WorldWideScience

Sample records for biodiesel cultivating alternative

  1. BIODIESELALTERNATIVE FUEL

    Directory of Open Access Journals (Sweden)

    Darko Kiš

    2006-06-01

    Full Text Available A limited quantity of oil, the purchase of which also involves major expenses has become an important factor for intensive search and use of alternative fuels. Biodiesel is used in diesel engines, and is manufactured from vegetable oils, animal fats and recycled edible oils. The production and use of biodiesel are very important not only because of its economic and strategic connotations but also because of its environmental advantages. Favourable conditions in Croatia give good opportunities for a self-sufficient oil rape production, possibility for its intensification and employment of a number of people in both the agricultural production and biodiesel production plants. This paper presents a survey of the biodiesel fuel production, the characteristics and impacts it has on the biodiesel engine features as well as its impact on the environment.

  2. Biodiesel properties and alternative feedstocks

    Science.gov (United States)

    Defined as the long-chain fatty acid monoalkyl esters of vegetable oils, animal fats, or other lipids, biodiesel is an environmentally attractive alternative to conventional petroleum diesel fuel (petrodiesel). Produced by transesterification with a monohydric alcohol, usually methanol, biodiesel h...

  3. Survey of alternative feedstocks for biodiesel production

    Science.gov (United States)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  4. Does Biodiesel from Jatropha Curcas Represent a Sustainable Alternative Energy Source?

    Directory of Open Access Journals (Sweden)

    Isidro Ovando-Medina

    2009-11-01

    Full Text Available Various government agencies around the world have proposed vegetable oils and their conversion to biodiesel as a renewable alternative to fossil fuels. Due to its adaptability to marginal soils and environments, the cultivation of Jatropha curcas is frequently mentioned as the best option for producing biodiesel. In the present work the current situation of proven and potential reserves of fossil fuel, and the production and consumption model for the same are analyzed, in order to later review the sustainability of the production process which begins with the cultivation of J. curcas, and culminates with the consumption of biodiesel. A review of the following topics is proposed in order to improve the sustainability of the process: areas destined for cultivation, use of external (chemical inputs in cultivation, processes for converting the vegetable oil to biodiesel, and, above all, the location for ultimate consumption of the biofuel.

  5. Cultivation of algae in photobioreator and obtention of biodiesel

    Directory of Open Access Journals (Sweden)

    Cristiane B. Hobuss

    2011-04-01

    Full Text Available In this work we described the cultivation of Chlorella vulgaris in a photobioreactor to algal biomass production. The dried biomass was used as feedstock for biodiesel production, it presented 26% lipids and via sonocatalysis stage of the methodology resulted in 60% of fatty acid methyl esters (FAME. The FAME content was confirmed by Gas Chromatography (GC.

  6. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Soha S.M. MOSTAFA

    2012-02-01

    Full Text Available The objective of this study was to evaluate the growth of nine species of microalgae (green and blue green microalgae on domestic waste water samples obtained from Zenein Waste Water Treatment Plant (ZWWTP, Giza governorate, Egypt. The species were cultivated in different kind of waste water; before treatment; after sterilization; with nutrients with sterilization and with nutrients without sterilization. The experiment was conducted in triplicate and cultures were incubated at 25�1�C under continuous shaking (150 rpm and illumination (2000 Lux for 15 days. pH, electric conductivity (EC, optical density (OD , dry weight (DW, were done at the time of incubation and at the end of experiment, in addition to determine the percentage of lipid and biodiesel. The data revealed that, domestic waste water with nutrient media (T3 was promising for cultivation of five algal species when compared with conventional media, Moreover, domestic waste water after sterilization (T2 was selected media for cultivation of Oscillatoria sp and Phormedium sp. However, T1 media (waste water without treatment was the promising media for cultivation of Nostoc humifusum. The biodiesel produced from algal species cultivated in waste water media ranged from 3.8 to 11.80% when compared with the conventional method (3.90 to 12.52%. The results of this study suggest that growing algae in nutrient rich media offers a new option of applying algal process in ZWWTP to mange the nutrient load for growth and valuable biodiesel feedstock production.

  7. Biodiesel from alternative oilseed feedstocks: camelina and field pennycress

    Science.gov (United States)

    Biodiesel, defined as mono-alkyl esters derived from plant oils or animal fats, is an environmentally attractive alternative to conventional petroleum diesel fuel (petrodiesel). Produced by transesterification with a monohydric alcohol, usually methanol, biodiesel possesses several technical advanta...

  8. Does Biodiesel from Jatropha Curcas Represent a Sustainable Alternative Energy Source?

    OpenAIRE

    Isidro Ovando-Medina; Francisco Espinosa-García; Juan Núñez-Farfán; Miguel Salvador-Figueroa

    2009-01-01

    Various government agencies around the world have proposed vegetable oils and their conversion to biodiesel as a renewable alternative to fossil fuels. Due to its adaptability to marginal soils and environments, the cultivation of Jatropha curcas is frequently mentioned as the best option for producing biodiesel. In the present work the current situation of proven and potential reserves of fossil fuel, and the production and consumption model for the same are analyzed, in order to later revie...

  9. Biodiesel From Alternative Oilseed Feedstocks: Production and Properties

    Science.gov (United States)

    Fatty acid methyl esters were prepared and evaluated as potential biodiesel fuels from several alternative oilseed feedstocks, which included camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field mustard (Brassica juncea L.), field pennycress (Thlaspi arvense L.), and meadowfoam (L...

  10. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production

    OpenAIRE

    M. Rafiqul Islam; K. Chris Watts; Chhetri, Arjun B.

    2008-01-01

    As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester) was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was ...

  11. Alternative substrates for higher mushrooms mycelia cultivation

    OpenAIRE

    TETIANA KRUPODOROVA; VICTOR BARSHTEYN

    2015-01-01

    Cultivation of 29 species of higher mushroom mycelia on alternative substrates – wastes of Ukrainian oil-fat industry, has been investigated. The amount of mushroom mycelia obtaining on 12 investigated substrates varied significantly, from 1.0 g/L to 22.9 g/L on the 14th day of cultivation. The superficial cultivation adopted in this study allows for easy to choose appropriate medium (substrate) for mycelia production. Alternative substrates (compared to glucose-peptone-yeast medium) were sel...

  12. Cultivation Of Microalgae (Chlorella vulgaris) For Biodiesel Production

    Science.gov (United States)

    Blinová, Lenka; Bartošová, Alica; Gerulová, Kristína

    2015-06-01

    Production of biofuel from renewable sources is considered to be one of the most sustainable alternatives to petroleum sourced fuels. Biofuels are also viable means of environmental and economic sustainability. Biofuels are divided into four generations, depending on the type of biomass used for biofuels production. At present, microalgae are presented as an ideal third generation biofuel feedstock because of their rapid growth rate. They also do not compete with food or feed crops, and can be produced on non-arable land. Cultivation conditions (temperature, pH, light, nutrient quantity and quality, salinity, aerating) are the major factors that influence photosynthesis activity and behaviour of the microalgae growth rate. In this paper, we present an overview about the effect of cultivation conditions on microalgae growth.

  13. Cultivation Of Microalgae (Chlorella vulgaris For Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Blinová Lenka

    2015-06-01

    Full Text Available Production of biofuel from renewable sources is considered to be one of the most sustainable alternatives to petroleum sourced fuels. Biofuels are also viable means of environmental and economic sustainability. Biofuels are divided into four generations, depending on the type of biomass used for biofuels production. At present, microalgae are presented as an ideal third generation biofuel feedstock because of their rapid growth rate. They also do not compete with food or feed crops, and can be produced on non-arable land. Cultivation conditions (temperature, pH, light, nutrient quantity and quality, salinity, aerating are the major factors that influence photosynthesis activity and behaviour of the microalgae growth rate. In this paper, we present an overview about the effect of cultivation conditions on microalgae growth.

  14. Alternate feedstocks and technologies for biodiesel production

    Science.gov (United States)

    U.S. biodiesel production is presently estimated at 800 million gallons annually, and this fuel is no longer a research curiosity - it is entering the nation’s fuel infrastructure. Some estimates are that production will reach nearly twice that value in the next 10 to 12 years. This would stress a...

  15. Economic and environmental performance of oilseed cropping systems for biodiesel production : existing cultivation practices in the European Union

    NARCIS (Netherlands)

    Conijn, J.G.; Corre, W.J.; Ruijter, de F.J.

    2011-01-01

    The Ecodiesel project aims at a drastic improvement of the GHG emission of current biodiesel production in the EU. If the biodiesel is produced from crops, the way the crop is cultivated at the farm is very important because calculations have shown that the emission from crop cultivation have a larg

  16. Biodiesel from non-food alternative feed-stock

    Science.gov (United States)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  17. An alternative fuel for urban buses-biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, L.G.; Weber, J.A.; Russell, M.D. [Univ. of Missouri, Columbia, MO (United States)] [and others

    1995-11-01

    Qualitative and quantitative biodiesel fueling performance and operational data have been collected from urban mass transit buses at Bi-State Development Agency in St. Louis Missouri. A total of 10 vehicles were selected for fueling; 5-6V92 TA Detroit Diesel engines have been fueled with a 20/80 biodiesel/diesel fuel blend and 5-6V92 TA Detroit Diesel control vehicles have been fueled on petroleum based low sulfur diesel fuel (LSD). The real-world impact of a biodiesel blend on maintenance, reliability, cost, fuel economy and safety compared to LSD will be presented. In addition, engine exhaust emissions data collected by the University of West Virginia Department of Energy (DOE) sponsored mobile emissions laboratory will be presented. Operational data from Bi-State Development Agency is collected by the University of Missouri and quality control procedures are performed prior to placing the data in the Alternative Fuels Data Center (AFDC). The AFDC is maintained by the National Renewable Energy Laboratory in Golden, Colorado. This effort, which enables transit operators to review a real-world comparison of biodiesel and LSD, has been funded by the National Biodiesel Board with funds provided by the United Soybean Board with national checkoff dollars and the National Renewable Energy Laboratory.

  18. Alternative substrates for higher mushrooms mycelia cultivation

    Directory of Open Access Journals (Sweden)

    TETIANA KRUPODOROVA

    2015-12-01

    Full Text Available Cultivation of 29 species of higher mushroom mycelia on alternative substrates – wastes of Ukrainian oil-fat industry, has been investigated. The amount of mushroom mycelia obtaining on 12 investigated substrates varied significantly, from 1.0 g/L to 22.9 g/L on the 14th day of cultivation. The superficial cultivation adopted in this study allows for easy to choose appropriate medium (substrate for mycelia production. Alternative substrates (compared to glucose-peptone-yeast medium were selected for all studied species, from soybean cake – most suitable for the mycelial growth of 24 species, to walnut cake − suitable only for 2 species. The utilization of substrates has been evaluated by biological efficiency. The best index of biological efficiency varied from 19.0% to 41.6% depending on the mushroom species. It was established high biological efficiency of mycelia cultivation on substrates: wheat seed cake – Pleurotus djamor, Lyophyllum shimeji, Crinipellis schevczenkovi, Phellinus igniarius, Spongipellis litschaueri; oat seed cake – Ganoderma applanatum and G. lucidum; soybean cake – Hohenbuehelia myxotricha, Trametes versicolor, Morchella esculenta, Cordyceps sinensis, C. militaris, and Agrocybe aegerita; rape seed cake – Auriporia aurea; camelina seed cake – Fomes fomentarius. The cultivation of these species are perspective as a biotechnological process of agricultural wastes converted into mycelia, which could be used in different forms of products with therapeutic action: powder or tablets nutraceuticals or ingredients for functional foods.

  19. Modeling of biodiesel production in algae cultivation with anaerobic digestion (ACAD)

    International Nuclear Information System (INIS)

    This study presents a model of an ecotechnology that combines algae cultivation with anaerobic digestion in order to recycle nutrients and to reduce the need for external energy. The concept is to convert organic waste into several products, such as electricity, biodiesel and organic fertilizer. It is labeled as the ACAD biorefinery. The simulation model of the ACAD biorefinery proved itself to be a powerful tool for understanding the symbioses and dynamics of the system, and therefore also a good tool for reaching political decisions. The model shows that the ACAD biorefinery could be totally independent of external energy supplies. Energy calculations indicate that more energy can be produced by combining the algae cultivation and anaerobic digestion processes. For every unit of energy entering the system in feedstock, 0.6 units of energy are exported as either biodiesel or electricity. The exported electricity accounts for approximately 30% of the total exported energy, while the remaining 70% is exported as biodiesel. By producing its own energy, the biorefinery improves its renewability and level of carbon neutrality. - Highlights: • The model combines algae cultivation with anaerobic digestion. • In the model nutrients and carbon dioxide are recycled. • Organic waste is converted into electrical power, biodiesel and organic fertilizer. • Results showed that more energy can be produced by combining the processes

  20. De novo Biosynthesis of Biodiesel by Escherichia coli in Optimized Fed-Batch Cultivation

    OpenAIRE

    Yangkai Duan; Zhi Zhu; Ke Cai; Xiaoming Tan; Xuefeng Lu

    2011-01-01

    Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs), and is currently produced through the transesterification reaction of methanol (or ethanol) and triacylglycerols (TAGs). TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottlen...

  1. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    M. Rafiqul Islam

    2008-04-01

    Full Text Available As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was determined by gas chromatography. The biodiesel was characterized by its physical and fuel properties including density, viscosity, acid value, flash point, cloud point, pour point, cetane index, water and sediment content, total and free glycerin content, diglycerides and monoglycerides, phosphorus content and sulfur content according to ASTM standards. The viscosity of the biodiesel ethyl ester was found to be 5.03 mm2/sec at 40oC. The viscosity of waste cooking oil measured in room temperature (at 21° C was 72 mm2/sec. From the tests, the flash point was found to be 164oC, the phosphorous content was 2 ppm, those of calcium and magnesium were 1 ppm combined, water and sediment was 0 %, sulfur content was 2 ppm, total acid number was 0.29 mgKOH/g, cetane index was 61, cloud point was -1oC and pour point was -16oC. Production of biodiesel from waste cooking oils for diesel substitute is particularly important because of the decreasing trend of economical oil reserves, environmental problems caused due to fossil fuel use and the high price of petroleum products in the international market.

  2. Waste cooking oil as an alternate feedstock for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Chhetri, A. B.; Rafiqul Islam, M. [Civil and Resources Engineering Dalhousie University, Room D510, 1360 Barrington St., Box 1000, Halifax, N.S. B3J 2X4 (Canada); Watts, K. Ch. [Process Engineering, Dalhousie University, Halifax, NS, Box 1000, Halifax, N.S. B3J 2X4 (Canada)

    2008-07-01

    As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester) was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was determined by gas chromatography. The biodiesel was characterized by its physical and fuel properties including density, viscosity, acid value, flash point, cloud point, pour point, cetane index, water and sediment content, total and free glycerin content, diglycerides and monoglycerides, phosphorus content and sulfur content according to ASTM standards. The viscosity of the biodiesel ethyl ester was found to be 5.03 mm{sup 2}/sec at 40 {sup o}C. The viscosity of waste cooking oil measured in room temperature (at 21 {sup o}C) was 72 mm{sup 2}/sec. From the tests, the flash point was found to be 164 {sup o}C, the phosphorous content was 2 ppm, those of calcium and magnesium were 1 ppm combined, water and sediment was 0 %, sulfur content was 2 ppm, total acid number was 0.29 mg KOH/g, cetane index was 61, cloud point was -1 {sup o}C and pour point was -16 {sup o}C. Production of biodiesel from waste cooking oils for diesel substitute is particularly important because of the decreasing trend of economical oil reserves, environmental problems caused due to fossil fuel use and the high price of petroleum products in the international market. (author)

  3. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production

    OpenAIRE

    Soha S.M. MOSTAFA; Shalaby, Emad A; Ghada I. MAHMOUD

    2012-01-01

    The objective of this study was to evaluate the growth of nine species of microalgae (green and blue green microalgae) on domestic waste water samples obtained from Zenein Waste Water Treatment Plant (ZWWTP), Giza governorate, Egypt. The species were cultivated in different kind of waste water; before treatment; after sterilization; with nutrients with sterilization and with nutrients without sterilization. The experiment was conducted in triplicate and cultures were incubated at 25�1�C under...

  4. Economic and environmental performance of oilseed cropping systems for biodiesel production : existing cultivation practices in the European Union

    OpenAIRE

    Conijn, J.G.; Corre, W.J.; Ruijter, de, W.

    2011-01-01

    The Ecodiesel project aims at a drastic improvement of the GHG emission of current biodiesel production in the EU. If the biodiesel is produced from crops, the way the crop is cultivated at the farm is very important because calculations have shown that the emission from crop cultivation have a large effect on the total chein performance. This reports aims at a description of the baseline of oilcrop cultivation, i.e. the existing practices in the EU27 and the associated economic and environme...

  5. Sustainability of sunflower cultivation for biodiesel production in central Italy according to the Renewable Energy Directive methodology

    Directory of Open Access Journals (Sweden)

    Daniele Duca

    2014-02-01

    Full Text Available The use of renewable energies as alternative to fossil fuels has value from different points of view and has effects at environmental, social and economic level. These aspects are often connected to each other and together define the overall sustainability of bioenergy. At European level, the Directive 2009/28/EC gives the basic criteria for the estimation of sustainability of biofuels and indicates a minimum threshold of 35% of greenhouse gas saving for a biofuel in order to be considered sustainable. The Directive gives the possibility to identify standard regional values for the cultivation steps that could be utilized for the certification. This paper aims to give a contribution to the definition of these values considering the RED methodology applied to the sunflower cropped in central Italy which is characterized by a hilly landscape and not-irrigated crops. To determine input and output of sunflower cultivation in the central Italy, the results of PROBIO project, carried out by the Authors, were used. The sustainability of biodiesel produced from sunflower grown in central Italy is variable and depends on the nitrogen input and seasonal climatic conditions that affect the yields. The greenhouse gases savings of the Italian chain is 40% in average, greater than the required 35% and would be possible to assign this value as standard to the biofuel chain biodiesel from sunflower cultivated in central Italy. Using an averaged regional standard value guards against the possibility of considering unsustainable harvesting in unfavourable years and seeing it overestimated in the favourable ones.

  6. Techno-economic study of different alternatives for biodiesel production

    International Nuclear Information System (INIS)

    Biodiesel has become an attractive diesel fuel substitute due to its environmental benefits since it can be made from renewable resource. However, the high costs surrounding biodiesel production remains the main problem in making it competitive in the fuel market either as a blend or as a neat fuel. More than 80% of the production cost is associated with the feedstock itself and consequently, efforts are focused on developing technologies capable of using lower-cost feedstocks, such as recycled cooking oils and wastes from animal or vegetable oil processing operations. The main issue with spent oils is the high level of free fatty acids found in the recycled materials. The conventional technology employs sodium methoxide as a homogeneous base catalyst for the transesterification reaction and illustrates the drawbacks in working with feedstocks that contain high levels of free fatty acids. On the other hand, homogeneous acidic catalysts are being used for exactly such feedstocks. Both acid and basic homogeneous catalyzed processes require downstream purification equipment to neutralize the catalyst and to purify the biodiesel as well as the glycerol. Recent studies have been conducted to employ heterogeneous catalysts, such acidic or basic solid resins, or immobilized lipases. These catalysts will allow the use of different feedstocks that will permit operation at lower investment costs and will require less downstream process equipment. A conceptual design of these alternative production plants has been done with a techno-economic analysis in order to compare these alternatives. A process simulator was employed to carry out the conceptual design and simulation of each technology. Using these models it was possible to analyze different scenarios and to evaluate productivity, raw material consumption, economic competitiveness, and environmental impacts of each process. (author)

  7. Non-Invasive Rapid Harvest Time Determination of Oil-Producing Microalgae Cultivations for Biodiesel Production by Using Chlorophyll Fluorescence

    OpenAIRE

    Qiao, Yaqin; Rong, Junfeng; Chen, Hui; He, Chenliu; Wang, Qiang

    2015-01-01

    For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II, also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with nitroge...

  8. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production

    Directory of Open Access Journals (Sweden)

    S. Hena

    2015-06-01

    Full Text Available Dairy farm wastewaters are potential resources for production of microalgae biofuels. A study was conducted to evaluate the capability of production of biodiesel from consortium of native microalgae culture in dairy farm treated wastewater. Native algal strains were isolated from dairy farm wastewaters collection tank (untreated wastewater as well as from holding tank (treated wastewater. The consortium members were selected on the basis of fluorescence response after treating with Nile red reagent. Preliminary studies of two commercial and consortium of ten native strains of algae showed good growth in wastewaters. A consortium of native strains was found capable to remove more than 98% nutrients from treated wastewater. The biomass production and lipid content of consortium cultivated in treated wastewater were 153.54 t ha−1 year−1 and 16.89%, respectively. 72.70% of algal lipid obtained from consortium could be converted into biodiesel.

  9. Chemical alternative to the energetic use of biodiesel; Chemische Alternativen zur energetischen Nutzung von Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S; Ruesch genannt Klaas, M.; Harperscheid, M. [Bundesanstalt fuer Getreide-, Kartoffel- und Fettforschung, Muenster (Germany). Inst. fuer Biochemie und Technologie der Fette - H.P. Kaufmann-Inst.

    1996-12-31

    Biodiesel is environment-friendly, but much more costly to produce than `normal` diesel fuel. Higher economic efficiency can be achieved by using biodiesel as a chemical feedstock instead. Tenside and polymers offer a wide range of applications. (orig) [Deutsch] Biodiesel ist ein umweltfreundlicher Kraftstoff, jedoch in der Herstellung deutlich teurer als Mineraloel-Dieselkraftstoff. Eine signifikant hoehere Wertschoepfung koennte errreicht werden, wenn Biodiesel nicht im Kraftstoffsektor, sondern als chemischer Rohstoff verwendet wird. Tenside und Polymere sind hierbei grossvolumige Einsatzbereiche. (orig)

  10. Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production

    International Nuclear Information System (INIS)

    Highlights: • A new sequential baffled photobioreactor was developed to cultivate microalgae. • Organic fertilizer was used as the main nutrients source. • Negative energy balance was observed in producing microalgae biodiesel. - Abstract: Pilot-scale cultivation of Chlorella vulgaris in a 100 L sequential baffled photobioreactor was carried out in the present study. The highest biomass yield attained under indoor and outdoor environment was 0.52 g/L and 0.28 g/L, respectively. Although low microalgae biomass yield was attained under outdoor cultivation, however, the overall life cycle energy efficiency ratio was 3.3 times higher than the indoor cultivation. In addition, negative energy balance was observed in producing microalgae biodiesel under both indoor and outdoor cultivation. The minimum production cost of microalgae biodiesel was about RM 237/L (or USD 73.5/L), which was exceptionally high compared to the current petrol diesel price in Malaysia (RM 3.6/L or USD 1.1/L). On the other hand, the estimated production cost of dried microalgae biomass cultivated under outdoor environment was RM 46/kg (or USD 14.3/kg), which was lower than cultivation using chemical fertilizer (RM 111/kg or USD 34.4/kg) and current market price of Chlorella biomass (RM 145/kg or USD 45/kg)

  11. Growth and lipid accumulation in response to different cultivation temperatures in Nannochloropsis oculata for biodiesel production

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2016-03-01

    Full Text Available Background: Microalgal lipid is a promising feedstock for biodiesel production. The aim of the present study was to investigate the effects of cultivation temperature on the growth and lipid accumulation properties of Nannochloropsis oculata microalgae. Methods: Nannochloropsis oculatacan grow in a wide range of temperatures (5 ~ 35°C. Late in the stationary growth phase of microalgae, biomass production and lipid accumulation were measured. The methanol-chloroform extraction method was used to extract total lipids from dried cells. The direct esterification method was used to measure fatty acids. Constituents were identified by gas chromatography. Results: The results show that the maximum specific growth rate at 20°C was 0.1569 day-1, and the maximum biomass production of microalgae at 25°C was 2.2667 g/L. The highest percentage of biomass conversion into lipid (35.71% occurred at 30°C. Maximum lipid productivity was seen at temperatures of 15°C, 20°C, and 25°C, but the analysis of fatty acids in the three temperatures shownare maximum accumulations of triglycerides in the microalgae cells at 20°C and 25°C. Conclusion: In the cultivation of Nannochloropsis oculata, the optimal temperature range for maximum efficiency in biodiesel production from lipids is 20°C to 25°C.

  12. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production.

    Science.gov (United States)

    Qin, Lei; Wang, Zhongming; Sun, Yongming; Shu, Qing; Feng, Pingzhong; Zhu, Liandong; Xu, Jin; Yuan, Zhenhong

    2016-05-01

    The potential of microalgae consortia used in dairy wastewater treatment combined with microalgae biodiesel feedstock production was evaluated by comparing the nutrient removal of dairy wastewater, the growth of cells, and the lipid content and composition of biomass between monoalgae and microalgae consortia cultivation system. Our results showed that higher chemical oxygen demand (COD) removal (maximum, 57.01-62.86 %) and total phosphorus (TP) removal (maximum, 91.16-95.96 %) were achieved in almost microalgae consortia cultivation system than those in Chlorella sp. monoalgae cultivation system (maximum, 44.76 and 86.74 %, respectively). In addition, microalgae consortia cultivation except the mixture of Chlorella sp. and Scenedesmus spp. reached higher biomass concentration (5.11-5.41 g L(-1)), biomass productivity (730.4-773.2 mg L(-1) day(-1)), and lipid productivity (143.7-150.6 mg L(-1) day(-1)) than those of monoalgae cultivation (4.72 g L(-1), 674.3, and 142.2 mg L(-1) day(-1), respectively) on the seventh day. Furthermore, the fatty acid methyl ester (FAME) profiles indicated the lipids produced from microalgae consortia cultivation system were more suitable for biodiesel production. The microalgae consortia display superiority in dairy wastewater treatment and the getting feedstock for biodiesel production. PMID:26780059

  13. Biotechnological processes for biodiesel production using alternative oils

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Laura; Ciudad, Gustavo [La Frontera Univ., Temuco (Chile). Nucleo Cietifico Tecnologico en Biorrecursos; Heipieper, Hermann J. [Helmholtz Centre for Environmental Research-UFZ, Leipzig (Germany). Dept. of Environmental Biotechnology; Navia, Rodrigo [La Frontera Univ., Temuco (Chile). Nucleo Cietifico Tecnologico en Biorrecursos; La Frontera Univ., Temuco (Chile). Dept. de Ingenieria Quimica

    2010-10-15

    As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts. (orig.)

  14. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation.

    Directory of Open Access Journals (Sweden)

    Yangkai Duan

    Full Text Available Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs and fatty acid ethyl esters (FAEEs, and is currently produced through the transesterification reaction of methanol (or ethanol and triacylglycerols (TAGs. TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.

  15. Cynara cardunculus as an alternative crop for biodiesel production.

    OpenAIRE

    Pasqualino, Jorgelina Cecilia

    2006-01-01

    El biodiesel es un combustible de origen renovable que se obtiene a partir de aceites vegetales ygrasas animales y posee propiedades similares a las del gasoil. Se produce mediante latransesterificación de los triglicéridos con un alcohol de cadena corta, en presencia de uncatalizador, obteniendo biodiesel y glicerol en dos fases separadas. Los aceites más utilizados en laproducción de biodiesel son los de soja, colza, girasol y palma, aunque existen alternativas comolos aceites de fritura re...

  16. The effect of algae species on biodiesel and biogas production observed by using a data model combines algae cultivation with an anaerobic digestion (ACAD) and a biodiesel process

    International Nuclear Information System (INIS)

    Highlights: • A combined ACAD-biorefinery based model was investigated. • The model was implemented in the data analysis program MathCad. • Three different scenarios were modeled. • Chlorella vulgaris, Nannochloropsis sp. and Haematococcus pluvialis were evaluated. - Abstract: The influence of an algae species based on the biodiesel yield was investigated by using a combined plant model from the literature. The model has six different processes: algal cultivation, the flocculation and separation process, biodiesel production, anaerobic digestion, scrubbing, and combined heat and power (CHP). The data model in the literature was operated with the values for Chlorella vulgaris. To investigate the roles of the algae species on the biodiesel yield in the model, two different algae species, Nannochloropsis sp. and Haematococcus pluvialis, were selected. Depending on the data from these algae in the literature, three different scenarios were modeled in the study. The model shows that all of the scenarios for biodiesel production can be totally independent of an external energy supply. Energy estimations for all of the applications scenarios show that the system produces more energy than the amount that is required for the processing operation

  17. Biodiesel production from neem oil –an alternate approach

    OpenAIRE

    B. Karunanithi; Kelmy Thomas Maria

    2015-01-01

    In this study, neem oil which is one of the abundant non-edible oils in India, Nepal, Pakistan, Sri Lanka and bangladesh is used for biodiesel production. The conventional 2-step transesterification production of biodiesel using sulphuric acid and potassium hydroxide as catalysts is carried out. The optimum process parameters like reaction time, temperature, catalyst loading and methanol-oil molar ratio were investigated with respect to maximum yield. A maximum yield of 88% biodie...

  18. Biodiesel production from neem oil –an alternate approach

    Directory of Open Access Journals (Sweden)

    B. Karunanithi

    2015-05-01

    Full Text Available In this study, neem oil which is one of the abundant non-edible oils in India, Nepal, Pakistan, Sri Lanka and bangladesh is used for biodiesel production. The conventional 2-step transesterification production of biodiesel using sulphuric acid and potassium hydroxide as catalysts is carried out. The optimum process parameters like reaction time, temperature, catalyst loading and methanol-oil molar ratio were investigated with respect to maximum yield. A maximum yield of 88% biodiesel is obtained via this method. A novel technique to produce biodiesel via complete hydrolysis followed by acid esterification is developed. Optimum reaction conditions were found to be 100ml 0.5N sulphuric acid loading, reaction temperature of 40ºC and reaction time of 2 hours. This resulted in a maximum FFA of 82%. Then acid esterification was carried out at the following reaction conditions of 0.55:1 v/v methanol-oil-ratio, 0.5% v/v H2SO4 acid catalyst loading, 50˚C and 4 hours reaction time. A maximum biodiesel yield of 92% was obtained by this method. The viscosity of biodiesel produced by this method as well as the other physicochemical properties, were found to be in compliance with international standard.

  19. Castor oil biodiesel as an alternative fuel for diesel engines

    International Nuclear Information System (INIS)

    In this paper, a study related to the production and use of castor oil biodiesel is presented. The maximum methyl esters yield of the castor oil transesterification reaction is obtained under the following conditions: ambient temperature, a molar ratio of methanol to vegetable oil equal to 9 and a catalyst percentage equal to 0.8%. The castor oil biodiesel can be blended with petroleum diesel as far as 15% in such way that the resulting blend complies with national and international technical standards for diesel fuels. Its high viscosity becomes the main difficulty for using castor oil biodiesel in engines. However this biofuel exhibits excellent cold flow properties (low values of cloud and pour points). The motor tests using castor oil biodiesel petroleum diesel blends, for the biodiesel proportion tested; show that a biodiesel percentage increase leads to an increase in the specific fuel consumption, a decrease in the fuel air ratio, a slight decrease in smoke opacity, while the fuel conversion efficiency and the CO and CO2 emissions practically remain constants

  20. Rhazya stricta Decne seed oil as an alternative, non-conventional feedstock for biodiesel production

    International Nuclear Information System (INIS)

    Highlights: • First report of Rhazia stricta seed oil as feedstock for biodiesel production. • Biodiesel is prepared by alkaline transesterification. • Biodiesel from R. stricta oil meets specifications in biodiesel standards. - Abstract: Rhazya stricta Decne (R. stricta) is a hardy, drought-resistant, and arid land plant that is widely distributed from the Middle East to South Asia. The aim of this study was to evaluate the use of R. stricta seed oil as an alternative source of triacylglycerols that may be suitable for the synthesis of biodiesel. The oil content of the seeds was approximately 14% and was mainly composed of the fatty acids linoleic (60.95%) and oleic (25.48%) acid. R. stricta methyl esters (RSME) were prepared by a base-catalyzed transesterification reaction. The conversion rate of the triacylglycerols to the corresponding methyl esters was determined by 1H-NMR to be approximately 97%. This study showed that the fuel properties of the RSMEs are comparable to other vegetable oil methyl esters that are commonly used as biodiesels. R. stricta plantations will therefore be suitable for promoting sustainable agriculture and for producing biodiesel with viable prices in arid and semi-arid regions throughout the world

  1. Greenhouse gas emissions and energy balances of jatropha biodiesel as an alternative fuel in Tanzania

    International Nuclear Information System (INIS)

    This paper evaluates GHG emissions and energy balances (i.e. net energy value (NEV), net renewable energy value (NREV) and net energy ratio (NER)) of jatropha biodiesel as an alternative fuel in Tanzania by using life cycle assessment (LCA) approach. The functional unit (FU) was defined as 1 tonne (t) of combusted jatropha biodiesel. The findings of the study prove wrong the notion that biofuels are carbon neutral, thus can mitigate climate change. A net GHG equivalent emission of about 848 kg t−1 was observed. The processes which account significantly to GHG emissions are the end use of biodiesel (about 82%) followed by farming of jatropha for about 13%. Sensitivity analysis indicates that replacing diesel with biodiesel in irrigation of jatropha farms decreases the net GHG emissions by 7.7% while avoiding irrigation may reduce net GHG emissions by 12%. About 22.0 GJ of energy is consumed to produce 1 t of biodiesel. Biodiesel conversion found to be a major energy consuming process (about 64.7%) followed by jatropha farming for about 30.4% of total energy. The NEV is 19.2 GJ t−1, indicating significant energy gain of jatropha biodiesel. The NREV is 23.1 GJ t−1 while NER is 2.3; the two values indicate that large amount of fossil energy is used to produce biodiesel. The results of the study are meant to inform stakeholders and policy makers in the bioenergy sector. -- Highlights: • Production and use of jatropha biodiesel in Tanzania result into positive net greenhouse gas (GHG) emissions. • The net GHG emission is highly influenced by end use of biodiesel in a diesel engine followed by soil N2O emissions during farming of Jatropha. • Jatropha biodiesel results into significant net energy gain; however its production requires large quantity of fossil energy input. • Biodiesel conversion found to be a major energy consuming process followed by jatropha farming. • The results of the study are meant to inform stakeholders and policy makers in the

  2. Hura crepitans Seed Oil: An Alternative Feedstock for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2014-01-01

    Full Text Available Oil was extracted from the seed of Hura crepitans using hexane in a soxhlet extractor and analyzed for iodine value, saponification value and free fatty acid content. The dominant fatty acid in the oil was C18:2 (52.8±0.10% while the iodine value was 120.10±0.70 g iodine/100 g. Biodiesel was produced from the oil using a two-step reaction system involving a first step of pretreatment via esterification reaction and a second step via transesterification reaction. The pretreatment step showed that free fatty acid in Hura crepitans seed oil can be reduced in a one-step pretreatment of esterification using H2SO4 as catalyst. The biodiesel produced from Hura crepitans seed oil had an acid value of 0.21±0.00 mg KOH/g, flash point of 152 ± 1.10°C, copper strip corrosion value of 1A, calorific value of 39.10±0.30 mJ/kg, cetane number of 45.62±0.30, and density of 0.86±0.02 g cm−3. The process gave a biodiesel yield of 98.70±0.40% with properties within the recommended values of EN 14214.

  3. A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae.

    Science.gov (United States)

    Jazzar, Souhir; Quesada-Medina, Joaquín; Olivares-Carrillo, Pilar; Marzouki, Mohamed Néjib; Acién-Fernández, Francisco Gabriel; Fernández-Sevilla, José María; Molina-Grima, Emilio; Smaali, Issam

    2015-08-01

    A coupled process combining microalgae production with direct supercritical biodiesel conversion using a reduced number of operating steps is proposed in this work. Two newly isolated native microalgae strains, identified as Chlorella sp. and Nannochloris sp., were cultivated in both batch and continuous modes. Maximum productivities were achieved during continuous cultures with 318mg/lday and 256mg/lday for Chlorella sp. and Nannochloris sp., respectively. Microalgae were further characterized by determining their photosynthetic performance and nutrient removal efficiency. Biodiesel was produced by catalyst-free in situ supercritical methanol transesterification of wet unwashed algal biomass (75wt.% of moisture). Maximum biodiesel yields of 45.62wt.% and 21.79wt.% were reached for Chlorella sp. and Nannochloris sp., respectively. The analysis of polyunsaturated fatty acids of Chlorella sp. showed a decrease in their proportion when comparing conventional and supercritical transesterification processes (from 37.4% to 13.9%, respectively), thus improving the quality of the biodiesel. PMID:25965253

  4. Non-invasive rapid harvest time determination of oil-producing microalgae cultivations for bio-diesel production by using Chlorophyll fluorescence

    OpenAIRE

    Yaqin eQiao; Junfeng eRong; Hui eChen; Chenliu eHe; Qiang eWang

    2015-01-01

    For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II (PSII), also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with ...

  5. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production.

    Science.gov (United States)

    Kandimalla, Pooja; Desi, Sreekanth; Vurimindi, Himabindu

    2016-05-01

    In the present study, an attempt has been made to grow microalgae Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii in mixotropic cultivation mode using two different substrates, i.e. sewage and glucose as organic carbon sources along with flue gas inputs as inorganic carbon source. The experiments were carried out in 500 ml flasks with sewage and glucose-enriched media along with flue gas inputs. The composition of the flue gas was 7 % CO2, 210 ppm of NO x and 120 ppm of SO x . The results showed that S. quadricauda grown in glucose-enriched medium yielded higher biomass, lipid and fatty acid methyl esters (FAME) (biodiesel) yields of 2.6, 0.63 and 0.3 g/L, respectively. Whereas with sewage, the biomass, lipid and FAME yields of S. quadricauda were 1.9, 0.46, and 0.21 g/L, respectively. The other two species showed closer results as well. The glucose utilization was measured in terms of Chemical Oxygen Demand (COD) reduction, which was up to 93.75 % by S. quadricauda in the glucose-flue gas medium. In the sewage-flue gas medium, the COD removal was achieved up to 92 % by S. quadricauda. The other nutrients and pollutants from the sewage were removed up to 75 % on an average by the same. Concerning the flue gas treatment studies, S. quadricauda could remove CO2 up to 85 % from the flue gas when grown in glucose medium and 81 % when grown in sewage. The SO x and NO x concentrations were reduced up to 50 and 62 %, respectively, by S. quadricauda in glucose-flue gas medium. Whereas, in the sewage-flue gas medium, the SO x and NO x concentrations were reduced up to 45 and 50 %, respectively, by the same. The other two species were equally efficient however with little less significant yields and removal percentages. This study laid emphasis on comparing the feasibility in utilization of readily available carbon sources like glucose and inexpensive leftover carbon sources like sewage by microalgae to generate energy coupled with economical

  6. Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food?

    Directory of Open Access Journals (Sweden)

    Gwendoline Christophe

    2012-02-01

    Full Text Available Since centuries vegetable oils are consumed as human food but it also finds applications in biodiesel production which is attracting more attention. But due to being in competition with food it could not be sustainable and leads the need to search for alternative. Nowdays microbes-derived oils (single cell oils seem to be alternatives for biodiesel production due to their similar composition to that of vegetable oils. However, the cold flow properties of the biodiesel produced from microbial oils are unacceptable and have to be modified by an efficient transesterification. Glycerol which is by product of transesterification can be valorised into some more useful products so that it can also be utilised along with biodiesel to simplify the downstream processing. The review paper discusses about various potent microorganisms for biodiesel production, enzymes involved in the lipid accumulation, lipid quantification methods, catalysts used in transesterification (including enzymatic catalyst and valorisation of glycerol.

  7. Alternatives methods for biodiesel production (II): supercritical technology

    International Nuclear Information System (INIS)

    Several works on the production of biodiesel under supercritical methanol have been published, without the use of catalysts and with the presence of high concentration of water in the reaction media. It is of major interest these processing conditions with ethanol since this alcohol has several advantages over methanol. Here we studied the effect of water on the efficiency of the transesterification of soybean oil in supercritical ethanol. The effect of the operative conditions on oil conversion, fatty acid composition of the final product and degree of product degradation was studied.Reactions were performed in a tubular reactor (42ml) at a pressure of 200 bar and using a molar ration alcohol/oil of 40:1. The effect of the most important operative parameters was studied:flow rate (in the range 0.8 to 2.5 ml/min) temperature (from 250 to 375 grades C)and water concentration (from 0 to 10%).The maximum ester content obtained was 77.5% corresponding to a flow rate of 1.5ml/min 350 grades C and 0% water. At every condition tested it occurred to some extend, which was increased at the lower flow rates: 29.5% degradation at 2.5 % water and 0.8mL/min.When process was performed at temperatures lower than 325 grades C the presence of water in the reaction media had a favourable effect on the final conversion, which is a significant difference with that observed when process is performed by chemical catalysis.Results shown that oil transesterification can be efficiently performed still under a relatively high concentration of water in the reaction media. Further work must be done for diminishing the degradation of fatty acids, which appears as a key for maximizing the final ester content in the product. (author)-

  8. THE REMOVAL OF INVASIVE SPECIES THROUGH GENE SILENCING IN MICROALGAE CULTIVATION FOR BIODIESEL

    Science.gov (United States)

    The successful completion of this project will be a significant advancement in promoting a domestic supply of sustainable biodiesel. Additionally, the “green” biocide proposed in this project is significantly less toxic to the environment compared to current biocides and algae...

  9. Biodiesel: The Use of Vegetable Oils and Methyl Esters as Alternative Diesel Fuels

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Mamilla

    2012-08-01

    Full Text Available On the face of the upcoming energy crisis, vegetable oils have come up as a promisingsource of fuel. They are being studied widely because of their abundant availability,renewable nature and better performance when used in engines. Many vegetable oilshave been investigated in compression ignition engine by fuel modification or enginemodification. The vegetable oils have very high density and viscosity, so we have used themethyl ester of the oil to overcome these problems. Their use in form of methyl esters innon modified engines has given encouraging results.Vegetable oils and their derivatives are attractive as alternative fuels, fuel extenders, andan additive for compression ignition (diesel engines because they also enhance engineperformance. Worldwide there is interest in biodiesel as a renewable transportation fueland blending agent. Biodiesel has the potential to displace petroleum, lower net globalwarming gas emissions from the transportation sector and reduce the mass andcarcinogenicity of particulate matter emissions.

  10. Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: a life-cycle modeling

    DEFF Research Database (Denmark)

    Monari, Chiara; Righi, Serena; Olsen, Stig Irving

    2016-01-01

    The current use of fossil fuels is problematic for both environmental and economic reasons and biofuels are regarded as a potential solution to current energy issues. This study analyzes the energy balances and greenhouse gas emissions of 24 different technology scenarios for the production of...... difficulties with both microalgae cultivation in wastewater as well as transportation and injection of waste CO2. In any way, a positive energy balance is still far from being achieved. Considerable improvements must be made to develop an environmentally beneficial microalgae biodiesel production on an...... algal biodiesel from Nannochloropsis cultivated at industrial scale in photobioreactors in Denmark. Both consolidated and pioneering technologies are analyzed focusing on strengths and weaknesses which influence the performance. Based on literature data, energy balance and greenhouse gas emissions are...

  11. Non-invasive rapid harvest time determination of oil-producing microalgae cultivations for bio-diesel production by using Chlorophyll fluorescence

    Directory of Open Access Journals (Sweden)

    Yaqin eQiao

    2015-10-01

    Full Text Available For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II (PSII, also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with nitrogen starvation, it not only stimulated neutral lipid accumulation, but also affected the photosynthesis system, with the neutral lipid contents in all four algae strains – Chlorella sorokiniana C1, Chlorella sp. C2, C. sorokiniana C3, C. sorokiniana C7 – correlating negatively with the Fv/Fm values. Thus, for the given oil-producing algae, in which a significant relationship between the neutral lipid content and Fv/Fm value under nutrient stress can be established, the optimum harvest time can be determined by measuring the value of Fv/Fm. It is hoped that this method can provide an efficient way to determine the harvest time rapidly and expediently in large-scale oil-producing microalgae cultivations for biodiesel production.

  12. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Schinas, P.; Karavalakis, G.; Davaris, C.; Anastopoulos, G.; Karonis, D.; Zannikos, F.; Stournas, S.; Lois, E. [Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece)

    2009-01-15

    In recent years, the acceptance of fatty acid methyl esters (biodiesel) as a substitute to petroleum diesel has rapidly grown in Greece. The raw materials for biodiesel production in this country mainly include traditional seed oils (cotton seed oil, sunflower oil, soybean oil and rapeseed oil) and used frying oils. In the search for new low-cost alternative feedstocks for biodiesel production, this study emphasizes the evaluation of pumpkin seed oil. The experimental results showed that the oil content of pumpkin seeds was remarkably high (45%). The fatty acid profile of the oil showed that is composed primarily of linoleic, oleic, palmitic and stearic acids. The oil was chemically converted via an alkaline transesterification reaction with methanol to methyl esters, with a yield nearly 97.5 wt%. All of the measured properties of the produced biodiesel met the current quality requirements according to EN 14214. Although this study showed that pumpkin oil could be a promising feedstock for biodiesel production within the EU, it is rather difficult for this production to be achieved on a large scale. (author)

  13. Macroeconomic evaluation of rape cultivation for biodiesel production in Germany. Preliminary report from ifo Schnelldienst No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Schoepe, M.; Britschkat, G.

    2002-03-01

    Biodiesel has been produced for the German market since 1993. With domestic biodiesel production of the year 2001, about 500 million litres of fossil diesel could be substituted. At the same time, glycerine is produced as a by-product, as well as rape meal, a high-quality protein fodder. The economic output of the rape biodiesel production chain contributes directly and indirectly to additional government revenue. Summing up the tax return flows and additional social insurance income, the ''compensating performance'' of the rape biodiesel production chain amounts to 73% and 83% respectively of government revenue shortfalls. (orig.)

  14. Biodiesel and bioethanol production: A sustainable alternative for the energy crisis?

    Directory of Open Access Journals (Sweden)

    Claudia Castro Martínez

    2012-09-01

    Full Text Available The present contribution intends to give an overview of the current -status of the energy crisis and suggest some sustainable alternatives for energy production. In first place, a brief summary of the history about resources for energy production is presented. The high dependency of fossil combustibles it is well known and has been estimated that more than 90% of the used energy comes from non-renewable resources such as oil, gas and carbon. In the same way, here, it is described that oil is, by far, the main source of energy used to date and as a consequence, this resource is, unavoidably,coming to an end and at the same time is causing and increasing environmental pollution problems. Later in this work, it is suggested that in order to achieve the energetic sustainability, the development of alternative sources that will allow the reduction of toxic greenhouse gas (GHG emissions as well as a decrease of water usage along with a decrease in the energy production costs are needed. One of the alternatives that have been proposed is the production of biofuels, such as biodiesel and bioethanol. Here, some of the main properties at the level of the employed raw materials and production systems are cited. Finally, this work suggests some solutions that are under development worldwide in order to face thiscurrent energy situation.

  15. Energy consumption in barley and turnip rape cultivation for bioethanol and biodiesel (RME) production

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, Hannu; Ahokas, Jukka [University of Helsinki, Faculty of Agriculture and Forestry, Department of Agricultural Sciences, FIN-00014 Helsingin yliopisto (Finland); Pahkala, Katri [MTT, Agrifood Research Finland, Crop Science and Technology, FIN-31600 Jokioinen (Finland)

    2011-01-15

    The energy consumption for six spring barley (Hordeum vulgare L.) production chains and five spring turnip rape (Brassica rapa ssp. oleifera (DC) Metsg.) production chains were compared with each other and in relation to the energy content of the seed yield. Two cultivation intensities, standard and intensive production, were used for barley. Fertiliser production and grain drying were the most energy consuming phases of the chains. The production of nitrogen fertiliser alone accounted for 1/3-1/2 of the total energy consumption of the production chains. If barley were direct drilled and the yield stored in airtight silos, instead of drying, the energy consumption would decrease by 30-34%. Use of wood-chips instead of oil for grain drying would decrease the use of fossil fuel to the same extent. The input-output ratios for the intensive barley production chains were 0.18-0.25. They were somewhat lower than the ratios for the standard production intensity. The intensive production was more energy efficient despite higher input rates. The input-output ratios for turnip rape production were 0.32-0.34. The energy consumption for manufacturing, repair and maintenance of machines and buildings requires more research because it is a significant factor but the data available are largely old and few studies have been conducted. (author)

  16. Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility

    International Nuclear Information System (INIS)

    As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels. (author)

  17. [Biotechnological cultivation of edible macrofungi: an alternative for obtaining nutraceutics].

    Science.gov (United States)

    Suárez Arango, Carolina; Nieto, Ivonne Jeannette

    2013-01-01

    Macromycetes have been part of the human culture for thousand years, and have been reported as food in the most important civilizations in history. Many nutraceutical properties of macromycetes have been described, such as anti-cancer, anti-tumour, cholesterol lowering, antiviral, antibacterial, or immunomodulatory, among others. Given that production of mushrooms by traditional cultivation and extraction of bioactive metabolites is very difficult in some cases, biotechnology is essential for the development of profitable and productive techniques for obtaining these metabolites. It is the development of this technology, and the ease in which it enables the use of its variables that has allowed mycelium to be cultivated in liquid medium of macrofungi, with a significant reduction in time and an increased production of metabolites. This increased production has led to the study of compounds that have medicinal, nutriceutical and quasi-farmaceutical potential, in the exhausted media and the mycelium. The aim of this review is to provide an overview of the use of liquid-state fermentation as a technological tool for obtaining edible fungi, and the study of these and their metabolites, by describing the different cultivation conditions used in recent years, as well as the results obtained. The relevance of Agaricus, Flammulina, Grifola, Pleurotus and Lentinula genera, will also be discussed, with emphasis on the last one, since Shiitake has been always considered as the ultimate medicinal mushroom. PMID:22449697

  18. Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending

    Science.gov (United States)

    Fatty acid methyl esters (biodiesel) prepared from field pennycress and meadowfoam seed oils were blended with methyl esters from camelina, cottonseed, palm, and soybean oils in an effort to ameliorate technical deficiencies inherent to these biodiesel fuels. For instance, camelina, cottonseed, and ...

  19. Biodiesel and its properties

    Science.gov (United States)

    Biodiesel is a bio-based alternative to conventional diesel fuel derived from petroleum. It consists mainly of the fatty acid esters of vegetable oils or other triacylglycerol feedstocks. This chapter provides a background on biodiesel as well as an overview of biodiesel production, analysis, and pr...

  20. Fatty acid composition as a tool for screening alternative feedstocks for production of biodiesel

    Science.gov (United States)

    Fatty acid (FA) composition was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Cori...

  1. Potential alternatives to edible oils for biodiesel production - A review of current work

    International Nuclear Information System (INIS)

    Biodiesel production is a very modern and technological area for researchers due to the relevance that it is winning everyday because of the increase in the petroleum price and the environmental advantages. Currently, biodiesel is mainly prepared from conventionally grown edible oils such as rapeseed, soybean, sunflower and palm thus leading to alleviate food versus fuel issue. About 7% of global vegetable oil supplies were used for biodiesel production in 2007. Extensive use of edible oils may cause other significant problems such as starvation in developing countries. The use of non-edible plant oils when compared with edible oils is very significant in developing countries because of the tremendous demand for edible oils as food, and they are far too expensive to be used as fuel at present. The production of biodiesel from different non-edible oilseed crops has been extensively investigated over the last few years.

  2. Potential alternatives to edible oils for biodiesel production - A review of current work

    International Nuclear Information System (INIS)

    Biodiesel production is a very modern and technological area for researchers due to the relevance that it is winning everyday because of the increase in the petroleum price and the environmental advantages. Currently, biodiesel is mainly prepared from conventionally grown edible oils such as rapeseed, soybean, sunflower and palm thus leading to alleviate food versus fuel issue. About 7% of global vegetable oil supplies were used for biodiesel production in 2007. Extensive use of edible oils may cause other significant problems such as starvation in developing countries. The use of non-edible plant oils when compared with edible oils is very significant in developing countries because of the tremendous demand for edible oils as food, and they are far too expensive to be used as fuel at present. The production of biodiesel from different non-edible oilseed crops has been extensively investigated over the last few years. (author)

  3. Production of Biodiesel from Microalgae

    OpenAIRE

    Danilović Bojana R.; Avramović Jelena M.; Ćirić Jovan T.; Savić Dragiša S.; Veljković Vlada B.

    2012-01-01

    In recent years, more attention has been paid to the use of third generation feedstocs for the production of biodiesel. One of the most promising sources of oil for biodiesel production are microalgae. They are unicellular or colonial photosynthetic organisms, with permanently increasing industrial application in the production of not only chemicals and nutritional supplements but also biodiesel. Biodiesel productivity per hectare of cultivation area can be...

  4. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  5. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lyes Tarabet

    2012-01-01

    Full Text Available Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v% at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  6. Biodiesel fuels

    Science.gov (United States)

    The mono-alkyl esters, most commonly the methyl esters of vegetable oils, animal fats, or other materials consisting mainly of triacylglycerols, often referred to as biodiesel, are an alternative to conventional petrodiesel for use in compression-ignition engines. The fatty acid esters that thus com...

  7. Alternative technique for biodiesel quality control using an optical fiber long-period grating sensor

    International Nuclear Information System (INIS)

    We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method. (author)

  8. Alternative technique for biodiesel quality control using an optical fiber long-period grating sensor

    Energy Technology Data Exchange (ETDEWEB)

    Falate, Rosane [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Informatica; Nike, Karen; Costa Neto, Pedro Ramos da [Universidade Tecnologica Federal do Parana, Curitiba (Brazil). Dept. de Quimica; Cacao Junior, Eduardo; Muller, Marcia; Kalinowski, Hypolito Jose; Fabris, Jose Luis [Universidade Tecnologica Federal do Parana, Curitiba (Brazil). Dept. de Fisica]. E-mail: fabris@utfpr.edu.br

    2007-07-01

    We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method. (author)

  9. Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel

    Science.gov (United States)

    Calotropis gigantea (Indian milkweed) is a common plant in Asia that grows as a weed on open waste ground. Flowering and fruiting take place throughout the year. In this study, Indian milkweed oil was evaluated as a potential feedstock for biodiesel production. The oil was extracted from Indian milk...

  10. Biodiesel production, properties and feedstocks

    Science.gov (United States)

    Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, is an environmentally attractive alternative to conventional petroleum diesel fuel (petrodiesel). Produced by transesterification with a monohydric alcohol, usually methanol, biodiesel has many important technical advantag...

  11. Economics of biodiesel production in the context of fulfilling 20% blending with petro-diesel in Nepal

    DEFF Research Database (Denmark)

    Parajuli, Ranjan

    2014-01-01

    The dependency on imported petro-diesel along with the escalating price are adversely affecting the national economy of Nepal. As an alternative fuel, prospects of biodiesel production for partial substitution of petro-diesel are felt necessary to reduce the dependency on fossil fuel. This article...... outlines the economics of biodiesel production in the country. Three different cases are developed for the economic analysis in the chain of biodiesel production, which are aimed to overview the influences of yield of plant, cost of cultivation, and price of raw oilseeds to the production cost of biodiesel....... The study concludes that the biodiesel production is economically viable with a plant yield greater than 2 kg/plant and with the price of oil seeds lower than 0.22 USD/kg, which has a positive return on investment. With the yield lower than 2 kg/plant, the production cost of biodiesel cannot compete...

  12. Industrial Fermentation of Auxenochlorella protothecoides for Production of Biodiesel and Its Application in Vehicle Diesel Engines

    OpenAIRE

    Xiao, Yibo; Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Microalgae-derived biodiesel has been regarded as a promising alternative for fossil diesel. However, the commercial production of microalgal biodiesel was halted due to its high cost. Here, we presented a pilot study on the industrial production of algal biodiesel. We began with the heterotrophic cultivation of Auxenochlorella protothecoides in a 60-m3 fermentor that produced biomass at 3.81 g L−1 day−1 with a neutral lipid content at 51%. Next, we developed plate-frame filter, natural dryin...

  13. Industrial fermentation of Auxenochlorella protothecoides for production of biodiesel and its application in vehicle diesel engines

    OpenAIRE

    Yibo eXiao; Yue eLu; Junbiao eDai; Qingyu eWu

    2015-01-01

    Microalgae-derived biodiesel has been regarded as a promising alternative for fossil diesel. However, the commercial production of microalgal biodiesel was halted due to its high cost. Here, we presented a pilot study on the industrial production of algal biodiesel. We began with the heterotrophic cultivation of Auxenochlorella protothecoides in a 60 m3 fermentor that produced biomass at 3.81 g L-1 day-1 with a neutral lipid content at 51%. Next, we developed plate-frame filter, natural dryin...

  14. Use of sloops distilleries for oils production: an alternative source for biodiesel production

    International Nuclear Information System (INIS)

    This study report an evaluation of different yeast strains screened from molasses and soils, on media based mainly in distilleries sloops to produces oils which could be further transformed into biodiesel. Among 9 screened yeast strains 6 was selected and identified previously as oleaginous by other authors. The lipid content of this yeast strains was determinate by Bligh y Dyer modified method. The strain identified as Yarrovia lipolytic a reached 24,8 g/L of biomass concentration in a sloop distillery/crude glycerol mix adjusted to 75 g/L of total DQO and 70:30 ratio and produce lipids around 20 % in fed-batch mode. Different results was obtained with the supplement of others nutrients and elements and from the use of different sloop distillery/glycerol DQO ratio. Chemical characterization of biodiesel obtained by transesterification of Y. lipolytic a lipids when cells were grown on sloops/molasses and sloops/glycerol mixture are mainly C14-C18 and indicated that possessed similar composition to that from vegetable oils, one of the widely used feedstock for biodiesel, although it is not similar on both media. The sum of fatty acids range C14-C18 obtained in slops/glycerol medium was superior about 10 % respect to the value obtained in sloops/molasses. (author)

  15. Technological research on alternative energy sources in Brazil: the case of biodiesel; Pesquisas tecnologicas sobre fontes alternativas de energia no Brasil: o caso do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marcia Franca; Souza, Cristina Gomes de; Peixoto, Jose Antonio Assuncao [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This article aims to map the main characteristics of research projects promoted in Brazil on biodiesel, as part of the National Program for Production and Use of Biodiesel (PNPB), aiming to identify issues, such as: what are the types of plants studied, which is being searched and what the different partners involved. The survey was made on the basis of data available on the web site of the government www.biodiesel.gov.br, and showed the existence of 118 searches registered on the subject. The contents of the study addresses initially some relevant information on biodiesel and its peculiarities in Brazil. In the following sections are identified actions taken by the Brazilian government to create an environment to encourage technological development related to biodiesel, with emphasis on the PNPB and its lines of research. Finally, the results obtained from the database found are presented and discussed. Among other information, the study reveals that: the plants most studied are castor bean, soybeans and cotton, and the research on the biodiesel has focused on improvements in its characterization and quality control as well as in the production of the fuel itself. (author)

  16. Biodiesel: Current Trends and Properties

    Science.gov (United States)

    Biodiesel, an alternative to petroleum-derived diesel fuel, is defined as the mono-alkyl esters of vegetable oils and animal fats. Several current issues affecting biodiesel that are briefly discussed include the role of new feedstocks in meeting increased demand for biodiesel and circumventing the...

  17. Supercritical Synthesis of Biodiesel

    Directory of Open Access Journals (Sweden)

    Michel Vaultier

    2012-07-01

    Full Text Available The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs for biodiesel synthesis.

  18. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste

    International Nuclear Information System (INIS)

    CG (Crude glycerol) is one of the major wastes of biodiesel production process. It can be used as a substrate for lipid production by algae and the produced lipid can be recycled as a feedstock for biodiesel production. In order to avoid substrate inhibition, lipid production media are prepared by diluting the CG with distilled water. However, CG contains only a small amount of Mg (57.41 ± 18 ppm) and its concentration is further decreased to around 0.57 ppm during the dilution process. Apart from having a number of roles in algal physiology, Mg is the central atom of chlorophyll. Therefore, MgSO4 was evaluated as a Mg source to supplement the CG based media used for lipid production by Chlorella vulgaris. By supplementing the process with 1 g/L of MgSO4, nearly 185.29 ± 4.53% improvement in lipid production has been achieved. Further, application of MgSO4 nanoparticles was found to improve the lipid production by 118.23 ± 5.67%. Interestingly, unlike MgSO4, its nanoparticles were found to enhance the lipid production at the expense of only a small amount of glycerol. Thus, application of MgSO4 nanoparticles could be a potential strategy for enhanced lipid yield. - Highlights: • MgSO4 supplementation can improve the biomass production by 125.58 ± 7.2%. • 185.29 ± 4.53% increase in lipid production by Chlorella vulgaris. • Enhanced lipid production in spite of negligible glycerol consumption. • MgSO4 nanoparticle induced enhanced photosynthesis by micro algae

  19. ARS Biodiesel Research Initiatives

    Science.gov (United States)

    Biodiesel activities within ARS are concerned with the production, quality, and properties of this alternative fuel from agriculturally derived fats and oils. Currently, in the absence of tax incentives, biodiesel production when using refined fats and oils and conventional alkali transesterificati...

  20. Developing New Alternative Energy in Virginia: Bio-Diesel from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, Patrick [Old Dominion University

    2012-03-29

    The overall objective of this study was to select chemical processing equipment, install and operate that equipment to directly convert algae to biodiesel via a reaction patented by Old Dominion University (Pat. No. US 8,080,679B2). This reaction is a high temperature (250- 330{degrees}C) methylation reaction utilizing tetramethylammonium hydroxide (TMAH) to produce biodiesel. As originally envisioned, algal biomass could be treated with TMAH in methanol without the need to separately extract triacylglycerides (TAG). The reactor temperature allows volatilization and condensation of the methyl esters whereas the spent algae solids can be utilized as a high-value fertilizer because they are minimally charred. During the course of this work and immediately prior to commencing, we discovered that glycerol, a major by-product of the conventional transesterification reaction for biofuels, is not formed but rather three methoxylated glycerol derivatives are produced. These derivatives are high-value specialty green chemicals that strongly upgrade the economics of the process, rendering this approach as one that now values the biofuel only as a by-product, the main value products being the methoxylated glycerols. A horizontal agitated thin-film evaporator (one square foot heat transfer area) proved effective as the primary reactor facilitating the reaction and vaporization of the products, and subsequent discharge of the spent algae solids that are suitable for supplementing petrochemicalbased fertilizers for agriculture. Because of the size chosen for the reactor, we encountered problems with delivery of the algal feed to the reaction zone, but envision that this problem could easily disappear upon scale-up or can be replaced economically by incorporating an extraction process. The objective for production of biodiesel from algae in quantities that could be tested could not be met, but we implemented use of soybean oil as a surrogate TAG feed to overcome this limitation

  1. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine

    International Nuclear Information System (INIS)

    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification. (author)

  2. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-07-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends and specifications. It also covers how biodiesel compares to diesel fuel in terms of performance (including in cold weather) and whether there are adverse effects on engines or other systems. Finally, it discusses biodiesel fuel quality and standards, and compares biodiesel emissions to those of diesel fuel.

  3. Production of biodiesel from microalgae

    Directory of Open Access Journals (Sweden)

    Danilović Bojana R.

    2014-01-01

    Full Text Available In recent years, more attention has been paid to the use of third generation feedstocs for the production of biodiesel. One of the most promising sources of oil for biodiesel production are microalgae. They are unicellular or colonial photosynthetic organisms, with permanently increasing industrial application in the production of not only chemicals and nutritional supplements but also biodiesel. Biodiesel productivity per hectare of cultivation area can be up to 100 times higher for microalgae than for oil crops. Also, microalgae can grow in a variety of environments that are often unsuitable for agricultural purposes. Microalgae oil content varies in different species and can reach up to 77% of dry biomass, while the oil productivity by the phototrophic cultivation of microalgae is up to 122 mg/l/d. Variations of the growth conditions and the implementation of the genetic engineering can induce the changes in the composition and productivity of microalgal oil. Biodiesel from microalgae can be produced in two ways: by transesterification of oil extracted from biomass or by direct transesterification of algal biomass (so called in situ transesterification. This paper reviews the curent status of microalgae used for the production of biodiesel including their isolation, cultivation, harvesting and conversion to biodiesel. Because of high oil productivity, microalgae will play a significant role in future biodiesel production. The advantages of using microalgae as a source for biofuel production are increased efficiency and reduced cost of production. Also, microalgae do not require a lot of space for growing and do not have a negative impact on the global food and water supplies. Disadvantages of using microalgae are more difficult separation of biomass and the need for further research to develop standardized methods for microalgae cultivation and biodiesel production. Currently, microalgae are not yet sustainable option for the commercial

  4. Pinhão-Manso: Uma Alternativa para Produção de Biodiesel na Agricultura Familiar da Amazônia Brasileira. = Jatropha curcas: An alternative for biodiesel production in the Brazilian Amazonian family agriculture.

    Directory of Open Access Journals (Sweden)

    José Maria Arcanjo Alves

    2008-07-01

    Full Text Available O pinhão-manso (Jatropha curcas L., da família Euforbiaceae, é uma espécie que pode ser cultivada em diferentes condições edafoclimáticas. Apresenta valor medicinal, ornamental e na produção de óleo. Atualmente tem aumentado o interesse no conhecimento agronômico desta cultura, visando à seleção e o aprimoramento de variedades mais produtivas e economicamente viáveis, principalmente devido ao alto potencial na produção de óleo para fabricar o biodiesel. Apesar de ainda não ser cultivada comercialmente no Brasil, mostra-se viável para a agricultura familiar das regiões Norte e Nordeste, pois tem alta resistência à seca e boa adaptação as altas temperaturas e insolação, além de produzir em solos ácidos e de baixa fertilidade como os do cerrado da Amazônia. Estudos estão sendo conduzidos com essa cultura no estado de Roraima visando desenvolver tecnologias viáveis de produção para serem adotadas pela agricultura familiar, como uma alternativa promissora na geração de emprego e renda, promovendo a recuperação e proteção de áreas alteradas ou degradadas e permitindo o consórcio com fruteiras nativas e culturas anuais. = The pinhão-manso (Jatropha curcas L., from the Euforbiaceae famíly, is a species that can be raised in different edafoclimatic conditions. It presents a regular medicinal and ornamental value, and it is also useful for oil production, Nowadays it is increasing the interest in the agronomic knowledge of this culture, mostly related to the selection and improving of more productive and economically feasible varieties, mainly due to its high potencial for biodiesel production. Although this species is not yet cultivated for market use in Brasil, it has shown feasibility for family agriculture in North and Northeast regions, because of its great resistance to draught as well as its good adaptation to high temperatures and insolation. This species can also produce in highly acid and scarcely

  5. Study on the cultivation of Ankistudesmus sp and preparation for biodiesel production%纤维藻培养及制备生物柴油的研究

    Institute of Scientific and Technical Information of China (English)

    刘振强; 陆向红; 晏荣军; 卢美贞; 高婷; 梅晓冬; 计建炳

    2012-01-01

    探讨了纤维藻(Ankistudesmus sp)的低成本培养模式,考察了氮源和碳源以及反应器形式对纤维藻生物量、油脂积累以及油脂组成的影响.户外培养纤维藻在氮饥饿条件下油脂产率较高;通过槽式反应器和管式反应器的比较发现:槽式反应器更适合微藻的大规模培养;混养培养时能显著增加纤维藻的生物量和油脂含量,最佳添加条件下藻的生物量和油脂含量分别高达1.64 g/L和15.9%,1.41 g/L和11.9%.藻油经酸催化甲酯化制备生物柴油,经气相色谱分析,藻油主要成分为棕榈酸、油酸和亚油酸.氮缺陷、流加葡萄糖培养得到的纤维藻油含有25.32%的棕榈酸、44.74%的油酸,其制备得到的生物柴油具有更好的氧化稳定性和低温流动性.%The low cost cultivation mode of Ankistudesmus sp was discussed in this study. The effect of nitrogen, carbon and reactor pattern on biomass, fat accumulation and fat composition were investigated.Lipid production got higher when in nitrogen starvation cultured outside.. Through the comparison between slot reactor and tubular reactor .It discovered that slot reactor is more suitable for large scale microalgae cultivation.Mixotrophic cultivation could significantly im prove algal biomass and lipid content,under the optimal addition conditions, biomass and lipid content were up to 1.41 g/L and 11.9%, 1.64 g/L and 15.9% respectively. Algal lipid were made into biodiesel through acidic catalysis and methyl esterification.The main contents of algal lipid were palmitic acid , oleic acid and linoleic acid. Furthermore, the obtained algal oil in conditions of nitrogen limitation and adding glucose had 25.32% palmitic acid and 44.74% oleic acid which could provide better oxidative stability and cold flow properties.

  6. Biodiesel Fuel Quality and the ASTM Standard

    Science.gov (United States)

    Biodiesel is usually produced from vegetable oils, animal fats and used cooking oils with alternative feedstocks such as algae receiving increasing interest. The transesterification reaction which produces biodiesel also produces glycerol and proceeds stepwise via mono- and diacylglycerol intermedia...

  7. Effects of Interannual Climate Variability in Secondary Forests and Crops Under Traditional and Alternative Shifting Cultivation

    Science.gov (United States)

    Sa, T. D.; Guild, L. S.; Carvalho, C. J.; Potter, C. S.; Wickel, A. J.; Brienza, S.; Kato, M. A.; Kato, O.

    2002-12-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of secondary forests (capoeira) is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Ni¤o events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. In Igarape-Acu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching and fallow vegetation improvement by planting with fast-growing leguminous tree species) may make capoeira and crops more resilient to the effects of agricultural pressures and drought through 1) increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention and 2) greater rooting depth of trees planted for fallow improvement. This experimental practice (mechanized chop-and-mulch with fallow improvement) has resulted in increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. We present preliminary data on water relations during the dry season of 2001 in capoeira and crops for both traditional slash-and-burn and alternative chop-and-mulch practices. These data will be used to test IKONOS data for the detection of moisture status differences. The principal goal of the research is to determine the extent to which capoeira

  8. Sustainability of sunflower cultivation for biodiesel production in central Italy according to the Renewable Energy Directive methodology

    OpenAIRE

    Daniele Duca; Giuseppe Toscano; Ester Foppa Pedretti; Giovanni Riva

    2014-01-01

    The use of renewable energies as alternative to fossil fuels has value from different points of view and has effects at environmental, social and economic level. These aspects are often connected to each other and together define the overall sustainability of bioenergy. At European level, the Directive 2009/28/EC gives the basic criteria for the estimation of sustainability of biofuels and indicates a minimum threshold of 35% of greenhouse gas saving for a biofuel in order to be considered su...

  9. A model for utilizing industrial off-gas to support microalgae cultivation for biodiesel in cold climates

    International Nuclear Information System (INIS)

    Highlights: • Development of a model to assess process-coupled algae production in cold climates. • Algae growth temperatures in open tanks can be maintained with industrial off-gas. • Indirect and direct heat application from industrial off-gasses are assessed. • CO2-rich off-gas can be bubbled into algae tanks to provide a carbon source. • A nickel smelter’s off-gas is used to demonstrate how waste heat can be repurposed. - Abstract: Lipids produced by microalgae are a promising biofuel feedstock. However, as most commercial mass production of microalgae is in open raceway ponds it is generally considered only a practical option in regions where year-round ambient temperatures remain above 15 °C. To address this issue it has been proposed to couple microalgae production with industries that produce large amounts of waste heat and carbon dioxide (CO2). The CO2 would provide a carbon source for the microalgae and the waste heat would allow year-round cultivation to be extended to regions that experience seasonal ambient temperatures well below 15 °C. To demonstrate this concept, a dynamic model has been constructed that predicts the impact on algal pond temperature from both bubbled-in off-gas and heat indirectly recovered from off-gas. Simulations were carried out for a variety of global locations using the quantity off-gas and waste energy from a smelter’s operations to determine the volume of microalgae that could be maintained above 15 °C. The results demonstrate the feasibility of year-round microalgae production in climates with relatively cold winter seasons

  10. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, 23119 Elazig (Turkey); Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, 72060 Batman (Turkey)

    2009-10-15

    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NO{sub x}), sulphur dioxide (SO{sub 2}) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NO{sub x} emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification. (author)

  11. Availability of oilseed rape for biodiesel; Beschikbaarheid koolzaad voor biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, B.; Prins, H.; Van der Voort, M.; Meeusen, B.M. [Praktijkonderzoek Plant en Omgeving, Wageningen (Netherlands); Smit, B.; Annevelink, B. [Agrotechnology en Food Innovations, Wageningen (Netherlands)

    2005-07-01

    This report provides an insight into the conditions under which the Dutch agricultural industry will cultivate oilseed rape for biodiesel. The Dutch agricultural entrepreneur occupies a central role in this. The possibilities relating to the cultivation of oilseed rape are assessed from the perspective of the Dutch farmer, within the framework of the EU directive regarding the substitution of 2% of transport fuels with bio transport fuels in the Netherlands. Along with bio-ethanol, biodiesel is an important bio transport fuel. One of the raw materials used in the production of biodiesel is (cultivated) oilseed rape. [Dutch] Dit rapport geeft inzicht in de voorwaarden waaronder het Nederlandse landbouwbedrijfsle-ven koolzaad zullen telen voor biodiesel. Daarbij staat de Nederlandse landbouwondernemer centraal. Vanuit het perspectief van de Nederlandse landbouwer worden de mogelijkheden voor koolzaadteelt beoordeeld. Dit in het kader van de EU-richtlijn om te komen tot een vervanging van 2% van de transportbrandstoffen door biotransportbrandstoffen in Nederland. Naast bio-ethanol is biodiesel daarin een belangrijke (bio)transportbrandstof. Een van de grondstoffen voor biodiesel is (geteelde) koolzaad.

  12. Utilization of industrial dairy waste as microalgae cultivation medium : a potential study for sustainable energy resources

    Science.gov (United States)

    Nurmayani, S.; Sugiarti, Y.; Putra, R. H.

    2016-04-01

    Microalgae is one of biodiesel resources and call as third generation biofuel. Biodiesel is one alternative energy that being developed. So study about resource of biodiesel need a development, for the example is development the basic material such as microalgae. In this paper we explain the potential use of dairy waste from industry as a cultivation medium of microalgae for biodiesel production. Dairy waste from dairy industry contains 34.98% protein, 4.42% lactose, 9.77% fiber, 11.04% fat, 2.33% calcium, 1.05% phosfor, and 0.4 % magnesium, meaning that the dairy waste from dairy industry has a relatively high nutrient content and complete from a source of carbon, nitrogen and phosphorus as macro nutrients. The method in this paper is literature review to resulting a new conclusion about the potency of waste water from dairy industry as microalgae cultivation medium. Based on the study, the dairy waste from dairy industry has potency to be used as cultivation medium of Botryococcus braunii in the production of biodiesel, replacing the conventional cultivation medium.

  13. Fuel and physical properties of biodiesel components

    Science.gov (United States)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats or used oils. Specifically, biodiesel is the methyl or other alkyl esters of these oils or fats. Biodiesel also contains minor components such as free fatty acids and acylglycerols. Important fuel properties of biodi...

  14. DETERMINATION OF HIGHER HEATING VALUE OF BIODIESELS

    OpenAIRE

    K. Sivaramakrishnan; Dr.P.RAVIKUMAR

    2011-01-01

    Biodiesel, an alternative fuel can be used in diesel engine as neat or blended with diesel. The physiochemical properties of fuel are important in design of fuel system for compression ignition engine run on diesel,biodiesel or biodiesel blend. The HHV is an important property which characterizes the energy content of a fuel such as solid, liquid and gaseous fuels. The biodiesels were characterized for their physical and main fuel properties including viscosity, density, flash point and highe...

  15. Systematic sustainable process design and analysis of biodiesel processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Ismail, Muhammad Imran; Babi, Deenesh Kavi;

    2013-01-01

    Biodiesel is a promising fuel alternative compared to traditional diesel obtained from conventional sources such as fossil fuel. Many flowsheet alternatives exist for the production of biodiesel and therefore it is necessary to evaluate these alternatives using defined criteria and also from...... a biodiesel production case study....

  16. Performance of Differents Genotyps of Brazilian Orchid Cultivation in Alternatives Substrates

    Directory of Open Access Journals (Sweden)

    Ricardo Tadeu de Faria

    2001-12-01

    Full Text Available Two native Brazilian orchid especies, Oncidium baueri and Maxillaria picta, were grown in different substrate mixtures. The plants were cultivated in ceramic pots in a greenhouse with 50% of shadind light and watered three times a week. The following substrates were used: 1 de-fibered xaxim; 2xaxim cubes; 3 vermiculite; 4 carbonized rice husk; 5 charcoal; 6 charcoal + carbonized rice husk; 7 crocks; 8 vermiculite and charcoal; 9 vermiculite + carbonized rice husks; 10 extruded polystyrene + charcoal; 11 pine bark + charcoal + extruded polystyrene; 12 vermiculite + carbonized rice husks + extruded polystyrene + charcoal; 13 pine bark. The substrate ratio was 1:1 in the mixture. NPK 10-10-10 leaf fertilizer was applied every thirty days and castor bean cake and bone powder organic fertilizer were applied every ninety days. A randomized complete block design was used with 10 replications. Growth and rooting were assessed after eight months. The best alternative substrate to O. baueri was vermiculie and the best alternatives substrates to M. picta were vermiculite and charcoal and vermiculite + carbonized rice husks.Diferentes misturas de substratos foram estudados para duas variedades de orquídeas nativas do Brasil: Oncidium baueri e Maxillaria pictea. As plantas foram cultivadas em vasos de cerâmica em casa de vegetação com 50% de luminosidade e regadas 3 vezes por semana. Os substratos utilizados foram os seguintes: 1xaxim desfibrado; 2xaxim e cubos; 3vermiculita; 4casca de arroz carbonizada; 5carvão; 6carvão + casca de arroz carbonizada; 7cacos de cerâmica; 8vermiculita + carvão; 9vermiculita + casca da arroz carbonizada; 10isopor + carvão; 11casca de pinus + carvão + isopor; 12 vermiculita + casca da arroz carbonizada + isopor + carvão; 13casca de pinus. A proporção dos substratos foi de 1:1na mistura. A cada trinta dias foi realizado uma adubação foliar com NPK: 10-10-10 e a cada 90 dias uma adubação orgânica com torta de

  17. Evaluation and optimization of growth and citric acid production by Yarrowia lipolytica NRRL Y-1095 using glycerol as carbon source as an alternative to use biodiesel byproduct

    Directory of Open Access Journals (Sweden)

    Avila-Neto P M

    2014-02-01

    Full Text Available The aim of the present study was to optimize growth and citric acid production by Yarrowia lipolytica NRRL Y-1095 using glycerol as the sole carbon source, like an alternative to use biodiesel glycerol, a promising and cheap carbon source. Fermentations were performed in Erlenmeyer flasks to optimize growth and citrate production from glycerol. The fermented broth was analyzed by HPLC equipped with a UV and RI detector to evaluate isocitrate, citrate and glycerol consumption. The growth medium was optimized in flasks and in batch fermentation. The present study have optimized media conditions for the growth phase of Yarrowia lipolityca NRRL Y-1095 using experimental design and surface response methodology, obtaining 6.18 g.l-1 of dry cell weight (DCW and up to 22 g.l-1 DCW in bioreactor after 96 h. Six fermentations were performed in a feed batch reactor with varying aeration and agitation. Dissolved oxygen was an important factor and a 0.5 yield of citric acid was obtained from feed batch fermentation, where up to 59 g.l-1 of citric acid was obtained. Glycerol is a cheap alternative to citric acid production since biodiesel glycerol production is growing rapidly and becoming an environmental problem.

  18. Use of biodiesel co-products (Glycerol as alternative sources of energy in animal nutrition: a systematic review

    Directory of Open Access Journals (Sweden)

    VO Silva

    2014-01-01

    Full Text Available The recent surge in the use of biodiesel in Brazil and abroad, coupled with the availability of large amounts of glycerol, are generating interest in the use of this co-product in several ways, such as its use in animal feed. The use of glycerol in the formulation of diets caused immediate interest to obtain a highly efficient energy rich product to use in animal production. The aim of this study was to evaluate the effects of the use of glycerol resulting from biodiesel production as an energy supplement in animal feed, as well as establishing appropriate protocols for each species based on previous studies. Most of them using pigs, cows, bulls, sheep, laying hens and broilers. It was possible to infer from these studies that glycerol was a food ingredient suitable for replacement in diets of different animal species.

  19. Co-cultivation of Aspergillus nidulans recombinant strains produces an enzymatic cocktail as alternative to alkaline sugarcane bagasse pretreatment

    Directory of Open Access Journals (Sweden)

    Matheus Sanita Lima

    2016-04-01

    Full Text Available Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60 % - 80 % of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA, GH11 endo-1,4-xylanase (XlnA, GH43 endo-1,5-arabinanase (AbnA and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA. This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.

  20. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment.

    Science.gov (United States)

    Lima, Matheus S; Damasio, André R de L; Crnkovic, Paula M; Pinto, Marcelo R; da Silva, Ana M; da Silva, Jean C R; Segato, Fernando; de Lucas, Rosymar C; Jorge, João A; Polizeli, Maria de L T de M

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  1. PRODUCCIÓN DE BIODIESEL A PARTIR DE MICROALGAS: PARÁMETROS DEL CULTIVO QUE AFECTAN LA PRODUCCIÓN DE LÍPIDOS Biodiesel Production from Microalgae: Cultivation Parameters that Affect Lipid Production

    Directory of Open Access Journals (Sweden)

    MARTHA TRINIDAD ARIAS PEÑARANDA

    2013-04-01

    Full Text Available Las microalgas poseen la capacidad para mitigar las emisiones de CO2 y producir lípidos, por lo que se consideran con potencial para la obtención de biocombustibles de tercera generación. La presente revisión proporciona información actualizada de la influencia de las condiciones de cultivo, sobre la obtención de lípidos con una productividad elevada y perfil adecuado para la producción de biodiesel, se proporciona una síntesis de resultados de investigaciones realizadas en los últimos 13 años en diversas partes del mundo. En la literatura consultada, los autores concluyen que aunque el comportamiento de las microalgas ante condiciones de estrés fisiológico es variable entre especies; la limitación de nutrientes especialmente nitrógeno y fósforo, asociado al crecimiento heterotrófico o a altas intensidades luminosas en fototrofía se consideran como las estrategias más eficientes para incrementar el contenido de lípidos en las microalgas, en particular de triglicéridos constituidos por ácidos grasos saturados y monoinsaturados, ideales para la producción de biodiesel. De igual forma, señalan que la presencia de pequeñas cantidades de CO2 y la cosecha de la biomasa en la fase estacionaria de crecimiento, incrementan el contenido de lípidos y disminuyen el número de insaturaciones de los ácidos grasos que lo conforman.The microalgae have the capacity to mitigate CO2 emissions and to produce lipids, which are considered with potential to obtain third-generation biofuel. This review provides updated information of the influence of culture conditions on the lipids production with high productivity and profile suitable for the biodiesel production. This document presents a compilation of research conclusions over the last 13 years around the world. In the literature consulted, the authors conclude that although the behavior of microalgae at physiological stress conditions, varies between species; the nutrients limitation

  2. PRODUCCIÓN DE BIODIESEL A PARTIR DE MICROALGAS: PARÁMETROS DEL CULTIVO QUE AFECTAN LA PRODUCCIÓN DE LÍPIDOS Biodiesel Production from Microalgae: Cultivation Parameters that Affect Lipid Production

    OpenAIRE

    MARTHA TRINIDAD ARIAS PEÑARANDA; ALFREDO DE JESÚS MARTÍNEZ ROLDÁN; ROSA OLIVIA CAÑIZARES VILLANUEVA

    2013-01-01

    Las microalgas poseen la capacidad para mitigar las emisiones de CO2 y producir lípidos, por lo que se consideran con potencial para la obtención de biocombustibles de tercera generación. La presente revisión proporciona información actualizada de la influencia de las condiciones de cultivo, sobre la obtención de lípidos con una productividad elevada y perfil adecuado para la producción de biodiesel, se proporciona una síntesis de resultados de investigaciones realizadas en los últimos 13 año...

  3. Why Teach about Biodiesel?

    Science.gov (United States)

    Lawrence, Richard

    2002-01-01

    Proposes that study of biodiesel as a healthier alternative to petroleum diesel be included in the curriculum. Suggests that teachers will play a critical role during the transition away from fossil fuel technologies. Provides background information and web-based resources. (DLH)

  4. Cultivating sustainable development? An analysis of the Brazilian public policy for biodiesel within the context of sustainable development and environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Gucciardi Garcez, C.A.

    2007-07-01

    The objective of this article is to contribute to the analysis of the Brazilian public policy related to biodiesel within the context of sustainable development and environmental management. Biofuels have been steadily increasing in popularity on a global scale. Brazil, a country that boasts abundant natural resources and agricultural land, has emerged as a world leader in the production of biofuels. In order to verify biodiesel's potential to contribute to sustainable development, it is necessary to analyze the biofuel in a larger social, environmental, and economic context. The methodology applied to this study included a brief review of the evolution of the concept of sustainable development and instruments of environmental management, which served as a basis to evaluate the policy documents and data relating to the policy's implementation. Although the implementation is still within its initial stage, significant weakness has been found in the policy. One consequence is the domination of soy as a primary material for biodiesel. Other weaknesses identified are related to the Selo (''certification of a socially inclusive fuel'') to promote social inclusion, as well as a lack of support for family-based agriculture to aggregate value to the primary material that they produce. (auth)

  5. Biodiesel Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  6. Resilience and Alternative Stable States of Tropical Forest Landscapes under Shifting Cultivation Regimes.

    Directory of Open Access Journals (Sweden)

    Piotr Magnuszewski

    Full Text Available Shifting cultivation is a traditional agricultural practice in most tropical regions of the world and has the potential to provide for human livelihoods while hosting substantial biodiversity. Little is known about the resilience of shifting cultivation to increasing agricultural demands on the landscape or to unexpected disturbances. To investigate these issues, we develop a simple social-ecological model and implement it with literature-derived ecological parameters for six shifting cultivation landscapes from three continents. Analyzing the model with the tools of dynamical systems analysis, we show that such landscapes exhibit two stable states, one characterized by high forest cover and agricultural productivity, and another with much lower values of these traits. For some combinations of agricultural pressure and ecological parameters both of these states can potentially exist, and the actual state of the forest depends critically on its historic state. In many cases, the landscapes' 'ecological resilience', or amount of forest that could be destroyed without shifting out of the forested stability domain, declined substantially at lower levels of agricultural pressure than would lead to maximum productivity. A measure of 'engineering resilience', the recovery time from standardized disturbances, was independent of ecological resilience. These findings suggest that maximization of short-term agricultural output may have counterproductive impacts on the long-term productivity of shifting cultivation landscapes and the persistence of forested areas.

  7. Biodiesel Supplement

    Science.gov (United States)

    1. What are the greatest challenges facing the biodiesel industry today? The greatest challenges are probably related to the amount of feedstock being available if the current expansion in biodiesel production and use continues. This challenge is addressed below under question 2 regarding the hur...

  8. Exergetic analysis of a biodiesel production process from Jatropha curcas

    International Nuclear Information System (INIS)

    Highlights: ► Exergetic analysis of a biodiesel production process from Jatropha curcas. ► A 95% of the inefficiencies are located in the transesterification reactor. ► Exergetic efficiency of the steam generator amounts 37.6%. ► Chemical reactions cause most of the irreversibilities of the process. ► Exergetic efficiency of the overall process is over 63%. -- Abstract: As fossil fuels are depleting day by day, it is necessary to find an alternative fuel to fulfill the energy demand of the world. Biodiesel is considered as an environmentally friendly renewable diesel fuel alternative. The interest in using Jatropha curcas as a feedstock for the production of biodiesel is rapidly growing. On the one hand, J. curcas’ oil does not compete with the food sector due to its toxic nature and to the fact that it must be cultivated in marginal/poor soil. On the other, its price is low and stable. In the last decade, the investigation on biodiesel production was centered on the choice of the suitable raw material and on the optimization of the process operation conditions. Nowadays, research is focused on the improvement of the energetic performance and on diminishing the inefficiencies in the different process components. The method of exergy analysis is well suited for furthering this goal, for it is a powerful tool for developing, evaluating and improving an energy conversion system. In this work, we identify the location, magnitude and sources of thermodynamic inefficiencies in a biodiesel production process from J. curcas by means of an exergy analysis. The thermodynamic properties were calculated from existing databases or estimated when necessary. The higher exergy destruction takes places in the transesterification reactor due to chemical reactions. Almost 95% of the exergy of the fuel is destroyed in this reactor. The exergetic efficiency of the overall process is 63%.

  9. Opportunities and challenges for biodiesel fuel

    International Nuclear Information System (INIS)

    Fossil fuel resources are decreasing daily. As a renewable energy, biodiesel has been receiving increasing attention because of the relevance it gains from the rising petroleum price and its environmental advantages. This review highlights some of the perspectives for the biodiesel industry to thrive as an alternative fuel, while discussing opportunities and challenges of biodiesel. This review is divided in three parts. First overview is given on developments of biodiesel in past and present, especially for the different feedstocks and the conversion technologies of biodiesel industry. More specifically, an overview is given on possible environmental and social impacts associated with biodiesel production, such as food security, land change and water source. Further emphasis is given on the need for government's incentives and public awareness for the use and benefits of biodiesel, while promoting policies that will not only endorse the industry, but also promote effective land management. (author)

  10. Sorghum as an alternative of cultivation to maize; Sorghumhirse als Anbaualternative zum Mais

    Energy Technology Data Exchange (ETDEWEB)

    Jaekel, Kerstin; Theiss, Markus; Poetzschke, Karen [Saechsisches Landesamt fuer Umwelt, Landwirtschaft und Geologie (LfULG), Dresden (Germany)] [and others

    2013-10-01

    Due to their high dry matter yield potential Sorghum bicolor and Sorghum bicolor x sudanense are well fitted as feedstock for biogas production. Similar to maize, both species show a high efficiency in their use of water (C4-plants). However, Sorghum has a higher drought tolerance in comparison with maize but is more sensitive to low temperatures. Hence a cultivation of Sorghum is recommendable especially in dry and relatively warm regions, including recultivated areas and even on loess soil, provided that the required temperatures are given. Due to the fact that Sorghum is not affected by the corn root worm, it also could gain relevance in regions were the cultivation of maize is restricted. Furthermore, Sorghum is usable as a catch crop as well as a main crop because of its variable sowing time. Catch crop cultivation, however, yields a significantly lower amount of dry matter and -quality which is a result of its shorter vegetation period. Owing to its higher crude fiber concentration Sorghum achieves a lower theoretically attainable specific methane yield (Weissbach) than maize. Thus only on rare occasions Sorghum does achieve methane yields per hectare that are comparable to maize. Eventually, the competitiveness of Sorghum greatly depends on provision of enhanced cultivars achieved through genetic improvement. (orig.)

  11. Biodiesel research progress 1992-1997

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, K.S. [ed.

    1998-04-01

    The US Department of Energy (DOE) Office of Fuels Development began evaluating the potential of various alternative fuels, including biodiesel, as replacement fuels for traditional transportation fuels. Biodiesel is derived from a variety of biological materials from waste vegetable grease to soybean oil. This alkyl ester could be used as a replacement, blend, or additive to diesel fuel. This document is a comprehensive summary of relevant biodiesel and biodiesel-related research, development demonstration, and commercialization projects completed and/or started in the US between 1992 and 1997. It was designed for use as a reference tool to the evaluating biodiesel`s potential as a clean-burning alternative motor fuel. It encompasses, federally, academically, and privately funded projects. Research projects are presented under the following topical sections: Production; Fuel characteristics; Engine data; Regulatory and legislative activities; Commercialization activities; Economics and environment; and Outreach and education.

  12. New technologies in biodiesel production

    International Nuclear Information System (INIS)

    The cost of biodiesel is nowadays affected by the cost of the raw materials, because the currently used method of preparation requires highly refined vegetable oils containing very low amounts of free fatty acids and moisture. Alternatively, less expensive technologies are possible using heterogeneous catalysts. In the present paper examples of these new technologies, based on the use of heterogeneous catalysts, in the production of biodiesel are described and discussed.

  13. Production of activated carbon from biodiesel solid residues: An alternative for hazardous metal sorption from aqueous solution.

    Science.gov (United States)

    Ribeiro, Rita F L; Soares, Vitor C; Costa, Letícia M; Nascentes, Clésia C

    2015-10-01

    In this study, the potential for the sorption of Pb(2+) and Cd(2+) from aqueous solutions using HNO3-treated activated carbon (TAC) obtained from radish press cake (Raphanus sativus L.), a solid residue from biodiesel production, was investigated. Activated carbon (AC) was obtained by physical activation with CO2(g). Chemical modification with HNO3 was employed to increase the sorption capability of the AC. The sorption of Pb(2+) and Cd(2+) was studied in monometallic systems in equilibrium with different metal-ion concentrations (10-400 mg L(-1)). The experimental sorption equilibrium data were fit to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (qmax) obtained for AC from the Langmuir isotherm was 45.5 mg g(-1) for Cd(2+) and 250 mg g(-1) for Pb(2+). Moreover, TAC presented qmax of 166.7 mg g(-1) (1.48 mmol g(-1)) for Cd(2+) and 500.0 mg g(-1) (2.41 mmol g(-1)) for Pb(2+)showing the effect of chemical modification. Sorption-desorption studies showed that the interaction between metals and TAC is reversible and this sorbent can be reused for several consecutive cycles. Furthermore, the sorption of Cd(2+) and Pb(2+) by TAC was not affected by the presence of competing ions. The experimental data obtained in this study indicated that this solid residue is viable for the production of sorbents that remove metals, such as cadmium and lead, from wastewaters and thereby contribute to the sustainable development of the production of biodiesel. PMID:26233585

  14. Energy aspects of microalgal biodiesel production

    OpenAIRE

    Edith Martinez-Guerra; Veera Gnaneswar Gude

    2016-01-01

    Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final p...

  15. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet...

  16. Fuel Properties of Biodiesel/Ultra-low Sulfur Diesel Blends

    Science.gov (United States)

    Biodiesel is an alternative fuel and fuel extender made from transesterification of vegetable oils or animal fats with methanol or ethanol. The National Biodiesel Board estimated that biodiesel production in the United States increased from 250 million gal in 2006 to 450 million gal in 2007. In 20...

  17. Dynamic characteristics of Paracoccus denitrificans in alternate aerobic-anaerobic continuous cultivations

    Energy Technology Data Exchange (ETDEWEB)

    Waki, T.; Kawato, Y.; Shimatani, Y.; Ichikawa, K.

    1980-06-01

    The alternate aerobic-anaerobic continuous culture system was used to analyze the adaptation phenomena of Paracoccus denitrificans quantitatively, which will be observed in a single sludge nitrification-denitrification system. After the initial rapid reduction of nitrate in the anaerobic period, a rather high rate of nitrate reduction was maintained. The lag of adaptation to each condition was short and this was explained by the presence of large amounts of the cytochromes and enzymes required for both aerobic and nitrate/nitrite respirations. When the alternation cycle of aerobic and anaerobic conditions was short, the nitrate concentration was lower than that in anaerobic continuous cultures at the same dilution rate. The apparent specific rate of nitrate reduction was almost the same as that in anaerobic continuous cultures when the alternation cycle was short. On the other hand, the nitrite accumulated at high concentrations and the apparent specific rate of nitrite reduction was very low. The actual reduction rate of nitrate in the anaerobic periods was found to be unaffected by the length of the aerobic periods, however, the actual reduction rate of nitrite was highly affected by the aerobic periods. By considering the initial rapid reduction of nitrate in the alternate aerobic-anaerobic system, it was suggested that the higher recycling ratio which corresponds to the shorter alternation cycle, was effective in increasing the efficiency of nitrogen removal in the single sludge nitrification-denitrification system.

  18. Application of Biotechnology to Construct a Sustainable Biodiesel Production System on Wastewater

    Science.gov (United States)

    Wu, Xiaodan; Liu, Yuhuan; Xu, Erni; Liu, Jianqiang; Ruan, Roger; Fu, Guiming

    2010-11-01

    The potential of microalgae biodiesel is unlimited. The ingenious combination of microalgae biomass exploitation, decontamination of municipal wastewater, and CO2 fixation may gestate the ultimate hope for solving the problem of liquid alternative fuel. However, the municipal wastewater has some characteristics, such as high content of nitrogen and phosphorus, low C/N ratio, fluctuation of loading rate, toxicity of heavy metal, etc. To overcome these problems, studies are currently underway in our laboratory. In this paper, an idea of constructing a sustainable biodiesel production system from microalgae on wastewater is assumed. The system could realize CO2 fixation, decontamination of municipal wastewater, and production of high value-added biodiesel by microalgae. Firstly, municipal wastewater is used as the cultivation media and CO2 as gaseous fertilizer for mass culture of Shuihua microalgae. So with the harvest of large quantities of low-price Shuihua microalgae, the nitrogen, phosphorus and heavy metals can be removed from the wastewater, and the emission of greenhouse gas can be reduced. Secondly, try to breed a high-oil content engineering microalgae by heterotrophic cultivation which could realize high-density growth through the conjunction of the advanced methods of fermentation engineering with the microalgae breeding technology. Finally, make the high-oil content engineering microalgae cultivated on the decomposed Shuihua microalgae cells, and try to make the high-oil content engineering microalgae grow rapidly in the initial stage and start oil accumulation when nitrogen is exhausted by controlling the conditions of fermentation.

  19. Effects of Interannual Climate Variability on Water Availability and Productivity in Capoeira and Crops Under Traditional and Alternative Shifting Cultivation

    Science.gov (United States)

    Guild, Liane S.; Sa, Tatiana D. A.; Carvalho, Claudio J. R.; Potter, Christopher S.; Wickel, Albert J.; Brienza, Silvio, Jr.; Kato, Maria doSocorro A.; Kato, Osvaldo; Brass, James (Technical Monitor)

    2002-01-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of capoeira. is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Nino events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. In Igarape-Acu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching and fallow vegetation improvement by planting with fast-growing leguminous tree species) may make capoeira and agriculture more resilient to the effects of agricultural pressures and drought through (1) increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention and (2) greater rooting depth of trees planted for fallow improvement. This experimental practice (moto mechanized chop-and-mulch with fallow improvement) has resulted increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. We present preliminary data on water relations during the dry season of 2001 in capoeira and crops for both traditional slash-and-burn and alternative chop-and-mulch practices. These data will be used to test IKONOS data for the detection of moisture status differences. The principal goal of the research is to determine the extent to which capoeira and

  20. Fuel Properties and Performance of Biodiesel

    Science.gov (United States)

    When being used as "alternative" diesel fuel, the mono-alkyl esters of vegetable oils or animal fats are referred to as biodiesel. Biodiesel is playing an increasingly important role in the fuel landscape, with production and use growing exponentially and standards established around the world. Co...

  1. Applications of NMR to Biodiesel Research

    Science.gov (United States)

    Biodiesel, an alternative diesel fuel derived from vegetable oils, animal fats or used frying oils, is technically competitive with petroleum-derived diesel fuel. Technical issues facing biodiesel include oxidative stability, improvement of cold flow properties and reduction of nitrogen oxides exha...

  2. Antioxidants for improving storage stability of biodiesel

    Science.gov (United States)

    Biodiesel is an alternative diesel fuel made from vegetable oil or animal fat that may be burned in a compression-ignition (diesel) engine. The chemical nature of biodiesel makes it more susceptible to oxidation or autoxidation during long-term storage than conventional petroleum-based diesel (petr...

  3. Cold weather properties and performance of biodiesel

    Science.gov (United States)

    Biodiesel is an alternative fuel made from vegetable oil or animal fat that can be employed in compression-ignition (diesel) engines. Biodiesel is more prone to start-up and operability problems during cold weather than conventional diesel fuels (petrodiesel). This work reviews impacts that exposu...

  4. Confronting CSR and Development: The cultivation of ‘Alternatives to Development’ in the Uruguayan countryside

    OpenAIRE

    Ehrnström-Fuentes, Maria

    2013-01-01

    The aim of this paper is to explore how anti-development legitimacy can be constructed under conditions of near complete hegemony of the development paradigm. The paper asks, under almost complete naturalization of the development paradigm, how can marginalized voices construct counter-discourses visualizing an alternative future? Through a case study approach, this paper is based on testimonies told by small scale farmers in the Uruguayan countryside. In Uruguay the highly mediated boarder c...

  5. Production of Biodiesel from Vegetable Oil Using Microware Irradiation

    OpenAIRE

    N. Kapilan

    2012-01-01

    The petroleum oil supply crisis, the increase in demand and the price eruption have led to a search for an alternative fuel of bio-origin in India. Among the alternative fuels, biodiesel is considered as a sustainable renewable alternative fuel to fossil diesel. Non-edible jatropha oil has considerable potential for the production of biodiesel in India. The production of biodiesel from jatropha oil using a conventional heating method takes more than 1h. In this work, microwave irradiation has...

  6. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  7. Effect of Biodiesel on Thermal NO Formation

    Science.gov (United States)

    Thangaraja, J.; Mehta, P. S.

    2015-04-01

    Biodiesel is an attractive alternative to diesel fuel which is renewable in nature. This fuel has excellent lubricity, low smoke and potential for replacement of fossil diesel without major engine modifications or requirement of any additives. However, a higher nitric oxide (NO) emission from biodiesel is widely cited as their undesired emission characteristics. The present study analyses and describes the various reasons for higher NO formation with biodiesel relative to diesel fuel. To explore this so called biodiesel NO penalty, experiments were conducted on a four cylinder compression ignition engine with neat Karanja biodiesel and fossil diesel. Neat Karanja implies an unblended pure biodiesel. The experimental NO concentration with biodiesel and diesel fuel is validated using extended Zeldovich mechanism. Results suggest that the increase in NO emission with biodiesel fuel could not be opined to a change in a single fuel property but rather, it is the result of a number of coupled pathways whose effects may dominate or cancel one another under different conditions, depending on biodiesel compositional characteristics.

  8. Detection of Interannual Climate Variability in Secondary Forests and Crops Under Traditional and Alternative Shifting Cultivation Using Ikonos Data

    Science.gov (United States)

    Sa, T.; Guild, L.; Carvalho, C.; Wickel, A.; Brienza, S.; Kato, M.; Kato, O.; Leibs, C.

    2004-12-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of secondary forests (capoeira) is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Nino events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. The principal goal of the research is to determine the extent to which capoeira and agricultural fields are susceptible to extreme climate events (drought) under contrasting landuse/clearing practices. In Igarape-Açu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching) may make capoeira and crops more resilient to the effects of agricultural pressures and drought through increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention. This experimental practice (mechanized chop-and-mulch) has resulted in increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. This project aims to measure water availability and it's relation to secondary forest and crop productivity in the Brazilian Amazon. We have conducted field efforts during two dry seasons (August-December). Field data on water relations were collected during the dry season of 2001 and 2002 in capoeira and crops for both

  9. Fleet Services makes the switch to biodiesel

    OpenAIRE

    West, Hilary

    2009-01-01

    As part of their Green Fleet Initiative and in an effort to meet customer's demand for alternative fuel sources, Virginia Tech Fleet Services will begin using B-10 Biodiesel for diesel powered vehicles.

  10. Emergy Analysis and Sustainability Efficiency Analysis of Different Crop-Based Biodiesel in Life Cycle Perspective

    OpenAIRE

    Jingzheng Ren; Alessandro Manzardo; Anna Mazzi; Andrea Fedele; Antonio Scipioni

    2013-01-01

    Biodiesel as a promising alternative energy resource has been a hot spot in chemical engineering nowadays, but there is also an argument about the sustainability of biodiesel. In order to analyze the sustainability of biodiesel production systems and select the most sustainable scenario, various kinds of crop-based biodiesel including soybean-, rapeseed-, sunflower-, jatropha- and palm-based biodiesel production options are studied by emergy analysis; soybean-based scenario is recognized as t...

  11. Biodiesel production by microalgae and macroalgae from north littoral portuguese coast

    OpenAIRE

    Carvalho, Joana; Ribeiro, André; Castro, Joana Daniela Fernandes de; Vilarinho, Cândida; Castro, F.

    2011-01-01

    Biodiesel, as an alternative fuel, has many benefits. It is biodegradable, non-toxic and compared to petroleum-based diesel, has a more favorable combustion emission profile, such as low emissions of carbon monoxide, particulate matter and unburned hydrocarbons. In brief, these merits make biodiesel a good alternative to petroleum based fuel. Biodiesel feedstocks derived from microalgae and macroalgae have emerged as one of the most promising alternative sources of lipid for use in biodiesel ...

  12. Process Simulation of enzymatic biodiesel production -at what cost can biodiesel be made with enzymes?

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Christensen, Knud Villy; Rong, Benguang;

    The industrial production of biodiesel has had a very turbulent lifetime due to drastic changes in prices of raw materials and fossil fuels as well as regulatory changes and produced amounts of biodiesel. Biodiesel production is carried out by various forms of catalysts, but industrially only...... as well as environmental impacts of the alternative process must be evaluated towards the conventional process. With process simulation tools, an evaluation will be carried out looking at what it will cost to produce biodiesel with enzymes. Different scenarios will be taken into account with variations...

  13. Experimental evaluation of C.I. engine performance using diesel blended with Jatropha biodiesel

    Directory of Open Access Journals (Sweden)

    Sunil Kumar, Alok Chaube, Shashi Kumar Jain

    2012-01-01

    Full Text Available Costlier and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as promising alternative to petro-diesel. The higher viscosity of vegetable oils leads to problem in pumping, atomization and spray characteristics. The improper mixing of vegetable oils with air leads to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible and animal fat. The main feedstock for biodiesel production can be non-edible oil obtained from Jatropha curcas plant. Jatropha curcas plant can be cultivated on different terrains in India under extreme climatic conditions. Biodiesel can be used in its pure form or as a blend with petro-diesel in different proportions. It is being used in CI engines because it has properties similar to petro-diesel. The aim of this paper is to analyze suitability of petro-diesel blended with biodiesel in varying proportions in CI engines. For this purpose, a stationary single-cylinder four-stroke CI engine was tested with diesel blended with Jatropha biodiesel in 0%, 5%, 20%, 50%, 80% and 100%. Comparative measures of specific fuel consumption (SFC, brake thermal efficiency, smoke opacity, HC, CO2, CO, O2, NOX have been presented and discussed. Engine performance in terms of comparable brake thermal efficiency and SFC with lower emissions (HC, CO2, CO was observed with B20 fuel compared to petro-diesel. Volumetric efficiency showed almost no variation for all the blends. Important observations related to noise and vibrations during testing have also been discussed.

  14. Biology and biotechnological advances in Jatropha curcas - A biodiesel plant

    KAUST Repository

    Reddy, Muppala P.

    2009-10-31

    Increasing global demand for energy, the impending depletion of fossil fuels, and concern over global climate change have lead to a resurgence in the development of alternative energy sources. Bio-fuels and bio-energy encompass a wide range of alternative sources of energy of biological origin, and offer excellent, environmentally friendly opportunities to address these issues. The recognition that Jatropha oil can yield high quality biodiesel has led to a surge of interest in Jatropha across the globe, more so in view of the potential for avoiding the dilemma of food vs fuel. Hardiness, rapid growth, easy propagation, short gestation period, wide adaptation, and optimum plant size combine to make this species suitable for sustainable cultivation on wastelands. Besides biodiesel from the seed, the plant produces several useful products that also have commercial value. Large scale cultivation remains the single most important factor that will ultimately determine the success of Jatropha as a source of bio-fuel. The limited knowledge of the genetics of this species, low and inconsistent yields, the narrow genetic variability, and vulnerability to insects and diseases are major constraints in successful cultivation of Jatropha as a bio-fuel crop. Despite the optimal protein content and composition of the pressed cake, the presence of phorbol esters makes it unsuitable for consumption by livestock. A non-toxic variety with low or no phorbol ester content has been identified from Mexico, and the utility of pressed cake from this variety as livestock feed has been demonstrated successfully. In the absence of any morphological differences, identification of linked markers for toxic/non-toxic varieties will add value to the crop and facilitate further improvement. This chapter discusses current efforts towards assessing the diversity and phylogeny of Jatropha, identification of specific markers for toxic and non-toxic varieties, and aspects of micropropagation and genetic

  15. Progress in biodiesel processing

    International Nuclear Information System (INIS)

    Biodiesel is a notable alternative to the widely used petroleum-derived diesel fuel since it can be generated by domestic natural sources such as soybeans, rapeseeds, coconuts, and even recycled cooking oil, and thus reduces dependence on diminishing petroleum fuel from foreign sources. The injection and atomization characteristics of the vegetable oils are significantly different than those of petroleum-derived diesel fuels, mainly as the result of their high viscosities. Modern diesel engines have fuel-injection system that is sensitive to viscosity change. One way to avoid these problems is to reduce fuel viscosity of vegetable oil in order to improve its performance. The conversion of vegetable oils into biodiesel is an effective way to overcome all the problems associated with the vegetable oils. Dilution, micro-emulsification, pyrolysis, and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Transesterification is the most common method and leads to monoalkyl esters of vegetable oils and fats, now called biodiesel when used for fuel purposes. The methyl ester produced by transesterification of vegetable oil has a high cetane number, low viscosity and improved heating value compared to those of pure vegetable oil which results in shorter ignition delay and longer combustion duration and hence low particulate emissions.

  16. Industrial Products from Biodiesel Glycerol

    Science.gov (United States)

    The continual rise in demand for and cost of petroleum fuels has resulted in an increased demand for alternative fuels. This has resulted in a worldwide surge in the use of biodiesel, a renewable fuel derived from oils and fats, with world production projected to approach 1 billion gallons by the e...

  17. Optimizing biodiesel composition and properties

    Science.gov (United States)

    Biodiesel is an alternative diesel fuel prepared from vegetable oils, animal fats or other oil-containing materials. While it is technically competitive with conventional diesel fuel derived from petroleum, some of its fuel properties still require improvement. This article briefly summarizes the t...

  18. The Analysis of Biodiesel Oxidation

    Science.gov (United States)

    Oxidative stability is one of the major technical issues facing biodiesel, an alternative diesel fuel derived from vegetable oils, animal fats or used frying oils. The content of unsaturated fatty acids, especially those with bis-allylic methylene positions, is the main cause of this problem. Besi...

  19. Industrial Products from Biodiesel Glycerol

    Science.gov (United States)

    The rise in cost of petroleum fuels has caused an increased interest in alternative fuels. This has resulted in a worldwide surge in the use of biodiesel, a renewable fuel derived from oils and fats, with world production projected to approach 1 billion gallons by the end of 2006. This rapid growt...

  20. What ails India's biodiesel programme?

    International Nuclear Information System (INIS)

    With more than 95% of India's surface transport dependent on imported fossil fuel, India has made a concerted effort to promote biofuel. The newly announced biofuel policy of India stipulates a blending target of 20% for both bioethanol and biodiesel. In the case of biodiesel, complement to fossil fuel diesel, India's predominant transport fuel, this target is to be achieved by cultivating non-edible oil seed plants in wastelands and fallow land. In spite of best effort, very little progress has been made on the ground. As the result, the deadline for blending target of 20% for biodiesel has been postponed from 2011–2012 to 2006–2017. This paper makes an attempt to understand the factors behind the tardy progress in India's biodiesel scene and suggests policy remedies. - Highlights: ► Even after a decade of efforts in promoting biofuel, India's achievement does not augur well. ► Objective is to understand the factors behind tardy progress. ► Suggests policy remedies.

  1. Sustainable Future for Biodiesel in Brazil

    DEFF Research Database (Denmark)

    Dias, Maria Amélia de Paula

    This thesis aims to study alternatives to biodiesel industry in Brazil, for 2030, taking in account the sustainability dimensions, namely economic, environmental, ecological, social, national and international politics, territorial, cultural, and technological, through the development of scenarios...... for agriculture and pasture. Thus, a simulation, using linear programming models, was made in order to verify the alternatives of feedstock to produce biodiesel. It was observed that it is possible to decentralize the market, reduce land use, and regionalize production, making better use of the availability...... to identify the driving forces to develop the scenario storylines. This proposition was tested in an in-depth interview with the biodiesel market stakeholders. Based on the findings of the two approaches, the simulations and the interviews, it was possible to obtain future alternatives, where the biodiesel...

  2. The cultivation and harvesting of micro-algal biomass from the Hartbeespoort Dam for the production of biodiesel / Jacobus Petrus Brink.

    OpenAIRE

    Brink, Jacobus Petrus

    2011-01-01

    Renewable energy sources such as biomass are becoming more and more important as alternative to fossil fuels. One of the most exciting new sources of biomass is microalgae. The Hartbeespoort Dam, located 37 km west of South Africa’s capital Pretoria, has one of the dense populations of microalgae in the world, and is one of the largest reservoirs of micro-algal biomass in South Africa. The dam has great potential for micro-algal biomass production and beneficiation due to its high nutrient lo...

  3. Improving the low temperature properties of biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bhale, Purnanand Vishwanathrao; Deshpande, Nishikant V.; Thombre, Shashikant B. [Visvesvaraya National Institute of Technology, Mechanical Engineering, South Ambazari Road, Near Bajaj Nagar, 440011 Nagpur, Maharashtra (India)

    2009-03-15

    The use of biodiesel as a diesel fuel extender and lubricity improver is rapidly increasing. While most of the properties of biodiesel are comparable to petroleum based diesel fuel, improvement of its low temperature flow characteristic still remains one of the major challenges when using biodiesel as an alternative fuel for diesel engines. The biodiesel fuels derived from fats or oils with significant amounts of saturated fatty compounds will display higher cloud points and pour points. This paper is aimed to investigate the cold flow properties of 100% biodiesel fuel obtained from Madhuca indica, one of the important species in the Indian context. In this paper, the cold flow properties of biodiesel were evaluated with and without pour point depressants towards the objectives of identifying the pumping and injecting of these biodiesel in CI engines under cold climates. Effect of ethanol, kerosene and commercial additive on cold flow behavior of this biodiesel was studied. A considerable reduction in pour point has been noticed by using these cold flow improvers. The performance and emission with ethanol blended Mahua biodiesel fuel and ethanol-diesel blended Mahua biodiesel fuel have also been studied. A considerable reduction in emission was obtained. Ethanol blended biodiesel is totally a renewable, viable alternative fuel for improved cold flow behavior and better emission characteristics without affecting the engine performance. (author)

  4. Microalgae: An Alternative Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    A. Z. A. Saifullah

    2016-08-01

    Full Text Available This paper presents an overview on the potentiality of microalgae with particular emphasis as a sustainable renewable energy source for biodiesel. One of the most important dilemmas of the modern world is to supply maximal amount of energy with minimal environmental impact. The total energy demand of our planet is increasing with population growth whereas the fossil fuel reserves are dwindling swiftly. Biodiesel produced from biomass is widely considered to be one of the most sustainable alternatives to fossil fuels and a viable means for energy security and environmental and economic sustainability. But as a large area of arable land is required to cultivate biodiesel producing terrestrial plants, it may lead towards food scarcity and deforestation. Microalgae have a number of characteristics that allow the production concepts of biodiesel which are significantly more sustainable than their alternatives. Microalgae possess high biomass productivity, oils with high lipid content, fast growth rates, possibility of utilizing marginal and infertile land, capable of growing in salt water and waste streams, and capable of utilizing solar light and CO2 gas as nutrients.

  5. Innovative Canadian Process Technology For Biodiesel Production

    Energy Technology Data Exchange (ETDEWEB)

    Johar, Sangat; Norton, Kevin

    2010-09-15

    The need for increasing renewable and alternative energy in the global energy mix has been well recognized by Governments and major scientific forums to reduce climate change impact for this living planet. Biodiesel has very high potential for GHG emission reduction. An innovative process developed in Canada provides solution to mitigate the feedstock, yield and quality issues impacting the industry. The Biox process uses a continuous process which reduces reaction times, provides > 99% yield of high quality biodiesel product. The process is feedstock flexible and can use cheaper higher FFA feedstock providing a sustainable approach for biodiesel production.

  6. Analysis of national Jatropha biodiesel programme in Senegal

    DEFF Research Database (Denmark)

    Dafrallah, Touria; Ackom, Emmanuel

    2016-01-01

    and other biodiesel crop options, based on findings from an agro-environmental mapping exercise have been shown. Findings show that prior policies in agricultural and energy sectors had been instrumental in developing the NJP. It highlights significant challenges in the value chain, the implementation...... of NJP and on the importance of using empirical assessment of evidence to inform on the biodiesel crop type compared to a focus on only one crop, Jatropha. Agro-environmental mapping was identified as useful technique prior to biodiesel cultivation. The work reported here indicates Jatropha having...... on the suitability of areas for Jatropha cultivation and on environmentally, socially and culturally sensitive areas. Policy options have been suggested for environmentally benigned sustained biodiesel activities in Senegal....

  7. Solid Catalysts and theirs Application in Biodiesel Production

    OpenAIRE

    Ramli Mat; Rubyatul Adawiyah Samsudin; Mahadhir Mohamed; Anwar Johari

    2012-01-01

    The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development ...

  8. Current Status and Prospects of Biodiesel Production from Microalgae

    Directory of Open Access Journals (Sweden)

    Yuhuan Liu

    2012-07-01

    Full Text Available Microalgae represent a sustainable energy source because of their high biomass productivity and ability to remove air and water born pollutants. This paper reviews the current status of production and conversion of microalgae, including the advantages of microalgae biodiesel, high density cultivation of microalgae, high-lipid content microalgae selection and metabolic control, and innovative harvesting and processing technologies. The key barriers to commercial production of microalgae biodiesel and future perspective of the technologies are also discussed.

  9. Microalgae downstream processing and economical approaches of biodiesel producton processes

    OpenAIRE

    Ríos, Sergio Daniel

    2013-01-01

    Microalgae oil has been identified as a reliable resource for biodiesel production due to its high lipid productivity and potential cultivation in non-fertile locations. However, high scale production of microalgae based biodiesel depends on the optimization of the entire process to be economically feasible. The present work combine the optimization of microalgae downstream processes with computational tools for the modeling of different scenarios of the harvesting, oil extraction and transes...

  10. DETERMINATION OF HIGHER HEATING VALUE OF BIODIESELS

    Directory of Open Access Journals (Sweden)

    K.SIVARAMAKRISHNAN

    2011-11-01

    Full Text Available Biodiesel, an alternative fuel can be used in diesel engine as neat or blended with diesel. The physiochemical properties of fuel are important in design of fuel system for compression ignition engine run on diesel,biodiesel or biodiesel blend. The HHV is an important property which characterizes the energy content of a fuel such as solid, liquid and gaseous fuels. The biodiesels were characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value. The viscosities of biodiesels were much less than those of pure oils and their HHV’s of approximately 42 MJ/kg were 10% less than those of petro diesel fuels. The HHVs of vegetable oils and their biodiesels were measured and correlated using linear least square regression analysis. An equation was developed relating HHV and thermal properties. The predicted higher heating values compare well with the measured Higher Heating Values. This work establishes the general dependence of higher heating value on thermal properties of biodiesel.

  11. Biodiesel production by transesterification using immobilized lipase.

    Science.gov (United States)

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production. PMID:23247566

  12. Waste streams for algae cultivation

    OpenAIRE

    Kautto, Antti

    2011-01-01

    ALDIGA, short for “Algae from Waste for Combined Biodiesel and Biogas Pro-duction”, aims to develop a concept for a closed circulation of resources in pro-ducing biodiesel and biogas from waste. The project is realized in co-operation between VTT, University of Helsinki, Lahti and Häme Universities of Applied Sciences, SYKE and funded by Tekes. The project’s first work phase ergo this bachelor’s thesis covered the mapping of available and suitable streams to be used in the cultivation of ...

  13. A comparison of diesel, biodiesel and solar PV-based water pumping systems in the context of rural Nepal

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Pokharel, Govind Raj; Østergaard, Poul Alberg

    2014-01-01

    using petro-diesel, jatropha-based biodiesel and solar photovoltaic pumps. The technical system design consists of system sizing of prime mover (engine, solar panel and pumps) and estimation of reservoir capacity, which are based on the annual aggregate water demand modelling. With these investigations...... area, the levelised cost of pumping 1 L of water is higher than that of a solar pump and even higher when compared with diesel, if the seed yield per plant is less than 2 kg and without subsidy on the investment cost of cultivation and processing. With the productivity of 2.5 kg/plant, a biodiesel...... rural end-uses. In this context, this article is prepared to investigate energy alternatives to pump drinking water in one of the remote rural village of Nepal, which has no means of running water source. Analyses in this article are based on the formulation of three technical scenarios of water pumping...

  14. Energy aspects of microalgal biodiesel production

    Directory of Open Access Journals (Sweden)

    Edith Martinez-Guerra

    2016-03-01

    Full Text Available Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.

  15. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles

    Science.gov (United States)

    AbstractContext: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. Objectives: We compared the formation of covalent DNA adducts by the in vitro metabol...

  16. Effects of monoacylglycerols on low-temperature viscosity and cold filter plugging point of biodiesel

    Science.gov (United States)

    Biodiesel is composed of mono-alkyl fatty acid esters made from the transesterification of vegetable oil or animal fat with methanol or ethanol. Biodiesel must meet rigorous standard fuel specifications (ASTM D 6751; CEN EN 14214) to be classified as an alternative fuel. Nevertheless, biodiesel that...

  17. Biodiesel production with immobilized lipase: A review.

    Science.gov (United States)

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. PMID:20580809

  18. Blending biodiesel in fishing boat fuels for improved fuel characteristics

    Directory of Open Access Journals (Sweden)

    Cherng-Yuan eLin

    2014-02-01

    Full Text Available Biodiesel is a renewable, clean, alternative energy source with advantages such as excellent lubricity, superior biodegradability and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% with 25 wt% biodiesel blending. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1% to 4.5%.

  19. Biodiesel/ULSD blend ratios by analysis of fuel properties

    Science.gov (United States)

    Biodiesel is an alternative fuel that is made from vegetable oil or animal fat. Biodiesel is often blended with ultra low sulfur diesel (ULSD; 15 mg/kg maximum sulfur content) in volumetric ratios (VBD) of up to 20 vol% (B20). Government tax credits and other regulatory requirements may depend on ac...

  20. Production and properties of biodiesel from algal oils

    Science.gov (United States)

    Biodiesel is an alternative to petroleum-based conventional diesel fuel (petrodiesel). A major issue facing biodiesel is sufficient supply of feedstock to replace significant amounts of petrodiesel. This issue has caused a search for sources of triacylglycerol-based oils with high production poten...

  1. Water Consumption Estimates of the Biodiesel Process in the US

    Science.gov (United States)

    As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...

  2. Biodiesel: A fuel, a lubricant, and a solvent

    Science.gov (United States)

    Biodiesel is well-known as a biogenic alternative to conventional diesel fuel derived from petroleum. It is produced from feedstocks such as plant oils consisting largely of triacylglycerols through transesterification with an alcohol such as methanol. The properties of biodiesel are largely compet...

  3. Moringa Oleifera Oil: A Possible Source of Biodiesel

    Science.gov (United States)

    Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a v...

  4. Improving Biodiesel Fuel Properties by Modifying Fatty Ester Composition

    Science.gov (United States)

    Biodiesel is an alternative to petroleum-derived diesel fuel composed of alkyl esters of vegetable oils, animal fats or other feedstocks such as used cooking oils. The fatty acid profile of biodiesel corresponds to that of its feedstock. Most feedstocks possess fatty acid profiles consisting mainl...

  5. Designing a Biodiesel Fuel with Optimized Fatty Acid Composition

    Science.gov (United States)

    Biodiesel is an alternative to petroleum-derived diesel fuel, although it can replace only a few percent of current petrodiesel production. It is technically competitive with petrodiesel. Technical problems with biodiesel are oxidative stability, cold flow increased nitrogen oxides (NOx) exhaust em...

  6. OXIDATIVE STABILITY OF BIODIESEL/JET FUEL BLENDS

    Science.gov (United States)

    Biodiesel, an alternative fuel made from transesterification of vegetable oil with methanol, is becoming more readily available for use in blends with conventional diesel fuel for transportation applications. Biodiesel has fuel properties comparable to those of conventional diesel fuel and is known...

  7. Comparisons of Biodiesel Produced from Oils of Various Peanut Cultivars

    Science.gov (United States)

    Biodiesel is a renewable, clean burning alternative fuel that can be used in standard diesel engines with no engine modification and no perceptible loss in engine performance. Biodiesel production typically involves the transesterification of a seed oil feedstock, with soybean oil being the primary...

  8. Production of Biodiesel by Enzymatic Transesterification: Review

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2010-01-01

    Full Text Available Problem Statement: The research on the production of biodiesel has increased significantly in recent years because of the need for an alternative fuel which endows with biodegradability, low toxicity and renewability. Plant oils, animal fats, microalgal oils and waste products such as animal rendering, fish processing waste and cooking oils have been employed as feedstocks for biodiesel production. In order to design an economically and environmentally sustainable biodiesel production process, a proper understanding of the factors affecting the process and their relative importance is necessary. Approach: A comprehensive review of the literature on the subject of biodiesel production was carried out. Traditionally biodiesel has been produced using either acid or base catalysts. The multi-step purification of end products, wastewater treatment and energy demand of the conventional process has lead to search for alternative option for production of biodiesel. The use the enzyme lipase as a biocatalyst for the transesterification reaction step in biodiesel production has been extensively investigated. Lipase is produced by all living organisms and can be used intracellularly or extracellularly. Conclusion: To date, the most popular microbes used for their lipases have been filamentous fungi and recombinant bacteria. A summary of lipases used in transesterification and their optimum operating conditions is provided. In addition to the choice of lipase employed, factors which make the transesterification process feasible and ready for commercialization are: enzyme modification, the selection of feedstock and alcohol, use of common solvents, pretreatment of the lipase, alcohol to oil molar ratio, water activity/content and reaction temperature. Optimization of these parameters is necessary in order to reduce the cost of biodiesel production. Use of no/low cost waste materials as feedstocks will have double environmental benefits by reducing the

  9. 微藻生物柴油的研究进展%Research progress of microalgal biodiesel

    Institute of Scientific and Technical Information of China (English)

    郝宗娣; 杨勋; 时杰; 张森; 刘平怀

    2013-01-01

    Sustainability is a key principle in natural resource management. Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Therefore, there are vigorous research initiatives aimed at developing alternative renewable and potentially carbon neutral solid, liquid and gaseous biofluels as alternative energy resources. Microalgal biodiesel is the most potential substitute of fossil fuel for numerous specific advantages. Microalgae possess high photosynthetic rate and CO2 capture ability, short growth cycle and non-influence to food supply. In this paper, the progress of microalgal biodiesel techniques was reviewed, including cultivation, harvesting of microalgae and preparation of microalgal biodiesel. It was found that microalgae biodiesel could progressively substitute a significant proportion of the fossil fuels required to meet the growing energy demand. Prospect of microalgal biodiesel technique was put forward at last.%作为化石燃料的替代品,生物柴油具备特殊的优势.微藻是一种CO2固定效率及油脂含量高、生长周期短、不影响食物安全保障的单细胞生物,是生物柴油的理想来源.综述了产油微藻的培养、收获及生物柴油制备等相关技术的发展现状,并提出了发展过程中出现的问题及对策,最后对微藻生物柴油技术的发展前景进行了展望.

  10. Biodiesel production from waste frying oils and its quality control.

    Science.gov (United States)

    Sabudak, T; Yildiz, M

    2010-05-01

    The use of biodiesel as fuel from alternative sources has increased considerably over recent years, affording numerous environmental benefits. Biodiesel an alternative fuel for diesel engines is produced from renewable sources such as vegetable oils or animal fats. However, the high costs implicated in marketing biodiesel constitute a major obstacle. To this regard therefore, the use of waste frying oils (WFO) should produce a marked reduction in the cost of biodiesel due to the ready availability of WFO at a relatively low price. In the present study waste frying oils collected from several McDonald's restaurants in Istanbul, were used to produce biodiesel. Biodiesel from WFO was prepared by means of three different transesterification processes: a one-step base-catalyzed, a two-step base-catalyzed and a two-step acid-catalyzed transesterification followed by base transesterification. No detailed previous studies providing information for a two-step acid-catalyzed transesterification followed by a base (CH(3)ONa) transesterification are present in literature. Each reaction was allowed to take place with and without tetrahydrofuran added as a co-solvent. Following production, three different procedures; washing with distilled water, dry wash with magnesol and using ion-exchange resin were applied to purify biodiesel and the best outcome determined. The biodiesel obtained to verify compliance with the European Standard 14214 (EN 14214), which also corresponds to Turkish Biodiesel Standards. PMID:20100653

  11. Determination model for cetane number of biodiesel at different fatty acid composition: a review

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2014-05-01

    Full Text Available The most accepted definition of biodiesel is stated at the EU technical regulation EN 14214 (2008 or in the USA in ASTM 6751-02. As a result of this highly strict description only methyl esters of fatty acids conform to these definitions, nevertheless the term ‘‘biodiesel’’ is spread out to other alkyl fatty esters. Some countries have adopted bioethanol for replacement of methanol in biodiesel transesterification and thus assuring a fully biological fuel. Of course, such position brings some problems in fulfilling technical requirements of EN 14214 or ASTM 6751-02. Biodiesel is actually a less complex mixture than petrodiesel, but different feedstock origins and the effect of seasonality may impose difficulties in fuel quality control. Since biodiesel is an alternative diesel fuel derived from the transesterification of triacylglycerol comprised materials, such as vegetable oils or animal fats, with simple alcohols to furnish the corresponding mono-alkyl esters, its composition depends on the raw material used, the cultivated area location, and harvest time. The choice of the raw material is usually the most important factor for fluctuations of biodiesel composition, because different vegetable oils and animal fats may contain different types of fatty acids. Important properties of this fuel vary significantly with the composition of the mixture. Cetane number, melting point, degree of saturation, density, cloud point, pour point, viscosity, and nitrogen oxides exhaust emission (NOx, for instance, deserve to be mentioned. One of the most important fuel quality indicators is the cetane number; however its experimental determination may be an expensive and lengthy task. To weaken situation concerning biodiesel, the availability of data in the literature is also scarce. In such scenario, the use of reliable models to predict the cetane number or any other essential characteristic may be of great utility. We reviewed available literature to

  12. Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization

    International Nuclear Information System (INIS)

    Increased environmental awareness and depletion of resources are driving industry to develop viable alternative fuels from renewable resources that are environmentally more acceptable. Vegetable oil is a potential alternative fuel. The most detrimental properties of vegetable oils are its high viscosity and low volatility, and these cause several problems during their long duration usage in compression ignition (CI) engines. The most commonly used method to make vegetable oil suitable for use in CI engines is to convert it into biodiesel, i.e. vegetable oil esters using process of transesterification. Rice bran oil is an underutilized non-edible vegetable oil, which is available in large quantities in rice cultivating countries, and very little research has been done to utilize this oil as a replacement for mineral Diesel. In the present work, the transesterification process for production of rice bran oil methyl ester has been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized with the objective of producing high quality rice bran oil biodiesel with maximum yield. The optimum conditions for transesterification of rice bran oil with methanol and NaOH as catalyst were found to be 55 deg. C reaction temperature, 1 h reaction time, 9:1 molar ratio of rice bran oil to methanol and 0.75% catalyst (w/w). Rice bran oil methyl ester thus produced was characterized to find its suitability to be used as a fuel in engines. Results showed that biodiesel obtained under the optimum conditions has comparable properties to substitute mineral Diesel, hence, rice bran oil methyl ester biodiesel could be recommended as a mineral Diesel fuel substitute for compression ignition (CI) engines in transportation as well as in the agriculture sector

  13. Assessment of microalgae biodiesel fuels using a fuel property estimation methodology

    Energy Technology Data Exchange (ETDEWEB)

    Torrens, Jonas Colen Ladeia; Vargas, Jose Viriato Coelho; Mariano, Andre Bellin [Center for Research and Development of Sustainable Energy. Universidade Federal do Parana, Curitiba, PR (Brazil)

    2010-07-01

    Recently, depleting supplies of petroleum and the concerns about global warming are drawing attention to alternative sources of energy. In this context, advanced biofuels, derived from non edible superior plants and microorganisms, are presented as promising options for the transportation sector. Biodiesel, which is the most prominent alternative fuel for compression ignition engines, have a large number as potential feedstock, such as plants (e.g., soybean, canola, palm) and microorganism (i.e., microalgae, yeast, fungi and bacterium). In order to determine their potential, most studies focus on the economic viability, but few discuss the technical viability of producing high quality fuels from such feedstock. Since the fuel properties depend on the composition of the parent oil, and considering the variability of the fatty acid profile found in these organisms, it is clear that the fuels derived may present undesirable properties, e.g., high viscosity, low cetane number, low oxidative stability and poor cold flow properties. Therefore, it is very important to develop ways of analysing the fuel quality prior to production, specially considering the high cost of producing and testing several varieties of plants and microorganisms. In this aim, this work presents the use of fuel properties estimation methods on the assessment of the density, viscosity, cetane number and cold filter plugging point of several microalgae derived biofuels, comparing then to more conventional biodiesel fuels. The information gathered with these methods helps on the selection of species and cultivation parameters, which have a high impact on the derived fuel quality, and have been successfully employed on the Center for Research and Development of Sustainable Energy. The results demonstrate that some species of microalgae have the potential to produce high quality biodiesel if cultivated with optimised conditions, associated with the possibility of obtaining valuable long chain

  14. Market penetration of biodiesel

    Directory of Open Access Journals (Sweden)

    Kenneth R. Szulczyk, Bruce A. McCarl

    2010-01-01

    Full Text Available This research examines in detail the technology and economics of substituting biodiesel for diesel #2. This endeavor examines three areas. First, the benefits of biodiesel are examined, and the technical problems of large-scale implementation. Second, the biodiesel production possibilities are examined for soybean oil, corn oil, tallow, and yellow grease, which are the largest sources of feedstocks for the United States. Examining in detail the production possibilities allows to identity the extent of technological change, production costs, byproducts, and greenhouse gas (GHG emissions. Finally, a U.S. agricultural model, FASOMGHG was used to predict market penetration of biodiesel, given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and carbon dioxide equivalent prices. FASOMGHG has several interesting results. First, diesel fuel prices have an expansionary impact on the biodiesel industry. The higher the diesel fuel prices, the more biodiesel is produced. However, given the most favorable circumstances, the maximum biodiesel market penetration is 9% in 2030 with a wholesale diesel price of $4 per gallon. Second, the two dominant sources of biodiesel are from corn and soybeans. Sources like tallow and yellow grease are more limited, because they are byproducts of other industries. Third, GHG prices have an expansionary impact on the biodiesel prices, because biodiesel is quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on biodiesel production, and increase market penetration at least an additional 3%.

  15. BiodieselFAO: An Integrated Decision Support System for Investment Analysis in the Biodiesel Production Chain

    OpenAIRE

    Aziz Galvão da Silva Júnior

    2015-01-01

    In the short and medium terms, biofuels are the most viable alternative to reduce the environmental impact of fossil fuels. The recent controversy over the competition between biofuels and food production increases the complexity of investment decisions in the biodiesel production chain. In this context, decision support tools are highly relevant. The purpose of this article is to describe the BiodieselFAO using the Unified Modeling Language (UML). An integrated analysis considering both agri...

  16. Physico-chemical characterization of biodiesel from pests attacked corn oil; Caracterizacao fisico-quimica do biodiesel de oleo de milho danificado por pragas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fabia M.; Correa, Paulo C.; Martins, Marcio A.; Santos, Silmara B.; Damian, Amanda D. [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: copace@ufv.br, aredes@ufv.br, syllmara@vicosa.ufv.br

    2009-07-01

    The biodiesel is a renewable energy source alternative to fossil fuels. The biodiesel synthesis can be made by many types of triglycerides transesterification, it is possible to use this biofuel in vehicles if it has the quality required from Agencia Nacional de Petroleo, Gas Natural e Biocombustiveis (ANP). Searching an application for pests attacked corn, there is feasibility technical for the biodiesel production from this corn oil. The biodiesel synthesis was made through ethyl transesterification process with alkaline catalyst using ethanol. The biodiesel physical-chemical characterization was performed using ANP methods. (author)

  17. Advisable alternative fuels for Mexico; Combustibles alternativos convenientes para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Gonzalez, Jorge Luis [ICA Fluor (Mexico)

    2007-07-15

    The alternative fuels are born with the goal of not damaging the environment; biodiesel, electricity, ethanol, hydrogen, methanol, natural gas, LP gas, are the main alternative fuels. However, the biodiesel and bioetanol are the only completely renewable ones, this makes them ideal to be developed in Mexico, since the agricultural sector could be fortified, the technological independence be favored, improve the conservation of the oil resources and by all means not to affect the environment. On the other hand, also efficient cultivation techniques should be developed to guarantee the economy of the process. [Spanish] Los combustibles alternativos nacen con la meta de no danar el medio ambiente; el biodiesel, electricidad, etanol, hidrogeno, metanol, gas natural, gas LP, son los principales combustibles alternativos. No obstante, el biodiesel y el bioetanol son los unicos completamente renovables, esto los hace ideales para desarrollarse en Mexico, ya que se podria fortalecer el sector agricola, favorecer la independencia tecnologica, mejorar la administracion de los recursos petroleros y por supuesto no afectar al medio ambiente. Por otro lado tambien se tendrian que desarrollar tecnicas de cultivo eficientes para garantizar la economia del proceso.

  18. Final Technical Report on Development of an Economic and Efficient Biodiesel production Process (NC)

    Energy Technology Data Exchange (ETDEWEB)

    Tirla, Cornelia [Univ. of North Carolina, Pembroke, NC (United States); Dooling, Thomas A. [Univ. of North Carolina, Pembroke, NC (United States); Smith, Rachel B. [Univ. of North Carolina, Pembroke, NC (United States); Shi, Xinyan [Univ. of North Carolina, Pembroke, NC (United States); Shahbazi, Abolghasem [North Carolina Agricultural and Technical State Univ., Greensboro, NC (United States)

    2014-03-19

    The Biofuels Team at The University of North Carolina at Pembroke and North Carolina A&T State University carried out a joint research project aimed at developing an efficient process to produce biodiesel. In this project, the team developed and tested various types of homogeneous and heterogeneous catalysts which could replace the conventionally used soluble potassium hydroxide catalyst which, traditionally, must be separated and disposed of at the end of the process. As a result of this screening, the homogeneous catalyst choline hydroxide was identified as a potential replacement for the traditional catalyst used in this process, potassium hydroxide, due to its decreased corrosiveness and toxicity. A large number of heterogeneous catalysts were produced and tested in order to determine the scaffold, ion type and ion concentration which would produce optimum yield of biodiesel. The catalyst with 12% calcium on Zeolite β was identified as being highly effective and optimal reaction conditions were identified. Furthermore, a packed bed reactor utilizing this type of catalyst was designed, constructed and tested in order to further optimize the process. An economic analysis of the viability of the project showed that the cost of an independent farmer to produce the fuelstock required to produce biodiesel exceeds the cost of petroleum diesel under current conditions and that therefore without incentives, farmers would not be able to benefit economically from producing their own fuel. An educational website on biodiesel production and analysis was produced and a laboratory experiment demonstrating the production of biodiesel was developed and implemented into the Organic Chemistry II laboratory curriculum at UNCP. Five workshops for local farmers and agricultural agents were held in order to inform the broader community about the various fuelstock available, their cultivation and the process and advantages of biodiesel use and production. This project fits both

  19. BiodieselFAO: An Integrated Decision Support System for Investment Analysis in the Biodiesel Production Chain

    Directory of Open Access Journals (Sweden)

    Aziz Galvão da Silva Júnior

    2015-06-01

    Full Text Available In the short and medium terms, biofuels are the most viable alternative to reduce the environmental impact of fossil fuels. The recent controversy over the competition between biofuels and food production increases the complexity of investment decisions in the biodiesel production chain. In this context, decision support tools are highly relevant. The purpose of this article is to describe the BiodieselFAO using the Unified Modeling Language (UML. An integrated analysis considering both agricultural and industrial sectors was identified as a key requirement to the system. Therefore, farmers and industry are the main actors in the use case diagram. As the raw material represents around 70% of the industrial cost of biodiesel production, the price negotiation of raw material (oilseeds is the central use case. Configuration, agriculture, industry, results and scenarios are the modules, which encompass the functionalities derived from the UML diagrams. The Food and Agriculture Organization of the United Nations (FAO has made the BiodieselFAO available, free of charge, to around 180 professionals from 17 Latin American countries. Additionally, the developing team has supported the usage of the BiodieselFAO in several biodiesel investment analyses throughout Latin America. The system was also useful in the design and analysis of policy related to biodiesel industry in Brazil.

  20. Comparative Analysis of Biodegradability of Biodiesel obtained by Conventional and Non-Conventional Methods

    Directory of Open Access Journals (Sweden)

    Nagaraja Y. P

    2015-03-01

    Full Text Available Biodiesel is an alternative to conventional diesel fuel made from renewable resources. No engine modifications are required to use biodiesel in place of crude oil-based diesel. The use of biodiesel resulted in lower emissions of unburned hydrocarbons, carbon monoxide and particulate matter. Biodiesel also increased catalytic converter efficiency in reducing particulate emissions. Chemical characterization also revealed lower levels of some toxic and reactive hydrocarbon species when biodiesel fuels were used. In the present work, biodiesel is produced by both conventional and non-conventional methods to determine the biodegradability effect using microorganisms obtained from soil collected from the vicinity of a petrol bunk. Also, effect on biodegradability of the biodiesel is studied by the addition of additives and on biodiesel blends especially Honge oil. The distinct advantage of using the oil was that it was cheaper and highly economical in the long run

  1. Relationships among the physical properties of biodiesel and engine fuel system design requirement

    Directory of Open Access Journals (Sweden)

    G.Lakshmi Narayana Rao, A.S. Ramadhas, N. Nallusamy, P.Sakthivel

    2010-09-01

    Full Text Available Biodiesel, an alternative fuel can be used in diesel engines as neat or blended with diesel. The physio-chemical properties of fuel are important in design of fuel system for compression ignition engines run on diesel, biodiesel or biodiesel blends. Biodiesel (B100 standards specify the limit values of these properties for blending with diesel. However, there are variations in the properties of biodiesel. The properties of biodiesel vary depending on the feedstock, vegetable oil processing, production methods and degree of purification. The objective of this study is to estimate the mathematical relationships between viscosity, density, heating values and flash point among various biodiesel samples. There is a high regression between various properties of biodiesel and the relationships between them are observed to be considerably regular.

  2. Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution

    International Nuclear Information System (INIS)

    In this work, the quality of biodiesel produced by basic transesterification from several vegetable oils (soybean, rapeseed, sunflower, high oleic sunflower, Cynara Cardunculus L., Brassica Carinata and Jatropha Curca) cultivated in Extremadura has been studied in detail. The influence of raw material composition on properties such as density, viscosity, cetane number, higher heating value, iodine and saponification values and cold filter plugging point has been verified. Other biodiesel properties such as acid value, water content and flash and combustion points were more dependent on characteristics of production process. Biodiesel produced by rapeseed, sunflower and high oleic sunflower oils transesterification have been biofuels with better properties according to Norm EN 14214. Finally, it has been tested that it is possible to use oils mixtures in biodiesel production in order to improve the biodiesel quality. In addition, with the same process conditions and knowing properties of biodiesel from pure oils; for biodiesel from oils mixtures, its methyl esters content, and therefore properties dependent this content can be predicted from a simple mathematical equation proposed in this work. - Highlights: • Biodiesel quality produced by basic transesterification from vegetable oils. • We examine influences of methyl esters distribution on biodiesel properties. • Biofuels from soybean, sunflower and rapeseed oils were with better properties. • Oils mixtures improve biodiesel quality to fulfill Norm EN 14214. • An equation to predict properties of biodiesel from oil mixtures is proposed

  3. Characteristics of the potential crop of raw materials for biodiesel and its adoption by family farms; Caracteristicas das potenciais culturas materias-primas do biodiesel e sua adocao pela agricultura familiar

    Energy Technology Data Exchange (ETDEWEB)

    Sluszz, Thaisy [Universidade Federal do Rio Grande do Sul (CEPAN/UFRGS), Porto Alegre, RS (Brazil). Centro de Estudos e Pesquisas em Agronegocios. Programa de Pos-Graduacao em Agronegocios], Email: thaisy@terra.com.br; Machado, Joao Armando Dessimon [Universidade Federal do Rio Grande do Sul (PGDR/CEPAN/UFRGS), Porto Alegre, RS (Brazil). Centro de Estudos e Pesquisas em Agronegocios], Email: joao.dessimon@ufrgs.br

    2006-07-01

    Beyond the economic advantages and the ambient benefits, the production of bio diesel in wide scale will be important instrument of generation of income in the agricultural way, with significant impact on familiar agriculture. One of the biggest motivations for the production of this alternative fuel was given by the federal government by means of the 'Social Combustible Stamp', that it foresees that producing industries buy deriving raw materials of bio diesel of familiar agriculture. Several are the viable cultures for the small property, thus being, in this article become an analysis of the potentialities of each culture raw material of biodiesel, to be produced for familiar agriculture in small properties, in the different Brazilian regions. The exploration research was used that it aimed at to provide to more familiarity with the question biodiesel x familiar agriculture and involved bibliographical survey and interviews the specialists. Several are the alternatives of cultivates with positive agronomic potential that can promote the inclusion of familiar agriculture in the chain productive of biodiesel, taking in consideration the characteristics of each Brazilian region, being the oil plants of bigger prominence: dende, coconut, babacu, sunflower, canola, castor, tame nut and sesame. (author)

  4. Calorific value for compositions with biodiesel of fat chicken and diesel oil; Valor calorifico para composicoes com biodiesel da gordura de frango e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Jose da [Universidade de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], email: marcelo.jose@feagri.unicamp.br; Souza, Samuel N.M. de; Souza, Abel A. de; Martins, Gislaine I. [Universidade Estadual do Oeste do Parana (CCET/UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas], emails: ssouza@unioeste.br, abel.sza@hotmail.com, iastiaque@yahoo.com.br

    2011-07-01

    The biodiesel fuel is a renewable source of alternative fuel used in diesel cycle engines. The production of biodiesel involves the reaction of methanol with fatty acids of animal or vegetable. The production of biodiesel from chicken fat can be very attractive for some regions from Brazil with high poultry production, as in the Parana West and Santa Catarina West. In this study , the goal was the lower calorific value of the compositions between biodiesel and diesel oil: 100% Diesel oil (B0), 20% biodiesel (B20), 40% biodiesel (B40), 60% biodiesel (B60), 80% biodiesel (B80 ), 100% biodiesel (B100). The biodiesel used was acquired in the Centre for Development and Diffusion of technologies on the Assis Gurgacz College, in Cascavel city. The nominal production capacity of the unit is 900 liters on period of 8 hours. The model of the calorimeter used, was the E2K. The lower calorific value of B100 composition was 35.388 MJ kg-1 and the diesel oil was 41.299 MJ kg-1. With the measuring of the caloric value of six samples mix of diesel oil and biodiesel, was obtained a linear function decrease of the calorific value when increased it the proportion of biodiesel from chicken fat into fuel. (author)

  5. Mississippi State Biodiesel Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the

  6. Moringa oleifera oil: a possible source of biodiesel.

    Science.gov (United States)

    Rashid, Umer; Anwar, Farooq; Moser, Bryan R; Knothe, Gerhard

    2008-11-01

    Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a variety of less common oils. In this work, Moringa oleifera oil is evaluated for the first time as potential feedstock for biodiesel. After acid pre-treatment to reduce the acid value of the M. oleifera oil, biodiesel was obtained by a standard transesterification procedure with methanol and an alkali catalyst at 60 degrees C and alcohol/oil ratio of 6:1. M. oleifera oil has a high content of oleic acid (>70%) with saturated fatty acids comprising most of the remaining fatty acid profile. As a result, the methyl esters (biodiesel) obtained from this oil exhibit a high cetane number of approximately 67, one of the highest found for a biodiesel fuel. Other fuel properties of biodiesel derived from M. oleifera such as cloud point, kinematic viscosity and oxidative stability were also determined and are discussed in light of biodiesel standards such as ASTM D6751 and EN 14214. The 1H NMR spectrum of M. oleifera methyl esters is reported. Overall, M. oleifera oil appears to be an acceptable feedstock for biodiesel. PMID:18474424

  7. The economics of producing biodiesel from algae

    International Nuclear Information System (INIS)

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  8. Particulate emissions from biodiesel fuelled CI engines

    International Nuclear Information System (INIS)

    Highlights: • Physical and chemical characterization of biodiesel particulates. • Toxicity of biodiesel particulate due to EC/OC, PAHs and BTEX. • Trace metals and unregulated emissions from biodiesel fuelled diesel engines. • Influence of aftertreatment devices and injection strategy on biodiesel particulates. • Characterization of biodiesel particulate size-number distribution. - Abstract: Compression ignition (CI) engines are the most popular prime-movers for transportation sector as well as for stationary applications. Petroleum reserves are rapidly and continuously depleting at an alarming pace and there is an urgent need to find alternative energy resources to control both, the global warming and the air pollution, which is primarily attributed to combustion of fossil fuels. In last couple of decades, biodiesel has emerged as the most important alternative fuel candidate to mineral diesel. Numerous experimental investigations have confirmed that biodiesel results in improved engine performance, lower emissions, particularly lower particulate mass emissions vis-à-vis mineral diesel and is therefore relatively more environment friendly fuel, being renewable in nature. Environmental and health effects of particulates are not simply dependent on the particulate mass emissions but these change depending upon varying physical and chemical characteristics of particulates. Particulate characteristics are dependent on largely unpredictable interactions between engine technology, after-treatment technology, engine operating conditions as well as fuel and lubricating oil properties. This review paper presents an exhaustive summary of literature on the effect of biodiesel and its blends on exhaust particulate’s physical characteristics (such as particulate mass, particle number-size distribution, particle surface area-size distribution, surface morphology) and chemical characteristics (such as elemental and organic carbon content, speciation of polyaromatic

  9. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    Science.gov (United States)

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  10. Cottonseed oil for biodiesel production; Oleo de algodao para a producao de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna L.M.T.; Park, Kil J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)], E-mail: annalets@feagri.unicamp.br; Ferrari, Roseli A.; Miguel, Ana M.R.O. [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil)], Emails: roseliferrari@ital.sp.gov.br, anarauen@ital.sp.gov.br, kil@feagri.unicamp.br

    2009-07-01

    Crude cottonseed oil is an alternative for biodiesel production, mostly in Mato Grosso State, where its production is the biggest of Brazil. Even being an acid oil, esterification reaction, followed by transesterification, could make possible the biodiesel production. In this study, crude cottonseed oil obtained from expelled process was reacted to evaluate molar ration and catalyst concentration effects in biodiesel yield. Molar ratio varied from 3 to 15 moles of ethanol to 1 mol of oil, and catalyst, from 1 to 5% by oil mass. Statistic analysis showed that none of studied variables was significant, for the values range. Biodiesel yield had a maximum of 88%, for molar ratio of 4.7 and 4.42% of catalyst concentration. A combination of oil with high free fatty acid content and ethanol as alcohol, affected the separation between esters and glycerol. (author)

  11. Overview on the current trends in biodiesel production

    International Nuclear Information System (INIS)

    Research highlights: → Various method for the production of biodiesel from vegetable oil were reviewed. → Such as direct use and blending, microemulsion, pyrolysis and transesterification. → The advantages and disadvantages of the different biodiesel-production methods are also discussed. → Finally, the economics of biodiesel production was discussed using Malaysia as a case study. -- Abstract: The finite nature of fossil fuels necessitates consideration of alternative fuels from renewable sources. The term biofuel refers to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include bioethanol, biomethanol, biodiesel and biohydrogen. Biodiesel, defined as the monoalkyl esters of vegetable oils or animal fats, is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. Here, we review the various methods for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsion, pyrolysis and transesterification. The advantages and disadvantages of the different biodiesel-production methods are also discussed. Finally, we analyze the economics of biodiesel production using Malaysia as a case study.

  12. Overview on the current trends in biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Yusuf, N.N.A.N. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Kamarudin, S.K., E-mail: ctie@eng.ukm.m [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yaakub, Z. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-07-15

    Research highlights: {yields} Various method for the production of biodiesel from vegetable oil were reviewed. {yields} Such as direct use and blending, microemulsion, pyrolysis and transesterification. {yields} The advantages and disadvantages of the different biodiesel-production methods are also discussed. {yields} Finally, the economics of biodiesel production was discussed using Malaysia as a case study. -- Abstract: The finite nature of fossil fuels necessitates consideration of alternative fuels from renewable sources. The term biofuel refers to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include bioethanol, biomethanol, biodiesel and biohydrogen. Biodiesel, defined as the monoalkyl esters of vegetable oils or animal fats, is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. Here, we review the various methods for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsion, pyrolysis and transesterification. The advantages and disadvantages of the different biodiesel-production methods are also discussed. Finally, we analyze the economics of biodiesel production using Malaysia as a case study.

  13. The effect of economic variables over a biodiesel production plant

    International Nuclear Information System (INIS)

    Highlights: → Influence of the mayor economic parameters for biodiesel production. → Variations of profitability of a biodiesel plant due to changes in the market scenarios. → Comparison of economic indicators of a biodiesel production facility when market variables are modified. - Abstract: Biodiesel appears as one of the possible alternative renewable fuels to substitute diesel fuel derived from petroleum. Several researches have been done on the technical aspects of biodiesel production in an attempt to develop a better and cleaner alternative to the conventional process. Economic studies have been carried out to have a better understanding of the high costs and benefits of different technologies in the biodiesel industry. In this work it is studied the effect of the most important economic variables of a biodiesel production process over the general economy of a conventional plant which employs sodium methoxide as catalyst. It has been analyzed the effect of the oil price, the amount of free fatty acid, the biodiesel price, the cost of the glycerin, the effect due to the modification on the methanol price, the washing water price, and several others. Small variations on some of the major market variables would produce significant effects over the global economy of the plant, making it non profitable in some cases.

  14. The effect of economic variables over a biodiesel production plant

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, J.M., E-mail: jmarchetti@plapiqui.edu.ar [Planta Piloto de Ingenieria Quimica (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahia Blanca (Argentina)

    2011-09-15

    Highlights: {yields} Influence of the mayor economic parameters for biodiesel production. {yields} Variations of profitability of a biodiesel plant due to changes in the market scenarios. {yields} Comparison of economic indicators of a biodiesel production facility when market variables are modified. - Abstract: Biodiesel appears as one of the possible alternative renewable fuels to substitute diesel fuel derived from petroleum. Several researches have been done on the technical aspects of biodiesel production in an attempt to develop a better and cleaner alternative to the conventional process. Economic studies have been carried out to have a better understanding of the high costs and benefits of different technologies in the biodiesel industry. In this work it is studied the effect of the most important economic variables of a biodiesel production process over the general economy of a conventional plant which employs sodium methoxide as catalyst. It has been analyzed the effect of the oil price, the amount of free fatty acid, the biodiesel price, the cost of the glycerin, the effect due to the modification on the methanol price, the washing water price, and several others. Small variations on some of the major market variables would produce significant effects over the global economy of the plant, making it non profitable in some cases.

  15. FEATURES OF BIODIESEL PRODUCTION

    OpenAIRE

    Рябцев, Геннадій Леонідович; Литвиненко, Євгеній Юрійович; Бурлаков, Володимир Михайлович

    2015-01-01

    Biodiesel has several advantages compared with conventional fuels, both environmental and operational. But these benefits should not be offset by the potential negative environmental impacts associated with land use or improper use of obsolete technologies.Biodiesel is not a panacea for energy diseases. Its implementation requires solving a number of problems: biodiesel are usually made from plant material, the scope of which is limited to the needs of the food industry; use of energy efficie...

  16. Biodiesel potential in Iceland

    OpenAIRE

    Borkowska, Swietlana, 1980-

    2009-01-01

    The importance of increasing the global share of biofuels in transportation goes without saying. Iceland, where the consumption of fossil fuels is considerable, has a viable potential for introducing biodiesel in its otherwise exceptional renewable overall energy portfolio. In this study, a full picture of the possibilities of biodiesel production in Iceland was provided. After the theoretical introduction of allmajor aspects of a biodiesel economy, an assessment of i...

  17. Biodiesel: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Angelo C.; Guarieiro, Lilian L.N.; Rezende, Michelle J.C.; Ribeiro, Nubia M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Torres, Ednildo A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Dept. de Engenharia Quimica; Lopes, Wilson A.; Pereira, Pedro A. de P.; Andrade, Jailson B. de [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica], Email: jailsong@ufba.br

    2005-07-01

    The importance of biodiesel production was analyzed based on scientific articles and patents. A critical analysis was presented on the most used oil sources, the catalysts and the methods to verify the transesterification yields. Also analyzed were the comparative studies on emissions from pure fossil diesel and mixtures with biodiesel in variable proportions. Finally some challenges and considerations focused on technological, agronomic and infrastructure aspects of biodiesel production were indicated. (author)

  18. Market penetration of biodiesel

    OpenAIRE

    Kenneth R. Szulczyk, Bruce A. McCarl

    2010-01-01

    This research examines in detail the technology and economics of substituting biodiesel for diesel #2. This endeavor examines three areas. First, the benefits of biodiesel are examined, and the technical problems of large-scale implementation. Second, the biodiesel production possibilities are examined for soybean oil, corn oil, tallow, and yellow grease, which are the largest sources of feedstocks for the United States. Examining in detail the production possibilities allows to identity the ...

  19. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics

    International Nuclear Information System (INIS)

    Vegetable oil (m)ethyl esters, commonly referred to as 'biodiesel,' are prominent candidates as alternative Diesel fuels. Biodiesel is technically competitive with or offers technical advantages compared to conventional petroleum Diesel fuel. The vegetable oils, as alternative engine fuels, are all extremely viscous with viscosities ranging from 10 to 20 times greater than that of petroleum Diesel fuel. The purpose of the transesterification process is to lower the viscosity of the oil. Transesterifications of vegetable oils in supercritical methanol are performed without using any catalyst. The most important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. The cost of biodiesel, however, is the main obstacle to commercialization of the product. With cooking oils used as raw material, the viability of a continuous transesterification process and recovery of high quality glycerol as a biodiesel by product are primary options to be considered to lower the cost of biodiesel. Supercritical methanol has a high potential for both transesterification of triglycerides and methyl esterification of free fatty acids to methyl esters for a Diesel fuel substitute. In the supercritical methanol transesterification method, the yield of conversion increases to 95% in 10 min. The viscosity values of vegetable oils are between 27.2 and 53.6 mm2/s, whereas those of vegetable oil methyl esters are between 3.59 and 4.63 mm2/s. The flash point values of vegetable oil methyl esters are much lower than those of vegetable oils. An increase in density from 860 to 885 kg/m3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm2/s. Biodiesel is an environmentally friendly fuel that can be used in any Diesel engine without modification

  20. Performance and emissions of an engine fuelled with a biodiesel fuel produced from animal fats

    OpenAIRE

    Taymaz Imdat; Coban Mehmet

    2013-01-01

    Oil reserves which are located around the world are declining day by day, so new alternative energy sources must be invented for engines of internal combustion and compression ignition, so biodiesel that is an alternative fuel source for diesel engines and it is a renewable energy resource. Biodiesel is a fuel made from vegetable oils, animals’ fats and waste oils. In this study, physical and chemical properties of biodiesel were analyzed and matched to the diesel fuel. In the experimen...

  1. Life Cycle Analysis on Fossil Energy Ratio of Algal Biodiesel: Effects of Nitrogen Deficiency and Oil Extraction Technology

    OpenAIRE

    Hou Jian; Yang Jing; Zhang Peidong

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from “cradle to grave.” Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeoda...

  2. Biodiesel and Renewable Diesel: A Comparison

    Science.gov (United States)

    The search for alternatives to petroleum-based fuels has led to the development of fuels from various sources, including renewable feedstocks such as fats and oils. Several types of fuels can be derived from these triacylglycerol-derived feedstocks. One of them is biodiesel, which is defined as the ...

  3. ANALYZING BIODIESEL: STANDARDS AND OTHER METHODS

    Science.gov (United States)

    Biodiesel occupies a prominent position among the alternatives to conventional petrodiesel fuel due to various technical and economic factors. It is obtained by reacting the parent vegetable oil or fat with an alcohol (transesterification) in the presence of a catalyst to give the corresponding mon...

  4. A New Source of Biodiesel: Field Pennycress

    Science.gov (United States)

    As a result of the current debate about fuel versus food issues, alternative non-food feedstocks for biodiesel production are an important area of current research. Traditionally considered to be an agricultural weed by farmers, field pennycress has many positive agronomic characteristics that make ...

  5. BIODIESEL IN THE WILD BLUE YONDER

    Science.gov (United States)

    Biodiesel is an alternative fuel derived from transesterification of agricultural lipids with a simple alcohol. It has many on- and off-road applications including transportation, locomotive, underground mining, marine, power generation and home heating oil fuels. Recently, the formulation of alte...

  6. Recent developments in the biodiesel area

    Science.gov (United States)

    Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, continues to find increasing interest as an alternative to petrodiesel fuel. In this connection, a significant issue affecting more widespread use and commercialization has been that of supply and availability. This has le...

  7. Cuphea Oil as Source of Biodiesel with Improved Fuel Properties Caused by High Content of Methyl Decanoate

    Science.gov (United States)

    Biodiesel, defined as the mono-alkyl esters of vegetable oils and animal fats, is an alternative to conventional petroleum-based diesel fuel. Biodiesel has been prepared from numerous common vegetable oils or fats as well as new or less common feedstocks. Major issues facing biodiesel include seve...

  8. Cultivo de Cattleya Lindley (Orchidaceae em substratos alternativos ao xaxim = Alternative substrates for Cattleya (Orchidaceae cultivation to substitute the tree fern fiber

    Directory of Open Access Journals (Sweden)

    Jorge Kaoro Yamakami

    2006-10-01

    Full Text Available Este trabalho teve como objetivo avaliar substratos alternativos ao xaxim no cultivo de um híbrido de Cattleya Lindley. Os substratos avaliados foram: xaxim; fibra de coco; casca de pínus + casca de arroz carbonizada (1:1v/v; casca de pínus+casca de arroz carbonizada (2:1v/v; casca de pínus+casca de arroz carbonizada (1:2v/v; casca de pínus e casca de arroz carbonizada. As mudas foram cultivadas em vasos de polipropileno, permanecendo em viveiro com 70% de luminosidade Os parâmetros avaliados um ano após o início do experimento foram: massa de matéria fresca total, altura da parte aérea, comprimento do pseudobulbo, comprimento da maior raiz, número de raízes, número de brotos, número de flores, pH e condutividade elétrica. O substrato constituído de fibra de coco proporcionou bons resultados, podendo ser considerado alternativo ao xaxim no cultivo deCattleya.The objective of this study was to evaluate alternative substrates tosubstitute tree fern fiber for cultivation of hybrids from the Cattleya species. Seedlings were cultivated in polypropylene vases, kept in screen shadowed nursery by a 70% of lighting. The following substrates were evaluated: tree fern fibers; coconut fiber; pinus bark+carbonized rice hull (1:1 v/v; pinus bark+carbonized rice hull (2:1 v/v; pinus bark+carbonized rice hull (1:2 v/v; pinus bark and carbonized rice hull. One year after the experiment, the followingparameters were evaluated: fresh matter mass, aerial part height, pseudobulb length, greater root length, number of buds, number of flowers, pH and electric conductivity. The substrate composed of coconut fiber showed better results, and can be used as the alternative substrate to tree fern fiber in the cultivation of Cattleya.

  9. Jatropha bio-diesel production and use

    International Nuclear Information System (INIS)

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  10. Jatropha bio-diesel production and use

    International Nuclear Information System (INIS)

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied

  11. Production of Biodiesel from Vegetable Oil Using Microware Irradiation

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2012-01-01

    Full Text Available The petroleum oil supply crisis, the increase in demand and the price eruption have led to a search for an alternative fuel of bio-origin in India. Among the alternative fuels, biodiesel is considered as a sustainable renewable alternative fuel to fossil diesel. Non-edible jatropha oil has considerable potential for the production of biodiesel in India. The production of biodiesel from jatropha oil using a conventional heating method takes more than 1h. In this work, microwave irradiation has been used as a source of heat for the transesterification reaction. A domestic microwave oven was modified and used for microwave heating of the reactants. The time taken for biodiesel production using microwave irradiation was 1 min. The fuel property analysis shows that the properties of jatropha oil biodiesel satisfy the biodiesel standards, and are close to the fossil diesel standards. From this work, it is concluded that biodiesel can be produced from vegetable oil using microwave irradiation, with a significant reduction in production time.

  12. Use of Reactive Distillation for Biodiesel Production: A Literature Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Dani Supardan

    2006-06-01

    Full Text Available Biodiesel has been shown to be the best substitute for fossil-based fuels to its environmental advantages and renewable resource availability. There is a great demand for the commercialization of biodiesel production, which in turn calls for a technically and economically reactor technology. The production of biodiesel in existing batch and continuous-flow processes requires excess alcohol, typically 100%, over the stoichiometric molar requirement in order to drive the chemical reaction to completion. In this study, a novel reactor system using a reactive distillation (RD technique was discussed for biodiesel production. RD is a chemical unit operation in which chemical reactions and separations occur simultaneously in one unit. It is an effective alternative to the classical combination of reactor and separation units especially when involving reversible or consecutive chemical reactions such as transesterication process in biodiesel production.

  13. Effects of NOx-inhibitor agent on fuel properties of three-phase biodiesel emulsions

    International Nuclear Information System (INIS)

    Biodiesel is one of the more promising alternative clean fuels to fossil fuel, which can reduce the emissions of fossil fuel burning, and possibly resolve the energy crisis caused by the exhaustion of petroleum resources in the near future. The burning of biodiesel emits much less gaseous emissions and particulate matter primarily because of its dominant combustion efficiency. However, the high oxygen content in biodiesel not only promotes the burning process but also enhances NOx formation when biodiesel is used as fuel. Biodiesel emulsion and the additive of NOx-inhibitor agent are considered to reduce levels of NOx emissions in this experimental study. The biodiesel was produced by transesterification reaction accompanied with peroxidation process. A three-phase biodiesel emulsion of oil-in water drops-in oil (O/W/O) and an O/W/O biodiesel emulsion containing aqueous ammonia were prepared afterwards. The effect of the existence of NOx-inhibitor agent on the fuel properties and the emulsion characteristics of the O/W/O biodiesel emulsions were investigated. The experimental results show that the burning of the O/W/O biodiesel emulsion and the O/W/O biodiesel emulsion containing aqueous ammonia had larger fraction of fuel burnt and thus larger heat release than the neat biodiesel if water content is not considered for the calculation of heating value. The addition of aqueous ammonia within the dispersed phase of the O/W/O biodiesel emulsion appeared to deteriorate the emulsification characteristics. A smaller quantity of emulsion and greater kinematic viscosity were formed while a larger carbon residue and actual reaction-heat release also appeared for this O/W/O biodiesel emulsion. Aqueous ammonia in the O/W/O biodiesel emulsion produces a higher pH value as well. In addition, the number as well as the volumetric fraction of the dispersed water droplets is reduced for the O/W/O biodiesel emulsion that contains aqueous ammonia. (author)

  14. Land suitability evaluation for greenhouse cultivation of cucumber in comparison with alternative plantations in Mobarakeh- Zarrinshahr district using AHP

    OpenAIRE

    Ayoubi, S.; V. Shahrokh; A Jalalian

    2012-01-01

    Land suitability evaluation is the fitness of a given tract of land based on its production potential for a defined use. This study was conducted to evaluate the land suitability of Mobarakeh-Zarrinshahr district located in west of Isfahan province using Analytical Hierarchy Process (AHP) technique. To do the evaluation, firstly the hierarchy structure was established, which consisted of objectives, criteria, sub-criteria and alternatives. The objective was determination of landuse priority i...

  15. NMR analysis of biodiesel

    Science.gov (United States)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  16. Biodiesel from conventional feedstocks.

    Science.gov (United States)

    Du, Wei; Liu, De-Hua

    2012-01-01

    At present, traditional fossil fuels are used predominantly in China, presenting the country with challenges that include sustainable energy supply, energy efficiency improvement, and reduction of greenhouse gas emissions. In 2007, China issued The Strategic Plan of the Mid-and-Long Term Development of Renewable Energy, which aims to increase the share of clean energy in the country's energy consumption to 15% by 2020 from only 7.5% in 2005. Biodiesel, an important renewable fuel with significant advantages over fossil diesel, has attracted great attention in the USA and European countries. However, biodiesel is still in its infancy in China, although its future is promising. This chapter reviews biodiesel production from conventional feedstocks in the country, including feedstock supply and state of the art technologies for the transesterification reaction through which biodiesel is made, particularly the enzymatic catalytic process developed by Chinese scientists. Finally, the constraints and perspectives for China's biodiesel development are highlighted. PMID:22085921

  17. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    Science.gov (United States)

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  18. Rapid biodiesel production using wet microalgae via microwave irradiation

    International Nuclear Information System (INIS)

    Highlights: • Lipid was directly extracted from wet microalgae using microwave irradiation. • The microwave irradiation and water bath-assisted solvent extraction are applied. • Cell walls are significantly disrupted under microwave irradiation. • Highly disrupted cell walls led to higher biodiesel yield in microwave irradiation. • Microwave irradiation is a promising direct technique with high biodiesel yields. - Abstract: The major challenges for industrial commercialized biodiesel production from microalgae are the high cost of downstream processing such as dewatering and drying, utilization of large volumes of solvent and laborious extraction processes. In order to address these issues the microwave irradiation method was used to produce biodiesel directly from wet microalgae biomass. This alternative method of biodiesel production from wet microalgae biomass is compared with the conventional water bath-assisted solvent extraction. The microwave irradiation extracted more lipids and high biodiesel conversion was obtained compared to the water bath-assisted extraction method due to the high cell disruption achieved and rapid transesterification. The total content of lipid extracted from microwave irradiation and water bath-assisted extraction were 38.31% and 23.01% respectively. The biodiesel produced using microwave irradiation was higher (86.41%) compared to the conventional method. Thus microwave irradiation is an attractive and promising technology to be used in the extraction and transesterification process for efficient biodiesel production

  19. Compatibility of elastomers in palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Masjuki, H.H.; Siang, C.T.; Fazal, M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-10-15

    In recent time, environmental awareness and concern over the rapid exhaustion of fossil fuels have led to an increased popularity of biodiesel as an alternative fuel for automobiles. However, there are concerns over enhanced degradation of automotive materials in biodiesel. The present study aims to investigate the impact of palm biodiesel on the degradation behavior of elastomers such as nitrile rubber (NBR), polychloroprene, and fluoro-viton A. Static immersion tests in B0 (diesel), B10 (10% biodiesel in diesel), B100 (biodiesel) were carried out at room temperature (25 C) and at 50 C for 500 h. At the end of immersion test, degradation behavior was investigated by measuring mass, volume, hardness as well as tensile strength and elongation. The exposed elastomer surface was studied by scanning electron microscopy (SEM). Fourier Transform Infrared (FTIR) spectroscopy was carried out to identify the chemical and structural changes. Results showed that the extent of degradation was higher for both polychloroprene and NBR while fluoro-viton exhibited good resistance to degradation and was least attacked. (author)

  20. Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe

    NARCIS (Netherlands)

    Blaas, H.; Kroeze, C.

    2014-01-01

    Biodiesel is increasingly considered as an alternative for fossil diesel. Biodiesel can be produced from rapeseed, palm, sunflower, soybean and algae. In this study, the consequences of large-scale production of biodiesel from micro-algae for eutrophication in four large European seas are analysed.

  1. Alternative cultivation systems for energy crops. Exploitation of phosphor and nitrogen in the cultivation of mixed fruits with leguminous plants under the conditions of drought stress; Alternative Anbausysteme fuer Energiepflanzen. Phosphor- und Stickstoffausnutzung im Mischfruchtanbau mit Leguminosen unter Trockenstressbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Stefanie; Eichler-Loebermann, Bettina [Rostock Univ. (Germany). Professur Pflanzenbau

    2013-10-01

    Alternative cropping systems with an efficient utilization of resources are particularly interesting for energy cropping. The P- and N- uptake of phosphorus (P) and nitrogen (N) of maize and sorghum (here called ''energy crops'') intercropped with legumes (substitutive, 50:50) under drought conditions were investigated in a eight week pot experiment. Yield, P- and N- uptake of all species and mixtures were significantly lower under drought conditions than when well watered. The yield and the P-uptake of the mixtures was lower than of the sole cropped energy crops when well watered, but comparable under water deficit with exception of the sorghum mixtures, which reached a lower yield than sole sorghum. Despite the lower N-fertilization the N-uptake of the mixtures was comparable to the sole cropped maize or sorghum when well watered, but under drought N uptake of the mixtures was decreased in comparison to sole cropping. Under drought conditions the N-uptake of maize and sorghum plants in mixtures was not decreased, while the N-uptake of the legumes decreased in comparison to the well watered treatment. This may be an evidence for the benefit of the non-legumes in the investigated intercropping system under drought conditions. (orig.)

  2. Study on Emission and Performance of Diesel Engine Using Castor Biodiesel

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2014-01-01

    performance of diesel engine using the castor biodiesel and its blend with diesel from 0% to 40% by volume. The acid-based catalyzed transesterification system was used to produce castor biodiesel and the highest yield of 82.5% was obtained under the optimized condition. The FTIR spectrum of castor biodiesel indicates the presence of C=O and C–O functional groups, which is due to the ester compound in biodiesel. The smoke emission test revealed that B40 (biodiesel blend with 40% biodiesel and 60% diesel had the least black smoke compared to the conventional diesel. Diesel engine performance test indicated that the specific fuel consumption of biodiesel blend was increased sufficiently when the blending ratio was optimized. Thus, the reduction in exhaust emissions and reduction in brake-specific fuel consumption made the blends of caster seed oil (B20 a suitable alternative fuel for diesel and could help in controlling air pollution.

  3. MODEL FOR THE CORRECTION OF THE SPECIFIC GRAVITY OF BIODIESEL FROM RESIDUAL OIL

    Directory of Open Access Journals (Sweden)

    Tatiana Aparecida Rosa da Silva

    2013-06-01

    Full Text Available Biodiesel is a important fuel with economic benefits, social and environmental. The production cost of the biodiesel can be significantly lowered if the raw material is replaced by a alternative material as residual oil. In this study, the variation of specific gravity with temperature increase for diesel and biodiesel from residual oil obtained by homogeneous basic catalysis. All properties analyzed for biodiesel are within specification Brazil. The determination of the correction algorithm for the specific gravity function of temperature is also presented, and the slope of the line to diesel fuel, methylic biodiesel (BMR and ethylic biodiesel (BER from residual oil were respectively the values -0.7089, -0.7290 and -0.7277. This demonstrates the existence of difference of the model when compared chemically different fuels, like diesel and biodiesel from different sources, indicating the importance of determining the specific algorithm for the operations of conversion of volume to the reference temperature.

  4. IDENTIFICATION OF ADULTERANT AND ALCOHOL ROUTE IN BIODIESEL USING MID-INFRARED ABSORPTION SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Maryleide Ventura da Silva

    2014-01-01

    Full Text Available Mid-infrared absorption spectroscopy was used to analyze soybean oil, ethylic and methylic soybean biodiesel, and blends prepared with soybean oil mixed with biodiesel, in order to evaluate this method as an alternative to assess oil as impurities or adulterant in biodiesel. We also aimed to determine whether the biodiesel was prepared by the ethyl or methyl routes, by inspecting the infrared spectra. The C-O functional groups between 1100 and 1200 cm-1 are different for oil and biodiesel, which allows them to be used to distinguish impurities (residual oil in biofuel. The peak C-O-C at 1017 cm-1 is characteristic for methylic biodiesel, and the peak O-C-C at 1035 cm-1 for ethylic biodiesel. These vibrational modes can therefore be used to indicate the route used to prepare the biofuel. Results indicated that infrared spectroscopy is appropriate for monitoring the quality of biofuel for commercial sale.

  5. Assessing impacts of alternative fertilizer management practices on both nitrogen loading and greenhouse gas emissions in rice cultivation

    Science.gov (United States)

    Zhao, Zheng; Yue, Yubo; Sha, Zhimin; Li, Changsheng; Deng, Jia; Zhang, Hanlin; Gao, Maofang; Cao, Linkui

    2015-10-01

    Nitrogen (N) losses and greenhouse gas (GHG) emissions from paddy rice fields contaminate water bodies and atmospheric environment. A 2-year (2012-2013) field experiment was conducted at a typical paddy rice field in a rural suburb of Shanghai, China. N losses and GHG emissions from the paddy field with alternative fertilizer management practices were simultaneously measured. Four treatments were tested in the experiment: applications of only chemical synthetic fertilizer urea (CT), only organic manure (OT), a combination of the two types of fertilizers (MT) and a control (CK). Results from the field study indicated that CT produced the highest seasonal N loading rate (18.79 kg N/ha) and N2O emissions (1.81 kg N2O/ha) but with the lowest seasonal CH4 emissions (69.09 kg CH4/ha). With organic manure applied, MT and OT respectively reduced N loading by 21.86% and 30.41%, reduced N2O emissions by 28.34% and 69.41%, but increased CH4 emissions by 137% and 310% in comparison with CT. However, the net impact of CH4 and N2O emissions on global warming was enhanced when organic manure was applied. In addition, CT and MT produced the optimal rice yield during the experimental period, while OT treatment led to a yield reduction by 9.29% compared with CT. In conclusion, the impacts of alternative fertilizer management practices on ecosystem services ought to be assessed specifically due to the great variations across rice yields, N loss and GHG emissions.

  6. ANALYSIS OF NOME (NEEM OIL METHYL ESTER) FOR BIODIESEL GENERATION

    OpenAIRE

    P Lakshmi Kandan*, R Magendra Varma

    2016-01-01

    Biodiesel derived from the neem oil has been proved as an alternative fuel sources. Since neem is most common edible and medicinal plant could be grown at any places in India, it was selected for the biodiesel purpose. Selected grades of neem seeds are collected and they are dried for some time. Dried seeds are crushed and the oil was extracted in the oil mill. Collected oil was tested to know their various properties. Since it was found to be more suitable for biodiesel then it was trans-est...

  7. Study about the particularities of biodiesel in Brazil; Estudo sobre as particularidades do biodiesel no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcia Franca Ribeiro Fernandes dos [Instituto Brasileiro de Geografia e Estatistica (IBGE), Brasilia, DF (Brazil); Peixoto, Jose Antonio Assuncao; Souza, Cristina Gomes de [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The environmental concern associated with the impending shortage of oil, which is pressing to raise the price of the barrel, has forced governments and society to seek alternatives that will replace the use of fossil fuels. The biodiesel, in particular, has been set up as an alternative energy by it of fuel come from renewable sources, and less polluting the environment. In this context, the objective of this article is to present some features of the production of biodiesel in Brazil, identifying the characteristics of the main oil used, as well as regional motivations for the use of biodiesel in Brazil. The methodology adopted in this study was exploratory in nature based on a literature search and documentary from a survey of information available in literature. The main results, the article points out that: unlike alcohol, which is in sugar cane their ideal raw material, biodiesel is still in a stage of intensive research and development in order to identify the most appropriate its oil production - with emphasis on soybean and castor bean, and the motivations for regional use of biodiesel are different for the Brazilian regions. The study aims to contribute to the discussion on the subject, emphasizing that technological research should be directed taking into consideration the conditions and needs of Brazil. (author)

  8. Environmental impacts of Jatropha curcas biodiesel in India.

    Science.gov (United States)

    Gmünder, Simon; Singh, Reena; Pfister, Stephan; Adheloya, Alok; Zah, Rainer

    2012-01-01

    In the context of energy security, rural development and climate change, India actively promotes the cultivation of Jatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of different Jatropha curcas cultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the whole Jatropha curcas biodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use of Jatropha curcas biodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact of Jatropha curcas biodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of the Jatropha curcas plantations. PMID:22919274

  9. Mississippi State Biodiesel Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the

  10. Sustainable and Intensified Design of a Biodiesel Production Process

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Ismail, Muhammad I.; Babi, Deenesh Kavi;

    impact and maximum profitability is needed. In this work a computer-aided framework for process synthesis and process intensification is applied for sustainable production of biodiesel from pure/waste palm oil as the feedstock. This approach examines several biodiesel processing routes that were...... collected through available data and current technologies reported in the literature. Using this information, a generic superstructure of processing routes was created that described a network of configurations representing multiple designs for the production of biodiesel. Therefore, based on the currently...... of economic and environmental sustainability was identified. For the case of biodiesel production, the intensified process alternative turned out to be the most economical and more sustainable than other alternatives. The computer-aided methods and tools used in this work are: SustainPro (method and tool...

  11. The progress and research situation of biodiesel production from microalgae%微藻制取生物柴油的研究现状及进展

    Institute of Scientific and Technical Information of China (English)

    阳冬波; 孟兴凯; 蔡凤田

    2013-01-01

    生物柴油作为化石能源的替代燃料已经在国际上得到认可,以普通动植物为原料制备的第一代生物柴油不仅占用耕地、产油率低,且热值低;而基于催化加氢技术得到的第二代生物柴油尽管性能接近柴油,但一些关键技术还有待突破;产油微藻作为生产生物柴油的原料与其他原料相比具有较大优势,且其生产技术已具有可行性。文章剖析了利用微藻生产生物柴油的优势,阐述了微藻制备生物柴油的技术路线,重点对微藻藻种的筛选与选育、规模化培养、微藻生物质采收、油脂提取、生物柴油的合成及残留生物质开发的研究进展进行分析和论述,并总结了微藻生物柴油技术瓶颈和发展前景。%Biodiesel as alternative fuels of fossil energy has to be recognized in the in word,the first-genera-tion biodiesel which produced by ordinary animals and plants as raw material not only the occupation of cul-tivated land,low oil production rate,and low calorific value;The second-generation biodiesel is based on catalytic hydrogenation technology,the performance close to diesel, but some of the key technologies yet to be breakthrough;Oil-producing microalgae as a raw material for the production of biodiesel has more ad-vantages compared with other materials, and its production technology is feasible. This paper analyzed the advantages of using microalgae for biodiesel and elaborated microalgae biodiesel production technology roadmap, focusing on analysis and discussion the research progress of screening and selection of microal-gae algae species,large-scale training methods,microalgae biomass harvesting,oil extraction,synthesis of biodiesel and residual biomass research and development,and finally summarized the bottlenecks and de-velopment prospects of microalgae biodiesel technology.

  12. Biodiesel – a Real Solution for Reducing Air Pollution ?

    OpenAIRE

    ODAGIU Antonia; I. OROIAN; Sonia SANĂ; VÂRBAN D. I.; P. BURDUHOS

    2010-01-01

    Traffic emissions made up of high levels of nitrogen oxides, sulphur oxides, and particulate matter determineserious pollution in urban high agglomerations. One solution in reducing atmospheric pollution is represented byfinding not pollutant alternatives to classic fuel used for urban vehicles and one valuable solution is the replacement ofpollutant fossil fuels with biodiesel/biofuel. The reaction between glycerides and methanol, in presence of a catalystrepresents the basis of biodiesel fu...

  13. Biodiesel Production from Microalgae by Extraction – Transesterification Method

    OpenAIRE

    Nguyen Thi Phuong Thao; Nguyen Thanh Tin; Bui Xuan Thanh

    2013-01-01

    The environmental impact of using petroleum fuels has led to a quest to find a suitable alternative fuel source. In this study, microalgae were explored as a highly potential feedstock to produce biodiesel fuel. Firstly, algal oil is extracted from algal biomass by using organic solvents (n–hexan).  Lipid is contained in microalgae up to 60% of their weight. Then, Biodiesel is created through a chemical reaction known as transesterification between algal oil and alcohol (methanol) with ...

  14. Liquid Culture of Adventitious Roots is a Potential Alternative to Field Cultivation for Psammosilene tunicoides, a Rare and Endangered Endemic Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Zongshen Zhang

    2013-02-01

    Full Text Available The aim of this study was to establish an adventitious roots culture system for sterile plantlet segments of P. tunicoides and improved the accumulation of total saponins in cultured roots. Psammosilene tunicoides is a native Chinese plant with high commercial value as medicinal herb. Combination of NAA and IBA significantly affected the adventitious roots formation on agar-solided B5 media and a maximal induction rate of 83% was obtained at 24±2°C with a photoperiod of 12 h. With a shaking of 110 rpm in darkness, transferring the detached adventitious roots to the growth regulator free 1/2 B5 liquid media notably increased the biomass production compared to that on solid media over a 30-day-culture period. Further analyses showed that more saponins could be accumulated in the liquid culture than in the solid culture and the addition of exogenous oxalic acid to the liquid media could enhance the accumulation of total saponins in adventitious roots. These results suggested that adventitious roots culture will be an efficient alternative to the field cultivation of intact plants for the production of useful natural compounds from P. tunicoides.

  15. Diesel Internal Combustion Engine Emissions Measurements for Methanol-Based and Ethanol-Based Biodiesel Blends

    OpenAIRE

    2013-01-01

    There is a recent interest for the utilisation of renewable and alternative fuel, which is regulated by the European Union, that currently imposes a lower limit of 7% by volume of biodiesel fuel blend in diesel fuel. The biodiesel physical characteristics, as well as the percentage of biodiesel blend in diesel fuel, affect the injector nozzle flow, the spray characteristics, the resulting air/fuel mixture, and subsequently the combustion quality and emissions, as well as the overall engine pe...

  16. Improvement of the cold flow characteristics of biodiesel containing dissolved polymer wastes using acetone

    OpenAIRE

    Pouya Mohammadi; Meisam Tabatabaei; Nikbakht, Ali M.; Zahra Esmaeili

    2014-01-01

    Due to the fast fossil fuel depletion and at the same time global warming phenomenon anticipated for the next coming years, the necessity of developing alternative fuels e.g. biofuels (i.e. bioethanol, biodiesel, biogas and etc.) has turned into an important concern. Recently, the application of the bio-solvency properties of biodiesel for recycling waste polymers has been highlighted. However, the impact of polymer dissolution on cold flow characteristics of biodiesel was never investigated....

  17. Factor Influencing Crude Palm Oil (CPO) Biodiesel Supply in Indonesia Using Error Correction Model (ECM)

    OpenAIRE

    Larasati Sukmadewi Wibowo

    2015-01-01

    Indonesia is in a good position to develop biodiesel industry for alternative energy supply. The government issued legislations to accelerate the development of biodiesel industry. However, the growth was relatively slow and unstable, especially during the initiating stage of the new policy. The purpose of this study was to know the factors affecting supply of biodiesel in Indonesia, using Error Correction Model (ECM) to determine the long term and short term relationship. Monthly data from J...

  18. Impact of residual glycerides on viscosity of biodiesel (waste and rapeseed oil blends)

    OpenAIRE

    Z. Jurac; L. Pomenić

    2013-01-01

    Purpose: Biodiesel, mixture of fatty acid methyl esters is a biodegradable alternative fuel that is obtained from renewable sources as a vegetable oils or animal fats. Use of waste cooking oils reduce the cost of raw materials for biodiesel production and also reduces the environment pollution. Moreover, pure edible vegetable oils for biodiesel production have an ethical significance because food is used to produce fuel. The aim of this work is a presentation of effects that r...

  19. Non-Edible Plant Oils as New Sources for Biodiesel Production

    OpenAIRE

    M. Rafiqul Islam; K. Chris Watts; Suzanne M Budge; Martin S. Tango; Arjun B. Chhetri

    2008-01-01

    Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the f...

  20. Biodiesel from microalgae

    OpenAIRE

    Aullón Alcaine, Anna

    2010-01-01

    In this project we will travel back in time to the nineteenth century to discover the inventor of the diesel engine, Rudolf Diesel, and his renewable fuel vision that is only now being realized. Biodiesel has received considerable attention in recent years as it is biodegradable, renewable and non-toxic fuel. It emits less gaseous pollutants than conventional diesel fuel, and can work directly in diesel engines with no required modifications. The most common way to produce biodiesel is by tra...

  1. Comparison of Algal Biodiesel Production Pathways Using Life Cycle Assessment Tool

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    The consideration of algal biomass in biodiesel production increased very rapidly in the last decade. A life cycle assessment (LCA) study is presented to compare six different biodiesel production pathways (three different harvesting techniques, i.e., aluminum as flocculent, lime flocculent, and...... centrifugation, and two different oil extraction methods, i.e., supercritical CO2 (sCO2) and press and co-solvent extraction). The cultivation of Nannochloropsis sp. considered in a flat-panel photobioreactor (FPPBR). These algal biodiesel production systems were compared with the conventional diesel in a EURO 5...... passenger car used for transport purpose (functional unit 1 person km (pkm). The algal biodiesel production systems provide lesser impact (22–105 %) in comparison with conventional diesel. Impacts of algal biodiesel on climate change were far better than conventional diesel, but impacts on human health...

  2. Sustainability Evaluation of Biodiesel Produced from Microalgae Chlamydomonas sp Grown in Brewery Wastewater

    OpenAIRE

    Mata, Teresa M.; Santos, Janaína; Mendes, Adélio M; Caetano, Nídia S.; Martins, António A.

    2014-01-01

    This study performs a sustainability evaluation of biodiesel from microalga Chlamydomonas sp. grown in 20 % (v/v) of brewery’s wastewater, blended with pentose sugars (xylose, arabinose or ribose resulting from the hydrolysis of brewer’s spent grains (BSG). The life cycle steps considered for the study are: microalgae cultivation, biomass processing and lipids extraction at the brewery site, and its conversion to biodiesel at a dedicated external biofuel’s plant. Three sustainabil...

  3. Physical Properties of Normal Grade Biodiesel and Winter Grade Biodiesel

    OpenAIRE

    Azmi Zakaria; W. Mahmood Mat Yunus; Monir Norozi; Harrison Lau Lik Nang; Mohd Maarof Moksin; Amir Reza Sadrolhosseini

    2011-01-01

    In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the the...

  4. Prospects of biodiesel production from microalgae in India

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shakeel A.; Hussain, Mir Z.; Prasad, S. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Rashmi; Banerjee, U.C. [Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, Phase X, S.A.S. Nagar, Mohali 160062, Punjab (India)

    2009-12-15

    Energy is essential and vital for development, and the global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment. Renewable and carbon neutral biodiesel are necessary for environmental and economic sustainability. Biodiesel demand is constantly increasing as the reservoir of fossil fuel are depleting. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Production of biodiesel using microalgae biomass appears to be a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. Microalgae are photosynthetic microorganisms which convert sunlight, water and CO{sub 2} to sugars, from which macromolecules, such as lipids and triacylglycerols (TAGs) can be obtained. These TAGs are the promising and sustainable feedstock for biodiesel production. Microalgal biorefinery approach can be used to reduce the cost of making microalgal biodiesel. Microalgal-based carbon sequestration technologies cover the cost of carbon capture and sequestration. The present paper is an attempt to review the potential of microalgal biodiesel in comparison to the agricultural crops and its prospects in India. (author)

  5. Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia

    International Nuclear Information System (INIS)

    Petro diplomacy has played its role in last few decades and that makes energy security a major concern worldwide. Rapid climate change and environmental protection is another vital issue to be addressed in recent energy policies. So an alternative carbon neutral transport fuel is a must in new sustainable energy mix. Biodiesel has immense potentiality to be a part of a sustainable energy mix. In this energy scenario, Brazil's success is a role model in utilizing its agro-industry for reducing poverty, greenhouse gas emission and petro-dependency simultaneously. Brazil commercialized bioethanol in mass scale by introducing flexible fuel vehicles in market. This dedicated engine idea moralizes a new concept of dedicated biodiesel engine vehicles for Malaysia and Indonesia. Southeast Asian countries, i.e. Malaysia and Indonesia is the largest producer as well as exporter of palm oil. Growing at highest yield rate among other biodiesel feedstock, palm based biodiesel is a top exported product for this region. This paper will quantify the prospects of a dedicated biodiesel engine vehicle for Malaysia and Indonesia that will initiate palm based biodiesel in fuel supply chain by leapfrogging the barriers of biodiesel utilization by boosting local automobile industry simultaneously. This article will also review on energy scenario of Malaysia and Indonesia and their renewable energy policies and challenges for coming decades. (author)

  6. Methanolysis of Carica papaya Seed Oil for Production of Biodiesel

    Directory of Open Access Journals (Sweden)

    Foluso O. Agunbiade

    2014-01-01

    Full Text Available The future of fossil fuel sources of energy has necessitated the need to search for renewable alternatives. Thus, Carica papaya seed oil (CPSO was employed as feedstock for the production of biodiesel by methanolysis. The seed was obtained locally, dried, and extracted with n-hexane. The CPSO was analyzed for specific gravity, viscosity, iodine value, and saponification value, among others using standard methods. The oil was transesterified by two-stage catalysis with oil to methanol mole ratio of 1 : 9. The biodiesel produced was subjected to standard fuel tests. The seed has an oil yield of 31.2% which is commercially viable. The kinematic viscosity of the oil at 313 K was 27.4 mm2s−1 while that of Carica papaya oil methylester (CPOME was reduced to 3.57 mm2s−1 and the specific gravity was 0.84 comparable with other seed-oil biodiesels and number 2 diesel. Other oil properties were compared favourably with seed oils already documented for biodiesel synthesis. CPOME’s cloud and pour points were 275 K and 274 K, respectively, and relatively higher than other biodiesels and number 2 diesel. CPOME exhibits moderate corrosion of copper strip. The methanolysis improved the fuel properties of the CPOME similar to other biodiesels. CPSO therefore exhibits a potential for biodiesel production.

  7. Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Jayed, M.H.; Masjuki, H.H.; Kalam, M.A.; Mahlia, T.M.I.; Liaquat, A.M. [Centre for Energy Sciences, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Husnawan, M. [Centre for Energy Sciences, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Mechanical Engineering University of Syiah Kuala, Jl. S. Abd. Rauf No. 7, Darussalam - Banda Aceh (Indonesia)

    2011-01-15

    Petro diplomacy has played its role in last few decades and that makes energy security a major concern worldwide. Rapid climate change and environmental protection is another vital issue to be addressed in recent energy policies. So an alternative carbon neutral transport fuel is a must in new sustainable energy mix. Biodiesel has immense potentiality to be a part of a sustainable energy mix. In this energy scenario, Brazil's success is a role model in utilizing its agro-industry for reducing poverty, greenhouse gas emission and petro-dependency simultaneously. Brazil commercialized bioethanol in mass scale by introducing flexible fuel vehicles in market. This dedicated engine idea moralizes a new concept of dedicated biodiesel engine vehicles for Malaysia and Indonesia. Southeast Asian countries, i.e. Malaysia and Indonesia is the largest producer as well as exporter of palm oil. Growing at highest yield rate among other biodiesel feedstock, palm based biodiesel is a top exported product for this region. This paper will quantify the prospects of a dedicated biodiesel engine vehicle for Malaysia and Indonesia that will initiate palm based biodiesel in fuel supply chain by leapfrogging the barriers of biodiesel utilization by boosting local automobile industry simultaneously. This article will also review on energy scenario of Malaysia and Indonesia and their renewable energy policies and challenges for coming decades. (author)

  8. Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Kian Fei; Tan, Kok Tat; Abdullah, Ahmad Zuhairi; Lee, Keat Teong [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2009-11-15

    Similarity between the properties of biodiesel and petroleum-derived diesel has made the former one of the most promising alternatives to a renewable and sustainable fuel for the transportation sector. In Malaysia, palm oil can be a suitable feedstock for the production of biodiesel due to its abundant availability and low production cost. However, not many assessments have been carried out regarding the impacts of palm biodiesel on the environment. Hence, in this study, life cycle assessment (LCA) was conducted for palm biodiesel in order to investigate and validate the popular belief that palm biodiesel is a green and sustainable fuel. The LCA study was divided into three main stages, namely agricultural activities, oil milling and transesterification process for the production of biodiesel. For each stage, the energy balance and green house gas assessments were presented and discussed. These are important data for the techno-economical and environmental feasibility evaluation of palm biodiesel. The results obtained for palm biodiesel were then compared with rapeseed biodiesel. From this study, it was found that the utilization of palm biodiesel would generate an energy yield ratio of 3.53 (output energy/input energy), indicating a net positive energy generated and ensuring its sustainability. The energy ratio for palm biodiesel was found to be more than double that of rapeseed biodiesel which was estimated to be only 1.44, thereby indicating that palm oil would be a more sustainable feedstock for biodiesel production as compared to rapeseed oil. Moreover, combustion of palm biodiesel was found to be more environment-friendly than petroleum-derived-diesel as a significant 38% reduction of CO{sub 2} emission can be achieved per liter combusted. (author)

  9. Business management for biodiesel producers

    Energy Technology Data Exchange (ETDEWEB)

    Gerpen, Jon Van [Iowa State Univ., Ames, IA (United States)

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  10. Analysis of transesterification comparing processes with methanol and ethanol for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@feagri.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    The increasing demand for energy on the industrialized world stimulates researches in a renewable fuel. Biodiesel appears like an alternative and utilizes a vegetable oil or animal fat as raw material. The most common method for conversion of the raw material in fuel that can be utilized in Diesel engines is called transesterification. Brazil has a big agricultural potential to produce grains and oils. One of them is the peanut oil that is predominantly cultivated in the southeast of Brazil. There is a prevision that the peanut production reaches 232 thousand tons this year. In this work was evaluated the methanol transesterification and ethanol transesterification of peanut oil using a basic catalyst. The comparison between reactions with the two alcohols showed that methyl esters yield was greater than ethyl esters, with maximum yield of 88.04% for methanol and 84.64% for ethanol. Besides the higher yield, reactions with methanol are easily conducted than with ethanol, the biodiesel purification treatment of final product is quickly and the separation between esters and glycerol is instantaneous. (author)

  11. Biodiesel from jatropha: Can India meet the 20% blending target?

    International Nuclear Information System (INIS)

    The need for biofuels, particularly liquid ones like ethanol and biodiesel, has been felt by most of the countries and their governments have been trying to promote these fuels. Following in line with global trend, India declared its biofuel policy in which biodiesel, primarily from jatropha, would meet 20% of the diesel demand beginning with 2011-2012. In spite of the efforts made by the state, production of biodiesel, however, has not picked up at all. Doubt arises as to whether the country will be able to meet the target. It is felt that the government policy, particularly regarding land utilization, organizing cultivation of jatropha and pricing of jatropha seeds, needs to be more clear. This paper attempts to make an assessment of the state of India's biofuel programme and to identify the hurdles that policy-maker need to overcome to achieve the goal.

  12. Comparative Toxicity and Mutagenicity of Soy-biodiesel and Petroleum-Diesel Emissions: Overview of Studies from the U.S. EPA, Research Triangle Park, NC

    Science.gov (United States)

    Biodiesel use as a fuel is increasing globally as an alternate to petroleum sources. To comprehensively assess the effects of the use of biodiesel as an energy source, end stage uses of biodiesel such as the effects of inhalation of combusted products on human health must be inco...

  13. Progress and Challenges in Microalgal Biodiesel Production

    Science.gov (United States)

    Mallick, Nirupama; Bagchi, Sourav K.; Koley, Shankha; Singh, Akhilesh K.

    2016-01-01

    The last decade has witnessed a tremendous impetus on biofuel research due to the irreversible diminution of fossil fuel reserves for enormous demands of transportation vis-a-vis escalating emissions of green house gasses (GHGs) into the atmosphere. With an imperative need of CO2 reduction and considering the declining status of crude oil, governments in various countries have not only diverted substantial funds for biofuel projects but also have introduced incentives to vendors that produce biofuels. Currently, biodiesel production from microalgal biomass has drawn an immense importance with the potential to exclude high-quality agricultural land use and food safe-keeping issues. Moreover, microalgae can grow in seawater or wastewater and microalgal oil can exceed 50–60% (dry cell weight) as compared with some best agricultural oil crops of only 5–10% oil content. Globally, microalgae are the highest biomass producers and neutral lipid accumulators contending any other terrestrial oil crops. However, there remain many hurdles in each and every step, starting from strain selection and lipid accumulation/yield, algae mass cultivation followed by the downstream processes such as harvesting, drying, oil extraction, and biodiesel conversion (transesterification), and overall, the cost of production. Isolation and screening of oleaginous microalgae is one pivotal important upstream factor which should be addressed according to the need of freshwater or marine algae with a consideration that wild-type indigenous isolate can be the best suited for the laboratory to large scale exploitation. Nowadays, a large number of literature on microalgal biodiesel production are available, but none of those illustrate a detailed step-wise description with the pros and cons of the upstream and downstream processes of biodiesel production from microalgae. Specifically, harvesting and drying constitute more than 50% of the total production costs; however, there are quite a less

  14. Progress and Challenges in Microalgal Biodiesel Production.

    Science.gov (United States)

    Mallick, Nirupama; Bagchi, Sourav K; Koley, Shankha; Singh, Akhilesh K

    2016-01-01

    The last decade has witnessed a tremendous impetus on biofuel research due to the irreversible diminution of fossil fuel reserves for enormous demands of transportation vis-a-vis escalating emissions of green house gasses (GHGs) into the atmosphere. With an imperative need of CO2 reduction and considering the declining status of crude oil, governments in various countries have not only diverted substantial funds for biofuel projects but also have introduced incentives to vendors that produce biofuels. Currently, biodiesel production from microalgal biomass has drawn an immense importance with the potential to exclude high-quality agricultural land use and food safe-keeping issues. Moreover, microalgae can grow in seawater or wastewater and microalgal oil can exceed 50-60% (dry cell weight) as compared with some best agricultural oil crops of only 5-10% oil content. Globally, microalgae are the highest biomass producers and neutral lipid accumulators contending any other terrestrial oil crops. However, there remain many hurdles in each and every step, starting from strain selection and lipid accumulation/yield, algae mass cultivation followed by the downstream processes such as harvesting, drying, oil extraction, and biodiesel conversion (transesterification), and overall, the cost of production. Isolation and screening of oleaginous microalgae is one pivotal important upstream factor which should be addressed according to the need of freshwater or marine algae with a consideration that wild-type indigenous isolate can be the best suited for the laboratory to large scale exploitation. Nowadays, a large number of literature on microalgal biodiesel production are available, but none of those illustrate a detailed step-wise description with the pros and cons of the upstream and downstream processes of biodiesel production from microalgae. Specifically, harvesting and drying constitute more than 50% of the total production costs; however, there are quite a less number

  15. Evaluation of Biodiesel Production, Engine Performance, and Emissions

    Science.gov (United States)

    Gürü, Metin; Keskïn, Ali

    2016-06-01

    Nowadays, to decrease environmental pollution and dependence on fossil-based fuels, research on alternative renewable energy sources has been increasing. One such renewable energy source is biodiesel, which is used as an alternative fuel for diesel engines. Biodiesel is renewable, nontoxic, biodegradable, and environmentally friendly. Biodiesel is domestically produced from vegetable␣oil (edible or nonedible), animal fat, and used cooking oils. In the biodiesel production process, oil or fat undergoes transesterification reaction through use of simple alcohols such as methanol, ethanol, propanol, butanol, etc. Use of methanol is most feasible because of its low cost, and physical and chemical advantages. Acid catalysis, alkali catalysis, and enzyme catalysis are usually used to improve the reaction rate and yield. Glycerol is a byproduct of the reaction and can be used as an industrial raw material. In this study, biodiesel production methods (direct use, pyrolysis, microemulsion, transesterification, supercritical processes, ultrasound- assisted, and microwave-assisted) and types of catalyst (homogeneous, heterogeneous, and enzyme) have been evaluated and compared. In addition, the effects of biodiesel and its blends on diesel engine performance and exhaust emissions are described and reviewed.

  16. Evaluation of Biodiesel Production, Engine Performance, and Emissions

    Science.gov (United States)

    Gürü, Metin; Keskïn, Ali

    2016-08-01

    Nowadays, to decrease environmental pollution and dependence on fossil-based fuels, research on alternative renewable energy sources has been increasing. One such renewable energy source is biodiesel, which is used as an alternative fuel for diesel engines. Biodiesel is renewable, nontoxic, biodegradable, and environmentally friendly. Biodiesel is domestically produced from vegetable oil (edible or nonedible), animal fat, and used cooking oils. In the biodiesel production process, oil or fat undergoes transesterification reaction through use of simple alcohols such as methanol, ethanol, propanol, butanol, etc. Use of methanol is most feasible because of its low cost, and physical and chemical advantages. Acid catalysis, alkali catalysis, and enzyme catalysis are usually used to improve the reaction rate and yield. Glycerol is a byproduct of the reaction and can be used as an industrial raw material. In this study, biodiesel production methods (direct use, pyrolysis, microemulsion, transesterification, supercritical processes, ultrasound- assisted, and microwave-assisted) and types of catalyst (homogeneous, heterogeneous, and enzyme) have been evaluated and compared. In addition, the effects of biodiesel and its blends on diesel engine performance and exhaust emissions are described and reviewed.

  17. Biodiesel – a Real Solution for Reducing Air Pollution ?

    Directory of Open Access Journals (Sweden)

    ODAGIU Antonia

    2010-12-01

    Full Text Available Traffic emissions made up of high levels of nitrogen oxides, sulphur oxides, and particulate matter determineserious pollution in urban high agglomerations. One solution in reducing atmospheric pollution is represented byfinding not pollutant alternatives to classic fuel used for urban vehicles and one valuable solution is the replacement ofpollutant fossil fuels with biodiesel/biofuel. The reaction between glycerides and methanol, in presence of a catalystrepresents the basis of biodiesel fuel production. The main plants used for biofuel production are: soybeans, rapeseed(canola, sunflower seed, palm fruit or kernels, coconut and physic nut, etc. The legal approach of biodiesel use includesa series of national and international agreements adopted with the aim of reducing air pollution produced by the use oftraditional fuel in urban traffic, and biodiesel use remains a valuable option, in spite of high production costs.

  18. Biodiesel Production from Rubber Seed Oil via Esterification Process

    Directory of Open Access Journals (Sweden)

    W Widayat

    2012-07-01

    Full Text Available One promise source of alternative energy is biodiesel from rubber seed oil, because the raw materials available in plentiful quantities and can be renewed. In addition, the rubber seed is still lack of utilization, and Indonesia is one of the largest rubbers producing country in the world. The objective of this research is to studied on biodiesel production by esterification process. Parameters used in this study are the ratio of catalyst and temperature and its influence on the characteristics of the resulting biodiesel product. Characterization of rubber seed include acid content number analysis, saponification numbers, density, viscosity, iodine number, type of free fatty acids and triglyceride oils. The results of analysis showed that rubber seed oil content obtained is 50.5%. The results of the GCMS analysis showed that a free fatty acid level in rubber seed is very high. Conversion into bio-diesel oil is obtained by at most 59.91% and lowest 48.24%.

  19. Effect of temperature on tribological properties of palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Sia, S.Y.; Fazal, M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-03-15

    Biodiesel, as an alternative fuel is steadily gaining attention to replace petroleum diesel partially or completely. The tribological performance of biodiesel is crucial for its application in automobiles. In the present study, effect of temperature on the tribological performance of palm biodiesel was investigated by using four ball wear machine. Tests were conducted at temperatures 30, 45, 60 and 75 C, under a normal load of 40 kg for 1 h at speed 1200 rpm. For each temperature, the tribological properties of petroleum diesel (B0) and three biodiesel blends like B10, B20, B50 were investigated and compared. During the wear test, frictional torque was recorded on line. Wear scars in tested ball were investigated by optical microscopy. Results show that friction and wear increase with increasing temperature. (author)

  20. Effect of temperature on tribological properties of palm biodiesel

    International Nuclear Information System (INIS)

    Biodiesel, as an alternative fuel is steadily gaining attention to replace petroleum diesel partially or completely. The tribological performance of biodiesel is crucial for its application in automobiles. In the present study, effect of temperature on the tribological performance of palm biodiesel was investigated by using four ball wear machine. Tests were conducted at temperatures 30, 45, 60 and 75 oC, under a normal load of 40 kg for 1 h at speed 1200 rpm. For each temperature, the tribological properties of petroleum diesel (B0) and three biodiesel blends like B10, B20, B50 were investigated and compared. During the wear test, frictional torque was recorded on line. Wear scars in tested ball were investigated by optical microscopy. Results show that friction and wear increase with increasing temperature.

  1. Culture aspects of Isochrysis galbana for biodiesel production

    International Nuclear Information System (INIS)

    Highlights: ► We analyze the potential of an autochthon microalgae Isochrysis galbana for biodiesel production. ► The microalgae was cultivated in a raceway pond designed by the authors. ► The analysis of different cultivation parameters has been carried out. ► The results show that oil produced by I. galbana could be a suitable feedstock for biofuel production. -- Abstract: Biodiesel production from microalgae has recently increased on interest. The objective of this work is to explore the potential of biodiesel production from the microalgae Isochrysis galbana (T-ISO). For that reason, this microalgae was cultivated for biodiesel production. The culture system equipment consisted of two methacrylate ponds, 11 mm thick. The pond has a base of 1.40 × 0.40 m and a height of 0.4 m. The influence of initial concentration of inoculum, stirring and carbon dioxide supply on the growth of algae were analyzed. The obtained results indicate that stirring improves the algae growth rate. The other two factors have no significant effect on final cell density. Obtained biomass was used to produce oil by extraction to use for biodiesel synthesis by means of basic-catalyzed reaction. For transesterification, microalgae oil was mixed with methanol (12:1 methanol to oil molar ratio), and sodium hydroxide (1% g NaOH/g oil) for 3 h in a reactor at 62 °C. The best harvest shows a biomass concentration of 0.305 g/L with a FAME content of 12.5%.

  2. Performance and emission study on waste cooking oil biodiesel and distillate blends for microturbine application

    Directory of Open Access Journals (Sweden)

    Ee Sann Tan

    2015-11-01

    Full Text Available Biodiesel is defined as domestic renewable energy resource, which can be derived from natural oils through the transesterification. The implementation of biodiesel is essential due to the energy depletion crisis and the impact on exacerbating environment caused by rapid consumption of conventional diesel. Waste cooking oil (WCO was used as the raw material to produce biodiesel in order to reduce wastes polluting the environment. This paper studies the technical potential of WCO biodiesel to be used as an alternative fuel for microturbine. The ASTM D6751 and ASTM D2881 standards were selected as references to evaluate the compatibility with distillate to be used as a microturbine fuel. The performance and emission tests were conducted employing a 30 kW microturbine, without any modification, using biodiesel and distillate blends up to maximum of 20% biodiesel mixing ratio. It was found that the thermal efficiency peaked at 20% biodiesel blend with distillate, despite the fact that biodiesel had a lower calorific value and a higher fuel consumption. The emission test results showed reduction of CO emission by increasing the WCO biodiesel mixing ratio, while NOx emission was dependent on the exhaust gas temperature. In conclusion, biodiesel derived from WCO has the potential to substitute distillate in the microturbine application.

  3. Non-Edible Plant Oils as New Sources for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    M. Rafiqul Islam

    2008-02-01

    Full Text Available Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi and jatropha (jatropha curcas, L. are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1% free FA, 84.43% triglycerides, 4.88% sterol and 1.59% others. Jatropha oil contains approximately 14% free FA, approximately 5% higher than soapnut oil. Soapnut oil biodiesel contains approximately 85% unsaturated FA while jatropha oil biodiesel was found to have approximately 80% unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97% conversion to FAME was achieved for both soapnut and jatropha oil.

  4. Effect of first and second generation biodiesel blends on engine performance and emission

    Science.gov (United States)

    Azad, A. K.; Rasul, M. G.; Bhuiya, M. M. K.; Islam, Rubayat

    2016-07-01

    The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. The study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NOx emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NOx emission for B5 waste cooking biodiesel was lower than soybean biodiesel.

  5. ENGINE PERFORMANCE OF BIODIESEL FROM FEEDSTOCK FOR CLEANER ENVIRONMENT: A REVI EW

    Directory of Open Access Journals (Sweden)

    Mohamed Waheed

    2012-10-01

    Full Text Available The search for renewable energy sources is being intensified globally and this includes alternative fuels for compression engine. Biodiesel from inedible oil bearing seeds has been discovered as a good replacement for diesel fuel. This paper is a review of literature of formulae for engine parameters, performance of compression ignition engines when run with biodiesel from the most common feedstocks. Research findings show that biodiesel can replace or substitute dieselfuel and its biorefinery can be set in developing countries like Nigeria. The paper also highlight its advantages of biodiesel for reduce greenhouse emission as a renewable fuel.

  6. Production of biodiesel from sunflower oil and ethanol by base catalyzed transesterification

    OpenAIRE

    Sales, Alejandro

    2011-01-01

    Biodiesel is an attractive alternative fuel for diesel engines.The feedstock for biodiesel production is usually vegetable oil, pure oil or waste cooking oil, or animal fats The most common way today to produce biodiesel is by transesterification of the oils with an alcohol in the presence of an alkaline catalyst. It is a low temperature and low-pressure reaction. It yields high conversion (96%-98%) with minimal side reactions and short reaction time. It is a direct conversion to biodiesel wi...

  7. Thermodynamic Study on the Effects of Minor Constituents on Cold Weather Performance of Biodiesel

    Science.gov (United States)

    Biodiesel is an alternative diesel fuel made from vegetable oils, animal fats and other lipid feedstocks. Fuel properties and performance of biodiesel during cold weather are influenced by factors related to its feedstock, namely fatty acid composition and trace concentrations of monoacylglycerols,...

  8. The effects of minor constituents on biodiesel cold flow properties: Differential scanning calorimetry (DSC) analyses

    Science.gov (United States)

    Biodiesel is an alternative diesel fuel made from vegetable oils, animal fats and other lipid feedstocks. Fuel properties and performance of biodiesel during cold weather are influenced by factors related to lipid feedstock as well as small concentrations of monoacylglycerols and other minor constit...

  9. Biodiesel: Fuel properties, its “Design” and a source of “Designer” fuel

    Science.gov (United States)

    The fuel properties of biodiesel, a biogenic alternative to petrodiesel, are largely determined by its component fatty acid alkyl esters, most commonly methyl esters. These esters have vastly different properties. The properties of biodiesel are an aggregate of the properties of its components and t...

  10. Production of biodiesel using the microwave technique

    Directory of Open Access Journals (Sweden)

    Shakinaz A. El Sherbiny

    2010-10-01

    Full Text Available Biodiesel production is worthy of continued study and optimization of production procedures because of its environmentally beneficial attributes and its renewable nature. Non-edible vegetable oils such as Jatropha oil, produced by seed-bearing shrubs, can provide an alternative and do not have competing food uses. However, these oils are characterized by their high free fatty acid contents. Using the conventional transesterification technique for the production of biodiesel is well established. In this study an alternative energy stimulant, “microwave irradiation”, was used for the production of the alternative energy source, biodiesel. The optimum parametric conditions obtained from the conventional technique were applied using microwave irradiation in order to compare the systems. The study showed that the application of radio frequency microwave energy offers a fast, easy route to this valuable biofuel with the advantages of enhancing the reaction rate (2 min instead of 150 min and of improving the separation process. The methodology allows for the use of high free fatty acid content feedstock, including Jatropha oil. However, this emerging technology needs to be further investigated for possible scale-up for industrial application.

  11. Multicomponent evaporation model for pure and blended biodiesel droplets in high temperature convective environment

    Energy Technology Data Exchange (ETDEWEB)

    Saha, K.; Abu-Ramadan, E.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering

    2010-07-01

    Renewable energy sources are currently being investigated for their reliability, efficiency, and applicability. Biodiesel is one of the most promising alternatives to conventional diesel fuels in compression-ignition (CI) engines. This paper reported on a study that compared pure biodiesel, pure diesel and blended fuels using a comprehensive multicomponent droplet vaporization model. The model considers the difference in the gas phase diffusivity of diesel and biodiesel vapors. The paper presented the vaporization characteristics of pure diesel, pure biodiesel fuel droplets as well as the effect of mixing them in different proportions (B20 and B50). The model successfully predicted the vaporization history of a multicomponent droplet. The modeling study revealed that biodiesel droplets evaporate at a slower rate than the diesel droplets because of relatively low vapor pressure. As such, the blending of diesel fuel with small proportions of biodiesel will result in an increase in the evaporation time of diesel fuel to some extent. 31 refs., 6 figs.

  12. Emergy Analysis and Sustainability Efficiency Analysis of Different Crop-Based Biodiesel in Life Cycle Perspective

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Mazzi, Anna;

    2013-01-01

    Biodiesel as a promising alternative energy resource has been a hot spot in chemical engineering nowadays, but there is also an argument about the sustainability of biodiesel. In order to analyze the sustainability of biodiesel production systems and select the most sustainable scenario, various...... kinds of crop-based biodiesel including soybean-, rapeseed-, sunflower-, jatropha- and palm-based biodiesel production options are studied by emergy analysis; soybean-based scenario is recognized as the most sustainable scenario that should be chosen for further study in China. DEA method is used...... to evaluate the sustainability efficiencies of these options, and the biodiesel production systems based on soybean, sunflower, and palm are considered as DEA efficient, whereas rapeseed-based and jatropha-based scenarios are needed to be improved, and the improved methods have also been specified....

  13. Study of the drivers of competitiveness of the Brazilian biodiesel; Estudo dos direcionadores de competitividade do biodiesel brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, Aldara da Silva; Batalha, Mario Otavio [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Engenharia de Producao; Monteiro, Marcos Roberto [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Centro de Caracterizacao e Desenvolvimento de Materiais

    2008-07-01

    In the increasingly important role that the biofuel market takes in the new dynamic global competition, biodiesel emerges as a real alternative of implantation. In Brazil, this interest is not different. However, despite of biodiesel's enormous potential, there is a number of uncertainties that need to be investigated in order to produce a biodiesel which has its unique specifications and international quality recognized. The aim of this article is twofold: first, the information systematization of the Brazilian biodiesel production chain; and second, the analysis of drivers of competitiveness that affect that same production chain. Through the theory of systemic approach, each driver of competitiveness is described and its competitive environment is analyzed. The range of different raw materials and possible technological routes present numerous challenges for the agents of this chain. What increases the relevance of studies such as this is the notion that investigating the drives of competitiveness is the first step in overcoming these challenges. (author)

  14. Production and Testing of Coconut Oil Biodiesel Fuel and its Blend

    OpenAIRE

    Oguntola J. ALAMU; Opeoluwa DEHINBO; Adedoyin M SULAIMAN

    2010-01-01

    Many researchers have successfully worked on generating energy from different alternative sources including solar and biological sources such as the conversion of trapped energy from sunlight to electricity and conversion of some renewable agricultural products to fuel. This work considers the use of coconut oil for the production of alternative renewable and environmental friendly biodiesel fuel as an alternative to conventional diesel fuel. Test quantities of coconut oil biodiesel were prod...

  15. Forensic analysis of biodiesel.

    Science.gov (United States)

    Goodman, Michael R; Kaley, Elizabeth A; Finney, Eric E

    2016-06-01

    The analysis of four different biodiesel blends, as well as homemade biodiesel prepared from vegetable oil, has been performed using gas chromatography-mass spectrometry. The identification of methyl esters within the biodiesel along with any background components is made possible by recognizing their mass spectral fragmentation patterns. These fuels were subjected to typical fire scene environments, specifically weathering and microbial degradation, to investigate how these environments affect the analysis. A matrix study was also performed on wood, carpet, and clothing in order to identify any interferences from these substrates. The data obtained herein will provide the forensic science community with the data needed to help recognize these increasingly common ignitable liquids. PMID:27060442

  16. Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Steven; Teong, Lee Keat [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2010-04-15

    Energy supply and its security issues have been the topic of interest lately. With growing environmental awareness about the negative implications brought by excessive usage of fossil fuels, the race for finding alternative energy as their substitutions is getting heated up. For now, renewable energy from biodiesel has been touted as one of the most promising substitutions for petroleum-derived diesel. Combustion of biodiesel as fuel is more environment-friendly while retaining most of the positive engine properties of petroleum-derived diesel. Production of biodiesel is also a proven technology with established commercialization activities. The huge potential of biodiesel coupled with the abundance of palm oil which is one of the most cost-effective feedstocks for biodiesel is responsible for the pledging of Malaysia to become the leading producer of high quality biodiesel in the region. Currently, total approved installed capacity of biodiesel production in Malaysia equals to almost 92% of the world biodiesel production output in 2008. While Malaysia does indeed possessed materials, technologies and marketing superiority to vie for that position, many more challenges are still awaiting. The price restriction, provisions controversy, escalating non-tariff trade barriers and negligible public support need to be addressed appropriately. In this review, Malaysia's previous and current position in global biodiesel market, its future potential towards the prominent leading biodiesel status and major disrupting obstacles are being discussed. The feasibility of utilizing algae as the up-and-coming biodiesel feedstock in Malaysia is also under scrutiny. Lastly, several recommendations on the roles played by three major forces in Malaysia's biodiesel industry are presented to tackle the shortcomings in achieving the coveted status by Malaysia. It is hope that Malaysia's progress in biodiesel industry will not only benefit itself but rather as the role model

  17. Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview

    International Nuclear Information System (INIS)

    Energy supply and its security issues have been the topic of interest lately. With growing environmental awareness about the negative implications brought by excessive usage of fossil fuels, the race for finding alternative energy as their substitutions is getting heated up. For now, renewable energy from biodiesel has been touted as one of the most promising substitutions for petroleum-derived diesel. Combustion of biodiesel as fuel is more environment-friendly while retaining most of the positive engine properties of petroleum-derived diesel. Production of biodiesel is also a proven technology with established commercialization activities. The huge potential of biodiesel coupled with the abundance of palm oil which is one of the most cost-effective feedstocks for biodiesel is responsible for the pledging of Malaysia to become the leading producer of high quality biodiesel in the region. Currently, total approved installed capacity of biodiesel production in Malaysia equals to almost 92% of the world biodiesel production output in 2008. While Malaysia does indeed possessed materials, technologies and marketing superiority to vie for that position, many more challenges are still awaiting. The price restriction, provisions controversy, escalating non-tariff trade barriers and negligible public support need to be addressed appropriately. In this review, Malaysia's previous and current position in global biodiesel market, its future potential towards the prominent leading biodiesel status and major disrupting obstacles are being discussed. The feasibility of utilizing algae as the up-and-coming biodiesel feedstock in Malaysia is also under scrutiny. Lastly, several recommendations on the roles played by three major forces in Malaysia's biodiesel industry are presented to tackle the shortcomings in achieving the coveted status by Malaysia. It is hope that Malaysia's progress in biodiesel industry will not only benefit itself but rather as the role model to catalyst the

  18. Current Status and Prospects of Biodiesel Production from Microalgae

    OpenAIRE

    Yuhuan Liu; Rongsheng Ruan; Zhenyi Du; Xiaodan Wu

    2012-01-01

    Microalgae represent a sustainable energy source because of their high biomass productivity and ability to remove air and water born pollutants. This paper reviews the current status of production and conversion of microalgae, including the advantages of microalgae biodiesel, high density cultivation of microalgae, high-lipid content microalgae selection and metabolic control, and innovative harvesting and processing technologies. The key barriers to commercial production of microalgae biodie...

  19. Etude de stratégies de culture de Dunaliella tertiolecta combinant haute densité cellulaire et accumulation de lipides en vue de produire du biodiesel

    OpenAIRE

    A. Massart; Aubry, E.; Hantson, AL.

    2010-01-01

    Study of culture strategies of Dunaliella tertiolecta combining high cell density and accumulation of lipids to produce biodiesel. Microalgae are photosynthetic organisms using light to capture CO2. Some species can accumulate, under specific growth conditions, carbon as lipids (triglycerides). This characteristic led the scientists to think about cultivating this microorganism to produce biodiesel. The following study is based on the cultivation of a 5 to 10 µm length green biflagellate micr...

  20. EFFECT OF COMPRESSION RATIO ON ENERGY AND EMISSION OF VCR DIESEL ENGINE FUELLED WITH DUAL BLENDS OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    R. D. EKNATH

    2014-10-01

    Full Text Available In recent 10 years biodiesel fuel was studied extensively as an alternative fuel. Most of researchers reported performance and emission of biodiesel and their blends with constant compression ratio. Also all the research was conducted with use of single biodiesel and its blend. Few reports are observed with the use of variable compression ratio and blends of more than one biodiesel. Main aim of the present study is to analyse the effect of compression ratio on the performance and emission of dual blends of biodiesel. In the present study Blends of Jatropha and Karanja with Diesel fuel was tested on single cylinder VCR DI diesel engine for compression ratio 16 and 18. High density of biodiesel fuel causes longer delay period for Jatropha fuel was observed compare with Karanja fuel. However blending of two biodiesel K20J40D results in to low mean gas temperature which is the main reason for low NOx emission.

  1. Identification of potential areas for the cultivation of eleanisse guinesis

    International Nuclear Information System (INIS)

    The environmental problems at world-wide level must to the indiscriminate fossil fuel consumption, looking for to mitigate this problematic one has impelled the use of alternative energies being the biocombustibles an option, nevertheless, is lost impulse because the areas to cultivate biocombustibles would compete with the farming surfaces. Ecuador exports red oil of African Palm (eleanisse guinesis), one of the oily employees in the elaboration of biodiesel; under this context in order to facilitate the decision making Ecological Models for Biodiversity Studies are applied, filtering the protected areas, national parks and cities, the census of the producers of eleanisse guinesis (ANCUPA) is used like entrance data; software looks for the common characteristics of the registered places and infers the possible new areas that fulfill these characteristics. Identified the zones where the conditions for the crop appear of eleanisse guinesis in Ecuador it will analyze his competition with other crops. It will allow to value the possible major cultivable surface of the country, of economic, fast way where it is possible to be represented several scenes that will facilitate one better planning of the resource. (author)

  2. Alabama Institute for Deaf and Blind Biodiesel Project Green

    Energy Technology Data Exchange (ETDEWEB)

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  3. Biodiesel from lignocellulosic biomass--prospects and challenges.

    Science.gov (United States)

    Yousuf, Abu

    2012-11-01

    Biodiesel can be a potential alternative to petroleum diesel, but its high production cost has impeded its commercialization in most parts of the world. One of the main drivers for the generation and use of biodiesel is energy security, because this fuel can be produced from locally available resources, thereby reducing the dependence on imported oil. Many countries are now trying to produce biodiesel from plant or vegetable oils. However, the consumption of large amounts of vegetable oils for biodiesel production could result in a shortage in edible oils and cause food prices to soar. Alternatively, the use of animal fat, used frying oils, and waste oils from restaurants as feedstock could be a good strategy to reduce the cost. However, these limited resources might not meet the increasing demand for clean, renewable fuels. Therefore, recent research has been focused the use of residual materials as renewable feedstock in order to lower the cost of producing biodiesel. Microbial oils or single cell oils (SCOs), produced by oleaginous microorganisms have been studied as promising alternatives to vegetable or seed oils. Various types of agro-industrial residues have been suggested as prospective nutritional sources for microbial cultures. Since the most abundant residue from agricultural crops is lignocellulosic biomass (LCB), this byproduct has been given top-priority consideration as a source of biomass for producing biodiesel. But the biological transformation of lignocellulosic materials is complicated due to their crystalline structure. So, pretreatment is required before they can be converted into fermentable sugar. This article compares and scrutinizes the extent to which various microbes can accumulate high levels of lipids as functions of the starting materials and the fermentation conditions. Also, the obstacles associated with the use of LCB are described, along with a potentially viable approach for overcoming the obstacles that currently preclude the

  4. Optimization of emergy sustainability index for biodiesel supply network design

    International Nuclear Information System (INIS)

    Highlights: • A MINLP model for designing sustainable biodiesel supply network is developed. • Emergy sustainability index is used as the objective to be maximized. • Multiple alternatives in each stage of biodiesel supply network are considered. • Life cycle perspective is incorporated in the design of biodiesel supply network. - Abstract: Sustainability is an important and difficult consideration for the stakeholders/decision-makers when planning a biofuel supply network. In this paper, a Mixed-Integer Non-linear Programming (MINLP) model was developed with the aim to help the stakeholders/decision-maker to select the most sustainable design. In the proposed model, the emergy sustainability index of the whole biodiesel supply networks in a life cycle perspective is employed as the measure of the sustainability, and multiple feedstocks, multiple transport modes, multiple regions for biodiesel production and multiple distribution centers can be considered. After describing the process and mathematic framework of the model, an illustrative case was studied and demonstrated that the proposed methodology is feasible for finding the most sustainable design and planning of biodiesel supply chains

  5. Biodiesel Production from Microalgae by Extraction – Transesterification Method

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Phuong Thao

    2013-11-01

    Full Text Available The environmental impact of using petroleum fuels has led to a quest to find a suitable alternative fuel source. In this study, microalgae were explored as a highly potential feedstock to produce biodiesel fuel. Firstly, algal oil is extracted from algal biomass by using organic solvents (n–hexan.  Lipid is contained in microalgae up to 60% of their weight. Then, Biodiesel is created through a chemical reaction known as transesterification between algal oil and alcohol (methanol with strong acid (such as H2SO4 as the catalyst. The extraction – transesterification method resulted in a high biodiesel yield (10 % of algal biomass and high FAMEs content (5.2 % of algal biomass. Biodiesel production from microalgae was studied through experimental investigation of transesterification conditions such as reaction time, methanol to oil ration and catalyst dosage which are deemed to have main impact on reaction conversion efficiency. All the parameters which were characterized for purified biodiesel such as free glycerin, total glycerin, flash point, sulfur content were analyzed according to ASTM standardDoi: http://dx.doi.org/10.12777/wastech.1.1.6-9Citation:  Thao, N.T.P., Tin, N.T., and Thanh, B.X. 2013. Biodiesel Production from Microalgae by Extraction – Transesterification Method. Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.6-9

  6. Characteristics of paddy operations with biodiesel fuelled tractor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Park, S.H.; Kim, C.K.; Im, D.H.; Kim, H.J.; Chung, S.C. [National Academy of Agricultural Science, Seodundong, Suwon (Korea, Democratic People' s Republic of); Kim, S.S. [Daedong Industrial Co., Chang Nyong-Kun, Kyungnam (Korea, Democratic People' s Republic of)

    2010-07-01

    This paper reported on a study in which biofuels were tested for their power and competitiveness in various paddy operations, such as plowing and rotary tilling of paddy fields. The study considered the use of diesel fuel as well as 20 per cent biodiesel (BD20) and 100 per cent biodiesel (BD100) as an alternative fuel for tractors. Ignition problems or abrupt stopping were not monitored during operations of plowing, rotary tilling and travelling on the road. According to tractor power take-off (PTO) test codes, there was no considerable power difference between the 3 fuels. However, fuel consumption rates were quite different between the biodiesels and diesel fuel in the paddy works. Fuel consumption increased when biodiesel content increased. Approximately 35 to 40 per cent more fuel was needed for rotary tilling operations than plowing operations. Within the operations, the maximum difference occurred during the rotary tilling of wet paddy fields. This difference was as high as 20 per cent , between BD100 and diesel fuel. In terms of exhaust gases, more carbon dioxide was discharged from diesel fuel than biodiesels, but more nitrous oxide was discharged with biodiesels. It was difficult to differentiate quantities of carbon monoxide between the 3 different fuels.

  7. Sustainable Biocatalytic Biodiesel Production

    DEFF Research Database (Denmark)

    Güzel, Günduz

    As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase and chemi......As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase...... and chemical equilibria as part of his main sustainable biodiesel project. The transesterification reaction of vegetable oils or fats with an aliphatic alcohol – in most cases methanol or ethanol – yields biodiesel (long-chain fatty acid alkyl esters – FAAE) as the main product in the presence of alkaline....../acid catalysts or biocatalysts (free or immobilised lipase enzymes). The reaction by-product glycerol is immiscible with the ester products (FAAE and oils/fats) in addition to the partial miscibility problem of methanol or ethanol with oils/fats. The insoluble parts of alcohol feeds or by-products form emulsion...

  8. The engine tests of biodiesel from used frying oil

    International Nuclear Information System (INIS)

    Biodiesel is an environmentally friendly and a renewable alternative diesel fuel that can be used in diesel engines with little or no modification. Used frying oil is one of the raw materials which can be used for biodiesel production. The objective of this study was to investigate the effects of used frying oil originated from biodiesel on engine performance and emissions in a Fiat Doblo 1.9 DS, four-cylinder, four-stroke, 46 kW power capacity diesel engine. Comparative measurements with no. 2 diesel fuel were conducted on both engine power and emission characteristics of each of the fuel used. Biodiesel, when compared to no. 2 diesel fuel, showed reduction in wheel force over 3.35% and it also reduced the wheel power by over 2.03%. In the acceleration tests, 40-100 km/h and 60-100 km/h acceleration periods were measured and a reduction of 7.32% and 8.78% were observed, respectively. According to emission tests, as a result of biodiesel consumption, a reduction of 8.59% in CO emission and an increase of 2.62% were observed in CO2 emission. Also, NOx emissions increased by 5.03% as a result of biodiesel consumption. HC emissions and particulate emissions have a significant effect on air pollution. As a result of biodiesel usage, HC and particulate emissions decreased by 30.66% and 63.33%, respectively. When the fuel consumption amounts are compared, it was observed that biodiesel consumption was 2.43% less than that of no. 2 diesel fuel. (Author)

  9. Variability in sunflower oil quality for biodiesel production: A simulation study

    International Nuclear Information System (INIS)

    Biodiesel is an alternative fuel made from vegetable oils or animal fats. The fatty acid composition of the feedstock, which varies among and within species, is the main determinant of biodiesel quality. In this work we analyze the variability in biodiesel quality (density, kinematic viscosity, heating value, cetane number and iodine value) obtained from sunflower oil, by means of a validated crop model that predicts the fatty acid composition of one high-oleic, and three traditional (high-linoleic) sunflower hybrids. The model was run with a 10-year average weather data from 56 weather stations in Argentina, and simulation results were compared to the biodiesel standards of Argentina, USA and Europe. We show that biodiesel produced from sunflower oil does not have one fixed quality, but different qualities depending on weather conditions and agricultural practices, and that intraspecific variation in biodiesel quality can be larger than interspecific differences. Our results suggest that (a) sunflower oil from high-oleic hybrids is suitable for biodiesel production (within limits of all analyzed standards), regardless of growing conditions and (b) sunflower oil from traditional hybrids is suitable for biodiesel production under the standards of Argentina and USA, while only certain hybrids grown in warm regions (e.g., Northern Argentina, Southern USA, China, India, Pakistan) are suitable for biodiesel production according to the European standard

  10. Variability in sunflower oil quality for biodiesel production: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra-Irujo, Gustavo A.; Izquierdo, Natalia G.; Quiroz, Facundo; Aguirrezabal, Luis A.N. [Unidad Integrada Balcarce, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Instituto Nacional de Tecnologia Agropecuaria, CC 276, 7620 Balcarce, Buenos Aires (Argentina); Covi, Mauro [Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Gueiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires (Argentina); Nolasco, Susana M. [Facultad de Ingenieria, Universidad Nacional del Centro de la Provincia de Buenos Aires, Avda. del Valle 7537, B7400JWI, Olavarria (Argentina)

    2009-03-15

    Biodiesel is an alternative fuel made from vegetable oils or animal fats. The fatty acid composition of the feedstock, which varies among and within species, is the main determinant of biodiesel quality. In this work we analyze the variability in biodiesel quality (density, kinematic viscosity, heating value, cetane number and iodine value) obtained from sunflower oil, by means of a validated crop model that predicts the fatty acid composition of one high-oleic, and three traditional (high-linoleic) sunflower hybrids. The model was run with a 10-year average weather data from 56 weather stations in Argentina, and simulation results were compared to the biodiesel standards of Argentina, USA and Europe. We show that biodiesel produced from sunflower oil does not have one fixed quality, but different qualities depending on weather conditions and agricultural practices, and that intraspecific variation in biodiesel quality can be larger than interspecific differences. Our results suggest that (a) sunflower oil from high-oleic hybrids is suitable for biodiesel production (within limits of all analyzed standards), regardless of growing conditions and (b) sunflower oil from traditional hybrids is suitable for biodiesel production under the standards of Argentina and USA, while only certain hybrids grown in warm regions (e.g., Northern Argentina, Southern USA, China, India, Pakistan) are suitable for biodiesel production according to the European standard. (author)

  11. Test run of biodiesel in public transport system in Belgrade

    International Nuclear Information System (INIS)

    The problems related to our strong dependency on fossil fuels, i.e. greenhouse effect, energy dependency, urban pollution, are of growing importance in recent years. European Union (EU) Action plan of 2003, which had originated from Kyoto Agreement, defined a strategy for substitution of 20% of conventional fuel with the alternative one by 2020. Proved advantages of biodiesel usage in the system of public transport of passengers, with regard to exhaust gases emission above all, have been the decisive determinants for the actual promotion of biodiesel as ecologically 'clean' fuel, while its wider usage gives important contribution to sustainable development of cities. This paper presents results of biodiesel-test run in Belgrade, as a part of the project BIO-PEX, which relates to the usage of this alternative fuel in real operating conditions in urban public transport system, with special emphasis on technical, ecological and operational aspects of biofuel usage.

  12. Investigation of engine performance and exhaust gas emissions by using bio-diesel in compression ignition engine and optimisation of bio-diesel production from feedstock by using response surface methodology

    OpenAIRE

    Abuhabaya, Abdullah

    2012-01-01

    Bio-diesel, derived from the transesterification of vegetable oils or animal fats with simple alcohols, has attracted more and more attention recently. As a cleaner burning diesel alternative, bio-diesel claims to have many attractive features including: biodegradability, nontoxicity, renewability and low emission profiles. Free fatty acid (FFA) esterification and triglyceride (TG) transesterification with low alcohols molar ratio are the central reactions for the bio-diesel producti...

  13. Residual Glycerol from Biodiesel Manufacturing, Waste or Potential Source of Bioenergy: A Review Glicerol Residual de la Producción de Biodiesel, Residuo o Potencial Fuente de Energía: Una Revisión

    OpenAIRE

    Claudia Santibáñez; María Teresa Varnero; Mauricio Bustamante

    2011-01-01

    This review provides a summary of the research conducted on the use of crude glycerol, the major byproduct of the biodiesel industry, as substrate for anaerobic co-digestion and production of biogas. In general, for every 100 kg biodiesel produced, approximately 10 kg crude glycerol is generated. Because this glycerol is expensive to purify for use in food, pharmaceutical, or cosmetic industries, biodiesel producers must seek alternative methods for its disposal. Several studies have demonstr...

  14. An evaluation of marine based biodiesel using GHGenius

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-11-25

    A project was conducted to add the commercial harvesting of fish and its reduction to proteins and oils to GHGenius, a model developed to analyze the emissions of contaminants associated with the production and use of traditional and alternative transportation fuels. The project also added the generic production of biodiesel from marine oils to GHGenius to compare results to a specific Canadian operation, Ocean Nutrition, which produces marine oil biodiesel. A biodiesel pathway was added to the model, utilizing marine oils as feedstock. The GHGenius was modified and expanded to allow the use of ethanol rather than methanol in the biodiesel production system. Another objective of the project was to address allocation issues raised by the co-production of biodiesel and the high value Omega-3 oils produced in the Ocean Nutrition process. A new pathway was fully integrated and used to analyze a number of cases including: a generic marine biodiesel case; the ocean nutrition case with system boundary conditions; and a more narrow interpretation of the Ocean Nutrition situation, treating oil from Omega 3 production as a by-product. Results indicated that emission benefits from the specific Ocean Nutrition case were about 65 per cent of the benefits of soy biodiesel because of the reduced co-product credit and the use of ethanol rather than methanol. The narrower view of the system boundary for the Ocean Nutrition process resulted in GHG emission reductions similar to soy biodiesel. Challenges to the development of marine biodiesel include the wide variations in harvesting practices and efficiencies of fisheries; different oil yields; and difficulties in arriving at a case that models the global fishery. It was concluded that governments should be careful about encouraging the development of marine based biodiesel. There was little net gain in the availability of diesel fuel as a result of the production and use of marine based biodiesel. Other considerations were that

  15. Costilla County Biodiesel Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Doon, Ben; Quintana, Dan

    2011-08-25

    The Costilla County Biodiesel Pilot Project has demonstrated the compatibility of biodiesel technology and economics on a local scale. The project has been committed to making homegrown biodiesel a viable form of community economic development. The project has benefited by reducing risks by building the facility gradually and avoiding large initial outlays of money for facilities and technologies. A primary advantage of this type of community-scale biodiesel production is that it allows for a relatively independent, local solution to fuel production. Successfully using locally sourced feedstocks and putting the fuel into local use emphasizes the feasibility of different business models under the biodiesel tent and that there is more than just a one size fits all template for successful biodiesel production.

  16. Emission Characteristics of CI Engine by using Palm BioDiesel

    Directory of Open Access Journals (Sweden)

    V.S.shai sundaram

    2015-09-01

    Full Text Available Environmental concerns and energy crisis of the world has led to the search of alternate to the fossil fuel. FAME (Fatty Acid Methyl Ester is environment friendly, alternative, and non-toxic, safe; biodegradable has a high flash point and is also termed as Bio-Diesel. The growing economic risk of relying primarily on fossil fuels with limited reserves and Increasing prices has increased the interest on alternative energy sources. Clean and renewable biofuels have been touted as the answer to the issue of diminishing fossil fuels. INDIA the largest producer of palm oil has committed to focus interest on biofuels, namely palm biodiesel. Since palm oil has a high fossil energy balance, it is a key source of raw material for biodiesel production. This paper presents palm biodiesel as an alternative source of green renewable energy through a survey conducted from previously researched findings. In this experimental study testing of emission characteristics and performances test of palm Bio-diesel at various ratios form (B25%, B 50%, B75%, B100% of Bio-diesel. As we compared with fossil fuel (diesel and palm bio-diesel on base of various emission elements (CO, CO2, NOx, O2, and HC.

  17. The development of microalgae biodiesel and the utilization of oleaginous microalgae%微藻生物柴油发展与产油微藻资源利用

    Institute of Scientific and Technical Information of China (English)

    李华; 王伟波; 刘永定; 徐爱华; 李敦海; 沈银武

    2011-01-01

    Biodiesel,as a renewable energy which is actively promoted around the world,will become the main source of energy in 21st century together with clean unclear power,wind energy and photovoltaic power. The oleaginous microalgaes,which have greater advantages than other biodiesel feedstocks,will be a most potential alternative for producing biodiesel after overcoming the problems of cost and production bottleneck. The development of biodiesel, the superiority of biodiesel derived from oleaginous microalgaes and the main modes of microalgaes commercial cultivation will be discussed in this review.%生物柴油作为目前全世界正积极推进的可再生能源项目,与清洁核能、风能、光伏发电等将成为人类21世纪的主要能源构成.产油微藻作为生产生物柴油的原料与其他原料相比具有较大优势,在解决成本及生产环节的瓶颈问题后,必将成为生物柴油的主要原料来源.文章探讨了生物柴油的研究现状和微藻生物柴油的优势:微藻商业化生产的主要方式:开放式跑道池、管道式光生物反应器的特点;微藻生物柴油产业链的形成及对促进生物柴油产业商业化的影响.

  18. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    OpenAIRE

    Vidyadharani Gopalakrishnan; Dhandapani Ramamurthy

    2014-01-01

    Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AA...

  19. Why Biodiesel is Environmentally Better than Traditional, Fossil-based Diesel: an LCA Approach

    Science.gov (United States)

    Pubule, Jelena; Romagnoli, Francesco; Blumberga, Dagnija

    2011-01-01

    In Latvia, rapeseed methyl ester (RME) is generally considered to have a significant economic potential in the field of biofuels. As investments grow, it is important to evaluate the environmental impacts of this production and to highlight the main sources of these impacts. Nowadays, the share of biofuels in the transport sector in Latvia is attested to have a value of 0.3% (around 75% biodiesel and 25% bioethanol). Biofuel production in Latvia doubled in the last two years: the current total biodiesel production is approximately 64 ktonne/year (year 2009). The aim of this paper is to understand and model the environmental performance of the biodiesel produced from rapeseeds under the local Latvian conditions. Firstly, energy crops were evaluated by assessing their levels of biodiesel productivity. Secondly, the current Latvian climatic conditions and cultivation parameters were taken into account. To conclude, a comparison with the impacts of fossil based diesel was conducted.

  20. Biodiesel Production from Selected Microalgae Strains and Determination of its Properties and Combustion Specific Characteristics

    Directory of Open Access Journals (Sweden)

    N. Kokkinos

    2015-11-01

    Full Text Available Biofuels are gaining importance as significant substitutes for the depleting fossil fuels. Recent focus is on microalgae as the third generation feedstock. In the present research work, two indigenous fresh water and two marine Chlorophyte strains have been cultivated successfully under laboratory conditions using commercial fertilizer (Nutrileaf 30-10-10, initial concentration=70 g/m3 as nutrient source. Gas chromatographic analysis data showed that microalgae biodiesel obtained from Chlorophyte strains biomass were composed of fatty acid methyl esters. The produced microalgae biodiesel achieved a range of 2.2 - 10.6 % total lipid content and an unsaturated FAME content between 49 mol% and 59 mol%. The iodine value, the cetane number, the cold filter plugging point, the oxidative stability as well as combustion specific characteristics of the final biodiesels were determined based on the compositions of the four microalgae strains. The calculated biodiesel properties compared then with the corresponding properties of biodiesel from known vegetable oils, from other algae strains and with the specifications in the EU (EN 14214 and US (ASTM D6751 standards. The derived biodiesels from indigenous Chlorophyte algae were significantly comparable in quality with other biodiesels.

  1. Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy

    OpenAIRE

    Ho, Shih-Hsin; Nakanishi, Akihito; Ye, Xiaoting; Chang, Jo-Shu; Hara, Kiyotaka; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-01-01

    Background Biodiesel production from marine microalgae has received much attention as microalgae can be cultivated on non-arable land without the use of potable water, and with the additional benefits of mitigating CO2 emissions and yielding biomass. However, there is still a lack of effective operational strategies to promote lipid accumulation in marine microalgae, which are suitable for making biodiesel since they are mainly composed of saturated and monounsaturated fatty acids. Moreover, ...

  2. Biodiesel Production from Non-Edible Beauty Leaf (Calophyllum inophyllum) Oil: Process Optimization Using Response Surface Methodology (RSM)

    OpenAIRE

    Mohammad I. Jahirul; Wenyong Koh; Richard J. Brown; Wijitha Senadeera; Ian O'Hara; Lalehvash Moghaddam

    2014-01-01

    In recent years, the beauty leaf plant (Calophyllum Inophyllum) is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA) content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beau...

  3. Proceedings of the 2008 marine biodiesel symposium

    International Nuclear Information System (INIS)

    In addition to producing lower hydrocarbon emissions, marine biodiesel is biodegradable and does not harm fish. This symposium was held to discuss current marine biodiesel applications and examine methods of increasing the use of biodiesel in marine environments in British Columbia (BC). Biofuel policies and mandates in the province were reviewed, and methods of expanding the biodiesel market were explored. Updates on the use of biodiesel in ferries, tugboats, and smaller marine diesel engine applications were provided. Biodiesel projects in the United States were discussed. The environmental impacts of marine biodiesel were evaluated, and federal policies and standards for biodiesel were also outlined. The symposium was divided into the following 5 main sessions: (1) policy, (2) overviews, (3) using biodiesel in marine engines, (4) biodiesel in larger marine vessels, and (5) biodiesel quality and environmental considerations. The conference featured 13 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs

  4. Impact of residual glycerides on viscosity of biodiesel (waste and rapeseed oil blends

    Directory of Open Access Journals (Sweden)

    Z. Jurac

    2013-08-01

    Full Text Available Purpose: Biodiesel, mixture of fatty acid methyl esters is a biodegradable alternative fuel that is obtained from renewable sources as a vegetable oils or animal fats. Use of waste cooking oils reduce the cost of raw materials for biodiesel production and also reduces the environment pollution. Moreover, pure edible vegetable oils for biodiesel production have an ethical significance because food is used to produce fuel. The aim of this work is a presentation of effects that residual glycerides have on kinematic viscosity values of biodiesels produced from the various waste cooking oils with crude rapeseed oil blends. Kinematic viscosity is one of the most important property of biodiesel and it directly depend on raw material composition. Design/methodology/approach: This article includes analysis and estimation of the effect that residual mono-, di- and triglycerides which remain in the biodiesels after transesterification processes have on their kinematic viscosities. Results obtained for biodiesel produced from various percentages of waste cooking oils and crude rapeseed oil blends were presented. Findings: Investigation during biodiesels production showed that the biggest impact on biodiesel kinematic viscosity have monoglycerides, diglycerides, and then at the end triglycerides. From these follows that kinematic viscosity of biodiesel is not a function only of the conversion (transesterification process but also of the residual incompletely reacted glycerides which amount depend of the waste cooking oils percentage in raw material blends used for biodiesels production. Research limitations/implications: These presented results are the closed solution considering the used raw materials. Quality and chemical composition of the used waste cooking oils are quite different from each other, which affects the quality of the produced biodiesels. Because of that these results should be an indicator for the further testing and improvements to achieve

  5. National Program of Biodiesel Production and Use (PNPB) and the familiar agriculture in Northeast, Brazil; Programa Nacional de Producao e Uso de Biodiesel (PNPB) e a agricultura familiar no Nordeste

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ana Paula Lopes de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Programa de Pos-Graduacao em Economia], email: anapaulajppb@yahoo.com.br; Moreira, Ivan Targino [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Economia], email: ivantargino@bol.com.br

    2008-07-01

    The Brazilian countryside presents serious problems, including the emptying and the impoverishment of its population. In 2006, it was launched the National Program of Biodiesel Production and Use (PNPB) which main aim is to increase the contribution of renewable sources in the national energy matrix. Secondarily, the Program aims at the reinforcement of the family agriculture in the semi-arid region because of its integration in the biodiesel productive chain. In this particular context, the PNPB emphasizes the use of castor because it is a plant accustomed to semi-arid regions as well as is viable for cultivation in small productive units. The main purpose of this paper is to study the potential impacts of the PNPB in Northeast family agriculture. The research is bibliographical and based on articles, periodicals, reports of the Ministry of Agriculture, Ministry of the Science and Technology and the Ministry of Mines and Energy and on papers available in Internet. Beyond the bibliographical research, secondary figures from the Municipal Agricultural Production (PAM) and from agriculture censuses are used. The results show that about 100.000 agriculture families can be included in the PNPB. However, this possibility has not been shown as the main trend since the production of biodiesel is strongly using soybeans as raw material (87%) while other plants (i.e. sunflower, palm, castor etc.) are suitable for this production. It was found that the use of the castor, the main and immediate alternative to the family agriculture in semi-arid Brazilian Northeast, faces problems as the significant low production in recent years. (author)

  6. Effects of monoacylglycerols on the cold flow properties of biodiesel

    Science.gov (United States)

    Biodiesel is a renewable alternative fuel made from plant oils and animal fats that may be burned in a compression-ignition (diesel) engine. It is composed of mono-alkyl esters of fatty acid esters made from plant oils or animal fats mainly by transesterification with methanol or ethanol. This proce...

  7. Superstructure-based optimization of biorefinery networks: Production of biodiesel

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Orsi, Albert; Gani, Rafiqul

    2015-01-01

    through a practical case study for the production biodiesel from a variety of feedstock. The different biorefinery processing alternatives are represented in a superstructure and the associated data is collected and stored in a database. Once a specific biorefinery synthesis problem is formulated...

  8. Soybean Oil: Powering a High School Investigation of Biodiesel

    Science.gov (United States)

    De La Rosa, Paul; Azurin, Katherine A.; Page, Michael F. Z.

    2014-01-01

    This laboratory investigation challenges students to synthesize, analyze, and compare viable alternative fuels to Diesel No. 2 using a renewable resource, as well as readily available reagents and supplies. During the experiment, students synthesized biodiesel from soybean oil in an average percent yield of 83.8 ± 6.3%. They then prepared fuel…

  9. Preparation of Jojoba Oil Ester Derivatives for Biodiesel Evaluation

    Science.gov (United States)

    As a result of the increase in commodity vegetable oil prices, it is imperative that non-food oils should be considered as alternative feedstocks for biodiesel production. Jojoba oil is unusual in that it is comprised of wax esters as opposed to the triglycerides found in typical vegetable oils. A...

  10. Applications of 1H-NMR to Biodiesel Research

    Science.gov (United States)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, or used cooking oils. It is produced by reacting these materials with an alcohol in the presence of a catalyst to give the corresponding mono-alkyl esters. 1H-NMR is a routine analytical method that has been used for...

  11. PRODUCTION OF BIODIESEL FROM ALGAE APPLIED TO AGRICULTURAL WASTEWATER TREATMENT

    Science.gov (United States)

    With increasing dependence on foreign oil, escalating energy prices, and persistent air and water pollution associated with energy production, the U.S. is in need of a clean-burning renewable energy sources. Biodiesel is a rapidly expanding alternative fuel that has the po...

  12. Catalyst systems in the production of biodiesel from residual oil; Sistemas cataliticos na producao de biodiesel por meio de oleo residual

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Carlos Alexandre de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2006-07-01

    The vegetable oils and fat animals appear like an alternative for substitution the diesel oil in ignition engines for compression. Submitting the oil on transesterification reaction, we obtain a fuel with same characteristics as diesel, called biodiesel. Generally, 85 per cent of biodiesel cost is from the oil production. Through transesterification vegetable oil can be transformed in a mixture of esters of fatty acids. The residual oil from frying has been used as a possibility of raw materials of biodiesel, due to its easy acquisition and the viability of not being discarded as waste. (author)

  13. Snohomish County Biodiesel Project

    Energy Technology Data Exchange (ETDEWEB)

    Terrill Chang; Deanna Carveth

    2010-02-01

    Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to “grow” this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

  14. A bio-economic approach to analyze the role of alternative seeding-harvesting schedules, water quality, stocking density and duration of cultivation in semi-intensive production of shrimp in Mexico

    Directory of Open Access Journals (Sweden)

    Margarita Estrada-Pérez

    2015-07-01

    Full Text Available We used a bio-economic model to analyze the role that alternative seeding-harvesting schedules, temperature, dissolved oxygen, stocking density, and duration of cultivation play in the economic performance of semi-intensive shrimp cultivation in Mexico. The highest production was predicted for the May-August schedule (1130-2300 kg ha-1, while the lowest yields were obtained for the March-June schedule (949-1300 kg ha-1. The highest net revenues were projected for the August-November schedule (US$354-1444 ha-1, while the lowest was projected for the May-August schedule (US$330-923 ha-1. The highest annual net revenues were predicted for the combination of the March-June and August-November schedules (US$1432-2562 ha-1. Sensitivity analysis indicated temperature and dissolved oxygen were the most important factors determining net revenues in March-June schedule. For the May-August and August-November schedules, stocking density was the most important factor. Duration of cultivation was the least sensitive variable. Break-even production analysis confirmed that the combination of the March-June and August-November schedules were more efficient from an economic perspective. We recommend test some ponds with higher stocking density in the March-June and August-November schedules, and in the latter case, seeding in June or July rather than August.

  15. Physical-chemistry characterization of oil and biodiesel from Crambe abyssinica Hochst; Caracterizacao fisico-quimica do oleo e do biodiesel de DE Crambe abyssinica Hochst

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Samir Paulo; Biaggioni, Marco Antonio Martin; Silva, Paulo Roberto Arbex; Seki, Andre Satoshi; Saath, Reni [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas], E-mail: jasper@fca.unesp.br

    2010-07-01

    Currently, the production of biodiesel in the world is growing so rapidly, this interest and demand for biodiesel promote an increase in demand for raw materials, or lipids. Biodiesel is a substitute for diesel oil obtained by transesterification, acid or base, of the lipids present in oils and fats. The Crambe abyssinica Hochst is species plant that has attracted interest of Brazilian producers due to oil content, rusticity and mechanized cultivation, mainly as a crop of winter it becomes an option for most farmers in this period. This study aimed to characterize physical-chemical oil and biodiesel from Crambe abyssinica Hochst, in accordance with Resolution n. 42 of the ANP. The analysis of fatty acids of oil crambe showed high concentration of unsaturated fatty acids, which may not be suitable for the use of biodiesel in very cold regions, where it is used pure or in mixtures with diesel in large proportions. The biodiesel produced from Crambe abyssinica Hochst be revealed within the standards established by the National Agency of Petroleum, Natural Gas and Biofuels. (author)

  16. Biodiesel production from Jatropha curcas oil

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2010-12-15

    In view of the fast depletion of fossil fuel, the search for alternative fuels has become inevitable, looking at huge demand of diesel for transportation sector, captive power generation and agricultural sector, the biodiesel is being viewed a substitute of diesel. The vegetable oils, fats, grease are the source of feedstocks for the production of biodiesel. Significant work has been reported on the kinetics of transesterification of edible vegetable oils but little work is reported on non-edible oils. Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstocks for biodiesel production in India and limited work is reported on the kinetics of transesterification of high FFA containing oil. The present study reports a review of kinetics of biodiesel production. The paper also reveals the results of kinetics study of two-step acid-base catalyzed transesterification process carried out at pre-determined optimum temperature of 65 and 50 C for esterification and transesterification process, respectively, under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H{sub 2}SO{sub 4} and NaOH and 400 rpm of stirring. The yield of methyl ester (ME) has been used to study the effect of different parameters. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. This is the first study of its kind dealing with simplified kinetics of two-step acid-base catalyzed transesterification process carried at optimum temperature of both the steps which took about 6 h for complete conversion of TG to ME. (author)

  17. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    Science.gov (United States)

    Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.

    2016-04-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.

  18. A review on novel processes of biodiesel production from waste cooking oil

    International Nuclear Information System (INIS)

    Fossil fuel depletion, environmental concerns, and steep hikes in the price of fossil fuels are driving scientists to search for alternative fuels. The characteristics of biodiesel have made the pursuit of high quality biodiesel production attractive. Utilization of waste cooking oil is a key component in reducing biodiesel production costs up to 60–90%. Researchers have used various types of homogeneous and heterogeneous catalyzed transesterification reaction for biodiesel production. Meanwhile, the effect of novel processes such as membrane reactor, reactive distillation column, reactive absorption, ultrasonic and microwave irradiation significantly influenced the final conversion, yield and in particular, the quality of product. This article attempts to cover all possible techniques in production of biodiesel from waste cooking oil

  19. Effects of different chemical additives on biodiesel fuel properties and engine performance. A comparison review

    Directory of Open Access Journals (Sweden)

    Ali Obed Majeed

    2016-01-01

    Full Text Available Biodiesel fuel can be used as an alternative to mineral diesel, its blend up to 20% used as a commercial fuel for the existing diesel engine in many countries. However, at high blending ratio, the fuel properties are worsening. The feasibility of pure biodiesel and blended fuel at high blending ratio using different chemical additives has been reviewed in this study. The results obtained by different researchers were analysed to evaluate the fuel properties trend and engine performance and emissions with different chemical additives. It found that, variety of chemical additives can be utilised with biodiesel fuel to improve the fuel properties. Furthermore, the chemical additives usage in biodiesel is inseparable both for improving the cold flow properties and for better engine performance and emission control. Therefore, research is needed to develop biodiesel specific additives that can be adopted to improve the fuel properties and achieve best engine performance at lower exhaust emission effects.

  20. Potency of Microalgae as Biodiesel Source in Indonesia

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-04-01

    Full Text Available Within 20 years, Indonesia should find another energy alternative to substitutecurrent fossil oil. Current use of renewable energy is only 5% and need to be improved up to 17%of our energy mix program. Even though, most of the area in Indonesia is covered by sea, howeverthe utilization of microalgae as biofuel production is still limited. The biodiesel from currentsources (Jatropha, palm oil, and sorghum is still not able to cover all the needs if the fossil oilcannot be explored anymore. In this paper, the potency of microalgae in Indonesia was analysed asthe new potential of energy (biodiesel sources.

  1. Potency of Microalgae as Biodiesel Source in Indonesia

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-02-01

    Full Text Available Within 20 years, Indonesia should find another energy alternative to substitute current fossil oil. Current use of renewable energy is only 5% and need to be improved up to 17% of our energy mix program. Even though, most of the area in Indonesia is covered by sea, however the utilization of microalgae as biofuel production is still limited. The biodiesel from current sources (Jatropha, palm oil, and sorghum is still not able to cover all the needs if the fossil oil cannot be explored anymore. In this paper, the potency of microalgae in Indonesia was analysed as the new potential of energy (biodiesel sources.

  2. Model Feed for Hydrotreating of Fat for Biodiesel Production

    DEFF Research Database (Denmark)

    Biodiesel production by the transesterification of oils and fats with an alcohol to fatty acid alkyl esters is rapidly increasing worldwide. Plant oils are usually suited for transesterification, but feedstocks from waste products like trap greases and abattoir wastes are difficult to react due...... resulted in lower conversions and a much higher degree of hydrogenation than with the Pt catalyst. This protocol represents a facile method of studying hydrotreating of waste fats and oils for biodiesel production, which may be a viable alternative to current dominating transesterification technology. 1...

  3. Enzymatic Production of FAME Biodiesel with Soluble Lipases

    DEFF Research Database (Denmark)

    T. Gundersen, Maria; Heltborg, Carsten Kirstejn; Yang, V;

    Biodiesel is a viable alternative to fossil fuels, and biocatalysis is gaining interest as a greener process. We focus on converting oils to Fatty Acid Methyl Ester (FAME) using soluble lipases, which offer an advantage compared to immobilized enzymes by cost efficiency and ease of implementation...... the defined operating space concerning: temperature, water content, initial methanol concentration and enzyme content. The identified optimum range was experimentally evaluated, and model findings were confirmed. Another barrier in lipase use in biodiesel production is the higher melting point (m...

  4. Pembuatan Katalis Padat ZrO2/Al2O3 untuk Produksi Biodiesel dari Minyak Jarak

    Directory of Open Access Journals (Sweden)

    Yanna Syamsuddin

    2010-06-01

    Full Text Available Biodiesel is one of the alternative energy to replace petroleum diesel. Biodiesel is produced by transesterification of vegetable oil into alkyl ester and glycerol as by-product. The vegetable oil based put biodiesel as a renewable and environmentally friend energy source. Research on making of solid catalyst ZrO2/Al2O3 for biodiesel production from jatropha oil has been done. The catalysts were prepared by impregnation method with different amount of Zr (2, 5, 15, and 20% and the components were characterized by using XRD. Transesterification reaction was done by reacting jatropha oil with methanol and catalyst with the ratio of oil to methanol of 1:6, reaction temperature of 60oC, and reaction time of 3 hours. Biodiesel produced were analyzed for their yield and composition using GC-MS. The biodiesel products were also characterized for their viscosity, density, acidic and saponification value. Characterization of catalysts showed that components of synthesized ZrO2/Al2O3 were ZrO, ZrO2, and Al2O3. The highest yield of biodiesel produced was resulted from transesterification reaction using catalyst with 2% Zr. GC-MS results showed that methyl esters of biodiesel produced confirmed with fatty acids in jatropha oil with methyl oleic is the highest. Characteristic of the biodiesel has met the quality standard of ASTM, prEN and SNI. Keywords: biodiesel, katalis, minyak jarak, ZrO2/Al2O3

  5. Techno-Economic Evaluation of Biodiesel Production from Waste Cooking Oil—A Case Study of Hong Kong

    Directory of Open Access Journals (Sweden)

    Sanjib Kumar Karmee

    2015-02-01

    Full Text Available Fossil fuel shortage is a major challenge worldwide. Therefore, research is currently underway to investigate potential renewable energy sources. Biodiesel is one of the major renewable energy sources that can be obtained from oils and fats by transesterification. However, biodiesel obtained from vegetable oils as feedstock is expensive. Thus, an alternative and inexpensive feedstock such as waste cooking oil (WCO can be used as feedstock for biodiesel production. In this project, techno-economic analyses were performed on the biodiesel production in Hong Kong using WCO as a feedstock. Three different catalysts such as acid, base, and lipase were evaluated for the biodiesel production from WCO. These economic analyses were then compared to determine the most cost-effective method for the biodiesel production. The internal rate of return (IRR sensitivity analyses on the WCO price and biodiesel price variation are performed. Acid was found to be the most cost-effective catalyst for the biodiesel production; whereas, lipase was the most expensive catalyst for biodiesel production. In the IRR sensitivity analyses, the acid catalyst can also acquire acceptable IRR despite the variation of the WCO and biodiesel prices.

  6. Prediction of class membership of biodiesels using chemometrics.

    Science.gov (United States)

    Mustafa, Zylia; Milina, Rumyana; Simeonova, Pavlina A; Tsakovski, Stefan L; Simeonov, Vasil D

    2015-01-01

    Recently, serious scientific and technological attention is paid to creation of alternative energy sources, including biofuels. The assessment of the quality of the biofuels produced and of the raw materials needed for the production technology is an important scientific challenge. One of the major sources for biodiesel production is plant oils material (sunflower, rapeseed, palm, soya etc.). Since plants are complex system from the biota it is not easy to find specific chemical components responsible for their ability to serve as biodiesels. The characterization and classification of plant sources as biofuel material could be reliably estimated only by the use of multivariate statistical approaches (chemometrics). The chemometric expertise makes it possible not only to classify different biofuel sources into similarity classes but also to predict the membership of unknown by origin chemically analyzed samples to already existing classes. The present study deals with the prediction of the class membership of several unknown by origin samples, which are included in a large data set with FAME profiles of biodiesel plant sources. Using a data set from chromatographic analysis of fatty acid methyl esters profiles (FAME) of different plant biodiesel sources and applying the chemometric technique know as partial least squares-discriminant analysis (PLS - DA) a pattern recognition procedure is developed to: I. Model classes of similarity of biodiesel plant sources using their FAME profiles not taking into account the samples with unknown origin; II. Classify correctly the samples with unknown origin to the previously defined classes of biodiesel sources (palm oil, soybean oil, peanut oil, rapeseed oil, sunflower oil and maize oil). The prediction is successfully achieved for all samples with previously unknown origin. This pattern recognition approach is applied for the first time in the field of biodiesel classification and modeling tasks. PMID:25438133

  7. Prospects of biodiesel from Jatropha in India: A review

    International Nuclear Information System (INIS)

    The increasing industrialization and modernization of the world has to a steep rise for the demand of petroleum products. Economic development in developing countries has led to huge increase in the energy demand. In India, the energy demand is increasing at a rate of 6.5% per annum. The crude oil demand of the country is met by import of about 80%. Thus the energy security has become a key issue for the nation as a whole. Petroleum-based fuels are limited. The finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these reserves are facing foreign exchange crises, mainly due to the import of crude oil. Hence it is necessary to look forward for alternative fuels, which can be produced from feedstocks available within the country. Biodiesel, an ecofriendly and renewable fuel substitute for diesel has been getting the attention of researchers/scientists of all over the world. The R and D has indicated that up to B20, there is no need of modification and little work is available related to suitability and sustainability of biodiesel production from Jatropha as non-edible oil sources. In addition, the use of vegetable oil as fuel is less polluting than petroleum fuels. The basic problem with biodiesel is that it is more prone to oxidation resulting in the increase in viscosity of biodiesel with respect to time which in turn leads to piston sticking, gum formation and fuel atomization problems. The report is an attempt to present the prevailing fossil fuel scenario with respect to petroleum diesel, fuel properties of biodiesel resources for biodiesel production, processes for its production, purification, etc. Lastly, an introduction of stability of biodiesel will also be presented. (author)

  8. Particle emissions from microalgae biodiesel combustion and their relative oxidative potential.

    Science.gov (United States)

    Rahman, M M; Stevanovic, S; Islam, M A; Heimann, K; Nabi, M N; Thomas, G; Feng, B; Brown, R J; Ristovski, Z D

    2015-09-01

    Microalgae are considered to be one of the most viable biodiesel feedstocks for the future due to their potential for providing economical, sustainable and cleaner alternatives to petroleum diesel. This study investigated the particle emissions from a commercially cultured microalgae and higher plant biodiesels at different blending ratios. With a high amount of long carbon chain lengths fatty acid methyl esters (C20 to C22), the microalgal biodiesel used had a vastly different average carbon chain length and level of unsaturation to conventional biodiesel, which significantly influenced particle emissions. Smaller blend percentages showed a larger reduction in particle emission than blend percentages of over 20%. This was due to the formation of a significant nucleation mode for the higher blends. In addition measurements of reactive oxygen species (ROS), showed that the oxidative potential of particles emitted from the microalgal biodiesel combustion were lower than that of regular diesel. Biodiesel oxygen content was less effective in suppressing particle emissions for biodiesels containing a high amount of polyunsaturated C20-C22 fatty acid methyl esters and generated significantly increased nucleation mode particle emissions. The observed increase in nucleation mode particle emission is postulated to be caused by very low volatility, high boiling point and high density, viscosity and surface tension of the microalgal biodiesel tested here. Therefore, in order to achieve similar PM (particulate matter) emission benefits for microalgal biodiesel likewise to conventional biodiesel, fatty acid methyl esters (FAMEs) with high amounts of polyunsaturated long-chain fatty acids (≥C20) may not be desirable in microalgal biodiesel composition. PMID:26238214

  9. The emergence of the biodiesel industry in Brazil: Current figures and future prospects

    International Nuclear Information System (INIS)

    The aim of the present paper is to characterize and analyze the emergence of the biodiesel industry in Brazil, and provide an assessment of the extent to which the goals established by the National Biodiesel Production and Usage Program have been reached. In relation to the goal of including biodiesel within the Brazilian energy matrix, the program can be seen to be responding dynamically and ahead of schedule. In 2010, the B5 blend was already part of the diesel consumed in Brazil, with 81% of the biodiesel coming from soybean oil and 14% from beef tallow. By contrast, the plans to diversify the feedstocks used to produce biodiesel and improve production in the poorest regions of Brazil have failed to prosper. Regarding the goal of fostering social inclusion by encouraging the participation of family-based farming, this has been partially achieved. Finally, the goal of cost-efficiently producing biodiesel is far from being achieved. The economic feasibility of the production and use of biodiesel in Brazil can be questioned since it is still strongly supported by tax incentives and production and marketing subsidies. - Highlights: ► This paper examines the emergence of the biodiesel industry in Brazil. ► Biodiesel produced from soybean in large plants represents 80% of total production. ► Soybean-based biodiesel costs 30% more than the most economical alternatives. ► The production and trade of biodiesel in Brazil are highly subsidized. ► Feedstock diversification and family farming integration goals have so far failed.

  10. Effects of fossil diesel and biodiesel blends on the performances and emissions of agricultural tractor engines

    Directory of Open Access Journals (Sweden)

    Tomić Milan D.

    2013-01-01

    Full Text Available Rapid growth in the energy consumption has conditioned the need for discovering the alternative energy resources which would be adapted to the existing engine constructions and which would satisfy the additional criteria related to the renewability, ecology and reliability of use. Introduction of biodiesel has been the focus of attention over the last ten years. The aim of this research is to investigate the influence of biodiesel on the performances and exhaust gas emissions of medium power agricultural tractor engines (37-66 kW. The reason for the selection of this category is that those types of tractors are most frequently used in agriculture. In this research biodiesel produced from sunflower oil was blended with fossil diesel. Biodiesel, fossil diesel and fossil diesel blends with 15, 25, 50 and 75%v/v biodiesel were tested for their influence on the engine performances and emissions. The testing was performed on a four-cylinder diesel engine with 48 kW rated power. The experimental research on the engine performances was conducted in compliance with OECD test CODE 2, and the exhaust gas emissions were tested according to the ISO 8178-4, C1. The use of biodiesel and fossil diesel blends reduced the engine power with the increase of biodiesel share in the blend. However, the exception was the blend with 15%v/v biodiesel which induced a slight increase in the engine power. Depending on the share of biodiesel in the blend all blends fuels showed increased specific fuel consumption compared to the fossil diesel. Thermal efficiency increased as a result of more complete combustion of biodiesel and fossil diesel blends. The exhaust gas emissions implied that the addition of biodiesel reduced the content of CO2 and CO, as well as the temperature of exhaust gases, but it increased the emission of NOx.

  11. Biodiesel lubricity and other properties

    Science.gov (United States)

    Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, is an “alternative” diesel fuel that is becoming accepted in a steadily growing number of countries worldwide. Since the source of biodiesel varies with the location, and other sources such as recycled oils are continuousl...

  12. The State High Biodiesel Project

    Science.gov (United States)

    Heasley, Paul L.; Van Der Sluys, William G.

    2009-01-01

    Through a collaborative project in Pennsylvania, high school students developed a method for converting batches of their cafeteria's waste fryer oil into biodiesel using a 190 L (50 gal) reactor. While the biodiesel is used to supplement the school district's heating and transportation energy needs, the byproduct--glycerol--is used to make hand…

  13. Predicting various biodiesel fuel properties

    Science.gov (United States)

    Several essential fuel properties of biodiesel are largely determined by the properties of the fatty esters which are its main components. These include cetane number, kinematic viscosity, oxidative stability, and cold flow which are contained in almost all biodiesel standards but also other propert...

  14. Determination of antioxidant content in biodiesel by fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Keurison F.; Caires, Anderson R.L. [Universidade Federal da Grande Dourados, MS (Brazil). Grupo de Optica Aplicada; Oliveira, Samuel L. [Universidade Federal de Mato Grosso do Sul (UFMS), MS (Brazil). Grupo de Optica e Fotonica

    2011-07-01

    Full text. Biodiesel is an alternative fuel composed by mono-alkyl esters obtained from vegetable oils or animal fats. Due to its chemical structure, biodiesel is highly susceptible to oxidation which leads to formation of insoluble gums and sediments that can block the filter system of fuel injection. Biodiesel made from vegetable oils typically has a small amount of natural antioxidants so that it is necessary to add synthetic antioxidants to enhance its stability and retain their properties for a longer period. The main antioxidants are synthetic phenolic compounds such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) as well as natural antioxidants as tocopherols. The fluorescence spectroscopy has been applied for determination of phenolic compounds in oils. Here, a method based on fluorescence is proposed to quantify the BHA and TBHQ antioxidant concentration in biodiesel produced from sunflower and soybean oils. Soybean and sunflower biodiesel were obtained by transesterification of fatty alcohol in the presence of NaOH as catalyst. The reactions were carried out in the molar ratio of 6:1 methanol/oil. After the production and purification, biodiesel samples were stored. Biodiesel samples with BHA and TBHQ concentrations from 1000 to 8000 ppm (m/m) were pre- pared. These samples were diluted in ethanol (95%) in order to measure the fluorescence spectra. Fluorescence and excitation spectra of the solutions were recorded at room temperature using a spectrofluorimeter. The emission spectra were obtained under excitation at about 310nm and fluorescence in the 320-800nm range was evaluated. Biodiesel samples without BHA and TBHQ showed fluorescence band at about 420nm, which can be attributed to tocopherols inherent to the vegetable oils used in the biodiesel production. The addition of BHA and/or TBHQ is responsible for the appearance of a fluorescence band around 330nm. It was verified that the fluorescence

  15. Exploiting the USDA Castor Bean and Peanut Germplasm Collection as a Potential Energy Crop for Biodiesel Production

    Science.gov (United States)

    Biodiesel (fatty esters) produced from seed oils or animal fats by transesterification is one of the most promising alternative renewable fuels in the future. In contrast to petroleum diesel, the utilization of biodiesel has several main advantages which are environmentally friendly, agriculturally...

  16. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.

    Science.gov (United States)

    Olguín, Eugenia J

    2012-01-01

    , are highlighted as very relevant fields of research. The species selection may depend on various factors, such as the biomass and lipid productivity of each strain, the characteristics of the wastewater, the original habitat of the strain and the climatic conditions in the treatment plant, among others. Some alternative technologies aimed at harvesting biomass at a low cost, such as cell immobilization, biofilm formation, flocculation and bio-flocculation, are also reviewed. Finally, a Biorefinery design is presented that integrates the treatment of municipal wastewater with the recovery of oleaginous microalgae, together with the use of seawater supplemented with anaerobically digested piggery waste for cultivating Arthrospira (Spirulina) and producing biogas, biodiesel, hydrogen and other high added value products. Such strategies offer new opportunities for the cost-effective and competitive production of biofuels along with valuable non-fuel products. PMID:22609182

  17. Performance of compression ignition engine with mahua (Madhuca indica) biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    H. Raheman; S.V. Ghadge [Indian Institute of Technology, Kharagpur (India). Agricultural and Food Engineering Department

    2007-11-15

    The performance of biodiesel obtained from mahua oil and its blend with high speed diesel in a Ricardo E6 engine has been presented in this paper together with some of its fuel properties. These properties were found to be comparable to diesel and confirming to both the American and European standards. Engine performance (brake specific fuel consumption, brake thermal efficiency and exhaust gas temperature) and emissions (CO, smoke density and NOx) were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The reductions in exhaust emissions and brake specific fuel consumption together with increase brake power, brake thermal efficiency made the blend of biodiesel (B20) a suitable alternative fuel for diesel and thus could help in controlling air pollution. 21 refs., 6 figs., 3 tabs.

  18. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  19. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Directory of Open Access Journals (Sweden)

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  20. Brazilian Biodiesel Policy: Social and environmental considerations of sustainability

    International Nuclear Information System (INIS)

    The objective of this article is to analyze the Brazilian Biodiesel Policy (PNPB) and to identify the social and environmental aspects of sustainability that are present or absent within it. Biofuels, namely alcohol and biodiesel, have been increasing in popularity on a global scale due to their potential as alternative and renewable energy sources. Brazil, a vast country blessed with abundant natural resources and agricultural land, has emerged as a global leader in the production of biofuels. This article includes a brief analysis of the concept of sustainable development, which served as a basis to evaluate the Policy documents. Although PNPB's implementation, which began in 2004, is still within its initial stage, it was possible to identify and elaborate on the environmental and social aspects of the Policy, namely: the social inclusion of family farmers; regional development; food security; influencing the carbon and energy balance of biodiesel; promoting sustainable agricultural practices and a diversity of feedstock. (author)

  1. Escherichia coli as a fatty acid and biodiesel factory: current challenges and future directions.

    Science.gov (United States)

    Rahman, Ziaur; Rashid, Naim; Nawab, Javed; Ilyas, Muhammad; Sung, Bong Hyun; Kim, Sun Chang

    2016-06-01

    Biodiesel has received widespread attention as a sustainable, environment-friendly, and alternative source of energy. It can be derived from plant, animal, and microbial organisms in the form of vegetable oil, fats, and lipids, respectively. However, biodiesel production from such sources is not economically feasible due to extensive downstream processes, such as trans-esterification and purification. To obtain cost-effective biodiesel, these bottlenecks need to be overcome. Escherichia coli, a model microorganism, has the potential to produce biodiesel directly from ligno-cellulosic sugars, bypassing trans-esterification. In this process, E. coli is engineered to produce biodiesel using metabolic engineering technology. The entire process of biodiesel production is carried out in a single microbial cell, bypassing the expensive downstream processing steps. This review focuses mainly on production of fatty acid and biodiesel in E. coli using metabolic engineering approaches. In the first part, we describe fatty acid biosynthesis in E. coli. In the second half, we discuss bottlenecks and strategies to enhance the production yield. A complete understanding of current developments in E. coli-based biodiesel production and pathway optimization strategies would reduce production costs for biofuels and plant-derived chemicals. PMID:26961532

  2. Degradation of physical properties of different elastomers upon exposure to palm biodiesel

    International Nuclear Information System (INIS)

    Biodiesel, as an alternative fuel, is gradually receiving more popularity for use in internal combustion engines. However questions continue to arise with regard to its compatibility with elastomeric materials. The present work aims to investigate the comparative degradation of physical properties for different elastomers [e.g. ethylene propylene diene monomer (EPDM), silicone rubber (SR), polychloroprene (CR), polytetrafluroethylene (PTFE) and nitrile rubber (NBR)] upon exposure to diesel and palm biodiesel. Static immersion tests in B0(diesel), B10 (10% biodiesel in diesel), B20, B50 and B100(biodiesel) were carried out at room temperature (25 oC) for 1000 h. Different physical properties like, changes in weight and volume, hardness and tensile strength were measured at every 250 h of immersion time. Compositional changes in biodiesel due to exposure of different elastomers were investigated by Gas chromatography mass spectroscopy (GCMS). The overall sequence of compatible elastomers in palm biodiesel is found to be PTFE > SR > NBR > EPDM > CR. -- Research highlights: → Biodiesel and its blends swelled polychloroprene (CR) and nitrile rubber (NBR) to a greater extent than did diesel. → Although PTFE seems to be the most compatible elastomer among those tested, it undergoes a slight reduction of main constituents. →The overall sequence of compatible elastomers in palm biodiesel is PTFE > SR > NBR > EPDM > CR.

  3. Jatropha-Palm biodiesel blends: An optimum mix for Asia

    Energy Technology Data Exchange (ETDEWEB)

    Rakesh Sarin; Meeta Sharma; S. Sinharay; R.K. Malhotra [Indian Oil Corporation Ltd., Faridabad (India). R& amp; D Centre

    2007-07-15

    Biodiesel, an alternative renewable fuel made from transesterification of vegetable oil with alcohol, is becoming more readily available for use in blends with conventional diesel fuel for transportation applications. Soybean and Rapeseed are common feedstocks for Biodiesel production in USA and Europe, respectively. However, Asian countries are not self sufficient in edible oil and exploring non-edible seed oils, like Jatropha and Pongamia as biodiesel raw materials. However there is a gestation period of few years before these crops start yielding seeds and oil. On the other hand, South Eastern countries like Malaysia and Thailand have surplus Palm crops. But due to substantial amount of saturated fats in Palm, the Palm biodiesel has poor low temperature properties. In order to exploit the proximity of South Asian and South-East Asian countries, blends of Jatropha and Palm biodiesel have been examined to study their physico-chemical properties and to get an optimum mix of them to achieve better low temperature properties, with improved oxidation stability. 15 refs., 6 figs., 2t abs.

  4. Environmentally benign production of biodiesel using heterogeneous catalysts.

    Science.gov (United States)

    Hara, Michikazu

    2009-01-01

    Fuelling the future: The production of esters of higher fatty acids from plant materials is of great interest for the manufacture of biodiesel. Heterogeneous catalysts can provide new routes for the environmentally benign production of biodiesel. Particulate heterogeneous catalysts can be readily separated from products following reaction allowing the catalyst to be reused, generating less waste, and consuming less energy. Diesel engines are simple and powerful, and exhibit many advantages in energy efficiency and cost. Therefore, the production of higher fatty acid esters from plant materials has become of interest in recent years for the manufacture of biodiesel, a clean-burning alternative fuel. The industrial production of biodiesel mostly proceeds in the presence of "soluble" catalysts such as alkali hydroxides and liquid acids. A considerable amount of energy is required for the purification of products and catalyst separation, and furthermore these catalysts are not reusable. This process results in substantial energy wastage and the production of large amounts of chemical waste. Particulate heterogeneous catalysts can be readily separated from products following reaction, allowing the catalyst to be reused and consuming less energy. This Minireview describes the environmentally benign production of biodiesel using heterogeneous catalysts such as solid bases, acid catalysts, and immobilized enzymes. PMID:19180600

  5. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  6. Microalgae Isolation and Selection for Prospective Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Peer M. Schenk

    2012-06-01

    Full Text Available Biodiesel production from microalgae is being widely developed at different scales as a potential source of renewable energy with both economic and environmental benefits. Although many microalgae species have been identified and isolated for lipid production, there is currently no consensus as to which species provide the highest productivity. Different species are expected to function best at different aquatic, geographical and climatic conditions. In addition, other value-added products are now being considered for commercial production which necessitates the selection of the most capable algae strains suitable for multiple-product algae biorefineries. Here we present and review practical issues of several simple and robust methods for microalgae isolation and selection for traits that maybe most relevant for commercial biodiesel production. A combination of conventional and modern techniques is likely to be the most efficient route from isolation to large-scale cultivation.

  7. Microalgae: the green gold of the future? : large-scale sustainable cultivation of microalgae for the production of bulk commodities

    OpenAIRE

    Wolkers, H.; Barbosa, M.J.; Kleinegris, D.M.M.; Bosma, R.; Wijffels, R.H.; Harmsen, P.F.H.

    2011-01-01

    The cultivation of microalgae can play an important role in environmentalfriendly production of raw materials for biodiesel. In addition, algae offer several other useful materials for the food and chemical industry. This booklet describes the possibilities for economically viable large scale algae cultivation for the production of valuable products and the role of the new algae centre in Wageningen, AlgaePARC.

  8. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    Directory of Open Access Journals (Sweden)

    Vidyadharani Gopalakrishnan

    2014-01-01

    Full Text Available Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM (specific algal medium produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC with oleic acid pure (98% control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae.

  9. Analysis of national Jatropha biodiesel programme in Senegal

    Directory of Open Access Journals (Sweden)

    Emmanuel Kofi Ackom

    2016-06-01

    Full Text Available Growing Jatropha curcas for energy applications in has been established through several initiatives in Senegal. The government of Senegal launched the National Jatropha Programme (NJP in 2006 with the goal of planting 321,000 ha of Jatropha curcas, with an average of 1000 hectares (ha in each rural locality. This paper reviews existing policies with relevance to Jatropha curcas L production in Senegal. It assesses the NJP implementation, identifies potential gaps and provides recommendations with regards to planning, institutional management, regulation, and implementation. The potential of Jatropha and other biodiesel crop options, based on findings from an agro-environmental mapping exercise have been shown. Findings show that prior policies in agricultural and energy sectors had been instrumental in developing the NJP. It highlights significant challenges in the value chain, the implementation of NJP and on the importance of using empirical assessment of evidence to inform on the biodiesel crop type compared to a focus on only one crop, Jatropha. Agro-environmental mapping was identified as useful technique prior to biodiesel cultivation. The work reported here indicates Jatropha having the largest suitability of land areas equating to almost thirty times (30 the original estimations in the NJP followed by Pongamia and sunflower with 6,796,000 ha and 5,298,900 ha respectively. Recommendations are provided suggesting, scientifically sound analysis from agro-environmental mapping to inform on the suitability of areas for Jatropha cultivation and on environmentally, socially and culturally sensitive areas. Policy options have been suggested for environmentally benigned sustained biodiesel activities in Senegal.

  10. Biodiesel Production by Enzymatic Transesterification of Papaya Seed Oil and Rambutan Seed Oil

    Directory of Open Access Journals (Sweden)

    C. S. Wong

    2014-12-01

    Full Text Available Biodiesel production from vegetable oil has gained attention as an alternative fuel to minimize the usage of fossil fuels and reduce greenhouse gases pollution. In Malaysia, oils from local fruit seeds of papaya and rambutan are potential feedstock for biodiesel production due to their high lipid contents and easily available. In the present study, papaya and rambutan seed oils were extracted via soxhlet apparatus using n-hexane and the oil yields were in between 34–40%. The extracted oils were subjected to enzymatic transesterification by the immobilized Candida rugosa lipase as a catalyst under room temperature with varies molar ratios of methanol to oil. The highest biodiesel yield for papaya seed oil and rambutan seed oil was found to be 96% and 89% at methanol-to-oil ratios of 6:1 and 8:1, respectively. Results also showed a higher biodiesel yield using lipase immobilized on the magnetic particles as the heterogeneous catalyst compared to the yield obtained using free enzyme as the homogeneous catalyst. The properties of biodiesel such as density, acid value, iodine value and cetane number were analyzed and found to meet the European Standard of Biodiesel. The study shows that papaya and rambutan seed oils have the potential to be used as alternative feedstock for biodiesel production than the full dependence on palm oil in Malaysia.

  11. Performance and emissions of an engine fuelled with a biodiesel fuel produced from animal fats

    Directory of Open Access Journals (Sweden)

    Taymaz Imdat

    2013-01-01

    Full Text Available Oil reserves which are located around the world are declining day by day, so new alternative energy sources must be invented for engines of internal combustion and compression ignition, so biodiesel that is an alternative fuel source for diesel engines and it is a renewable energy resource. Biodiesel is a fuel made from vegetable oils, animals’ fats and waste oils. In this study, physical and chemical properties of biodiesel were analyzed and matched to the diesel fuel. In the experimental study, biodiesel was made from animal fats and compared to diesel fuel. Its effects on engine performance and emissions are studied. A single-cylinder, four-stroke, direct injected diesel engine with air cooling system are used as test equipment in different cycles. After the experimental study, it is concluded that the reduction of the emissions of CO and HC as biodiesel has the advantage of emission output. Environmentalist property of biodiesel is the most important characteristic of it. But the sight of engine performance diesel fuel has more advantage to biodiesel fuel.

  12. Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks

    Directory of Open Access Journals (Sweden)

    Belachew Tesfa

    2014-01-01

    Full Text Available Currently, alternative fuels are being investigated in detail for application in compression ignition (CI engines resulting in exciting potential opportunities to increase energy security and reduce gas emissions. Biodiesel is one of the alternative fuels which is renewable and environmentally friendly and can be used in diesel engines with little or no modifications. The objective of this study is to investigate the effects of biodiesel types and biodiesel fraction on the emission characteristics of a CI engine. The experimental work was carried out on a four-cylinder, four-stroke, direct injection (DI and turbocharged diesel engine by using biodiesel made from waste oil, rapeseed oil, corn oil and comparing them to normal diesel. The fuels used in the analyses are B10, B20, B50, B100 and neat diesel. The engine was operated over a range of engine speeds. Based on the measured parameters, detailed analyses were carried out on major regulated emissions such as NOx, CO, CO2, and THC. It has been seen that the biodiesel types (sources do not result in any significant differences in emissions. The results also clearly indicate that the engine running with biodiesel and blends have higher NOx emission by up to 20%. However, the emissions of the CI engine running on neat biodiesel (B100 were reduced by up to 15%, 40% and 30% for CO, CO2 and THC emissions respectively, as compared to diesel fuel at various operating conditions.

  13. Western Kentucky University Research Foundation Biodiesel Project

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [Principal Investigator; Cao, Yan [Co-Principal Investigator

    2013-03-15

    Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the next 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily

  14. Bio-diesel: uncertain future

    International Nuclear Information System (INIS)

    Biodiesel in a renewable source of energy. It is also less polluting in terms of emission of pollutants like CO2, CO, NO and particulate matter than the standard diesel. As it contains no sulfur, it emits no SO2. However its claim for environmental protection is disputed and its high production cost makes it economically unattractive. Present status of biodiesel production and research studies going on to cut the cost and to improve the quality of biodiesel are reviewed. Increasing yield of vegetable oils, using animal fats and frying oil wastes and improving the esterification process used for producing biodiesel from vegetable oils are some of the ways to cut the cost. To improve the quality of biodiesel, attempts are being made to produce biodiesel with a lower glycerin content so that clogging of injection nozzles during combustion is reduced and performance of biodiesel is improved. Biotechnological developments are in the direction of generically modifying oil plants to produce new types of oil to specifications. Controversy in the European Economic Community regarding giving subsidies to biofuel and exemption from fossil fuel taxes is described. (M.G.B.)

  15. Particulate filter behaviour of a Diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Biodiesel is an alternative and renewable fuel made from plant and animal fat or cooked oil through a transesterification process to produce a short chain ester (generally methyl ester). Biodiesel fuels have been worldwide studied in Diesel engines and they were found to be compatible in blends with Diesel fuel to well operate in modern Common Rail engines. Also throughout the world the diffusion of biofuels is being promoted in order to reduce greenhouse gas emissions and the environmental impact of transport, and to increase security of supply. To meet the current exhaust emission regulations, after-treatment devices are necessary; in particular Diesel Particulate Filters (DPFs) are essential to reduce particulate emissions of Diesel engines. A critical requirement for the implementation of DPF on a modern Biodiesel powered engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. To fit within the exhaust temperature range of the exhaust line and to require a minimum of active regeneration during the engine running, the BET needs to occur at sufficiently low temperatures. In this paper, the results of an experimental campaign on a modern, electronic controlled fuel injection Diesel engine are shown. The engine was fuelled either with petroleum ultralow sulphur fuel or with Biodiesel: BET was evaluated for both fuels. Results show that on average, the BET is lower for biodiesel than for diesel fuel. The final goal was to characterize the regeneration process of the DPF device depending on the adopted fuel, taking into account the different combustion process and the different nature of the particulate matter. Overall the results suggest significant benefits for the use of biodiesel in engines equipped with DPFs. - Highlights: ► We compare Diesel Particulate Trap (DPF) performance with Biodiesel and Diesel fuel. ► The Break

  16. Biodiesel from microalgae Chlorella protothecoides growing at autotrophic and heterotrophic metabolisms in a new symbiotic bioreactor

    OpenAIRE

    Santos, Carla A.; Reis, Alberto

    2013-01-01

    Biodiesel is an alternative energy to fossil fuels, and is produced from biomass, therefore provides lower CO2 emissions. Currently, biodiesel is produced from plant oils, animal fats and used oils. These sources are low-yield which is a limitation to the production of biodiesel in large quantities. On the contrary, microalgae present a very high yield and can be produced in large amounts. The bio-refinery of microalgae oil must have a strategy of taking advantage of all by-products to make ...

  17. Optimizing biodiesel production in India

    International Nuclear Information System (INIS)

    India is expected to at least double its fuel consumption in the transportation sector by 2030. To contribute to the fuel supply, renewable energies such as jatropha appear to be an attractive resource for biodiesel production in India as it can be grown on waste land and does not need intensive water supply. In order to produce biodiesel at a competitive cost, the biodiesel supply chain - from biomass harvesting to biodiesel delivery to the consumers - is analyzed. A mixed integer linear programming model is used in order to determine the optimal number and geographic locations of biodiesel plants. The optimization is based on minimization of the costs of the supply chain with respect to the biomass, production and transportation costs. Three biodiesel blends are considered, B2, B5 and B10. For each blend, 13 scenarios are considered where yield, biomass cost, cake price, glycerol price, transport cost and investment costs are studied. A sensitivity analysis is carried out on both those parameters and the resulting locations of the plants. The emissions of the supply chain are also considered. The results state that the biomass cost has most influence on the biodiesel cost (an increase of feedstock cost increases the biodiesel cost by about 40%) and to a lower effect, the investment cost and the glycerol price. Moreover, choosing the right set of production plant locations highly depends on the scenarios that have the highest probability to occur, for which the production plant locations still produce a competitive biodiesel cost and emissions from the transportation are minimum. In this study, one set of plant locations happened to meet these two requirements. (author)

  18. Optimizing biodiesel production in India

    International Nuclear Information System (INIS)

    India is expected to at least double its fuel consumption in the transportation sector by 2030. To contribute to the fuel supply, renewable energies such as jatropha appear to be an attractive resource for biodiesel production in India as it can be grown on waste land and does not need intensive water supply. In order to produce biodiesel at a competitive cost, the biodiesel supply chain - from biomass harvesting to biodiesel delivery to the consumers - is analyzed. A mixed integer linear programming model is used in order to determine the optimal number and geographic locations of biodiesel plants. The optimization is based on minimization of the costs of the supply chain with respect to the biomass, production and transportation costs. Three biodiesel blends are considered, B2, B5 and B10. For each blend, 13 scenarios are considered where yield, biomass cost, cake price, glycerol price, transport cost and investment costs are studied. A sensitivity analysis is carried out on both those parameters and the resulting locations of the plants. The emissions of the supply chain are also considered. The results state that the biomass cost has most influence on the biodiesel cost (an increase of feedstock cost increases the biodiesel cost by about 40%) and to a lower effect, the investment cost and the glycerol price. Moreover, choosing the right set of production plant locations highly depends on the scenarios that have the highest probability to occur, for which the production plant locations still produce a competitive biodiesel cost and emissions from the transportation are minimum. In this study, one set of plant locations happened to meet these two requirements.

  19. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris.

    Science.gov (United States)

    Sharma, Amit Kumar; Sahoo, Pradeepta Kumar; Singhal, Shailey; Joshi, Girdhar

    2016-09-01

    The present study explores the integrated approach for the sustainable production of biodiesel from Chlorella vulgaris microalgae. The microalgae were cultivated in 10m(2) open raceway pond at semi-continuous mode with optimum volumetric and areal production of 28.105kg/L/y and 71.51t/h/y, respectively. Alum was used as flocculent for harvesting the microalgae and optimized at different pH. Lipid was extracted using chloroform: methanol (2:1) and having 12.39% of FFA. Effect of various reaction conditions such as effect of catalyst, methanol:lipid ratio, reaction temperature and time on biodiesel yields were studied under microwave irradiation; and 84.01% of biodiesel yield was obtained under optimized reaction conditions. A comparison was also made between the biodiesel productions under conventional heating and microwave irradiation. The synthesized biodiesel was characterized by (1)H NMR, (13)C NMR, FTIR and GC; however, fuel properties of biodiesel were also studied using specified test methods as per ASTM and EN standards. PMID:27318156

  20. Er biodiesel en god ide?

    DEFF Research Database (Denmark)

    Schmidt, Jannick

    2007-01-01

    Biodiesel opfattes som en grøn miljøvenlig teknologi. Men har dette 'grønne' alternativ til konventionel diesel en skjult bagside af medaljen? Og kan det være, at man i stedet for at få et bedre miljø, medvirker til øgede miljøpåvirkninger i form af emissioner og naturødelæggelse, når man skifter...... til biodiesel? I artiklen belyses nogle af de mest sejlivede myter omkring biodiesel. Udgivelsesdato: Januar...

  1. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine

    International Nuclear Information System (INIS)

    Highlights: • Engine and emission characteristics of biodiesel DDF engine system were measured. • Biodiesel DDF fuelled system produced high engine performance. • Lower hydrocarbons and carbon dioxide was emitted by biodiesel DDF system. • Biodiesel DDF produced slightly higher carbon monoxide and nitric oxides emission. - Abstract: Biodiesel derived from biomass is a renewable source of fuel. It is renovated to be the possible fuel to replace fossil derived diesel due to its properties and combustion characteristics. The integration of compressed natural gas (CNG) in diesel engine known as diesel dual fuel (DDF) system offered better exhaust emission thus become an attractive option for reducing the pollutants emitted from transportation fleets. In the present study, the engine performance and exhaust emission of HINO H07C DDF engine; fuelled by diesel, biodiesel, diesel–CNG, and biodiesel–CNG, were experimentally studied. Biodiesel and diesel fuelled engine system respectively generated 455 N m and 287 N m of torque. The horse power of biodiesel was found to be 10–20% higher compared to diesel. Biodiesel–CNG at 20% (B20-DDF) produced the highest engine torque compared to other fuel blends Biodiesel significantly increase the carbon monoxide (15–32%) and nitric oxides (6.67–7.03%) but in contrast reduce the unburned hydrocarbons (5.76–6.25%) and carbon dioxide (0.47–0.58%) emissions level. These results indicated that biodiesel could be used without any engine modifications as an alternative and environmentally friendly fuel especially the heavy transportation fleets

  2. Preparation of biodiesel from soybean oil by using heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Kaniz Ferdous, M. Rakib Uddin, Maksudur R. Khan, M. A. Islam

    2013-01-01

    Full Text Available The predicted shortage of fossil fuels and related environmental concerns has recently attracted significant attention to search alternative fuel. Biodiesel is one of the alternatives to fossil fuel. Now-a-days, most biodiesel is produced by the transesterification of oils using methanol and a homogeneous base catalyst. The use of homogeneous catalysts is normally limited to batch mode processing followed by a catalyst separation step. The immiscible glycerol phase, which accumulates during the course of the reaction, solubilizes the homogeneous base catalyst and therefore, withdraws from the reaction medium. Moreover, other difficulties of using homogeneous base catalysts relate to their sensitivity to free fatty acid (FFA and water and resulting saponification phenomenon. High energy consumption and costly separation of the catalyst from the reaction mixture have inspired the use of heterogeneous catalyst. The use of heterogeneous catalysts does not lead to the formation of soaps through neutralization of FFA and saponification of oil. In the present paper, biodiesel was prepared from crude (soybean oil by transesterification reaction using heterogeneous base catalyst name calcium oxide (CaO. Various reaction parameters were optimized and the biodiesel properties were evaluated.

  3. Preparation of biodiesel from soybean oil by using heterogeneous catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, Kaniz; Rakib Uddin, M.; Islam, M.A. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Khan, Maksudur R. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2013-07-01

    The predicted shortage of fossil fuels and related environmental concerns has recently attracted significant attention to search alternative fuel. Biodiesel is one of the alternatives to fossil fuel. Now-a-days, most biodiesel is produced by the transesterification of oils using methanol and a homogeneous base catalyst. The use of homogeneous catalysts is normally limited to batch mode processing followed by a catalyst separation step. The immiscible glycerol phase, which accumulates during the course of the reaction, solubilizes the homogeneous base catalyst and therefore, withdraws from the reaction medium. Moreover, other difficulties of using homogeneous base catalysts relate to their sensitivity to free fatty acid (FFA) and water and resulting saponification phenomenon. High energy consumption and costly separation of the catalyst from the reaction mixture have inspired the use of heterogeneous catalyst. The use of heterogeneous catalysts does not lead to the formation of soaps through neutralization of FFA and saponification of oil. In the present paper, biodiesel was prepared from crude (soybean) oil by transesterification reaction using heterogeneous base catalyst name calcium oxide (CaO). Various reaction parameters were optimized and the biodiesel properties were evaluated.

  4. Effects of pre-treatments on the lipid extraction and biodiesel production from municipal WWTP sludge

    OpenAIRE

    Olkiewicz, Magdalena; Fortuny Sanromá, Agustín; Stüber, Frank Erich; Fabregat Llagostera, Azael; Font Capafons, Josep; Bengoa, Christophe José

    2015-01-01

    Biodiesel production is currently limited due to high raw material costs. The potential of using sludge from municipal wastewater treatment plants as an alternative lipid feedstock was investigated. Four different types of sludge (primary, secondary, blended and stabilised) were tested in lipid extraction by Soxhlet using hexane, and biodiesel production by acid catalysis. To improve the extraction efficiency, the influence of pre-treatment methods (ultrasonic and mechanical disintegration) a...

  5. Biodiesel Production by Enzymatic Transesterification of Papaya Seed Oil and Rambutan Seed Oil

    OpenAIRE

    Wong, C. S.; R. Othman

    2014-01-01

    Biodiesel production from vegetable oil has gained attention as an alternative fuel to minimize the usage of fossil fuels and reduce greenhouse gases pollution. In Malaysia, oils from local fruit seeds of papaya and rambutan are potential feedstock for biodiesel production due to their high lipid contents and easily available. In the present study, papaya and rambutan seed oils were extracted via soxhlet apparatus using n-hexane and the oil yields were in between 34–40%. The extracted oils we...

  6. Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation

    OpenAIRE

    Marcio J. da Silva; Abiney L. Cardoso; Soraia Cristina Gonzaga Neves

    2008-01-01

    The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs) is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H2SO4 i...

  7. Influence of free fatty acid content in biodiesel production on non-edible oils

    OpenAIRE

    Ribeiro, André; Castro, F; Carvalho, Joana

    2011-01-01

    The use of alternative feedstock as waste cooking oils (WCO) and bovine tallow for biodiesel production has some advantages. It is cheaper than edible vegetable oils and it is a way to valorize a sub-product. Nevertheless, these oils possess some contaminants, specially free fatty acid (FFA) content, which can reduce the quality and yield of biodiesel production. This problem was solved by testing different operating conditions and different transesterification procedure and equipments for ea...

  8. Evaluation of Soya Bio-Diesel as a Gas Turbine Fuel

    OpenAIRE

    Gupta, K. K.; Rehman, A; R.M.Sarviya

    2010-01-01

    In the recent past, the crude oil prices have increased immensely as the fossil fuels are depleting, biodiesel has emerged as an alternative fuel for the petroleum. In this context the use of bio-diesel in the gas turbine seems a solution for power generation problems and their environmental concerns. Vegetable oils, due to their agricultural origin, are able to reduce net carbon dioxide emissions to the atmosphere. However, there are several operational and durability problems which may aris...

  9. Production of Biodiesel from Oleic Acid and Methanol by Reactive Distillation

    OpenAIRE

    Kusmiyati Kusmiyati; Agung Sugiharto

    2010-01-01

    Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. Generally, it is formed by transesterification reaction of triglycerides in the vegetable oil or animal fat with an alcohol. In this work, esterification reaction was carried out using oleic acid, methanol and sulphuric acid as a catalyst by reactive distillation method. In order to determine the best conditions for biodiesel production by reactive distillation, the experiments were carried out at di...

  10. Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles

    OpenAIRE

    A. M. Pourkhesalian; Stevanovic, S; Rahman, M.M.; E. M. Faghihi; Bottle, S. E.; Masri, A. R.; Brown, R.J.; Z. D. Ristovski

    2015-01-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the i...

  11. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles

    OpenAIRE

    A. M. Pourkhesalian; Stevanovic, S; Rahman, M.M.; E. M. Faghihi; Bottle, S. E.; Masri, A. R.; Brown, R.J.; Z. D. Ristovski

    2015-01-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative po...

  12. Effects of fossil diesel and biodiesel blends on the performances and emissions of agricultural tractor engines

    OpenAIRE

    Tomić Milan D.; Savin Lazar Đ.; Mićić Radoslav D.; Simikić Mirko Đ.; Furman Timofej F.

    2013-01-01

    Rapid growth in the energy consumption has conditioned the need for discovering the alternative energy resources which would be adapted to the existing engine constructions and which would satisfy the additional criteria related to the renewability, ecology and reliability of use. Introduction of biodiesel has been the focus of attention over the last ten years. The aim of this research is to investigate the influence of biodiesel on the performances and exhaust gas emissions of medium ...

  13. UNJUK KERJA REAKTOR PLASMA DIELECTRIC BARRIER DISCHARGE UNTUK PRODUKSI BIODIESEL DARI MINYAK KELAPA SAWIT

    OpenAIRE

    Ardian Dwi Yudhistira; Istadi Istadi

    2013-01-01

    Biodiesel is one of alternative renewable energy source to substitute diesel fuel. Various biodiesel productionprocesses through transesterification reaction with a variety of catalysts have been developed by previousresearcher. This process still has the disadvantage of a long reaction time, and high energy need. DielectricBarrier Discharge (DBD) plasma electro-catalysis may become a solution to overcome the drawbacks in theconventional transesterification process. This process only needs a ...

  14. Performance and Emission Study of 4S CI Engine using Calophyllum Inophyllum Biodiesel with Additives

    OpenAIRE

    Avinash K Hegde; K V Sreenivas Rao

    2012-01-01

    Petroleum sourced fuels is now widely known as non-renewable due to fossil fuel depletion and environmental degradation. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Biodiesel derived from oil crops is a potential renewable and carbon neutral alternative to petroleum fuels. Chemically, biodiesel is mono alkyl esters of long chain fatty acids derived from renewable feed stock like vegetable oils and animal fats. It is produced by trans...

  15. Relationship between fatty acid composition and biodiesel quality for nine commercial palm oils

    OpenAIRE

    Chanida Lamaisri; Vittaya Punsuvon; Sonthichai Chanprame; Anuruck Arunyanark; Peerasak Srinives; Ponsiri Liangsakul

    2015-01-01

    Biodiesel is an alternative fuel consisting of alkyl esters of fatty acids from vegetable oils or animal fats. The fatty acid compositions in the oils used as feedstock can influence quality of the biodiesel. In the present study, oil content and fatty acid composition of mesocarp and kernel oil were examined from nine commercial oil palm Elaeis guineensis cultivars. Saponification number, iodine value and cetane number were calculated from palm oil fatty acid methyl ester compositio...

  16. Obtention and characterization of biodiesel; Obtencao e caracterizacao do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leonidas B.O. dos; Caitano, Moises; Aranda, Donato A.G.; Mothe, Cheila G. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2004-07-01

    Biodiesel is an ester resulting from the transesterification reaction of an alcohol and an oil obtained from biomass. The products of the transesterification are an ester and the glycerol. The biodiesel and the petroleum commercial diesel have similar properties, and they can be mixed and used in diesel motors. The use of biodiesel will allow a better exploration of the energetic potential of our cultures. The biodiesel has some advantages compared to others combustibles, such as adaptability to usual diesel motors and non-generation of NO{sub x} and SO{sub x} compounds. Many experiments with biodiesel have been made in Brazil since the 70's. This work made samples of biodiesel by transesterification batch reactions to many blends of soybean oil and residual fry oil, at room temperature, using mechanical mixture or magnetic agitation by a magnetic stirrer, using as catalysts sodium methoxide and potassium hydroxide. For each obtained sample tests to determine the Acidity Index (ABNT-MB-74), Saponification Index (ABNT-MB-75), Iodine Wijz Index (ABNT-MB- 77), thermal analysis by DTA and TG (TA Instruments SDT 2960, 30 to 800 deg C, 10 deg C/min at nitrogen atmosphere) and rheological test (Haake RS 150 Rheo Stress rheometer) were done. (author)

  17. Research Progress on Cultivation Methods of Microalgae%微藻培养方法研究进展

    Institute of Scientific and Technical Information of China (English)

    尚常花; 朱顺妮; 王忠铭; 袁振宏; 谢君

    2016-01-01

    微藻是一种有前景的生物柴油原料。微藻培养是微藻生物柴油生产过程的重要环节。本文就微藻培养方法的研究进展进行了阐述。对自养、异养及兼养三种培养方法进行了比较,并对微藻培养提出了建议。%Microalgae is a promising feedstock for biodiesel production. Cultivation of microalgae is a key step in the process of producing biodiesel using microalgae as raw material. Research progress on cultivation methods of microalgae is discussed. Phototrophic cultivation, heterotrophic cultivation and mixotrophic cultivation are compared. Suggestions about cultivation of microalgae are proposed in this article.

  18. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  19. Air-quality and Climatic Consequences of Bioenergy Crop Cultivation

    Science.gov (United States)

    Porter, William Christian

    Bioenergy is expected to play an increasingly significant role in the global energy budget. In addition to the use of liquid energy forms such as ethanol and biodiesel, electricity generation using processed energy crops as a partial or full coal alternative is expected to increase, requiring large-scale conversions of land for the cultivation of bioenergy feedstocks such as cane, grasses, or short rotation coppice. With land-use change identified as a major contributor to changes in the emission of biogenic volatile organic compounds (BVOCs), many of which are known contributors to the pollutants ozone (O 3) and fine particulate matter (PM2.5), careful review of crop emission profiles and local atmospheric chemistry will be necessary to mitigate any unintended air-quality consequences. In this work, the atmospheric consequences of bioenergy crop replacement are examined using both the high-resolution regional chemical transport model WRF/Chem (Weather Research and Forecasting with Chemistry) and the global climate model CESM (Community Earth System Model). Regional sensitivities to several representative crop types are analyzed, and the impacts of each crop on air quality and climate are compared. Overall, the high emitting crops (eucalyptus and giant reed) were found to produce climate and human health costs totaling up to 40% of the value of CO 2 emissions prevented, while the related costs of the lowest-emitting crop (switchgrass) were negligible.

  20. Etanol e biodiesel como recursos energéticos alternativos: perspectivas da América Latina e da Ásia Ethanol and biofuels as alternatives energetic sources: Latin-American e Asian perspectives

    Directory of Open Access Journals (Sweden)

    Gilmar Masiero

    2008-12-01

    Full Text Available Este trabalho apresenta as perspectivas latino-americanas e asiáticas na emergente indústria dos biocombustiveis. As possibilidades brasileiras de participação na indústria e no comércio internacional de etanol e de biodiesel são discutidas. Uma questão sobre os possíveis parceiros "estratégicos" do Brasil neste setor é levantada: os enormes mercados consumidores de países desenvolvidos ou os emergentes e também famintos consumidores asiáticos de energia?This paper presents Latin American and Asian perspectives on the biofuels emerging industry. The Brazilian's possibilities of participation on this industry evolution and the involvement on the world trade for ethanol and biodiesel are discussed. Also, an investigation about who will be the main "strategic" partners of Brazil in this sector is made: the huge consumer markets of developed countries or the emerging and also hungry consumers of energy Asian economies?

  1. A comprehensive combustion model for biodiesel-fueled engine simulations

    Science.gov (United States)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel

  2. Spectroscopic Monitoring of Biodiesel Aging

    OpenAIRE

    Svilans, Miķelis; Blūms, Aivars; Kampare, Rūta

    2014-01-01

    The suitability of absorption and fluorescencespectroscopy for monitoring biodiesel aging is assessed. Changesrecorded in the UV/VIS and IR spectra during accelerated agingexperiments are analysed with respect to corresponding changesin a selection of chemical and physical properties of biodiesel,namely, induction period, viscosity and acid number. A novelapproach for evaluating fluorescence spectral data is presented.It is determined that fluorescence spectroscopy provides excellentsensitivi...

  3. Biodiesel Production from Non-Edible Beauty Leaf (Calophyllum inophyllum) Oil: Process Optimization Using Response Surface Methodology (RSM)

    OpenAIRE

    Mohammad I. Jahirul; Wenyong Koh; Richard J. Brown; Wijitha Senadeera; Ian O'Hara; Lalehvash Moghaddam

    2014-01-01

    In recent years, the beauty leaf plant (Calophyllum Inophyllum) is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA) content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beaut...

  4. Net Energy, CO 2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China

    OpenAIRE

    Xiangzheng Deng; Jianzhi Han; Fang Yin

    2012-01-01

    Bioenergy is currently regarded as a renewable energy source with a high growth potential. Forest-based biodiesel, with the significant advantage of not competing with grain production on cultivated land, has been considered as a promising substitute for diesel fuel by many countries, including China. Consequently, extracting biodiesel from Jatropha curcas has become a growing industry. However, many key issues related to the development of this industry are still not fully resolved and the p...

  5. Net Energy, CO 2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China

    OpenAIRE

    Xiangzheng Deng; Jianzhi Han; Fang Yin

    2012-01-01

    Bioenergy is currently regarded as a renewable energy source with a high growth potential. Forest-based biodiesel, with the significant advantage of not competing with grain production on cultivated land, has been considered as a promising substitute for diesel fuel by many countries, including China. Consequently, extracting biodiesel from Jatropha curcas has become a growing industry. However, many key issues related to the development of this indus...

  6. Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel

    International Nuclear Information System (INIS)

    Recently biodiesel, as an alternative fuel is getting more significance to replace diesel fuel completely or partially. However, corrosion of automotive materials in biodiesel is a major concern as this can reduce engine life. This study aims to investigate the corrosion behavior of mild steel at three different temperatures such as room temperature, 50 and 80 oC. Static immersion tests in B0 (diesel), B50 (50% biodiesel in diesel), B100 (biodiesel) were carried out for 1200 h. At the end of the tests, corrosion characteristic was investigated by weight loss measurements and changes of the exposed metal surface. Fuels were analyzed by using TAN analyzer and Fourier transform infrared spectroscopy (FTIR) in order to investigate the change in acidity and oxidation of fuel respectively upon exposure. Surface morphology was examined by optical microscope and scanning electron microscope equipped with energy dispersive spectroscopy. Corrosion products were detected by X-ray diffraction (XRD). Results showed that the corrosion of mild steel increases with increase of temperature. Upon exposure of biodiesel to mild steel at high temperature, the water content and oxidation products are increased. -- Highlights: → Corrosion of mild steel in both diesel and biodiesel increases with increase of temperature. → Degradation of fuel properties also increases with increase of temperature. → Corrosion attacks for metal surfaces are comparatively more in biodiesel than that in diesel fuel. → The constituents of corrosion products are composed of iron carbide and iron oxides.

  7. Biodiesel from Mustard oil: a Sustainable Engine Fuel Substitute for Bangladesh

    Directory of Open Access Journals (Sweden)

    M.M. Alam

    2013-10-01

    Full Text Available Various attractive features of mustard oil based biodiesel as a potential substitute for engine fuel are investigated in this paper for use in Bangladesh. Although the use of mustard oil as edible oil has been reduced, Bangladesh still produces 0.22 million metric tons of mustard oil per year. This surplus mustard oil would satisfactorily be used as an alternative to diesel fuel, and thus could contribute in reducing the expenses for importing fuel from foreign countries. Moreover, the rural people of Bangladesh are capable of producing mustard oil themselves using indigenous machines. Fuel properties of biodiesel obtained from mustard oil were determined in the laboratory using standard procedure and an experimental setup was constructed to study the performance of a small diesel engine. It is observed that with biodiesel, the engine is capable of running without difficulty. Initially different lower blends of biodiesel (e.g., B20, B30 etc. have been used to avoid complicated modification of the engine and the fuel supply system. It is also found in some condition that mustard oil based biodiesel have better properties than those made from other vegetable oils. These properties of mustard oil based biodiesel were evaluated to validate its sustainability in Bangladesh. Keywords: biodiesel, indigenous machines, mustard oil, renewable energy policy, sustainability

  8. In-nozzle flow and spray characteristics for mineral diesel, Karanja, and Jatropha biodiesels

    International Nuclear Information System (INIS)

    Highlights: • In-nozzle flow characterization for biodiesel sprays. • Comparison of experimental spray parameters and nozzle hole simulations. • Effect of Karanja and Jatropha biodiesel on in-nozzle cavitation. • Cavitation formation investigation with diesel and biodiesels. • Nozzle hole outlet fuel velocity profile determination for test fuels. - Abstract: Superior spray behavior of fuels in internal combustion engines lead to improved combustion and emission characteristics therefore it is necessary to investigate fuel spray behavior of new alternative fuels. This study discusses the evolution of the in-nozzle orifice parameters of a numerical simulation and the evolution of spray parameters of fuel spray in a constant-volume spray chamber during an experiment. This study compares mineral diesel, biodiesels (Karanja-and Jatropha-based), and their blends with mineral diesel. The results show that mineral diesel provides superior atomization and evaporation behavior compared to the biodiesel test fuels. Karanja biodiesel provides superior atomization and evaporation characteristics compared to Jatropha biodiesel. The qualitative comparison of simulation and experimental results in tandem shows that nozzle-hole design is a critical parameter for obtaining optimum spray behavior in the engine combustion chamber

  9. Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition

    Energy Technology Data Exchange (ETDEWEB)

    Gopinath, A.; Puhan, Sukumar; Nagarajan, G. [Internal Combustion Engineering Division, Department of Mechanical Engineering, Anna University, Chennai 600 025, Tamil Nadu (India)

    2009-07-15

    Biodiesel is an alternative fuel consisting of alkyl esters of fatty acids from vegetable oils or animal fats. The properties of biodiesel depend on the type of vegetable oil used for the transesterification process. The objective of the present work is to theoretically predict the iodine value and the saponification value of different biodiesels from their fatty acid methyl ester composition. The fatty acid ester compositions and the above values of different biodiesels were taken from the available published data. A multiple linear regression model was developed to predict the iodine value and saponification value of different biodiesels. The predicted results showed that the prediction errors were less than 3.4% compared to the available published data. The predicted values were also verified by substituting in the available published model which was developed to predict the higher heating values of biodiesel fuels from their iodine value and the saponification value. The resulting heating values of biodiesels were then compared with the published heating values and reported. (author)

  10. Penggunaan Katalis NaOH dalam Proses Transesterifikasi Minyak Kemiri menjadi Biodiesel

    Directory of Open Access Journals (Sweden)

    Farid Mulana

    2011-12-01

    Full Text Available Research on biodiesel production from hazelnut oil by transesterification process using NaOH catalyst was one of the efforts for renewable energy research. The purpose of this study was to determine the effect of NaOH catalyst and the ratio of hazelnut oil to methanol on the production of biodiesel via transesterification process. The transesterification process was carried out in a stirred reactor equipped by a condenser with speed of 200 rpm, temperature of 60°C and the operating time of 90 minutes. The results indicated that biodiesel could be produced from hazelnut oil through transesterification process with the highest yield of 81.7% that was obtained on the use of 2% wt. of NaOH catalyst and the mole ratio of oil to methanol of 1:9. Viscosity, density, and acid number of biodiesel obtained in this study met the Indonesia National Standard for biodiesel as SNI 04-7182-2006, therefore hazelnut oil produced biodiesel could potentially be an alternative diesel fuel. Keywords: hazelnut oil, biodiesel, transesterification, NaOH catalyst

  11. Impact of policy on greenhouse gas emissions and economics of biodiesel production.

    Science.gov (United States)

    Olivetti, Elsa; Gülşen, Ece; Malça, João; Castanheira, Erica; Freire, Fausto; Dias, Luis; Kirchain, Randolph

    2014-07-01

    As an alternative transportation fuel to petrodiesel, biodiesel has been promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of biodiesel were a driver behind extensive government support in the form of financial incentives for the industry. However, studies consistently report a high degree of uncertainty in these emissions estimates, raising questions concerning the carbon benefits of biodiesel. Furthermore, the implications of feedstock blending on GHG emissions uncertainty have not been explicitly addressed despite broad practice by the industry to meet fuel quality standards and to control costs. This work investigated the impact of feedstock blending on the characteristics of biodiesel by using a chance-constrained (CC) blend optimization method. The objective of the optimization is minimization of feedstock costs subject to fuel standards and emissions constraints. Results indicate that blending can be used to manage GHG emissions uncertainty characteristics of biodiesel, and to achieve cost reductions through feedstock diversification. Simulations suggest that emissions control policies that restrict the use of certain feedstocks based on their GHG estimates overlook blending practices and benefits, increasing the cost of biodiesel. In contrast, emissions control policies which recognize the multifeedstock nature of biodiesel provide producers with feedstock selection flexibility, enabling them to manage their blend portfolios cost effectively, potentially without compromising fuel quality or emissions reductions. PMID:24828402

  12. Biodiesel production via injection of superheated methanol technology at atmospheric pressure

    International Nuclear Information System (INIS)

    Highlights: • Non-catalytic superheated methanol for biodiesel production is developed. • Crude Jatropha curcas oil with high FFA can be directly used as oil feedstock. • High content of biodiesel can be produced. • Separation of FAME and glycerol from the sample product is easy. - Abstract: In this high demand of renewable energy market, biodiesel was extensively produced via various catalytic and non-catalytic technologies. Conventional catalytic transesterification for biodiesel production has been shown to have limitation in terms of sensitivity to high water and free fatty acid, complicated separation and purification of biodiesel. In this study, an alternative and innovative approach was carried out via non-catalytic superheated methanol technology to produce biodiesel. Similar to supercritical reaction, the solvent need to be heated beyond the critical temperature but the reactor pressure remained at 0.1 MPa (atmospheric pressure). Transesterification reaction with superheated methanol was carried out at different reaction temperature within the limit of 270–300 °C and at different methanol flow rate ranging from 1 ml/min to 3 ml/min for 4 h. Results obtained showed that the highest biodiesel yield at 71.54% w/w was achieved at reaction temperature 290 °C and methanol flow rate at 2 ml/min with 88.81% w/w FAME content, implying the huge potential of superheated technology in producing FAME

  13. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology

    Directory of Open Access Journals (Sweden)

    Rizo Edwin Gumba

    2016-09-01

    Full Text Available The advancement of alternative energy is primarily catalyzed by the negative environmental impacts and energy depletion caused by the excessive usage of fossil fuels. Biodiesel has emerged as a promising substitute to petrodiesel because it is biodegradable, less toxic, and reduces greenhouse gas emission. Apart from that, biodiesel can be used as blending component or direct replacements for diesel fuel in automotive engines. A diverse range of methods have been reported for the conversion of renewable feedstocks (vegetable oil or animal fat into biodiesel with transesterification being the most preferred method. Nevertheless, the cost of producing biodiesel is higher compared to fossil fuel, thus impeding its commercialization potentials. The limited source of reliable feedstock and the underdeveloped biodiesel production route have prevented the full-scale commercialization of biodiesel in many parts of the world. In a recent development, a new technology that incorporates monoliths as support matrices for enzyme immobilization in supercritical carbon dioxide (SC-CO2 for continuous biodiesel production has been proposed to solve the problem. The potential of SC-CO2 system to be applied in enzymatic reactors is not well documented and hence the purpose of this review is to highlight the previous studies conducted as well as the future direction of this technology.

  14. Evaluation of Soya Bio-Diesel as a Gas Turbine Fuel

    Directory of Open Access Journals (Sweden)

    K.K. Gupta

    2010-07-01

    Full Text Available In the recent past, the crude oil prices have increased immensely as the fossil fuels are depleting, biodiesel has emerged as an alternative fuel for the petroleum. In this context the use of bio-diesel in the gas turbine seems a solution for power generation problems and their environmental concerns. Vegetable oils, due to their agricultural origin, are able to reduce net carbon dioxide emissions to the atmosphere. However, there are several operational and durability problems which may arise in using straight vegetable oils, which are because of their higher viscosity and low volatility compared to mineral diesel fuel. Bio-fuels, an alternative fuels are having environmental benefit as; they are made from renewable sources. It can be blended in any proportion with mineral Diesel. Many performance and emission tests are being carried out in reciprocating diesel engines that use bio fuel but there are very few tests has been done on gas turbine engines. The gas turbine combustion is steady flame combustion. This feature creates the wide range for the different alternative fuels for clean combustion in the gas turbine, such as natural gas, petroleum distillates, pyrolysis wood gas, biogas of methanisation, bio-diesel etc. The present work is an analysis of the Soya bio-diesel productionprocess i.e. trans-esterification, the different parameters affecting on trans-esterification. The different physical and chemical properties of this bio-diesel and diesel has been determined and compared to establish the suitability of the bio-diesel in the gas turbine. An analysis on High Performance Liquid Chromatography (HPLC has been done to find out the composition of the different fatty acid esters. The effect of these fatty acids onthe property of the bio-diesel has also been explained such as viscosity, heat of combustion, cetane No, cold flow properties, lubricity and oxidative stability etc. This will also help us to select best suited bio-diesel for the

  15. Biodiesel Production: Utilization of Loofah Sponge to Immobilize Rhizopus chinensis CGMCC #3.0232 Cells as a Whole-Cell Biocatalyst.

    Science.gov (United States)

    He, Qiyang; Xia, Qianjun; Wang, Yuejiao; Li, Xun; Zhang, Yu; Hu, Bo; Wang, Fei

    2016-07-28

    Rhizopus chinensis cells immobilized on loofah (Luffa cylindrica) sponges were used to produce biodiesel via the transesterification of soybean oil. In whole-cell immobilization, loofah sponge is considered to be a superior alternative to conventional biomass carriers because of its biodegradable and renewable properties. During cell cultivation, Rhizopus chinensis mycelia can spontaneously and firmly adhere to the surface of loofah sponge particles. The optimal conditions for processing 9.65 g soybean oil at 40°C and 180 rpm using a 3:1 methanol-to-oil molar ratio were found to be 8% cell addition and 3-10% water content (depending on the oil's weight). Under optimal conditions, an over 90% methyl ester yield was achieved after the first reaction batch. The operational stability of immobilized Rhizopus chinensis cells was assayed utilizing a 1:1 methanol-to-oil molar ratio, thus resulting in a 16.5-fold increase in half-life when compared with immobilized cells of the widely studied Rhizopus oryzae. These results suggest that transesterification of vegetable oil using Rhizopus chinensis whole cells immobilized onto loofah sponge is an effective approach for biodiesel production. PMID:27090185

  16. Oil palm for biodiesel in Brazil—risks and opportunities

    Science.gov (United States)

    Englund, Oskar; Berndes, Göran; Persson, U. Martin; Sparovek, Gerd

    2015-04-01

    Although mainly used for other purposes, and historically mainly established at the expense of tropical forests, oil palm can be the most land efficient feedstock for biodiesel. Large parts of Brazil are suitable for oil palm cultivation and a series of policy initiatives have recently been launched to promote oil palm production. These initiatives are however highly debated both in the parliament and in academia. Here we present results of a high resolution modelling study of opportunities and risks associated with oil palm production for biodiesel in Brazil, under different energy, policy, and infrastructure scenarios. Oil palm was found to be profitable on extensive areas, including areas under native vegetation where establishment would cause large land use change (LUC) emissions. However, some 40-60 Mha could support profitable biodiesel production corresponding to approximately 10% of the global diesel demand, without causing direct LUC emissions or impinging on protected areas. Pricing of LUC emissions could make oil palm production unprofitable on most lands where conversion would impact on native ecosystems and carbon stocks, if the carbon price is at the level 125/tC, or higher.

  17. Environmental benefits of the integrated production of ethanol and biodiesel

    International Nuclear Information System (INIS)

    Highlights: ► Integrated bioenergy systems can favor the sustainability of biofuels. ► We analyzed the integrated production of ethanol and biodiesel in Brazil. ► GHG emissions and fossil energy use in the ethanol life cycle would be reduced. ► Socio-economic and other environmental aspects must be analyzed in future works. -- Abstract: The biorefinery of the future will be an integrated complex that makes a variety of products (e.g., biofuels, chemicals, power and protein) from a variety of feedstocks. The objective of this work was to evaluate the environmental benefits, compared to the traditional sugarcane ethanol system, of the integrated production of ethanol and biodiesel through a sugarcane–soybean biorefinery concept in Brazil. The environmental aspects considered here were the fossil energy use and the greenhouse gases (GHGs) emissions associated with ethanol production. In the Integrated System, soybean would be cultivated in part of the sugarcane reforming areas, which represents ∼17% of the total sugarcane area. Sugarcane and soybean oil would be processed in a combined ethanol–biodiesel plant, which would use only bagasse as fuel. All the demand for utilities of the biodiesel plant would be provided by the distillery. The output products of the combined plant would comprise sugarcane ethanol, soybean biodiesel (which would be used as diesel (B5) substitute in the sugarcane cultivation), bioelectricity and glycerin. The results indicate that the Integrated System can reduce the fossil energy consumption from 75 to 37 kJ/MJ of ethanol, when compared to the traditional system. For GHG emissions, the value would drop from 22.5 to 19.7 g CO2eq/MJ of ethanol. This analysis shows that the Integrated System is an important option to contribute to ethanol’s life cycle independence from fossil resources. This is an attractive environmental aspect, but socio-economic (as well as other environmental) aspects should also be analyzed in order to

  18. Social and environmental advantages of palm oil biodiesel in Brazil; Vantagens socioambientais do biodiesel de palma no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Lucas Rueda [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2012-07-01

    The production of biodiesel has seen a fast growth in Brazil during the last years, making the country one of the top producers in the world. This growth is explained by the mandatory blendings of biodiesel in conventional diesel. This article is about how the biodiesel industry developed having soy oil as the main feedstock and how the big oilseed crushers have taken the main role in the industry, with family farmers, the original beneficiaries of the program, having a marginal role. If the scenario of B10 or B20 in 2020 is verified, then it is going to use so much soy oil that it will interfere in another uses of soy, like exportation. Besides that, the article criticizes the failure of the social aspect of the program, arguing that the objective of integration of family farmers has failed, and that the numbers are not worse only because the action of the government, through PETROBRAS. Then it is presented the palm oil as a alternative to share the role of main feedstock with the soy oil, because palm has a bigger production of vegetal oil per hectare than most oilseeds, is capable of a bigger reduction in green house gas emissions than soy oil, the fact that Brazil has plenty of land available to plant palm, without the necessity of deforestation and that this process can bring development to family farmers in the north of the country. The article ends with the summary of the main projects of palm production for biodiesel, like the ones from PETROBRAS, Vale and Oleoplan, and how these are going to be the main determinants of the success or failure of the palm oil as an alternative to the biodiesel sector. (author)

  19. Cold Flow Properties and Performance of Biodiesel

    Science.gov (United States)

    Biodiesel is defined as a fatty acid alkyl ester mixture obtained by reacting vegetable oil or fat with a short chain (C1-C4) alcohol. The cold flow properties of biodiesel depend on the fatty acid composition of its feedstock as well as alcohol chain-length. Increasing biodiesel production in the...

  20. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    International Nuclear Information System (INIS)

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  1. Marketing Risk Management of Palm Oil Based Biodiesel Agroindustry

    Directory of Open Access Journals (Sweden)

    I Gusti Bagus Udayana

    2014-03-01

    Full Text Available Biodiesel is fuel generates from vegetable oils that have properties similar to diesel oil. The advantages of biodiesel compared to diesel is an environmentally friendly fuel because it produces much lower emissions (sulfur free, low smoke number in accordance with global issues, higher cetane number (> 57 so that the combustion efficiency is better than diesel, lubrication properties of the piston engine; biodegradable, a renewable energy because it is made from natural materials, and improve the independence of fuel supply because it can be produced locally. The purpose of this research is to design the risk management decision support system for agro-industry development biodiesel of oil palm-based. Determination of objectives and risk management strategies using the used to obtain an alternative value in the aspect of marketing. This research resulted in a decision support system that is useful to help decision makers in addressing the risk of agro-bio-diesel. Risk management model is designed in a decision support system  (DSS, can be used by industrial users and investors in the field of biodiesel. DSS software development using Microsoft Visual Basic Version 6.0 consists of three main components namely database management system, knowledge base management system and model base management system. Model base management system consists of risk marketing analysis.

  2. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Science.gov (United States)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  3. Corrosion characteristics of copper and leaded bronze in palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Masjuki, H.H.; Ann, L.J.; Fazal, M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-03-15

    Biodiesel has become more attractive as alternative fuel for automobiles because of its environmental benefits and the fact that it is made from renewable sources. However, corrosion of metals in biodiesel is one of the concerns related to biodiesel compatibility issues. This study aims to characterize the corrosion behavior of commercial pure copper and leaded bronze commonly encountered in the automotive fuel system in diesel engine. Static immersion tests in B0, B50 and B100 fuels were carried out at room temperature for 2640 h. Similar immersion tests in B0, B100 and B100 (oxidized) fuels were also conducted at 60 C for 840 h. At the end of the test, corrosion behavior was investigated by weight loss measurements and changes in surface morphology. Fuels were analyzed by using TAN analyzer, FTIR, MOA (multi-element oil analyzer) to investigate acid concentration, oxidation level with water content and corrosive impurities respectively. Results showed that under the experimental conditions, pure copper was more susceptible to corrosion in biodiesel as compared to leaded bronze. (author)

  4. Biodiesel production from high FFA rubber seed oil

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Ramadhas; S. Jayaraj; C. Muraleedharan [National Institute of Technology Calicut, Calicut (India). Department of Mechanical Engineering

    2005-03-01

    Currently, most of the biodiesel is produced from the refined/edible type oils using methanol and an alkaline catalyst. However, large amount of non-edible type oils and fats are available. The difficulty with alkaline-esterification of these oils is that they often contain large amounts of free fatty acids (FFA). These free fatty acids quickly react with the alkaline catalyst to produce soaps that inhibit the separation of the ester and glycerin. A two-step transesterification process is developed to convert the high FFA oils to its mono-esters. The first step, acid catalyzed esterification reduces the FFA content of the oil to less than 2%. The second step, alkaline catalyzed transesterification process converts the products of the first step to its mono-esters and glycerol. The major factors affect the conversion efficiency of the process such as molar ratio, amount of catalyst, reaction temperature and reaction duration is analyzed. The two-step esterification procedure converts rubber seed oil to its methyl esters. The viscosity of biodiesel oil is nearer to that of diesel and the calorific value is about 14% less than that of diesel. The important properties of biodiesel such as specific gravity, flash point, cloud point and pour point are found out and compared with that of diesel. This study supports the production of biodiesel from unrefined rubber seed oil as a viable alternative to the diesel fuel. 16 refs., 4 figs., 2 tabs.

  5. Dual bioimprinting of Thermomyces lanuginosus lipase for synthesis of biodiesel

    Directory of Open Access Journals (Sweden)

    Joyeeta Mukherjee

    2016-06-01

    Full Text Available Use of biodiesel as an alternative to non-renewable sources of energy has become an attractive option in recent years. The enzymatic synthesis of biodiesel by transesterification of fats/oils with an alcohol is a much more sustainable route than the chemical method. However, cost effectiveness of the enzymatic route is a major barrier in its commercialization. In this work, a high activity biocatalyst design of Thermomyces lanuginosus lipase is made by dually bioimprinting it with substrate and a surfactant (which is believed to open up the lid covering the active site of the lipase during precipitation of the lipase in organic solvent. When the lipase was bioimprinted with only the surfactants, 28 U of the enzyme/g of oil could yield 99% biodiesel from soybean oil in about 4 h. However, when dually bioimprinted even very low enzyme load 1.4 U/g of oil, yielded 99% biodiesel within 48 h.

  6. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wali, W A; Hassan, K H; Cullen, J D; Al-Shamma' a, A I; Shaw, A; Wylie, S R, E-mail: w.wali@2009.ljmu.ac.uk [Built Environment and Sustainable Technologies Institute (BEST), School of the Built Environment, Faculty of Technology and Environment Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2011-08-17

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  7. AN EXPERIMENTAL INVESTIGATION ON OXIDATIVE STABILITY OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    Mustafa ÇANAKÇI

    2004-02-01

    Full Text Available Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feed stocks such as vegetable oil and animal fats. These feed stocks are reacted with an alcohol to produce alkyl monoesters. The obtained ester can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This paper reports the results of accelerated oxidation tests on biodiesel. These tests show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are also explored. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq O2/kg, the acid value and viscosity increase monotonically as oxidation proceeds.

  8. Biodiesel production using blue-green cyanobacterium Synechococcus elongatus PCC 7942

    NARCIS (Netherlands)

    Voshol, Gerben

    2015-01-01

    Due to concerns about global climate change and diminishing supplies of petroleum, there is a need to develop a clean sustainable alternative. The two main alternative fuels are bioethanol and biodiesel. Production of these biofuels using cyanobacteria is a new promising development. I describe the

  9. Nitrous oxide emissions from rapeseed cultivation in Germany

    Science.gov (United States)

    Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Koebke, Sarah; Räbiger, Thomas; Suárez Quiñones, Teresa; Walter, Katja; Stichnothe, Heinz; Flessa, Heinz

    2016-04-01

    About 12 % of Germany's agricultural area is used for rapeseed cultivation and two third of the harvest is converted to biodiesel. Due to requirements of the EU Renewables Directive the greenhouse gas (GHG) balance of rapeseed cultivation must be reported and sustainability criteria and GHG savings compared to fossil fuel must be achieved and certified. Current certified methodology estimates N2O field emissions from rapeseed cultivation using the IPCC Tier 1 approach based on a global emission factor (N2O emission per unit nitrogen fertilizer input) of 1 %, which is not specific for the crop. We present results from three years of measurements (2013 - 2015) on five field trials in Germany, which combined with data from a meta-analysis suggest that GHG emission factors of German rapeseed cultivation are lower than thought previously. Furthermore, results suggest that substitution of mineral fertilizers with organic fertilizers is a valid mitigation option since it avoids GHG emissions during production of mineral fertilizers.

  10. Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification

    International Nuclear Information System (INIS)

    Biodiesel, a fuel that can be made from renewable biological sources such as vegetable oils or animal fats, has been recognized recently as an environment friendly alternative fuel for diesel engines. In this paper, the authors describe a study that compared exhaust emissions from in-use heavy trucks fueled with a biodiesel blend with those from trucks fueled with petroleum diesel. The biodiesel blend tested is a mixture of 35% biodiesel and 65% petroleum diesel, a blend designated as B35. The study is based on the field test results from West Virginia University's Transportable Heavy Duty Chassis Dynamometer Emissions Testing Laboratory and sponsored by the US Department of Energy. The heavy trucks the authors tested performed well when the originally equipped compression-ignition engine (diesel engine) was fueled with B35 without any engine modifications. Fuel economy (in terms of gallon per mile) of the two fuels was about the same. The emissions test results have shown that the heavy trucks fueled by B35 emitted significantly lower particulate matter (PM) and moderately lower carbon monoxide (CO) and hydrocarbon (HC) than the same trucks fueled by no. 2 diesel (D2). Oxides of nitrogen (NOx) emissions from B35 and D2, however, were generally in the same level. Emissions variations from two different engine models and two driving cycles were also observed. Although the authors recommend more tests for biodiesel vehicles, the data obtained in this study indicate that biodiesel has promise as an emissions-reducing alternative fuel for diesel engines

  11. Preliminary Evaluation of Atomization Characteristics of Improved Biodiesel for Gas Turbine Application

    International Nuclear Information System (INIS)

    Biodiesel is one of the clean burning alternative fuels derived from natural resources and animal fats which is promising fuel for gas turbine application. However, inferior properties of biodiesel such as high viscosity, density and surface tension results in inferior atomization and high emission, hence impedes the fuel compatible for gas turbine application and emits slightly higher emission pollutants due to inferior atomization. This research work focuses on preliminary evaluation of the atomization characteristics of derived from Malaysian waste cooking oil which is the physical properties are subsequently improved by a microwave assisted post treatment scheme. The results shows with improvement in physical properties achieved through the post treatment, biodiesel exhibits significantly better atomization characteristics in terms of spray angle, spray length, sauter mean diameter and shorter evaporation time compared to the biodiesel before improvement and fossil diesel.

  12. Perkembangan Proses Pembuatan Biodiesel sebagai Bahan Bakar Nabati (BBN)

    OpenAIRE

    Joelianingsih; Armansyah H. Tambunan; Hirosi NABETANI; Yasuyuki Sagara; Kamaruddin Abdullah

    2006-01-01

    As energy dernands increase and fossil fuel reservas are limited, research is directed towards alternative renewable fluls. A potential diesel fuel substitusi is biodiesel, obtained from fatty acids methyl esters (FAME) and produced by the transesterfication reaction of triglyceride or free fatty acid (FFA) of vegetable oils with short-chain alcohol, mainly methanol. Most of the currently of alcohol. Although the removal of the excess alcohol can be easily achieved by distillation, however th...

  13. Selenastrum Capricornutum: Harvesting and Oil Extraction, for Biodiesel Production

    OpenAIRE

    Leticia Pérez; Ángeles Cancela; Rocío Maceiras; J.L. Salgueiro; Ángel Sánchez

    2015-01-01

    An alternative for biodiesel production is the use of lipids from microalgae. Although all steps to obtain this biofuel are important, harvesting and extraction are the most important. Advances in these areas are necessary in order to obtain third-generation fuels. The purpose of the present study is to compare different methods of lipids extraction and harvesting for freshwater Selenastrum Capricornutum microalgae. The method used for harvesting was flocculation with inorganic agent. Copper ...

  14. Production of Biodiesel from Oleaginous Organisms Using Underutilized Wastewaters

    OpenAIRE

    Godfrey, Valerie

    2012-01-01

    Driven by the rising costs, decreasing convenience, and increased demand of fossil fuels, the need for alternative, sustainable energy sources has caused a spark in interest in biomass-based fuels. Oleaginous organisms such as yeast, algae, and bacteria have been considered as microscopic biofactories for oils that can be converted into biodiesel. The process of growing such organisms using current technology requires an alarming amount of freshwater, which is another resource of growing conc...

  15. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends

    International Nuclear Information System (INIS)

    Highlights: • Ceiba pentandra biodiesel was prepared by two-step transesterification. • The main FAC of C. pentandra is 18.54% of malvalic acid. • Engine performance and emission are conducted for CPME and its blends. • The CPB10 gives the best engine performance at 1900 rpm. • The CO, HC and smoke opacity were lower for all biodiesel blends. - Abstract: Nowadays, production of biodiesel from non-edible feedstock is gaining more attention than edible oil to replace diesel fuel. Thus, Ceiba pentandra is chosen as a potential biodiesel feedstock for the present investigations based on the availability in Indonesia and Malaysia. C. pentandra methyl ester was prepared by two-step acid esterification (H2SO4) and base transesterification (NaOH) process. The purpose of this study is to examine the engine performance and emission characteristic of C. pentandra biodiesel diesel blends in internal combustion. Besides, the detailed properties of C. pentandra biodiesel, biodiesel diesel blends and diesel were measured and evaluated. After that, the biodiesel diesel blends (10%, 20%, 30% and 50%) were used to conduct engine performance and exhaust emission characteristic at different engine speeds. The experimental results showed that CPB10 blend give the best results on engine performance such as engine torque and power at 1900 rpm with full throttle condition. Besides, the brake specific fuel consumption at maximum torque (161 g/kW h) for CPB10 is higher about 22.98% relative to diesel fuel (198 g/kW h). This is shown that the lower biodiesel diesel blends ratio will increase the performance and reduce the fuel consumption. Moreover, the exhaust emissions showed that CO, HC and smoke opacity were reduced for all biodiesel diesel blends. However, NOx and CO2 were increased compared to petrol diesel. Overall, the results proved that C. pentandra biodiesel is a suitable alternative and substitute fuel to diesel

  16. Ecological Impact of Biodiesel Use

    International Nuclear Information System (INIS)

    Full text: The paper presents a study of biodiesel application and its ecological impacts. Our study is based on the comparison of exhaust emission composition produced by the combustion of rapeseed oil methyl ester (RME) and conventional diesel fuel (DD) and its blends in a direct injection diesel engine XD2P (YTT). The engine was tested in biofuels laboratory of LUA Motor Vehicle Institute. Fuelling the engine with biodiesel and biodiesel/diesel blend reduced oxides of nitrogen by 17.5% (100RME) and by 5.6% (35RME) and carbon monoxide by 49.8% (100RME) and by 45.3% (35RME). Fuelling the engine with biodiesel and different biodiesel/diesel blends reduced the absorbtion coefficient by 33.9% (5RME), by 44.3% (20RME) and by 51.2% (100RME) on free acceleration regime. In these tests soot reduced by 28...76.7% at full opened throttle position with 100RME. (Authors)

  17. Production and Testing of Coconut Oil Biodiesel Fuel and its Blend

    Directory of Open Access Journals (Sweden)

    Oguntola J ALAMU

    2010-12-01

    Full Text Available Many researchers have successfully worked on generating energy from different alternative sources including solar and biological sources such as the conversion of trapped energy from sunlight to electricity and conversion of some renewable agricultural products to fuel. This work considers the use of coconut oil for the production of alternative renewable and environmental friendly biodiesel fuel as an alternative to conventional diesel fuel. Test quantities of coconut oil biodiesel were produced through transesterification reaction using 100g coconut oil, 20.0% ethanol (wt% coconut oil, 0.8% potassium hydroxide catalyst at 65°C reaction temperature and 120 min. reaction time. The experiment was carried out three times and average results evaluated. Low yield of the biodiesel (10.4% was obtained. The coconut oil biodiesel produced was subsequently blended with petroleum diesel and characterized as alternative diesel fuel through some ASTM standard fuel tests. The products were further evaluated by comparing specific gravity and viscosity of the biodiesel blend, the raw coconut oil and conventional petroleum diesel.

  18. Effect of poultry fat oil biodiesel on tractor engine performance

    Directory of Open Access Journals (Sweden)

    M Bavafa

    2016-04-01

    Full Text Available Introduction: Depletion of fossil fuels and environmental degradation are two major problems faced by the world. Today fossil fuels take up to 80% of the primary energy consumed in the world, of which 58% is consumed by the transport sector alone (Mard et al., 2012. The combustion products cause global warming, which is caused of emissions like carbon monoxide (CO, sulfur dioxide (SO2 and nitrogen oxides (NOX. Thus it is essential that low emission alternative fuels to be developed for useing in diesel engines. Many researchers have concluded that biodiesel holds promise as an alternative fuel for diesel engines. Biodiesel is oxygenated, biodegradable, non-toxic, and environmentally friendly (Qi et al., 2010. Materials and Methods: In this study transesterification method was used to produce biodiesel, because of its simplicity in biodiesel production process and holding the highest conversion efficiency. Transesterification of poultry fat oil and the properties of the fuels: Fatty acid methyl ester of poultry fat oil was prepared by transesterification of oil with methanol in the presence of KOH as catalyst. The fuel properties of poultry fat oil methyl ester and diesel fuel were determined. These properties are presented in Table 1. Tests of engine performance and emissions: After securing the qualitative characteristics of produced biodiesel, different biodiesel fuels of 5%, 10%, 15%, and 20% blended with diesel fuel were prepared. A schematic diagram of the engine setup is shown in Fig.1. The MF-399 tractor engine was used in the tests. The basic specifications of the engine are shown in Table 3. The engine was loaded with an electromagnetic dynamometer. The Σ5 model dynamometer manufactured by NJ-FROMENT was used to measure the power and the torque of the tractor engine. The speed range and capacity of this device are shown in Table 2. A FTO Flow Meter, manufactured by American FLOWTECH Company, was used to measure the fuel consumption

  19. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  20. Role of sufficient phosphorus in biodiesel production from diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Yu, Shi-Jin; Shen, Xiao-Fei; Ge, Huo-Qing; Zheng, Hang; Chu, Fei-Fei; Hu, Hao; Zeng, Raymond J

    2016-08-01

    In order to study the role of sufficient phosphorus (P) in biodiesel production by microalgae, Phaeodactylum tricornutum were cultivated in six different media treatments with combination of nitrogen (N) sufficiency/deprivation and phosphorus sufficiency/limitation/deprivation. Profiles of N and P, biomass, and fatty acids (FAs) content and compositions were measured during a 7-day cultivation period. The results showed that the FA content in microalgae biomass was promoted by P deprivation. However, statistical analysis showed that FA productivity had no significant difference (p = 0.63, >0.05) under the treatments of N deprivation with P sufficiency (N-P) and N deprivation with P deprivation (N-P-), indicating P sufficiency in N deprivation medium has little effect on increasing biodiesel productivity from P. triornutum. It was also found that the P absorption in N-P medium was 1.41 times higher than that in N sufficiency and P sufficiency (NP) medium. N deprivation with P limitation (N-P-l) was the optimal treatment for producing biodiesel from P. triornutum because of both the highest FA productivity and good biodiesel quality. PMID:27260287

  1. Analysis of the potential use of palm oil biodiesel for power generation in Amazonian remote systems; Analise do potencial do biodiesel de dende para geracao eletrica em sistemas isolados da Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Anamelia Medeiros

    2008-07-01

    This paper aims to analyze the potential of palm-oil biodiesel production and consumption in remote Amazonian systems (not connected to the national grid), taking into account economic, social and environmental impacts of this biofuel alternative. Through a detailed analysis of remote systems and in particular the examination of the national subside called 'Combustible Consumption Account', the study presents potential scenarios of biodiesel demand for electricity generation in the region, considering also the generation and grid connections projects in forthcoming years. Definition of current and future quantities of biodiesel needed to maintain thermal production in this system defines the Biodiesel investment necessities in remote Amazonian states (Acre, Amapa, Amazonas, Para, Rondonia, Roraima). Possibility of using biodiesel made progress with the launch of the National Program of Production and Use of Biodiesel (PNPB) in 2004. Although African Palm-oil trees adapt very well Amazonian soil, wide adoption of this specie as raw material for biodiesel production shows some barriers, like raise of palm oil price in global market, palm tree long maturation time and attractive price for conventional diesel in the region. Even if using palmoil biodiesel result in obvious significant social and environmental benefits, these benefits tend not to compensate the inefficiency of the market and, thus, expand the biofuel production in the Northern Region. (author)

  2. POTENTIAL OF GREENHOUSE GASES REDUCTION BY FUEL CROP CULTIVATION UTILIZING SEWAGE SLUDGE IN JAPAN

    Science.gov (United States)

    Honda, Ryo; Fukushi, Kensuke

    Potential of greenhouse gases (GHG) reduction was estimated and compared in six scenarios of fuel crop cultivation by utilizing sewage sludge in Japan. Bioethanol from corn and biodiesel fuel from soybean was selected as biofuel produced. When all the sludge discharged from sewage treatment plants in 18 major cities was utilized for soybean cultivation and subsequent biodiesel fuel production, produced biofuel corresponded to 4.0% of GHG emitted from sewage treatment in Japan. On the other hand, cultivation area for fuel crop cultivation was found to be the regulating factor. When fuel crop was cultivated only in abandoned agricultural fields, produced biofuel corresponded to 0.60% and 0.62%, respectively, in the case that corn and soybean was cultivated. Production of biodiesel fuel from soybean was estimated to have more net reduction potential than bioehanol production from corn when sludge production is limited, because required sewage sludge compost was 2.5-times larger in corn although reduction potential per crop area was 2-times larger in bioethanol production from corn.

  3. Energy efficiency procedures for agricultural machinery used in onion cultivation (Allium fistulosum) as an alternative to reduce carbon emissions under the clean development mechanism at Aquitania (Colombia)

    International Nuclear Information System (INIS)

    Climate change has both causes and consequences over agriculture. This paper focuses on the first element and presents scenarios for ASOLAGO -an onion cropper's association in Colombia with 250 members- to reduce their carbon footprint. It evaluates a case study at ''La Primavera'' farm using a methodology approved by the United Nations Framework Convention on Climate Change. Land preparation and crop irrigation were analyzed as stages in order to propose energy efficiency alternatives for both the farm and the association. They include field efficiency, fuel economy and energy efficiency from biofuels for the first stage as well as solar and wind energy supply for the second. A cost-benefit analysis to generate additional income selling additional power produced by the system to the National Grid was done

  4. Energy efficiency procedures for agricultural machinery used in onion cultivation (Allium fistulosum) as an alternative to reduce carbon emissions under the clean development mechanism at Aquitania (Colombia)

    Science.gov (United States)

    Ochoa, K.; Carrillo, S.; Gutierrez, L.

    2014-06-01

    Climate change has both causes and consequences over agriculture. This paper focuses on the first element and presents scenarios for ASOLAGO -an onion cropper's association in Colombia with 250 members- to reduce their carbon footprint. It evaluates a case study at "La Primavera" farm using a methodology approved by the United Nations Framework Convention on Climate Change. Land preparation and crop irrigation were analyzed as stages in order to propose energy efficiency alternatives for both the farm and the association. They include field efficiency, fuel economy and energy efficiency from biofuels for the first stage as well as solar and wind energy supply for the second. A cost-benefit analysis to generate additional income selling additional power produced by the system to the National Grid was done.

  5. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine

    International Nuclear Information System (INIS)

    Highlights: • Calophyllum inophyllum has been evaluated as a potential feedstock for biodiesel. • Acid and base catalyzed transesterification processes was used to produce biodiesel. • The physiochemical properties of CIME fulfilled specification of ASTM D6751. • Engine performance and emission are conducted for CIME and its blends. - Abstract: In the present study, crude Calophyllum inophyllum oil (CCIO) has been evaluated as a potential feedstock for biodiesel production. C.inophyllum oil has high acid value which is 59.30 mg KOH/g. Therefore, the degumming, esterification, neutralization and transesterification process are carried out to reduce the acid value to 0.34 mg KOH/g. The optimum yield was obtained at 9:1 methanol to oil ratio with 1 wt.%. NaOH catalyst at 50 °C for 2 h. On the other hand, the C.inophyllum biodiesel properties fulfilled the specification of ASTM D6751 and EN 14214 biodiesel standards. After that, the C.inophyllum biodiesel diesel blends were tested to evaluate the engine performance and emission characteristic. The performance and emission of 10% C.inophyllum biodiesel blends (CIB10) give a satisfactory result in diesel engines as the brake thermal increase 2.30% and fuel consumption decrease 3.06% compared to diesel. Besides, CIB10 reduces CO and smoke opacity compared to diesel. In short, C.inophyllum biodiesel can become an alternative fuel in the future

  6. Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines

    OpenAIRE

    Saddam H. Al-lwayzy; Talal Yusaf

    2013-01-01

    Biodiesel has attracted a great deal attention recently as an alternative fuel due to increasing fuel prices and the imperative to reduce emissions. Among a wide range of biodiesel resources, microalgae are a promising alternative fuel source because of the high biomass, lipid productivity and environmentally friendliness. Microalgae is also a non-edible food, therefore, there will be no impact on the human food supply chain. In this work, petroleum diesel (PD) and biodiesel from the microalg...

  7. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower

  8. SINTESIS BIODIESEL DARI MINYAK MIKROALGA Chlorella vulgaris DENGAN REAKSI TRANSESTERIFIKASI MENGGUNAKAN KATALIS KOH

    Directory of Open Access Journals (Sweden)

    Catur Rini Widyastuti

    2014-10-01

    Full Text Available Biodiesel merupakan salah satu energi alternatif yang dianggap mampu menjawab permasalahan kelangkaan bahan bakar minyak. Biodiesel dapat disintesis dari minyak nabati melalui reaksi transesterifikasi. Sumber minyak nabati yang potensial adalah mikroalga yang memiliki produktifitas minyak yang lebih tinggi per satuan luas lahan yang digunakan jika dibandingkan dengan tanaman darat. Mikroalga jenis Chlorella sp diketahui mengandung komponen lipid cukup tinggi yaitu sebesar 14-22%. Langkah-langkah penelitian yang dilakukan meliputi ekstraksi minyak mikroalga dengan n-heksana, reaksi transesterifikasi minyak mikroalga dan metanol dengan katalis KOH, dilanjutkan dengan filtrasi untuk memisahkan produk biodiesel dengan gliserol yang terbentuk. Untuk mengetahui kandungan kimia dalam bahan baku dan produk, minyak hasil ekstraksi mikroalga dan biodiesel yang dihasilkan dianalisis dengan GC-MS. Dari hasil uji GC-MS diketahui dua kandungan asam lemak terbesar dalam minyak mikroalga, yaitu Dodecanoic acid sebesar 59.52% dan n-Decanoic acid sebesar 12.64%. Dari proses transesterifikasi, yield biodiesel yang diperoleh sebesar 59.85% dengan densitas 0.88 g/cm3. Kandungan kimia biodiesel diketahui terdiri dari senyawa Fatty Acid Methyl Ester (FAME sebesar 15.4% dan Fatty Acid Ethyl Ester (FAEE sebesar 21.14%.Biodiesel is one of the alternative energy which expected to provide a solution towards our dependence of fossil fuel. Biodiesel could be synthesized from vegetable oil through transesterification process. One of the most potential sources of vegetable oil is microalgae which is more productive than a land-based plant. One of the species of microalgae which is Chlorella sp is known for containing high lipid content from 14 to 22%. The steps of the research including extraction of microalgae oil using n-hexane, transesterification reaction between microalgae and methanol using KOH as a catalyst, and continued by filtration to separate the biodiesel product

  9. Marine biodiesel use in the Puget Sound

    International Nuclear Information System (INIS)

    This presentation explored the use of marine biodiesel in the Puget Sound region. Marine vessels are now adopting biodiesel fuels as a means of expressing corporate commitments to reducing greenhouse gas (GHG) emissions and the environmental impacts of hydrocarbons released into marine environments. Various biodiesel blends have been designed for use in small commercial, recreational, and research vessels. Biodiesel has also been adopted by charter and whale watching vessels in the Puget Sound. The Guemes Island Ferry has recently been re-configured to use biodiesel fuels, with 2 fuel tanks capable of receiving 2200 gallons at a time. The ferry adopted biodiesel after receiving soot complaints from marinas, and hopes to serve as a model for other vessels in the region. Four fueling docks supply the biodiesel blend to marine vessels. The sale of biodiesel has doubled in some marinas over the last 5 years. Deterrents to biodiesel use include parts incompatibilities and warranty problems. Some marinas have stopped selling biodiesel as a result of low sales and high prices. It was concluded that educational programs are needed to ensure the widespread adoption of biodiesel in the Puget Sound. refs., tabs., figs

  10. Lipid Yield and Composition of Azolla filiculoides and the Implications for Biodiesel Production

    OpenAIRE

    Brouwer, Paul; Werf, van der, W.; Schluepmann, Henriette; Reichart, Gert Jan; Nierop, Klaas G J

    2016-01-01

    The aquatic fern Azolla is one of the fastest-growing nitrogen-fixing plants on Earth and therefore considered as a potential source of biomass for bioenergy production. The lipid fraction from Azolla filiculoides was analyzed to investigate whether it suited biodiesel production. Since the productivity of Azolla is further increased at higher CO2 concentrations, A. filiculoides biomass was produced at 800 ppm CO2 mimicking a cultivation system utilizing CO2 waste from industry. The harvested...

  11. Biodiesel Production from Selected Microalgae Strains and Determination of its Properties and Combustion Specific Characteristics

    OpenAIRE

    N. Kokkinos; A. Lazaridou; N. STAMATIS; S. ORFANIDIS; A. Ch. Mitropoulos; A. Christoforidis; N. Nikolaou

    2015-01-01

    Biofuels are gaining importance as significant substitutes for the depleting fossil fuels. Recent focus is on microalgae as the third generation feedstock. In the present research work, two indigenous fresh water and two marine Chlorophyte strains have been cultivated successfully under laboratory conditions using commercial fertilizer (Nutrileaf 30-10-10, initial concentration=70 g/m3 ) as nutrient source. Gas chromatographic analysis data showed that microalgae biodiesel obta...

  12. Study of fuel properties of rubber seed oil based biodiesel

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • This article presents the comparative studies of the fuel properties of rubber seed oil based biodiesel. • The design expert has been adopted for the optimization of the process variables. • The FTIR, cold flow properties and oxidation stability are the findings of present study. • All the fuel properties met the standards such as ASTM D6751 and EN 14214. • Present study reveals that rubber seed oil as a non-edible source potentially contributes for esters production. - Abstract: The scarcity of the fossil fuel, environmental pollution and food crisis are the world’s major issues in current era. Biodiesel is an alternative to diesel fuel, environment friendly and biodegradable and is produced from either edible or non-edible oils. In this study, a non-edible rubber seed oil (RSO) with high free fatty acid (FFA) content of 45% were used for the production of biodiesel. The process comprises of two steps. The first step is the acid esterification to reduce the FFA value and the second step is the base transesterification. The response surface methodology (RSM) was used for parametric optimization of the two stage processes i.e. acid esterification and base transesterification. The yield of biodiesel was analyzed using gas chromatography. The FTIR (Fourier Transform Infra-Red) spectrum was also determined to confirm the conversion of fatty acid to methyl esters. The fuel properties were analyzed according to the ASTM D6751 and EN14214 and were compared with the previous finding of researchers. All analyzed properties fulfilled the biodiesel standard criteria

  13. Biodiesel production from corn oil by transesterification process

    International Nuclear Information System (INIS)

    There is much political demand and economic pressure to convert agricultural surpluses into material, such as motor fuel, in which the world is deficient. Transport industry is primary consumer of crude oil. Due to scarcity of known petroleum reserves, the possible alternative fuel for use in present engine technology is biofuels. Europe, USA and Brazil are successfully using biofuels. Biofuels causes less environmental pollution as compared to normal petro fuels. As a fuel, ethanol (gasohol) is used in internal combustion engine while methyester (Biodiesel) is used in diesel engines with same or better performance as compared to petro fuels. Corn is very valuable crop with numerous industrial applications, and is used in more than 300 modern industries, including the manufacture of textiles, paper, adhesives, insecticides, paints, soaps, explosives and many more. Presently the biggest source of ethanol production is from corn (produced by USA). Edible oil can also be extracted from corn which is normally used for cooking and it can be used for biodiesel production. Many countries are experimenting on fats and oil to get feasible data for production of biodiesel. Presently USA prefer to use soybean oil as raw material for commercial production of biodiesel while in Europe rapeseed oil is preferred, so therefore, it depends upon the availability of raw material in particular area and may change from location to location. In Pakistan we started with corn oil to produce biodiesel by transesterification method. In present study different design parameters such as effect of temperature, catalyst concentration, molar ratio, and Stirrer speed were founded for better conversion of neat and used corn oil into biodiesel. The optimum parameters proposed for neat corn oil are 0.5% of catalyst based on weight of corn oil, temperature between 50 deg. C to 60 deg. C, reaction time 15 minutes, molar ratio of 6:1 and speed of stirrer 155 rpm. In case of used corn oil high catalyst

  14. Biodiesel/Petrodiesel blends: analytical determination of biodiesel percentage

    International Nuclear Information System (INIS)

    Analysis of biodiesel/petrodiesel blends is of interest both for technical and fiscal reasons. Several methods have been developed to carried out this kind of analysis, most of team based on chromatographic and spectroscopic techniques. Recently, a new method based on natural abundance radiocarbon analysis has been proposed and validated and could be extended for more complex samples

  15. Improvement of lipid content of Chlorella minutissima MCC 5 for biodiesel production.

    Science.gov (United States)

    Chakraborty, Sourabh; Mohanty, Debabrata; Ghosh, Supratim; Das, Debabrata

    2016-09-01

    Lipids extracted from microalgae have been considered as a potential source for the production of biodiesel. Enhancement of lipid has the limitations of low biomass productivity. So, the main objective of the present study was to deduce suitable conditions for the improvement of biomass production followed by enhancement of lipid content. After optimization, a strategy for two stage cultivation was utilized where high lipid content was obtained with a high biomass concentration. Optimization of biomass production of Chlorella minutissima MCC 5 was carried out under different intensities of light, temperatures, concentrations of nitrate and phosphate using Taguchi model. A suitable synergy of the four parameters yielded maximum biomass (1.93 g L(-1)) in airlift reactor. Temperature was found to be relatively effective than other parameters for higher biomass production. Activation energy for the cell growth was determined (47.95 kJ mol(-1)). Among the various (photo, thermal, nitrate and phosphate) stress conditions studied, nitrate limitation (1 mM) was found to be suitable for the enhancement of lipid resulting highest yield (48.26% w/w). Two stage cultivation of the microalgae yielded a maximum lipid content of 46% w/w with a biomass concentration of 2.2 g L(-1). Additionally, FAME analysis exhibited significant increase of oleic acid in the biodiesel. So, C. minutissima MCC 5 cultivated under nitrate stress could be a possible feedstock for biodiesel production. PMID:26922477

  16. Biodegradation of biodiesel fuels

    International Nuclear Information System (INIS)

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO2 evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO2 evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO2 evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO2. The test substances were examined for BOD5 and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD5 and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD5 and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p 5 value

  17. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    Directory of Open Access Journals (Sweden)

    R. B. Sharma,

    2014-01-01

    Full Text Available In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried out for its performance and emission analysis. The results which obtained are significantly comparable to pure diesel. It shows that biodiesel obtained from cooking oil can be used as alternative fuel with better performance and lower emissions compared with diesel and play a very vital role for the overall economic development of the country.

  18. Biodiesel production from Jatropha curcas: Integrated process optimization

    International Nuclear Information System (INIS)

    Highlights: • The oil obtained from Jatropha curcas fruits has high variability in its properties. • A process for biodiesel production has been developed for small scale projects. • Oil neutralization with the glycerine phase has important advantages. • The glycerine phase and the meal are adequate to produce biogas. - Abstract: Energy obtained from renewable sources has increased its participation in the energy matrix worldwide, and it is expected to maintain this tendency. Both in large and small scales, there have been numerous developments and research with the aim of generating fuels and energy using different raw materials such as alternative crops, algae and lignocellulosic residues. In this work, Jatropha curcas plantation from the North West of Argentina was studied, with the objective of developing integrated processes for low and medium sizes farms. In these cases, glycerine purification and meal detoxification processes represent a very high cost, and usually are not included in the project. Consequently, alternative uses for these products are proposed. This study includes the evaluation of the Jatropha curcas crop during two years, evaluating the yields and oil properties. The solids left after the oil extraction were evaluated as solid fuels, the glycerine and the meal were used to generate biogas, and the oil was used to produce biodiesel. The oil pretreatment was carried out with the glycerine obtained in the biodiesel production process, thus neutralizing the free fatty acid, and decreasing the phosphorous and water content

  19. Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    B. Deepanraj

    2011-01-01

    Full Text Available Problem statement: The increasing awareness of the environmental hazards and the alarming levels of air pollution have led to more restrictive regulations on engines emission control in recent years. Approach: The dwindling resources and rising cost of crude oil have resulted in an intensified search for alternate fuels. In the present study biodiesel (palm oil methyl ester blends with diesel was investigated in a direct injection stationary diesel engine. The stationary engine test bed used consists of a single-cylinder four stroke diesel engine, eddy current dynamometer with computer control data acquisition system and exhaust emissions analyzer. Results: Engine tests were conducted at constant speed using neat diesel fuel and various proportions of biodiesel blends. The exhaust emissions such as CO, HC and NOx were measured using exhaust gas analyzer. Performance characteristics like brake thermal efficiency and specific fuel consumption were recorded. The differences in the measured emissions and performance of the biodiesel-diesel fuel blends from the baseline operation of the engine, i.e., when working with neat diesel fuel were determined and compared. Conclusion: It was concluded that the lower blends of biodiesel increased the brake thermal efficiency and reduced the fuel consumption. Biodiesel blends produces lower engine emissions than diesel. From the result, it has been established that 20-40% of palm oil biodiesel can be use as a substitute for diesel without any engine modifications.

  20. A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory

    Energy Technology Data Exchange (ETDEWEB)

    Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

    2007-01-30

    Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

  1. Prospects and current status of B5 biodiesel implementation in Malaysia

    International Nuclear Information System (INIS)

    This paper addresses B5 biodiesel programs in Malaysia, global challenges on the production of palm oil. Protective measures for future efficiency as well as continued viability of this renewable energy sector are also discussed. Crude palm oil (CPO) prices are currently suppressed because of high palm oil inventory. Malaysian government has taken a pro-active step in implementing the B5 biodiesel for transportation and industrial sectors through the introduction of B5 biodiesel. The B5 Biodiesel Program which was initially targeted at selected government agencies has been fully implemented for subsidized sectors in the Central Region. The promotion of B5 development is highly attractive due to its potential local feedstock from palm oil industry and the availability of production technologies that offer opportunities for the sustainable development in energy entrepreneurships. Nationally, produced B5 will improve the access to alternative energy services and is expected to help in improving productivity and sustainability. Despite successful local B5 implementation, Malaysia is recently facing global challenges on the biodiesel production which currently remains stagnant due to weak domestic demand and uncompetitive export tax structure. -- Highlights: •Prospects of B5 biodiesel implementation in Malaysia. •National Biofuel Policy thrusts pertinent to B5 program. •Successful application of B5 in government and industrial sectors. •Challenges in CPO production, weak domestic demand and export tax. •Reassessment of national policy according to global issues

  2. Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia

    International Nuclear Information System (INIS)

    Research on alternative fuel for the vehemently growing number of automotivesis intensified due to environmental reasons rather than turmoil in energy price and supply. From the policy and steps to emphasis the use of biofuel by governments all around the world, this can be comprehended that biofuel have placed itself as a number one substitute for fossil fuels. These phenomena made Southeast Asia a prominent exporter of biodiesel. But thrust in biodiesel production from oilseeds of palm and Jatropha curcas in Malaysia, Indonesia and Thailand is seriously threatening environmental harmony. This paper focuses on this critical issue of biodiesels environmental impacts, policy, standardization of this region as well as on the emission of biodiesel in automotive uses. To draw a bottom line on feasibilities of different feedstock of biodiesel, a critical analysis on oilseed yield rate, land use, engine emissions and oxidation stability is reviewed. Palm oil based biodiesel is clearly ahead in all these aspects of feasibility, except in the case of NOx where it lags from conventional petro diesel. (author)

  3. Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Jayed, M.H.; Masjuki, H.H.; Saidur, R.; Kalam, M.A.; Jahirul, M.I. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2009-12-15

    Research on alternative fuel for the vehemently growing number of automotivesis intensified due to environmental reasons rather than turmoil in energy price and supply. From the policy and steps to emphasis the use of biofuel by governments all around the world, this can be comprehended that biofuel have placed itself as a number one substitute for fossil fuels. These phenomena made Southeast Asia a prominent exporter of biodiesel. But thrust in biodiesel production from oilseeds of palm and Jatropha curcas in Malaysia, Indonesia and Thailand is seriously threatening environmental harmony. This paper focuses on this critical issue of biodiesels environmental impacts, policy, standardization of this region as well as on the emission of biodiesel in automotive uses. To draw a bottom line on feasibilities of different feedstock of biodiesel, a critical analysis on oilseed yield rate, land use, engine emissions and oxidation stability is reviewed. Palm oil based biodiesel is clearly ahead in all these aspects of feasibility, except in the case of NO{sub x} where it lags from conventional petro diesel. (author)

  4. Improvement of the cold flow characteristics of biodiesel containing dissolved polymer wastes using acetone

    Directory of Open Access Journals (Sweden)

    Pouya Mohammadi

    2014-03-01

    Full Text Available Due to the fast fossil fuel depletion and at the same time global warming phenomenon anticipated for the next coming years, the necessity of developing alternative fuels e.g. biofuels (i.e. bioethanol, biodiesel, biogas and etc. has turned into an important concern. Recently, the application of the bio-solvency properties of biodiesel for recycling waste polymers has been highlighted. However, the impact of polymer dissolution on cold flow characteristics of biodiesel was never investigated. The present study was set to explore the impact of different solvents in stabilizing biodiesel-polymer solution. Among them, acetone was proved to be the best fuel stabilizer. Subsequently, cold flow characteristic i.e. cloud point, of the biodiesel-polymer-acetone fuel was found to have improved (decreased due to the inclusion of acetone. Finally, flash point analysis of the fuel blends containing acetone was done to ensured high safety of the fuel blend by dramatically increasing the flash point values of biodiesel-polymer fuel blends.

  5. Biodiesel via hydrotreating of fat

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Ahmed, El Hadi; Christensen, Claus Hviid

    Biodiesel production via transesterification to fatty acid alkyl esters is rising rapidly worldwide due to the limited availability of fossil resources and the problems of global warming. Often, however, the use of 2nd-generation feedstock like animal waste fat and trap greases etc. is made...

  6. Biodiesel production using heterogenous catalyst

    Science.gov (United States)

    The current transesterification of triacylglycerides (TAG) to produce biodiesel is based on the homogenous catalyst method using strong base such as hydroxides or methoxides. However, this method results in a number of problems: (1) acid pre-treatment is required of feedstocks high in free fatty ac...

  7. Biodiesel separation and purification: A review

    Energy Technology Data Exchange (ETDEWEB)

    Atadashi, I.M.; Aroua, M.K.; Aziz, A. Abdul [Chemical Engineering Department, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-02-15

    Biodiesel as a biodegradable, sustainable and clean energy has worldwide attracted renewed and growing interest in topical years, chiefly due to development in biodiesel fuel and ecological pressures which include climatic changes. In the production of biodiesel from biomass, separation and purification of biodiesel is a critical technology. Conventional technologies used for biodiesel separation such as gravitational settling, decantation, filtration and biodiesel purification such as water washing, acid washing, and washing with ether and absorbents have proven to be inefficient, time and energy consumptive, and less cost effective. The involvement of membrane reactor and separative membrane shows great promise for the separation and purification of biodiesel. Membrane technology needs to be explored and exploited to overcome the difficulties usually encountered in the separation and purification of biodiesel. In this paper both conventional and most recent membrane technologies used in refining biodiesel have been critically reviewed. The effects of catalysts, free fatty acids, water content and oil to methanol ratios on the purity and quality of biodiesel are also examined. (author)

  8. Biodiesel separation and purification: A review

    International Nuclear Information System (INIS)

    Biodiesel as a biodegradable, sustainable and clean energy has worldwide attracted renewed and growing interest in topical years, chiefly due to development in biodiesel fuel and ecological pressures which include climatic changes. In the production of biodiesel from biomass, separation and purification of biodiesel is a critical technology. Conventional technologies used for biodiesel separation such as gravitational settling, decantation, filtration and biodiesel purification such as water washing, acid washing, and washing with ether and absorbents have proven to be inefficient, time and energy consumptive, and less cost effective. The involvement of membrane reactor and separative membrane shows great promise for the separation and purification of biodiesel. Membrane technology needs to be explored and exploited to overcome the difficulties usually encountered in the separation and purification of biodiesel. In this paper both conventional and most recent membrane technologies used in refining biodiesel have been critically reviewed. The effects of catalysts, free fatty acids, water content and oil to methanol ratios on the purity and quality of biodiesel are also examined. (author)

  9. Ultrasound-assisted biodiesel production from Camelina sativa oil.

    Science.gov (United States)

    Sáez-Bastante, J; Ortega-Román, C; Pinzi, S; Lara-Raya, F R; Leiva-Candia, D E; Dorado, M P

    2015-06-01

    The main drawbacks of biodiesel production are high reaction temperatures, stirring and time. These could be alleviated by aiding transesterification with alternative energy sources, i.e. ultrasound (US). In this study, biodiesel was obtained from Camelina sativa oil, aided with an ultrasonic probe (20kHz, 70% duty cycle, 50% amplitude). Design of experiments included the combination of sonication and agitation cycles, w/wo heating (50°C). To gain knowledge about the implications of the proposed methodology, conventional transesterification was optimized, resulting in higher needs on catalyst concentration and reaction time, compared to the proposed reaction. Although FAME content met EN 14103 standard, FAME yields were lower than those provided by US-assisted transesterification. Energy consumption measurements showed that ultrasound assisted transesterification required lower energy, temperature, catalyst and reaction time. PMID:25768413

  10. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    Science.gov (United States)

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work. PMID:26154033

  11. Physico-chemical screening of accessions of Jatropha curcas for biodiesel production

    International Nuclear Information System (INIS)

    Biodiesel is an alternative environmentally friendly fuel made from renewable biological sources such as vegetable oils and animal fats. The present report deals with screening of 14 accessions of Jatropha curcas collected from all over India to find the most suitable ones for production of Biodiesel. From the 14 accessions of J. curcas located in the plantation at Osmania University, 4 accessions were initially selected on the basis of traits like general appearance, pest resistance, seed yield and seed-oil content. Further, the seed-oil of these 4 accessions was characterized by physico-chemical analysis to identify the elite accessions for production of biodiesel. Highest 1000-seed weight (640 g) and highest percentage seed-oil content (50.16) (extracted by Soxhlet method with hexane as the solvent) was recorded in the “KM” accession. The transesterification process is affected by the presence of high free fatty acids (recorded in “MB” accession) and high moisture content (recorded in “KM” accession) of the seed-oil which also interfere with the separation of fatty esters and glycerol during production of Biodiesel. Further, high phosphorus content and iodine number (recorded in “MB” accession) interfere with conversion of seed-oil to Biodiesel. In the above context, in spite of its yield being lower, the seed-oil of the “RSAD” accession was found to be most suitable for Biodiesel production followed by “KM”, “F.W.B” and “MB” accessions, since it contains lower free fatty acids, acid value, viscosity, diglycerides and iodine number. -- Highlights: ► We analyzed Indian Jatropha accessions for yield and quality. ► Elite accessions were selected for physico-chemical analysis of seed-oil. ► Four elite accessions identified as good candidates for Biodiesel production. ► The “RSAD” accession was found to be the best suited for biodiesel.

  12. Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile

    International Nuclear Information System (INIS)

    Highlights: ► Rapeseed biodiesel accounts for a 40% GHG emissions savings compared to fossil diesel. ► Biodiesel has greater impacts than fossil diesel in 7 of the 13 indicators evaluated. ► Agricultural stage cause the greatest impacts in biodiesel pathway. ► A production strategy involving low-impact or renewable resources should be used. ► Use of livestock manure as organic fertilizer presents the best environmental profile. -- Abstract: This study uses a site-specific life cycle assessment (LCA) to evaluate the environmental profile and energy and water demand of potential production options for rapeseed biodiesel in Chile. The first step is the analysis of the biodiesel supply chain in a standard scenario, associated with the most likely production conditions. The second step is the evaluation of the following alternative scenarios related to a production strategy involving low-impact or renewable resources: (1) Addition of livestock manure as organic fertilizer, (2) Use of degraded grassland, (3) Biodiesel transport by rail, and (4) Use of forest residues for industrial steam. The results show that the biodiesel in the standard scenario has less environmental impacts than fossil diesel in 4 of the 13 indicators evaluated. The rapeseed production is the stage with the highest contribution to impacts. The scenario 1 presents the best environmental profile. The scenario 2 reduces the greenhouse gas emissions of biodiesel. The scenarios 3 and 4 moderately improve the profile of the biofuel. The four situations could be implemented in the short term, but should be backed up by economic and social studies.

  13. Advances in solid-catalytic and non-catalytic technologies for biodiesel production

    International Nuclear Information System (INIS)

    Highlights: • The recent technologies for promoting biodiesel synthesis were elucidated. • The design of catalyst consideration of biodiesel production was proposed. • The recent advances and remaining difficulties in biodiesel synthesis were outlined. • The future research trend in biodiesel synthesis was highlighted. - Abstract: The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future

  14. Characterization of particle size distribution from diesel engines fueled with palm-biodiesel blends and paraffinic fuel blends

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Chia-Fon; Fang, Tiegang

    Biodiesels are promoted as alternative fuels and their applications in diesel engines have been investigated by many researchers. However, the particle size distribution emitted from heavy-duty diesel engines fueled with palm-biodiesel blended with premium diesel fuel and paraffinic fuel blended with palm-biodiesel has seldom been addressed. Thus, five test fuels were used in this work to study the particle size distribution: D100 (premium diesel fuel), B100 (100% palm-biodiesel), B20 (20 vol% palm-biodiesel+80 vol% D100), BP9505 (95 vol% paraffinic fuel+5 vol% palm-biodiesel) and BP8020 (80 vol% paraffinic fuel+20 vol% palm-biodiesel). A Micro-Orifice Uniform Deposit Impactor (MOUDI) equipped with aluminum filters was used to collect size-resolved samples. Experimental results indicated that palm-biodiesel blends and paraffinic fuel blends could improve combustion efficiency in diesel engines, but pure palm-biodiesel could cause incomplete combustion. Adding palm-biodiesel to diesel fuel would slightly increase particles with diameter fuel blends could decrease particles with diameter fuels. On the other hand, a greater fraction of particulate matter of BP9505 and BP8020 existed in coarse particles (diameter: 2.5-10 μm). Energy efficiency also increases significantly by 12.3-15.1% with the introduction of paraffinic fuel blends into the engine. Nevertheless, paraffinic fuel blends also reduce the emission of particulate matters by 36.0-38.4%. Carbon monoxide was decreased by 36.8-48.5%. Total hydrocarbon is 39.6-41.7% less than diesel fuel combustion. Nitrogen oxides emission is about 5% lower for paraffinic fuel. These results show that paraffinic fuel can be very competitive and replaced diesel fuels in the future.

  15. Gas Turbines and Biodiesel : a Clarification of the Relative NOx Indices of Fame, Gasoil and Natural Gas

    OpenAIRE

    Glaude, Pierre-Alexandre; Fournet, René; Bounaceur, Roda; Molière, Michel

    2009-01-01

    There is currently a sustained interest in biofuels as they represent a potential alternative to petroleum derived fuels. Biofuels are likely to help decrease greenhouse gases emissions and the dependence on oil resources. Biodiesels are Fatty Acid Methyl Esters (FAMEs) that are mainly derived from vegetable oils; their compositions depend from the parent vegetables: rapeseed (“RME”), soybean (“SME”), sunflower, palm etc. A fraction of biodiesel has also an animal origin (“tallow”). A key fac...

  16. Production of Bio-Diesel to Neem oil and its performance and emission Analysis in two stroke Diesel Engine.

    OpenAIRE

    G.Mahesh BABU; VIKAS KUMAR; ANUPRASAD SG

    2013-01-01

    In India Neem tree is a widely grown up termed as a divine tree due to its wide relevance in many areas of study. This paper deals with Biodiesel production from neem oil, which is monoester produced usingtransesterification process. Biodiesel is a safe alternative fuel to replace traditional petroleum diesel. It has high lubricity, clean burning fuel and can be a fuel component for use in existing unmodified diesel engine. Neem (Azadirachita Indica) is an evergreen tree, which is endemic to ...

  17. Biodiesel Production From the Microalgae Nannochloropsis by Microwave Using CaO and MgO Catalysts

    OpenAIRE

    Herman Hindarso; Aylianawati Aylianawati; Martinus Edy Sianto

    2015-01-01

    The needs of world petroleum are increased; in contrast, the fuel productions are getting decreased. Therefore, it has lead to the search for bio-fuel as an alternative energy. There are several different types of biofuel, such as biodiesel, ethanol, bioalcohol, and biogas. Biodiesel is typically made by chemically reacting lipids from a vegetable oil or animal fat with an alcohol producing fatty acid esters, such as methyl or ethyl ester. The present study aimed to study the effect of temper...

  18. Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation

    OpenAIRE

    Abiney L. Cardoso; Soraia Cristina Gonzaga Neves; Marcio J. da Silva

    2008-01-01

    The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs) is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H2SO4 i...

  19. Experimental investigation of VOCs emitted from a DI-CI engine fuelled with biodiesel, diesel and biodiesel-diesel blend

    International Nuclear Information System (INIS)

    Experimental investigation of volatile organic compounds (VOCs) emitted by a turbocharged direct injection compression ignition (DI-CI) engine, alternatively fuelled with biodiesel and its 20% blend with diesel, revealed dominancy of diesel and biodiesel in aromatic hydrocarbons, esters other oxides, respectively, in total volatile organic compounds (TVOCs). The overall brake specific emission of VOCs increased at rated speed compared to maximum torque speed. The VOCs exhibited their maxima at low load, and minima at medium load for diesel and B100. Engines with a speed of 2300 r/min and 100% load showed a reduction in BTX emissions from B20 and B100, as compared to diesel. The sum of VOC-components of B20 and B100 reduced as compared to that of the diesel, for all the engine conditions. The mean BSE of BTX-components taken from all the engine conditions decreased with B20 and B100, relative to fossil diesel. (author)

  20. New regulatory landmark for biodiesel use; Novo marco regulatorio para usos de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rosangela Moreira de [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Brazilian Biodiesel Production and Use of Biodiesel - PNPB, made possible the insert of Biodiesel in the Brazilian energy matrix. The National Agency of the Petroleum, Natural Gas and Biofuels - ANP was responsible to create the outline regulatory that established the rules for entrance and commercialization of this new fuel in the country. This work seeks to present the effects of the implantation of the new relative rules to the biodiesel use. (author)

  1. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    OpenAIRE

    AZHARI T. I. MOHD. GHAZI; M. F. M. GUNAM RESUL; R. YUNUS; T. C. SHEAN YAW

    2008-01-01

    The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR) is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing b...

  2. A comparison of the European renewable energy directive default emission values with actual values from operating biodiesel facilities for sunflower, rape and soya oil seeds in Italy

    International Nuclear Information System (INIS)

    The European Union (EU) set a binding greenhouse gas (GHG) emission reduction target for transportation biofuels and other bioliquids. In this study, the GHG emissions of biodiesel chain from sunflower, rapeseed and soybean were calculated in compliance with the European Union Renewable Energy Directive 2009/28/EC (RED). Input data used for the agricultural step were referred to the Umbrian region for sunflower and rapeseed and to the Veneto region for soybean, while data obtained from the main Italian biodiesel plants were employed for the processing step. Results showed that GHG emissions were higher than default values reported in the RED for sunflower and rapeseed and lower for soybean. Only sunflower biodiesel does not reach the minimum value of GHG saving (35%). The main differences with data used in the RED concern cultivation step, while the processing step has overall the same values of GHG emissions. Finally, three case studies were examined in order to identify possible improvements to make the analyzed supply chains more sustainable. -- Highlights: ► GHG balance of biodiesel from sunflower, rapeseed and soya was analyzed. ► Cultivation has the highest environmental impact for sunflower and rapeseed chains. ► Typical Italian data were adopted for cultivation and processing steps. ► GHG emissions were lower than RED default values for soya biodiesel. ► Cogeneration for the processing plant can greatly increase GHG saving.

  3. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    Directory of Open Access Journals (Sweden)

    Digby Wrede

    Full Text Available The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm, large (over 300 µm, heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.

  4. Thermoanalytical characterization of castor oil biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Marta M.; Fernandes, Valter J. [Universidade Federal do Rio Grande do Norte, Departamento de Quimica, Laboratorio de Combustiveis, Natal, RN, Lagoa Nova, CEP 59072970 (Brazil); Candeia, Roberlucia A.; Bezerra, Aline F.; Souza, Antonio G. [Universidade Federal da Paraiba, Departamento Quimica, Joao Pessoa, PB (Brazil); Silva, Fernando C. [Universidade Federal do Maranhao, Sao Luis, Maranhao (Brazil)

    2007-06-15

    The castor oil seed has 47-49% of oil. Biodiesel obtained from castor oil has a lower cost compared to the ones obtained from other oils, as due its solvability in alcohol transesterification occurs without heating. The use of biodiesel will allow a reduction on the consumption of petroleum-derived fuels minimizing the harmful effects on the environment. This work wants to provide a thermoanalytical and physical-chemistry characterization of castor oil and biodiesel. Biodiesel was obtained with methyl alcohol and characterized through several techniques. Gas chromatography indicated methyl ester content of 97.7%. The volatilization of biodiesel starts and finishes under inferior temperatures than the beginning and final volatilization temperatures of castor oil. Biodiesel data are very close to the volatilization temperatures of conventional diesel. (author)

  5. Three years operational experience with biodiesel

    International Nuclear Information System (INIS)

    TSI Terminal Systems Inc. is the largest container terminal operator in Canada, and has an annual payroll exceeding $150 million. The company started a biodiesel test program with the Canadian Bioenergy Corporation in order to assess the emission reduction impacts of using biodiesel. The pilot was tested with 6 different pieces of equipment used at the terminal over an initial period of 3 weeks. Emissions testing was then conducted for different biodiesel blend levels and compared with baseline data in relation to particulate matter, total hydrocarbons, carbon monoxide (CO), carbon dioxide (CO2), and nitrous oxides (NOx). Results of the tests confirmed that the biodiesel blends significantly reduced emissions at the terminal and confirmed the operability of biodiesel. Overall emissions were reduced by 30 per cent. The fuel is now being used in all the company's equipment. The use of the biodiesel has not resulted in any engine failures or power losses. tabs., figs

  6. Application of mesoporous catalysts over palm-oil biodiesel for adjusting fuel properties

    International Nuclear Information System (INIS)

    Highlights: ► The catalysts MCM-41 and SiO2/Fe3O4 were used to reduce the low-temperature fluidity of biodiesel. ► The catalyst SiO2/Fe3O4 was found to be more effective than MCM-41 for dehydrogenation and cracking reaction. ► Biodiesel had a lower water formation rate when the catalysts were used in the reaction. ► Biodiesel catalyzed by SiO2/Fe3O4 at 600 °C produced the lowest CFPP and the highest iodine value. - Abstract: Biodiesel has superior fuel characteristics, including a higher flash point, better lubricity, and higher oxygen content, and is thus considered a promising alternative clean fuel to petroleum diesel. The cold filter plugging point (CFPP) is the most significant indicator of the low-temperature fluidity of biodiesel. The CFPP of biodiesel is generally higher than that of petroleum diesel primarily due to the longer carbon-chain structures of the fatty acids in the former. Raw materials such as palm oil and waste cooking oil are widely used as the feedstock to produce biodiesel because of their low cost, good availability, and stable lipid provision. However, they generally have a poor low-temperature fluidity, which limits their application in colder climates. In this experimental study, the catalytic dehydrogenation and cracking reaction technique was used to reduce the CFPP of palm-oil biodiesel with an initial CFPP of as high as 14 °C. The catalytic variables of the type of mesoporous catalyst and operating temperature are considered in this study. The resultant fuel properties of palm-oil biodiesel catalyzed by MCM-41 and SiO2/Fe3O4 were compared with biodiesel thermally cracked without a catalyst. The operating temperature of the catalyzed dehydrogenation and cracking reaction was controlled in the range between 400 and 600 °C. The CFPP decrease reached a maximum of 12 °C when the biodiesel was catalyzed by SiO2/Fe3O4 at 600 °C. The maximum water content was produced when the biodiesel sample was thermally cracked with no

  7. Palm biodiesel: performance of a agricultural tractor in function of differents storage periods; Biodiesel de dende: desempenho de trator agricola em funcao de diferentes periodos de armazenamento

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Afonso; Oliveira, Melina C.J. [Universidade Estadual Paulista Julio de Mesquita Filho (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias. Dept. de Engenharia Rural], email: fonso@fcav.unesp.br; Lima, Leomar P. [Instituto Federal do Triangulo Mineiro (IFTM), Uberlandia, MG (Brazil); Camara, Felipe P. [Universidade Federal do Ceara (UFC), Cariri, CE (Brazil)

    2011-07-01

    The use of biofuel for replacement of oil in internal combustion engines is an alternative to seek the reduction of harmful effects that the use of these fuels question to the environment. The objective of this work was to evaluate the performance of a tractor in the light of storage time of the biodiesel of palm oil. The experiment was conducted in the Laboratory of machinery and agricultural mechanization of Rural Engineering Department of UNESP, Jaboticabal, SP. In this study, -if a tractor Valtra BM 110 4x2 TDA 74 kW (100 cv) in engine 2.350 rpm. The experimental design was completely randomized, in factorial scheme 5x3, with 3 repetitions. The first factor represents 5 proportions of mixing biodiesel for diesel (B0, B5, B25, B 50 and B100, that the number indicates the percentage of biodiesel for diesel) and three storage times in condition storage environment in a rural property (0, 3 and 6 months). The mixtures were prepared hours before the test. The results showed that the storage time did not influence the performance of the tractor, occurring biodiesel specific increase in consumption from the proportion of 25% (B25) mixture of biodiesel for diesel. (author)

  8. Kinetic Model of Biodiesel Processing Using Ultrasound

    OpenAIRE

    Bambang Susilo

    2009-01-01

    Ultrasound is predicted to be able to accelerate the chemical reaction, to increase the conversion of plant oil into biodiesel, and to decrease the need of catalyst and energy input. The application of ultrasound for processing of biodiesel and the mathematical model were conducted in this research. The result of the experiments showed that the ultrasound increased reaction rate and the conversion of palm oil into biodiesel up to 100%. It was better than the process with mechanical stirrer th...

  9. Correlating Engine NOx Emission with Biodiesel Composition

    Science.gov (United States)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2016-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  10. Boiler Retrofit for the Utilization of Biodiesel

    OpenAIRE

    Leily Nurul Komariah; Marwani Marwani

    2016-01-01

    Fuel oil used in the boiler is able to substitute with biodiesel. In lower blends, there are no engine modification needed, but some researchers recommended some technical adjustments in order to maintain the boiler's performance and equipment durability. This study consists of the comparison between the performance of boiler before and after retrofitting on the use of biodiesel. The diesel oil was introduced in biodiesel blends of 10% (B10), 20% (B20) and 25% (B25). A fire tube boiler was us...

  11. Costs of biodiesel supply chain in Latvia

    International Nuclear Information System (INIS)

    Biodiesels has already become reality in Latvia, but still not are extensively used due to number of reasons. Cost reduction would be one of the most efficient tools that could encourage wider use of biodiesel. Identifying costs in biodiesel supply chain and evaluating their weight in total cost of final product is the first step to finding most costly elements and potential for cost reduction. General cost breakdown in final price is calculated and analysed in this study (authors)

  12. Genetic engineering of microorganisms for biodiesel production

    OpenAIRE

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, YuHua

    2012-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes in...

  13. Structure of the Canola and Biodiesel Industries

    OpenAIRE

    Mattson, Jeremy W.; Wilson, William W.; Duchsherer, Christopher

    2007-01-01

    The biodiesel industry in the United States has grown significantly in recent years. Production increased from 25 million gallons in 2004 to an estimated 250 million gallons in 2006, and many new plants are being built. Most biodiesel in the United States is produced from soybean oil, but canola offers characteristics which make it a favorable feedstock for biodiesel production. Characteristics of canola oil also make it an increasingly popular choice for human consumption. This study examine...

  14. OPTIMASI VARIABEL YANG PALING BERPENGARUH PADA PEMBUATAN BIODIESEL DARI MINYAK BIJI RANDU DENGAN PROSES TRANSESTERIFIKASI

    Directory of Open Access Journals (Sweden)

    Mudzofar Sofyan

    2014-10-01

    Full Text Available [Title: Biodiesel Production from Kapok Seed Oil with KOH Catalyst Using Two Steps Transesterification Process] Biodiesel is one of diesel fuel alternative made from renewable resources such as vegetable oils and animal fats. One of the natural ingredients that can be used as a material in the production of biodiesel is kapok seed. The existence of relatively abundant raw materials is a great opportunity to be developed into alternative energy options which developed on a commercial scale. Biodiesel from kapok seed oil can be made through a two-stage transesterification reaction which helped by using a base catalyst. This research aims to characterize the kapok seed oil, determine the most influential variables between temperature, the ratio of methanol-oil, and time against yield by the factorial design method, optimization variables that most influence on yield, and characterize the biodiesel. Two-stage transesterification process using KOH as the catalyst with changing variables: temperature, methanol-oil ratio, and time. The result showed that kapok seed oil has FFA content: 17.97% and a saponification number: 172.55 mgKOH/g. Most influential variable is the variable of time. At the variable optimization of time, the result were optimally obtained at the 105th minutes with yield: 77.39%. The characterization results of biodiesel’s product show from seven parameters of testing, four parameters are required in accordance with SNI.

  15. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends

    International Nuclear Information System (INIS)

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions.

  16. Integrated production of sugarcane ethanol and soybean biodiesel: Environmental and economic implications of fossil diesel displacement

    International Nuclear Information System (INIS)

    Highlights: • Sugarcane sector is responsible for around 4% of the diesel consumption in Brazil. • Soybean biodiesel can reduce the fossil diesel demand in the sugarcane sector. • The local use of biodiesel could reduce logistic problems and environmental burdens. • The sugarcane–soybean integration is likely to improve ethanol life cycle performance. • Fiscal incentives could reduce the economic uncertainties of the integration. - Abstract: The sugarcane industry in Brazil has been considered promising for the production of advanced fuels and bio-based products. However, the sugarcane crop requires high volumes of fossil fuel for cultivation and transport. The use of biodiesel as a diesel substitute could reduce the environmental burdens associated with this high consumption. This work performed a stochastic evaluation of the environmental and economic implications of the integrated production of sugarcane bioethanol and soybean biodiesel, in comparison with the traditional sugarcane-to-ethanol process. The analysis was focused on the states of Goiás, Mato Grosso and São Paulo, where this integration would be particularly attractive. The environmental aspects addressed were the fossil energy use and the GHG emissions in a cradle-to-gate approach. The economic analysis comprised the evaluation of the net present value of an incremental cash flow generated by the soybean production and by the adjacent plants of oil extraction and biodiesel. Results indicate that the integrated system is likely to improve the ethanol environmental performance, especially with regard to the fossil energy use. The integration is economically feasible but highly uncertain; however, it could be significantly improved through fiscal incentives to biodiesel producers, founded on the reduction of fossil energy use and on improvements in logistics. In addition, the proposed model may also assist in the design of other integrated systems applied to the sugarcane sector in Brazil

  17. Alternative Fuels: Research Progress

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available Chapter 1: Pollutant Emissions and Combustion Characteristics of Biofuels and Biofuel/Diesel Blends in Laminar and Turbulent Gas Jet Flames. R. N. Parthasarathy, S. R. Gollahalli Chapter 2: Sustainable Routes for The Production of Oxygenated High-Energy Density Biofuels from Lignocellulosic Biomass. Juan A. Melero, Jose Iglesias, Gabriel Morales, Marta Paniagua Chapter 3: Optical Investigations of Alternative-Fuel Combustion in an HSDI Diesel Engine. T. Huelser, M. Jakob, G. Gruenefeld, P. Adomeit, S. Pischinger Chapter 4: An Insight into Biodiesel Physico-Chemical Properties and Exhaust Emissions Based on Statistical Elaboration of Experimental Data. Evangelos G. Giakoumis Chapter 5: Biodiesel: A Promising Alternative Energy Resource. A.E. Atabani Chapter 6: Alternative Fuels for Internal Combustion Engines: An Overview of the Current Research. Ahmed A. Taha, Tarek M. Abdel-Salam, Madhu Vellakal Chapter 7: Investigating the Hydrogen-Natural Gas Blends as a Fuel in Internal Combustion Engine. ?lker YILMAZ Chapter 8: Conversion of Bus Diesel Engine into LPG Gaseous Engine; Method and Experiments Validation. M. A. Jemni , G. Kantchev , Z. Driss , R. Saaidia , M. S. Abid Chapter 9: Predicting the Combustion Performance of Different Vegetable Oils-Derived Biodiesel Fuels. Qing Shu, ChangLin Yu Chapter 10: Production of Gasoline, Naphtha, Kerosene, Diesel, and Fuel Oil Range Fuels from Polypropylene and Polystyrene Waste Plastics Mixture by Two-Stage Catalytic Degradation using ZnO. Moinuddin Sarker, Mohammad Mamunor Rashid

  18. Oxidative Stress and Aromatic Hydrocarbon Response of Human Bronchial Epithelial Cells Exposed to Petro- or Biodiesel Exhaust Treated with a Diesel Particulate Filter

    OpenAIRE

    Hawley, Brie; L'Orange, Christian; Olsen, Dan B.; Marchese, Anthony J.; Volckens, John

    2014-01-01

    The composition of diesel exhaust has changed over the past decade due to the increased use of alternative fuels, like biodiesel, and to new regulations on diesel engine emissions. Given the changing nature of diesel fuels and diesel exhaust emissions, a need exists to understand the human health implications of switching to “cleaner” diesel engines run with particulate filters and engines run on alternative fuels like biodiesel. We exposed well-differentiated normal human bronchial epithelia...

  19. Genetic Engineering Strategies for Enhanced Biodiesel Production.

    Science.gov (United States)

    Hegde, Krishnamoorthy; Chandra, Niharika; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Veeranki, Venkata Dasu

    2015-07-01

    The focus on biodiesel research has shown a tremendous growth over the last few years. Several microbial and plant sources are being explored for the sustainable biodiesel production to replace the petroleum diesel. Conventional methods of biodiesel production have several limitations related to yield and quality, which led to development of new engineering strategies to improve the biodiesel production in plants, and microorganisms. Substantial progress in utilizing algae, yeast, and Escherichia coli for the renewable production of biodiesel feedstock via genetic engineering of fatty acid metabolic pathways has been reported in the past few years. However, in most of the cases, the successful commercialization of such engineering strategies for sustainable biodiesel production is yet to be seen. This paper systematically presents the drawbacks in the conventional methods for biodiesel production and an exhaustive review on the present status of research in genetic engineering strategies for production of biodiesel in plants, and microorganisms. Further, we summarize the technical challenges need to be tackled to make genetic engineering technology economically sustainable. Finally, the need and prospects of genetic engineering technology for the sustainable biodiesel production and the recommendations for the future research are discussed. PMID:25902752

  20. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine

    International Nuclear Information System (INIS)

    Highlights: • Potential of biodiesel production from crude Moringa oleifera oil. • Characterization of M. oleifera biodiesel and its blend with diesel fuel. • Evaluation of M. oleifera biodiesel blend in a diesel engine. - Abstract: Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. This study aims to evaluate the physico-chemical properties of Moringa oleifera biodiesel and its 10% and 20% by-volume blends (B10 and B20) in comparison with diesel fuel (B0). The performance and emission of M. oleifera biodiesel and its blends in a multi-cylinder diesel engine were determined at various speeds and full load conditions. The properties of M. oleifera biodiesel and its blends complied with ASTM D6751 standards. Over the entire range of speeds, B10 and B20 fuels reduced brake power and increased brake specific fuel consumption compared with B0. In engine emissions, B10 and B20 fuels reduced carbon monoxide emission by 10.60% and 22.93% as well as hydrocarbon emission by 9.21% and 23.68%, but slightly increased nitric oxide emission by 8.46% and 18.56%, respectively, compared with B0. Therefore, M. oleifera is a potential feedstock for biodiesel production, and its blends B10 and B20 can be used as diesel fuel substitutes

  1. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Van Kasteren, J.M.N. [Telos, Brabant' s Institute for Sustainable Development, P.O. Box 90153, 5000 LE Tilburg (Netherlands); Nisworo, A.P. [Eindhoven University of Technology, Department of Chemical Engineering, Process and Product Design, Den Dolech 2, 5612 AX Eindhoven (Netherlands)

    2007-06-15

    This paper describes the conceptual design of a production process in which waste cooking oil is converted via supercritical transesterification with methanol to methyl esters (biodiesel). Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great advantage to eliminate the pre-treatment capital and operating cost. A supercritical transesterification process for biodiesel continuous production from waste cooking oil has been studied for three plant capacities (125,000; 80,000 and 8000 tonnes biodiesel/year). It can be concluded that biodiesel by supercritical transesterification can be scaled up resulting high purity of methyl esters (99.8%) and almost pure glycerol (96.4%) attained as by-product. The economic assessment of the biodiesel plant shows that biodiesel can be sold at US$ 0.17/l (125,000 tonnes/year), US$ 0.24/l (80,000 tonnes/year) and US$ 0.52/l for the smallest capacity (8000 tonnes/year). The sensitive key factors for the economic feasibility of the plant are: raw material price, plant capacity, glycerol price and capital cost. Overall conclusion is that the process can compete with the existing alkali and acid catalyzed processes. Especially for the conversion of waste cooking oil to biodiesel, the supercritical process is an interesting technical and economical alternative. (author)

  2. Production of Biodiesel through Transesterification of Avocado (Persea gratissima Seed Oil Using Base Catalyst

    Directory of Open Access Journals (Sweden)

    H. M. Rachimoellah

    2009-01-01

    Full Text Available Biodiesel is produced through a chemical process called transesterification, which refers to a catalysed chemical reaction involving vegetable oil and alcohol to yield fatty acid alkyl esters (biodiesel and glycerol as a by product. Biodiesel is petroleum substitution in which its quantity continually decreases due to increasing of demand. Plenty of plants could be used as raw material for biodiesel, for example is avocado (Persea gratissima seed. This is a waste that being thrown out after the flesh is taken. Therefore, avocado has a higher economic value to be used for consumption. Avocado is not only as an edible commodity but also as feedstock for production of biodiesel. The purposes of this research are producing biodiesel from avocado seed oil (Persea gratissima so it can be used for alternative fuel, studying the effect of molar ratio avocado seed oil to methanol and reaction temperature to yield the highest methyl ester content, and also studying the effect of washing method and comparing between the conventional method (using water and dry washing method to reach the highest methyl ester content. Variables that are used in this research are molar ratio of methanol to avocado seed oil, reaction temperature, and washing method. Transesterification process runs for 60 minutes, with NaOH as base catalyst concentration is 1% by weight. Avocado seed oil contains free fatty acid less than 2%, so that transesterification process can be carried out with no addition step to convert free fatty acid content become esters. Crude biodiesel which is yielded from transesterification process still contains of impurities, such as traces of glycerine, unreacted methanol, rest of base catalyst, and soap stock. So it needs to be washed out. There are two washing methods, which are water washing and dry washing. The use of dry washing method is expected to be technically feasible with less complexity than the water washing method, thereby making it a

  3. Analysis of used frying fats for biodiesel production

    Directory of Open Access Journals (Sweden)

    Dobarganes, M. C.

    2008-03-01

    Full Text Available Used frying fats and oils with highly variable and uncontrolled quality are used for the production of biodiesel . The objective of this study was to define the analytical methods useful to obtaining information on the quality of the used frying oils as raw material for biodiesels as well as for the characterization of the biodiesels obtained from them. Twentyfour used frying oils from restaurants and domestic fryers were analyzed before and after transesterification to fatty acid methyl esters (FAME. From a detailed analysis of the samples by means of a combination of adsorption and size exclusion chromatography, the quantitative importance of polymeric compounds was deduced both from the direct analysis of the oils and from their FAME. Excellent linear correlation between polar compounds and polar FAME (R=0.9768 was found. The possibilities of interferences from polar fatty acid in the standard method to determine the ester content are defined. Finally, determination of non-polar FAME by silica column is proposed as a good alternative to the gas chromatography method.Los aceites y grasas de fritura, que se caracterizan por tener una calidad muy variable, se utilizan como material prima para la producción de biodiesel. El objetivo de este estudio es definir la utilidad de los métodos analíticos desarrollados para los aceites y grasas de fritura para caracterizar el biodiesel obtenido. Veinticuatro aceites de fritura procedentes del sector de restauración y de fritura doméstica fueron analizados antes y después de su transesterificación a ésteres metílicos de ácidos grasos. A partir de un análisis detallado mediante cromatografías de adsorción y exclusión, se deduce la importancia cuantitativa de los compuestos de polimerización tanto en el análisis directo de los aceites como en el análisis de los ésteres metílicos. Se encontró una excelente correlación lineal entre los compuestos polares y los ésteres metílicos polares

  4. Recent Advances in Outdoor High-Density Cultivation of Novelty Micro-Algae Strain with High Content of Lipids

    OpenAIRE

    Kaštánek, Petr

    2012-01-01

    The objective of the study was the pilot plant examination of a newly developed integrated process for autotrophic cultivation of useful micro-algae. The process utilizes waste carbon dioxide as a source of carbon and yields simultaneously products that can be utilized in food and cosmetic industries, turned into biodiesel and/or used as a supplement in animal feed. At present, the cultivation of micro-algae merely for the production of biofuels is not economically viable. In the proposed pr...

  5. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-12-31

    The US Department of Energy`s Office of Transportation Technologies, DOE`s National Renewable Energy Laboratory, the US Department of Agriculture`s Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties.

  6. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.J. [National Renewable Energy Lab., Golden, CO (United States); Duffield, J.A. [Dept. of Agriculture, Washington, DC (United States). Office of Energy; Coulon, R.B.; Camobreco, V.J. [Ecobalance, Rockville, MD (United States)

    1996-12-31

    The US Department of Energy`s Office of Transportation Technologies, DOE`s National Renewable Energy Laboratory, the US Department of Agriculture`s Office of Energy and Ecobalance are carrying out a comprehensive Life Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects f the cradle-to-grave production and use of biodiesel. The purpose of the project (initiated in November 1995) is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life cycle model for petroleum diesel fuel. The two models are used to compare the life cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The results of an LCA such as this are strongly influenced by decisions made at the study outset, related to scoping, modeling, and methodology. Objectivity as well as acceptable of the results depend upon careful definition and consideration of such issues. This paper communicates the project scoping decisions which have been made in response to a series of stakeholder peer reviews. At the submission stage of this paper, no intermediate results were available for publication. They will be presented during the conference.

  7. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    International Nuclear Information System (INIS)

    The US Department of Energy's Office of Transportation Technologies, DOE's National Renewable Energy Laboratory, the US Department of Agriculture's Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties

  8. INFLUENCE OF STRUCTURE OF ESTERS OF FATTY ACIDS ON BIODIESEL FUEL PROPERTIES

    Science.gov (United States)

    Biodiesel is becoming a well-established "alternative" diesel fuel derived from vegetable oils or animal fats. This fuel is being produced and used commercially in numerous countries around the world. In almost all cases, the vegetable oil or animal fat is transesterified with methanol to give the...

  9. OXIDATIVE STABILITY OF BIODIESEL/JET FUEL BLENDS BY OIL STABILITY INDEX (OSI) ANALYSIS.

    Science.gov (United States)

    Biodiesel, an alternative fuel made by transesterification of vegetable oil with methanol, is becoming more readily available for use in blends with conventional diesel fuel for transportation and other "off-road" applications. One such off-road application is in blends with aviation fuels to impro...

  10. Effect of Saturated Mono- and Diacylglycerols on Cold Flow Properties of Biodiesel

    Science.gov (United States)

    Biodiesel in the form of fatty acid methyl esters (FAME) derived from vegetable oils and animal fats is very attractive as a renewable and domestically available alternative fuel for combustion in direct-injection compression-ignition (diesel) engines. Past research on the cold flow properties of s...

  11. Branched-chain fatty acid methyl esters as cold flow improvers for biodiesel

    Science.gov (United States)

    Biodiesel is an alternative diesel fuel derived mainly from the transesterification of plant oils with methanol or ethanol. This fuel is generally made from commodity oils such as canola, palm, or soybean and has a number of properties that make it compatible in compression-ignition engines. Despite...

  12. Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil

    Science.gov (United States)

    Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...

  13. Specific gravity and API gravity of biodiesel and ultra-low sulfur diesel (ULSD) blends

    Science.gov (United States)

    Biodiesel is an alternative fuel made from vegetable oils and animal fats. In 2006, the U. S. Environmental Protection Agency mandated a maximum sulfur content of 15 ppm in on-road diesel fuels. Processing to produce the new ultra-low sulfur petrodiesel (ULSD) alters specific gravity (SG) and othe...

  14. OXIDATION KINETICS OF BIODIESEL BY NON-ISOTHERMAL PRESSURIZED-DIFFERENTIAL SCANNING CALORIMETRY

    Science.gov (United States)

    Biodiesel, an alternative diesel fuel derived from transesterification of vegetable oils or animal fats with methanol or ethanol, is a mixture of relatively stable (saturated) and oxidatively unstable (unsaturated) long-chain fatty acid alkyl esters. During storage, autoxidation caused by contact w...

  15. Thermal-oxidation of biodiesel by pressurized-differential scanning calorimetry: Effects of heating ramp rate

    Science.gov (United States)

    Biodiesel, an alternative diesel fuel made from vegetable oils or animal fats with methanol or ethanol, is a mixture of relatively stable (saturated) and oxidatively unstable (unsaturated) long-chain fatty acid alkyl esters. During storage, oxidative degradation caused by contact with air is of utm...

  16. Alignment in the decision-making process between agents in biodiesel supply chains; Identificacao dos fatores e motivacoes relacionados ao processo de tomada de decisao dos diferentes agentes da cadeia produtiva do biodiesel do Rio Grande do Sul, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, Regis; Santos, Omar Inacio Benedetti [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Planejamento Energetico; Padula, Antonio Domingos [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2008-07-01

    The aim of the present study is to identify and analyze the factors, motivations and criteria being considered in the decision-making processes of the actors belonging to the biodiesel production chain in RS, and confirm or otherwise, the existence of alignment in the decision-making process. Interviews were carried out with the main agents of the links that comprise the biodiesel chains in RS: 11 agricultural co-operatives, 3 biodiesel production plants and a firm that processes and distributes diesel/biodiesel. With regard the decision-making process of the cooperatives, it is centered on the decision to offer, or otherwise, oil-bearing crops for the production of biodiesel. Their decisions emphasize operational and short-term aspects. In contrast, in the firms producing biodiesel, their decision to produce this fuel is associated with addition of one more product to their market portfolio, and is correlated with a long-term view and the search for economic efficiency. In these firms, the benefits of the tax incentives offered by the public policies strongly influence the decision regarding the alternative oil-bearing crops used in the production of biodiesel. In the distributor, it was seen that the decision-making process was guided by long-term strategies. The decision to mix biodiesel with diesel oil being related to the institutional aspect, whatever the legal obligation to mix the fuels may be. In summary, the results show the existence of different characteristics linked to the decision-making process and a significant lack of synchronicity in the aims and motivations of the agents decisions. This state of decisional mis-alignment, associated with the fragilities of public policy, leads to heightened uncertainty regarding the sustainability of the Brazilian biodiesel production program. (author)

  17. WSF Biodiesel Demonstration Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

    2009-04-30

    In 2004, WSF canceled a biodiesel fuel test because of “product quality issues” that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and

  18. Comprehensive study of biodiesel fuel for HSDI engines in conventional and low temperature combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tormos, Bernardo; Novella, Ricardo; Garcia, Antonio; Gargar, Kevin [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia, ES, Campus de Vera, s/n, Edificio 6D. Camino de Vera s/n, 46022 Valencia (Spain)

    2010-02-15

    In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for High Speed Direct Injection (HSDI) diesel engines. The scope of this work has been broadened by comparing the combustion characteristics of diesel and biodiesel fuels in a wide range of engine loads and EGR conditions, including the high EGR rates expected for future diesel engines operating in the low temperature combustion (LTC) regime. The experimental work has been carried out in a single-cylinder engine running alternatively with diesel and biodiesel fuels. Conventional diesel fuel and neat biodiesel have been compared in terms of their combustion performance through a new methodology designed for isolating the actual effects of each fuel on diesel combustion, aside from their intrinsic differences in chemical composition. The analysis of the results has been sequentially divided into two progressive and complementary steps. Initially, the overall combustion performance of each fuel has been critically evaluated based on a set of parameters used as tracers of the combustion quality, such as the combustion duration or the indicated efficiency. With the knowledge obtained from this previous overview, the analysis focuses on the detailed influence of biodiesel on the different diesel combustion stages known ignition delay, premixed combustion and mixing controlled combustion, considering also the impact on CO and UHC (unburn-hydrocarbons) pollutant emissions. The results of this research explain why the biodiesel fuel accelerates the diesel combustion process in all engine loads and EGR rates, even in those corresponding with LTC conditions, increasing its possibilities as alternative fuel for future DI diesel engines. (author)

  19. Smoke opacity of agricultural tractor using biodiesel in function of weather conditions in the time of testing; Opacidade da fumaca de trator agricola utilizando biodiesel em funcao das condicoes climaticas no horario de execucao do ensaio

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Afonso; Camara, Felipe T. da; Oliveira, Melina Cais Jejcic de; Furlani, Carlos E.A.; Silva, Rouverson Pereira da; Mello Junior, Jose G.S. [Universidade Estadual Paulista (FCAV/UNESP), SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias. Dept. de Engenharia Rural], E-mail: afonso@fcav.unesp.br

    2009-07-01

    The biodiesel highlights as an alternative fuel to petroleum diesel, due its similar diesel properties, allowing the biodiesel replace the diesel without engine's alterations. The present work aimed measure the tractor's smoke opacity running with biodiesel in three proportions (B0, B50, and B100), in function of environment temperature and moisture in eight times (1h, 4h, 7h, 10h, 13h, 16h, 19h, and 22h). The experiment was conducted in the Rural Engineering Department of UNESP, Jaboticabal, Brazil, it was used a Valtra BM100 4x2 TDA (74kW - 100 cv) tractor, in the engine at 2350 rpm, and a soybean's distillated ethylic Biodiesel produced by USP - Laboratory of Development of Clean Technologies, in Ribeirao Preto, Brazil. The results evidence smoke opacity reduction in order to environment temperature reduction and when increased the moisture. (author)

  20. Harvesting, oil extraction, and conversion of local filamentous algae growing in wastewater into biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Grayburn, W.S.; Holbrook, G.P. [Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115 (United States); Tatara, R.A. [Department of Technology, Northern Illinois University, DeKalb, IL 60115 (United States); Rosentrater, K.A. [Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-07-01

    Algae are known to be a potential feedstock in the production of biodiesel fuel. Although much of the focus has been on microalgal species, macroalgae are also suitable as a source of lipids. In this study, a locally abundant (central Illinois) filamentous algae has been harvested from a water treatment plant; dried to about 10% of its initial weight; pulverized in a hammermill; and treated with methanol to extract the oil. The algae are a combination of several coexisting species including Cladophora sp. and Rhizoclonium. Oil yields ranged from 3% to 6%, by weight, of the dried mass. This oil was reacted by transesterification to yield fatty acid methyl esters (biodiesel fuel) with an overall mass conversion efficiency of 68%. A B5 blend of this algal biodiesel and petrodiesel was run in a 13.4-kW test engine. Measurements indicated similar performance compared to pure petrodiesel in terms of fuel efficiency and carbon dioxide and carbon monoxide exhaust emissions. Significantly, there was a 22% reduction in nitrogen oxides when using the B5 fuel. It has been demonstrated that filamentous macroalgae may be cultivated as biodiesel feedstock and have inherent advantages such as an ability to remove phosphorus and nitrogen compounds from wastewater, simplicity of harvesting, and natural resistance to local aquatic grazers and competing organisms.