, and Biodiversity. Charles Twesigywe. Abstract. No Abstract. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/uj.v46i1.23033 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  10. Novel urban ecosystems, biodiversity, and conservation

    International Nuclear Information System (INIS)

    Kowarik, Ingo

    2011-01-01

    With increasing urbanization the importance of cities for biodiversity conservation grows. This paper reviews the ways in which biodiversity is affected by urbanization and discusses the consequences of different conservation approaches. Cities can be richer in plant species, including in native species, than rural areas. Alien species can lead to both homogenization and differentiation among urban regions. Urban habitats can harbor self-sustaining populations of rare and endangered native species, but cannot replace the complete functionality of (semi-)natural remnants. While many conservation approaches tend to focus on such relict habitats and native species in urban settings, this paper argues for a paradigm shift towards considering the whole range of urban ecosystems. Although conservation attitudes may be challenged by the novelty of some urban ecosystems, which are often linked to high numbers of nonnative species, it is promising to consider their associated ecosystem services, social benefits, and possible contribution to biodiversity conservation. - Highlights: → This paper reviews biotic responses to urbanization and urban conservation approaches. → Cities may be rich in both native and nonnative species. → Urban habitats cannot replace the functionality of natural remnants. → However, even novel urban habitats may harbour rare and endangered species. → Conservation approaches should consider the perspective of novel urban ecosystems. - This paper reviews the ways in which biodiversity is affected by urbanization and argues for expanding urban conservation approaches.

  11. Snapshots of biodiversity in Georgia agroecosystems

    Science.gov (United States)

    Georgia agricultural landscapes are composed of a diversity of commodities. Here we present biodiversity and biotic interaction data from multiple agricultural systems including: cotton, corn, peanut, blueberry and non-cropping wildflower areas over multiple years. Our goal is to better understand t...

  12. Calculating Biodiversity in the Real World

    Science.gov (United States)

    Schen, Melissa; Berger, Leslie

    2014-01-01

    One of the standards for life science addressed in the "Next Generation Science Standards" (NGSS Lead States 2013) is "Ecosystems: Interactions, Energy, and Dynamics" (HS-LS2). A critical concept included in this core idea is biodiversity. To show competency, students are expected to design investigations, collect data, and…

  13. Plantation forests, climate change and biodiversity

    Science.gov (United States)

    S.M. Pawson; A. Brin; E.G. Brockerhoff; D. Lamb; T.W. Payn; A. Paquette; J.A. Parrotta

    2013-01-01

    Nearly 4 % of the world’s forests are plantations, established to provide a variety of ecosystem services, principally timber and other wood products. In addition to such services, plantation forests provide direct and indirect benefits to biodiversity via the provision of forest habitat for a wide range of species, and by reducing negative impacts on natural forests...

  14. Managing Agricultural Biodiversity for Nutrition, Health, Livelihoods ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Agricultural Biodiversity for Nutrition, Health, Livelihoods and Sustainable Production Systems (Sub-Saharan Africa). The quality of diets within Africa food systems appears to be getting worse as evidenced by the increase in micronutrient deficiencies, chronic diseases and low resistance to infectious diseases.

  15. Combining biodiversity conservation with agricultural intensification

    NARCIS (Netherlands)

    Tscharntke, T.; Batáry, P.; Clough, Y.; Kleijn, D.; Scherber, C.; Thies, C.; Wanger, T.C.; Westphal, C.

    2012-01-01

    publisher's description There can be little doubt that there are truly colossal challenges associated with providing food, fibre and energy for an expanding world population without further accelerating already rapid rates of biodiversity loss and undermining the ecosystem processes on which we all

  16. Indicators for livestock and crop biodiversity

    NARCIS (Netherlands)

    Eaton, D.J.F.; Windig, J.J.; Hiemstra, S.J.; Veller, van M.G.P.; Trach, N.X.; Hao, P.X.; Doan, D.H.; Hu, R.

    2006-01-01

    The focus of this study is on indicators for genetic resources, relevant for food and agriculture, for future food security and other functions of genetic resources or agro-biodiversity. The is one small area in the range of levels and sectors. It is recognized that there are many interrelationships

  17. VBioindex: A Visual Tool to Estimate Biodiversity

    Directory of Open Access Journals (Sweden)

    Dong Su Yu

    2015-09-01

    Full Text Available Biological diversity, also known as biodiversity, is an important criterion for measuring the value of an ecosystem. As biodiversity is closely related to human welfare and quality of life, many efforts to restore and maintain the biodiversity of species have been made by government agencies and non-governmental organizations, thereby drawing a substantial amount of international attention. In the fields of biological research, biodiversity is widely measured using traditional statistical indices such as the Shannon-Wiener index, species richness, evenness, and relative dominance of species. However, some biologists and ecologists have difficulty using these indices because they require advanced mathematical knowledge and computational techniques. Therefore, we developed VBioindex, a user-friendly program that is capable of measuring the Shannon-Wiener index, species richness, evenness, and relative dominance. VBioindex serves as an easy to use interface and visually represents the results in the form of a simple chart and in addition, VBioindex offers functions for long-term investigations of datasets using time-series analyses.

  18. Biodiversity and Biological Degradation of Soil

    Indian Academy of Sciences (India)

    Permanent link: http://www.ias.ac.in/article/fulltext/reso/009/01/0026-0033. Keywords. Microbial biodiversity; soil science; biogeochemical cycles; sustainable agriculture; ecology. Author Affiliations. Upasana Mishra1 Dolly Wattal Dhar1. National Centre for Conservation and Utilisation of Blue-Green Algae Indian Agricultural ...

  19. Problems of Biodiversity Management in Indonesia

    Directory of Open Access Journals (Sweden)

    OKID PARAMA ASTIRIN

    2000-01-01

    Full Text Available Indonesia is an archipelago of 17.508 islands with land width of 1.9 millions km2 and sea of 3.1 millions km2, having many types of habitat and become one of biodiversity center in the world. There are about 28.000 plants species, 350.000 animals species and about 10.000 microbes predicted lived endemically in Indonesia. The country that represents only 1.32% of the world having 10% of total flowering plants, 12% of mammals, 16% reptiles and amphibian, 17% birds, 25% fishes and 15% of insects in the world. Most of the biodiversity were not investigated and utilized yet. The direct use of the biodiversity is not any risk, and in addition, between government, society and industries sometime does not have the same view and attitude. Habitat destruction and over-exploitation have caused Indonesia having long list of endangered species including 126 birds, 63 mammals and 21 reptiles. The extinction of some species occurred just few years ago like trulek jawa (Vanellus macropterus, insectivore bird (Eutrichomyias rowleyi in North Sulawesi, and tiger sub species (Panthera tigris in Java and Bali. It seems that now is time for all Indonesians to introspect and look for the way that can be used for preserving biodiversity.

  20. Diseases threatening banana biodiversity in Uganda ...

    African Journals Online (AJOL)

    Recent on station and on-farm studies suggest the major diseases threatening banana biodiversity in Uganda include: 1)Black sigatoka which severely affects all East African Highland (EA-AAA) banana cultivars and a range of introduced genotypes; 2) Fusarium wilt which affects several introduced genotypes though all EA ...

  1. Soil phosphorus constrains biodiversity across European grasslands.

    Science.gov (United States)

    Ceulemans, Tobias; Stevens, Carly J; Duchateau, Luc; Jacquemyn, Hans; Gowing, David J G; Merckx, Roel; Wallace, Hilary; van Rooijen, Nils; Goethem, Thomas; Bobbink, Roland; Dorland, Edu; Gaudnik, Cassandre; Alard, Didier; Corcket, Emmanuel; Muller, Serge; Dise, Nancy B; Dupré, Cecilia; Diekmann, Martin; Honnay, Olivier

    2014-12-01

    Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies have indicated that phosphorus pollution may be detrimental for biodiversity as well. On the basis of a dataset covering 501 grassland plots throughout Europe, we demonstrate that, independent of the level of atmospheric nitrogen deposition and soil acidity, plant species richness was consistently negatively related to soil phosphorus. We also identified thresholds in soil phosphorus above which biodiversity appears to remain at a constant low level. Our results indicate that nutrient management policies biased toward reducing nitrogen pollution will fail to preserve biodiversity. As soil phosphorus is known to be extremely persistent and we found no evidence for a critical threshold below which no environmental harm is expected, we suggest that agro-environmental schemes should include grasslands that are permanently free from phosphorus fertilization. © 2014 John Wiley & Sons Ltd.

  2. Representing biodiversity: data and procedures for identifying ...

    Indian Academy of Sciences (India)

    ... at some agreed level, each of the biodiversity features chosen as surrogates. Explicit systematic procedures for implementing such a goal are described. These procedures use complementarity, a measure of the contribution each area in a region makes to the conservation goal, to estimate irreplaceability and flexibility, ...

  3. Species assortment and biodiversity conservation in homegardens ...

    African Journals Online (AJOL)

    Biodiversity in urban gardens can play a vital role in the fight against hunger and diet-related health problems. A study was undertaken to assess the species composition and diversity of homegardens in Bahir Dar City. Interviews were administered to 178 sample households residing in 7 Sub-cities covering 12 former ...

  4. Optimal fire histories for biodiversity conservation.

    Science.gov (United States)

    Kelly, Luke T; Bennett, Andrew F; Clarke, Michael F; McCarthy, Michael A

    2015-04-01

    Fire is used as a management tool for biodiversity conservation worldwide. A common objective is to avoid population extinctions due to inappropriate fire regimes. However, in many ecosystems, it is unclear what mix of fire histories will achieve this goal. We determined the optimal fire history of a given area for biological conservation with a method that links tools from 3 fields of research: species distribution modeling, composite indices of biodiversity, and decision science. We based our case study on extensive field surveys of birds, reptiles, and mammals in fire-prone semi-arid Australia. First, we developed statistical models of species' responses to fire history. Second, we determined the optimal allocation of successional states in a given area, based on the geometric mean of species relative abundance. Finally, we showed how conservation targets based on this index can be incorporated into a decision-making framework for fire management. Pyrodiversity per se did not necessarily promote vertebrate biodiversity. Maximizing pyrodiversity by having an even allocation of successional states did not maximize the geometric mean abundance of bird species. Older vegetation was disproportionately important for the conservation of birds, reptiles, and small mammals. Because our method defines fire management objectives based on the habitat requirements of multiple species in the community, it could be used widely to maximize biodiversity in fire-prone ecosystems. © 2014 Society for Conservation Biology.

  5. Biodiversity, conservation biology, and rational choice.

    Science.gov (United States)

    Frank, David

    2014-03-01

    This paper critically discusses two areas of Sahotra Sarkar's recent work in environmental philosophy: biodiversity and conservation biology and roles for decision theory in incorporating values explicitly in the environmental policy process. I argue that Sarkar's emphasis on the practices of conservation biologists, and especially the role of social and cultural values in the choice of biodiversity constituents, restricts his conception of biodiversity to particular practical conservation contexts. I argue that life scientists have many reasons to measure many types of diversity, and that biodiversity metrics could be value-free. I argue that Sarkar's emphasis on the limitations of normative decision theory is in tension with his statement that decision theory can "put science and ethics together." I also challenge his claim that multi-criteria decision tools lacking axiomatic foundations in preference and utility theory are "without a rational basis," by presenting a case of a simple "outranking" multi-criteria decision rule that can violate a basic normative requirement of preferences (transitivity) and ask whether there may nevertheless be contexts in which such a procedure might assist decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Indigenous Angiosperm biodiversity of Olabisi Onabanjo University ...

    African Journals Online (AJOL)

    The conservation of the genetic variability of the indigenous angiosperm community is a sine qua non. A survey of indigenous angiosperm biodiversity of the Olabisi Onabanjo University permanent site was undertaken. Plants collected were dried, poisoned and mounted on herbarium sheets, proper identification and ...

  7. Biodiversity Conservation, Tourism and Development in Okomu ...

    African Journals Online (AJOL)

    The increased rate of species extinction as a result of expanding human population, resource exploitation and land use threatens biological diversity. Biodiversity by definition refers to the life forms on earth. This includes the millions of plants, animals and micro-organisms, the genes they contain and the intricate ...

  8. Assessment of biodiversity based on morphological characteristics ...

    African Journals Online (AJOL)

    Conservation and utilization of the native plant resources is essential for long term sustainability of biodiversity. Wild native resources are adapted to specific and diverse environmental conditions and therefore, these adaptive features can be introduced into modern cultivars either through conventional breeding or ...

  9. Plant biodiversity changes in Carboniferous tropical wetlands

    DEFF Research Database (Denmark)

    Cleal, C. J.; Uhl, D.; Cascales-Miñana, B.

    2012-01-01

    Using a combination of species richness, polycohort and constrained cluster analyses, the plant biodiversity of Pennsylvanian (late Carboniferous) tropical wetlands (“coal swamps”) has been investigated in five areas in Western Europe and eastern North America: South Wales, Pennines, Ruhr, Saarland...

  10. Traditional African Knowledge In Biodiversity Conservation ...

    African Journals Online (AJOL)

    The tropical forest ecosystem is one of the most important ecosystems of the world, because it contains a large proportion of the world's biodiversity and provides many environmental functions. Local communities have successfully conserved these resources that are of interest to them through laws and taboos. These range ...

  11. RESEARCH ARTICLE Biodiversity and selection for scrapie ...

    Indian Academy of Sciences (India)

    RESEARCH ARTICLE. Biodiversity and selection for scrapie ... Chiappini Barbara. Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità,. 00161 Rome .... 90" at 72°C for 35 cycles, 4' 72°C ). Primers and dNTPs were removed enzymatically, incubating 15µl of PCR product with 1.7µl.

  12. Representing biodiversity: data and procedures for identifying ...

    Indian Academy of Sciences (India)

    Unknown

    urgent in the face of continuing land use change and because biodiversity .... tries they cover because the identification of priority areas requires the ... presence only kind. Most field records have been collec- ted opportunistically, and the species collected are often the ones of interest to the collector. Many collections of.

  13. The changing form of Antarctic biodiversity

    OpenAIRE

    Chown, Steven L.; Clarke, Andrew; Fraser, Ceridwen I.; Cary, S. Craig; Moon, Katherine L.; McGeoch, Melodie A.

    2015-01-01

    Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change non...

  14. A biosystematic basis for pelagic biodiversity

    NARCIS (Netherlands)

    Spoel, van der S.

    1994-01-01

    Biodiversity can be considered to be a human appreciation of the biological entity diversity. Diversity can be expressed numerically on the basis of taxa found, but it can also be expressed as the contribution of a specimen to the diversity, for which a formula is proposed. Diversity is the sum of

  15. Biodiversity conservation status in the Republic of Kosovo with focus on biodiversity centres.

    Science.gov (United States)

    Zeqir, Veselaj; Behxhet, Mustafa; Avni, Hajdari; Zenel, Krasniqi

    2012-04-01

    This paper presents the most recent results on Kosovo biodiversity conservation efforts with focus on two main biodiversity centers of Kosovo: Sharri mountain (already declared as National Park) and Bjeshket e Nemuna mountains in process of designation as a National park. The study presents collection of up to date publications on biodiversity of Kosovo. Of course, there is still to be investigated particularly in the field of lower plants as well invertebrate fauna species. Beside the small territory of 10,887 km2, Kosovo is quite rich in both plant and animal biodiversity. Up to date 1800 vascular plant species have been recorded, while expected number is about 2500 species. Number of higher vertebrates is 210, while the invertebrates are not studied with exception of Lepidoptera with about 150 species. There is no Red List of species for Kosovo developed yet, while some short term conservation measures have already taken place.

  16. Biodiversity and global health—hubris, humility and the unknown

    Science.gov (United States)

    Stephens, Carolyn

    2012-03-01

    Conservation Congress (WCC4) in 2008, and to advance their implementation. These resolutions, along with the Durban Action Plan and the Programme of Work on Protected Areas of the United Nations Convention on Biological Diversity (CBD), are often termed as the 'new conservation paradigm' [31]. Scientists, UN agencies, and indigenous and local communities agree that we have reached a critical time for biodiversity globally. But who will decide on the policies for protection of biodiversity? Triage may be on the agenda of pessimistic conservation scientists, but indigenous and local communities would rarely have such hubris as to assume that they have the wisdom to make triage decisions, and nor would many communities have the arrogance to think they have the right to intervene in this way in their complex ecosystems. While debates continue and biodiversity declines annually, there is a group of actors who will be crucial in decisions on our planet's future, including biodiversity and climate change. The world's population is now predominantly urban [32]. It is urban citizens who are driving the exploitation of the world's ecosystems and the model of unsustainable over-consumption [33]. It is highly likely that it is urban populations who will decide the fate of biodiversity and climate change, through their decisions about resource use and consumption [34, 35]. We demand a great deal of urban populations when we ask them to lead a sustainable future. The majority of urban citizens are trained, as are most scientists, to hold a utilitarian view of the environment. Perhaps this is the great hubris of recent human history—the assumptions of the anthropocentric view of the global ecosystem: seeing our planet only for its services or its threats, and viewing ourselves as somehow external to the integrity of the ecosystem. And our most profound arrogance is in the assumption that we understand the implications of our destruction of biodiversity for the well-being of future

  17. Deforestation and threats to the biodiversity of Amazonia.

    Science.gov (United States)

    Vieira, I C G; Toledo, P M; Silva, J M C; Higuchi, H

    2008-11-01

    This is a review of the main factors currently perceived as threats to the biodiversity of Amazonia. Deforestation and the expansion of the agricultural frontier go hand in hand within the context of occupation and land use in the region, followed by a hasty process of industrialization since the 1950s and, more recently, by a nation-wide attempt to adapt Brazil to economic globalization. Intensive agriculture and cattle-raising, lack of territorial planning, the monoculture of certain crops often promoted by official agencies, and the introduction of exotic species by cultivation are some of the factors affecting Amazonian biodiversity. There are still large gaps in knowledge that need to be dealt with for a better understanding of the local ecosystems so as to allow their preservation, but such investigation is subjected to manifold hindrances by misinformation, disinformation and sheer ignorance from the legal authorities and influential media. Data available for select groups of organisms indicate that the magnitude of the loss and waste of natural resources associated with deforestation is staggering, with estimated numbers of lost birds and primates being over ten times that of such animals illegally commercialized around the world in one year. The challenges to be met for an eventual reversal of this situation demand more systematic and concerted studies, the consolidation of new and existing research groups, and a call for a halt to activities depleting the Amazonian rainforest.

  18. Deforestation and threats to the biodiversity of Amazonia

    Directory of Open Access Journals (Sweden)

    ICG. Vieira

    Full Text Available This is a review of the main factors currently perceived as threats to the biodiversity of Amazonia. Deforestation and the expansion of the agricultural frontier go hand in hand within the context of occupation and land use in the region, followed by a hasty process of industrialization since the 1950s and, more recently, by a nation-wide attempt to adapt Brazil to economic globalization. Intensive agriculture and cattle-raising, lack of territorial planning, the monoculture of certain crops often promoted by official agencies, and the introduction of exotic species by cultivation are some of the factors affecting Amazonian biodiversity. There are still large gaps in knowledge that need to be dealt with for a better understanding of the local ecosystems so as to allow their preservation, but such investigation is subjected to manifold hindrances by misinformation, disinformation and sheer ignorance from the legal authorities and influential media. Data available for select groups of organisms indicate that the magnitude of the loss and waste of natural resources associated with deforestation is staggering, with estimated numbers of lost birds and primates being over ten times that of such animals illegally commercialized around the world in one year. The challenges to be met for an eventual reversal of this situation demand more systematic and concerted studies, the consolidation of new and existing research groups, and a call for a halt to activities depleting the Amazonian rainforest.

  19. Persistence and vulnerability: retaining biodiversity in the landscape ...

    Indian Academy of Sciences (India)

    Unknown

    An objective of biodiversity conservation activities is to minimize the exposure of biodiversity features to threatening processes and to ensure, as far as possible, that biodiversity persists in the landscape. We discuss how issues of vulnerability and persistence can and should be addressed at all stages of the conservation.

  20. WOW! Windows on the Wild: A Biodiversity Primer.

    Science.gov (United States)

    Braus, Judy, Ed.; And Others

    Windows on the Wild is an environmental education program of the World Wildlife Fund. This issue of WOW! focuses on biodiversity. Topics include: an interview with one of the world's leading experts on biodiversity; the lighter side of biodiversity through comics and cartoons; a species-scape that compares the number of species on the planet;…

  1. Headwater biodiversity among different levels of stream habitat hierarchy

    DEFF Research Database (Denmark)

    Göthe, Emma; Friberg, Nikolai; Kahlert, Maria

    2014-01-01

    With the current loss of biodiversity and threats to freshwater ecosystems, it is crucial to identify hot-spots of biodiversity and on which spatial scale they can be resolved. Conservation and management of these important ecosystems needs insight into whether most of the regional biodiversity (i...

  2. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    NARCIS (Netherlands)

    Wagg, C.; Bender, S.F.; Widmer, D.; van der Heijden, Marcellus|info:eu-repo/dai/nl/240923901

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally

  3. Global biodiversity patterns of marine phytoplankton and zooplankton

    NARCIS (Netherlands)

    Huisman, J.; Irigoien, X.; Harris, R.P.

    2004-01-01

    Although the oceans cover 70% of the Earth's surface, our knowledge of biodiversity patterns in marine phytoplankton and zooplankton is very limited compared to that of the biodiversity of plants and herbivores in the terrestrial world. Here, we present biodiversity data for marine plankton

  4. An assessment of biodiversity surrogacy options in the Limpopo ...

    African Journals Online (AJOL)

    Because of the inadequacy of existing biodiversity distribution data, surrogate measures for regional biodiversity have long been used in conservation area selection. These measures include species and environmental data. However, the assumed relationship between surrogate measures and regional biodiversity has ...

  5. Biodiversity and Edge Effects: An Activity in Landscape Ecology

    Science.gov (United States)

    Hart, Justin L.

    2007-01-01

    Biodiversity and the conservation of biodiversity have received increased attention during the last few decades and these topics have been implemented into many G7-12 science curricula. This work presents an exercise that may be used in middle and high school classrooms to help students better understand spatial aspects of biodiversity. The…

  6. Biodiversity information resource sharing as a viable strategy for ...

    African Journals Online (AJOL)

    Availability of accurate biodiversity information is a paramount necessity in facilitating the process of decision making on biodiversity resource use and protection. In Tanzania, like other countries in East Africa, a lot of biodiversity data and information is produced, analysed and disseminated as reports, seminars, ...

  7. The effect of buffer zone width on biodiversity

    DEFF Research Database (Denmark)

    Navntoft, Søren; Sigsgaard, Lene; Kristensen, Kristian

    2012-01-01

    Field margin management for conservation purposes is a way to protect both functional biodiversity and biodiversity per se without considerable economical loss as field margins are less productive. However, the effect of width of the buffer zone on achievable biodiversity gains has received little...

  8. Towards an operational definition of Essential Biodiversity Variables

    NARCIS (Netherlands)

    Schmeller, D.S.; Mihoub, J.-B.; Bowser, A.; Arvanitidis, C.; Costello, M.J.; Fernandez, M.; Geller, G.N.; Hobern, D.; Kissling, W.D.; Regan, E.; Saarenmaa, H.; Turak, E.; Isaac, N.J.B.

    2017-01-01

    The concept of essential biodiversity variables (EBVs) was proposed in 2013 to improve harmonization of biodiversity data into meaningful metrics. EBVs were conceived as a small set of variables which collectively capture biodiversity change at multiple spatial scales and within time intervals that

  9. Challenges of Biodiversity Education: A Review of Education Strategies for Biodiversity Education

    OpenAIRE

    Tidball, Keith G.; Navarro-Perez, Moramay

    2012-01-01

    Biodiversity conservation has increasingly gained recognition in national and international agendas.  The Convention on Biological Diversity (CBD) has positioned biodiversity as a key asset to be protected to ensure our well-being and that of future generations.  Nearly 20 years after its inception, results are not as expected, as shown in the latest revision of the 2010 CBD target.  Various factors may affect the implementation of the CBD, including lack of public ...

  10. Localized Agri-Food Systems and Biodiversity

    Directory of Open Access Journals (Sweden)

    Bolette Bele

    2018-02-01

    Full Text Available Interest in localized agri-food systems has grown significantly in recent years. They are associated with several benefits and are seen as important for rural development. An important share of the academic debate addresses the contribution of localized food systems to the current and/or future sustainability of agriculture. Sustainability is defined in several ways, but many scholars recognize that sustainability can only be achieved by a combination of socio-economic, cultural, and environmental aspects. However, the attributes and indicators used for sustainability analyses also differ. Biodiversity is, for instance, often not included in analyses of environmental sustainability even if biodiversity is of crucial importance for longer-term ecological sustainability. To contribute to the debate about the importance of localized food production for sustainability from the environmental point of view, specifically with regard to biodiversity, this is therefore discussed based on the results of several studies presented in this paper. The studies focus on Nordic low-intensity livestock systems related to species-rich semi-natural grasslands. All the studies show that low-intensive agriculture and use of semi-natural grasslands may play an important role in maintaining biodiversity on both small and large scales. They also show that milk and dairy products from free-ranging livestock in heterogeneous landscapes with semi-natural grasslands may have a unique quality associated with local grazing resources. Thus, producers can combine production of food of documented high nutritional and gastronomic value with maintenance of biodiversity, i.e., localized agri-food production based on low-intensive agriculture systems and semi-natural grasslands may be a win-win recipe for both farmers and the society.

  11. Biodiversity and ecosystem functioning in dynamic landscapes.

    Science.gov (United States)

    Brose, Ulrich; Hillebrand, Helmut

    2016-05-19

    The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships

  12. Response of Stream Biodiversity to Increasing Salinization

    Science.gov (United States)

    Hawkins, C. P.; Vander Laan, J. J.; Olson, J. R.

    2014-12-01

    We used a large data set of macroinvertebrate samples collected from streams in both reference-quality (n = 68) and degraded (n = 401) watersheds in the state of Nevada, USA to assess relationships between stream biodiversity and salinity. We used specific electrical conductance (EC)(μS/cm) as a measure of salinity, and applied a previously developed EC model to estimate natural, baseflow salinity at each stream. We used the difference between observed and predicted salinity (EC-Diff) as a measure of salinization associated with watershed degradation. Observed levels of EC varied between 22 and 994 μS/cm across reference sites and 22 to 3,256 uS/cm across non-reference sites. EC-Diff was as high as 2,743 μS/cm. We used a measure of local biodiversity completeness (ratio of observed to expected number of taxa) to assess ecological response to salinity. This O/E index decreased nearly linearly up to about 25% biodiversity loss, which occurred at EC-Diff of about 300 μS/cm. Too few sites had EC-Diff greater than 300 μS/cm to draw reliable inferences regarding biodiversity response to greater levels of salinization. EC-Diff increased with % agricultural land use, mine density, and % urban land use in the watersheds implying that human activities have been largely responsible for increased salinization in Nevada streams and rivers. Comparison of biological responses to EC and other stressors indicates that increased salinization may be the primary stressor causing biodiversity loss in these streams and that more stringent salinity water quality standards may be needed to protect aquatic life.

  13. Biodiversity data obsolescence and land uses changes

    Directory of Open Access Journals (Sweden)

    Nora Escribano

    2016-12-01

    Full Text Available Background Primary biodiversity records (PBR are essential in many areas of scientific research as they document the biodiversity through time and space. However, concerns about PBR quality and fitness-for-use have grown, especially as derived from taxonomical, geographical and sampling effort biases. Nonetheless, the temporal bias stemming from data ageing has received less attention. We examine the effect of changes in land use in the information currentness, and therefore data obsolescence, in biodiversity databases. Methods We created maps of land use changes for three periods (1956–1985, 1985–2000 and 2000–2012 at 5-kilometres resolution. For each cell we calculated the percentage of land use change within each period. We then overlaid distribution data about small mammals, and classified each data as ‘non-obsolete or ‘obsolete,’ depending on both the amount of land use changes in the cell, and whether changes occurred at or after the data sampling’s date. Results A total of 14,528 records out of the initial 59,677 turned out to be non-obsolete after taking into account the changes in the land uses in Navarra. These obsolete data existed in 115 of the 156 cells analysed. Furthermore, more than one half of the remaining cells holding non-obsolete records had not been visited at least for the last fifteen years. Conclusion Land use changes challenge the actual information obtainable from biodiversity datasets and therefore its potential uses. With the passage of time, one can expect a steady increase in the availability and use of biological records—but not without them becoming older and likely to be obsolete by land uses changes. Therefore, it becomes necessary to assess records’ obsolescence, as it may jeopardize the knowledge and perception of biodiversity patterns.

  14. Biodiversity and ecosystem functioning in dynamic landscapes

    Science.gov (United States)

    Brose, Ulrich; Hillebrand, Helmut

    2016-01-01

    The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships

  15. Assessing soil biodiversity potentials in Europe.

    Science.gov (United States)

    Aksoy, Ece; Louwagie, Geertrui; Gardi, Ciro; Gregor, Mirko; Schröder, Christoph; Löhnertz, Manuel

    2017-07-01

    Soil is important as a critical component for the functioning of terrestrial ecosystems. The largest part of the terrestrial biodiversity relies, directly or indirectly, on soil. Furthermore, soil itself is habitat to a great diversity of organisms. The suitability of soil to host such a diversity is strongly related to its physico-chemical features and environmental properties. However, due to the complexity of both soil and biodiversity, it is difficult to identify a clear and unambiguous relationship between environmental parameters and soil biota. Nevertheless, the increasing diffusion of a more integrated view of ecosystems, and in particular the development of the concept of ecosystem services, highlights the need for a better comprehension of the role played by soils in offering these services, including the habitat provision. An assessment of the capability of soils to host biodiversity would contribute to evaluate the quality of soils in order to help policy makers with the development of appropriate and sustainable management actions. However, so far, the heterogeneity of soils has been a barrier to the production of a large-scale framework that directly links soil features to organisms living within it. The current knowledge on the effects of soil physico-chemical properties on biota and the available data at continental scale open the way towards such an evaluation. In this study, the soil habitat potential for biodiversity was assessed and mapped for the first time throughout Europe by combining several soil features (pH, soil texture and soil organic matter) with environmental parameters (potential evapotranspiration, average temperature, soil biomass productivity and land use type). Considering the increasingly recognized importance of soils and their biodiversity in providing ecosystem services, the proposed approach appears to be a promising tool that may contribute to open a forum on the need to include soils in future environmental policy making

  16. Sites for priority biodiversity conservation in the Caribbean Islands Biodiversity Hotspot

    Directory of Open Access Journals (Sweden)

    V. Anadon-Irizarry

    2012-08-01

    Full Text Available The Caribbean Islands Biodiversity Hotspot is exceptionally important for global biodiversity conservation due to high levels of species endemism and threat. A total of 755 Caribbean plant and vertebrate species are considered globally threatened, making it one of the top Biodiversity Hotspots in terms of threat levels. In 2009, Key Biodiversity Areas (KBAs were identified for the Caribbean Islands through a regional-level analysis of accessible data and literature, followed by extensive national-level stakeholder consultation. By applying the Vulnerability criterion, a total of 284 Key Biodiversity Areas were defined and mapped as holding 409 (54% of the region’s threatened species. Of these, 144 (or 51% overlapped partially or completely with protected areas. Cockpit Country, followed by Litchfield Mountain - Matheson’s Run, Blue Mountains (all Jamaica and Massif de la Hotte (Haiti were found to support exceptionally high numbers of globally threatened taxa, with more than 40 such species at each site. Key Biodiversity Areas, building from Important Bird Areas, provide a valuable framework against which to review the adequacy of existing national protected-area systems and also to prioritize which species and sites require the most urgent conservation attention.

  17. Global warming and extinctions of endemic species from biodiversity hotspots.

    Science.gov (United States)

    Malcolm, Jay R; Liu, Canran; Neilson, Ronald P; Hansen, Lara; Hannah, Lee

    2006-04-01

    Global warming is a key threat to biodiversity, but few researchers have assessed the magnitude of this threat at the global scale. We used major vegetation types (biomes) as proxies for natural habitats and, based on projected future biome distributions under doubled-CO2 climates, calculated changes in habitat areas and associated extinctions of endemic plant and vertebrate species in biodiversity hotspots. Because of numerous uncertainties in this approach, we undertook a sensitivity analysis of multiple factors that included (1) two global vegetation models, (2) different numbers of biome classes in our biome classification schemes, (3) different assumptions about whether species distributions were biome specific or not, and (4) different migration capabilities. Extinctions were calculated using both species-area and endemic-area relationships. In addition, average required migration rates were calculated for each hotspot assuming a doubled-CO2 climate in 100 years. Projected percent extinctions ranged from global vegetation model and then by migration and biome classification assumptions. Bootstrap comparisons indicated that effects on hotpots as a group were not significantly different from effects on random same-biome collections of grid cells with respect to biome change or migration rates; in some scenarios, however, botspots exhibited relatively high biome change and low migration rates. Especially vulnerable hotspots were the Cape Floristic Region, Caribbean, Indo-Burma, Mediterranean Basin, Southwest Australia, and Tropical Andes, where plant extinctions per hotspot sometimes exceeded 2000 species. Under the assumption that projected habitat changes were attained in 100 years, estimated global-warming-induced rates of species extinctions in tropical hotspots in some cases exceeded those due to deforestation, supporting suggestions that global warming is one of the most serious threats to the planet's biodiversity.

  18. The BIOTA Biodiversity Observatories in Africa--a standardized framework for large-scale environmental monitoring.

    Science.gov (United States)

    Jürgens, Norbert; Schmiedel, Ute; Haarmeyer, Daniela H; Dengler, Jürgen; Finckh, Manfred; Goetze, Dethardt; Gröngröft, Alexander; Hahn, Karen; Koulibaly, Annick; Luther-Mosebach, Jona; Muche, Gerhard; Oldeland, Jens; Petersen, Andreas; Porembski, Stefan; Rutherford, Michael C; Schmidt, Marco; Sinsin, Brice; Strohbach, Ben J; Thiombiano, Adjima; Wittig, Rüdiger; Zizka, Georg

    2012-01-01

    The international, interdisciplinary biodiversity research project BIOTA AFRICA initiated a standardized biodiversity monitoring network along climatic gradients across the African continent. Due to an identified lack of adequate monitoring designs, BIOTA AFRICA developed and implemented the standardized BIOTA Biodiversity Observatories, that meet the following criteria (a) enable long-term monitoring of biodiversity, potential driving factors, and relevant indicators with adequate spatial and temporal resolution, (b) facilitate comparability of data generated within different ecosystems, (c) allow integration of many disciplines, (d) allow spatial up-scaling, and (e) be applicable within a network approach. A BIOTA Observatory encompasses an area of 1 km(2) and is subdivided into 100 1-ha plots. For meeting the needs of sampling of different organism groups, the hectare plot is again subdivided into standardized subplots, whose sizes follow a geometric series. To allow for different sampling intensities but at the same time to characterize the whole square kilometer, the number of hectare plots to be sampled depends on the requirements of the respective discipline. A hierarchical ranking of the hectare plots ensures that all disciplines monitor as many hectare plots jointly as possible. The BIOTA Observatory design assures repeated, multidisciplinary standardized inventories of biodiversity and its environmental drivers, including options for spatial up- and downscaling and different sampling intensities. BIOTA Observatories have been installed along climatic and landscape gradients in Morocco, West Africa, and southern Africa. In regions with varying land use, several BIOTA Observatories are situated close to each other to analyze management effects.

  19. The equivalence of two phylogenetic biodiversity measures: the Shapley value and Fair Proportion index.

    Science.gov (United States)

    Hartmann, Klaas

    2013-11-01

    Most biodiversity conservation programs are forced to prioritise species in order to allocate their funding. This paper contains a mathematical proof that provides biological support for one common approach based on phylogenetic indices. Phylogenetic trees describe the evolutionary relationships between a group of taxa. Two indices for computing the distinctiveness of each taxon in a phylogenetic tree are considered here-the Shapley value and the Fair Proportion index. These indices provide a measure of the importance of each taxon for overall biodiversity and have been used to prioritise taxa for conservation. The Shapley value is the biodiversity contribution a taxon is expected to make if all taxa are equally likely to become extinct. This interpretation makes it appealing to use the Shapley value in biodiversity conservation applications. The Fair Proportion index lacks a convenient interpretation, however it is significantly easier to calculate and understand. It has been empirically observed that there is a high correlation between the two indices. This paper shows the mathematical basis for this correlation and proves that as the number of taxa increases, the indices become equivalent. Consequently in biodiversity prioritisation the simpler Fair Proportion index can be used whilst retaining the appealing interpretation of the Shapley value.

  20. Does Botanical Diversity in Sewage Treatment Reed-Bed Sites Enhance Invertebrate Biodiversity?

    Directory of Open Access Journals (Sweden)

    Alan Feest

    2012-01-01

    Full Text Available (1 This study examines the effect of increasing botanical diversity, through reed-bed planting and maintenance regimes, on sewage treatment reed-bed invertebrate biodiversity and the possible enrichment of overall catchment biodiversity. (2 Reed-bed invertebrates were identified as a good indicator group of overall site biodiversity quality and were sampled at a range of sewage treatment reed-bed sites in the same geographical area between May and August 2006 (plus one natural reed-bed control site. Standardised water trapping and pitfall trapping techniques were employed throughout this sampling period. (3 Statistical analysis of the sampling results revealed that the number of plant species recorded was inversely related to terrestrial invertebrate species richness, species conservation value index and biomass within the study sites. For example, the natural reed-bed sampled had the highest botanical diversity but the lowest terrestrial invertebrate species richness. (4 This study has demonstrated that sewage treatment reed-beds support a diverse range of invertebrate species, some of them being of national conservation value. This suggests that sewage treatment reed-beds may be at least as biodiverse as naturally occurring reed-beds and will add to the overall biodiversity and ecohydrology of a catchment whilst saving energy.

  1. Marine and brackish-water molluscan biodiversity in the Gulf of California, Mexico

    Directory of Open Access Journals (Sweden)

    Michel E. Hendrickx

    2007-12-01

    Full Text Available A database containing taxonomic, distributional and ecological data of 2194 species of marine molluscs (1528 Gastropoda, 565 Bivalvia, 59 Polyplacophora, 21 Scaphopoda, 20 Cephalopoda, and one Monoplacophora known to the Gulf of California, Mexico, was used to analyse their latitudinal and bathymetric distribution, to define their substrate preferences, and to elaborate a biodiversity model for the study area. The model was based on a comparison between the set of data associated with each species (i.e., depth range, associated substrates and geographic distribution within the Gulf and the environmental conditions prevailing in the Gulf (i.e., depth and substrate, using a georeferenced grid of 2 x 2 nautical miles. Results are presented as predictive biodiversity distribution maps for the major molluscan groups. Putative biodiversity ranges were defined using a percentage accumulative system with 20% classes. As expected, the highest biodiversity occurs along the coastline and around the islands. A south-north biodiversity gradient is observed, although it is less evident between the southern and central Gulf.

  2. Plant-Biodiversity Conservation in Academic Institutions: An Efficient Approach for Conserving Biodiversity Across Ecological Regions in India

    OpenAIRE

    Sunil Nautiyal

    2010-01-01

    In view of the fact that 2010 is the International Year of Biodiversity (IYB), with the slogan ‘Biodiversity is Life’, a study was undertaken to assess the biodiversity existing at the Institute for Social and Economic Change (ISEC), an academic institution, and to understand how academic institutions could play a significant role in conserving biodiversity. ISEC is located in a sylvan 16-hectare campus at Nagarabhavi, abutting the Bangalore University's 'Jnanabharati' premises on the southwe...

  3. Importance of fish biodiversity for the management of fisheries and ecosystems

    DEFF Research Database (Denmark)

    Hiddink, J.G.; MacKenzie, Brian; Rijnsdorp, A.

    2008-01-01

    A group of fisheries scientists participating in a European Union Network of Excellence (MARBEF) summarizes risks to the biodiversity of fish in European seas and recommends ways how existing fish diversity can be conserved, restored and managed. (C) 2008 Elsevier B.V. All rights reserved....

  4. The role of wild and scenic rivers in the conservation of aquatic biodiversity

    Science.gov (United States)

    John D. Rothlisberger; Tamara Heartsill Scalley; Russell F. Thurow

    2017-01-01

    Formerly diverse and abundant freshwater species are highly imperiled, with higher extinction rates than many other taxonomic groups worldwide. In the 50 years since passage of the US Wild and Scenic Rivers Act, wild and scenic rivers (WSRs) have contributed significantly to the conservation of native aquatic biodiversity as well as to the conservation and restoration...

  5. Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe

    DEFF Research Database (Denmark)

    Gao, Tian; Nielsen, Anders Busse; Hedblom, Marcus

    2015-01-01

    With a growing number of forest biodiversity indicators being applied in forest policy documents and even more being suggested by the scientific community, there is a need to evaluate, review and critically assess the strength of evidence for individual indicators, their interrelationships.......e. the indicated aspect of biodiversity); (2) assess the strength of scientific evidence for individual indicators; and (3) identify a set of indicators with confirmed validity for further scientific testing and inclusion in long-term reporting and decision-making regarding forest biodiversity. Ten indicator...... groups and 83 individual indicators were identified with application from stand scale up to landscape scale in 142 eligible scientific papers. In 62 of the 142 studies no statistical correlations between indicator(s) and indicandum were performed and 42 (out of the 62) did not even present a clear...

  6. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding

    DEFF Research Database (Denmark)

    Valentini, Alice; Taberlet, Pierre; Miaud, Claude

    2016-01-01

    Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool...... for species detection from DNA present into the environment. In this study, we tested if an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony...... the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems. This article is protected by copyright. All rights reserved....

  7. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity

    NARCIS (Netherlands)

    Meyer, S.; Ebeling, A.; Eisenhauer, Nico; Mommer, L.; Ravenek, Janneke M.; Weigelt, Alexandra

    2016-01-01

    Human-caused declines in biodiversity have stimulated intensive research on the consequences of biodiversity loss for ecosystem services and policy initiatives to preserve the functioning of ecosystems. Short-term biodiversity experiments have documented positive effects of plant species richness on

  8. Student Teachers' Understanding of the Terminology, Distribution, and Loss of Biodiversity: Perspectives from a Biodiversity Hotspot and an Industrialized Country

    Science.gov (United States)

    Fiebelkorn, Florian; Menzel, Susanne

    2013-01-01

    The loss of biodiversity is one of the most urgent global environmental problems of our time. Public education and awareness building is key to successful biodiversity protection. Knowledgeable and skilled student teachers are a key component for the successful implementation of biodiversity education in schools. Yet, little empirical evidence…

  9. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation

    Science.gov (United States)

    Christopher A. Lepczyk; Myla F. J. Aronson; Karl L. Evans; Mark A. Goddard; Susannah B. Lerman; J. Scott MacIvor

    2017-01-01

    As urban areas expand, understanding how ecological processes function in cities has become increasingly important for conserving biodiversity. Urban green spaces are critical habitats to support biodiversity, but we still have a limited understanding of their ecology and how they function to conserve biodiversity at local and landscape scales across multiple taxa....

  10. Enhancement of biodiversity in energy farming: towards a functional approach

    International Nuclear Information System (INIS)

    Londo, M.; Dekker, J.

    1997-01-01

    When biomass is a substantial sustainable energy source, and special energy crops are grown on a large scale, land use and the environment of agriculture will be affected. Of these effects, biodiversity deserves special attention. The enhancement of biodiversity in energy farming via standard setting is the overall purpose of this project. In this study, the potential functionality of biodiversity in energy farming is proposed as a way of operationalising the rather abstract and broad concept of biodiversity. Functions of biodiversity are reviewed, and examples of functions are worked out, based on the current literature of nature in energy farming systems. (author)

  11. Biodiversity and Climate Modeling Workshop Series: Identifying gaps and needs for improving large-scale biodiversity models

    Science.gov (United States)

    Weiskopf, S. R.; Myers, B.; Beard, T. D.; Jackson, S. T.; Tittensor, D.; Harfoot, M.; Senay, G. B.

    2017-12-01

    At the global scale, well-accepted global circulation models and agreed-upon scenarios for future climate from the Intergovernmental Panel on Climate Change (IPCC) are available. In contrast, biodiversity modeling at the global scale lacks analogous tools. While there is great interest in development of similar bodies and efforts for international monitoring and modelling of biodiversity at the global scale, equivalent modelling tools are in their infancy. This lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity to bring together climate, ecosystem, and biodiversity modeling experts to promote development of integrated approaches in modeling global biodiversity. Improved models are needed to understand how we are progressing towards the Aichi Biodiversity Targets, many of which are not on track to meet the 2020 goal, threatening global biodiversity conservation, monitoring, and sustainable use. We brought together biodiversity, climate, and remote sensing experts to try to 1) identify lessons learned from the climate community that can be used to improve global biodiversity models; 2) explore how NASA and other remote sensing products could be better integrated into global biodiversity models and 3) advance global biodiversity modeling, prediction, and forecasting to inform the Aichi Biodiversity Targets, the 2030 Sustainable Development Goals, and the Intergovernmental Platform on Biodiversity and Ecosystem Services Global Assessment of Biodiversity and Ecosystem Services. The 1st In-Person meeting focused on determining a roadmap for effective assessment of biodiversity model projections and forecasts by 2030 while integrating and assimilating remote sensing data and applying lessons learned, when appropriate, from climate modeling. Here, we present the outcomes and lessons learned from our first E-discussion and in-person meeting and discuss the next steps for future meetings.

  12. Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics.

    Science.gov (United States)

    Jeltsch, Florian; Bonte, Dries; Pe'er, Guy; Reineking, Björn; Leimgruber, Peter; Balkenhol, Niko; Schröder, Boris; Buchmann, Carsten M; Mueller, Thomas; Blaum, Niels; Zurell, Damaris; Böhning-Gaese, Katrin; Wiegand, Thorsten; Eccard, Jana A; Hofer, Heribert; Reeg, Jette; Eggers, Ute; Bauer, Silke

    2013-01-01

    Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.

  13. The ecosystem approach to fisheries: management at the dynamic interface between biodiversity conservation and sustainable use.

    Science.gov (United States)

    Jennings, Simon; Smith, Anthony D M; Fulton, Elizabeth A; Smith, David C

    2014-08-01

    The emergence of an ecosystem approach to fisheries (EAF) was characterized by the adoption of objectives for maintaining ecosystem health alongside those for fisheries. The EAF was expected to meet some aspirations for biodiversity conservation, but health was principally linked to sustainable use rather than lower levels of human impact. Consequently, while policies including EAF concepts identified objectives for fisheries management and biodiversity conservation, the wording often reflected unresolved societal and political debates about objectives and gave imprecise guidance on addressing inevitable trade-offs. Despite scientific progress in making trade-offs and consequences explicit, there remain substantial differences in interpretations of acceptable impact, responses to uncertainty and risk, and the use of management measures by groups accountable for fisheries management and biodiversity conservation. Within and among nations and regions, these differences are influenced by the contribution of fisheries, aquaculture, farming, and trade to food security, consumers' options, and other social, economic, and environmental factors. Notwithstanding, mutual understanding of the motivations and norms of fisheries management and biodiversity conservation groups is increasing, and interactions between these groups have likely supported more progress toward meeting their stated objectives than would have otherwise been achievable. © 2014 New York Academy of Sciences.

  14. Trends in Stream Biodiversity Research since the River Continuum Concept

    Directory of Open Access Journals (Sweden)

    Brett Tornwall

    2015-02-01

    Full Text Available Lotic environments contain a disproportionate amount of biodiversity given their relatively small proportion of the worldwide landscape. We conducted a systematic literature search of research directed towards understanding factors that influence biodiversity in lotic habitats, published in 31 major ecological and freshwater science journals from 1981 to 2014. Our goal was to characterize emergent themes in research successes and identify important areas in need of study. We show an overwhelming taxonomic bias favoring studies of macroinvertebrates and fish, and a paucity in studies of other important groups such as bacteria and fungi. While most studies assessed habitat variables that affect diversity at a local scale, there has been a recent push to investigate regional drivers of beta and gamma diversity. Several factors were consistently found to be important drivers of diversity including local habitat type, hydrologic variables, disturbance, and stream morphometry. Others such as nutrients and chemical variables showed mixed support. Species interactions, dispersal, and evolutionary processes were rarely considered but show promise as fruitful areas for future study. We suggest that researchers should give increased attention to diversity drivers at different scales as well as take advantage of new molecular techniques to address questions regarding organismal diversity in streams.

  15. Phylogenetic diversity and biodiversity indices on phylogenetic networks.

    Science.gov (United States)

    Wicke, Kristina; Fischer, Mareike

    2018-04-01

    In biodiversity conservation it is often necessary to prioritize the species to conserve. Existing approaches to prioritization, e.g. the Fair Proportion Index and the Shapley Value, are based on phylogenetic trees and rank species according to their contribution to overall phylogenetic diversity. However, in many cases evolution is not treelike and thus, phylogenetic networks have been developed as a generalization of phylogenetic trees, allowing for the representation of non-treelike evolutionary events, such as hybridization. Here, we extend the concepts of phylogenetic diversity and phylogenetic diversity indices from phylogenetic trees to phylogenetic networks. On the one hand, we consider the treelike content of a phylogenetic network, e.g. the (multi)set of phylogenetic trees displayed by a network and the so-called lowest stable ancestor tree associated with it. On the other hand, we derive the phylogenetic diversity of subsets of taxa and biodiversity indices directly from the internal structure of the network. We consider both approaches that are independent of so-called inheritance probabilities as well as approaches that explicitly incorporate these probabilities. Furthermore, we introduce our software package NetDiversity, which is implemented in Perl and allows for the calculation of all generalized measures of phylogenetic diversity and generalized phylogenetic diversity indices established in this note that are independent of inheritance probabilities. We apply our methods to a phylogenetic network representing the evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by widespread hybridization. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Macroeconomic policy, growth, and biodiversity conservation.

    Science.gov (United States)

    Lawn, Philip

    2008-12-01

    To successfully achieve biodiversity conservation, the amount of ecosystem structure available for economic production must be determined by, and subject to, conservation needs. As such, the scale of economic systems must remain within the limits imposed by the need to preserve critical ecosystems and the regenerative and waste assimilative capacities of the ecosphere. These limits are determined by biophysical criteria, yet macroeconomics involves the use of economic instruments designed to meet economic criteria that have no capacity to achieve biophysically based targets. Macroeconomic policy cannot, therefore, directly solve the biodiversity erosion crisis. Nevertheless, good macroeconomic policy is still important given that bad macroeconomy policy is likely to reduce human well-being and increase the likelihood of social upheaval that could undermine conservation efforts.

  17. Biodiversity effects of the predation gauntlet

    Science.gov (United States)

    Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.

    2017-06-01

    The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.

  18. Biodiversity matters in a changing world.

    Science.gov (United States)

    Di Poi, Carole; Diss, Guillaume; Freschi, Luca

    2011-02-23

    It is now widely accepted that the climate of our planet is changing, but it is still hard to predict the consequences of these changes on ecosystems. The impact is worst at the poles, with scientists concerned that impacts at lower latitudes will follow suit. Canada has a great responsibility and potential for studying the effects of climate changes on the ecological dynamics, given its geographical location and its scientific leadership in this field. The 5th annual meeting of the Canadian Society for Ecology and Evolution was held in the International Year of Biodiversity, to share recent advances in a wide variety of disciplines ranging from molecular biology to behavioural ecology, and to integrate them into a general view that will help us preserve biodiversity and limit the impact of climate change on ecosystems.

  19. Biodiversity, evolution and adaptation of cultivated crops.

    Science.gov (United States)

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. [Metagenomics and biodiversity of sphagnum bogs].

    Science.gov (United States)

    Rusin, L Yu

    2016-01-01

    Biodiversity of sphagnum bogs is one of the richest and less studied, while these ecosystems are among the top ones in ecological, conservation, and economic value. Recent studies focused on the prokaryotic consortia associated with sphagnum mosses, and revealed the factors that maintain sustainability and productivity of bog ecosystems. High-throughput sequencing technologies provided insight into functional diversity of moss microbial communities (microbiomes), and helped to identify the biochemical pathways and gene families that facilitate the spectrum of adaptive strategies and largely foster the very successful colonization of the Northern hemisphere by sphagnum mosses. Rich and valuable information obtained on microbiomes of peat bogs sets off the paucity of evidence on their eukaryotic diversity. Prospects and expectations of reliable assessment of taxonomic profiles, relative abundance of taxa, and hidden biodiversity of microscopic eukaryotes in sphagnum bog ecosystems are briefly outlined in the context of today's metagenomics.

  1. A macroecological theory of microbial biodiversity.

    Science.gov (United States)

    Shoemaker, William R; Locey, Kenneth J; Lennon, Jay T

    2017-04-03

    Microorganisms are the most abundant, diverse and functionally important organisms on Earth. Over the past decade, microbial ecologists have produced the largest ever community datasets. However, these data are rarely used to uncover law-like patterns of commonness and rarity, test theories of biodiversity, or explore unifying explanations for the structure of microbial communities. Using a global scale compilation of >20,000 samples from environmental, engineered and host-related ecosystems, we test the power of competing theories to predict distributions of microbial abundance and diversity-abundance scaling laws. We show that these patterns are best explained by the synergistic interaction of stochastic processes that are captured by lognormal dynamics. We demonstrate that lognormal dynamics have predictive power across scales of abundance, a criterion that is essential to biodiversity theory. By understanding the multiplicative and stochastic nature of ecological processes, scientists can better understand the structure and dynamics of Earth's largest and most diverse ecological systems.

  2. Bats, Blood-Feeders and Biodiversity

    DEFF Research Database (Denmark)

    Bohmann, Kristine

    minimising the occurrence of errors. Centered around metabarcoding dietary studies of bat droppings and leech gut contents, this continuous exploration and refinement is reflected in both the work and structure of this thesis. After a thesis introduction and two chapters on environmental DNA and biodiversity......DNA metabarcoding of environmental samples has rapidly become a valuable tool for ecological studies such as biodiversity and diet studies. To reveal the diversity in environmental samples such as soil, water, and faeces, this approach principally employs PCR amplification of environmental DNA...... to detect diversity in environmental samples. Furthermore, the increasing number of studies and the range of questions addressed through the use of metabarcoding highlight the importance of continuous exploration and refinement of the approach with the overall aim to optimise diversity detection while...

  3. Reframing the Food-Biodiversity Challenge.

    Science.gov (United States)

    Fischer, Joern; Abson, David J; Bergsten, Arvid; French Collier, Neil; Dorresteijn, Ine; Hanspach, Jan; Hylander, Kristoffer; Schultner, Jannik; Senbeta, Feyera

    2017-05-01

    Given the serious limitations of production-oriented frameworks, we offer here a new conceptual framework for how to analyze the nexus of food security and biodiversity conservation. We introduce four archetypes of social-ecological system states corresponding to win-win (e.g., agroecology), win-lose (e.g., intensive agriculture), lose-win (e.g., fortress conservation), and lose-lose (e.g., degraded landscapes) outcomes for food security and biodiversity conservation. Each archetype is shaped by characteristic external drivers, exhibits characteristic internal social-ecological features, and has characteristic feedbacks that maintain it. This framework shifts the emphasis from focusing on production only to considering social-ecological dynamics, and enables comparison among landscapes. Moreover, examining drivers and feedbacks facilitates the analysis of possible transitions between system states (e.g., from a lose-lose outcome to a more preferred outcome). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The problem of biodiversity: the geohistorical approach

    Directory of Open Access Journals (Sweden)

    Krasnov Yevgeny

    2011-03-01

    Full Text Available This article tackles the problems of the biodiversity parameter evolution from the geo-historical perspective. The authors come to a conclusion about the prevalence of global terrestrial and cosmic factors in the development of biosphere processes. On the basis of the biogeochemical approach to the biosphere evolution, the authors could identify the principal stages of its development from the ancient times to the modern epoch and refute the postulate of Leibniz (‘nature makes no leaps’.

  5. Biodiversity intactness score for South Africa

    CSIR Research Space (South Africa)

    Biggs, R

    2006-07-01

    Full Text Available of Water, Environment and Forestry Technology, and Department of Environmental Affairs and Tourism, Pretoria (2003). 47. IUCN (2002). 2002 IUCN Red List of Threatened Species. Gland, Switzerland. 48. Reyers B., Fairbanks D.H.K., van Jaarsveld A... existing methods in reporting on the state of South Africa’s biodiversity, a significant need which has been identified by the Department of Environmental Affairs and Tourism (DEAT).23,38,39 We highlight the implications of our findings for bio...

  6. Effects of golf courses on local biodiversity.

    OpenAIRE

    Gange, A.C.; Tanner, R.A.

    2005-01-01

    There are approximately 2600 golf courses in the UK, occupying 0.7% of the total land cover. However, it is unknown whether these represent a significant resource, in terms of biodiversity conservation, or if they are significantly less diverse than the surrounding habitats. The diversity of vegetation (tree and herbaceous species) and three indicator taxa (birds, ground beetles (Coleoptera, Carabidae) and bumblebees (Hymenoptera, Apidae)) was studied on nine golf courses and nine adja...

  7. Grazing and pasture management for biodiversity benefit

    OpenAIRE

    Rook, Andrew; Tallowin, Jeremy

    2003-01-01

    International audience; The primary role of grazing animals in grassland biodiversity management is maintenance and enhancement of sward structural heterogeneity, and thus botanical and faunal diversity, by selective defoliation due to dietary choices, treading, nutrient cycling and propagule dispersal. Most research on dietary choices uses model systems that require considerable extrapolation to more complex communities. Grazing animals' diets are constrained by temporal and spatial changes ...

  8. Engaging the public in biodiversity issues

    OpenAIRE

    Novacek, Michael J.

    2008-01-01

    To engage people in biodiversity and other environmental issues, one must provide the opportunity for enhanced understanding that empowers individuals to make choices and take action based on sound science and reliable recommendations. To this end, we must acknowledge some real challenges. Recent surveys show that, despite growing public concern, environmental issues still rank below many other problems, such as terrorism, health care, the economy, and (in the U.S.) family values. Moreover, m...

  9. The underestimated biodiversity of tropical grassy biomes.

    Science.gov (United States)

    Murphy, Brett P; Andersen, Alan N; Parr, Catherine L

    2016-09-19

    For decades, there has been enormous scientific interest in tropical savannahs and grasslands, fuelled by the recognition that they are a dynamic and potentially unstable biome, requiring periodic disturbance for their maintenance. However, that scientific interest has not translated into widespread appreciation of, and concern about threats to, their biodiversity. In terms of biodiversity, grassy biomes are considered poor cousins of the other dominant biome of the tropics-forests. Simple notions of grassy biomes being species-poor cannot be supported; for some key taxa, such as vascular plants, this may be valid, but for others it is not. Here, we use an analysis of existing data to demonstrate that high-rainfall tropical grassy biomes (TGBs) have vertebrate species richness comparable with that of forests, despite having lower plant diversity. The Neotropics stand out in terms of both overall vertebrate species richness and number of range-restricted vertebrate species in TGBs. Given high rates of land-cover conversion in Neotropical grassy biomes, they should be a high priority for conservation and greater inclusion in protected areas. Fire needs to be actively maintained in these systems, and in many cases re-introduced after decades of inappropriate fire exclusion. The relative intactness of TGBs in Africa and Australia make them the least vulnerable to biodiversity loss in the immediate future. We argue that, like forests, TGBs should be recognized as a critical-but increasingly threatened-store of global biodiversity.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  10. Coastal biodiversity and bioresources: variation and sustainability

    Science.gov (United States)

    Qin, Song; Liu, Zhengyi; Yu, Roger Ziye

    2016-03-01

    The 1st International Coastal Biology Congress (1st ICBC) was held in Yantai, China, in Sep. 26-30, 2014. Eighteen manuscripts of the meeting presentations were selected in this special issue. According to the four themes set in the ICBC meeting, this special issue include four sections, i.e., Coastal Biodiversity under Global Change, Adaptation and Evolution to Special Environment of Coastal Zone, Sustainable Utilization of Coastal Bioresources, and Coastal Biotechnology. Recent advances in these filed are presented.

  11. Canga biodiversity, a matter of mining.

    Science.gov (United States)

    Skirycz, Aleksandra; Castilho, Alexandre; Chaparro, Cristian; Carvalho, Nelson; Tzotzos, George; Siqueira, Jose O

    2014-01-01

    Brazilian name canga refers to the ecosystems associated with superficial iron crusts typical for the Brazilian state of Minas Gerais (MG) and some parts of Amazon (Flona de Carajas). Iron stone is associated with mountain plateaux and so, in addition to high metal concentrations (particularly iron and manganese), canga ecosystems, as other rock outcrops, are characterized by isolation and environmental harshness. Canga inselbergs, all together, occupy no more than 200 km(2) of area spread over thousands of km(2) of the Iron Quadrangle (MG) and the Flona de Carajas, resulting in considerable beta biodiversity. Moreover, the presence of different microhabitats within the iron crust is associated with high alpha biodiversity. Hundreds of angiosperm species have been reported so far across remote canga inselbergs and different micro-habitats. Among these are endemics such as the cactus Arthrocereus glaziovii and the medicinal plant Pilocarpus microphyllus. Canga is also home to iron and manganese metallophytes; species that evolved to tolerate high metal concentrations. These are particularly interesting to study metal homeostasis as both iron and manganese are essential plant micro-elements. Besides being models for metal metabolism, metallophytes can be used for bio-remediation of metal contaminated sites, and as such are considered among priority species for canga restoration. "Biodiversity mining" is not the only mining business attracted to canga. Open cast iron mining generates as much as 5-6% of Brazilian gross domestic product and dialog between mining companies, government, society, and ecologists, enforced by legal regulation, is ongoing to find compromise for canga protection, and where mining is unavoidable for ecosystem restoration. Environmental factors that shaped canga vegetation, canga biodiversity, physiological mechanisms to play a role, and ways to protect and restore canga will be reviewed.

  12. A Catalogue of marine biodiversity indicators

    Directory of Open Access Journals (Sweden)

    Heliana Teixeira

    2016-11-01

    Full Text Available A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD, this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g. EU policies, research projects and in national and international contexts (e.g. Regional Seas Conventions, and assessments in non-European seas. The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity.The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs.Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat or pressure in a marine area of interest.This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists and any person interested in marine environmental assessment. It allows users to

  13. Rapid acoustic survey for biodiversity appraisal.

    Directory of Open Access Journals (Sweden)

    Jérôme Sueur

    Full Text Available Biodiversity assessment remains one of the most difficult challenges encountered by ecologists and conservation biologists. This task is becoming even more urgent with the current increase of habitat loss. Many methods-from rapid biodiversity assessments (RBA to all-taxa biodiversity inventories (ATBI-have been developed for decades to estimate local species richness. However, these methods are costly and invasive. Several animals-birds, mammals, amphibians, fishes and arthropods-produce sounds when moving, communicating or sensing their environment. Here we propose a new concept and method to describe biodiversity. We suggest to forego species or morphospecies identification used by ATBI and RBA respectively but rather to tackle the problem at another evolutionary unit, the community level. We also propose that a part of diversity can be estimated and compared through a rapid acoustic analysis of the sound produced by animal communities. We produced alpha and beta diversity indexes that we first tested with 540 simulated acoustic communities. The alpha index, which measures acoustic entropy, shows a logarithmic correlation with the number of species within the acoustic community. The beta index, which estimates both temporal and spectral dissimilarities, is linearly linked to the number of unshared species between acoustic communities. We then applied both indexes to two closely spaced Tanzanian dry lowland coastal forests. Indexes reveal for this small sample a lower acoustic diversity for the most disturbed forest and acoustic dissimilarities between the two forests suggest that degradation could have significantly decreased and modified community composition. Our results demonstrate for the first time that an indicator of biological diversity can be reliably obtained in a non-invasive way and with a limited sampling effort. This new approach may facilitate the appraisal of animal diversity at large spatial and temporal scales.

  14. Biodiversity, evolution and adaptation of cultivated crops

    OpenAIRE

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-01-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on...

  15. Plant density affects measures of biodiversity effects

    Czech Academy of Sciences Publication Activity Database

    Stachová, T.; Fibich, P.; Lepš, Jan

    2013-01-01

    Roč. 6, č. 1 (2013), s. 1-11 ISSN 1752-9921 R&D Projects: GA ČR GD206/08/H044 Grant - others:GA JU(CZ) 138/2010/P Institutional support: RVO:60077344 Keywords : biodiversity effects * plant density * constant final yield Subject RIV: EH - Ecology, Behaviour Impact factor: 2.284, year: 2013 http://jpe.oxfordjournals.org/content/early/2012/04/27/jpe.rts015.full.pdf+html

  16. A Catalogue of Marine Biodiversity Indicators

    KAUST Repository

    Teixeira, Heliana

    2016-11-04

    A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD), this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g., EU policies, research projects) and in national and international contexts (e.g., Regional Seas Conventions, and assessments in non-European seas). The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity. The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs. Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat, or pressure in a marine area of interest. This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists, and any person interested in marine environmental assessment. It allows users to build

  17. Canga biodiversity, a matter of mining

    Directory of Open Access Journals (Sweden)

    Aleksandra eSkirycz

    2014-11-01

    Full Text Available Brazilian name canga refers to the ecosystem associated with superficial iron crusts typical for the Brazilian state of Minas Gerais (MG and some parts of Amazon (Flona de Carajas. Iron stone is associated with mountain plateaux and so, in addition to high metal concentrations (particularly iron and manganese, canga ecosystems, as other rock outcrops, are characterized by isolation and environmental harshness. Canga inselbergs, all together, occupy no more than 200km2 of area spread over thousands of km2 of the Iron Quadrangle (MG and the Flona de Carajas, resulting in considerable beta biodiversity. Moreover, the presence of different microhabitats within the iron crust is associated with high alpha biodiversity. Hundreds of angiosperm species have been reported so far across remote canga inselbergs and different micro-habitats. Among these are endemics such as the cactus Arthrocereus glaziovii and the medicinal plant Pilocarpus microphyllus. Canga is also home to iron and manganese metallophytes; species that evolved to tolerate high metal concentrations. These are particularly interesting to study metal homeostasis as both iron and manganese are essential plant micro-elements. Besides being models for metal metabolism, metallophytes can be used for bio-remediation of metal contaminated sites, and as such are considered among priority species for canga restoration.Biodiversity mining is not the only mining business attracted to canga. Open cast iron mining generates as much as 5-6% of Brazilian gross domestic product (GDP and dialogue between mining companies, government, society and ecologists, enforced by legal regulation, is ongoing to find compromise for canga protection, and where mining is unavoidable for ecosystem restoration. Environmental factors that shaped canga vegetation, canga biodiversity , physiological mechanisms to play a role, and ways to protect and restore canga will be reviewed.

  18. Soil Fertility and Biodiversity in Organic Farming

    OpenAIRE

    Mäder, Paul; Fliessbach, Andreas; Dubois, David; Gunst, Lucie; Fried, Padruot; Niggli, Urs

    2002-01-01

    An understanding of agroecosystems is a key to determining effective farming systems. Here we report results from a 21-year study of agronomic and ecological performance of biodynamic, bioorganic, and conventional farming systems in Central Europe. We found crop yields to be 20% lower in the organic systems, although input of fertilizer and energy was reduced by 34 to 53% and pesticide input by 97%. Enhanced soil fertility and higher biodiversity found in organic plots may render these system...

  19. Soil fertility and biodiversity in organic farming.

    Science.gov (United States)

    Mäder, Paul; Fliessbach, Andreas; Dubois, David; Gunst, Lucie; Fried, Padruot; Niggli, Urs

    2002-05-31

    An understanding of agroecosystems is key to determining effective farming systems. Here we report results from a 21-year study of agronomic and ecological performance of biodynamic, bioorganic, and conventional farming systems in Central Europe. We found crop yields to be 20% lower in the organic systems, although input of fertilizer and energy was reduced by 34 to 53% and pesticide input by 97%. Enhanced soil fertility and higher biodiversity found in organic plots may render these systems less dependent on external inputs.

  20. A suite of essential biodiversity variables for detecting critical biodiversity change.

    Science.gov (United States)

    Schmeller, Dirk S; Weatherdon, Lauren V; Loyau, Adeline; Bondeau, Alberte; Brotons, Lluis; Brummitt, Neil; Geijzendorffer, Ilse R; Haase, Peter; Kuemmerlen, Mathias; Martin, Corinne S; Mihoub, Jean-Baptiste; Rocchini, Duccio; Saarenmaa, Hannu; Stoll, Stefan; Regan, Eugenie C

    2018-02-01

    Key global indicators of biodiversity decline, such as the IUCN Red List Index and the Living Planet Index, have relatively long assessment intervals. This means they, due to their inherent structure, function as late-warning indicators that are retrospective, rather than prospective. These indicators are unquestionably important in providing information for biodiversity conservation, but the detection of early-warning signs of critical biodiversity change is also needed so that proactive management responses can be enacted promptly where required. Generally, biodiversity conservation has dealt poorly with the scattered distribution of necessary detailed information, and needs to find a solution to assemble, harmonize and standardize the data. The prospect of monitoring essential biodiversity variables (EBVs) has been suggested in response to this challenge. The concept has generated much attention, but the EBVs themselves are still in development due to the complexity of the task, the limited resources available, and a lack of long-term commitment to maintain EBV data sets. As a first step, the scientific community and the policy sphere should agree on a set of priority candidate EBVs to be developed within the coming years to advance both large-scale ecological research as well as global and regional biodiversity conservation. Critical ecological transitions are of high importance from both a scientific as well as from a conservation policy point of view, as they can lead to long-lasting biodiversity change with a high potential for deleterious effects on whole ecosystems and therefore also on human well-being. We evaluated candidate EBVs using six criteria: relevance, sensitivity to change, generalizability, scalability, feasibility, and data availability and provide a literature-based review for eight EBVs with high sensitivity to change. The proposed suite of EBVs comprises abundance, allelic diversity, body mass index, ecosystem heterogeneity, phenology

  1. Biodiversity Information Serving Our Nation (BISON)

    Science.gov (United States)

    ,

    2013-01-01

    Researchers collect species occurrence data, records of an organism at a particular time in a particular place, as a primary or ancillary function of many biological field investigations. Presently, these data reside in numerous distributed systems and formats (including publications) and are consequently not being used to their full potential. As a step toward addressing this challenge, the Core Science Analytics and Synthesis (CSAS) program of the US Geological Survey (USGS) is developing Biodiversity Information Serving Our Nation (BISON), an integrated and permanent resource for biological occurrence data from the United States. BISON will leverage the accumulated human and infrastructural resources of the long-term USGS investment in research and information management and delivery. CSAS is also the U.S. Node of the Global Biodiversity Information Facility (GBIF), an international, government-initiated and funded effort focused on making biodiversity data freely available for scientific research, conservation and sustainable development. CSAS, with its partners at Department of Energy's Oak Ridge National Laboratory (ORNL), hosts a full mirror of the hundreds of millions of global records to which GBIF provides access. BISON has been initiated with the 110 million records GBIF makes available from the U.S. and is integrating millions more records from other sources each year.

  2. [Effects of introducing Eucalyptus on indigenous biodiversity].

    Science.gov (United States)

    Ping, Liang; Xie, Zong-Qiang

    2009-07-01

    Eucalyptus is well-known as an effective reforestation tree species, due to its fast growth and high adaptability to various environments. However, the introduction of Eucalyptus could have negative effects on the local environment, e. g., inducing soil degradation, decline of groundwater level, and decrease of biodiversity, and especially, there still have controversies on the effects of introduced Eucalyptus on the understory biodiversity of indigenous plant communities and related mechanisms. Based on a detailed analysis of the literatures at home and abroad, it was considered that the indigenous plant species in the majority of introduced Eucalyptus plantations were lesser than those in natural forests and indigenous species plantations but more than those in other exotic species plantations, mainly due to the unique eco-physiological characteristics of Eucalyptus and the irrational plantation design and harvesting techniques, among which, anthropogenic factors played leading roles. Be that as it may, the negative effects of introducing Eucalyptus on local plant biodiversity could be minimized via more rigorous scientific plantation design and management based on local plant community characteristics. To mitigate the negative effects of Eucalyptus introduction, the native trees and understory vegetation in plantations should be kept intact during reforestation with Eucalyptus to favor the normal development of plant community and regeneration. At the same time, human disturbance should be minimized to facilitate the natural regeneration of native species.

  3. Climate change patterns in Amazonia and biodiversity.

    Science.gov (United States)

    Cheng, Hai; Sinha, Ashish; Cruz, Francisco W; Wang, Xianfeng; Edwards, R Lawrence; d'Horta, Fernando M; Ribas, Camila C; Vuille, Mathias; Stott, Lowell D; Auler, Augusto S

    2013-01-01

    Precise characterization of hydroclimate variability in Amazonia on various timescales is critical to understanding the link between climate change and biodiversity. Here we present absolute-dated speleothem oxygen isotope records that characterize hydroclimate variation in western and eastern Amazonia over the past 250 and 20 ka, respectively. Although our records demonstrate the coherent millennial-scale precipitation variability across tropical-subtropical South America, the orbital-scale precipitation variability between western and eastern Amazonia exhibits a quasi-dipole pattern. During the last glacial period, our records imply a modest increase in precipitation amount in western Amazonia but a significant drying in eastern Amazonia, suggesting that higher biodiversity in western Amazonia, contrary to 'Refugia Hypothesis', is maintained under relatively stable climatic conditions. In contrast, the glacial-interglacial climatic perturbations might have been instances of loss rather than gain in biodiversity in eastern Amazonia, where forests may have been more susceptible to fragmentation in response to larger swings in hydroclimate.

  4. Global Priorities for Marine Biodiversity Conservation

    Science.gov (United States)

    Selig, Elizabeth R.; Turner, Will R.; Troëng, Sebastian; Wallace, Bryan P.; Halpern, Benjamin S.; Kaschner, Kristin; Lascelles, Ben G.; Carpenter, Kent E.; Mittermeier, Russell A.

    2014-01-01

    In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs) and Areas Beyond National Jurisdiction (ABNJ). Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity. PMID:24416151

  5. Biodiversity of the genus Cladophialophora

    Science.gov (United States)

    Badali, H.; Gueidan, C.; Najafzadeh, M.J.; Bonifaz, A.; van den Ende, A.H.G. Gerrits; de Hoog, G.S.

    2008-01-01

    Cladophialophora is a genus of black yeast-like fungi comprising a number of clinically highly significant species in addition to environmental taxa. The genus has previously been characterized by branched chains of ellipsoidal to fusiform conidia. However, this character was shown to have evolved several times independently in the order Chaetothyriales. On the basis of a multigene phylogeny (nucLSU, nucSSU, RPB1), most of the species of Cladophialophora (including its generic type C. carrionii) belong to a monophyletic group comprising two main clades (carrionii- and bantiana-clades). The genus includes species causing chromoblastomycosis and other skin infections, as well as disseminated and cerebral infections, often in immunocompetent individuals. In the present study, multilocus phylogenetic analyses were combined to a morphological study to characterize phenetically similar Cladophialophora strains. Sequences of the ITS region, partial Translation Elongation Factor 1-α and β-Tubulin genes were analysed for a set of 48 strains. Four novel species were discovered, originating from soft drinks, alkylbenzene-polluted soil, and infected patients. Membership of the both carrionii and bantiana clades might be indicative of potential virulence to humans. PMID:19287540

  6. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots.

    Science.gov (United States)

    Katouzian, Ahmad-Reza; Sari, Alireza; Macher, Jan N; Weiss, Martina; Saboori, Alireza; Leese, Florian; Weigand, Alexander M

    2016-03-01

    Biodiversity hotspots are centers of biological diversity and particularly threatened by anthropogenic activities. Their true magnitude of species diversity and endemism, however, is still largely unknown as species diversity is traditionally assessed using morphological descriptions only, thereby ignoring cryptic species. This directly limits evidence-based monitoring and management strategies. Here we used molecular species delimitation methods to quantify cryptic diversity of the montane amphipods in the Irano-Anatolian and Caucasus biodiversity hotspots. Amphipods are ecosystem engineers in rivers and lakes. Species diversity was assessed by analysing two genetic markers (mitochondrial COI and nuclear 28S rDNA), compared with morphological assignments. Our results unambiguously demonstrate that species diversity and endemism is dramatically underestimated, with 42 genetically identified freshwater species in only five reported morphospecies. Over 90% of the newly recovered species cluster inside Gammarus komareki and G. lacustris; 69% of the recovered species comprise narrow range endemics. Amphipod biodiversity is drastically underestimated for the studied regions. Thus, the risk of biodiversity loss is significantly greater than currently inferred as most endangered species remain unrecognized and/or are only found locally. Integrative application of genetic assessments in monitoring programs will help to understand the true magnitude of biodiversity and accurately evaluate its threat status.

  7. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes.

    Science.gov (United States)

    Yates, Katherine L; Mellin, Camille; Caley, M Julian; Radford, Ben T; Meeuwig, Jessica J

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are

  8. National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)

    Science.gov (United States)

    Muller-Karger, F. E.; Chavez, F.; Gittings, S.; Doney, S. C.; Kavanaugh, M.; Montes, E.; Breitbart, M.; Kirkpatrick, B. A.; Anderson, D. M.; Tartt, M.

    2016-02-01

    The U.S. Federal government (NOAA and NASA), academic researchers, and private partners are implementing a Demonstration Marine Biodiversity Observation Network (MBON) to monitor changes in marine biodiversity within two US National Marine Sanctuaries (NMS): Florida Keys and Monterey Bay. The overarching goal is to observe and understand life, from microbes to whales, in different coastal and continental shelf habitats. The specific objectives are to 1) Establish a protocol for MBON information to dynamically update Sanctuary status and trends reports; 2) Define an efficient set of observations required for implementing a useful MBON; 3) Develop technology for biodiversity assessments including emerging environmental DNA (eDNA) and remote sensing to coordinate with classical sampling; 4) Integrate and synthesize information in coordination with other MBON projects, the Smithsonian Institution's Tennenbaum Marine Observatories Network (TMON), the Integrated Ocean Observing System (IOOS), the international Group on Earth Observations Biodiversity Observation Network(GEO BON), and the UNESCO-IOC Ocean Biogeographic Information System (OBIS); and 5) Understand the linkages between marine biodiversity, ecosystem processes, and the social-economic context of a region. Pilot projects have been implemented within the Florida Keys and Monterey Bay NMS. Limited observations will be collected at the Flower Garden Banks NMS. These encompass a range of marine environments, including deep sea, continental shelves, and coastal habitats including estuaries, wetlands, and coral reefs. The program will use novel eDNA techniques and ongoing observations to evaluate diversity. Multidisciplinary remote sensing will be used to evaluate dynamic 'seascapes'. The MBON will facilitate and enable regional biodiversity assessments, and contributes to addressing U.N. Sustainable Development Goal 14 to conserve and sustainably use marine resources.

  9. Forest restoration, biodiversity and ecosystem functioning

    Directory of Open Access Journals (Sweden)

    Aerts Raf

    2011-11-01

    Full Text Available Abstract Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an

  10. Forest restoration, biodiversity and ecosystem functioning.

    Science.gov (United States)

    Aerts, Raf; Honnay, Olivier

    2011-11-24

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  11. Building capacity in biodiversity monitoring at the global scale

    Science.gov (United States)

    Schmeller, Dirk S.; Bohm, Monika; Arvanitidis, Christos; Barber-Meyer, Shannon; Brummitt, Neil; Chandler, Mark; Chatzinikolaou, Eva; Costello, Mark J.; Ding, Hui; García-Moreno, Jaime; Gill, Michael J.; Haase, Peter; Jones, Miranda; Juillard, Romain; Magnusson, William E.; Martin, Corinne S.; McGeoch, Melodie A.; Mihoub, Jean-Baptiste; Pettorelli, Nathalie; Proença, Vânia; Peng, Cui; Regan, Eugenie; Schmiedel, Ute; Simsika, John P.; Weatherdon, Lauren; Waterman, Carly; Xu, Haigen; Belnap, Jayne

    2017-01-01

    Human-driven global change is causing ongoing declines in biodiversity worldwide. In order to address these declines, decision-makers need accurate assessments of the status of and pressures on biodiversity. However, these are heavily constrained by incomplete and uneven spatial, temporal and taxonomic coverage. For instance, data from regions such as Europe and North America are currently used overwhelmingly for large-scale biodiversity assessments due to lesser availability of suitable data from other, more biodiversity-rich, regions. These data-poor regions are often those experiencing the strongest threats to biodiversity, however. There is therefore an urgent need to fill the existing gaps in global biodiversity monitoring. Here, we review current knowledge on best practice in capacity building for biodiversity monitoring and provide an overview of existing means to improve biodiversity data collection considering the different types of biodiversity monitoring data. Our review comprises insights from work in Africa, South America, Polar Regions and Europe; in government-funded, volunteer and citizen-based monitoring in terrestrial, freshwater and marine ecosystems. The key steps to effectively building capacity in biodiversity monitoring are: identifying monitoring questions and aims; identifying the key components, functions, and processes to monitor; identifying the most suitable monitoring methods for these elements, carrying out monitoring activities; managing the resultant data; and interpreting monitoring data. Additionally, biodiversity monitoring should use multiple approaches including extensive and intensive monitoring through volunteers and professional scientists but also harnessing new technologies. Finally, we call on the scientific community to share biodiversity monitoring data, knowledge and tools to ensure the accessibility, interoperability, and reporting of biodiversity data at a global scale.

  12. Developing biodiversity indicators on a stakeholders' opinions basis: the gypsum industry Key Performance Indicators framework.

    Science.gov (United States)

    Pitz, Carline; Mahy, Grégory; Vermeulen, Cédric; Marlet, Christine; Séleck, Maxime

    2016-07-01

    This study aims to establish a common Key Performance Indicators (KPIs) framework for reporting about the gypsum industry biodiversity at the European level. In order to integrate different opinions and to reach a consensus framework, an original participatory process approach has been developed among different stakeholder groups: Eurogypsum, European and regional authorities, university scientists, consulting offices, European and regional associations for the conservation of nature, and the extractive industry. The strategy is developed around four main steps: (1) building of a maximum set of indicators to be submitted to stakeholders based on the literature (Focus Group method); (2) evaluating the consensus about indicators through a policy Delphi survey aiming at the prioritization of indicator classes using the Analytic Hierarchy Process method (AHP) and of individual indicators; (3) testing acceptability and feasibility through analysis of Environmental Impact Assessments (EIAs) and visits to three European quarries; (4) Eurogypsum final decision and communication. The resulting framework contains a set of 11 indicators considered the most suitable for all the stakeholders. Our KPIs respond to European legislation and strategies for biodiversity. The framework aims at improving sustainability in quarries and at helping to manage biodiversity as well as to allow the creation of coherent reporting systems. The final goal is to allow for the definition of the actual biodiversity status of gypsum quarries and allow for enhancing it. The framework is adaptable to the local context of each gypsum quarry.

  13. Thysanoptera biodiversity in the Neotropics

    Directory of Open Access Journals (Sweden)

    Laurence A. Mound

    2002-06-01

    Full Text Available It is suggested that descriptive taxonomy of thrips must be integrated into biological studies if we are to understand patterns of evolutionary and ecological diversity. Collecting and describing new taxa is easy, but understanding their position in ecosystems and how they have contributed to the origin and maintenance of biological diversity is more important yet more difficult. Many authors fail to appreciate that individual thrips species are commonly highly polymorphic, both within and between sexes, with the result that 20% of species names and 30% of generic names are currently placed into synonymy. The biological significance of such polymorphism has been little studied, but the presence of large and small males in a species is presumed to indicate some form of male/male competition for resources; this is particularly common in fungus feeding species. Amongst phytophagous species, the recognition of the host plants on which thrips actually breed is a prerequisite to understanding patterns of diversity, some thrips lineages being associated with particular groups of plants whereas others exploit a diverse range of plants. Attempts to understand the diversity of thrips, including the application of cladistic methods, are severely limited by the lack of studies on the biology of individual species, although thrips exhibit a wide range of interesting biological phenomena, including various levels of sociality, gallinduction, specific pollination associations, virus transmission, and ectoparasitismSe ha sugerido que la taxonomía descriptiva de los tisanopteros (trips debe integrarse dentro de los estudios biológicos si queremos ser capaces de entender los patrones de diversidad evolutiva y ecológica. Recolectar y describir nuevos datos es fácil, pero entender su posición en los ecosistemas y como ellos contribuyen al origen y mantenimiento de la diversidad biológica es más importante y aún más difícil. Muchos autores han fallado al

  14. Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity.

    Directory of Open Access Journals (Sweden)

    Richard D Stevens

    Full Text Available Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE. Species composition of 10,000-km(2 grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the

  15. Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas?

    Science.gov (United States)

    Brooks, T M; Cuttelod, A; Faith, D P; Garcia-Moreno, J; Langhammer, P; Pérez-Espona, S

    2015-02-19

    'Key biodiversity areas' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of Sgró et al. (2011 Evol. Appl. 4, 326-337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site's share of a threatened species' population; expand these to include the proportion of the species' genetic diversity unique to a site; (ii) expand criterion for 'threatened species' to consider 'threatened taxa' and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites.

  16. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures

    Science.gov (United States)

    Nativi, Stefano; Santoro, Mattia

    2010-05-01

    In the last years, scientific community is producing great efforts in order to study the effects of climate change on life on Earth. In this general framework, a key role is played by the impact of climate change on biodiversity. To assess this, several use scenarios require the modeling of climatological change impact on the regional distribution of biodiversity species. Designing and developing interoperability infrastructures which enable scientists to search, discover, access and use multi-disciplinary resources (i.e. datasets, services, models, etc.) is currently one of the main research fields for the Earth and Space Science Informatics. This presentation introduces and discusses an interoperability infrastructure which implements the discovery, access, and chaining of loosely-coupled resources in the climatology and biodiversity domains. This allows to set up and run forecast and processing models. The presented framework was successfully developed and experimented in the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2) Climate Change & Biodiversity thematic Working Group. This interoperability infrastructure is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components

  17. A review of benthic fauna biodiversity in Georgia

    Directory of Open Access Journals (Sweden)

    B. Japoshvili

    2016-03-01

    Full Text Available The paper summarizes information on diversity of benthic fauna of Georgia based on the literature sources. 126 publications were analyzed published after 1899. Our investigation showed that 15 lotic and 20 lentic ecosystems were studied out of which 21 (5 rivers and 16 lakes belongs to the Caspian Sea basin and 14 (10 rivers and 4 lakes to the Black Sea basin. As a result, 206 benthic animal taxa were described. From the described groups 81 are identified to the species level, 61 to the genus level, 28 to the family level, 16 to the order level, 10 to the class level, 10 to the phylum level. Since the most of observed freshwater systems are poorly studied, Paravani and Saghamo Lakes, Tsalka and Tbilisi Reservoirs and Kura (Mtkvari and Rioni Rivers are rather well investigated. Our meta-analyses clearly show that in overall freshwater biodiversity of Georgia are significantly understudied.

  18. Plant taxonomy and biodiversity researches in Bangladesh: trends and opportunities

    Directory of Open Access Journals (Sweden)

    M Atiqur Rahman

    2014-06-01

    Full Text Available The progress, problems and prospects of biodiversity and plant taxonomic researches conducted in Bangladesh during the last two decades have been analyzed. The inventory of the flora, threatened taxa and family wise itemization in all groups of plants are progressing at a very slow rate. Only 11.6% of the estimated species (c.5000 were inventoried and only 6.2% of the threatened taxa were listed for conservation management. National Conservation Strategies could not be framed and implemented duly for environmental management. Results of the survey of floristic diversity, inventory of threatened taxa for Red Data Book and discovery of new taxa are discussed and up to date data are presented. DOI: http://dx.doi.org/10.3126/ije.v3i2.10645 International Journal of the Environment Vol.3(2 2014: 324-344

  19. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    Science.gov (United States)

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  20. Biodiversity, climate change and poverty: exploring the links

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Swiderska, Krystyna

    2008-02-15

    Biodiversity — the variety of all life, from genes and species to ecosystems — is intimately linked to Earth's climate and, inevitably, to climate change. Biodiversity and poverty are also inextricably connected. For instance, changes to natural ecosystems influence both climate change and people's ability to cope with some of its damaging impacts. And in their turn climate change, as well as people's responses to it, affect biodiversity. Unpicking all these strands clearly shows that conserving and managing biodiversity can help natural systems and vulnerable people cope with a shifting global climate. Yet compared to activities such as forest conservation and afforestation — widely noted as a way of sequestering carbon and cutting greenhouse gas emissions — biodiversity conservation is a neglected area. That must change: urgent support is needed for local solutions to biodiversity loss that provide benefits on all counts.

  1. Does conservation on farmland contribute to halting the biodiversity decline?

    Science.gov (United States)

    Kleijn, David; Rundlöf, Maj; Scheper, Jeroen; Smith, Henrik G; Tscharntke, Teja

    2011-09-01

    Biodiversity continues to decline, despite the implementation of international conservation conventions and measures. To counteract biodiversity loss, it is pivotal to know how conservation actions affect biodiversity trends. Focussing on European farmland species, we review what is known about the impact of conservation initiatives on biodiversity. We argue that the effects of conservation are a function of conservation-induced ecological contrast, agricultural land-use intensity and landscape context. We find that, to date, only a few studies have linked local conservation effects to national biodiversity trends. It is therefore unknown how the extensive European agri-environmental budget for conservation on farmland contributes to the policy objectives to halt biodiversity decline. Based on this review, we identify new research directions addressing this important knowledge gap. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Biodiversity offsets and the challenge of achieving no net loss.

    Science.gov (United States)

    Gardner, Toby A; VON Hase, Amrei; Brownlie, Susie; Ekstrom, Jonathan M M; Pilgrim, John D; Savy, Conrad E; Stephens, R T Theo; Treweek, Jo; Ussher, Graham T; Ward, Gerri; Ten Kate, Kerry

    2013-12-01

    Businesses, governments, and financial institutions are increasingly adopting a policy of no net loss of biodiversity for development activities. The goal of no net loss is intended to help relieve tension between conservation and development by enabling economic gains to be achieved without concomitant biodiversity losses. biodiversity offsets represent a necessary component of a much broader mitigation strategy for achieving no net loss following prior application of avoidance, minimization, and remediation measures. However, doubts have been raised about the appropriate use of biodiversity offsets. We examined what no net loss means as a desirable conservation outcome and reviewed the conditions that determine whether, and under what circumstances, biodiversity offsets can help achieve such a goal. We propose a conceptual framework to substitute the often ad hoc approaches evident in many biodiversity offset initiatives. The relevance of biodiversity offsets to no net loss rests on 2 fundamental premises. First, offsets are rarely adequate for achieving no net loss of biodiversity alone. Second, some development effects may be too difficult or risky, or even impossible, to offset. To help to deliver no net loss through biodiversity offsets, biodiversity gains must be comparable to losses, be in addition to conservation gains that may have occurred in absence of the offset, and be lasting and protected from risk of failure. Adherence to these conditions requires consideration of the wider landscape context of development and offset activities, timing of offset delivery, measurement of biodiversity, accounting procedures and rule sets used to calculate biodiversity losses and gains and guide offset design, and approaches to managing risk. Adoption of this framework will strengthen the potential for offsets to provide an ecologically defensible mechanism that can help reconcile conservation and development. Balances de Biodiversidad y el Reto de No Obtener P

  3. Soil fertility, crop biodiversity, and farmers' revenues: Evidence from Italy.

    Science.gov (United States)

    Di Falco, Salvatore; Zoupanidou, Elisavet

    2017-03-01

    This paper analyzes the interplay between soil fertility, crop biodiversity, and farmers' revenues. We use a large, original, farm-level panel dataset. Findings indicate that both crop biodiversity and soil fertility have positive effects on farmers' revenues. It is also shown that crop biodiversity and soil fertility may act as substitutes. These results provide evidence for the important role of diversity in the resilience of agroecosystems. Crop diversification can be a potential strategy to support productivity when soils are less fertile.

  4. Grazing and biodiversity: from selective foraging to wildlife habitats

    OpenAIRE

    Wallis de Vries, M.F.

    2016-01-01

    Livestock grazing in low-intensity farming systems is a key aspect in the conservation of Europe's biodiversity, which reaches high levels of species richness in semi-natural grasslands. With the demise of traditional grazing systems, the design of viable low-intensity grazing systems for the future requires a good understanding of grazing impacts on biodiversity. Here, I review various scale-dependent aspects of selective grazing and how they may affect biodiversity. Insects such as butterfl...

  5. Core Issues in the Economics of Biodiversity Conservation

    OpenAIRE

    Tisdell, Clement A.

    2010-01-01

    Critically reviews the following core issues in the economics of biodiversity conservation: reliance on the stated preferences of individuals as a guide to biodiversity conservation, the relevance of the phylogenetic similarity principle (and other attributes of organisms) for the survival of species; the implications of the Noah’s ark problem for selecting features of biodiversity to be saved and the difficulties raised by criteria based on safe minimum populations of species or on minimum e...

  6. How economic contexts shape calculations of yield in biodiversity offsetting.

    Science.gov (United States)

    Carver, L; Sullivan, S

    2017-10-01

    We examined and analyzed methods used to create numerical equivalence between sites affected by development and proposed conservation offset sites. Application of biodiversity offsetting metrics in development impact and mitigation assessments is thought to standardize biodiversity conservation outcomes, sometimes termed yield by those conducting these calculations. The youth of biodiversity offsetting in application, however, means little is known about how biodiversity valuations and offset contracts between development and offset sites are agreed on in practice or about long-term conservation outcomes. We examined how sites were made commensurable and how biodiversity gains or yields were calculated and negotiated for a specific offset contract in a government-led pilot study of biodiversity offsets in England. Over 24 months, we conducted participant observations of various stages in the negotiation of offset contracts through repeated visits to 3 (anonymized) biodiversity offset contract sites. We conducted 50 semistructured interviews of stakeholders in regional and local government, the private sector, and civil society. We used a qualitative data analysis software program (DEDOOSE) to textually analyze interview transcriptions. We also compared successive iterations of biodiversity-offsetting calculation spreadsheets and planning documents. A particular focus was the different iterations of a specific biodiversity impact assessment in which the biodiversity offsetting metric developed by the U.K.'s Department for Environment, Food and Rural Affairs was used. We highlight 3 main findings. First, biodiversity offsetting metrics were amended in creative ways as users adapted inputs to metric calculations to balance and negotiate conflicting requirements. Second, the practice of making different habitats equivalent to each other through the application of biodiversity offsetting metrics resulted in commensuration outcomes that may not provide projected

  7. Earth Observation for Biodiversity Assessment (EO-BA)

    CSIR Research Space (South Africa)

    Cho, Moses A

    2012-10-01

    Full Text Available in the Dukuduku coastal forest Earth Observation for Biodiversity Assessment (EO-BA) MA CHO, P DEBBA, R MATHIEU, A RAMOELO, L NAIDOO, H VAN DEVENTER, O MALAHLELA AND R MAIN CSIR Natural Resources and the Environment, Pretoria, South Africa PO Box 395..., Pretoria, South Africa, 0001 Email: mcho@csir.co.za ? www.csir.co.za THE ROLE OF EARTH OBSERVATION IN PROVIDING BIODIVERSITY INFORMATION Biodiversity encompasses four levels: genetic, species, ecosystem and functional diversities. By sustaining...

  8. Connecting Earth observation to high-throughput biodiversity data

    DEFF Research Database (Denmark)

    Bush, Alex; Sollmann, Rahel; Wilting, Andreas

    2017-01-01

    Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could...... be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth...

  9. Biodiversity in the neotropics: ecological, economic and social values

    Directory of Open Access Journals (Sweden)

    JG. Tundisi

    Full Text Available Biodiversity in the neotropical region is of enormous importance, specially related to the future exploitation of this natural resource for food production, medical applications and restoration ecology and technology. Knowledge of this biodiversity and its conservation represents an important step from the scientific and applied point of view. Neotropical biodiversity is endangered by human interventions. Loss of this large genetic and phenotypic base will affect the functioning of freshwater and terrestrial ecosystems. Neotropical forests and floodplains, great internal deltas of rivers are active centers of evolution. Loss of neotropical biodiversity will represent the loss of processes, economic values and ecosystem services.

  10. Headwater biodiversity among different levels of stream habitat hierarchy

    DEFF Research Database (Denmark)

    Göthe, Emma; Friberg, Nikolai; Kahlert, Maria

    2014-01-01

    With the current loss of biodiversity and threats to freshwater ecosystems, it is crucial to identify hot-spots of biodiversity and on which spatial scale they can be resolved. Conservation and management of these important ecosystems needs insight into whether most of the regional biodiversity (i.......e. y-diversity) can be found locally (i.e. high a-diversity) or whether it is distributed across the region (i.e. high b-diversity). Biodiversity patterns of benthic macroinvertebrates and diatoms were studied in 30 headwater streams in five Swedish catchments by comparing the relative contribution...

  11. Biodiversity, community structure and function of biofilms in stream ecosystems.

    Science.gov (United States)

    Besemer, Katharina

    2015-12-01

    Multi-species, surface-attached biofilms often dominate microbial life in streams and rivers, where they contribute substantially to biogeochemical processes. The microbial diversity of natural biofilms is huge, and may have important implications for the functioning of aquatic environments and the ecosystem services they provide. Yet the causes and consequences of biofilm biodiversity remain insufficiently understood. This review aims to give an overview of current knowledge on the distribution of stream biofilm biodiversity, the mechanisms generating biodiversity patterns and the relationship between biofilm biodiversity and ecosystem functioning. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Mainstreaming biodiversity: conservation for the 21st century

    Directory of Open Access Journals (Sweden)

    Kent Hubbard Redford

    2015-12-01

    Full Text Available Insufficient focused attention has been paid by the conservation community to conservation of biodiversity outside of protected areas. Biodiversity mainstreaming addresses this gap in global conservation practice by embedding biodiversity considerations into policies, strategies and practices of key public and private actors that impact or rely on biodiversity, so that it is conserved, and sustainably used, both locally and globally (Huntley and Redford 2014. Biodiversity mainstreaming is designed to change those policies and practices that influence land uses outside of protected areas as well as to change economic and development decision-making by demonstrating the importance of conserving biodiversity for achieving development outcomes. The practice of mainstreaming is tied to implementation of the Convention on Biological Diversity and is practiced with billions of dollars of investment by development agencies, national government agencies, and the Global Environment Facility (GEF and its implementing organizations as well as other donors. It is essential for the long-term survival of biodiversity inside and outside protected areas. However, it is virtually unheard of in the main conservation science field. This must change so as to bring careful documentation, analysis, monitoring, publishing and improvement of practices – all things that conservation science should provide as partners to practitioners of biodiversity mainstreaming. The situation is ripe for informed coordination and consolidation and creation of a science-driven field of biodiversity mainstreaming.

  13. Information technology challenges of biodiversity and ecosystems informatics

    Science.gov (United States)

    Schnase, J.L.; Cushing, J.; Frame, M.; Frondorf, A.; Landis, E.; Maier, D.; Silberschatz, A.

    2003-01-01

    Computer scientists, biologists, and natural resource managers recently met to examine the prospects for advancing computer science and information technology research by focusing on the complex and often-unique challenges found in the biodiversity and ecosystem domain. The workshop and its final report reveal that the biodiversity and ecosystem sciences are fundamentally information sciences and often address problems having distinctive attributes of scale and socio-technical complexity. The paper provides an overview of the emerging field of biodiversity and ecosystem informatics and demonstrates how the demands of biodiversity and ecosystem research can advance our understanding and use of information technologies.

  14. Forecasting effects of global warming on biodiversity

    DEFF Research Database (Denmark)

    Botkin, D.B.; Saxe, H.; Araújo, M.B.

    2007-01-01

    The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. In this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche...... and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions...

  15. Integrating movement ecology with biodiversity research-exploring new avenues to address spatiotemporal biodiversity dynamics

    NARCIS (Netherlands)

    Jeltsch, F.; Bonte, D.; Pe'er, G.; Reineking, B.; Leimgruber, P.; Balkenhol, N.; Schröder, B.; Buchmann, C.M.; Mueller, T.; Blaum, N.; Zurell, D.; Böhning-Gaese, K.; Wiegand, T.; Eccard, J.A.; Hofer, H.; Reeg, J.; Eggers, U.; Bauer, S.

    2013-01-01

    Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the

  16. Spatial Pattern Determination of Biodiversity Threats at Landscape Level (Case Study: Golestan Province

    Directory of Open Access Journals (Sweden)

    R. Mirzaei

    2015-06-01

    Full Text Available Mapping spatial patterns of potential biodiversity threats is one of the important steps for effective conservation planning and activities. To determine the spatial patterns of threats in Golestan province, 12 criteria in four main groups including structural (fractal coefficient of perimeter, circularity ratio of area, average slope, compositional aspects of biodiversity (presence of species at risk, non-biological threats (distance to city, distance to village, distance to road, distance to infrastructure, distance to agricultural land, soil pollution, risk of fire and isolation (Nearest Neighbor Index were used. These data layers were digitized in GIS environment and were weighted through Analytical Hierarchy Process. A weighted linear combination was then used to map the spatial pattern of biodiversity threats in the province. Compositional aspect (0.59, non-biological threats (0.23, isolation (0.11, and structural aspect (0.07 were relatively weighted in the order of importance. Central parts of the province and patches in the northern and southern parts were recognized to be more exposed to biodiversity threats. The central parts of the province were mostly threatened by urban, industrial, road and agricultural development, whereas the northern and southern parts were recognized as areas of conservation importance having a variety of threatened birds.

  17. Treatment of biodiversity issues in impact assessment of electricity power transmission lines: A Finnish case review

    International Nuclear Information System (INIS)

    Soederman, Tarja

    2006-01-01

    The Environmental Impact Assessment (EIA) process concerning the route of a 400 kV power transmission line between Loviisa and Hikiae in southern Finland was reviewed in order to assess how biodiversity issues are treated and to provide suggestions on how to improve the effectiveness of treatment of biodiversity issues in impact assessment of linear development projects. The review covered the whole assessment process, including interviews of stakeholders, participation in the interest group meetings and review of all documents from the project. The baseline studies and assessment of direct impacts in the case study were detailed but the documentation, both the assessment programme and the assessment report, only gave a partial picture of the assessment process. All existing information, baseline survey and assessment methods should be addressed in the scoping phase in order to promote interaction between all stakeholders. In contrast to the assessment of the direct effects, which first emphasized impacts on the nationally important and protected flying squirrel but later expanded to deal with the assessment of impacts on ecologically important sites, the indirect and cumulative impacts of the power line were poorly addressed. The public was given the opportunity to become involved in the EIA process. However, they were more concerned with impacts on their properties and less so on biodiversity and species protection issues. This suggests that the public needs to become more informed about locally important features of biodiversity

  18. The effects of atmospheric nitrogen deposition on terrestrial and freshwater biodiversity

    Science.gov (United States)

    Baron, Jill S.; Barber, Mary C.; Adams, Mark; Agboola, Julius I.; Allen, Edith B.; Bealey, William J.; Bobbink, Roland; Bobrovsky, Maxim V.; Bowman, William D.; Branquinho, Cristina; Bustamente, Mercedes M. C.; Clark, Christopher M.; Cocking, Edward C.; Cruz, Cristina; Davidson, Eric A.; Denmead, O. Tom; Dias, Teresa; Dise, Nancy B.; Feest, Alan; Galloway, James N.; Geiser, Linda H.; Gilliam, Frank S.; Harrison, Ian J.; Khanina, Larisa G.; Lu, Xiankai; Manrique, Esteban; Ochoa-Hueso, Raul; Ometto, Jean P. H. B.; Payne, Richard; Scheuschner, Thomas; Sheppard, Lucy J.; Simpson, Gavin L.; Singh, Y. V.; Stevens, Carly J.; Strachan, Ian; Sverdrup, Harald; Tokuchi, Naoko; van Dobben, Hans; Woodin, Sarah

    2014-01-01

    This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.

  19. Correlation of Carbon Stock and Biodiversity Index at the Small Scale Agroforestry Landscape in Ciliwung Watershed

    Science.gov (United States)

    Choliq, M. B. S.; Kaswanto, R. L.

    2017-10-01

    Pekarangan is part of a complex of small-scale agroforestry landscape. Pekarangan have 3 functions i.e. ecological, economic, and social. ecological function, for providing landscape services such as carbon stock and biodiversity; economic function, can supplies foods and nutrition; and social function, for building low carbon communities and increasing the environmental awareness. Therefore, this research aims to correlate carbon stocks and biodiversity index of Pekarangan in Ciliwung Watershed. This study has measured 48 samples which were divided in three stream, namely upstream, midstream, and downstream. The samples were divided into four groups, G1 (pekarangan size less than 120 m2 and doesn’t have other agricultural land (no other agricultural land - OAL), G2 (<120 m2 with OAL < 1000 m2), G3 (120-400 m2 with no OAL) and G4 (120-400 m2 with OAL < 1000 m2). The results show that correlation between carbon stock and biodiversity index value is R2 = 0.05. The results showed no correlation between carbon stocks and biodiversity index could be due to the amount of Pekarangan owners who prefer potted plants than plant a tree, so that the carbon sequestered in the Pekarangan only slightly.

  20. When is the best time to sample aquatic macroinvertebrates in ponds for biodiversity assessment?

    Science.gov (United States)

    Hill, M J; Sayer, C D; Wood, P J

    2016-03-01

    Ponds are sites of high biodiversity and conservation value, yet there is little or no statutory monitoring of them across most of Europe. There are clear and standardised protocols for sampling aquatic macroinvertebrate communities in ponds, but the most suitable time(s) to undertake the survey(s) remains poorly specified. This paper examined the aquatic macroinvertebrate communities from 95 ponds within different land use types over three seasons (spring, summer and autumn) to determine the most appropriate time to undertake sampling to characterise biodiversity. The combined samples from all three seasons provided the most comprehensive record of the aquatic macroinvertebrate taxa recorded within ponds (alpha and gamma diversity). Samples collected during the autumn survey yielded significantly greater macroinvertebrate richness (76% of the total diversity) than either spring or summer surveys. Macroinvertebrate diversity was greatest during autumn in meadow and agricultural ponds, but taxon richness among forest and urban ponds did not differ significantly temporally. The autumn survey provided the highest measures of richness for Coleoptera, Hemiptera and Odonata. However, richness of the aquatic insect order Trichoptera was highest in spring and lowest in autumn. The results illustrate that multiple surveys, covering more than one season, provide the most comprehensive representation of macroinvertebrate biodiversity. When sampling can only be undertaken on one occasion, the most appropriate time to undertake surveys to characterise the macroinvertebrate community biodiversity is during autumn, although this may need to be modified if other floral and faunal groups need to be incorporated into the sampling programme.

  1. Effectiveness of amphibians as biodiversity surrogates in pond conservation.

    Science.gov (United States)

    Ilg, Christiane; Oertli, Beat

    2017-04-01

    Amphibian decline has led to worldwide conservation efforts, including the identification and designation of sites for their protection. These sites could also play an important role in the conservation of other freshwater taxa. In 89 ponds in Switzerland, we assessed the effectiveness of amphibians as a surrogate for 4 taxonomic groups that occur in the same freshwater ecosystems as amphibians: dragonflies, aquatic beetles, aquatic gastropods, and aquatic plants. The ponds were all of high value for amphibian conservation. Cross-taxon correlations were tested for species richness and conservation value, and Mantel tests were used to investigate community congruence. Species richness, conservation value, and community composition of amphibians were weakly congruent with these measures for the other taxonomic groups. Paired comparisons for the 5 groups considered showed that for each metric, amphibians had the lowest degree of congruence. Our results imply that site designation for amphibian conservation will not necessarily provide protection for freshwater biodiversity as a whole. To provide adequate protection for freshwater species, we recommend other taxonomic groups be considered in addition to amphibians in the prioritization and site designation process. © 2016 Society for Conservation Biology.

  2. Governance and the loss of biodiversity.

    Science.gov (United States)

    Smith, R J; Muir, R D J; Walpole, M J; Balmford, A; Leader-Williams, N

    2003-11-06

    Most of the world's biodiversity occurs within developing countries that require donor support to build their conservation capacity. Unfortunately, some of these countries experience high levels of political corruption, which may limit the success of conservation projects by reducing effective funding levels and distorting priorities. We investigated whether changes in three well surveyed and widespread components of biodiversity were associated with national governance scores and other socio-economic measures. Here we show that governance scores were correlated with changes in total forest cover, but not with changes in natural forest cover. We found strong associations between governance scores and changes in the numbers of African elephants and black rhinoceroses, and these socio-economic factors explained observed patterns better than any others. Finally, we show that countries rich in species and identified as containing priority areas for conservation have lower governance scores than other nations. These results stress the need for conservationists to develop and implement policies that reduce the effects of political corruption and, in this regard, we question the universal applicability of an influential approach to conservation that seeks to ban international trade in endangered species.

  3. Environmental Concerns: Biodiversity and Sustainable Environmental Protection

    International Nuclear Information System (INIS)

    Khamala, C.P.M.

    2006-01-01

    Biodiversity is the science tha describes the great variety of living things, namely animals, plants and bacteria present on this planet and their successful adaptation to diverse habitats. In other words, it is the science designed to acquint us with the spectrum of animal and plant and other life inhabiting this earth. Simply stated, it means the variety and variability among living organisms and ecological complexes in which they live. Thus defined, biodiversity is important in the structuring of stable life-support systems on the planet. In a time when animal and plant species all over the world are increasingly subject to extinction and diminishing population sizes, it is important to understand something about this diversity (science) if anything is to be preserved (technology). The future of the human race may depend upon the study of science and technology of living organisms. This is because it is the total variety of living matter on which society depends for food, water and air. It is the environment

  4. Genomic Approaches in Marine Biodiversity and Aquaculture

    Directory of Open Access Journals (Sweden)

    Jorge A Huete-Pérez

    2013-01-01

    Full Text Available Recent advances in genomic and post-genomic technologies have now established the new standard in medical and biotechnological research. The introduction of next-generation sequencing, NGS,has resulted in the generation of thousands of genomes from all domains of life, including the genomes of complex uncultured microbial communities revealed through metagenomics. Although the application of genomics to marine biodiversity remains poorly developed overall, some noteworthy progress has been made in recent years. The genomes of various model marine organisms have been published and a few more are underway. In addition, the recent large-scale analysis of marine microbes, along with transcriptomic and proteomic approaches to the study of teleost fishes, mollusks and crustaceans, to mention a few, has provided a better understanding of phenotypic variability and functional genomics. The past few years have also seen advances in applications relevant to marine aquaculture and fisheries. In this review we introduce several examples of recent discoveries and progress made towards engendering genomic resources aimed at enhancing our understanding of marine biodiversity and promoting the development of aquaculture. Finally, we discuss the need for auspicious science policies to address challenges confronting smaller nations in the appropriate oversight of this growing domain as they strive to guarantee food security and conservation of their natural resources.

  5. Impact of sludge deposition on biodiversity.

    Science.gov (United States)

    Manzetti, Sergio; van der Spoel, David

    2015-11-01

    Sludge deposition in the environment is carried out in several countries. It encompasses the dispersion of treated or untreated sludge in forests, marsh lands, open waters as well as estuarine systems resulting in the gradual accumulation of toxins and persistent organic compounds in the environment. Studies on the life cycle of compounds from sludge deposition and the consequences of deposition are few. Most reports focus rather on treatment-methods and approaches, legislative aspects as well as analytical evaluations of the chemical profiles of sludge. This paper reviews recent as well as some older studies on sludge deposition in forests and other ecosystems. From the literature covered it can be concluded that sludge deposition induces two detrimental effects on the environment: (1) raising of the levels of persistent toxins in soil, vegetation and wild life and (2) slow and long-termed biodiversity-reduction through the fertilizing nutrient pollution operating on the vegetation. Since recent studies show that eutrophication of the environment is a major threat to global biodiversity supplying additional nutrients through sludge-based fertilization seems imprudent. Toxins that accumulate in the vegetation are transferred to feeding herbivores and their predators, resulting in a reduced long-term survival chance of exposed species. We briefly review current legislation for sludge deposition and suggest alternative routes to handling this difficult class of waste.

  6. Global biodiversity loss: Exaggerated versus realistic estimates

    Directory of Open Access Journals (Sweden)

    John C. Briggs

    2016-06-01

    Full Text Available For the past 50 years, the public has been made to feel guilty about the tragedy of human-caused biodiversity loss due to the extinction of hundreds or thousands of species every year. Numerous articles and books from the scientific and popular press and publicity on the internet have contributed to a propaganda wave about our grievous loss and the beginning of a sixth mass extinction. However, within the past few years, questions have arisen about the validity of the data which led to the doom scenario. Here I show that, for the past 500 years, terrestrial animals (insects and vertebrates have been losing less than two species per year due to human causes. The majority of the extinctions have occurred on oceanic islands with little effect on continental ecology. In the marine environment, losses have also been very low. At the same time, speciation has continued to occur and biodiversity gain by this means may have equaled or even surpassed the losses. While species loss is not, so far, a global conservation problem, ongoing population declines within thousands of species that are at risk on land and in the sea constitute an extinction debt that will be paid unless those species can be rescued.

  7. New Mediterranean Biodiversity Records (March 2016

    Directory of Open Access Journals (Sweden)

    P. K. KARACHLE

    2016-03-01

    Full Text Available In this Collective Article on “New Mediterranean Biodiversity Records”, we present additional records of species found in the Mediterranean Sea. These records refer to eight different countries throughout the northern part of the basin, and include 28 species, belonging to five phyla. The findings per country include the following species: Spain: Callinectes sapidus and Chelidonura fulvipunctata; Monaco: Aplysia dactylomela; Italy: Charybdis (Charybdis feriata, Carcharodon carcharias, Seriola fasciata, and Siganus rivulatus; Malta: Pomacanthus asfur; Croatia: Lagocephalus sceleratus and Pomadasys incisus; Montenegro: Lagocephalus sceleratus; Greece: Amathia (Zoobotryon verticillata, Atys cf. macandrewii, Cerithium scabridum, Chama pacifica, Dendostrea cf. folium, Ergalatax junionae, Septifer cumingii, Syphonota geographica, Syrnola fasciata, Oxyurichthys petersi, Scarus ghobban, Scorpaena maderensis, Solea aegyptiaca and Upeneus pori; Turkey: Lobotes surinamensis, Ruvettus pretiosus and Ophiocten abyssicolum. In the current article, the presence of Taractes rubescens (Jordan & Evermann, 1887 is recorded for the first time in the Mediterranean from Italy. The great contribution of citizen scientists in monitoring biodiversity records is reflected herein, as 10% of the authors are citizen scientists, and contributed 37.5% of the new findings.

  8. Rice agroecosystem and the maintenance of biodiversity

    International Nuclear Information System (INIS)

    Ahyaudin Ali

    2002-01-01

    Rice fields are a special type of wetland. They are shallow, constantly disturbed and experience extremes in temperature and dissolved oxygen content. They receive nutrients in the form of fertilizers during rice cultivation. Rice fields; support a variety of flora and fauna that have adapted and adjusted themselves to the extreme conditions. Since rice fields also support populations of wild fish, rice?fish integration should be done in order to optimize land use and provide supplementary income to farmers. Rice?fish farming encourages farmers to judiciously apply pesticides and herbicides in their fields thus helping to control excessive and unwarranted use of these chemicals. Rice fields also support many migratory and nonmigratory bird species and provides habitat for small mammals. Thus the rice agroecosystem helps to maintain aquatic biodiversity. The Muda rice agroecosystem consists of a troika of interconnected ecosystems. The troika consisting of reservoirs, the connecting network of canals and the rice fields; should be investigated further. This data is needed for informed decision-making concerning development and management of the system so that productivity and biodiversity can be maintained and sustained. (Author)

  9. Biofilm biodiversity presented by fluorescent in situ hybridisation

    Directory of Open Access Journals (Sweden)

    Wolf Mirela

    2017-01-01

    Full Text Available Numerous microorganisms may be present in the water distribution system. This is associated with the imperfection of purification processes, or secondary water pollution. Not only it results in the deterioration of water quality parameters, but it also increases threat of epidemiological problems. The water that is biologically unstable creates ideal conditions for colonization of the microorganisms to the inner surface of pipelines which may form biofilm. The key issue, enabling prevention and control of the impact of the development of biofilms, is to assess the biodiversity of microbiocenosis. In order to obtain comprehensive characteristics of microorganisms communities on a particular substrate, it is necessary to combine several techniques. Further analysis using molecular biology methods are usually after traditional methods of assessing the microbiological quality of water. Standard methods do not reflect the actual species composition, because they are targeted at the bacteria that can be isolated and cultured in the laboratory. Conventional methods are capable of detecting less than 10% of the organisms in the sample. In order to study the biodiversity of organisms inhabiting a biofilm (apart from the conventional methods analyses of the diversity of nucleic acids should be used. The first method could be the polymerase chain reaction (PCR and denaturing gradient gel electrophoresis (DGGE. Another way may be fluorescence in situ hybridization, which allows to detect determined DNA sequence using specially labeled oligonucleotide probes. Visualization of the material is performed using a fluorescence microscope. The main purpose of this article is to present rapid and precise identification groups of microorganisms in their natural habitat in biofilm using fluorescent in situ hybridization method (FISH . FISH method can be successfully used to visualize these microorganisms, which show difficulties in culturing, as well as to provide

  10. Advantages of volunteer-based biodiversity monitoring in Europe.

    Science.gov (United States)

    Schmeller, Dirk S; Henry, Pierre-Yves; Julliard, Romain; Gruber, Bernd; Clobert, Jean; Dziock, Frank; Lengyel, Szabolcs; Nowicki, Piotr; Déri, Eszter; Budrys, Eduardas; Kull, Tiiu; Tali, Kadri; Bauch, Bianca; Settele, Josef; Van Swaay, Chris; Kobler, Andrej; Babij, Valerija; Papastergiadou, Eva; Henle, Klaus

    2009-04-01

    Without robust and unbiased systems for monitoring, changes in natural systems will remain enigmatic for policy makers, leaving them without a clear idea of the consequences of any environmental policies they might adopt. Generally, biodiversity-monitoring activities are not integrated or evaluated across any large geographic region. The EuMon project conducted the first large-scale evaluation of monitoring practices in Europe through an on-line questionnaire and is reporting on the results of this survey. In September 2007 the EuMon project had documented 395 monitoring schemes for species, which represents a total annual cost of about 4 million euro, involving more than 46,000 persons devoting over 148,000 person-days/year to biodiversity-monitoring activities. Here we focused on the analysis of variations of monitoring practices across a set of taxonomic groups (birds, amphibians and reptiles, mammals, butterflies, plants, and other insects) and across 5 European countries (France, Germany, Hungary, Lithuania, and Poland). Our results suggest that the overall sampling effort of a scheme is linked with the proportion of volunteers involved in that scheme. Because precision is a function of the number of monitored sites and the number of sites is maximized by volunteer involvement, our results do not support the common belief that volunteer-based schemes are too noisy to be informative. Just the opposite, we believe volunteer-based schemes provide relatively reliable data, with state-of-the-art survey designs or data-analysis methods, and consequently can yield unbiased results. Quality of data collected by volunteers is more likely determined by survey design, analytical methodology, and communication skills within the schemes rather than by volunteer involvement per se.

  11. Multi-functional landscapes in semi arid environments: implications for biodiversity and ecosystem services

    CSIR Research Space (South Africa)

    O'Farrell, PJ

    2010-06-01

    Full Text Available Synergies between biodiversity conservation objectives and ecosystem service management were investigated in the Succulent Karoo biome (83,000 km2) of South Africa, a recognised biodiversity hotspot. Our study complemented a previous biodiversity...

  12. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring

    NARCIS (Netherlands)

    Hillebrand, Helmut; Blasius, Bernd; Borer, Elizabeth T.; Chase, Jonathan M.; Downing, John; Eriksson, Britas Klemens; Filstrup, Christopher T.; Harpole, W. Stanley; Hodapp, Dorothee; Larsen, Stefano; Lewandowska, Aleksandra M.; Seabloom, Eric W.; Van de Waal, Dedmer B.; Ryabov, Alexey B.

    2018-01-01

    * Global concern about human impact on biological diversity has triggered an intense research agenda on drivers and consequences of biodiversity change in parallel with international policy seeking to conserve biodiversity and associated ecosystem functions. Quantifying the trends in biodiversity is

  13. 77 FR 6820 - Proposed Information Collection; Comment Request: Creating Stewardship Through Biodiversity...

    Science.gov (United States)

    2012-02-09

    ... Information Collection; Comment Request: Creating Stewardship Through Biodiversity Discovery in National Parks... collection (IC) described below. This collection will survey participants of Biodiversity Discovery efforts... Biodiversity Discovery refers to a variety of efforts to discover living organisms through public involvement...

  14. 78 FR 19353 - Biodiversity Beyond National Jurisdiction; Notice of Public Meeting

    Science.gov (United States)

    2013-03-29

    ... DEPARTMENT OF STATE [Public Notice 8262] Biodiversity Beyond National Jurisdiction; Notice of... information session regarding issues related to marine biodiversity in areas beyond national jurisdiction... international meetings and negotiations on marine biodiversity beyond national jurisdiction, such as the meeting...

  15. Biodiversity change is uncoupled from species richness trends : Consequences for conservation and monitoring

    NARCIS (Netherlands)

    Hillebrand, Helmut; Blasius, Bernd; Borer, Elizabeth T.; Chase, Jonathan M.; Downing, John A.; Eriksson, Britas Klemens; Filstrup, Christopher T.; Harpole, W. Stanley; Hodapp, Dorothee; Larsen, Stefano; Lewandowska, Aleksandra M.; Seabloom, Eric W.; Van de Waal, Dedmer B.; Ryabov, Alexey B.

    Global concern about human impact on biological diversity has triggered an intense research agenda on drivers and consequences of biodiversity change in parallel with international policy seeking to conserve biodiversity and associated ecosystem functions. Quantifying the trends in biodiversity is

  16. Modes of speciation and the neutral theory of biodiversity

    NARCIS (Netherlands)

    Etienne, Rampal S.; Apol, M. Emile F.; Olff, Han; Weissing, Franz J.

    Hubbell's neutral theory of biodiversity has generated much debate over the need for niches to explain biodiversity patterns. Discussion of the theory has focused on its neutrality assumption, i.e. the functional equivalence of species in competition and dispersal. Almost no attention has been paid

  17. Soil biodiversity and soil community composition determine ecosystem multifunctionality.

    Science.gov (United States)

    Wagg, Cameron; Bender, S Franz; Widmer, Franco; van der Heijden, Marcel G A

    2014-04-08

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth's biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability.

  18. Biodiversity and Bionomics for Fruit Flies ( Diptera: Tephritidae ) in ...

    African Journals Online (AJOL)

    Studies on biodiversity and bionomics of fruit flies (Diptera: Tephritidae) were conducted in Morogoro Region, Central Tanzania from 2004 to 2006. Specifically studies aimed at determining the biodiversity of fruit flies, their host range, infestation rate, incidence and seasonality. These are among the pre-requisites for ...

  19. Influence of agricultural biodiversity on dietary diversity of preschool ...

    African Journals Online (AJOL)

    Agricultural biodiversity encompasses the variety and variability of plants and animals that are necessary for food production and accessibility. Loss of agricultural biodiversity is taking place at a very high rate in Kenya. Many indigenous species that are not only nutritious, but also adapted to harsh conditions are now ...

  20. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  1. Positive biodiversity-productivity relationship predominant in global forests

    NARCIS (Netherlands)

    Liang, Jingjing; Crowther, Thomas W.; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A. David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B.; Glick, Henry B.; Hengeveld, Geerten M.; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C.; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V.; Chen, Han Y. H.; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I.; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A.; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B.; Neldner, Victor J.; Ngugi, Michael R.; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M.; Peri, Pablo L.; Gonmadje, Christelle; Marthy, William; O’Brien, Timothy; Martin, Emanuel H.; Marshall, Andrew R.; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A.; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L.; Ferreira, Leandro V.; Odeke, David E.; Vasquez, Rodolfo M.; Lewis, Simon L.; Reich, Peter B.

    2016-01-01

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126

  2. Food Security and Biodiversity Conservation in the context of ...

    African Journals Online (AJOL)

    Accomplishing household food security simultaneously with biodiversity conservation, particularly on communal farm lands, constitutes a great challenge in South Africa. This is because biodiversity species are being threatened on lands wherein agricultural production is done in the name of securing food availability.

  3. The Global Genome Biodiversity Network (GGBN) Data Portal.

    Science.gov (United States)

    Droege, Gabriele; Barker, Katharine; Astrin, Jonas J; Bartels, Paul; Butler, Carol; Cantrill, David; Coddington, Jonathan; Forest, Félix; Gemeinholzer, Birgit; Hobern, Donald; Mackenzie-Dodds, Jacqueline; Ó Tuama, Éamonn; Petersen, Gitte; Sanjur, Oris; Schindel, David; Seberg, Ole

    2014-01-01

    The Global Genome Biodiversity Network (GGBN) was formed in 2011 with the principal aim of making high-quality well-documented and vouchered collections that store DNA or tissue samples of biodiversity, discoverable for research through a networked community of biodiversity repositories. This is achieved through the GGBN Data Portal (http://data.ggbn.org), which links globally distributed databases and bridges the gap between biodiversity repositories, sequence databases and research results. Advances in DNA extraction techniques combined with next-generation sequencing technologies provide new tools for genome sequencing. Many ambitious genome sequencing projects with the potential to revolutionize biodiversity research consider access to adequate samples to be a major bottleneck in their workflow. This is linked not only to accelerating biodiversity loss and demands to improve conservation efforts but also to a lack of standardized methods for providing access to genomic samples. Biodiversity biobank-holding institutions urgently need to set a standard of collaboration towards excellence in collections stewardship, information access and sharing and responsible and ethical use of such collections. GGBN meets these needs by enabling and supporting accessibility and the efficient coordinated expansion of biodiversity biobanks worldwide.

  4. Forsaking Nature? Contesting "Biodiversity" through Competing Discourses of Sustainability

    Science.gov (United States)

    Kopnina, Helen

    2013-01-01

    The Convention on Biodiversity has developed the concept of "ecosystem services" and "natural resources" in order to describe ways in which humans benefit from healthy ecosystems. Biodiversity, conceived through the economic approach, was recognized to be of great social and economic value to both present and future…

  5. Energy mitigation, adaptation and biodiversity: Synergies and antagonisms

    International Nuclear Information System (INIS)

    Berry, P M; Paterson, J S

    2009-01-01

    In this paper we review the current impacts of different energy producers (and energy conservation) on biodiversity and investigate the potential for achieving positive biodiversity effects along with mitigation and adaptation objectives. Very few energy producers achieve all three aims - although it may be possible with careful choice of location and management. In some instances, energy conservation can provide mitigation, adaptation and biodiversity benefits. There is still a gap in knowledge regarding the effects of newer energy technologies on biodiversity. There is an additional concern that many supposedly 'green' renewable energy projects may actually harm biodiversity to such a degree that their overall human benefits are negated. The increasing understanding that ecosystem services are vital for human well-being though means that attempting positive mitigation, adaptation and biodiversity conservation in the energy sector should be an imperative goal for international policy. Whilst research into synergies between mitigation and adaptation is established, there has been very little that has examined the impacts on biodiversity as well. Further work is required to identify and provide evidence of the best ways of optimising mitigation, adaptation and biodiversity in the energy sector.

  6. Participation in Biodiversity Conservation: Motivations and Barriers of Australian Landholders

    Science.gov (United States)

    Moon, Katie; Cocklin, Chris

    2011-01-01

    Biodiversity conservation programs that appeal to landholders' motivations and minimise their barriers to participation may result in both increased uptake rates and improved ecological outcomes. To understand their motivations and barriers to conserve biodiversity, qualitative interviews were conducted with 45 landholders who had participated in…

  7. Systems in peril: Climate change, agriculture and biodiversity in Australia

    International Nuclear Information System (INIS)

    Cocklin, Chris; Dibden, Jacqui

    2009-01-01

    This paper reflects on the interplay amongst three closely linked systems - climate, agriculture and biodiversity - in the Australian context. The advance of a European style of agriculture has imperilled Australian biodiversity. The loss and degradation of biodiversity has, in turn, had negative consequences for agriculture. Climate change is imposing new pressures on both agriculture and biodiversity. From a policy and management perspective, though, it is possible to envisage mitigation and adaptation responses that would alleviate pressures on all three systems (climate, agriculture, biodiversity). In this way, the paper seeks to make explicit the important connections between science and policy. The paper outlines the distinctive features of both biodiversity and agriculture in the Australian context. The discussion then addresses the impacts of agriculture on biodiversity, followed by an overview of how climate change is impacting on both of these systems. The final section of the paper offers some commentary on current policy and management strategies that are targeted at mitigating the loss of biodiversity and which may also have benefits in terms of climate change.

  8. Children in Nature: Sensory Engagement and the Experience of Biodiversity

    Science.gov (United States)

    Beery, Thomas; Jørgensen, Kari Anne

    2018-01-01

    Given concerns for a severely diminished childhood experience of nature, coupled with alarm for a rapidly diminishing global biodiversity, this article considers the potential for childhood nature experience to be an important part of biodiversity understanding. Findings from two studies are integrated and presented as windows into childhood…

  9. Session A2 Rangelands as dynamic systems — Biodiversity ...

    African Journals Online (AJOL)

    Management of rangelands for animal products can reduce, maintain or even increase biodiversity. Loss of biodiversity of plants and animals can lead to decreased productivity and income generation from rangelands or can exacerbate the effects of climatic variability and concomitant increased risks for subsistence and ...

  10. Biodiversity conservation in metacommunity networks: linking pattern and persistence.

    Science.gov (United States)

    Economo, Evan P

    2011-06-01

    A central goal of conservation science is to identify the most important habitat patches for maintaining biodiversity on a landscape. Spatial biodiversity patterns are often used for such assessments, and patches that harbor unique diversity are generally prioritized over those with high community similarity to other areas. This places an emphasis on biodiversity representation, but removing a patch can have cascading effects on biodiversity persistence in the remaining ecological communities. Metacommunity theory provides a mechanistic route to the linking of biodiversity patterns on a landscape with the subsequent dynamics of diversity loss after habitat is degraded. Using spatially explicit neutral theory, I focus on the situation where spatial patterns of diversity and similarity are generated by the structure of dispersal networks and not environmental gradients. I find that gains in biodiversity representation are nullified by losses in persistence, and as a result the effects of removing a patch on metacommunity diversity are essentially independent of complementarity or other biodiversity patterns. In this scenario, maximizing protected area and not biodiversity representation is the key to maintaining diversity in the long term. These results highlight the need for a broader understanding of how conservation paradigms perform under different models of metacommunity dynamics.

  11. An analytical framework for linking biodiversity to poverty

    NARCIS (Netherlands)

    Hengsdijk, H.; Meijerink, G.W.; Tonneijck, A.E.G.; Bindraban, P.S.

    2005-01-01

    This report aims to develop a framework linking poverty reduction and biodiversity conservation in order to identify research questions and to contribute to improved policy formulation. A general overview of the subject, definitions and concepts of poverty and biodiversity are described.

  12. Climate impacts on global hot spots of marine biodiversity.

    Science.gov (United States)

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S; Chiaradia, André

    2017-02-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world's richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation.

  13. Taxonomy, biodiversity and management of knowledge in Asia

    NARCIS (Netherlands)

    Ng, F.S.P.

    2002-01-01

    At the Biodiversity 2000 Kuching Conference in November 2000, I put forward the thesis that biodiversity is a knowledge resource, and that Asian societies have an attitude problem with respect to the management of knowledge (Ng, 2001). I offered the following evidence: In AD 304, Chi Han published

  14. Blue Genes : Sharing and Conserving the World's Aquatic Biodiversity

    International Development Research Centre (IDRC) Digital Library (Canada)

    Blue Genes : Sharing and Conserving the World's Aquatic Biodiversity. Couverture du livre Blue Genes: Sharing and Conserving the World's Aquatic Biodiversity. Auteur(s) : David Greer et Brian Harvey. Maison(s) d'édition : Earthscan, CRDI. 31 août 2004. ISBN : 1844071065. 246 pages. e-ISBN : 1552501574.

  15. The Custodians of Biodiversity : Sharing Access to and Benefits of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Custodians of Biodiversity : Sharing Access to and Benefits of Genetic Resources. Couverture du livre The Custodians of Biodiversity : Sharing Access to and Benefits of Genetic Resources. Directeur(s) : Manuel Ruiz, Ronnie Vernooy. Maison(s) d'édition : Earthscan, CRDI. 15 décembre 2011. ISBN : 9781849714518.

  16. Engaging Pupils in Decision-Making about Biodiversity Conservation Issues

    Science.gov (United States)

    Grace, Marcus; Byrne, Jenny

    2010-01-01

    Our pupils' generation will eventually have the daunting responsibility of making decisions about local and global biodiversity. School provides an early opportunity for them to enter into formal discussion about the science and values associated with biodiversity conservation; but the crowded curriculum offers little time for such activities.…

  17. What Lives Where & Why? Understanding Biodiversity through Geospatial Exploration

    Science.gov (United States)

    Trautmann, Nancy M.; Makinster, James G.; Batek, Michael

    2013-01-01

    Using an interactive map-based PDF, students learn key concepts related to biodiversity while developing data-analysis and critical-thinking skills. The Bird Island lesson provides students with experience in translating geospatial data into bar graphs, then interpreting these graphs to compare biodiversity across ecoregions on a fictional island.…

  18. Conserving Earth's Biodiversity. [CD-ROM and] Instructor's Manual.

    Science.gov (United States)

    2000

    This CD-ROM is designed as an interactive learning tool to support teaching in highly interdisciplinary fields such as conservation of biodiversity. Topics introduced in the software include the impact of humans on natural landscapes, threats to biodiversity, methods and theories of conservation biology, environmental laws, and relevant economic…

  19. The Wildlife Trade In Ghana: A Threat To Biodiversity Conservation ...

    African Journals Online (AJOL)

    The rich biodiversity of Ghana is currently under threat from anthropogenic influences, including local and international trade in wildlife. Thes study investigated the effect of this trade on biodiversity conservation initiatives in Ghana. The study involved the use of interviews and structured questionnaires administered in four ...

  20. From genes to landscapes: conserving biodiversity at multiple scales.

    Science.gov (United States)

    Sally. Duncan

    2000-01-01

    Biodiversity has at last become a familiar term outside of scientific circles. Ways of measuring it and mapping it are advancing and becoming more complex, but ways of deciding how to conserve it remain mixed at best, and the resources available to manage dimishing biodiversity are themselves scarce. One significant problem is that policy decisions are frequently at...

  1. Biodiversity loss in Ghana: The human factor | Bennett-Lartey ...

    African Journals Online (AJOL)

    Loss of biodiversity in Ghana is due to human activities and other environmental factors. The country loses a great proportion of its biodiversity, due mainly to unacceptable practices like slash and burn agriculture, surface mining, construction activities and bushfires. Various conservation measures practiced in Ghana have ...

  2. Threatened biodiversity, the nema eia regulations and cultivation of ...

    African Journals Online (AJOL)

    Until such listing, unresolved legal questions that inhibited the effective consideration of biodiversity in agricultural decision-making prior to the promulgation of the NEMA EIA regulations are likely to persist—to the detriment of a globally imperilled biodiversity. This contribution sets out to identify some of the key issues that ...

  3. Review on the Application of Ecosystem Models in Biodiversity ...

    African Journals Online (AJOL)

    This paper is an exposition with the sole aim of highlighting the relevance of ecosystem models in the analyses of biodiversity. The structure of ecosystem models enables researchers to design and consequently formulate monitoring programs that will be useful to the conservation of biodiversity. Ecosystem theoretical ...

  4. The place of environmental education and awareness in biodiversity ...

    African Journals Online (AJOL)

    This paper examines the place of environmental education and awareness in biodiversity conservation in Nigeria. Depletion of biodiversity in Nigeria is a major environmental problem and a serious threat to livelihood and the quality of life. It is very important that future development programmes aggressively develop ...

  5. Food Sovereignty and Uncultivated Biodiversity in South Asia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1 janv. 2007 ... Food Sovereignty and Uncultivated Biodiversity in South Asia : Essays on the Poverty of Food Policy and the Wealth of the Social Landscape. Couverture du livre Food Soverignty and Uncultivated Biodiversity in South Asia : Essays on the Poverty. Author(s):. Farhad Mazhar, Daniel Buckles, P.V. Satheesh, ...

  6. Why are no Biodiversity Management Committees that ought to have ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Why are no Biodiversity Management Committees that ought to have been established under B D Act 2002 in place? Why are no Biodiversity Management Committees that ought to have been established under B D Act 2002 in place? Why have no rights – individual and ...

  7. Data requirements and data sources for biodiversity priority area ...

    Indian Academy of Sciences (India)

    Unknown

    The data needed to prioritize areas for biodiversity protection are records of biodiversity features – species, species assemblages, environmental classes – for each candidate area. Prioritizing areas means comparing candidate areas, so the data used to make such comparisons should be comparable in quality and ...

  8. Reconciling biodiversity conservation and marine capture fisheries production

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    Pathways for moving towards the goals of biodiversity conservation and food security in terrestrial systems include the application of trait-based ecology to develop highly productive agroecosystems with less negative effects on biodiversity. Although marine ecosystems have been impacted by human...

  9. A Biodiversity Indicators Dashboard: Addressing Challenges to Monitoring Progress towards the Aichi Biodiversity Targets Using Disaggregated Global Data

    Science.gov (United States)

    Han, Xuemei; Smyth, Regan L.; Young, Bruce E.; Brooks, Thomas M.; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H. M.; Larsen, Frank W.; Hamilton, Healy; Hansen, Matthew C.; Turner, Will R.

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's “Aichi Targets”. These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity “dashboard” – a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the

  10. A biodiversity indicators dashboard: addressing challenges to monitoring progress towards the Aichi biodiversity targets using disaggregated global data.

    Science.gov (United States)

    Han, Xuemei; Smyth, Regan L; Young, Bruce E; Brooks, Thomas M; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H M; Larsen, Frank W; Hamilton, Healy; Hansen, Matthew C; Turner, Will R

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity "dashboard"--a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the protection of

  11. A biodiversity indicators dashboard: addressing challenges to monitoring progress towards the Aichi biodiversity targets using disaggregated global data.

    Directory of Open Access Journals (Sweden)

    Xuemei Han

    Full Text Available Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity "dashboard"--a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate, state of species (Red List Index, conservation response (protection of key biodiversity areas, and benefits to human populations (freshwater provision. Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the

  12. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Science.gov (United States)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Senior, Rebecca A; Bennett, Dominic J; Booth, Hollie; Choimes, Argyrios; Correia, David L P; Day, Julie; Echeverría-Londoño, Susy; Garon, Morgan; Harrison, Michelle L K; Ingram, Daniel J; Jung, Martin; Kemp, Victoria; Kirkpatrick, Lucinda; Martin, Callum D; Pan, Yuan; White, Hannah J; Aben, Job; Abrahamczyk, Stefan; Adum, Gilbert B; Aguilar-Barquero, Virginia; Aizen, Marcelo A; Ancrenaz, Marc; Arbeláez-Cortés, Enrique; Armbrecht, Inge; Azhar, Badrul; Azpiroz, Adrián B; Baeten, Lander; Báldi, András; Banks, John E; Barlow, Jos; Batáry, Péter; Bates, Adam J; Bayne, Erin M; Beja, Pedro; Berg, Åke; Berry, Nicholas J; Bicknell, Jake E; Bihn, Jochen H; Böhning-Gaese, Katrin; Boekhout, Teun; Boutin, Céline; Bouyer, Jérémy; Brearley, Francis Q; Brito, Isabel; Brunet, Jörg; Buczkowski, Grzegorz; Buscardo, Erika; Cabra-García, Jimmy; Calviño-Cancela, María; Cameron, Sydney A; Cancello, Eliana M; Carrijo, Tiago F; Carvalho, Anelena L; Castro, Helena; Castro-Luna, Alejandro A; Cerda, Rolando; Cerezo, Alexis; Chauvat, Matthieu; Clarke, Frank M; Cleary, Daniel F R; Connop, Stuart P; D'Aniello, Biagio; da Silva, Pedro Giovâni; Darvill, Ben; Dauber, Jens; Dejean, Alain; Diekötter, Tim; Dominguez-Haydar, Yamileth; Dormann, Carsten F; Dumont, Bertrand; Dures, Simon G; Dynesius, Mats; Edenius, Lars; Elek, Zoltán; Entling, Martin H; Farwig, Nina; Fayle, Tom M; Felicioli, Antonio; Felton, Annika M; Ficetola, Gentile F; Filgueiras, Bruno K C; Fonte, Steven J; Fraser, Lauchlan H; Fukuda, Daisuke; Furlani, Dario; Ganzhorn, Jörg U; Garden, Jenni G; Gheler-Costa, Carla; Giordani, Paolo; Giordano, Simonetta; Gottschalk, Marco S; Goulson, Dave; Gove, Aaron D; Grogan, James; Hanley, Mick E; Hanson, Thor; Hashim, Nor R; Hawes, Joseph E; Hébert, Christian; Helden, Alvin J; Henden, John-André; Hernández, Lionel; Herzog, Felix; Higuera-Diaz, Diego; Hilje, Branko; Horgan, Finbarr G; Horváth, Roland; Hylander, Kristoffer; Isaacs-Cubides, Paola; Ishitani, Masahiro; Jacobs, Carmen T; Jaramillo, Víctor J; Jauker, Birgit; Jonsell, Mats; Jung, Thomas S; Kapoor, Vena; Kati, Vassiliki; Katovai, Eric; Kessler, Michael; Knop, Eva; Kolb, Annette; Kőrösi, Ádám; Lachat, Thibault; Lantschner, Victoria; Le Féon, Violette; LeBuhn, Gretchen; Légaré, Jean-Philippe; Letcher, Susan G; Littlewood, Nick A; López-Quintero, Carlos A; Louhaichi, Mounir; Lövei, Gabor L; Lucas-Borja, Manuel Esteban; Luja, Victor H; Maeto, Kaoru; Magura, Tibor; Mallari, Neil Aldrin; Marin-Spiotta, Erika; Marshall, E J P; Martínez, Eliana; Mayfield, Margaret M; Mikusinski, Grzegorz; Milder, Jeffrey C; Miller, James R; Morales, Carolina L; Muchane, Mary N; Muchane, Muchai; Naidoo, Robin; Nakamura, Akihiro; Naoe, Shoji; Nates-Parra, Guiomar; Navarrete Gutierrez, Dario A; Neuschulz, Eike L; Noreika, Norbertas; Norfolk, Olivia; Noriega, Jorge Ari; Nöske, Nicole M; O'Dea, Niall; Oduro, William; Ofori-Boateng, Caleb; Oke, Chris O; Osgathorpe, Lynne M; Paritsis, Juan; Parra-H, Alejandro; Pelegrin, Nicolás; Peres, Carlos A; Persson, Anna S; Petanidou, Theodora; Phalan, Ben; Philips, T Keith; Poveda, Katja; Power, Eileen F; Presley, Steven J; Proença, Vânia; Quaranta, Marino; Quintero, Carolina; Redpath-Downing, Nicola A; Reid, J Leighton; Reis, Yana T; Ribeiro, Danilo B; Richardson, Barbara A; Richardson, Michael J; Robles, Carolina A; Römbke, Jörg; Romero-Duque, Luz Piedad; Rosselli, Loreta; Rossiter, Stephen J; Roulston, T'ai H; Rousseau, Laurent; Sadler, Jonathan P; Sáfián, Szabolcs; Saldaña-Vázquez, Romeo A; Samnegård, Ulrika; Schüepp, Christof; Schweiger, Oliver; Sedlock, Jodi L; Shahabuddin, Ghazala; Sheil, Douglas; Silva, Fernando A B; Slade, Eleanor M; Smith-Pardo, Allan H; Sodhi, Navjot S; Somarriba, Eduardo J; Sosa, Ramón A; Stout, Jane C; Struebig, Matthew J; Sung, Yik-Hei; Threlfall, Caragh G; Tonietto, Rebecca; Tóthmérész, Béla; Tscharntke, Teja; Turner, Edgar C; Tylianakis, Jason M; Vanbergen, Adam J; Vassilev, Kiril; Verboven, Hans A F; Vergara, Carlos H; Vergara, Pablo M; Verhulst, Jort; Walker, Tony R; Wang, Yanping; Watling, James I; Wells, Konstans; Williams, Christopher D; Willig, Michael R; Woinarski, John C Z; Wolf, Jan H D; Woodcock, Ben A; Yu, Douglas W; Zaitsev, Andrey S; Collen, Ben; Ewers, Rob M; Mace, Georgina M; Purves, Drew W; Scharlemann, Jörn P W; Purvis, Andy

    2014-01-01

    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015. PMID:25558364

  13. Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss

    Science.gov (United States)

    Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J.; Atkinson, I. M.; Ramirez-Villegas, J.; Osborn, T.; Shoo, L.; Jarvis, A.; Williams, S.; Lowe, J. A.

    2014-12-01

    Quantitative simulations of the global-scale benefits of climate change mitigation in avoiding biodiversity loss are presented. Previous studies have projected widespread global and regional impacts of climate change on biodiversity. However, these have focused on analysis of business-as-usual scenarios, with no explicit mitigation policy included. This study finds that early, stringent mitigation would avoid a large proportion of the impacts of climate change induced biodiversity loss projected for the 2080s. Furthermore, despite the large number of studies addressing extinction risks in particular species groups, few studies have explored the issue of potential range loss in common and widespread species. Our study is a comprehensive global scale analysis of 48,786 common and widespread species. We show that without climate change mitigation, 57+/-6% of the plants and 34+/-7% of the animals studied are likely to lose over 50% of their present climatic range by the 2080s. This estimate incorporates realistic, taxon-specific dispersal rates. With stringent mitigation, in which emissions peak in 2016 and are reduced by 5% annually thereafter, these losses are reduced by 60%. Furthermore, with stringent mitigation, global temperature rises more slowly, allowing an additional three decades for biodiversity to adapt to a temperature rise of 2C above pre-industrial levels. The work also shows that even with mitigation not all the impacts can now be avoided, and ecosystems and biodiversity generally has a very limited capacity to adapt. Delay in mitigation substantially reduces the percentage of impacts that can be avoided, for example if emissions do not peak until 2030, the percentage of losses that can be avoided declines to 40%. Since even small declines in common and widespread species can disrupt ecosystem function and services, these results indicate that without mitigation, globally widespread losses in ecosystem service provision are to be expected.

  14. National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)

    Science.gov (United States)

    Chavez, F.; Montes, E.; Muller-Karger, F. E.; Gittings, S.; Canonico, G.; Kavanaugh, M.; Iken, K.; Miller, R. J.; Duffy, J. E.; Miloslavich, P.

    2016-12-01

    The U.S. Federal government (NOAA, NASA, BOEM, and the Smithsonian Institution), academic researchers, and private partners in the U.S. and around the world are working on the design and implementation of a Marine Biodiversity Observation Network (MBON). The program is being coordinated internationally with the Group on Earth Observations (GEO BON) and two key Intergovernmental Oceanographic Commission (IOC) programs, namely the Global Ocean Observing System (GOOS) and the Ocean Biogeographic Information System (OBIS). The goal is to monitor changes in marine biodiversity within various geographic settings. In the U.S., demonstration projects include four National Marine Sanctuaries (NMS): Florida Keys, Monterey Bay, Flower Garden Banks, and Channel Islands. The Smithsonian is implementing several programs around the world under the Marine Global Earth Observatory (MarineGEO) partnership, directed by the Smithsonian's Tennenbaum Marine Observatories Network (TMON). The overarching goal is to observe and understand life, from microbes to whales, in different coastal and continental shelf habitats, and its role in maintaining resilient ecosystems. The project also seeks to determine biodiversity baselines in these ecosystems based on time-series observations to assess changes in populations and overall biodiversity over time. Efforts are being made to engage with various countries in the Americas to participate in an MBON Pole to Pole in the Americas initiative proposed by Mexico. We are looking to have other regions organized to conduct similar planning efforts. The present MBON pilot projects encompass a range of marine environments, including deep sea, continental shelves, and coastal habitats including estuaries, wetlands, and coral reefs. The MBON will facilitate and enable regional biodiversity assessments, and contributes to addressing several U.N. Sustainable Development Goals to conserve and sustainably use marine resources, and provide a means for countries

  15. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures (Invited)

    Science.gov (United States)

    Nativi, S.; Santoro, M.

    2009-12-01

    Currently, one of the major challenges for scientific community is the study of climate change effects on life on Earth. To achieve this, it is crucial to understand how climate change will impact on biodiversity and, in this context, several application scenarios require modeling the impact of climate change on distribution of individual species. In the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2), the Climate Change & Biodiversity thematic Working Group developed three significant user scenarios. A couple of them make use of a GEOSS-based framework to study the impact of climate change factors on regional species distribution. The presentation introduces and discusses this framework which provides an interoperability infrastructures to loosely couple standard services and components to discover and access climate and biodiversity data, and run forecast and processing models. The framework is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access

  16. Marine biodiversity of Aotearoa New Zealand.

    Directory of Open Access Journals (Sweden)

    Dennis P Gordon

    Full Text Available The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km(2, is one of the largest in the world. It spans 30 degrees of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA, which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine from 18 countries have been engaged in a project to review New Zealand's entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010, including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata is more or less equivalent to that in the ERMS (European Register of Marine Species region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied

  17. Marine biodiversity of Aotearoa New Zealand.

    Science.gov (United States)

    Gordon, Dennis P; Beaumont, Jennifer; MacDiarmid, Alison; Robertson, Donald A; Ahyong, Shane T

    2010-08-02

    The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km(2), is one of the largest in the world. It spans 30 degrees of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New Zealand's entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied, total marine

  18. Positive biodiversity-productivity relationship predominant in global forests.

    Science.gov (United States)

    Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B

    2016-10-14

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. Copyright © 2016, American Association for the Advancement of Science.

  19. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes.

    Science.gov (United States)

    Fahrig, Lenore; Baudry, Jacques; Brotons, Lluís; Burel, Françoise G; Crist, Thomas O; Fuller, Robert J; Sirami, Clelia; Siriwardena, Gavin M; Martin, Jean-Louis

    2011-02-01

    Biodiversity in agricultural landscapes can be increased with conversion of some production lands into 'more-natural'- unmanaged or extensively managed - lands. However, it remains unknown to what extent biodiversity can be enhanced by altering landscape pattern without reducing agricultural production. We propose a framework for this problem, considering separately compositional heterogeneity (the number and proportions of different cover types) and configurational heterogeneity (the spatial arrangement of cover types). Cover type classification and mapping is based on species requirements, such as feeding and nesting, resulting in measures of 'functional landscape heterogeneity'. We then identify three important questions: does biodiversity increase with (1) increasing heterogeneity of the more-natural areas, (2) increasing compositional heterogeneity of production cover types and (3) increasing configurational heterogeneity of production cover types? We discuss approaches for addressing these questions. Such studies should have high priority because biodiversity protection globally depends increasingly on maintaining biodiversity in human-dominated landscapes. © 2010 Blackwell Publishing Ltd/CNRS.

  20. Biodiversity analysis of vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    Ostler, W. K.; Hansen, D. J.

    2000-01-01

    The Nevada Test Site (NTS), located in south-central Nevada, encompasses approximately 3,500 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996 to 1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. The data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Biodiversity maps (species richness vs. species abundance) have been produced. Differences in biodiversity among ecoregions and vegetation alliances are presented. Spatial distribution maps of species' presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors, such as elevation, soil, and precipitation, on biodiversity are assessed

  1. Predicting ecosystem stability from community composition and biodiversity.

    Science.gov (United States)

    de Mazancourt, Claire; Isbell, Forest; Larocque, Allen; Berendse, Frank; De Luca, Enrica; Grace, James B; Haegeman, Bart; Wayne Polley, H; Roscher, Christiane; Schmid, Bernhard; Tilman, David; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian J; Loreau, Michel

    2013-05-01

    As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability. © 2013 Blackwell Publishing Ltd/CNRS.

  2. National forest inventory contributions to forest biodiversity monitoring

    DEFF Research Database (Denmark)

    Chirici, Cherardo; McRoberts, Ronald; Winter, Susanne

    2012-01-01

    Forests are the most biodiverse terrestrial ecosystems. National forest inventories (NFIs) are the main source of information on the status and trends of forests, but they have traditionally been designed to assess land coverage and the production value of forests rather than forest biodiversity....... The primary international processes dealing with biodiversity and sustainable forest management, the Convention on Biological Diversity (CBD), Forest Europe, Streamlining European Biodiversity Indicators 2010 of the European Environmental Agency, and the Montréal Process, all include indicators related...... Forest Inventories in Europe: Techniques for Common Reporting“) of the European program Cooperation in Science and Technology (COST). We discuss definitions and techniques for harmonizing estimates of possible biodiversity indicators based on data from NFIs in Europe and the United States. We compare...

  3. Biodiversity scenarios neglect future land-use changes.

    Science.gov (United States)

    Titeux, Nicolas; Henle, Klaus; Mihoub, Jean-Baptiste; Regos, Adrián; Geijzendorffer, Ilse R; Cramer, Wolfgang; Verburg, Peter H; Brotons, Lluís

    2016-07-01

    Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge. © 2016 John Wiley & Sons Ltd.

  4. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    Science.gov (United States)

    Naeem, S.; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F. B.; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. PMID:27928041

  5. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity.

    Science.gov (United States)

    Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-12-14

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. © 2016 The Authors.

  6. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related services

    Science.gov (United States)

    Eckehard G. Brockerhoff; Hervé Jactel; John A. Parrotta; Silvio F.B. Ferraz

    2013-01-01

    Forests provide important habitat for much of the world’s biodiversity, and the continuing global deforestation is one of our greatest environmental concerns. Planted forests represent an increasing proportion of the global forest area and partly compensate for the loss of natural forest in terms of forest area, habitat for biodiversity and ecological function. At...

  7. Molecular evolution and the latitudinal biodiversity gradient.

    Science.gov (United States)

    Dowle, E J; Morgan-Richards, M; Trewick, S A

    2013-06-01

    Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.

  8. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  9. Biodiversity of earthworm resources of arid environment.

    Science.gov (United States)

    Tripathi, G; Bhardwaj, P

    2005-01-01

    Biodiversity of earthworms was studied in arid zone of Jodhpur district of Rajasthan. A total nine species of earthworms were recorded from different pedoecosystems of desert environment. These species were Pontoscolex corethrurus, Amynthas morrisi, Metaphire posthuma, Lampito mauritii, Perionyx sansibaricus, Ocnerodrilus occidentalis, Dichogaster bolaui, Octochaetona paliensis and Ramiella bishambari. They belonged to the families Glossoscolicidae, Megascolicidae, Ocnerodrilidae and Octochaetidae. The species P. sansibaricus, O. paliensis and P. corethrurus were reported for the first time from Rajasthan. The earthworm fauna of Jodhpur district were either exotic peregrine or native peregrine. Exotic species like A. morrisi and M. posthuma, and native peregrine species like L. mauritii were widely distributed in arid region. They appear to be better adapted to withstand drought conditions, as they have enteronephric meronephridia and excrete their urine into the guts for conservation of water in their bodies.

  10. Economic barriers and incentives for biodiversity restoration

    International Nuclear Information System (INIS)

    Garcia Frapolli, Eduardo; Lindigcisneros, Roberto

    2011-01-01

    Costs related with restoration efforts, as well as the economic incentives, are fundamental issues that have not been fully considered from a formal standpoint. Through the analysis of restoration trials in collaboration with an indigenous community in western Mexico, we analyzed economic issues related with the restoration trials themselves, and with the economic context that gives incentives for ecological restoration. We reach to the conclusion that the cost-benefit relationship of the restoration process by itself can be straightforward calculated in some cases, calculating economic benefits accrued from the diversity restored to ecosystem is more difficult. In terms of the incentives for biodiversity restoration, we concluded that in many cases, economic variables out of the control of those involved in restoration are determinant.

  11. Understanding Continental Margin Biodiversity: A New Imperative

    Science.gov (United States)

    Levin, Lisa A.; Sibuet, Myriam

    2012-01-01

    Until recently, the deep continental margins (200-4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know.

  12. Monitoring genetic variability of Bulgarian cattle biodiversity

    Directory of Open Access Journals (Sweden)

    Martino Cassandro

    2010-01-01

    Full Text Available The present paper aimed to characterize, using 19 microsatellite markers, three native Bulgarian cattle breeds, Iskar, Rhodope Shorthorn and Bulgarian Rhodope and to clarify their population structure. The three breeds own a genetic variability comparable with other European cattle breeds, nevertheless they showed a significant deviation from Hardy-Weinberg equilibrium in terms of heterozygote deficiency. Allelic frequencies distribution among breeds was highly significant confirming their genetic uniqueness. The population structure of Rhodope Shorthorn was complex and is probably the cause of its rather high FIS estimate (0.111; Iskar breed structure is also rather fragmented and should be studied more deeply while Bulgarian Rhodope population seemed to be the less variable. Presented results helped to clarify the present situation of Bulgarian cattle biodiversity giving interesting suggestions for their management and conservation.

  13. Ecological stability and biodiversity of disturbed land

    International Nuclear Information System (INIS)

    Tewary, B.K.; Singh, R.S.; Dhar, B.B.

    1996-01-01

    Ecosystems destruction by mining is an inevitable part of industrialisation. Disposal of debris and low grade ore and minerals reduces the vegetation cover and population of wild animals. Further it causes an unprecedented increase in the rate of accumulation of waste dumps, depleted topsoil, increase in sedimentation load and ultimately prevention of natural succession of native vegetation of the area. Revegetation of overburden dumps through systematic means increase slope stability, enhances the infiltration rate of rain water, increase in soil fertility and natural succession of the native plant species which maintain the long term stability of the ecosystems. Rapid growing population followed with extensive land clearing by the mineral and other industries have caused rapid increase in the extinction of biological diversity. In this paper an attempt is made to portray the natural succession process to preserve the biodiversity of the area. A case study for a coal mining area in India is given. 9 refs., 4 tabs

  14. Current issues in cereal crop biodiversity.

    Science.gov (United States)

    Moreta, Danilo E; Mathur, Prem Narain; van Zonneveld, Maarten; Amaya, Karen; Arango, Jacobo; Selvaraj, Michael Gomez; Dedicova, Beata

    2015-01-01

    The exploration, conservation, and use of agricultural biodiversity are essential components of efficient transdisciplinary research for a sustainable agriculture and food sector. Most recent advances on plant biotechnology and crop genomics must be complemented with a holistic management of plant genetic resources. Plant breeding programs aimed at improving agricultural productivity and food security can benefit from the systematic exploitation and conservation of genetic diversity to meet the demands of a growing population facing climate change. The genetic diversity of staple small grains, including rice, maize, wheat, millets, and more recently quinoa, have been surveyed to encourage utilization and prioritization of areas for germplasm conservation. Geographic information system technologies and spatial analysis are now being used as powerful tools to elucidate genetic and ecological patterns in the distribution of cultivated and wild species to establish coherent programs for the management of plant genetic resources for food and agriculture.

  15. Is It Time for Synthetic Biodiversity Conservation?

    Science.gov (United States)

    Piaggio, Antoinette J; Segelbacher, Gernot; Seddon, Philip J; Alphey, Luke; Bennett, Elizabeth L; Carlson, Robert H; Friedman, Robert M; Kanavy, Dona; Phelan, Ryan; Redford, Kent H; Rosales, Marina; Slobodian, Lydia; Wheeler, Keith

    2017-02-01

    Evidence indicates that, despite some critical successes, current conservation approaches are not slowing the overall rate of biodiversity loss. The field of synthetic biology, which is capable of altering natural genomes with extremely precise editing, might offer the potential to resolve some intractable conservation problems (e.g., invasive species or pathogens). However, it is our opinion that there has been insufficient engagement by the conservation community with practitioners of synthetic biology. We contend that rapid, large-scale engagement of these two communities is urgently needed to avoid unintended and deleterious ecological consequences. To this point we describe case studies where synthetic biology is currently being applied to conservation, and we highlight the benefits to conservation biologists from engaging with this emerging technology. Published by Elsevier Ltd.

  16. New Mediterranean Biodiversity Records (April 2015

    Directory of Open Access Journals (Sweden)

    Α. ΖΕΝΕΤΟΣ

    2015-01-01

    Full Text Available The Collective Article ‘New Mediterranean Biodiversity Records’ of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of native and alien species respectively. The new records of native fish species include: the slender sunfish Ranzania laevis and the scalloped ribbonfish Zu cristatus in Calabria; the Azores rockling Gaidropsarus granti in Calabria and Sicily; the agujon needlefish Tylosurus acus imperialis in the Northern Aegean; and the amphibious behaviour of Gouania willdenowi in Southern Turkey. As regards molluscs, the interesting findings include Ischnochiton usticensis in Calabria and Thordisa filix in the bay of Piran (Slovenia. The stomatopod Parasquilla ferussaci was collected from Lesvos island (Greece; the isopod Anilocra frontalis was observed parasitizing the alien Pteragogus trispilus in the Rhodes area. The asteroid Tethyaster subinermis and the butterfly ray Gymnura altavela were reported from several localities in the Greek Ionian and Aegean Seas. The new records of alien species include: the antenna codlet Bregmaceros atlanticus in Saronikos Gulf; three  new fish records and two decapods from Egypt; the establishment of the two spot cardinal fish Cheilodipterus novemstriatus and the first record of the Indo-Pacific marble shrimp Saron marmoratus in semi-dark caves along the Lebanese coastline; the finding of Lagocephalus sceleratus, Sargocentron rubrum, Fistularia commersonii and Stephanolepis diaspros around Lipsi island (Aegean Sea, Greece; the decapod Penaeus hathor in Aegean waters; the decapod Penaeus aztecus and the nudibranch Melibe viridis in the Dodecanese islands; the finding of Pinctada imbricata radiata in the Mar Grande of Taranto (Ionian Sea, Italy and the Maliakos Gulf (Greece.

  17. New Mediterranean Biodiversity Records (October, 2014

    Directory of Open Access Journals (Sweden)

    S. KATSANEVAKIS

    2014-11-01

    Full Text Available The Collective Article ‘New Mediterranean Biodiversity Records’ of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of alien and native species respectively. The new records of alien species include: the red alga Asparagopsis taxiformis (Crete and Lakonicos Gulf (Greece; the red alga Grateloupia turuturu (along the Israeli Mediterranean shore; the mantis shrimp Clorida albolitura (Gulf of Antalya, Turkey; the mud crab Dyspanopeus sayi (Mar Piccolo of Taranto, Ionian Sea; the blue crab Callinectes sapidus (Chios Island, Greece; the isopod Paracerceis sculpta (northern Aegean Sea, Greece; the sea urchin Diadema setosum (Gökova Bay, Turkey; the molluscs Smaragdia souverbiana, Murex forskoehlii, Fusinus verrucosus, Circenita callipyga, and Aplysia dactylomela (Syria; the cephalaspidean mollusc Haminoea cyanomarginata (Baia di Puolo, Massa Lubrense, Campania, southern Italy; the topmouth gudgeon Pseudorasbora parva (Civitavecchia, Tyrrhenian Sea; the fangtooth moray Enchelycore anatine (Plemmirio marine reserve, Sicily; the silver-cheeked toadfish Lagocephalus sceleratus (Saros Bay, Turkey; and Ibiza channel, Spain; the Indo-Pacific ascidian Herdmania momusin Kastelorizo Island (Greece; and the foraminiferal Clavulina multicam erata (Saronikos Gulf, Greece. The record of L. sceleratus in Spain consists the deepest (350-400m depth record of the species in the Mediterranean Sea. The new records of native species include: first record of the ctenophore Cestum veneris in Turkish marine waters; the presence of Holothuria tubulosa and Holothuria polii in the Bay of Igoumenitsa (Greece; the first recorded sighting of the bull ray Pteromylaeus bovinus in Maltese waters; and a new record of the fish Lobotes surinamensis from Maliakos Gulf.

  18. Evolution and Biodiversity: the evolutionary basis of biodiversity and its potential for adaptation to global change

    OpenAIRE

    Mergeay, Joachim; Santamaria, Luis

    2012-01-01

    Biodiversity has a key role in maintaining healthy ecosystems and thereby sustaining ecosystem services to the ever-growing human population. To get an idea of the range of ecosystem services that we use daily, think of how much energy and time it would cost to make Mars (or some other Earth-like planet) hospitable for human life, for example, in terms of atmosphere regulation, freshwater production, soil formation, nutrient cycles, regulation of climate, etc. On our own planet, that process ...

  19. Bridging the gap between biodiversity data and policy reporting needs: An essential biodiversity variables perspective

    CSIR Research Space (South Africa)

    Geijzendorffer, IR

    2016-01-01

    Full Text Available Conservation Monitoring Centre, Pereira, Henrique; German Centre for Integrative Biodiversity Research, ; Institute of Biology, Brotons, Lluis; Center for Ecological Research and Forestry Applications (CREAF), ; European Bird Census Council (EBCC..., 06108 Halle (Saale), 13 Germany 14 5. European Bird Census Council (EBCC) & Forest Science Center of Catalonia (CEMFOR-CTFC), 25280 15 Solsona, Spain. 16 6. Center for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain. 17...

  20. Key Biodiversity Areas identification in the Upper Guinea forest biodiversity hotspot

    Directory of Open Access Journals (Sweden)

    O.M.L. Kouame

    2012-08-01

    Full Text Available Priority-setting approaches and tools are commons ways to support the rapid extinction of species and their habitats and the effective allocation of resources for their conservation. The Key Biodiversity Area (KBA approach is a method for the identification of fine-scale priority areas for conservation. This process led bottom-up has been used in the Upper Guinea Forest Ecosystem of West Africa where human-induced changes have increased the extinction risk of several endemic and threatened species. The irreplaceability and vulnerability criteria commonly used in conservation planning have been used to identify key biodiversity areas in Ghana, Cote d’Ivoire, Liberia, Guinea and Sierra Leone. Point locality data were compiled from scientific reports, papers published in scientific journals and museum records. The delineation was conducted following a series of decision rules. In most cases existing IBA polygons and protected areas boundaries were used. For the new sites, temporary boundaries have been drawn and will be confirmed with land-use data. Preliminary KBA data were reviewed by specialists during formal workshops. One hundred and fifty four KBA have been identified in the five countries with 202 globally threatened species. Currently 63% of the KBA are protected. Two AZE sites still exist in the region. This assessment is a first step and is driven from the best available data at the time. There is a need to refine it with recent biodiversity surveys to assist decision-makers in achieving their conservation management goals.