WorldWideScience

Sample records for biodiesel b20 transit

  1. Biodiesel Mass Transit Demonstration

    Science.gov (United States)

    2010-04-01

    The Biodiesel Mass Transit Demonstration report is intended for mass transit decision makers and fleet managers considering biodiesel use. This is the final report for the demonstration project implemented by the National Biodiesel Board under a gran...

  2. Effect of EGR on a sationary VCR diesel engine using cottonseed biodiesel (B20 fuel

    Directory of Open Access Journals (Sweden)

    Nitin M. Sakhare

    2016-09-01

    Full Text Available This paper presents a view on comparative study of use of diesel fuel with B20 biodieselblend (Diesel (80 %, by vol. and Cotton seed oil (20 %, by vol. derived from Cotton seeds. As higher NOx emission and higher brake specific fuel consumption are main challenges for effective utilization of biodiesel fuel in a diesel engine, there is alarming need to find out the long term solution to reduce NOx emission for better utilization of biodiesel fuel in a diesel engine. Exhaust gas recirculation (EGR is one of the useful technologies to reduce the NOx emission of a diesel engine. In the present research work test is conducted on 3 KW single cylinder, four stroke, water cooled, variable compression ratio (VCR computerized diesel engine using diesel and B20 cotton seed biodiesel blend to study the effect of exhaust gas recirculation on performance and emissions characteristics of a diesel engine in terms of fuel consumption, thermal efficiency and emissions such as hydrocarbon (HC, carbon monoxide (CO, oxides of nitrogen (NOx and carbon dioxide (CO2 of a diesel engine. The constant engine speed of 1500 rpm was maintained through-out the experiment test. The exhaust gas recirculation was varied as 4 % and 6 % at different loading conditions with diesel and B20 biodiesel. The results show that the significant reduction in oxides of nitrogen (NOx with 4 % and 6 % EGR for B20 whereas marginal increment in CO and HC emissions.

  3. Experimental and numerical assessment of ignition delay period for pure diesel and biodiesel B20

    Science.gov (United States)

    Aldhaidhawi, Mohanad; Brabec, Marek; Lucian, Miron; Chiriac, Radu; Bădescu, Viorel

    2017-10-01

    The ignition delay period for a compression ignition engine fueled alternatively with pure diesel and with biodiesel B20 has been experimentally and numerically investigated. The engine was operated under full load conditions for two speeds, 1400 rpm speed for maximum brake torque and 2400 rpm speed for maximum brake power. Different parameters suggested as important to define the start of combustion have been considered before the acceptance of a certain evaluation technique of ignition delay. Correlations between these parameters were analyzed and concluded about the best method to identify the start of combustion. The experimental results were further compared with the ignition delay predicted by some correlations. The results showed that the determined ignition delays are in good agreement with those of the Arrhenius type expressions for pure diesel fuel, while for biodiesel B20 the correlation results are significantly different than the experimental results.

  4. Soot accumulation in diesel particulate filters using ULSD and B20 biodiesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Charbonneau, P.; Wallace, J.S. [Toronto Univ., ON (Canada)

    2009-07-01

    Soot accumulation in a diesel particulate filter was investigated using a newly developed dissection method that loads and dissects diesel particulate filters (DPFs). In particular, this study examined the differences in soot accumulation between ultra-low sulphur diesel (ULSD) and a B20 biodiesel blend. DPFs loaded for exposure times of 1, 2, 5 and 10 hours. Scanning electron microscopy (SEM) was used to analyze the samples of the filter substrate. The differences in particulate size and number distribution between fuels were attributed to performance differences in DPFs. ULSD loaded filters experienced increased loading and a greater pressure drop across the filters. According to SEM images, the soot cake was a relatively shallow feature increasing in density to form discrete coarse agglomerates and cakes. It was concluded that this newly developed methodology has potential for future studies in DPF loading.

  5. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny; Johnson, Stuart; Zickmann, Stefan; Lopes, Shailesh; Gault, Roger; Slade, David

    2016-04-01

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no

  6. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    Science.gov (United States)

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.

  7. Permeation of gasoline, diesel, bioethanol (E85), and biodiesel (B20) fuels through six glove materials.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A

    2010-07-01

    Biofuels and conventional fuels differ in terms of their evaporation rates, permeation rates, and exhaust emissions, which can alter exposures of workers, especially those in the fuel refining and distribution industries. This study investigated the permeation of biofuels (bioethanol 85%, biodiesel 20%) and conventional petroleum fuels (gasoline and diesel) through gloves used in occupational settings (neoprene, nitrile, and Viton) and laboratories (latex, nitrile, and vinyl), as well as a standard reference material (neoprene sheet). Permeation rates and breakthrough times were measured using the American Society for Testing and Materials F739-99 protocol, and fuel and permeant compositions were measured by gas chromatography/mass spectrometry. In addition, we estimated exposures for three occupational scenarios and recommend chemical protective clothing suitable for use with motor fuels. Permeation rates and breakthrough times depended on the fuel-glove combination. Gasoline had the highest permeation rate among the four fuels. Bioethanol (85%) had breakthrough times that were two to three times longer than gasoline through neoprene, nitrile Sol-Vex, and the standard reference materials. Breakthrough times for biodiesel (20%) were slightly shorter than for diesel for the latex, vinyl, nitrile examination, and the standard neoprene materials. The composition of permeants differed from neat fuels, e.g., permeants were significantly enriched in the lighter aromatics including benzene. Viton was the best choice among the tested materials for the four fuels tested. Among the scenarios, fuel truck drivers had the highest uptake via inhalation based on the personal measurements available in the literature, and gasoline station attendants had highest uptake via dermal exposure if gloves were not worn. Appropriate selection and use of gloves can protect workers from dermal exposures; however, current recommendations from the National Institute for Occupational Safety and

  8. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luís Busi; Nossa, Carlos Wolfgang; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2014-09-01

    A controlled field experiment was conducted to assess the potential for fermentative-methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative-methanogenic bioremediation of biodiesel blend releases.

  9. Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luis Busi; Chiaranda, Helen Simone; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2013-06-01

    Field experiments were conducted to assess the potential for anaerobic biostimulation to enhance BTEX biodegradation under fermentative methanogenic conditions in groundwater impacted by a biodiesel blend (B20, consisting of 20 % v/v biodiesel and 80 % v/v diesel). B20 (100 L) was released at each of two plots through an area of 1 m(2) that was excavated down to the water table, 1.6 m below ground surface. One release was biostimulated with ammonium acetate, which was added weekly through injection wells near the source zone over 15 months. The other release was not biostimulated and served as a baseline control simulating natural attenuation. Ammonium acetate addition stimulated the development of strongly anaerobic conditions, as indicated by near-saturation methane concentrations. BTEX removal began within 8 months in the biostimulated source zone, but not in the natural attenuation control, where BTEX concentrations were still increasing (due to source dissolution) 2 years after the release. Phylogenetic analysis using quantitative PCR indicated an increase in concentration and relative abundance of Archaea (Crenarchaeota and Euryarchaeota), Geobacteraceae (Geobacter and Pelobacter spp.) and sulfate-reducing bacteria (Desulfovibrio, Desulfomicrobium, Desulfuromusa, and Desulfuromonas) in the biostimulated plot relative to the control. Apparently, biostimulation fortuitously enhanced the growth of putative anaerobic BTEX degraders and associated commensal microorganisms that consume acetate and H2, and enhance the thermodynamic feasibility of BTEX fermentation. This is the first field study to suggest that anaerobic-methanogenic biostimulation could enhance source zone bioremediation of groundwater aquifers impacted by biodiesel blends.

  10. Biodiesel fuel management best practices for transit

    Science.gov (United States)

    2007-11-27

    Public transportation systems play a key role throughout the country not only in providing vital services to citizens but also in the environmental quality of our communities. Transit systems nationwide are seeking out new technologies in order to in...

  11. Biodiesel

    Science.gov (United States)

    Biodiesel is a renewable alternative to petrodiesel that is prepared from plant oils or animal fats. Biodiesel is prepared via transesterification and the resulting fuel properties must be compliant with international fuel standards such as ASTM D6751 and EN 14214. Numerous catalysts, methods, and l...

  12. A comparative analysis of performance and cost metrics associated with a diesel to biodiesel fleet transition

    International Nuclear Information System (INIS)

    Shrake, Scott O.; Landis, Amy E.; Bilec, Melissa M.; Collinge, William O.; Xue Xiaobo

    2010-01-01

    With energy security, economic stabilization, and environmental sustainability being at the forefront of US policy making, the development of biodiesel production and use within the United States has been growing at an astonishing rate. According to the latest DOE energy report, biodiesel production and consumption in the US has decreased since its peak in 2008, but still remains an important factor in the US energy mix. However, despite recent studies showing that B5 has similar performance qualities to that of the currently used ultra-low-sulfur petroleum diesel (ULSD) fleet managers and corporations still remain hesitant regarding a switch to B5. This research examined the major areas of concern that arise with transitioning fleets from ULSD to B5 with the goal of alleviating those concerns with quantitative results from an actual fleet implementation and transition. In conjunction with the Pennsylvania Department of Transportation (PennDOT) a comparison of cost, cold weather fuel properties, engine performance, fuel economy, and maintenance and repairs was conducted using data obtained over 3 years from a pilot study. The results found that B5 performed as well or better than ULSD in all performance metrics. - Research Highlights: →Conducted multi-year study of a DOT fleet transition from ULSD to biodiesel (B5)→No significant difference in cold weather performance, engine power output, or torque→No significant difference in fuel economy→No resulting increase in maintenance and repair costs or frequency→Life-cycle costing revealed no hidden costs as a result of B5 implementation

  13. Diesel and biodiesel exhaust particle effects on rat alveolar machrophages with in vitro exposure

    Science.gov (United States)

    We conducted in vitro exposures of Wistar rat alveolar macrophages (AM) to compare and contrast the toxicity of particulate matter (PM) produced in combustion of biodiesel blend (B20) and petroleum diesel (PDEP). The PM contain detectable levels of transition metals and ions howe...

  14. Mixotrophic transition induced lipid productivity in Chlorella pyrenoidosa under stress conditions for biodiesel production

    Directory of Open Access Journals (Sweden)

    Hari Prasad Ratnapuram

    2018-01-01

    Full Text Available Influence of mixotrophic mode and its transition to various trophic modes under stress conditions was assessed during two stage cultivation of Chlorella pyrenoidosa. Significant lipid productivity was triggered under low light intensity, glucose + bicarbonate supplementation and nitrogen starvation. The association between biomass and lipid productivity, fatty acid composition during mixotrophic transition was critically evaluated. Biomass in growth phase (GP and stress phase (SP was 6.14 g/l and 5.14 g/l, respectively, in mixotrophic mode. Higher lipid productivity of 284 g/kg and 154.3 g/kg of neutral lipids was achieved in SP in mixotrophic-mixotrophic (MM and mixotrophic-heterotrophic (MH modes, respectively. Stress conditions resulted in high unsaturated fatty acid methyl esters in MH mode. In addition, neutral lipid content was 58% in MH and 52% in MM, that can be attributed to carbon source that is supplemented even in stress phase. Exploring such novel strategies can generate sustainable avenues for biodiesel production.

  15. Morphology of single inhalable particle inside public transit biodiesel fueled bus.

    Science.gov (United States)

    Shandilya, Kaushik K; Kumar, Ashok

    2010-01-01

    In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.

  16. Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile

    International Nuclear Information System (INIS)

    Iriarte, Alfredo; Rieradevall, Joan; Gabarrell, Xavier

    2012-01-01

    Highlights: ► Rapeseed biodiesel accounts for a 40% GHG emissions savings compared to fossil diesel. ► Biodiesel has greater impacts than fossil diesel in 7 of the 13 indicators evaluated. ► Agricultural stage cause the greatest impacts in biodiesel pathway. ► A production strategy involving low-impact or renewable resources should be used. ► Use of livestock manure as organic fertilizer presents the best environmental profile. -- Abstract: This study uses a site-specific life cycle assessment (LCA) to evaluate the environmental profile and energy and water demand of potential production options for rapeseed biodiesel in Chile. The first step is the analysis of the biodiesel supply chain in a standard scenario, associated with the most likely production conditions. The second step is the evaluation of the following alternative scenarios related to a production strategy involving low-impact or renewable resources: (1) Addition of livestock manure as organic fertilizer, (2) Use of degraded grassland, (3) Biodiesel transport by rail, and (4) Use of forest residues for industrial steam. The results show that the biodiesel in the standard scenario has less environmental impacts than fossil diesel in 4 of the 13 indicators evaluated. The rapeseed production is the stage with the highest contribution to impacts. The scenario 1 presents the best environmental profile. The scenario 2 reduces the greenhouse gas emissions of biodiesel. The scenarios 3 and 4 moderately improve the profile of the biofuel. The four situations could be implemented in the short term, but should be backed up by economic and social studies.

  17. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    Putzig, Mollie [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    This fact sheet (updated for 2017) provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, the difference between biodiesel and renewable diesel, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  18. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This fact sheet (updated for 2017) provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, the difference between biodiesel and renewable diesel, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  19. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-07-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends and specifications. It also covers how biodiesel compares to diesel fuel in terms of performance (including in cold weather) and whether there are adverse effects on engines or other systems. Finally, it discusses biodiesel fuel quality and standards, and compares biodiesel emissions to those of diesel fuel.

  20. Biodiesel CO2 emissions: A comparison with the main fuels in the Brazilian market

    International Nuclear Information System (INIS)

    Coronado, Christian Rodriguez; de Carvalho, Joao Andrade Jr.; Silveira, Jose Luz

    2009-01-01

    The use of biodiesel is increasing as an attractive fuel due to the depleting fossil fuel resources and environmental degradation. This paper presents results of an investigation on the potentials of biodiesel as an alternative fuel and main substitute of diesel oil, comparing the CO 2 emissions of the main fuels in the Brazilian market with those of biodiesel, in pure form or blended in different proportions with diesel oil (2%, 5%, and 20%, called B2, B5, and B20, respectively). The results of the study are shown in ton CO 2 per m 3 and ton CO 2 per year of fuel. The fuels were analyzed considering their chemical composition, stoichiometric combustion parameters and mean consumption for a single vehicle. The fuels studied were: gasoline, diesel oil, anhydrous ethyl alcohol (anhydrous ethanol), and biodiesel from used frying oil and from soybean oil. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. With data provided by the Brazilian Association of Automotive Vehicle Manufacturers (ANFAVEA) for the number of vehicles produced in Brazil, the emissions of CO 2 for the national fleet in 2007 were obtained per type of fuel. With data provided by the Brazilian Department of Transit (DENATRAN) concerning the number of diesel vehicles in the last five years in Brazil, the total CO 2 emissions and the percentage that they would decrease in the case of use of pure biodiesel, B100, or several mixtures, B2, B5 and B20, were calculated. Estimates of CO 2 emissions for a future scenario considering the mixtures B5 and B20 are also included in this article. (author)

  1. Effective utilization of B20 blend with diethyl ether and ethanol as oxygenated additives

    Directory of Open Access Journals (Sweden)

    Upadrasta-Satya Vara-Prasad

    2011-01-01

    Full Text Available In the recent times' fatty acid methyl ester popularly called as biodiesel has become more prominent alternate fuel for compression ignition engines based on a single fuel concept. Since, use of neat biodiesel on a large scale is raising certain difficulties and is being adopted in a blended form with petro-diesel fuel and B20 blend has become standardized. However, the HC and NOx emissions of B20 are still on the higher side. Present work aims at experimental evaluation of a single cylinder water-cooled diesel engine by adopting various proportions of ethanol and diethyl ether blends in order to improve performance and emission characteristics of B20 blend. Besides employing different amounts of ethanol and diethyl ether, simultaneous influence of injector nozzle hole size and fuel injection pressure are also investigated to arrive at an optimum configuration. Brake specific fuel consumption and hydrocarbon emissions values are lower with B20 and DEE 5 whereas B20 with DEE15 yielded lower NOx emissions. It is observed that addition of oxygenates have improved the combustion process and lower emissions are obtained. The present investigation revealed that blends with oxygenated additives having higher Cetane rating are superior to neat blend.

  2. Exploration of agent of change’s role in biodiesel energy transition process using agent-based model

    Science.gov (United States)

    Hidayatno, A.; Vicky, L. R.; Destyanto, A. R.

    2017-11-01

    As the world’s largest Crude Palm Oil (CPO) producer, Indonesia uses CPO as raw material for biodiesel. A number of policies have been designed by the Indonesian government to support adoption of biodiesel. However, the role of energy alternatives faced complex problems. Agent-based modeling can be applied to predict the impact of policies on the actors in the business process to acquire a rich discernment of the behavior and decision making by the biodiesel industries. This study evaluates government policy by attending at the adoption of the biodiesel industry in the tender run by a government with the intervention of two policy options biodiesel energy utilization by developing an agent-based model. The simulation result show that the policy of adding the biodiesel plant installed capacity has a good impact in increasing the production capacity and vendor adoption in the tender. Even so, the government should consider the cost to be incurred and the profits for vendors, so the biodiesel production targets can be successfully fulfilled.

  3. Aerobic Biodegradation Kinetics And Mineralization Of Six Petrodiesel/Soybean-Biodiesel Blends

    Science.gov (United States)

    The aerobic biodegradation kinetics and mineralization of six petrodiesel/soybean-biodiesel blends (B0, B20, B40, B60, B80, and B100), where B100 is 100% biodiesel, were investigated by acclimated cultures. The fatty acid methyl esters (FAMEs) of biodiesel were found to undergo ...

  4. Why Teach about Biodiesel?

    Science.gov (United States)

    Lawrence, Richard

    2002-01-01

    Proposes that study of biodiesel as a healthier alternative to petroleum diesel be included in the curriculum. Suggests that teachers will play a critical role during the transition away from fossil fuel technologies. Provides background information and web-based resources. (DLH)

  5. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    Science.gov (United States)

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  6. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail: axel.munack@vti.bund.de; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)

    2008-07-01

    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  7. Novel process integration for biodiesel blend in membrane reactive divided wall (MRDW column

    Directory of Open Access Journals (Sweden)

    Sakhre Vandana

    2016-03-01

    Full Text Available The paper proposes a novel process integration for biodiesel blend in the Membrane assisted Reactive Divided Wall Distillation (MRDW column. Biodiesel is a green fuel and grade of biodiesel blend is B20 (% which consist of 20% biodiesel and rest 80% commercial diesel. Instead of commercial diesel, Tertiary Amyl Ethyl Ether (TAEE was used as an environment friendly fuel for blending biodiesel. Biodiesel and TAEE were synthesized in a pilot scale reactive distillation column. Dual reactive distillation and MRDW were simulated using aspen plus. B20 (% limit calculation was performed using feed flow rates of both TAEE and biodiesel. MRDW was compared with dual reactive distillation column and it was observed that MRDW is comparatively cost effective and suitable in terms of improved heat integration and flow pattern.

  8. Biodiesel update

    International Nuclear Information System (INIS)

    Bee, K.

    1998-01-01

    Compared to gasoline driven spark ignition engines, diesel engines are more efficient and emit less CO 2 and CO. The use of mono-alkyl esters of long chain fatty acids derived from renewable lipid feed stocks such as vegetable oils or animal fats for use in compression ignition (diesel) engines was described. Production of this biodiesel product was illustrated. The raw materials for biodiesel include vegetable oil or animal fat, alcohol (methanol or ethanol), and a catalyst such as sodium hydroxide or potassium hydroxide. As far as uses are concerned, biodiesels can be used as a pure fuel, as a blending stock with petrodiesel, or in low levels with petrodiesel, indeed, anywhere where no. 1 or no. 2 petrodiesel is used. Details of the technical attributes of biodiesel were provided. The superior ability of biodiesel over petrodiesel to reduce particulates, carbon monoxide and unburned hydrocarbons was documented. A case study of using biodiesel fuel in an underground mine was part of the demonstration. 20 refs., 6 tabs

  9. Degradation of nitrile rubber fuel hose by biodiesel use

    International Nuclear Information System (INIS)

    Coronado, Marcos; Montero, Gisela; Valdez, Benjamín; Stoytcheva, Margarita; Eliezer, Amir; García, Conrado; Campbell, Héctor; Pérez, Armando

    2014-01-01

    Nowadays biodiesel is becoming an increasingly important and popular fuel, obtained from renewable sources, and contributes to pollutant emissions reduction and decreasing fossil fuels dependence. However, its easier oxidation and faster degradation in comparison to diesel led to compatibility problems between biodiesel and various metallic and polymeric materials contacted. Therefore, the objective of this work is to investigate the effect of different mixtures diesel–biodiesel (fuel type B5, B10, B20) used in Baja California, Mexico on the resistance of nitrile rubber fuel hoses at temperatures of 25 °C and 70 °C applying gravimetric tests, tensile strength measurements and scanning electron microscopy analysis. The factors affecting the material mass change were identified using an experimental design analysis. It was found that the fuel temperature did not conduct to significant mass loss of nitrile rubber fuel hose, while biodiesel concentration affected the properties of the elastomer, causing the phenomenon of swelling. The exposure of hoses to fuel with increasing concentrations of biodiesel led to tensile strength decrease. - Highlights: • The biodiesel oxidation led to problems with polymeric materials. • The degradation of a nitrile rubber fuel hose in biodiesel blends was assessed. • The nitrile rubber showed greater affinity for biodiesel than diesel. • The elastomer swelled, cracked and lost its mechanical properties by biodiesel. • SEM analysis confirmed surface morphology changes in higher biodiesel blends

  10. Biodiesel Emissions Analysis Program

    Science.gov (United States)

    Using existing data, the EPA's biodiesel emissions analysis program sought to quantify the air pollution emission effects of biodiesel for diesel engines that have not been specifically modified to operate on biodiesel.

  11. Biodiesel fuels

    Science.gov (United States)

    The mono-alkyl esters, most commonly the methyl esters, of vegetable oils, animal fats or other materials consisting mainly of triacylglycerols, often referred to as biodiesel, are an alternative to conventional petrodiesel for use in compression-ignition engines. The fatty acid esters that thus com...

  12. Soy Biodiesel Emissions Have Reduced Inflammatory Effects Compared to Diesel Emissions in Healthy and Allergic Mice

    Science.gov (United States)

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrat...

  13. Profitability and sustainability of small - medium scale palm biodiesel plant

    Science.gov (United States)

    Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga

    2017-06-01

    The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.

  14. Production and application of biodiesel from waste cooking oil

    Science.gov (United States)

    Tuly, S. S.; Saha, M.; Mustafi, N. N.; Sarker, M. R. I.

    2017-06-01

    Biodiesel has been identified as an alternative and promising fuel source to reduce the dependency on conventional fossil fuel in particular diesel. In this work, waste cooking oil (WCO) of restaurants is considered to produce biodiesel. A well-established transesterification reaction by sodium hydroxide (NaOH) catalytic and supercritical methanol (CH3OH) methods are applied to obtain biodiesel. In the catalytic transesterification process, biodiesel and glycerine are simultaneously produced. The impact of temperature, methanol/WCO molar ratio and sodium hydroxide concentration on the biodiesel formation were analysed and presented. It was found that the optimum 95% of biodiesel was obtained when methanol/WCO molar ratio was 1:6 under 873 K temperature with the presence of 0.2% NaOH as a catalyst. The waste cooking oil blend proportions were 10%, 15%, 20% and 25% and named as bio-diesel blends B-10, B-15, B-20, and B-25, respectively. Quality of biodiesel was examined according to ASTM 6751: biodiesel standards and testing methods. Important fuel properties of biodiesel, such as heating value, cetane index, viscosity, and others were also investigated. A four-stroke single cylinder naturally aspirated DI diesel engine was operated using in both pure form and as a diesel blend to evaluate the combustion and emission characteristics of biodiesel. Engine performance is examined by measuring brake specific fuel consumption and fuel conversion efficiency. The emission of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and others were measured. It was measured that the amount of CO2 increases and CO decreases both for pure diesel and biodiesel blends with increasing engine load. However, for same load, a higher emission of CO2 from biodiesel blends was recorded than pure diesel.

  15. The biodiesel handbook

    National Research Council Canada - National Science Library

    Knothe, Gerhard; Krahl, Jurgen; Van Gerpen, Jon Harlan

    2010-01-01

    .... The Biodiesel Handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, applications, emissions, and other environmental...

  16. Calorific value for compositions with biodiesel of fat chicken and diesel oil; Valor calorifico para composicoes com biodiesel da gordura de frango e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Jose da [Universidade de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], email: marcelo.jose@feagri.unicamp.br; Souza, Samuel N.M. de; Souza, Abel A. de; Martins, Gislaine I. [Universidade Estadual do Oeste do Parana (CCET/UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas], emails: ssouza@unioeste.br, abel.sza@hotmail.com, iastiaque@yahoo.com.br

    2011-07-01

    The biodiesel fuel is a renewable source of alternative fuel used in diesel cycle engines. The production of biodiesel involves the reaction of methanol with fatty acids of animal or vegetable. The production of biodiesel from chicken fat can be very attractive for some regions from Brazil with high poultry production, as in the Parana West and Santa Catarina West. In this study , the goal was the lower calorific value of the compositions between biodiesel and diesel oil: 100% Diesel oil (B0), 20% biodiesel (B20), 40% biodiesel (B40), 60% biodiesel (B60), 80% biodiesel (B80 ), 100% biodiesel (B100). The biodiesel used was acquired in the Centre for Development and Diffusion of technologies on the Assis Gurgacz College, in Cascavel city. The nominal production capacity of the unit is 900 liters on period of 8 hours. The model of the calorimeter used, was the E2K. The lower calorific value of B100 composition was 35.388 MJ kg-1 and the diesel oil was 41.299 MJ kg-1. With the measuring of the caloric value of six samples mix of diesel oil and biodiesel, was obtained a linear function decrease of the calorific value when increased it the proportion of biodiesel from chicken fat into fuel. (author)

  17. Investigation of friction and wear characteristics of palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Both wear and friction decrease with the increase of biodiesel concentration. ► Wear and friction appear to decrease more at the range of 10–20% biodiesel in diesel blend. ► The wear of steel ball in biodiesel (B100) was 20% lower than that in diesel (B0). ► Lubricity in terms of wear and friction decreases with the increase of rotating speed. - Abstract: Use of biodiesel in automobile engine is creating tribology related new challenges. The present study aims to assess the friction and wear characteristics of palm biodiesel at different concentration level by using four-ball wear machine. The investigated fuels were biodiesel (B100), diesel (B0) and three different biodiesel blends such as B10 (10% biodiesel in diesel), B20, B50. Tests were conducted at 75 °C under a normal load of 40 kg for 1 h at four different speeds viz, 600, 900, 1200 and 1500 rpm. Worn surfaces of the balls were examined by SEM. Results showed that wear and friction decreased with the increase of biodiesel concentration. The wear of steel ball in B100 was appeared to be 20% lower than that in diesel (B0)

  18. Biodiesel in British Columbia : feasibility study report

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, M.; Murray-Hill, A.; Schaddelee, K. [Wise Energy Co-op, Victoria, BC (Canada)

    2004-05-05

    This report evaluates the potential for biodiesel as a viable fuel in British Columbia. Biodiesel is a non-toxic, biodegradable, renewable fuel produced from recycled bio-oils that can be used to replace conventional petroleum diesel. The report also examines potential feedstock characteristics, output volumes and environmental impacts. Production of biodiesel is increasing globally due to its economic, human and environmental health benefits. Canada's Climate Change Action Plan target of 500 million litres of biodiesel production per year by 2010 will also contribute to biodiesel growth. The use of pure biodiesel as an alternative fuel results in reduced emissions of carbon dioxide, sulphur dioxide, methane, unburned hydrocarbons, carbon monoxide, particulate matter and polycyclic aromatic hydrocarbons. British Columbia's biodiesel feedstock volumes yield a total theoretical capacity of 125 million litres per year of biodiesel, or 4.5 per cent of the province's total annual diesel consumption The feedstock is enough to fuel over 3,700 transit buses annually and significantly reduce greenhouse gas emissions. This report outlines the activities needed to establish commercial biodiesel companies in the province. It also examines standards and regulatory issues; technology availability; cost and processing analysis; potential markets and distribution channels; and environmental impact comparisons. The 4 critical factors that will determine the success or failure of a commercial biodiesel project include: the ability to balance feedstock supplies, processing technology, and market penetration in an integrated system that is reliable and efficient; the ability to form stable strategic alliances with feedstock suppliers, distributors and end users; the ability to deal effectively with competitive pressures; and, the ability to generate a business plan that will attract financing. It was concluded that community-based biodiesel production at a plant scale

  19. Study on Emission and Performance of Diesel Engine Using Castor Biodiesel

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2014-01-01

    performance of diesel engine using the castor biodiesel and its blend with diesel from 0% to 40% by volume. The acid-based catalyzed transesterification system was used to produce castor biodiesel and the highest yield of 82.5% was obtained under the optimized condition. The FTIR spectrum of castor biodiesel indicates the presence of C=O and C–O functional groups, which is due to the ester compound in biodiesel. The smoke emission test revealed that B40 (biodiesel blend with 40% biodiesel and 60% diesel had the least black smoke compared to the conventional diesel. Diesel engine performance test indicated that the specific fuel consumption of biodiesel blend was increased sufficiently when the blending ratio was optimized. Thus, the reduction in exhaust emissions and reduction in brake-specific fuel consumption made the blends of caster seed oil (B20 a suitable alternative fuel for diesel and could help in controlling air pollution.

  20. Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses: Experiment and Modeling

    Science.gov (United States)

    Omidvarborna, Hamid

    Biofuels, such as biodiesel, offer benefits as a possible alternative to conventional fuels due to their fuel source sustainability and their reduced environmental impact. Before they can be used, it is essential to understand their combustion chemistry and emission characterizations due to a number of issues associated with them (e.g., high emission of nitrogen oxides (NOx), lower heating value than diesel, etc.). During this study, emission characterizations of different biodiesel blends (B0, B20, B50, and B100) were measured on three different feedstocks (soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO)) with various characteristics, while an ultra-low sulfur diesel (ULSD) was used as base fuel at low-temperature combustion (LTC). A laboratory combustion chamber was used to analyze soot formation, NOx emissions, while real engine emissions were measured for further investigation on PM and NOx emissions. For further study, carbon emissions (CO, CO 2, and CH4) were also measured to understand their relations with feedstocks' type. The emissions were correlated with fuel's characteristics, especially unsaturation degree (number of double bonds in methyl esters) and chain length (oxygen-to-carbon ratio). The experimental results obtained from laboratory experiments were confirmed by field experiments (real engines) collected from Toledo area regional transit authority (TARTA) buses. Combustion analysis results showed that the neat biodiesel fuels had longer ignition delays and lower ignition temperatures compared to ULSD at the tested condition. The results showed that biodiesel containing more unsaturated fatty acids emitted higher levels of NOx compared to biodiesel with more saturated fatty acids. A paired t-test on fuels showed that neat biodiesel fuels had significant reduction in the formation of NOx compared with ULSD. In another part of this study, biodiesel fuel with a high degree of unsaturation and high portion of long chains of

  1. Studies Highlight Biodiesel's Benefits

    Science.gov (United States)

    , Colo., July 6, 1998 — Two new studies highlight the benefits of biodiesel in reducing overall air Energy's National Renewable Energy Laboratory (NREL) conducted both studies: An Overview of Biodiesel and Petroleum Diesel Life Cycles and Biodiesel Research Progress, 1992-1997. Biodiesel is a renewable diesel

  2. BACTERIAL COMMUNITY DYNAMICS AND ECOTOXICOLOGICAL ASSESSMENT DURING BIOREMEDIATION OF SOILS CONTAMINATED BY BIODIESEL AND DIESEL/BIODIESEL BLENDS.

    Science.gov (United States)

    Matos, G I; Junior, C S; Oliva, T C; Subtil, D F; Matsushita, L Y; Chaves, A L; Lutterbach, M T; Sérvulo, E F; Agathos, S N; Stenuit, B

    2015-01-01

    The gradual introduction of biodiesel in the Brazilian energy landscape has primarily occurred through its blending with conventional petroleum diesel (e.g., B20 (20% biodiesel) and B5 (5% biodiesel) formulations). Because B20 and lower-level blends generally do not require engine modifications, their use as transportation fuel is increasing in the Brazilian distribution networks. However, the environmental fate of low-level biodiesel blends and pure biodiesel (B100) is poorly understood and the ecotoxicological-safety endpoints of biodiesel-contaminated environments are unknown. Using laboratory microcosms consisting of closed reactor columns filled with clay loam soil contaminated with pure biodiesel (EXPB100) and a low-level blend (EXPB5) (10% w/v), this study presents soil ecotoxicity assessement and dynamics of culturable heterotrophic bacteria. Most-probable-number (MPN) procedures for enumeration of bacteria, dehydrogenase assays and soil ecotoxicological tests using Eisenia fetida have been performed at different column depths over the course of incubation. After 60 days of incubation, the ecotoxicity of EXPB100-derived samples showed a decrease from 63% of mortality to 0% while EXPB5-derived samples exhibited a reduction from 100% to 53% and 90% on the top and at the bottom of the reactor column, respectively. The dehydrogenase activity of samples from EXPB100 and EXPB5 increased significantly compared to pristine soil after 60 days of incubation. Growth of aerobic bacterial biomass was only observed on the top of the reactor column while the anaerobic bacteria exhibited significant growth at different column depths in EXPB100 and EXPB5. These preliminary results suggest the involvement of soil indigenous microbiota in the biodegradation of biodiesel and blends. However, GC-FID analyses for quantification of fatty acid methyl esters (FAMEs) and aliphatic hydrocarbons and targeted sequencing of 16S rRNA tags using illumina platforms will provide important

  3. Effect of temperature on tribological properties of palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Sia, S.Y.; Fazal, M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-03-15

    Biodiesel, as an alternative fuel is steadily gaining attention to replace petroleum diesel partially or completely. The tribological performance of biodiesel is crucial for its application in automobiles. In the present study, effect of temperature on the tribological performance of palm biodiesel was investigated by using four ball wear machine. Tests were conducted at temperatures 30, 45, 60 and 75 C, under a normal load of 40 kg for 1 h at speed 1200 rpm. For each temperature, the tribological properties of petroleum diesel (B0) and three biodiesel blends like B10, B20, B50 were investigated and compared. During the wear test, frictional torque was recorded on line. Wear scars in tested ball were investigated by optical microscopy. Results show that friction and wear increase with increasing temperature. (author)

  4. Multicomponent evaporation model for pure and blended biodiesel droplets in high temperature convective environment

    Energy Technology Data Exchange (ETDEWEB)

    Saha, K.; Abu-Ramadan, E.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering

    2010-07-01

    Renewable energy sources are currently being investigated for their reliability, efficiency, and applicability. Biodiesel is one of the most promising alternatives to conventional diesel fuels in compression-ignition (CI) engines. This paper reported on a study that compared pure biodiesel, pure diesel and blended fuels using a comprehensive multicomponent droplet vaporization model. The model considers the difference in the gas phase diffusivity of diesel and biodiesel vapors. The paper presented the vaporization characteristics of pure diesel, pure biodiesel fuel droplets as well as the effect of mixing them in different proportions (B20 and B50). The model successfully predicted the vaporization history of a multicomponent droplet. The modeling study revealed that biodiesel droplets evaporate at a slower rate than the diesel droplets because of relatively low vapor pressure. As such, the blending of diesel fuel with small proportions of biodiesel will result in an increase in the evaporation time of diesel fuel to some extent. 31 refs., 6 figs.

  5. Influence of oxygen enrichment on compression ignition engines using biodiesel blends

    Directory of Open Access Journals (Sweden)

    Vaiyapuri Senthil Murugan

    2017-01-01

    Full Text Available The influence of oxygen enrichment on performance and emission characteristics of a single cylinder diesel engine operated with biodiesel blends have been investigated in this work. The methyl ester of jatropha biodiesel was selected as bio-diesel and four blends (B10, B20, B30, and B40 were selected for experimental investigations. The performance and emission characteristics were obtained for the these blends along with three oxygen enrichment flow rates (1, 3, and 5 L per minute using an oxygen cylinder at the air intake in the diesel engine. The performance and emission characteristics were studied and compared with the diesel and biodiesel. It was observed that, oxygen enrichment enhances the brake thermal efficiency, HC, CO, and smoke. B10 biodiesel with 5 L per minute oxygen enrichment was found to be the best fuel for biodiesel operation.

  6. Positive magnetoresistance in Co40Fe40B20/SiO2/Si heterostructure

    KAUST Repository

    Zhang, Y.

    2016-07-20

    Current-perpendicular-to-plane electronic transport properties and magnetoresistance of amorphous Co40Fe40B20/SiO2/Si heterostructures are investigated systematically. A backward diode-like rectifying behavior was observed due to the formation of a Schottky barrier between Co40Fe40B20 and Si. The junction resistance shows a metal-insulator transition with decreasing temperature in both the forward and reverse ranges. A large positive magnetoresistance (MR) of ∼2300% appears at 200 K. The positive MR can be attributed to the magnetic-field-controlled impact ionization process of carriers. MR shows a temperature-peak-type character under a constant bias current, which is related to the spin-dependent barrier in the Si near the interface. © CopyrightEPLA, 2016.

  7. Positive magnetoresistance in Co40Fe40B20/SiO2/Si heterostructure

    KAUST Repository

    Zhang, Y.; Mi, W. B.; Zhang, Xixiang

    2016-01-01

    Current-perpendicular-to-plane electronic transport properties and magnetoresistance of amorphous Co40Fe40B20/SiO2/Si heterostructures are investigated systematically. A backward diode-like rectifying behavior was observed due to the formation of a Schottky barrier between Co40Fe40B20 and Si. The junction resistance shows a metal-insulator transition with decreasing temperature in both the forward and reverse ranges. A large positive magnetoresistance (MR) of ∼2300% appears at 200 K. The positive MR can be attributed to the magnetic-field-controlled impact ionization process of carriers. MR shows a temperature-peak-type character under a constant bias current, which is related to the spin-dependent barrier in the Si near the interface. © CopyrightEPLA, 2016.

  8. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine

    International Nuclear Information System (INIS)

    Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Arbab, M.I.; Cheng, S.F.; Gouk, S.W.

    2014-01-01

    Highlights: • Potential of biodiesel production from crude Moringa oleifera oil. • Characterization of M. oleifera biodiesel and its blend with diesel fuel. • Evaluation of M. oleifera biodiesel blend in a diesel engine. - Abstract: Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. This study aims to evaluate the physico-chemical properties of Moringa oleifera biodiesel and its 10% and 20% by-volume blends (B10 and B20) in comparison with diesel fuel (B0). The performance and emission of M. oleifera biodiesel and its blends in a multi-cylinder diesel engine were determined at various speeds and full load conditions. The properties of M. oleifera biodiesel and its blends complied with ASTM D6751 standards. Over the entire range of speeds, B10 and B20 fuels reduced brake power and increased brake specific fuel consumption compared with B0. In engine emissions, B10 and B20 fuels reduced carbon monoxide emission by 10.60% and 22.93% as well as hydrocarbon emission by 9.21% and 23.68%, but slightly increased nitric oxide emission by 8.46% and 18.56%, respectively, compared with B0. Therefore, M. oleifera is a potential feedstock for biodiesel production, and its blends B10 and B20 can be used as diesel fuel substitutes

  9. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Fareez Edzuan

    2017-01-01

    Full Text Available As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM emissions however nitrogen oxides (NOx emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coconut oils are selected as the feedstock based on their unsaturation degree. Biodiesel blends of B20 were used to fuel a single cylinder diesel engine and exhaust emissions were sampled directly at exhaust tailpipe with a flue gas analyser. Biodiesel flame temperature was measured from a cotton wick burned in simple atmospheric conditions using a thermocouple. Fourier transform infrared (FTIR spectrometer was also used to identify the functional groups presence in the biodiesel blends. Oxygen content in biodiesel may promote complete combustion as the NOx emissions and flame temperatures were increased while the carbon monoxide (CO emissions were decreased for all biodiesel blends. It is interesting to note that the NOx emissions and flame temperatures were directly proportional with biodiesel unsaturation degree. It might be suggested that apart from excess oxygen and free radical formation, higher NOx emissions can also be caused by the elevated flame temperatures due to the presence of double bonds in unsaturated biodiesel.

  10. Biodiesel's Characteristics Preparation from Palm Oil

    Directory of Open Access Journals (Sweden)

    Tilani Hamid

    2010-10-01

    Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separated from glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels' properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

  11. Alternative Fuels Data Center: Biodiesel

    Science.gov (United States)

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on

  12. Mississippi State Biodiesel Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the

  13. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends

    International Nuclear Information System (INIS)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-01-01

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions.

  14. Biodiesel Test Plan

    Science.gov (United States)

    2014-07-01

    Biodiesel Test Plan Distribution Statement A: Approved for Public Release; distribution is unlimited. July 2014 Report No. CG-D-07-14...Appendix C) Biodiesel Test Plan ii UNCLAS//Public | CG-926 R&DC | G. W. Johnson, et al. Public | July 2014 N O T I C E This...Development Center 1 Chelsea Street New London, CT 06320 Biodiesel Test Plan iii UNCLAS//Public | CG-926 R&DC | G. W. Johnson, et al

  15. Biodiesel at TRANSPETRO; Biodiesel na TRANSPETRO

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Antonio Carlos C. da; Machado, Tupinamba da Conceicao S. [TRANSPETRO, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    TRANSPETRO took the challenge, in early 2007, to design and install in less than one year, the systems of injection of Biodiesel in its Distribution Bases with loading truck. The basics premises, adopted for the development of the project, were based on the criteria of safety, operational reliability and to complying with legal deadline. These points guided the actions of Coordinating with two goals: Ensure the injection of Biodiesel according to time by law and the future flexibility of the system. Two to three sets were installed in each Distribution Base, respecting the characteristics of the market and the distance from centers producers of Biodiesel. TRANSPETRO was one of the first companies in Brazil using cutting-edge technology in injection of this product through the use of digital valves in the control of flow of the product. Sum up the storage capacity of Biodiesel the first and second phase of the project, TRANSPETRO will provide 8 to 10 days' stock of Biodiesel to its customers based on the injection of 5% to Diesel Oil. The Project Biodiesel at TRANSPETRO was differentiated by working in teams, the strategy for deployment and the modular aspect with focus on future demand. (author)

  16. Supercritical Synthesis of Biodiesel

    Directory of Open Access Journals (Sweden)

    Michel Vaultier

    2012-07-01

    Full Text Available The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs for biodiesel synthesis.

  17. Surface characterization of amorphous and crystallized Fe 80B 20

    Science.gov (United States)

    Huntley, D. R.; Overbury, S. H.; Zehner, D. M.; Budai, J. D.; Brower, W. E.

    1986-11-01

    Recent studies of catalysis by amorphous metals have prompted an interest in their surface properties. We have utilized Auger electron spectroscopy, X-ray photoelectron spectroscopy and low energy alkali ion scattering to study the surface composition, electronic properties and topography of amorphous and crystallized Fe 80B 20 ribbons. The majorresults are that the surface stoichiometry is approximately that of the bulk, unaltered by segregation. Bulk crystallization results in the diffusion of impurities to the surface, but does not change the Fe/B ratio. A small shift in the B1s core level binding energy was observed on crystalline, annealed surfaces relative to amorphous or sputtered surfaces, but no shifts were observed in the iron core level energies. A weak feature due to the B2p levels was observed in the valence band spectra from sputtered surfaces. The surfaces exhibit atomic scale roughness which is not altered by bulk crystallization. Finally, there were no observable differences in the structure, composition or electronic properties between the two sides of the ribbons.

  18. U.S. Army and Department of Defense Experience with the Use of B20 and other Biodiesel Blends

    Science.gov (United States)

    2014-05-01

    cleaning rate were substantially increased. Note: MGO procured for the US military (USN, USCG, MSC, etc) meets the ISO 8217 Grade DMA specification...21000 3.48 6/6/2012 15005 3.01 8/22/2012 20750 2.75 9/8/2012 27000 0.27 9/26/2012 26000 0.27 10/18/2012 24500 2.31 1. Excessive fuel filter

  19. Degradation of physical properties of different elastomers upon exposure to palm biodiesel

    International Nuclear Information System (INIS)

    Haseeb, A.S.M.A.; Jun, T.S.; Fazal, M.A.; Masjuki, H.H.

    2011-01-01

    Biodiesel, as an alternative fuel, is gradually receiving more popularity for use in internal combustion engines. However questions continue to arise with regard to its compatibility with elastomeric materials. The present work aims to investigate the comparative degradation of physical properties for different elastomers [e.g. ethylene propylene diene monomer (EPDM), silicone rubber (SR), polychloroprene (CR), polytetrafluroethylene (PTFE) and nitrile rubber (NBR)] upon exposure to diesel and palm biodiesel. Static immersion tests in B0(diesel), B10 (10% biodiesel in diesel), B20, B50 and B100(biodiesel) were carried out at room temperature (25 o C) for 1000 h. Different physical properties like, changes in weight and volume, hardness and tensile strength were measured at every 250 h of immersion time. Compositional changes in biodiesel due to exposure of different elastomers were investigated by Gas chromatography mass spectroscopy (GCMS). The overall sequence of compatible elastomers in palm biodiesel is found to be PTFE > SR > NBR > EPDM > CR. -- Research highlights: → Biodiesel and its blends swelled polychloroprene (CR) and nitrile rubber (NBR) to a greater extent than did diesel. → Although PTFE seems to be the most compatible elastomer among those tested, it undergoes a slight reduction of main constituents. →The overall sequence of compatible elastomers in palm biodiesel is PTFE > SR > NBR > EPDM > CR.

  20. Effect of poultry fat oil biodiesel on tractor engine performance

    Directory of Open Access Journals (Sweden)

    M Bavafa

    2016-04-01

    (Fig.3. Its measuring range is 37-1537 ml min-1. Results and Discussion: The engine performance was evaluated in terms of engine power, engine torque and specific fuel consumption at different engine speeds. The variation of engine torques with B5, B10, B15, B20 and diesel fuel are presented in Fig. 4. The engine torque for biodiesel blends was more than that by diesel fuel only. The mean engine torques for B5, B10, B15 and B20 were 2.5%, 2.8%, 3%, and 3.5% higher than that by only diesel, respectively. This is due to the better combustion of biodiesel compared to diesel fuel. The variation of engine powers with B5, B10, B15, B20 and diesel fuel are presented in Fig. 5. The engine powers for biodiesel blends were more than that by diesel fuel. The mean engine powers for B5, B10, B15 and B20 were higher than that by diesel by 2.5%, 3%, 3.5%, and 4%, respectively. This is because of good combustion of biodiesel resulted from higher oxygen content. The mean specific fuel consumptions for B5, B10, B15 and B20 were higher than diesel fuel about 4.1%, 7%, 8.8%, and 2%, respectively (Fig. 8. The density of biodiesel was higher than that of diesel fuel, which means the same fuel consumption on volume basis results in higher specific fuel consumption in case of biodiesel. Conclusions: The values of viscosity, density and flash point of poultry fat oil biodiesel were found to be closely matched with ASTM D-6751 standard specifications. Viscosity and density of biodiesel were found more than those for diesel. The calorific value of biodiesel was found to be lower than that of diesel. Poultry fat oil biodiesel cannot be used as a neat diesel fuel in cold weather conditions due to its relatively low cloud point. Preheating and lowering freezing point is required to eliminate this problem. The engine performance with poultry fat oil biodiesel and its blends are comparable with those of pure diesel fuel. Results indicated that B20 blend had the best performance and the lowest

  1. del biodiesel de aceite de palma

    Directory of Open Access Journals (Sweden)

    Pedro Nel Benjumea

    2007-01-01

    Full Text Available El deficiente desempeño del biodiesel de aceite de palma (BAP a bajas temperaturas constituye su mayor deficiencia de calidad y el limitante para propiciar el uso de este combustible alternativo para motores diesel puro o mezclado en altas proporciones con el combustible diesel convencional derivado del petróleo (ACPM. En este trabajo se evalúan varias alternativas para mejorar las propiedades de flujo a baja temperatura (PFBT del BAP. Mediante la producción del biodiesel utilizando alcoholes ramificados como el isopropanol, isobutanol, 2-butanol e isopentanol se obtienen alquilésteres del aceite de palma con puntos de nube y fl uidez más bajos que los correspondientes a los metilésteres. La sustitución del grupo metil por el isopentil permite obtener reducciones en los puntos de nube y fluidez de 8 y 21 ºC, respectivamente. Los isopropilésteres del aceite de palma poseen un punto de nube 10 ºC menor que el de los metilésteres. El punto de nube de las mezclas BAP-ACPM se incrementa en forma lineal con el contenido del biodiesel en la mezcla. Para las mezclas probadas (B5, B20 y B30 solo se presentan problemas de filtrabilidad del combustible a temperaturas por debajo de -4 ºC. En este trabajo se evaluó la efectividad de dos aditivos comerciales mejoradores de flujo para reducir el punto de obstrucción de filtros en frío (POFF del biodiesel puro y las mezclas probadas. Los resultados obtenidos mostraron que con dichos aditivos solamente es posible obtener reducciones en el POFF de la mezcla B5 cuando se usa la menor de las tres concentraciones de aditivo probadas.

  2. Prospects of biodiesel from Jatropha in India: A review

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand (India)

    2010-02-15

    The increasing industrialization and modernization of the world has to a steep rise for the demand of petroleum products. Economic development in developing countries has led to huge increase in the energy demand. In India, the energy demand is increasing at a rate of 6.5% per annum. The crude oil demand of the country is met by import of about 80%. Thus the energy security has become a key issue for the nation as a whole. Petroleum-based fuels are limited. The finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these reserves are facing foreign exchange crises, mainly due to the import of crude oil. Hence it is necessary to look forward for alternative fuels, which can be produced from feedstocks available within the country. Biodiesel, an ecofriendly and renewable fuel substitute for diesel has been getting the attention of researchers/scientists of all over the world. The R and D has indicated that up to B20, there is no need of modification and little work is available related to suitability and sustainability of biodiesel production from Jatropha as non-edible oil sources. In addition, the use of vegetable oil as fuel is less polluting than petroleum fuels. The basic problem with biodiesel is that it is more prone to oxidation resulting in the increase in viscosity of biodiesel with respect to time which in turn leads to piston sticking, gum formation and fuel atomization problems. The report is an attempt to present the prevailing fossil fuel scenario with respect to petroleum diesel, fuel properties of biodiesel resources for biodiesel production, processes for its production, purification, etc. Lastly, an introduction of stability of biodiesel will also be presented. (author)

  3. Prospects of biodiesel from Jatropha in India: A review

    International Nuclear Information System (INIS)

    Jain, Siddharth; Sharma, M.P.

    2010-01-01

    The increasing industrialization and modernization of the world has to a steep rise for the demand of petroleum products. Economic development in developing countries has led to huge increase in the energy demand. In India, the energy demand is increasing at a rate of 6.5% per annum. The crude oil demand of the country is met by import of about 80%. Thus the energy security has become a key issue for the nation as a whole. Petroleum-based fuels are limited. The finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these reserves are facing foreign exchange crises, mainly due to the import of crude oil. Hence it is necessary to look forward for alternative fuels, which can be produced from feedstocks available within the country. Biodiesel, an ecofriendly and renewable fuel substitute for diesel has been getting the attention of researchers/scientists of all over the world. The R and D has indicated that up to B20, there is no need of modification and little work is available related to suitability and sustainability of biodiesel production from Jatropha as non-edible oil sources. In addition, the use of vegetable oil as fuel is less polluting than petroleum fuels. The basic problem with biodiesel is that it is more prone to oxidation resulting in the increase in viscosity of biodiesel with respect to time which in turn leads to piston sticking, gum formation and fuel atomization problems. The report is an attempt to present the prevailing fossil fuel scenario with respect to petroleum diesel, fuel properties of biodiesel resources for biodiesel production, processes for its production, purification, etc. Lastly, an introduction of stability of biodiesel will also be presented. (author)

  4. Optimization of the combustion of SOME (soybean oil methyl ester), B5, B10, B20 and petrodiesel in a semi industrial boiler

    International Nuclear Information System (INIS)

    Ghorbani, Afshin; Bazooyar, Bahamin

    2012-01-01

    This paper characterizes combustion of petrodiesel and prevalent SOME blends (B100, B5, B10 and B20), which were produced through an alkali-based transesterification in PUT, in a semi industrial boiler by determining its efficiency, exhaust emissions and costs. First, the influence of oxygen content of stock gases (by volume percent) upon regular emissions, thermal efficiency and costs (calculated by a cost function) was studied in order to investigate the performance and feasibility of using biodiesel in the boiler. In the next level, a multi-objective optimization method, named cost-based optimization, was represented and optimized the combustion of the fuels. The overall efficiency of the boiler obtained with the different fuels is comparable for the same operating points. Soy bean methyl ester and the blends emitted lower emissions than petrodiesel. Results demonstrate that the use of pure biodiesel is not economically feasible in the boiler. The total costs of the boiler obtained with the blends and petrodiesel are quite competitive. B5 is introduced to be the best fuel for using in the boiler. Results also reveal an optimum (“compromise”) in total cost of all the fuels in relation to the oxygen concentration of stock gases, which promises a cost saving in the boiler performance. -- Highlights: ► Efficiency, emissions and economy of the boiler fuelled with SOME, B5, B10, B20 and petrodiesel are investigated. ► The use of pure biodiesel was not economically feasible while economy of the blends and petrodiesel is competitive. ► B5 is introduced to be the most appropriate and economic fuel for the boiler. ► Presentation of a cost-based method optimization method. ► Introducing an optimum, “compromise”, O 2 % for the combustion of each fuel which promises a cost saving.

  5. Sustainable Biocatalytic Biodiesel Production

    DEFF Research Database (Denmark)

    Güzel, Günduz

    As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase and chemi......As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase...... and chemical equilibria as part of his main sustainable biodiesel project. The transesterification reaction of vegetable oils or fats with an aliphatic alcohol – in most cases methanol or ethanol – yields biodiesel (long-chain fatty acid alkyl esters – FAAE) as the main product in the presence of alkaline...

  6. A comprehensive review on biodiesel purification and upgrading

    Directory of Open Access Journals (Sweden)

    Hamed Bateni

    2017-09-01

    Full Text Available Serious environmental concerns regarding the use of fossil-based fuels have raised awareness regarding the necessity of alternative clean fuels and energy carriers. Biodiesel is considered a clean, biodegradable, and non-toxic diesel substitute produced via the transesterification of triglycerides with an alcohol in the presence of a proper catalyst. After initial separation of the by-product (glycerol, the crude biodiesel needs to be purified to meet the standard specifications prior to marketing. The presence of impurities in the biodiesel not only significantly affects its engine performance but also complicates its handling and storage. Therefore, biodiesel purification is an essential step prior to marketing. Biodiesel purification methods can be classified based on the nature of the process into equilibrium-based, affinity-based, membrane-based, reaction-based, and solid-liquid separation processes. The main adverse properties of biodiesel – namely moisture absorption, corrosiveness, and high viscosity – primarily arise from the presence of oxygen. To address these issues, several upgrading techniques have been proposed, among which catalytic (hydrodeoxygenation using conventional hydrotreating catalysts, supported metallic materials, and most recently transition metals in various forms appear promising. Nevertheless, catalyst deactivation (via coking and/or inadequacy of product yields necessitate further research. This paper provides a comprehensive overview on the techniques and methods used for biodiesel purification and upgrading.

  7. Beschikbaarheid koolzaad voor biodiesel

    OpenAIRE

    Janssens, B.; Prins, H.; Smit, A.B.; Annevelink, E.; Meeusen-van Onna, M.J.G.

    2005-01-01

    This report provides an insight into the conditions under which the Dutch agricultural industry will cultivate oilseed rape for biodiesel. The Dutch agricultural entrepreneur occupies a central role in this. The possibilities relating to the cultivation of oilseed rape are assessed from the perspective of the Dutch farmer, within the framework of the EU directive regarding the substitution of 2% of transport fuels with bio transport fuels in the Netherlands. Along with bio-ethanol, biodiesel ...

  8. Biodiesel Fuel Quality and the ASTM Biodiesel Standard

    Science.gov (United States)

    Biodiesel is usually produced from vegetable oils, animal fats and used cooking oils with alternative feedstocks such as algae receiving increasing interest. The transesterification reaction which produces biodiesel also produces glycerol and proceeds stepwise via mono- and diacylglycerol intermedi...

  9. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    Science.gov (United States)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  10. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, M.; Heath, G.

    2009-03-01

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  11. Business management for biodiesel producers

    Energy Technology Data Exchange (ETDEWEB)

    Gerpen, Jon Van [Iowa State Univ., Ames, IA (United States)

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  12. Study of the Effects of Ethanol As an Additive with a Blend of Poultry Litter Biodiesel and Alumina Nanoparticles on a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2017-12-01

    Full Text Available With the increasing population and rise in industrialization, the demand for petroleum reserves is increasing almost daily. This is causing depletion of the non-renewable energy resources. This work aims to find an alternative fuel for diesel engines. The use of poultry litter oil biodiesel obtained from poultry industry waste, which is a non-edible source for biodiesel, is very encouraging as an alternative fuel for diesel engines. The aim of this study is to observe and maximize the performance of poultry litter oil biodiesel by adding alumina nanoparticles and ethanol. The biodiesel is prepared with acid and the base catalysed transesterification of poultry litter oil with methanol using concentrated sulphuric acid and potassium hydroxide as catalysts. The experimentation is carried out on a CI engine with three different blends - B20 biodiesel blend, B20 biodiesel blend with 30 mg/L alumina nanoparticles, and B20 biodiesel blend with 30 mg/L alumina nanoparticles and 15 ml/L ethanol. The performance, combustion and emission characteristics of all three blends are compared with neat diesel. The results of the experiment show that ethanol as an additive improves the combustion and performance characteristics. It increases the brake thermal efficiency and peak cylinder pressure. It also reduces CO and UBHC emissions and there is a marginal increase in NOx emissions as compared to neat diesel.

  13. Aerosols and criteria gases in an underground mine that uses FAME biodiesel blends.

    Science.gov (United States)

    Bugarski, Aleksandar D; Janisko, Samuel J; Cauda, Emanuele G; Patts, Larry D; Hummer, Jon A; Westover, Charles; Terrillion, Troy

    2014-10-01

    The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck's contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13-29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  14. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Shihnan, A.H.; Nasri, N.S.; Sharer, Z.

    2014-01-01

    Highlights: • Engine and emission characteristics of biodiesel DDF engine system were measured. • Biodiesel DDF fuelled system produced high engine performance. • Lower hydrocarbons and carbon dioxide was emitted by biodiesel DDF system. • Biodiesel DDF produced slightly higher carbon monoxide and nitric oxides emission. - Abstract: Biodiesel derived from biomass is a renewable source of fuel. It is renovated to be the possible fuel to replace fossil derived diesel due to its properties and combustion characteristics. The integration of compressed natural gas (CNG) in diesel engine known as diesel dual fuel (DDF) system offered better exhaust emission thus become an attractive option for reducing the pollutants emitted from transportation fleets. In the present study, the engine performance and exhaust emission of HINO H07C DDF engine; fuelled by diesel, biodiesel, diesel–CNG, and biodiesel–CNG, were experimentally studied. Biodiesel and diesel fuelled engine system respectively generated 455 N m and 287 N m of torque. The horse power of biodiesel was found to be 10–20% higher compared to diesel. Biodiesel–CNG at 20% (B20-DDF) produced the highest engine torque compared to other fuel blends Biodiesel significantly increase the carbon monoxide (15–32%) and nitric oxides (6.67–7.03%) but in contrast reduce the unburned hydrocarbons (5.76–6.25%) and carbon dioxide (0.47–0.58%) emissions level. These results indicated that biodiesel could be used without any engine modifications as an alternative and environmentally friendly fuel especially the heavy transportation fleets

  15. Biodiesel production technologies: review

    Directory of Open Access Journals (Sweden)

    Shemelis Nigatu Gebremariam

    2017-05-01

    Full Text Available Biodiesel is a fuel with various benefits over the conventional diesel fuel. It is derived from renewable resources, it has less emission to environment, it is biodegradable so has very limited toxicity and above all its production can be decentralized so that it could have a potential in helping rural economies. However, there are also some worth mentioning challenges associated with production of biodiesel. Among them repeatedly mentioned are the cost of feedstock and the choice of convenient technology for efficient production of the fuel from diverse feedstock types. There are four main routes by which raw vegetable oil and/or animal fat can be made suitable for use as substituent fuel in diesel engines without modification. These are direct use or blending of oils, micro-emulsion, thermal cracking or pyrolysis and transesterification reaction. Due to the quality of the fuel produced, the transesterification method is the most preferred way to produce biodiesel from diverse feedstock types. Through this method, oils and fats (triglycerides are converted to their alkyl esters with reduced viscosity to near diesel fuel levels. There are different techniques to carry out transesterification reaction for biodiesel production. Each technique has its own advantages and disadvantages as well as its own specifically convenient feedstock character. There are also some very important reaction conditions to be given due attention in each of this techniques for efficient production of biodiesel, such as molar ratio of alcohol to oil, type and amount of catalyst, reaction temperature, reaction time, reaction medium, type and relative amount of solvents, among others. This review is meant to investigate the main transesterification techniques for biodiesel production in terms of their choice of feedstock character as well as their determinately required reaction conditions for efficient biodiesel production, so that to give an overview on their advantages

  16. Biodiesel/Cummins CRADA Report

    Science.gov (United States)

    2014-07-01

    dedicated totes). This change provided uncontaminated containers to transport the delivery of biodiesel to the ANT, and better control for dosing as...emissions calculations. Each approach makes assumptions for farming practices, the biodiesel production process, and transportation and distribution... Biodiesel /Cummins CRADA Report Distribution Statement A: Approved for Public Release; distribution is unlimited. July 2014 Report

  17. Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks

    Directory of Open Access Journals (Sweden)

    Belachew Tesfa

    2014-01-01

    Full Text Available Currently, alternative fuels are being investigated in detail for application in compression ignition (CI engines resulting in exciting potential opportunities to increase energy security and reduce gas emissions. Biodiesel is one of the alternative fuels which is renewable and environmentally friendly and can be used in diesel engines with little or no modifications. The objective of this study is to investigate the effects of biodiesel types and biodiesel fraction on the emission characteristics of a CI engine. The experimental work was carried out on a four-cylinder, four-stroke, direct injection (DI and turbocharged diesel engine by using biodiesel made from waste oil, rapeseed oil, corn oil and comparing them to normal diesel. The fuels used in the analyses are B10, B20, B50, B100 and neat diesel. The engine was operated over a range of engine speeds. Based on the measured parameters, detailed analyses were carried out on major regulated emissions such as NOx, CO, CO2, and THC. It has been seen that the biodiesel types (sources do not result in any significant differences in emissions. The results also clearly indicate that the engine running with biodiesel and blends have higher NOx emission by up to 20%. However, the emissions of the CI engine running on neat biodiesel (B100 were reduced by up to 15%, 40% and 30% for CO, CO2 and THC emissions respectively, as compared to diesel fuel at various operating conditions.

  18. Biodiesel from Mustard oil: a Sustainable Engine Fuel Substitute for Bangladesh

    Directory of Open Access Journals (Sweden)

    M.M. Alam

    2013-10-01

    Full Text Available Various attractive features of mustard oil based biodiesel as a potential substitute for engine fuel are investigated in this paper for use in Bangladesh. Although the use of mustard oil as edible oil has been reduced, Bangladesh still produces 0.22 million metric tons of mustard oil per year. This surplus mustard oil would satisfactorily be used as an alternative to diesel fuel, and thus could contribute in reducing the expenses for importing fuel from foreign countries. Moreover, the rural people of Bangladesh are capable of producing mustard oil themselves using indigenous machines. Fuel properties of biodiesel obtained from mustard oil were determined in the laboratory using standard procedure and an experimental setup was constructed to study the performance of a small diesel engine. It is observed that with biodiesel, the engine is capable of running without difficulty. Initially different lower blends of biodiesel (e.g., B20, B30 etc. have been used to avoid complicated modification of the engine and the fuel supply system. It is also found in some condition that mustard oil based biodiesel have better properties than those made from other vegetable oils. These properties of mustard oil based biodiesel were evaluated to validate its sustainability in Bangladesh. Keywords: biodiesel, indigenous machines, mustard oil, renewable energy policy, sustainability

  19. Evaluating tractor performance and exhaust gas emissions using biodiesel from cotton seed oil

    International Nuclear Information System (INIS)

    Al-lwayzy, Saddam H; Yusaf, Talal; Jensen, Troy

    2012-01-01

    Alternative fuels for diesel engines, such as biodiesel, have attracted much attention recently due to increasing fuel prices and the imperative to reduce emissions. The exhaust gas emissions from tractors and other agricultural machinery make a significant contribution to these emissions. The use of biodiesel in internal combustion engines (ICE) has been reported to give comparable performance to conventional diesel (CD), but with generally lower emissions. There is however, contradictory evidence of NO emissions being both higher and lower from the use of biodiesel. In this work, agriculture tractor engine performance and its emission using both CD and biodiesel from cotton seed oil (CSO-B20) mixed at a 20% blend ration has been evaluated and compared. The PTO test results showed comparable exhaust emissions between CD and CSO-B20. However, the use of CSO-B20 led to reductions in the thermal efficiency and exhaust temperature and an increase in the brake specific fuel consumption (BSFC), when compared to CD.

  20. Role of biodiesel-diesel blends in alteration of particulate matter emanated by diesel engine

    International Nuclear Information System (INIS)

    Shah, A.N.; Shahid, E.M.

    2015-01-01

    The current study is focused on the investigation of the role of biodiesel in the alteration of particulate matter (PM) composition emitted from a direct injection-compression ignition. Two important blends of biodiesel with commercial diesel known as B20 (20% biodiesel and 80% diesel by volume) and B50 were used for the comparative analysis of their pollutants with those of 100% or traditional diesel (D). The experiments were performed under the auspices of the Chinese 8-mode steady-state cycle on a test bench by coupling the engine with an AC electrical dynamometer. As per experimental results, over-50 nm aerosols were abated by 8.7-47% and 6-51% with B20 and B50, respectively, on account of lofty nitrogen dioxide to nitrogen oxides (NO2/NO) ratios. In case of B50, sub-50 nm aerosols and sulphates were higher at maximum load modes of the test, owing to adsorption phenomenon of inorganic nuclei leading to heterogeneous nucleation. Moreover, trace metal emissions (TME) were substantially reduced reflecting the reduction rates of 42-57% and 64-80% with B20 and B50, respectively, relative to baseline measurements taken with diesel. In addition to this, individual elements such as Ca and Fe were greatly minimised, while Na was enhanced with biodiesel blended fuels. (author)

  1. Biodiesel Handling and Use Guide (Fifth Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T.L.; McCormick, R.L.; Christensen, E.D.; Fioroni, G.; Moriarty. K.; Yanowitz, J.

    2016-11-08

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It provides basic information on the proper and safe use of biodiesel and biodiesel blends in engines and boilers, and is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels.

  2. Biodiesel production by microalgal biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, GuanHua [School of Chemical Engineering and Technology, China University of Mining and Technology (China); Chen, Feng [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China); Wei, Dong; Zhang, XueWu; Chen, Gu [College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China)

    2010-01-15

    Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed. (author)

  3. Experimental Investigation Of Biogas-Biodiesel Dual Fuel Combustion In A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2015-06-01

    Full Text Available This study is an attempt at achieving diesel fuel equivalent performance from diesel engines with maximum substitution of diesel with renewable fuels. In this context the study has been designed to analyze the influence of B20 algae biodiesel as a pilot fuel in a biodiesel biogas dual fuel engine, and results are compared to those of biodiesel and diesel operation at identical engine settings. Experiments were performed at various loads from 0 to 100 % of maximum load at a constant speed of 1500 rpm. In general, B20 algae biodiesel is compatible with diesel in terms of performance and combustion characteristics. Dual fuel mode operation displays lower thermal efficiency and higher fuel consumption than for other fuel modes of the test run across the range of engine loads. Dual fuel mode displayed lower emissions of NOx and Smoke opacity while HC and CO concentrations were considerably higher as compared to other fuels. In dual fuel mode peak pressure and heat release rate were slightly higher compared to diesel and biodiesel mode of operation for all engine loads.

  4. Storage tank materials for biodiesel blends; the analysis of fuel property changes

    Directory of Open Access Journals (Sweden)

    Nurul Komariah Leily

    2017-01-01

    Full Text Available Fuel stability is one of major problem in biodiesel application. Some of the physical properties of biodiesel are commonly changed during storage. The change in physico-chemical properties is strongly correlated to the stability of the fuel. This study is objected to observe the potential materials for biodiesel storage. The test was conducted in three kinds of tank materials, such as glass, HDPE, and stainless steel. The fuel properties are monitored in 12 weeks, while the sample was analyzed every week. Biodiesel used is palm oil based. The storage tanks were placed in a confined indoor space with range of temperature 27–34 °C. The relative humidity and sunshine duration on the location was also evaluated. The observed properties of the fuel blends were density, viscosity and water content. During 12 weeks of storage, the average density of B20 was changed very slightly in all tanks, while the viscosity was tend to increase sharply, especially in polimerics tank. Water content of B20 was increased by the increase of storage time especially in HDPE tank. In short period of storage, the biodiesel blends is found more stable in glass tank due to its versatility to prohibit oxidation, degradation, and its chemical resistance.

  5. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  6. Combustion and emission response of a heavy duty diesel engine fuelled with biodiesel: an experimental study

    International Nuclear Information System (INIS)

    Shah, A.N.; Shan, G.Y.

    2010-01-01

    In order to meet the growing energy needs, alternative energy sources particularly bio fuels are receiving increasing attention during the last few years. Biodiesel, consisting of alkyl monoesters of fatty acids from vegetable oils or animal fats, has already been commercialized in the transport sector. In the present work, a turbo charged, inter cooled, DI (Direct Injection) diesel engine was fuelled with biodiesel from waste cooking oil and its 20% blend with commercial diesel to study the regulated exhaust pollutants in the light of combustion parameters in the cylinder. The experimental results show that BTE (Brake Thermal Efficiently), MCP (Maximum Combustion Pressure) and SOI (Start of injection) angle were increased, ID (Ignition Delay) was decreased; however, RHR (Rate of Heat Release) remained almost unaffected in case of biodiesel. The BTE and RHR were not much affected with B20; however Sol angle and MCP were improved, and ID was decreased with B20. Smoke opacity, CO (Carbon Monoxide), and HC (HydroCarbons) emissions were decreased, but NO. (Oxides of Nitrogen) pollutants were increased in case of both B100 and B20 compared to fossil diesel. However, the increase in NO emissions was lower with B20. (author)

  7. Experimental Investigation of the Effect of Biodiesel Blends on a DI Diesel Engine’s Injection and Combustion

    Directory of Open Access Journals (Sweden)

    Dimitrios N Tziourtzioumis

    2017-07-01

    Full Text Available Differences in the evolution of combustion in a single cylinder, DI (direct injection diesel engine fuelled by B20 were observed upon processing of the respective indicator diagrams. Aiming to further investigate the effects of biodiesel on the engine injection and combustion process, the injection characteristics of B0, B20, B40, B60, B80 and B100 were measured at low injection pressure and visualized at low and standard injection pressures. The fuel atomization characteristics were investigated in terms of mean droplet velocity, Sauter mean diameter, droplet velocity and diameter distributions by using a spray visualization system and Laser Doppler Velocimetry. The jet break-up characteristics are mainly influenced by the Weber number, which is lower for biodiesel, mainly due to its higher surface tension. Thus, Sauter mean diameter (SMD of sprays with biodiesel blended-fuel is higher. Volume mean diameter (VMD and arithmetic mean diameter (AMD values also increase with blending ratio. Kinematic viscosity and surface tension become higher as the biodiesel blending ratio increases. The SMD, VMD and AMD of diesel and biodiesel blended fuels decreased with an increase in the axial distance from spray tip. Comparison of estimated fuel burning rates for 60,000 droplets’ samples points to a decrease in mean fuel burning rate for B20 and higher blends.

  8. Effect of Biodiesel of Spent Cooking Oil Addition at Diesel Fuel to Opacity and Gas Emission Throw Away of CO, CO2 and HC

    International Nuclear Information System (INIS)

    Setyadji, Moch; Endang Susiantini

    2007-01-01

    Investigation of biodiesel spent cooking oil addition effect at diesel fuel to opacity and gas emission throw away on various engine rotation speed has been done. The variables observed were fuel specific used i.e. pure diesel fuel, biodiesel mix 5% (B5), mix 10% (B10), mix 15% (B15), mix 20% (B20) and engine rotation speed. Gas emission throw away observed were CO, CO 2 , HC and opacity. Opacity and gas emission throwaway were observed by Opacity Sagem apparatus and gas analyzer. Result of experiment showed that biodiesel addition at diesel fuel was very decreasing opacity and gas emission throw away. The opacity lowest on B20, gas emission throw away lowest of CO on B10, CO 2 on B10 and HC on B20. (author)

  9. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels

    Science.gov (United States)

    Two diesel trucks equipped with a particulate filter (DPF) were tested at two ambient temperatures (70oF and 20oF), fuels (ultra low sulfur diesel (ULSD) and biodiesel (B20)) and operating loads (a heavy and light weight). The test procedure included three driving cycles, a cold ...

  10. Phase behaviour measurements for the system (carbon dioxide + biodiesel + ethanol) at high pressures

    International Nuclear Information System (INIS)

    Araújo, Odilon A.S.; Silva, Fabiano R.; Ramos, Luiz P.; Lenzi, Marcelo K.; Ndiaye, Papa M.; Corazza, Marcos L.

    2012-01-01

    Graphical abstract: Comparison between ethyl and methyl esters in a pressure-composition of {CO 2 (1) + biodiesel(2)} at 303.15 K (triangles), 323.15 K (squares) and 343.15 K (circles). Open symbols are ethyl biodiesel (this work) and closed symbols are methyl biodiesel data by Pinto et al. Highlights: ► We measured phase behaviour for the system involving {CO 2 + biodiesel + ethanol}. ► The saturation pressures were obtained using a variable-volume view cell. ► The experimental data were modelled using PR-vdW2 and PR-WS equations of state. - Abstract: This work reports phase equilibrium measurements for binary system {CO 2 (1) + biodiesel(2)} and ternary system {CO 2 (1) + biodiesel(2) + ethanol(3)}. The biodiesel (ethyl esters) used in this work was produced from soybean oil, purified and characterised following the standard specification for subsequent use. Nowadays, great interest in biodiesel production processes at supercritical and/or pressurised solvents is observed, such as, non-catalytic supercritical biodiesel production and enzyme-catalyzed biodiesel production, besides the supercritical CO 2 can be an interesting alternative to glycerol separation in the biodiesel purification step. Towards this, the main goal of this work is to study the phase behaviour at high pressure for the binary and ternary systems involving CO 2 , biodiesel and ethanol. Experiments were carried out in a high pressure variable-volume view cell with operating temperatures ranging from (303.15 to 343.15) K and pressures up to 25 MPa. The CO 2 molar fraction ranged from 0.4213 to 0.9855 for the system {CO 2 (1) + biodiesel(2)}, 0.4263 to 0.9781 for the system {CO 2 (1) + biodiesel(2) + ethanol(3)} with a biodiesel to ethanol molar ratio of (1:3), and 0.4317 to 0.9787 for the system {CO 2 (1) + biodiesel(2) + ethanol(3)} with a biodiesel to ethanol molar ratio of (1:8). For the systems investigated, vapour–liquid (VL), liquid–liquid (LL) and vapour–liquid–liquid (VLL

  11. Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines

    Energy Technology Data Exchange (ETDEWEB)

    Tesfa, B.; Mishra, R.; Gu, F. [Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH (United Kingdom); Powles, N. [Chemistry and Forensic Science, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH (United Kingdom)

    2010-12-15

    Biodiesel is a promising non-toxic and biodegradable alternative fuel used in the transport sector. Nevertheless, the higher viscosity and density of biodiesel poses some acute problems when it is used it in unmodified engine. Taking this into consideration, this study has been focused towards two objectives. The first objective is to identify the effect of temperature on density and viscosity for a variety of biodiesels and also to develop a correlation between density and viscosity for these biodiesels. The second objective is to investigate and quantify the effects of density and viscosity of the biodiesels and their blends on various components of the engine fuel supply system such as fuel pump, fuel filters and fuel injector. To achieve first objective density and viscosity of rapeseed oil biodiesel, corn oil biodiesel and waste oil biodiesel blends (0B, 5B, 10B, 20B, 50B, 75B, and 100B) were tested at different temperatures using EN ISO 3675:1998 and EN ISO 3104:1996 standards. For both density and viscosity new correlations were developed and compared with published literature. A new correlation between biodiesel density and biodiesel viscosity was also developed. The second objective was achieved by using analytical models showing the effects of density and viscosity on the performance of fuel supply system. These effects were quantified over a wide range of engine operating conditions. It can be seen that the higher density and viscosity of biodiesel have a significant impact on the performance of fuel pumps and fuel filters as well as on air-fuel mixing behaviour of compression ignition (CI) engine. (author)

  12. Moessbauer study of corrosion products formed on Fe80B20 and Fe40Ni40 (MoB)20 amorphous alloys in an SO2-polluted atmosphere

    International Nuclear Information System (INIS)

    Davalos, J.; Marco, J.F.; Gracia, M.; Gancedo, J.R.; Greneche, J.M.

    1990-01-01

    ICEMS, XPS, XRD, and AES have been used to study the corrosion layers formed on two metallic glasses, Fe 80 B 20 and Fe 40 Ni 40 (MoB) 20 (2605 and 2826 MB, Allied Company), exposed to an SO 2 -polluted humid atmosphere. The iron-containing corrosion products are the same found for pure iron in the same environment, but different relative concentrations were clearly evidenced by ICEMS results. Elemental sulphur, Ni(OH) 2 , and B(OH) 3 , the latter enriched at the surface, were found by XPS, XRD and AES. (orig.)

  13. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Marcio Castellanelli

    2008-03-01

    Full Text Available Diante da previsão de escassez do petróleo, o éster etílico (biodiesel tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas de aquisição de dados auxiliares. Avaliaram-se os desempenhos de torque, de potência e de consumo específico de combustível para as seguintes misturas diesel/éster etílico de soja: B2, B5, B10, B20, B50, B75 e B100. O melhor desempenho registrado deu-se com a mistura B20.Given the prediction of the scarcity of oil, the ethyl ester (biodiesel has presented as an excellent alternative fuel option for cycle diesel engine. The characteristics of biodiesel are similar of diesel in terms of viscosity and the calorific power, being able to be used without adaptations in the engines. For the accomplishment of this work it was used a cycle diesel engine, of direct injection with four cylinders, without adaptations. The engine was connected to a dynamometer and acquisition systems of auxiliary data. The performances of torque, power and specific fuel consumption for the following mixtures diesel/soy ethyl ester had been evaluated: B2, B5, B10, B20, B50, B75 and B100. The best registered performance was given with the B20 mixture.

  14. Analysis of biodiesel

    Science.gov (United States)

    Biodiesel is a biogenic alternative to diesel fuel derived from petroleum. It is produced by a transesterification reaction from materials consisting largely of triacylglycerols such as vegetable and other plant oils, animal fats, used cooking oils, and “alternative” feedstocks such as algal oils. T...

  15. Beschikbaarheid koolzaad voor biodiesel

    NARCIS (Netherlands)

    Janssens, B.; Prins, H.; Smit, A.B.; Annevelink, E.; Meeusen-van Onna, M.J.G.

    2005-01-01

    This report provides an insight into the conditions under which the Dutch agricultural industry will cultivate oilseed rape for biodiesel. The Dutch agricultural entrepreneur occupies a central role in this. The possibilities relating to the cultivation of oilseed rape are assessed from the

  16. Biodiesel scenario in India

    Energy Technology Data Exchange (ETDEWEB)

    Taj, S. [Bangalore Univ., Al-Ameen College, Bangalore (India). Dept. of Chemistry; Prasad, H. [Bangalore Univ., Central College, Bangalore (India). Dept. of Chemistry; Ramesh, N. [Reva College, Bangladore (India); Papavinasam, S. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab

    2009-08-15

    This article presented an overview of biodiesel production in India. Biodiesel has gained widespread acceptance in the United States and the European Union as a substitute for diesel. In early 2003, the Indian National Planning Commission launched a program to also foster development of vegetable oil based biofuels in order to address the energy challenges facing India. Approximately 57 per cent of rural Indian households are still not connected to the power grid, and India imports 75 per cent of its total petroleum. The National Planning Commission advocated widespread planting of an inedible, but high-yielding tree-born oilseed known as jatropha curcas that would serve as the primary feedstock for the production of vegetable oil based biofuels. Jatropha and pongamia are widely recognized as the most economically viable and environmentally neutral feedstock options. Both of these tree-borne oilseeds are adaptable to reasonably harsh climatic and growing conditions, enabling them to be cultivated on wastelands that are not currently used in agricultural production. The Commission recommended that 11.2 million hectares of jatropha be cultivated on marginal waste lands which would, over time, replace 20 per cent of total national diesel consumption with biodiesel. Both public and private sector players have begun to act on the Commission's plan. More than a hundred thousand hectares of jatropha have been planted and private firms have begun to build biodiesel processing plants. State-owned petroleum product marketing firms have committed to distributing biodiesel through some existing distribution channels. 8 refs., 6 tabs., 3 figs.

  17. Biodiesel Fuel Technology for Military Application

    National Research Council Canada - National Science Library

    Frame, Edwin

    1997-01-01

    This program addressed the effects of biodiesel (methyl soyate) and blends of biodiesel with petrofuels on fuel system component and material compatibility, fuel storage stability, and fuel lubricity...

  18. Effects of a biodiesel blend on energy distribution and exhaust emissions of a small CI engine

    International Nuclear Information System (INIS)

    Magno, Agnese; Mancaruso, Ezio; Vaglieco, Bianca Maria

    2015-01-01

    Highlights: • B20 does not affect the brake thermal efficiency and the engine energetic flows with respect to diesel fuel. • B20 is characterized by lower combustion noise than diesel fuel. • B20 emits lower CO, HC and PM in the most of the operating conditions. • A definite trend of NO x emissions for B20 with respect to diesel fuel was not found. • B20 emits more nuclei particles than diesel fuel. - Abstract: This paper investigates the energy distribution and the waste heat energy characteristics of a compression ignition engine for micro-cogeneration applications, at different engine speeds and loads. The experimental activity was carried out on a three-cylinder, 1028 cc, common-rail engine. Tests were performed with diesel fuel and a 20% v/v biodiesel blend (B20). The quantity and the quality of the waste heat energy were studied through energy and exergy analyses, respectively. Combustion characteristics were investigated by means of indicating data. Gaseous emissions were measured and particles were characterized in terms of number and size at exhaust. It was found out that the addition of 20% v/v of RME to diesel fuel does not affect significantly the brake fuel conversion efficiency and the energetic flows. On the other hand, biodiesel blend allows to reduce the combustion noise and the pollutants emissions in most of the operating conditions. A proper phasing of the injection strategy for the biodiesel blend could further reduce the exhaust emissions, mainly at high engine speeds. The results presented in this paper could be useful for the development of diesel engine based micro-cogeneration systems working at different engine speeds and loads

  19. Reducing NOx emissions from a biodiesel-fueled engine by use of low-temperature combustion.

    Science.gov (United States)

    Fang, Tiegang; Lin, Yuan-Chung; Foong, Tien Mun; Lee, Chia-Fon

    2008-12-01

    Biodiesel is popularly discussed in many countries due to increased environmental awareness and the limited supply of petroleum. One of the main factors impacting general replacement of diesel by biodiesel is NOx (nitrogen oxides) emissions. Previous studies have shown higher NOx emissions relative to petroleum diesel in traditional direct-injection (DI) diesel engines. In this study, effects of injection timing and different biodiesel blends are studied for low load [2 bar IMEP (indicated mean effective pressure)] conditions. The results show that maximum heat release rate can be reduced by retarding fuel injection. Ignition and peak heat release rate are both delayed for fuels containing more biodiesel. Retarding the injection to post-TDC (top dead center) lowers the peak heat release and flattens the heat release curve. It is observed that low-temperature combustion effectively reduces NOx emissions because less thermal NOx is formed. Although biodiesel combustion produces more NOx for both conventional and late-injection strategies, with the latter leading to a low-temperature combustion mode, the levels of NOx of B20 (20 vol % soy biodiesel and 80 vol % European low-sulfur diesel), B50, and B100 all with post-TDC injection are 68.1%, 66.7%, and 64.4%, respectively, lower than pure European low-sulfur diesel in the conventional injection scenario.

  20. Missouri Soybean Association Biodiesel Demonstration Project: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Dale [Missouri Soybean Association, Jefferson City, MO (United States); Hamilton, Jill [Sustainable Energy Strategies, Inc., Fairfax, VA (United States)

    2011-10-27

    The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry education program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to

  1. Proceedings of the 2008 marine biodiesel symposium

    International Nuclear Information System (INIS)

    2008-01-01

    In addition to producing lower hydrocarbon emissions, marine biodiesel is biodegradable and does not harm fish. This symposium was held to discuss current marine biodiesel applications and examine methods of increasing the use of biodiesel in marine environments in British Columbia (BC). Biofuel policies and mandates in the province were reviewed, and methods of expanding the biodiesel market were explored. Updates on the use of biodiesel in ferries, tugboats, and smaller marine diesel engine applications were provided. Biodiesel projects in the United States were discussed. The environmental impacts of marine biodiesel were evaluated, and federal policies and standards for biodiesel were also outlined. The symposium was divided into the following 5 main sessions: (1) policy, (2) overviews, (3) using biodiesel in marine engines, (4) biodiesel in larger marine vessels, and (5) biodiesel quality and environmental considerations. The conference featured 13 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs

  2. Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel

    Directory of Open Access Journals (Sweden)

    Soha S.M. Mostafa

    2017-05-01

    In this study, the feasibility of biodiesel production from microalga Spirulina platensis has been investigated. The physico–chemical characteristics of the produced biodiesel were studied according to the standards methods of analysis (ASTM and evaluated according to their fuel properties as compared to Egyptian petro-diesel. Blends of microalgae biodiesel and petro-diesel (B2, B5, B10 and B20 were prepared on a volume basis and their physico–chemical characteristics have been also studied. The obtained results showed that; with the increase of biodiesel concentration in the blends; the viscosity, density, total acid number, initial boiling point, calorific value, flash point, cetane number and diesel index increase. While the pour point, cloud point, carbon residue and sulfur, ash and water contents decrease. The observed properties of the blends were within the recommended petro-diesel standard specifications and they are in favor of better engine performance.

  3. Social and environmental advantages of palm oil biodiesel in Brazil; Vantagens socioambientais do biodiesel de palma no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Lucas Rueda [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2012-07-01

    The production of biodiesel has seen a fast growth in Brazil during the last years, making the country one of the top producers in the world. This growth is explained by the mandatory blendings of biodiesel in conventional diesel. This article is about how the biodiesel industry developed having soy oil as the main feedstock and how the big oilseed crushers have taken the main role in the industry, with family farmers, the original beneficiaries of the program, having a marginal role. If the scenario of B10 or B20 in 2020 is verified, then it is going to use so much soy oil that it will interfere in another uses of soy, like exportation. Besides that, the article criticizes the failure of the social aspect of the program, arguing that the objective of integration of family farmers has failed, and that the numbers are not worse only because the action of the government, through PETROBRAS. Then it is presented the palm oil as a alternative to share the role of main feedstock with the soy oil, because palm has a bigger production of vegetal oil per hectare than most oilseeds, is capable of a bigger reduction in green house gas emissions than soy oil, the fact that Brazil has plenty of land available to plant palm, without the necessity of deforestation and that this process can bring development to family farmers in the north of the country. The article ends with the summary of the main projects of palm production for biodiesel, like the ones from PETROBRAS, Vale and Oleoplan, and how these are going to be the main determinants of the success or failure of the palm oil as an alternative to the biodiesel sector. (author)

  4. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity.

    Science.gov (United States)

    Martin, Nathan; Lombard, Melissa; Jensen, Kirk R; Kelley, Patrick; Pratt, Tara; Traviss, Nora

    2017-05-15

    Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (pengine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure, composition and toxicity are not straightforward. Copyright © 2016 Elsevier B.V. All rights

  5. Health effects of soy-biodiesel emissions: mutagenicity-emission factors.

    Science.gov (United States)

    Mutlu, Esra; Warren, Sarah H; Matthews, Peggy P; King, Charly; Walsh, Leon; Kligerman, Andrew D; Schmid, Judith E; Janek, Daniel; Kooter, Ingeborg M; Linak, William P; Gilmour, M Ian; DeMarini, David M

    2015-01-01

    Soy biodiesel is the predominant biodiesel fuel used in the USA, but only a few, frequently conflicting studies have examined the potential health effects of its emissions. We combusted petroleum diesel (B0) and fuels with increasing percentages of soy methyl esters (B20, B50 and B100) and determined the mutagenicity-emission factors expressed as revertants/megajoule of thermal energy consumed (rev/MJ(th)). We combusted each fuel in replicate in a small (4.3-kW) diesel engine without emission controls at a constant load, extracted organics from the particles with dichloromethane, determined the percentage of extractable organic material (EOM), and evaluated these extracts for mutagenicity in 16 strains/S9 combinations of Salmonella. Mutagenic potencies of the EOM did not differ significantly between replicate experiments for B0 and B100 but did for B20 and B50. B0 had the highest rev/MJ(th), and those of B20 and B100 were 50% and ∼85% lower, respectively, in strains that detect mutagenicity due to polycyclic aromatic hydrocarbons (PAHs), nitroarenes, aromatic amines or oxidative mutagens. For all strains, the rev/MJ(th) decreased with increasing biodiesel in the fuel. The emission factor for the 16 EPA Priority PAHs correlated strongly (r(2 )= 0.69) with the mutagenicity-emission factor in strain TA100 + S9, which detects PAHs. Under a constant load, soy-biodiesel emissions were 50-85% less mutagenic than those of petroleum diesel. Without additional emission controls, petroleum and biodiesel fuels had mutagenicity-emission factors between those of large utility-scale combustors (e.g. natural gas, coal, or oil) and inefficient open-burning (e.g. residential wood fireplaces).

  6. Production of biodiesel from microalgae

    Directory of Open Access Journals (Sweden)

    Danilović Bojana R.

    2014-01-01

    Full Text Available In recent years, more attention has been paid to the use of third generation feedstocs for the production of biodiesel. One of the most promising sources of oil for biodiesel production are microalgae. They are unicellular or colonial photosynthetic organisms, with permanently increasing industrial application in the production of not only chemicals and nutritional supplements but also biodiesel. Biodiesel productivity per hectare of cultivation area can be up to 100 times higher for microalgae than for oil crops. Also, microalgae can grow in a variety of environments that are often unsuitable for agricultural purposes. Microalgae oil content varies in different species and can reach up to 77% of dry biomass, while the oil productivity by the phototrophic cultivation of microalgae is up to 122 mg/l/d. Variations of the growth conditions and the implementation of the genetic engineering can induce the changes in the composition and productivity of microalgal oil. Biodiesel from microalgae can be produced in two ways: by transesterification of oil extracted from biomass or by direct transesterification of algal biomass (so called in situ transesterification. This paper reviews the curent status of microalgae used for the production of biodiesel including their isolation, cultivation, harvesting and conversion to biodiesel. Because of high oil productivity, microalgae will play a significant role in future biodiesel production. The advantages of using microalgae as a source for biofuel production are increased efficiency and reduced cost of production. Also, microalgae do not require a lot of space for growing and do not have a negative impact on the global food and water supplies. Disadvantages of using microalgae are more difficult separation of biomass and the need for further research to develop standardized methods for microalgae cultivation and biodiesel production. Currently, microalgae are not yet sustainable option for the commercial

  7. Data on kinetic, energy and emission performance of biodiesel from waste frying oil

    Directory of Open Access Journals (Sweden)

    Silverio Catureba da Silva Filho

    2018-06-01

    Full Text Available The data presented in this article are related to the research article “Environmental and techno-economic considerations on biodiesel production from waste frying oil in São Paulo city” (Silva Filho et al., 2018 [1]. This article presents the variation of the concentration of waste frying oil (WFO with the reaction time and temperature during the transesterification of WTOs collected in the residences and restaurants of the city of São Paulo. Then, the biodiesel samples were mixed with the S-10 diesel oil in order to obtain the B10, B20, B30, B40, B50, B75 and B100 blends, which were tested in a diesel engine and their power, fuel consumption and gas emissions (CO, CO2 and SO2 have been measured to verify their greenhouse effect and energy efficiency. Keywords: Biodiesel, Kinetic curves, Greenhouse gas emission, Energy efficiency

  8. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Haiying Tang; Steven O. Salley; K.Y. Simon Ng [Wayne State University, Detroit, MI (United States). Department of Chemical Engineering and Materials Science

    2008-10-15

    The formation of precipitates in biodiesel blends may have serious implications for diesel engine fuel delivery systems. Precipitates were observed in Soybean oil (SBO-), cottonseed oil (CSO-), and poultry fat (PF-) based biodiesel blends after storage at 4{sup o}C. CSO- and PF-based biodiesel had a lower mass of precipitates observed than the SBO-based. Moreover, different rates of precipitate formation were observed for the B20 versus the B100. These suggested that the formation of precipitate during cold temperature storage was dependent on the feedstock and blend concentration. The solvency effects of biodiesel blends were more pronounced at low temperature than at room temperature leading to a higher amount of precipitates formed. Fourier transform infrared (FTIR) spectra, and gas chromatography-flame ionization detector (GC-FID) chromatograms indicated that steryl glucosides are the major cause of precipitate formation in SBO-based biodiesel; while for PF-based biodiesel, the precipitates are due to mono-glycerides. However, the precipitates from CSO-based biodiesel are due to both steryl glucosides and mono-glycerides. 45 refs., 11 figs., 2 tabs.

  9. Alternative Fuels Data Center: Biodiesel Benefits

    Science.gov (United States)

    , and transport. Maps & Data U.S. Biodiesel Production, Exports, and Consumption U.S. Biodiesel Benefits to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Benefits on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Benefits on Twitter Bookmark Alternative Fuels Data

  10. The State High Biodiesel Project

    Science.gov (United States)

    Heasley, Paul L.; Van Der Sluys, William G.

    2009-01-01

    Through a collaborative project in Pennsylvania, high school students developed a method for converting batches of their cafeteria's waste fryer oil into biodiesel using a 190 L (50 gal) reactor. While the biodiesel is used to supplement the school district's heating and transportation energy needs, the byproduct--glycerol--is used to make hand…

  11. Biodiesel from microalgae beats bioethanol.

    Science.gov (United States)

    Chisti, Yusuf

    2008-03-01

    Renewable biofuels are needed to displace petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Biodiesel and bioethanol are the two potential renewable fuels that have attracted the most attention. As demonstrated here, biodiesel and bioethanol produced from agricultural crops using existing methods cannot sustainably replace fossil-based transport fuels, but there is an alternative. Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely displace petroleum-derived transport fuels without adversely affecting supply of food and other crop products. Most productive oil crops, such as oil palm, do not come close to microalgae in being able to sustainably provide the necessary amounts of biodiesel. Similarly, bioethanol from sugarcane is no match for microalgal biodiesel.

  12. An experimental investigation of PAH emissions from a heavy duty diesel engine fuelled with biodiesel and its blend

    International Nuclear Information System (INIS)

    Shah, A. N.; Shan, G.E.Y.; Wei, T.J.; Hua, L.Z.

    2008-01-01

    For the comparison of emission of polycyclic aromatic hydrocarbons (PAHs) from diesel biodiesel and its 20% blend with diesel, and their carcinogenic potencies, an experimental study has been conducted on a turbocharged, intercooled and direct injection diesel engine. Total PAHs (solid and gas) from diesel, B20 and B100 at low load were more than those at high loads. Total PAH emissions from the test fuels at the rated speed were more than those at maximum torque speed. Benzo[a] pyrene (BaP) brake specific emission of biodiesel is less than that of diesel. LMW-PAH emissions for the test fuels are all higher than those of MMW and HMW PAH. Biodiesel and B20 reduce both the total Benzo[a] pyrene equivalent concentration (BaP/sub eq/) and the total mean-PAHs as compared to commercial diesel fuel. BSFC of the engine increased but its brake power decreased in the cases of B20 and biodiesel. (author)

  13. Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing

    International Nuclear Information System (INIS)

    Hsi-Hsien Yang; Shu-Mei Chien; Mei-Yu Lo; John Chi-Wei Lan; Wen-Chang Lu; Yong-Yuan Ku

    2007-01-01

    An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NO x , particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 μg bhp h -1 for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 μg bhp h -1 for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency. (author)

  14. Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing

    Energy Technology Data Exchange (ETDEWEB)

    Hsi-Hsien Yang; Shu-Mei Chien; Mei-Yu Lo [Chaoyang University of Technology, Wufong (China). Dept. of Environmental Engineering and Management; John Chi-Wei Lan [Yuan Ze University (China). Dept. of Chemical Engineering and Materials Science; Wen-Chang Lu [Industrial Technology Research Institute, Hsinchu (China). New Energy Div.; Yong-Yuan Ku [Automotive Research and Testing Center, Chunhwa (China). Diesel Vehicle Section

    2007-11-15

    An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NO{sub x}, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 {mu}g bhp h{sup -1} for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 {mu}g bhp h{sup -1} for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency. (author)

  15. LHV predication models and LHV effect on the performance of CI engine running with biodiesel blends

    International Nuclear Information System (INIS)

    Tesfa, B.; Gu, F.; Mishra, R.; Ball, A.D.

    2013-01-01

    Highlights: • Lower heating values of neat biodiesel and its blends were measured experimentally. • Lower heating value prediction models were developed based on the density and viscosity values of the fuel. • The predication models were validated by measured values and previous models. • The prediction models were used to predict the lower heating value of 24 biodiesel feedstock types produced globally. • The effects of lower heating vale on brake specific fuel consumption and thermal efficiency were investigated. - Abstract: The heating value of fuel is one of its most important physical properties, and is used for the design and numerical simulation of combustion processes within internal combustion (IC) engines. Recently, there has been a significant increase in the use of dual fuel and blended fuels in compression ignition (CI) engines. Most of the blended fuels include biodiesel as one of the constituents and hence the objective of this study is to investigate the effect of biodiesel content to lower heating value (LHV) and to develop new LHV prediction models that correlate the LHV with biodiesel fraction, density and viscosity. Furthermore, this study also investigated the effects of the LHV on CI engines performance parameters experimentally. To achieve the above mentioned objectives density, viscosity and LHV of rapeseed oil biodiesel, corn oil biodiesel and waste oil biodiesel at different blend fraction values (B0, B5, B10, B20, B50, B75, and B100, where ‘B5’ denotes a blend of 5% biodiesel and 95% mineral diesel, etc.) were measured as per EN ISO 3675:1998, EN ISO 3104:1996 and DIN 51900 standards. The engine experimental work was conducted on a four-cylinder, four-stroke, direct injection (DI) and turbocharged diesel engine by using rapeseed oil and normal diesel blends. Based on the experimental results, models were developed which have the capability to predict the LHV corresponding to different fractions, densities and viscosities of

  16. Importance of biodiesel as transportation fuel

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2007-01-01

    The scarcity of known petroleum reserves will make renewable energy resources more attractive. The most feasible way to meet this growing demand is by utilizing alternative fuels. Biodiesel is defined as the monoalkyl esters of vegetable oils or animal fats. Biodiesel is the best candidate for diesel fuels in diesel engines. The biggest advantage that biodiesel has over gasoline and petroleum diesel is its environmental friendliness. Biodiesel burns similar to petroleum diesel as it concerns regulated pollutants. On the other hand, biodiesel probably has better efficiency than gasoline. One such fuel for compression-ignition engines that exhibit great potential is biodiesel. Diesel fuel can also be replaced by biodiesel made from vegetable oils. Biodiesel is now mainly being produced from soybean, rapeseed and palm oils. The higher heating values (HHVs) of biodiesels are relatively high. The HHVs of biodiesels (39-41 MJ/kg) are slightly lower than that of gasoline (46 MJ/kg), petrodiesel (43 MJ/kg) or petroleum (42 MJ/kg), but higher than coal (32-37 MJ/kg). Biodiesel has over double the price of petrodiesel. The major economic factor to consider for input costs of biodiesel production is the feedstock, which is about 80% of the total operating cost. The high price of biodiesel is in large part due to the high price of the feedstock. Economic benefits of a biodiesel industry would include value added to the feedstock, an increased number of rural manufacturing jobs, an increased income taxes and investments in plant and equipment. The production and utilization of biodiesel is facilitated firstly through the agricultural policy of subsidizing the cultivation of non-food crops. Secondly, biodiesel is exempt from the oil tax. The European Union accounted for nearly 89% of all biodiesel production worldwide in 2005. By 2010, the United States is expected to become the world's largest single biodiesel market, accounting for roughly 18% of world biodiesel consumption

  17. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    Science.gov (United States)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  18. Interfacial reaction using particle-immobilized reagents in a fluidized reactor. Determination of glycerol in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Shishov, Andrey, E-mail: andrey.shishov.rus@gmail.com [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation); Zabrodin, Andrey; Moskvin, Leonid [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation); Andruch, Vasil [Department of Analytical Chemistry, University of P.J. Šafárik, SK-04154 Košice (Slovakia); Bulatov, Andrey [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation)

    2016-03-31

    A novel fluidized beads strategy for utilization of particle-immobilized reagents in flow analysis was developed in this study. The performance of the suggested strategy was demonstrated by the determination of glycerol in biodiesel. This analytical task was used as a proof-of-concept example. The method is based on on-line extraction of glycerol from biodiesel into aqueous stationary phase of extraction-chromatographic column, followed by elution and spectrophotometric determination in the form of copper glycerate formed in a fluidized reactor of stepwise injection system. The floating of cation exchange resin Dowex{sup ®} 50WX4, saturated with Cu(II) ions in liquid phase, was accomplished by air-bubbling. The linear range was from 100 to 1000 mg kg{sup −1}, and the limit of detection, calculated as 3s of a blank test (n = 5), was found to be 30 mg kg{sup −1}. The method was successfully applied to the analysis of biodiesel and biodiesel-blend (B 20) samples. - Highlights: • Novel fluidized beds strategy for utilization of particle-immobilized reagents. • First application of fluidized beds condition in SWIA. • Novel approach based on interfacial formation of copper glycerate. • Automated method for glycerol determination in biodiesel.

  19. Optimizing biodiesel production in India

    International Nuclear Information System (INIS)

    Leduc, Sylvain; Natarajan, Karthikeyan; McCallum, Ian; Obersteiner, Michael; Dotzauer, Erik

    2009-01-01

    India is expected to at least double its fuel consumption in the transportation sector by 2030. To contribute to the fuel supply, renewable energies such as jatropha appear to be an attractive resource for biodiesel production in India as it can be grown on waste land and does not need intensive water supply. In order to produce biodiesel at a competitive cost, the biodiesel supply chain - from biomass harvesting to biodiesel delivery to the consumers - is analyzed. A mixed integer linear programming model is used in order to determine the optimal number and geographic locations of biodiesel plants. The optimization is based on minimization of the costs of the supply chain with respect to the biomass, production and transportation costs. Three biodiesel blends are considered, B2, B5 and B10. For each blend, 13 scenarios are considered where yield, biomass cost, cake price, glycerol price, transport cost and investment costs are studied. A sensitivity analysis is carried out on both those parameters and the resulting locations of the plants. The emissions of the supply chain are also considered. The results state that the biomass cost has most influence on the biodiesel cost (an increase of feedstock cost increases the biodiesel cost by about 40%) and to a lower effect, the investment cost and the glycerol price. Moreover, choosing the right set of production plant locations highly depends on the scenarios that have the highest probability to occur, for which the production plant locations still produce a competitive biodiesel cost and emissions from the transportation are minimum. In this study, one set of plant locations happened to meet these two requirements. (author)

  20. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    Science.gov (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  1. Er biodiesel en god ide?

    DEFF Research Database (Denmark)

    Schmidt, Jannick

    2007-01-01

    Biodiesel opfattes som en grøn miljøvenlig teknologi. Men har dette 'grønne' alternativ til konventionel diesel en skjult bagside af medaljen? Og kan det være, at man i stedet for at få et bedre miljø, medvirker til øgede miljøpåvirkninger i form af emissioner og naturødelæggelse, når man skifter...... til biodiesel? I artiklen belyses nogle af de mest sejlivede myter omkring biodiesel. Udgivelsesdato: Januar...

  2. Biodiesel production from Kutkura (Meyna spinosa Roxb. Ex.) fruit seed oil: Its characterization and engine performance evaluation with 10% and 20% blends

    International Nuclear Information System (INIS)

    Kakati, J.; Gogoi, T.K.

    2016-01-01

    Highlights: • Biodiesel is produced from Kutkura seed oil and its fatty acid composition is determined. • Important fuel properties of biodiesel derived from Kutkura seed oil are evaluated. • Properties of Kutkura seed oil and biodiesel are compared with other tree seed biodiesels. • Engine performance of 10% (B10) and 20% (B20) blending of Kutkura biodiesel is reported. • B10 and B20 showed better performance than conventional diesel fuel. - Abstract: Kutkura (Meyna spinosa Roxb.) is a plant species in the genus Meyna from the Rubiaceae family. Kutkura fruits are food items; the fruits and the leaves of the Kutkura plant are also used in traditional medicine. In this article, biodiesel produced from Kutkura fruit seed oil is characterized and compared with other tree seed based biodiesels. Oil content in Kutkura fruit seed was found 35.45%. Free fatty acid (FFA) content in the oil was 3.1%, hence base catalyzed transesterification was used directly for biodiesel production from Kutkura fruit seed oil. Kutkura fruit seed oil contained 7.187% palmitic, 5.382% stearic, 30.251% oleic and 52.553% linoleic acid. Calorific value, kinematic viscosity and density of Kutkura fruit seed oil were found 38.169 MJ/kg, 28.92 mm"2/s and 922.5 kg/m"3 respectively. However, after transesterification, these properties improved to 39.717 MJ/kg, 5.601 mm"2/s and 885.3 kg/m"3 respectively in case of the Kutkura fatty acid methyl ester (FAME). Apart from water content, all other properties of Kutkura FAME met the ASTM (D6751) and (EN14214) standards. Blending of Kutkura FAME with diesel up to 20% (vol.) however reduced water content down to an acceptable level of 0.038 wt.%. The kinematic viscosity also reduced to the level of conventional diesel after blending. Further, an engine performance study with biodiesel blends (B10 and B20) showed almost similar fuel consumption rate with diesel. Engine brake thermal efficiency (BTE) was more while the smoke emission was less with B

  3. Obtention and characterization of biodiesel; Obtencao e caracterizacao do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leonidas B.O. dos; Caitano, Moises; Aranda, Donato A.G.; Mothe, Cheila G. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2004-07-01

    Biodiesel is an ester resulting from the transesterification reaction of an alcohol and an oil obtained from biomass. The products of the transesterification are an ester and the glycerol. The biodiesel and the petroleum commercial diesel have similar properties, and they can be mixed and used in diesel motors. The use of biodiesel will allow a better exploration of the energetic potential of our cultures. The biodiesel has some advantages compared to others combustibles, such as adaptability to usual diesel motors and non-generation of NO{sub x} and SO{sub x} compounds. Many experiments with biodiesel have been made in Brazil since the 70's. This work made samples of biodiesel by transesterification batch reactions to many blends of soybean oil and residual fry oil, at room temperature, using mechanical mixture or magnetic agitation by a magnetic stirrer, using as catalysts sodium methoxide and potassium hydroxide. For each obtained sample tests to determine the Acidity Index (ABNT-MB-74), Saponification Index (ABNT-MB-75), Iodine Wijz Index (ABNT-MB- 77), thermal analysis by DTA and TG (TA Instruments SDT 2960, 30 to 800 deg C, 10 deg C/min at nitrogen atmosphere) and rheological test (Haake RS 150 Rheo Stress rheometer) were done. (author)

  4. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  5. Oilseed rape as feedstock for biodiesel production in relation to the environment and human health

    Directory of Open Access Journals (Sweden)

    Marek Angelovič

    2013-05-01

    Full Text Available Oilseed rape is one of the most important crops in cultivation process. A current developmental trend in non-food rapeseed production on agricultural land shows that this new course is irreversible and is a great opportunity for agriculture. Non-food rapeseed production is focused on the production of biodiesel. Biodiesel has good environmental properties. Lower emissions are produced by the combustion of biodiesel than for diesel. In content of exhaust gas is observed a significant decrease of polycyclic aromatic hydrocarbons, particulate matter and etc. The analysis of the literary knowledge on impacts of biodiesel on exhaust emissions, on regulated emissions, shows a reduction of 10.1% for particulate matter, of 21.1% for hydrocarbons, and 11.0% for carbon monoxide with the use of B20. Nitrogen oxides (NOx increased by 2.0%. Biodiesel was introduced into the European market in the 1988s as B100. The use of blends with content up to 5% biodiesel has no significant impact on the emissions and their toxicity. An increased mutagenicity was observed with blends containing 20%. Nevertheless, increased mutagenic effects were observed under specific conditions. Accordingly, the problem concerning blends of diesel fuel with biodiesel (B20 should be investigated with high priority. No comprehensive risk assessment for diesel engine emissions from biodiesel and its blends is possible In regard to a comprehensive hazard characterization it is urged to develop a panel of standardized and internationally accepted protocols which allow a reliable assessment of possible health hazards which may arise from the combustion of new fuels compared to conventional diesel fuel. These methods should be robust and should reflect the various health hazards associated with diesel engine emissions to supplement data on regulated emissions. Methods for the generation of the exhaust and sample preparation should be harmonized. There is sufficient evidence supporting a

  6. New technologies in biodiesel production

    International Nuclear Information System (INIS)

    Santacesaria, E.; Di Serio, M.; Tesser, R.

    2009-01-01

    The cost of biodiesel is nowadays affected by the cost of the raw materials, because the currently used method of preparation requires highly refined vegetable oils containing very low amounts of free fatty acids and moisture. Alternatively, less expensive technologies are possible using heterogeneous catalysts. In the present paper examples of these new technologies, based on the use of heterogeneous catalysts, in the production of biodiesel are described and discussed. [it

  7. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

    International Nuclear Information System (INIS)

    Godoi, Ricardo H.M.; Polezer, Gabriela; Borillo, Guilherme C.; Brown, Andrew; Valebona, Fabio B.; Silva, Thiago O.B.; Ingberman, Aline B.G.; Nalin, Marcelo; Yamamoto, Carlos I.; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A.; Marchi, Mary Rosa R. de; Saldiva, Paulo H.N.; Pauliquevis, Theotonio; Godoi, Ana Flavia L.

    2016-01-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP"E"S"R) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP"E"S"R results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm"−"1 and 1600 cm"−"1 indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. - Highlights: • PM emission from biodiesel burning may be more harmful to human health than diesel. • Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer • Electron Spin Resonance (ESR) to access the oxidative potential of PM emission

  8. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

    Energy Technology Data Exchange (ETDEWEB)

    Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Polezer, Gabriela; Borillo, Guilherme C. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Brown, Andrew [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Valebona, Fabio B.; Silva, Thiago O.B.; Ingberman, Aline B.G. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Nalin, Marcelo [LAVIE - Institute of Chemistry, São Paulo State University - UNESP, Araraquara (Brazil); Yamamoto, Carlos I. [Chemical Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Potgieter-Vermaak, Sanja [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Penteado Neto, Renato A. [Vehicle Emissions Laboratory, Institute of Technology for Development (LACTEC), Curitiba, PR (Brazil); Marchi, Mary Rosa R. de [Analytical Chemistry Department, Institute of Chemistry, São Paulo State University - UNESP, Araraquara (Brazil); Saldiva, Paulo H.N. [Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo (Brazil); Pauliquevis, Theotonio [Department of Natural and Earth Sciences, Federal University of São Paulo, Diadema (Brazil); Godoi, Ana Flavia L. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil)

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP{sup ESR}) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP{sup ESR} results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm{sup −1} and 1600 cm{sup −1} indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. - Highlights: • PM emission from biodiesel burning may be more harmful to human health than diesel. • Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer • Electron Spin Resonance (ESR) to access the oxidative potential of

  9. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  10. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Science.gov (United States)

    Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a location or along a route. Infrastructure Development Learn about biodiesel fueling infrastructure codes Case Studies California Ramps Up Biofuels Infrastructure Green Fueling Station Powers Fleets in Upstate

  11. Biodiesel Fuel Quality and the ASTM Standard

    Science.gov (United States)

    Biodiesel is usually produced from vegetable oils, animal fats and used cooking oils with alternative feedstocks such as algae receiving increasing interest. The transesterification reaction which produces biodiesel also produces glycerol and proceeds stepwise via mono- and diacylglycerol intermedia...

  12. Cetane Number of Biodiesel from Karaya Oil

    KAUST Repository

    Wasfi, Bayan

    2017-01-01

    Biodiesel is a renewable fuel alternative to petroleum Diesel, biodiesel has similar characteristic but with lesser exhaust emission. In this study, transesterification of Karaya oil is examined experimentally using a batch reactor at 100-140°C

  13. Influence of polymethyl acrylate additive on the formation of particulate matter and NOX emission of a biodiesel-diesel-fueled engine.

    Science.gov (United States)

    Monirul, Islam Mohammad; Masjuki, Haji Hassan; Kalam, Mohammad Abdul; Zulkifli, Nurin Wahidah Mohd; Shancita, Islam

    2017-08-01

    The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NO X ) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NO X emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.

  14. Phase equilibrium data and thermodynamic modeling of the system (CO2 + biodiesel + methanol) at high pressures

    International Nuclear Information System (INIS)

    Pinto, Leandro F.; Segalen da Silva, Diogo Italo; Rosa da Silva, Fabiano; Ramos, Luiz P.; Ndiaye, Papa M.; Corazza, Marcos L.

    2012-01-01

    Highlights: → We measured phase behavior for the system involving {CO 2 + biodiesel + methanol}. → The saturation pressures were obtained using a variable-volume view cell. → The experimental data were modeled using PR-vdW2 and PR-WS equations of state. - Abstract: The main objective of this work was to investigate the high pressure phase behavior of the binary systems {CO 2 (1) + methanol(2)} and {CO 2 (1) + soybean methyl esters (biodiesel)(2)} and the ternary system {CO 2 (1) + biodiesel(2) + methanol(3)} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {CO 2 (1) + methanol(2)}; (0.4201 to 0.9931) for the binary system {CO 2 (1) + biodiesel(2)}; (0.4864 to 0.9767) for the ternary system {CO 2 (1) + biodiesel(2) + methanol(3)} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {CO 2 + biodiesel + methanol} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR-WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR-WS presented the best performance.

  15. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend.

    Science.gov (United States)

    Godoi, Ricardo H M; Polezer, Gabriela; Borillo, Guilherme C; Brown, Andrew; Valebona, Fabio B; Silva, Thiago O B; Ingberman, Aline B G; Nalin, Marcelo; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A; de Marchi, Mary Rosa R; Saldiva, Paulo H N; Pauliquevis, Theotonio; Godoi, Ana Flavia L

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP(ESR)) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP(ESR) results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100cm(-1) and 1600cm(-1) indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine

    International Nuclear Information System (INIS)

    How, H.G.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H.

    2014-01-01

    An experimental investigation on engine performance, emissions, combustion and vibration characteristics with coconut biodiesel fuels was conducted in a high-pressure common-rail diesel engine under five different load operations (0.17, 0.34, 0.52, 0.69 and 0.86 MPa). The test fuels included a conventional diesel fuel and four different fuel blends of coconut biodiesel (B10, B20, B30 and B50). The results showed that biodiesel blended fuels have significant influences on the BSFC (brake specific fuel consumption) and BSEC (brake specific energy consumption) at all engine loads. In general, the use of coconut biodiesel blends resulted in a reduction of BSCO (brake specific carbon monoxide) and smoke emissions regardless of the load conditions. A large reduction of 52.4% in smoke opacity was found at engine load of 0.86 MPa engine load with B50. For combustion characteristics, a slightly shorter ignition delay and longer combustion duration were found with the use of biodiesel blends under all loading operations. It was found that generally the biodiesel blends produced lower peak heat release rate than baseline diesel. The vibration results showed that the largest reduction of 13.7% in RMS (root mean square) of acceleration was obtained with B50 at engine load of 0.86 MPa with respect to the baseline diesel. - Highlights: • The performance, emissions and combustion characteristics of biodiesel were studied. • A tangible increase in BSFC was observed at all engine loads with coconut biodiesel. • A slightly shorter ignition delay was found with the use of biodiesel blends. • The vibrations for coconut biodiesel blends in diesel engine were investigated. • B50 achieved the largest reduction in RMS of acceleration at 0.86 MPa engine load

  17. Structural Relaxation in Fe78Nb2B20 Amorphous Alloy Studied by Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Kansy, J.; Hanc, A.; Rasek, J.; Haneczok, G.; Pajak, L.; Stoklosa, Z.; Kwapulinski, P.

    2011-01-01

    It was shown that soft magnetic properties of Fe 78 Nb 2 B 20 amorphous alloy can be significantly improved by applying 1-h annealing at temperature 623 K (permeability increases even about 8 times). The Moessbauer Spectroscopy technique indicated that the optimized microstructure (corresponding to the maximum magnetic permeability) is free of iron nanograins and should be attributed to annealing out of free volume and a reduction of internal stresses i.e. to the relaxed amorphous phase. (authors)

  18. Positron lifetime and Moessbauer study of Fe80-xNixB20 metallic glasses

    International Nuclear Information System (INIS)

    Baluch, S.; Miglierini, M.; Groene, R.; Sitek, J.

    1989-01-01

    In order to investigate the short-range order (SRO) of iron-rich Fe 80-x Ni x B 20 (x = 10, 20, 30, 40) metallic glasses positron lifetime and Moessbauer measurements were carried out. Positron lifetimes of samples and Moessbauer hyperfine structure data of neutron-irradiated samples as functions of nickel content are shown and discussed. Results give evidence that high Ni content stabilizes the structure and can be connected with a higher degree of SRO in metallic glasses

  19. Alternative Fuels Data Center: Biodiesel Equipment Options

    Science.gov (United States)

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels

  20. Biodiesel Analytical Methods: August 2002--January 2004

    Energy Technology Data Exchange (ETDEWEB)

    Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is receiving great attention worldwide. The material contained in this book is intended to provide the reader with information about biodiesel engines and fuels, analytical methods used to measure fuel properties, and specifications for biodiesel quality control.

  1. First performance assessment of blends of jatropha, palm oil and soya bean biodiesel with kerosene as fuel for domestic purposes in rural-Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Quansah, E.; Preko, K.; Amekudzi, L.K. [Department of Physics, Kwame Nkrumah, University of Science and Technology (KNUST), University Post Office, PMB Kumasi (Ghana)

    2011-07-01

    Performance assessments of jatropha, palm oil and soya bean based biodiesel were carried out to investigate their potential use as conventional substitute for kerosene for domestic purposes in rural- Ghana. The assessments were done by comparing some of the combustion characteristics of blends of the biodiesel with kerosene. The blends were categorised as B100 (100% biodiesel), B80 (80% biodiesel and 20% kerosene), B60 (60% biodiesel and 40% kerosene), B40 (40% biodiesel and 60% kerosene), B20 (20% biodiesel and 80% kerosene) and B0 (pure kerosene). The results showed that the calorific values of the B100s were less than that of the B0 and decreasing in the order of jatropha, soya bean and palm oil. The wick wastage results for both the B100s and B0, revealed higher rates in the WTL than the BB even though the BB recorded low fuel consumption rates than the WTL for both B100s and B0. Similarly, the luminous intensity test with the B100s showed low values in WTL than the BB in a decreasing order of jatropha, soya bean and palm oil. However, B0 recorded higher luminous intensity values that were quite comparable in both WTL and BB.

  2. Proinflammatory effects of diesel exhaust particles from moderate blend concentrations of 1st and 2nd generation biodiesel in BEAS-2B bronchial epithelial cells-The FuelHealth project.

    Science.gov (United States)

    Skuland, Tonje S; Refsnes, Magne; Magnusson, Pål; Oczkowski, Michał; Gromadzka-Ostrowska, Joanna; Kruszewski, Marcin; Mruk, Remigiusz; Myhre, Oddvar; Lankoff, Anna; Øvrevik, Johan

    2017-06-01

    Biodiesel fuel fuels are introduced at an increasing extent as a more carbon-neutral alternative to reduce CO 2 -emissions, compared to conventional diesel fuel. In the present study we have investigated the impact of increasing the use of 1st generation fatty acid methyl ester (FAME) biodiesel from current 7% blend (B7) to 20% blend (B20), or by increasing the biodiesel content by adding 2nd generation hydrotreated vegetable oil (HVO) based biodiesel (SHB; Synthetic Hydrocarbon Biofuel) on toxicity of diesel exhaust particles (DEP) in an in vitro system. Human bronchial epithelial BEAS-2B cells were exposed for 4 and 20h to DEP from B7, B20 and SHB at different concentrations, and examined for effects on gene expression of interleukin 6 (IL-6), CXCL8 (IL-8), CYP1A1 and heme oxygenase-1 (HO-1). The results show that both B20 and SHB were more potent inducers of IL-6 expression compared to B7. Only B20 induced statistically significant increases in CXCL8 expression. By comparison the rank order of potency to induce CYP1A1 was SHB>B7>B20. No statistically significant difference were observed form HO-1 expression, suggesting that the differences in cytokine responses were not due to oxidative stress. The results show that even moderate increases in biodiesel blends, from 7% to 20%, may increase the proinflammatory potential of emitted DEP in BEAS-2B cells. This effect was observed for both addition of 1st generation FAME and 2nd generation HVO biodiesel. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  4. Performance and Emission Characteristics of a Compression Ignition Engine Operating on Blends of Castor Oil Biodiesel-Diesel

    Science.gov (United States)

    Kanwar, Roopesh; Sharma, Pushpendra Kumar; Singh, Aditya Narayan; Agrawal, Yadvendra Kumar

    2017-04-01

    Diesel vehicles are the nerves and veins of transportation, particularly in developing countries. With the rapid rate of modernization, increasing demand of fuel is inevitable. The exponential increase in fuel prices and the scarcity of its supply from the environment have promoted interest in the development of alternative sources of fuel. In this work, genus Ricinus communis L. was studied in order to delimit their potential as a raw material for biodiesel production. Further, castor oil, ethyl ester were prepared by transesterification using potassium hydroxide (KOH) as a catalyst and tested on a four-stroke, single-cylinder compression ignition engine. The test was carried out at a constant speed of 3000 rpm at different loads. The results represent a substantial decrease in carbon monoxide (CO) emission with an increasing biodiesel percentage. The reduction of CO in B05, B10, B15 and B20 averaged 11.75, 22.02, 24.23 and 28.79 %, respectively, compared to mineral diesel. The emission results of the comparative test indicated that CO, oxygen (O2) and smoke density emissions are found to be lower when the engine is filled with B05, B10, B15 and B20 as compared to mineral diesel, while carbon dioxide (CO2) and nitrogen oxide (NOx) with B05, B10, B15 and B20 are found to increase marginally. Brake thermal efficiency and brake specific fuel consumption decrease and increase respectively in biodiesel with different blends in comparison of mineral diesel.

  5. Ecological Impact of Biodiesel Use

    International Nuclear Information System (INIS)

    Gulbis, V.; Shmigins, R.

    2005-01-01

    Full text: The paper presents a study of biodiesel application and its ecological impacts. Our study is based on the comparison of exhaust emission composition produced by the combustion of rapeseed oil methyl ester (RME) and conventional diesel fuel (DD) and its blends in a direct injection diesel engine XD2P (YTT). The engine was tested in biofuels laboratory of LUA Motor Vehicle Institute. Fuelling the engine with biodiesel and biodiesel/diesel blend reduced oxides of nitrogen by 17.5% (100RME) and by 5.6% (35RME) and carbon monoxide by 49.8% (100RME) and by 45.3% (35RME). Fuelling the engine with biodiesel and different biodiesel/diesel blends reduced the absorbtion coefficient by 33.9% (5RME), by 44.3% (20RME) and by 51.2% (100RME) on free acceleration regime. In these tests soot reduced by 28...76.7% at full opened throttle position with 100RME. (Authors)

  6. Experimental evaluation of C.I. engine performance using diesel blended with Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil [Mechanical Department, R. G. P. V. Bhopal (M.P.) (India); Chaube, Alok [Mechanical Department, Jabalpur Engineering College Jabalpur (M.P.) (India); Jain, Shashi Kumar [School of Energy and Environment Management, R.G.P.V. Bhopal (India)

    2012-07-01

    Costlier and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as promising alternative to petro-diesel. The higher viscosity of vegetable oils leads to problem in pumping, atomization and spray characteristics. The improper mixing of vegetable oils with air leads to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main feedstock for biodiesel production can be non-edible oil obtained from Jatropha curcas plant. Jatropha curcas plant can be cultivated on different terrains in India under extreme climatic conditions. Biodiesel can be used in its pure form or as a blend with petro-diesel in different proportions. It is being used in CI engines because it has properties similar to petro-diesel. The aim of this paper is to analyze suitability of petro-diesel blended with biodiesel in varying proportions in CI engines. For this purpose, a stationary single-cylinder four-stroke CI engine was tested with diesel blended with Jatropha biodiesel in 0%, 5%, 20%, 50%, 80% and 100%. Comparative measures of specific fuel consumption (SFC), brake thermal efficiency, smoke opacity, HC, CO2, CO, O2, NOX have been presented and discussed. Engine performance in terms of comparable brake thermal efficiency and SFC with lower emissions (HC, CO2, CO) was observed with B20 fuel compared to petro-diesel. Volumetric efficiency showed almost no variation for all the blends. Important observations related to noise and vibrations during testing have also been discussed.

  7. Biodiesel Production from Spent Coffee Grounds

    Science.gov (United States)

    Blinová, Lenka; Bartošová, Alica; Sirotiak, Maroš

    2017-06-01

    The residue after brewing the spent coffee grounds is an oil-containing waste material having a potential of being used as biodiesel feedstock. Biodiesel production from the waste coffee grounds oil involves collection and transportation of coffee residue, drying, oil extraction, and finally production of biodiesel. Different methods of oil extraction with organic solvents under different conditions show significant differences in the extraction yields. In the manufacturing of biodiesel from coffee oil, the level of reaction completion strongly depends on the quality of the feedstock oil. This paper presents an overview of oil extraction and a method of biodiesel production from spent coffee grounds.

  8. Marine biodiesel use in the Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, N. [Northwest Biofuels Association, Portland, OR (United States)

    2008-07-01

    This presentation explored the use of marine biodiesel in the Puget Sound region. Marine vessels are now adopting biodiesel fuels as a means of expressing corporate commitments to reducing greenhouse gas (GHG) emissions and the environmental impacts of hydrocarbons released into marine environments. Various biodiesel blends have been designed for use in small commercial, recreational, and research vessels. Biodiesel has also been adopted by charter and whale watching vessels in the Puget Sound. The Guemes Island Ferry has recently been re-configured to use biodiesel fuels, with 2 fuel tanks capable of receiving 2200 gallons at a time. The ferry adopted biodiesel after receiving soot complaints from marinas, and hopes to serve as a model for other vessels in the region. Four fueling docks supply the biodiesel blend to marine vessels. The sale of biodiesel has doubled in some marinas over the last 5 years. Deterrents to biodiesel use include parts incompatibilities and warranty problems. Some marinas have stopped selling biodiesel as a result of low sales and high prices. It was concluded that educational programs are needed to ensure the widespread adoption of biodiesel in the Puget Sound. refs., tabs., figs.

  9. Marine biodiesel use in the Puget Sound

    International Nuclear Information System (INIS)

    Davidson, N.

    2008-01-01

    This presentation explored the use of marine biodiesel in the Puget Sound region. Marine vessels are now adopting biodiesel fuels as a means of expressing corporate commitments to reducing greenhouse gas (GHG) emissions and the environmental impacts of hydrocarbons released into marine environments. Various biodiesel blends have been designed for use in small commercial, recreational, and research vessels. Biodiesel has also been adopted by charter and whale watching vessels in the Puget Sound. The Guemes Island Ferry has recently been re-configured to use biodiesel fuels, with 2 fuel tanks capable of receiving 2200 gallons at a time. The ferry adopted biodiesel after receiving soot complaints from marinas, and hopes to serve as a model for other vessels in the region. Four fueling docks supply the biodiesel blend to marine vessels. The sale of biodiesel has doubled in some marinas over the last 5 years. Deterrents to biodiesel use include parts incompatibilities and warranty problems. Some marinas have stopped selling biodiesel as a result of low sales and high prices. It was concluded that educational programs are needed to ensure the widespread adoption of biodiesel in the Puget Sound. refs., tabs., figs

  10. Methanolysis of Crude Jatropha Oil using Heterogeneous Catalyst from the Seashells and Eggshells as Green Biodiesel

    Directory of Open Access Journals (Sweden)

    A. N. R. REDDY

    2017-07-01

    Full Text Available In this work, heterogeneous calcium oxide catalysts gleaned from Polymedosa expansa and eggshell were investigated for the transesterification of crude jatropha oil with methanol, to access their prospective performance in biodiesel production as an alternative green energy resource. The best yield of biodiesel achieved was 96% in 1 h for Step 1 using 0.01:1 ratio of acid catalyst to oil and 0.6:1 ratio of alcohol to oil ratio, together with 2 h of Step 2 using 0.02:1 ratio with base catalyst CaO, derived from P. expansa, to oil ratio and 5:1 ratio of alcohol to oil.  The properties of jatropha biodiesel were analyzed and found to have calorific value of 35.43 MJ/kg, density value of 895 kg/m3 and flash point of 167. The biodiesel was blended with mineral diesel from B0 to B50 for a diesel engine performance test. B20 indicated comparable characteristics with pure mineral diesel, like lowest fuel consumption rate, specific fuel consumption rate, highest brake horsepower and mechanical efficiency.

  11. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  12. Opportunities and challenges for biodiesel fuel

    International Nuclear Information System (INIS)

    Lin, Lin; Cunshan, Zhou; Vittayapadung, Saritporn; Xiangqian, Shen; Mingdong, Dong

    2011-01-01

    Fossil fuel resources are decreasing daily. As a renewable energy, biodiesel has been receiving increasing attention because of the relevance it gains from the rising petroleum price and its environmental advantages. This review highlights some of the perspectives for the biodiesel industry to thrive as an alternative fuel, while discussing opportunities and challenges of biodiesel. This review is divided in three parts. First overview is given on developments of biodiesel in past and present, especially for the different feedstocks and the conversion technologies of biodiesel industry. More specifically, an overview is given on possible environmental and social impacts associated with biodiesel production, such as food security, land change and water source. Further emphasis is given on the need for government's incentives and public awareness for the use and benefits of biodiesel, while promoting policies that will not only endorse the industry, but also promote effective land management. (author)

  13. Montana BioDiesel Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Brent [Montana State Univ., Bozeman, MT (United States)

    2017-01-29

    This initiative funding helped put Montana State University (MSU) in a position to help lead in the development of biodiesel production strategies. Recent shortages in electrical power and rising gasoline prices have focused much attention on the development of alternative energy sources that will end our dependence on fossil fuels. In addition, as the concern for environmental impact of utilizing fossil fuels increases, effective strategies must be implemented to reduce emissions or the increased regulations imposed on fossil fuel production will cause economic barriers for their use to continue to increase. Biodiesel has been repeatedly promoted as a more environmentally sound and renewable source of fuel and may prove to be a highly viable solution to provide, at the least, a proportion of our energy needs. Currently there are both practical and economic barriers to the implementation of alternative energy however the advent of these technologies is inevitable. Since many of the same strategies for the storage, transport, and utilization of biodiesel are common with that of fossil fuels, the practical barriers for biodiesel are comparatively minimal. Strategies were developed to harness the CO2 as feedstock to support the growth of biodiesel producing algae. The initiative funding led to the successful funding of highly rated projects in competitive national grant programs in the National Science Foundation and the Department of Energy. This funding put MSU in a key position to develop technologies to utilize the CO2 rich emissions produced in fossil fuel utilization and assembled world experts concerning the growth characteristics of photosynthetic microorganisms capable of producing biodiesel.

  14. Climate impacts of short-lived climate forcers versus CO2 from biodiesel: a case of the EU on-road sector.

    Science.gov (United States)

    Lund, Marianne T; Berntsen, Terje K; Fuglestvedt, Jan S

    2014-12-16

    Biofuels are proposed to play an important role in several mitigation strategies to meet future CO2 emission targets for the transport sector but remain controversial due to significant uncertainties in net impacts on environment, society, and climate. A switch to biofuels can also affect short-lived climate forcers (SLCFs), which provide significant contributions to the net climate impact of transportation. We quantify the radiative forcing (RF) and global-mean temperature response over time to EU on-road fossil diesel SLCFs and the impact of 20% (B20) and 100% (B100) replacement of fossil diesel by biodiesel. SLCFs are compared to impacts of on-road CO2 using different approaches from existing literature to account for biodiesel CO2. Given the best estimates for changes in emissions when replacing fossil diesel with biodiesel, the net positive RF from EU on-road fossil diesel SLCFs of 3.4 mW/m(2) is reduced by 15% and 80% in B20 and B100, respectively. Over time the warming of SLCFs is likely small compared to biodiesel CO2 impacts. However, SLCFs may be relatively more important for the total warming than in the fossil fuel case if biodiesel from feedstock with very short rotation periods and low land-use-change impacts replaces a high fraction of fossil diesel.

  15. Disminución de Demanda en Horario Punta (Peak Shaving) Mediante el Uso de un Generador en Sitio, Utilizando Diesel y Biodiesel B20

    OpenAIRE

    Orozco Cuevas, Humberto

    2005-01-01

    En la actualidad, la energía eléctrica es un servicio del cuál muy difícilmente podemos prescindir, nos hemos acostumbrado a depender de ella de tal manera que en el momento que no la tenemos se vuelve un problema el realizar nuestras actividades más elementales. Imaginemos por un momento que sÚbitamente una ciudad se queda sin energía eléctrica: los semáforos inoperantes generarían un caos vial, las oficinas sin aire acondicionado y computadoras serían insoportables, las industrias no podría...

  16. Magnetic and Moessbauer studies of amorphous Fe72-xYxHo8B20 alloys

    International Nuclear Information System (INIS)

    Krishnan, R.; Dumond, Y.; Ajan, A.; Shringi, S.N.; Prasad, S.

    1996-01-01

    We have carried out magnetic and Moessbauer studies of amorphous Fe 72-x Y x Ho 8 B 20 alloys. The Fe moment decreases with the addition of Y and a magnetic compensation occurs at 4 K for x=16. The temperature and field dependences of the magnetization have been interpreted using the mean field theory and Chudnovsky's model, respectively. These analyses yield some interesting parameters such as the random anisotropy, the exchange interactions J Fe-Fe , J Fe-Ho , etc. The Moessbauer studies show that the average hyperfine field decreases linearly with the addition of Y, in accordance with the decrease in the Fe moment. (orig.)

  17. Magnetic exchange coupling in amorphous Fe80-xDy xB20 alloys

    International Nuclear Information System (INIS)

    Annouar, F.; Lassri, H.; Ayadi, M.; Omri, M.; Lassri, M.; Krishnan, R.

    2005-01-01

    Amorphous Fe 80-x Dy x B 20 alloys have been prepared by melt spinning and their magnetic properties have been studied. The mean field theory has been used to explain the temperature dependence of the magnetization. The exchange interactions between Co-Co and Dy-Co atom pairs have been evaluated. High-field magnetization studies on samples with stoichiometry close to that of a compensated ferrimagnet show a magnetic behavior that is characteristic of a non-collinear magnetic structure of the Dy and Fe sublattices. The region of the canted moments can be described by a phase diagram in the H-T plane

  18. Determination of the density and the viscosities of biodiesel-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Ertan; Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)

    2008-12-15

    In this study, commercially available two different diesel fuels were blended with the biodiesels produced from six different vegetable oils (sunflower, canola, soybean, cottonseed, corn oils and waste palm oil). The blends (B2, B5, B10, B20, B50 and B75) were prepared on a volume basis. The key fuel properties such as density and viscosities of the blends were measured by following ASTM test methods. Generalized equations for predicting the density and viscosities for the blends were given and a mixing equation, originally proposed by Arrhenius and described by Grunberg and Nissan, was used to predict the viscosities of the blends. For all blends, it was found that there is an excellent agreement between the measured and estimated values of the density and viscosities. According to the results, the density and viscosities of the blends increased with the increase of biodiesel concentration in the fuel blend. (author)

  19. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Science.gov (United States)

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  20. A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st- and 2nd-generation biodiesel fuels in relation to their physicochemical properties-the FuelHealth project.

    Science.gov (United States)

    Lankoff, Anna; Brzoska, Kamil; Czarnocka, Joanna; Kowalska, Magdalena; Lisowska, Halina; Mruk, Remigiusz; Øvrevik, Johan; Wegierek-Ciuk, Aneta; Zuberek, Mariusz; Kruszewski, Marcin

    2017-08-01

    Biodiesels represent more carbon-neutral fuels and are introduced at an increasing extent to reduce emission of greenhouse gases. However, the potential impact of different types and blend concentrations of biodiesel on the toxicity of diesel engine emissions are still relatively scarce and to some extent contradictory. The objective of the present work was to compare the toxicity of diesel exhaust particles (DEP) from combustion of two 1st-generation fuels: 7% fatty acid methyl esters (FAME; B7) and 20% FAME (B20) and a 2nd-generation 20% FAME/HVO (synthetic hydrocarbon biofuel (SHB)) fuel. Our findings indicate that particulate emissions of each type of biodiesel fuel induce cytotoxic effects in BEAS-2B and A549 cells, manifested as cell death (apoptosis or necrosis), decreased protein concentrations, intracellular ROS production, as well as increased expression of antioxidant genes and genes coding for DNA damage-response proteins. The different biodiesel blend percentages and biodiesel feedstocks led to marked differences in chemical composition of the emitted DEP. The different DEPs also displayed statistically significant differences in cytotoxicity in A549 and BEAS-2B cells, but the magnitude of these variations was limited. Overall, it seems that increasing biodiesel blend concentrations from the current 7 to 20% FAME, or substituting 1st-generation FAME biodiesel with 2nd-generation HVO biodiesel (at least below 20% blends), affects the in vitro toxicity of the emitted DEP to some extent, but the biological significance of this may be moderate.

  1. Experimental study of spray characteristics of biodiesel derived from waste cooking oil

    International Nuclear Information System (INIS)

    Mohan, Balaji; Yang, Wenming; Tay, Kun Lin; Yu, Wenbin

    2014-01-01

    Highlights: • B20 and diesel exhibit similar spray tip penetration and angle. • Change in orientation of spray shapes observed with different fuels. • B100 shows poor air fuel mixing compared to B20 and diesel. • Diesel shows higher equivalence ratio compared to B20 and B100. - Abstract: In this study, the fuel spray characteristics and air-fuel mixing process of waste cooking oil biodiesel (B100) and its blend with diesel (B20) were investigated and compared with diesel fuel. Spray characteristics such as spray tip penetration, spray angle, spray velocity and spray morphology were investigated under high injection and ambient pressure conditions using a constant volume spray chamber. The air-fuel mixing process was analysed using empirical relations like fuel volume, mass of air entrained within the spray and equivalence ratio. The results shows that B100 has higher spray tip penetration and velocity but narrow spray angles due to high viscosity and large momentum possessed by B100 compared to B20 and diesel fuels. The deviation in spray tip penetration reduces under high ambient pressure. The spray angle shows no change under various injection pressures; however it increases significantly under high ambient pressure. The spray shape is affected by the cavitation inside the injector nozzle holes. The fuel volume and amount of air entrainment within the spray showed that B100 exhibits poor air-fuel mixing compared to B20 and diesel fuels. Nevertheless, the equivalence ratio along the axial direction of spray reveals that the B100 has lean equivalence ratio compared to B20 and diesel fuel due to the presence of inherent oxygen content in its structure. A numerical simulation was conducted using new hybrid spray model implemented in KIVA4 and found that the results obtained from the simulation were in good agreement with the empirical results calculated from the experiments

  2. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  3. Potential effects of using biodiesel in road-traffic on air quality over the Porto urban area, Portugal

    Science.gov (United States)

    Ribeiro, Isabel; Monteiro, Alexandra; Lopes, Myriam

    2016-01-01

    This work aims to assess the impacts of biodiesel blends use in road-traffic on air quality. In this frame, the air quality numerical modelling system WRF-EURAD was applied over Portugal and the Porto urban area, forced by two emission scenarios (including CO, NOx, PM10, PM2.5, NMVOC, formaldehyde, acetaldehyde, acrolein and benzene): a reference scenario, without biofuels, and a scenario where a B20 fuel (20% biodiesel/80% diesel, v/v) is used by the diesel vehicle fleet. Regarding carbonyl compounds, emission scenarios pointed out that B20 fuel can promote an increase of 20% on formaldehyde, acetaldehyde and acrolein emissions, leading to increments on equivalent ozone production. On the other hand, through the air quality modelling exercise, it was verified that the use of B20 helps in controlling air pollution, improving CO and NO2 concentrations in urban airshed in about 20% and 10%, respectively, taking into account a regional simulation grid. However, according to the urban scale simulation, NO2 levels can increase in about 1%, due to the use of B20, over the Porto urban area. For the remaining studied pollutants, namely PM10 and PM2.5, mean concentrations will be reduced all over the territory, however in a negligible amount of <1%.

  4. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Directory of Open Access Journals (Sweden)

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  5. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    Science.gov (United States)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  6. Biodegradation of biodiesel fuels

    International Nuclear Information System (INIS)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-01-01

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO 2 evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO 2 evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO 2 evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO 2 . The test substances were examined for BOD 5 and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD 5 and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD 5 and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p 5 value

  7. Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine

    Science.gov (United States)

    Gangwar, Jitendra N.; Gupta, Tarun; Agarwal, Avinash K.

    2012-01-01

    There is a global concern about adverse health effects of particulate matter (PM) originating from diesel engine exhaust. In the current study, parametric investigations were carried out using a CRDI (Common Rail Direct Injection) diesel engine operated at different loads at two different engine speeds (1800 and 2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. A partial flow dilution tunnel was employed to collect and measure the mass of the primary particulates from diesel and biodiesel blend collected on a 47 mm quartz substrate. The collected PM (particulate matter) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). For both diesel and biodiesel, BSOF results showed decreasing levels with increasing engine load. B20 showed higher BSOF as compared to those measured with diesel. The concentration of different trace metals analyzed also showed decreasing trends with increasing engine loads. In addition, real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) were carried out on the primary engine exhaust coming out of the partial flow dilution tunnel. Analysis of OC/EC data suggested that the ratio of OC to EC decreases with corresponding increase in engine load for both fuels. A peak in PAH concentration was observed at 60% engine load at 1800 rpm and 20% engine load at 2400 rpm engine speeds almost identical for both kinds of fuels. Comparison of chemical components of PM emitted from this CRDI engine provides new insight in terms of PM toxicity for B20 vis-a-vis diesel.

  8. NREL's Earl Christensen Honored with Two Awards from National Biodiesel

    Science.gov (United States)

    Board | News | NREL NREL's Earl Christensen Honored with Two Awards from National Biodiesel Board NREL's Earl Christensen Honored with Two Awards from National Biodiesel Board February 16, 2018 Fuel stability research advances innovation and bolsters industry confidence in biodiesel. Scott

  9. Biodiesel separation and purification: A review

    International Nuclear Information System (INIS)

    Atadashi, I.M.; Aroua, M.K.; Aziz, A. Abdul

    2011-01-01

    Biodiesel as a biodegradable, sustainable and clean energy has worldwide attracted renewed and growing interest in topical years, chiefly due to development in biodiesel fuel and ecological pressures which include climatic changes. In the production of biodiesel from biomass, separation and purification of biodiesel is a critical technology. Conventional technologies used for biodiesel separation such as gravitational settling, decantation, filtration and biodiesel purification such as water washing, acid washing, and washing with ether and absorbents have proven to be inefficient, time and energy consumptive, and less cost effective. The involvement of membrane reactor and separative membrane shows great promise for the separation and purification of biodiesel. Membrane technology needs to be explored and exploited to overcome the difficulties usually encountered in the separation and purification of biodiesel. In this paper both conventional and most recent membrane technologies used in refining biodiesel have been critically reviewed. The effects of catalysts, free fatty acids, water content and oil to methanol ratios on the purity and quality of biodiesel are also examined. (author)

  10. Biodiesel via hydrotreating of fat

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Ahmed, El Hadi; Christensen, Claus Hviid

    Biodiesel production via transesterification to fatty acid alkyl esters is rising rapidly worldwide due to the limited availability of fossil resources and the problems of global warming. Often, however, the use of 2nd-generation feedstock like animal waste fat and trap greases etc. is made...

  11. Accelerated oxidation processes is biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Monyem, A.; Van Gerpen, J.

    1999-12-01

    Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feedstocks such as vegetable oil and animal fats. These feedstocks are reacted with an alcohol to produce alkyl monoesters that can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This article reports the results of experiments to track the chemical and physical changes that occur in biodiesel as it oxidizes. These results show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are explored also. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq/kg ester, the acid value and viscosity increase monotonically as oxidation proceeds.

  12. Motor gerador ciclo diesel sob cinco proporções de biodiesel com óleo diesel Engine-generator diesel cycle under five proportions of biodiesel and diesel

    Directory of Open Access Journals (Sweden)

    Marcelo J. da Silva

    2012-01-01

    Full Text Available O estudo de fontes alternativas de energia ao óleo diesel mineral, como o biodiesel, com origem renovável, é importante para o meio-ambiente e diversificação da matriz energética. Neste estudo foram levantados o consumo específico de combustível, o valor calórico do combustível e a eficiência do conjunto motor gerador da marca BRANCO em função de cargas resistivas, sob as seguintes proporções volumétricas entre o óleo diesel mineral com biodiesel: 0% (B0, 20% (B20, 40% (B40, 60% (B60 e 100% de biodiesel (B100. Para o ensaio utilizou-se motor de 7,36 kW, com gerador elétrico acoplado de 5,5 kW. As cargas utilizadas, 0,5 kW; 1,0 kW; 1,5 kW e 2,0 kW foram elevadas até 5,0 kW, oriundas de um dinamômetro de cargas resistentes. Assim, o desempenho do conjunto para cargas abaixo de 1,5 kW mostrou-se menor, pelo maior consumo específico de combustível (CEC, e redução na eficiência do conjunto motor gerador para a faixa de potência. Para as proporções de biodiesel B40, B60 e B100 os resultados descreveram redução no valor calórico e aumento do CEC. Portanto, realizando comparação das proporções de biodiesel com o óleo diesel, a proporção B20 substitui parcialmente o óleo diesel, sem perdas significativas do desempenho do motor gerador.The study of mineral diesel alternatives, such as biodiesel, a renewable fuel, is important for the environment and to diversify energy sources. This study evaluated an engine-generator BRANCO brand. Specific fuel consumption, calorific value and the overall efficiency as a function of the system load was measured, using diesel oil and biodiesel blends. The biodiesel proportions in the composition were 0% (B0, 20% (B20, 40% (B40, 60% (B60, and 100% (B100. The engine that was used during the test has a power of 7.36 kW, and the electric generator was 5.5 kW. The group was submitted to resistive loading, in the range: 0.5 kW, 1.0 kW, 1.5 kW; growing up to 5.0 kW. The results have shown

  13. Chemical alternative to the energetic use of biodiesel; Chemische Alternativen zur energetischen Nutzung von Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S; Ruesch genannt Klaas, M.; Harperscheid, M. [Bundesanstalt fuer Getreide-, Kartoffel- und Fettforschung, Muenster (Germany). Inst. fuer Biochemie und Technologie der Fette - H.P. Kaufmann-Inst.

    1996-12-31

    Biodiesel is environment-friendly, but much more costly to produce than `normal` diesel fuel. Higher economic efficiency can be achieved by using biodiesel as a chemical feedstock instead. Tenside and polymers offer a wide range of applications. (orig) [Deutsch] Biodiesel ist ein umweltfreundlicher Kraftstoff, jedoch in der Herstellung deutlich teurer als Mineraloel-Dieselkraftstoff. Eine signifikant hoehere Wertschoepfung koennte errreicht werden, wenn Biodiesel nicht im Kraftstoffsektor, sondern als chemischer Rohstoff verwendet wird. Tenside und Polymere sind hierbei grossvolumige Einsatzbereiche. (orig)

  14. Chemical alternative to the energetic use of biodiesel; Chemische Alternativen zur energetischen Nutzung von Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S; Ruesch genannt Klaas, M; Harperscheid, M [Bundesanstalt fuer Getreide-, Kartoffel- und Fettforschung, Muenster (Germany). Inst. fuer Biochemie und Technologie der Fette - H.P. Kaufmann-Inst.

    1997-12-31

    Biodiesel is environment-friendly, but much more costly to produce than `normal` diesel fuel. Higher economic efficiency can be achieved by using biodiesel as a chemical feedstock instead. Tenside and polymers offer a wide range of applications. (orig) [Deutsch] Biodiesel ist ein umweltfreundlicher Kraftstoff, jedoch in der Herstellung deutlich teurer als Mineraloel-Dieselkraftstoff. Eine signifikant hoehere Wertschoepfung koennte errreicht werden, wenn Biodiesel nicht im Kraftstoffsektor, sondern als chemischer Rohstoff verwendet wird. Tenside und Polymere sind hierbei grossvolumige Einsatzbereiche. (orig)

  15. New regulatory landmark for biodiesel use; Novo marco regulatorio para usos de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rosangela Moreira de [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Brazilian Biodiesel Production and Use of Biodiesel - PNPB, made possible the insert of Biodiesel in the Brazilian energy matrix. The National Agency of the Petroleum, Natural Gas and Biofuels - ANP was responsible to create the outline regulatory that established the rules for entrance and commercialization of this new fuel in the country. This work seeks to present the effects of the implantation of the new relative rules to the biodiesel use. (author)

  16. Neutron depolarization study of internal stresses in amorphous Fe40Ni40B20

    International Nuclear Information System (INIS)

    de Jong, M.; Sietsma, J.; Rekveldt, M.T.; van den Beukel, A.

    1997-01-01

    The magnetic domain structure of amorphous ferromagnets with nonzero magnetostriction is mainly determined by the internal stress state because of the magneto-elastic coupling. The stress and field dependence of the domain structure contains important information on the internal stresses in the material. The three-dimensional neutron depolarization technique has been used to study the stress- and field-dependence of the bulk domain structures in both as-quenched and annealed ribbons of the metallic glass Fe 40 Ni 40 B 20 . A three-layer domain structure model corresponding to compressive and tensile internal stresses is presented to explain the measured data. The influence of surface roughness on the interpretation of neutron depolarization measurements in amorphous ribbons is discussed. Finally, the internal stress relaxation due to the annealing is explained in terms of the viscous behaviour of the glass. copyright 1997 American Institute of Physics

  17. Temperature dependence of the electrical resistivity of amorphous Co80-xErxB20 alloys

    International Nuclear Information System (INIS)

    Touraghe, O.; Khatami, M.; Menny, A.; Lassri, H.; Nouneh, K.

    2008-01-01

    The temperature dependence of the electrical resistivity of amorphous Co 80-x Er x B 20 alloys with x=0, 3.9, 7.5 and 8.6 prepared by melt spinning in pure argon atmosphere was studied. All amorphous alloys investigated here are found to exhibit a resistivity minimum at low temperature. The electrical resistivity exhibits logarithmic temperature dependence below the temperature of resistivity minimum T min . In addition, the resistivity shows quadratic temperature behavior in the interval T min < T<77 K. At high temperature, the electrical resistivity was discussed by the extended Ziman theory. For the whole series of alloys, the composition dependence of the temperature coefficient of electrical resistivity α shows a change in structural short range occurring in the composition range 8-9 at%

  18. Three years operational experience with biodiesel

    International Nuclear Information System (INIS)

    Murphy, J.

    2008-01-01

    TSI Terminal Systems Inc. is the largest container terminal operator in Canada, and has an annual payroll exceeding $150 million. The company started a biodiesel test program with the Canadian Bioenergy Corporation in order to assess the emission reduction impacts of using biodiesel. The pilot was tested with 6 different pieces of equipment used at the terminal over an initial period of 3 weeks. Emissions testing was then conducted for different biodiesel blend levels and compared with baseline data in relation to particulate matter, total hydrocarbons, carbon monoxide (CO), carbon dioxide (CO 2 ), and nitrous oxides (NO x ). Results of the tests confirmed that the biodiesel blends significantly reduced emissions at the terminal and confirmed the operability of biodiesel. Overall emissions were reduced by 30 per cent. The fuel is now being used in all the company's equipment. The use of the biodiesel has not resulted in any engine failures or power losses. tabs., figs

  19. Are subsidies for biodiesel economically efficient?

    International Nuclear Information System (INIS)

    Wassell, Charles S.; Dittmer, Timothy P.

    2006-01-01

    Biodiesel produces less pollution than petrodiesel; however, it is more expensive and will only be a viable alternative if market prices of the products are comparable. This paper examines whether the external benefits from biodiesel use justify subsidies required for adoption outside of niche alternative fuel markets. The authors establish a range of subsidies required to make biodiesel a viable substitute for petrodiesel. Published estimates of the emissions reductions from biodiesel and the dollar benefits of unit reductions in emissions are used to compute a per-gallon external benefit from use of biodiesel, versus petrodiesel. Under conservative estimates of the benefits from biodiesel use in non-road equipment, the external benefits outweigh the required subsidies.(JEL Q48, Q42, H2)

  20. Biodiesel research progress 1992-1997

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, K.S. [ed.

    1998-04-01

    The US Department of Energy (DOE) Office of Fuels Development began evaluating the potential of various alternative fuels, including biodiesel, as replacement fuels for traditional transportation fuels. Biodiesel is derived from a variety of biological materials from waste vegetable grease to soybean oil. This alkyl ester could be used as a replacement, blend, or additive to diesel fuel. This document is a comprehensive summary of relevant biodiesel and biodiesel-related research, development demonstration, and commercialization projects completed and/or started in the US between 1992 and 1997. It was designed for use as a reference tool to the evaluating biodiesel`s potential as a clean-burning alternative motor fuel. It encompasses, federally, academically, and privately funded projects. Research projects are presented under the following topical sections: Production; Fuel characteristics; Engine data; Regulatory and legislative activities; Commercialization activities; Economics and environment; and Outreach and education.

  1. Genetic engineering of microorganisms for biodiesel production

    Science.gov (United States)

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  2. Desempenho comparativo de um motor de ciclo diesel utilizando diesel e misturas de biodiesel Comparative performance of a cycle diesel engine using diesel and biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Ronald Leite Barbosa

    2008-10-01

    Full Text Available Os atuais elevados preços do barril de petróleo no mercado internacional, a possibilidade de geração de postos de trabalho e renda com a conseqüente fixação do homem no campo, as excelentes e variadas condições climáticas e os tipos de relevo fazem com que o Brasil, com suas extensas áreas agricultáveis, destaque-se no cenário mundial em relação à sua grande potencialidade de geração de combustíveis alternativos. A situação ambiental faz com que o ser humano trabalhe no desenvolvimento de alternativas energéticas, destacando-se aquelas oriundas de fontes renováveis e biodegradáveis de caráter eminentemente sustentável. Assim, objetivou-se com este trabalho avaliar o desempenho de um motor ciclo diesel, funcionando em momentos distintos com diesel mineral e misturas deste com biodiesel nas proporções equivalentes a B2 (98% de diesel mineral e 2% de biodiesel, B5 (95% de diesel mineral e 5% de biodiesel, B20 (80% de diesel mineral e 20% de biodiesel e B100 (100% de biodiesel. Para a realização dos ensaios, foi utilizado um motor ciclo diesel de um trator VALMET 85 id, de 58,2kW (78 cv, de acordo com metodologia estabelecida pela norma NBR 5484 da ABNT (1985 que se refere ao ensaio dinamométrico de motores de ciclo Otto e Diesel. Concluiu-se que a potência do motor ao se utilizar biodiesel foi inferior àquela quando se utilizou diesel mineral. Observou-se que, em algumas rotações, as misturas B5 e B20 apresentaram potência igual ou até superior, em algumas situações, àquela quando se utilizou diesel mineral. A melhor eficiência térmica do motor foi verificada na rotação de 540 rpm da TDP equivalente a 1720 rpm do motor.It is considered that, in a close future, the petroleum reservations economically viable will tend to the shortage. Besides it, the exacerbated current price levels of the petroleum barrel in the international market, the possibility of employment generation and income with the consequent

  3. Performance of generating group diesel fed with different blends of soybean biodiesel; Desempenho de um grupo gerador diesel alimentado com diferentes misturas de biodiesel de oleo de soja

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Elton Fialho dos; Amaral, Paulo Augusto Pedroso; Cunha, Joao Paulo Barreto; Freitas, Sueli Martins; Queiroz, Helio de Souza [Universidade Estadual de Goias (UNUCET/UEG), Anapolis, GO (Brazil). Unidade Universitaria de Anapolis], E-mail: bcunha_2@hotmail.com

    2010-07-01

    The replacement of diesel with biofuels or blends with diesel that is the most focused today to supply the shortage of petroleum based fuels. In Brazil the trend that biodiesel be used with regular diesel is increasing. As a result feasibility studies are becoming more necessary. The objective of this study was to evaluate use of biodiesel in different concentrations with diesel (B3, B5, B10, B20, B50 and B100) in a generating group diesel. Assays for quantification of the hourly consumption of fuel and emission of noise in different variants of the engine had been carried out. This was conducted through the electrical charge, connected to the generating group, and carried out through the analysis of the degree of Bosch blackening of the gases of exhaustion in the different concentrations. The equations of regression had good correlation with the real data. In conclusion the electric charge applied to the group generator increases proportionately with the time consumption and the emission of noise. However Biodiesel (B100) is different in comparison to other mixtures in the Bosch blackening test, presenting a lesser emission in relation to the other mixtures. (author)

  4. Costs of biodiesel supply chain in Latvia

    International Nuclear Information System (INIS)

    Birzietis, G.; Kunkule, D.

    2003-01-01

    Biodiesels has already become reality in Latvia, but still not are extensively used due to number of reasons. Cost reduction would be one of the most efficient tools that could encourage wider use of biodiesel. Identifying costs in biodiesel supply chain and evaluating their weight in total cost of final product is the first step to finding most costly elements and potential for cost reduction. General cost breakdown in final price is calculated and analysed in this study (authors)

  5. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Chou, S.K.; Chua, K.J.

    2012-01-01

    Highlights: ► Impact of engine load on engine’s performance, combustion and emission characteristics. ► The brake specific fuel consumption (BSFC) increases significantly at partial load conditions. ► The brake thermal efficiency (BTE) drops at lower engine loads, and increases at higher loads. ► The partial load also influences the trend of CO emissions. -- Abstract: This paper investigated the performance, combustion and emission characteristics of diesel engine fueled by biodiesel at partial load conditions. Experiments were conducted on a common-rail fuel injection diesel engine using ultra low sulfur diesel, biodiesel (B100) and their blend fuels of 10%, 20%, 50% (denoted as B10, B20 and B50 respectively) under various loads. The results show that biodiesel/blend fuels have significant impacts on the engine’s brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) at partial load conditions. The increase in BSFC for B100 is faster than that of pure diesel with the decrease of engine load. A largest increase of 28.1% in BSFC is found at 10% load. Whereas for BTE, the results show that the use of biodiesel results in a reduced thermal efficiency at lower engine loads and improved thermal efficiency at higher engine loads. Furthermore, the characteristics of carbon monoxide (CO) emissions are also changed at partial load conditions. When running at lower engine loads, the CO emission increases with the increase of biodiesel blend ratio and the decrease of engine speed. However, at higher engine loads, an opposite trend is obtained.

  6. Agricultural capacity and economic aspects of the main oleaginous with potential for biodiesel production for use in Brazilian transportation sector; Capacidade agricola e aspectos economicos das principais oleaginosas com potencial para producao de biodiesel para uso no setor de transporte brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Gabieri, Rodrigo [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Curso de Pos-Graduacao em Planejamento de Sistemas Energeticos], e-mail: galbieri@fem.unicamp.br

    2008-07-01

    The Law n. 11.097, of January 13th, 2005, stabilised as mandatory the addition of 2% of biodiesel in the diesel beginning in 2008, increasing this amount to 5% in 2013. Many economics, environmental and social benefits can be reached through this new law. The diversity of raw material that could be used to produce biodiesel is large, mainly to the vegetables oil producer ones. Does the following cultures: palm oil, soy, babacu, peanut, mamona, and sunflower have enough stabilised agriculture areas to supply the goal of B2 and B5? What regarding to future fuel of type B10, B15 and B20? (author)

  7. Model Biaya Produksi Biodiesel Berbasis Minyak Sawit

    OpenAIRE

    Meilita Tryana Sembiring; Sukardi Sukardi; Ani Suryani; Muhammad Romli

    2015-01-01

    Biodiesel is a renewable energy source in Indonesia of which the use is regulated by the government in the form of mandatory policy of biodiesel and diesel fuel blending. The production of biodiesel in Indonesia is not developed (the need is 3.4 million kiloliters but the total national production is only 1,703 kiloliters). It is because the selling price (referring to Mean of Platts Singapore) is always lower than the production cost. Biodiesel production is influenced by raw materials and p...

  8. Oxidation stability and risk evaluation of biodiesel

    Directory of Open Access Journals (Sweden)

    Hoshino Takashi

    2007-01-01

    Full Text Available This review describes oxidation and thermal stability and hazardous possibility of biodiesel by auto-oxidation. As it can be distributed using today’s infrastructure biodisel production has increased especially in the European Union. Biodiesel has many surpassing properties as an automotive fuel. Biodiesel is considered safer than diesel fuel because of the high flash point, but it has oxygen and double bond(s. Fatty acid methyl esters are more sensitive to oxidative degradation than fossil diesel fuel. The ability of producing peroxides is rather high, therefore we should care of handling of biodiesel.

  9. Purification of crude biodiesel using dry washing and membrane technologies

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2015-12-01

    Full Text Available Purification of crude biodiesel is mandatory for the fuel to meet the strict international standard specifications for biodiesel. Therefore, this paper carefully analyzed recently published literatures which deal with the purification of biodiesel. As such, dry washing technologies and the most recent membrane biodiesel purification process have been thoroughly examined. Although purification of biodiesel using dry washing process involving magnesol and ion exchange resins provides high-quality biodiesel fuel, considerable amount of spent absorbents is recorded, besides the skeletal knowledge on its operating process. Further, recent findings have shown that biodiesel purification using membrane technique could offer high-quality biodiesel fuel with less wastewater discharges. Thus, both researchers and industries are expected to benefit from the development of membrane technique in purifying crude biodiesel. As well biodiesel purification via membranes has been shown to be environmentally friendly. For these reasons, it is important to explore and exploit membrane technology to purify crude biodiesel.

  10. WSF Biodiesel Demonstration Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

    2009-04-30

    In 2004, WSF canceled a biodiesel fuel test because of “product quality issues” that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and

  11. Skyrmions and Novel Spin Textures in FeGe Thin Films and Artificial B20 Heterostructures

    Science.gov (United States)

    Ahmed, Adam Saied

    Skyrmions are magnetic spin textures that have a non-zero topological winding number associated with them. They have attracted much interest recently since they can be as small as 1 nm and could be the next generation of magnetic memory and logic. First, we grow epitaxial films of FeGe by molecular beam epitaxy and characterized the skyrmion properties. This had led us to image skyrmions in real-space with Lorentz transmission electron microscopy for the first time in the United States. Next, from an extensive series of thin and thick films, we have experimentally shown the existence of a magnetic surface state in FeGe and, consequently, any skyrmion material for the first time. Complementary theoretical calculations supported the existence of chiral bobbers--a surface state only predicted in 2015. Next, we fabricated for the first time a new class of skyrmion materials: B20 superlattices. These novel heterostructures of [FeGe/MnGe/CrGe] have now opened the door for tunable skyrmion systems with both Dresselhaus and Rashba Dzyaloshinskii-Moriya interactions. Additionally, we perform resonant soft x-ray scattering to image magnetic spin textures in reciprocal space for FeGe thin films in transmission. We have accomplished the removal of substrate and left an isolated single-crystal FeGe film. Lastly, SrO is grown on graphene as a crystalline, atomically smooth, and pinhole free tunnel barrier for spin injection.

  12. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  13. Bio-diesel: A candidate for a Nigeria energy mix

    International Nuclear Information System (INIS)

    Eze, T.; Dim, L. A.; Funtua, I. I.; Oladipo, M. O. A.

    2011-01-01

    This paper presents a review of bio-diesel development and economic potentials. The basics of biodiesel and its production technology are described. Attention is given to development potential, challenges and prospests of bio-diesel in Nigeria with ground facts on bio-diesel production feasibility in Nigeria highlighted.

  14. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Science.gov (United States)

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

  15. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. ... Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. C Dai, J Tao, F Xie, Y Dai, M Zhao. Abstract. This study explored a strategy to convert agricultural and forestry residues into ...

  16. Georges Chavanne and the first biodiesel

    Science.gov (United States)

    This article discusses the first production and use of a fuel around 1937 now called biodiesel, which is obtained from a vegetable or plant oil through a straightforward chemical reaction called transesterification. Biodiesel has become an alternative or supplement to conventional diesel fuel derive...

  17. The uses of biodiesel in buses

    International Nuclear Information System (INIS)

    Smigins, R.; Gulbis, V.

    2003-01-01

    In November 2001 in Naukseni, Valmiera district the biodiesel - methyl ester of rapeseed oil (RME) - plant first in Latvia and in all Baltic States began to work. The production capacity of the plant is 2500 t of biodiesel per year. In the summer and autumn period of the last year the first experiment using 100% RME on one city bus line was carried out. The bus Ikarus-280 in total turned 30700 km consuming 11 tons or 12600 litres of biodiesel. The fuel consumption with biodiesel was 0.9 kg/h (14.2%) or 3.01/100 km higher as with fossil diesel fuel. The engine power and the driving speed on the line were practically unchanged in spite that the heat capacity of biodiesel is lower than of ordinary diesel fuel (according 37.1 l and 42.1 MJ/kg). Using biodiesel the toxicity of the exhaust gases dropped down very essentially. It was controlled regularly by measuring the absorption coefficient and smokiness. At the end of second month of the experiment the absorption coefficient was 2.09 m -1 and 47.8%. This shows that by the influence of biodiesel the compression chambers of the engine clean from burnt parts and the combustion process most completely thanks to the oxygen content in the biodiesel (authors)

  18. Comparative toxicity and mutagenicity of biodiesel exhaust

    Science.gov (United States)

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  19. Comparative Study of Biofuel and Biodiesel Blend with Mineral Diesel Using One-Dimensional Simulation

    International Nuclear Information System (INIS)

    Rahim, Rafidah; Mamat, Rizalman; Taib, Mohd Yusof

    2012-01-01

    This study is intended to perform one-dimensional simulation for four cylinders diesel engine by using various type of fuels and blend. The testing of biofuels properties conducted according to ASTM standards. The physical properties of the fuel are investigated in chemical laboratory which comprises of flash point, kinematic viscosity, density, cloud and pour point, acid value and moisture content. There are three types of fuels used throughout the study, which are straight vegetable oil (SVO), biodiesel 20% blend (B20) and biodiesel 5% blend (B5). Then, the properties data from the experiment will be used in the simulation GT Power software. Simulation tests have been run with the aim of obtaining comparative measures of torque, power, specific fuel consumption and volumetric efficiency. The results is use to evaluate and analyze the performance of diesel engine running with the mentioned fuels above. The comparison performances for each fuel have been discussed. There is no significant difference in the engine performance when fueled with B5 and diesel. There is only about one percent lower of B5 and four percent higher of B20 and SVO compare to diesel fuel.

  20. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    Science.gov (United States)

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  1. Impacts of biodiesel production on Croatian economy

    International Nuclear Information System (INIS)

    Kulisic, Biljana; Loizou, Efstratios; Rozakis, Stelios; Segon, Velimir

    2007-01-01

    The aim of this paper is to assess the direct and indirect impacts on a national economy from biodiesel (rapeseed methyl ester (RME)) production using input-output (I-O) analysis. Biodiesel development in Croatia is used as a case study. For Croatia, as for many other countries in Europe, biodiesel is a new activity not included in the existing I-O sectoral accounts. For this reason the I-O table has to be modified accordingly before being able to quantify the effect of an exogenous demand for biodiesel. Impacts in terms of output, income and employment lead to the conclusion that biodiesel production could have significant positive net impact on the Croatian economy despite the high level of subsidies for rapeseed growing

  2. Microbial recycling of glycerol to biodiesel.

    Science.gov (United States)

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Process development for scum to biodiesel conversion.

    Science.gov (United States)

    Bi, Chong-hao; Min, Min; Nie, Yong; Xie, Qing-long; Lu, Qian; Deng, Xiang-yuan; Anderson, Erik; Li, Dong; Chen, Paul; Ruan, Roger

    2015-06-01

    A novel process was developed for converting scum, a waste material from wastewater treatment facilities, to biodiesel. Scum is an oily waste that was skimmed from the surface of primary and secondary settling tanks in wastewater treatment plants. Currently scum is treated either by anaerobic digestion or landfilling which raised several environmental issues. The newly developed process used a six-step method to convert scum to biodiesel, a higher value product. A combination of acid washing and acid catalyzed esterification was developed to remove soap and impurities while converting free fatty acids to methyl esters. A glycerol washing was used to facilitate the separation of biodiesel and glycerin after base catalyzed transesterification. As a result, 70% of dried and filtered scum was converted to biodiesel which is equivalent to about 134,000 gallon biodiesel per year for the Saint Paul waste water treatment plant in Minnesota. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Spray Behavior and Atomization Characteristics of Biodiesel

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.

  5. Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst

    International Nuclear Information System (INIS)

    Mahesh, Sneha E.; Ramanathan, Anand; Begum, K.M. Meera S.; Narayanan, Anantharaman

    2015-01-01

    Highlights: • KBr impregnated CaO has been used as heterogeneous catalyst. • Efficient use of waste cooking oil as feedstock. • Response Surface Methodology was used to optimize process parameters. - Abstract: This research paper deals with the synthesis of a heterogeneous catalyst (KBr/CaO) from commercial calcium oxide and potassium bromide by wet impregnation method. This solid catalyst was tested for transesterification of waste cooking oil (WCO). The synthesized catalyst was characterized by Fourier Transform Infrared spectrometry (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. Transesterification reaction parameters were varied to obtain the maximum yield of biodiesel. Response Surface Methodology (RSM) using Central Composite Design (CCD) was employed to study the effect of the process variables like methanol to oil ratio, catalyst loading and reaction time. The optimum conditions obtained using regression models were found to be 12:1 methanol: oil ratio, 3 wt% catalyst loading and 1.8 h reaction time. The composition of FAME was determined using Gas Chromatography–Mass Spectrometry (GC–MS). The performance and emission characteristics for various blends of biodiesel (B10, B20, B50 and B100) were investigated in a four stroke direct injection diesel engine. The results indicated that the brake thermal efficiency, particulate matter, unburned hydrocarbons, carbon monoxide emissions reduced with increased concentration of biodiesel in the fuel blends, whereas the specific fuel consumption, NO x emissions and exhaust gas temperature increased

  6. Energy consumption of an agricultural an agricultural tractor operating in dynamometer using with diesel and chicken oil biodiesel; Consumo energetico de um trator agricola operando em bancada dinamometrica com oleo diesel e biodiesel de oleo de frango

    Energy Technology Data Exchange (ETDEWEB)

    Fiorese, Diego Augusto [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], email: dafiorese@yahoo.com.br; Dallmeyer, Arno Udo; Romano, Leonardo Nabaes; Schlosser, Jose Fernando [Universidade Federal de Santa Maria (UFSM), RS (Brazil)

    2011-07-01

    The efficiency of energy use in agricultural machinery is dependent on the efficiency of internal combustion diesel cycle, their genuine propellants. However, some biofuels may offer a better yield due to some peculiar characteristics such distinctions in calorific value. Many studies have demonstrated a better utilization of the energy content when operating with biodiesel and with binary mixtures with diesel oil. In this study, tests were conducted on a dynamometer bench to evaluate the energy consumption of a tractor engine with four cylinders and 53 kW (72 hp), operating with biodiesel and chicken oil mixture with diesel oil. In the tests were evaluated six ratios (B5, B20, B40, B60, B80 and B100). The results showed that increasing the proportion of biodiesel was favorable to improve the utilization of the energy content, thus increasing the thermal efficiency of the engine. The best result was obtained with pure biodiesel (B100) with consumption of 395.47 MJ.h{sup -1}and efficiency of 32.35%. On the other hand the witness had the lowest use B5 with 428.20 MJ.h{sup -1} and thermal efficiency of 30.67%. (author)

  7. Current biodiesel production technologies: A comparative review

    International Nuclear Information System (INIS)

    Abbaszaadeh, Ahmad; Ghobadian, Barat; Omidkhah, Mohammad Reza; Najafi, Gholamhassan

    2012-01-01

    Highlights: ► In this paper we review the technologies related to biodiesel production. ► 4 Primary approaches reviewed are direct use and blending of oils, micro-emulsions, pyrolysis and transesterification method. ► Both advantages and disadvantages of the different biodiesel production methods are also discussed. ► The most common technology of biodiesel production is transesterification of oils. ► Selection of a transesterification method depends on the amount of FFA and water content of the feedstock. - Abstract: Despite the high energy demand in the industrialized world and the pollution problems caused by widespread use of fossil fuels, the need for developing renewable energy sources with less environmental impacts are increasing. Biodiesel production is undergoing rapid and extensive technological reforms in industries and academia. The major obstacle in production and biodiesel commercialization path is production cost. Thus, in previous years numerous studies on the use of technologies and different methods to evaluate optimal conditions of biodiesel production technically and economically have been carried out. In this paper, a comparative review of the current technological methods so far used to produce biodiesel has been investigated. Four primary approaches to make biodiesel are direct use and blending of vegetable oils, micro-emulsions, thermal cracking (pyrolysis) and transesterification. Transesterification reaction, the most common method in the production of biodiesel, is emphasized in this review. The two types of transestrification process; catalytic and non-catalytic are discussed at length in the paper. Both advantages and disadvantages of the different biodiesel production methods are also discussed.

  8. Purification of crude biodiesel using dry washing and membrane technologies

    OpenAIRE

    Atadashi, I.M.

    2015-01-01

    Purification of crude biodiesel is mandatory for the fuel to meet the strict international standard specifications for biodiesel. Therefore, this paper carefully analyzed recently published literatures which deal with the purification of biodiesel. As such, dry washing technologies and the most recent membrane biodiesel purification process have been thoroughly examined. Although purification of biodiesel using dry washing process involving magnesol and ion exchange resins provides high-quali...

  9. Involvement of the ornithine decarboxylase gene in acid stress response in probiotic Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Ferreira, A B; Oliveira, M N V de; Freitas, F S; Paiva, A D; Alfenas-Zerbini, P; Silva, D F da; Queiroz, M V de; Borges, A C; Moraes, C A de

    2015-01-01

    Amino acid decarboxylation is important for the maintenance of intracellular pH under acid stress. This study aims to carry out phylogenetic and expression analysis by real-time PCR of two genes that encode proteins involved in ornithine decarboxylation in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress. Sequencing and phylogeny analysis of genes encoding ornithine decarboxylase and amino acid permease in L. delbrueckii UFV H2b20 showed their high sequence identity (99%) and grouping with those of L. delbrueckii subsp. bulgaricus ATCC 11842. Exposure of L. delbrueckii UFV H2b20 cells in MRS pH 3.5 for 30 and 60 min caused a significant increase in expression of the gene encoding ornithine decarboxylase (up to 8.1 times higher when compared to the control treatment). Increased expression of the ornithine decarboxylase gene demonstrates its involvement in acid stress response in L. delbrueckii UFV H2b20, evidencing that the protein encoded by that gene could be involved in intracellular pH regulation. The results obtained show ornithine decarboxylation as a possible mechanism of adaptation to an acidic environmental condition, a desirable and necessary characteristic for probiotic cultures and certainly important to the survival and persistence of the L. delbrueckii UFV H2b20 in the human gastrointestinal tract.

  10. Comparative study of performance and emissions of a CI engine using biodiesel of microalgae, macroalgae and rice bran

    Science.gov (United States)

    Jayaprabakar, J.; Karthikeyan, A.; Saikiran, K.; Beemkumar, N.; Joy, Nivin

    2017-05-01

    Biodiesel is an alternative and safe fuel to replace conventional petroleum diesel. With high-lubricity and clean-burning ability the biodiesel can be a better fuel component for use in existing diesel engines without any modifications. The aim of this Research was to study the potential use of Macro algae oil, Micro algae oil, Rice Bran oil methyl ester as a substitute for diesel fuel in diesel engine. B10 and B20 blends of these three types of fuels are prepared by transesterification process. The blends on volume basis were used to test them in a four stroke single cylinder diesel engine to study the performance and emission characteristics of these fuels and compared with neat diesel fuel. Also, the property testing of these biofuels were carried out. The biodiesel blends in this study substantially reduces the emission of unburnt hydro carbons and smoke opacity and increases the emission of NOx emission in exhaust gases. These biodiesel blends were consumed more by the engine during testing than Diesel and the brake thermal efficiency and volumetric efficiency for the blends was identical with the Diesel.

  11. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    Science.gov (United States)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  12. Crystallization of amorphous pseudobinary alloys of the type (Fe1-x Nix)80 B20

    International Nuclear Information System (INIS)

    Vasconcellos, M.A.Z.; Baibich, M.N.

    1984-01-01

    It was studied the crystallization of amorphous metallic ribbons of Fe 1-x Ni x 80 B 2 0 using the method of isochronous heating at variable slopes. The crystallization temperatures were determined from the transition observed in the electrical resistivity. (M.W.O.) [pt

  13. Heterogeneous ozonation reactions of PAHs and fatty acid methyl esters in biodiesel particulate matter

    Science.gov (United States)

    Kasumba, John; Holmén, Britt A.

    2018-02-01

    Numerous studies have examined the oxidation of PAHs found in diesel particulate matter (PM) by ozone, but no studies have investigated the ozone oxidation of biodiesel exhaust PM. Fatty acid methyl esters (FAMEs), found in high abundance in biodiesel PM, can potentially alter the kinetics of the reactions between atmospheric oxidants such as ozone and particle-phase PAHs. In this study, the heterogeneous reactivity of 16 EPA PAHs upon 24 h exposure to 0.4 ppm ozone in the presence (PAH + FAMES) and absence (PAH-only) of FAMEs was investigated at room temperature and 50% relative humidity. The ozone-reactivity of the PAHs detected in 20% biodiesel (B20) exhaust PM was also investigated. In the absence of FAMEs, the pseudo-first order ozone reaction rate constant, kO 3 , of PAHs varied from 0.086 ± 0.030 hr-1 (chrysene) to 0.184 ± 0.078 hr-1 (anthracene). In the presence of FAMEs, kO 3 of the PAHs varied between 0.013 ± 0.012 hr-1 (benzo[b]fluoranthene) and 0.168 ± 0.028 hr-1 (benzo[a]pyrene), and with the exception of benzo[a]pyrene, the kO 3 of PAHs were 1.2-8 times lower compared to those obtained during the PAH-only ozone exposure. Only one PAH, benzo[a]pyrene (BaP), did not show a significant change in kO3 with addition of FAMEs. Phenanthrene, fluoranthene, and pyrene, the only PAHs detected in the B20 PM, had kO 3 values about 4 times lower in B20 PM than those obtained when spiked PAHs-only were exposed to ozone. The kO 3 values of phenanthrene and fluoranthene in the B20 PM were 2 times higher than rates obtained when the PAH mix was exposed to ozone in the presence of the FAMEs. In contrast, pyrene's kO 3 in the B20 PM was about 2 times lower than that obtained for the PAH + FAMEs exposure. Observed differences in PAH behavior demonstrate individual PAH heterogeneous reactivity with gas-phase ozone is sensitive to PAH (vapor pressure, solubility/sorption to matrix components, chemical reactivity) as well as substrate properties (PAH and O3 diffusivity

  14. Characterization of beef tallow biodiesel and their mixtures with soybean biodiesel and mineral diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Leonardo S.G. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280, Salvador, Bahia (Brazil); INCT de Energia e Ambiente, Universidade Federal da Bahia, 40.170-280, Salvador, Bahia (Brazil); Couto, Marcelo B.; Filho, Miguel Andrade; Assis, Julio C.R.; Guimaraes, Paulo R.B.; Pontes, Luiz A.M.; Almeida, Selmo Q. [Departamento de Engenharia e Arquitetura, Universidade Salvador - UNIFACS, Av. Cardeal da Silva 132, 40.220-141, Salvador, Bahia (Brazil); Souza, Giancarlos S. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280, Salvador, Bahia (Brazil); Teixeira, Josanaide S.R. [Instituto Federal de Educacao Ciencia e Tecnologica da Bahia - IFBAHIA, Rua Emidio de Morais S/N, 40.625-650, Salvador, Bahia (Brazil)

    2010-04-15

    Tallow is a raw material for biodiesel production that, due to their highly centralized generation in slaughter/processing facilities and historically low prices, may have energy, environmental, and economic advantages that could be exploited. However beef tallow biodiesel have unfavorable properties due the presence of high concentration of saturated fatty esters. One way to overcome these inconveniences is using blending procedures. In this way, blends of beef tallow biodiesel with soybean biodiesel and with conventional mineral diesel fuel were prepared and the quality of the mixtures was monitored with the purpose to study ideal proportions of the fuels. By measurement of the viscosity, density, cold filter plugging point, and flash point, it was demonstrated that tallow biodiesel can be blended with both mineral diesel and soybean biodiesel to improve the characteristics of the blend fuels, over that of the tallow. (author)

  15. Moessbauer spectroscopy on amorphous Fe/sub x/Ni/sub 80-x/B20 after neutron irradiation

    International Nuclear Information System (INIS)

    Sitek, J.; Miglierini, M.

    1985-01-01

    Amorphous Fe/sub x/Ni/sub 80-x/B 20 glassy alloys (x = 40, 50, 60, and 70) irradiated with fast neutrons in a fluence range of 10 14 to 10 19 cm -2 were investigated by Moessbauer spectroscopy. There were some significant changes in the Moessbauer spectrum parameters of the 10 19 cm -2 irradiated samples except Fe 40 Ni 40 B 20 . This corresponds to a change in the direction of the easy axis of magnetization. The measurements show that the resistance of the Fe-Ni-B system against neutron irradiation improves with increasing Ni content up to a certain point

  16. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets

    Science.gov (United States)

    Huang, S. X.; Chen, Fei; Kang, Jian; Zang, Jiadong; Shu, G. J.; Chou, F. C.; Chien, C. L.

    2016-06-01

    The B20 chiral magnets with broken inversion symmetry and C4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii-Moriya that gives rise to the helical and Skyrmion states. We report the unusual magnetoresistance (MR) of B20 chiral magnet Fe0.85Co0.15Si that directly reveals the broken C4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin-orbit coupling. The unusual MR serves as a transport signature for the Skyrmion phase.

  17. Progress and recent trends in biodiesel fuels

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    Fossil fuel resources are decreasing daily. Biodiesel fuels are attracting increasing attention worldwide as blending components or direct replacements for diesel fuel in vehicle engines. Biodiesel fuel typically comprises lower alkyl fatty acid (chain length C 14 -C 22 ), esters of short-chain alcohols, primarily, methanol or ethanol. Various methods have been reported for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsification, pyrolysis, and transesterification. Among these, transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages over other new-renewable and clean engine fuel alternatives. Biodiesel fuel is a renewable substitute fuel for petroleum diesel or petrodiesel fuel made from vegetable or animal fats; it can be used in any mixture with petrodiesel fuel, as it has very similar characteristics, but it has lower exhaust emissions. Biodiesel fuel has better properties than petrodiesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future; it has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification

  18. Biodiesel production by transesterification using immobilized lipase.

    Science.gov (United States)

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.

  19. Desempenho de motor diesel com misturas de biodiesel de óleo de girassol Performance of diesel engine fuelled with sunflower biodiesel blends

    Directory of Open Access Journals (Sweden)

    Ila Maria Corrêa

    2008-06-01

    Full Text Available Objetivou-se, neste trabalho avaliar o uso de misturas de biodiesel de girassol (Helianthus annuus L. e diesel no desempenho de um motor de ignição por compressão, injeção direta. Os ensaios foram realizados em bancada dinamométrica utilizando-se as misturas B5, B10, B20 e B100 em comparação ao diesel (D. Foi analisado o desempenho do motor através da tomada de potência (TDP com cada combustível, e analisado o óleo lubrificante do motor antes e após 96 horas de uso com B100. Os resultados obtidos foram: D (40,7 kW; 271 g/kW.h; B5 (40,3 kW; 271 g/kW.h; B10 (39,8 kW; 277 g/kW.h; B20 (40,0 kW; 277 g/kW.h e B100 (39,8 kW; 291 g/kW.h. Concluiu-se que o uso das misturas B5, B10, B20 e B100 proporcionou redução de no máximo 2,2 % na potência na TDP e um aumento máximo de 7,3 %, no consumo específico de combustível. A análise do óleo lubrificante, antes e após o uso com B100, detectou alterações aceitáveis, sendo a viscosidade, a presença de água e o teor de ferro os parâmetros mais expressivamente alterados.This work aimed to evaluate the use of sunflower biodiesel (Helianthus annuus L. blends in a CI engine, direct injection. The test procedure was carried out in a dynamometer bench that determined the performance of engine through power take-off (PTO with use of diesel and sunflower biodiesel blends (B5, B10, B20 and B100. The lubricating oil was analyzed before and after period of 96 hours. The results were: D (40,7 kW; 271 g/kW.h; B5 (40,3 kW; 271 g/kW.h; B10 (39,8 kW; 277 g/kW.h; B20 (40,0 kW; 277 g/kW.h e B100 (39,8 kW; 291 g/kW.h. One conclude that the use of blends B5, B10, B20 and B100 decreased the power of PTO max. 2,2% and increased the fuel consumption max. 7, 3%. The analysis of the lubricating oil before and after the use of B100 showed acceptable alterations and the viscosity, water content and level of iron were the most affected parameters.

  20. A hybrid multi-criteria decision modeling approach for the best biodiesel blend selection based on ANP-TOPSIS analysis

    Directory of Open Access Journals (Sweden)

    G. Sakthivel

    2015-03-01

    Full Text Available The ever increasing demand and depletion of fossil fuels had an adverse impact on environmental pollution. The selection of appropriate source of biodiesel and proper blending of biodiesel plays a major role in alternate energy production. This paper describes an application of hybrid Multi Criteria Decision Making (MCDM technique for the selection of optimum fuel blend in fish oil biodiesel for the IC engine. The proposed model, Analytical Network Process (ANP is integrated with Technique for Order Performance by Similarity to Ideal Solution (TOPSIS and VlseKriterijumska Optimizacija I Kompromisno Resenje (in Serbian (VIKOR to evaluate the optimum blend. Evaluation of suitable blend is based on the exploratory analysis of the performance, emission and combustion parameters of the single cylinder, constant speed direct injection diesel engine at different load conditions. Here the ANP is used to determine the relative weights of the criteria, whereas TOPSIS and VIKOR are used for obtaining the final ranking of alternative blends. An efficient pair-wise comparison process and ranking of alternatives can be achieved for optimum blend selection through the integration of ANP with TOPSIS and VIKOR. The obtained preference order of the blends for ANP-VIKOR and ANP-TOPSIS are B20 > Diesel > B40 > B60 > B80 > B100 and B20 > B40 > Diesel > B60 > B80 > B100 respectively. Hence by comparing both these methods, B20 is selected as the best blend to operate the internal combustion engines. This paper highlights a new insight into MCDM techniques to evaluate the best fuel blend for the decision makers such as engine manufactures and R& D engineers to meet the fuel economy and emission norms to empower the green revolution.

  1. Prediction of an optimum biodiesel-diesel blended fuel for compression ignition engine using GT-power

    International Nuclear Information System (INIS)

    Shah, A.N.; Shah, F.H.; Shahid, E.M.; Gardezi, S.A.R.

    2014-01-01

    This paper describes the development of a turbocharged direct-injection compression ignition (CI) engine model using fluid-dynamic engine simulation codes through a simulating tool known as GT Power. The model was first fueled with diesel, and then with various blends of biodiesel and diesel by allotting suitable parameters to predict an optimum blended fuel. During the optimization, main focus was on the engine performance, combustion, and one of the major regulated gaseous pollutants known as oxides of nitrogen (NOx). The combustion parameters such as Premix Duration (DP), Main Duration (DM), Premix Fraction (FP), Main Exponent (EM) and ignition delay (ID) affect the start of injection (SOI) angle, and thus played significant role in the prediction of optimum blended fuel. The SOI angle ranging from 5.2 to 5.7 degree crank angle (DCA) measured before top dead center (TDC) revealed an optimum biodiesel-diesel blend known as B20 (20% biodiesel and 80% diesel by volume). B20 exhibited the minimum possible NOx emissions, better combustion and acceptable engine performance. Moreover, experiments were performed to validate the simulated results by fueling the engine with B20 fuel and operating it on AC electrical dynamometer. Both the experimental and simulated results were in good agreement revealing maximum deviations of only 3%, 3.4%, 4.2%, and 5.1% for NOx, maximum combustion pressure (MCP), engine brake power (BP), and brake specific fuel consumption (BSFC), respectively. Meanwhile, a positive correlation was found between MCP and NOx showing that both the parameters are higher at lower speeds, relative to higher engine speeds. (author)

  2. Prediction of cold flow properties of Biodiesel

    Directory of Open Access Journals (Sweden)

    Parag Saxena

    2016-08-01

    Full Text Available Biodiesel being environmentally friendly is fast gaining acceptance in the market as an alternate diesel fuel. But compared to petroleum diesel it has certain limitations and thus it requires further development on economic viability and improvement in its properties to use it as a commercial fuel. The cold flow properties play a major role in the usage of biodiesel commercially as it freezes at cold climatic conditions. In the present study, cold flow properties of various types of biodiesel were estimated by using correlations available in literature. The correlations were evaluated based on the deviation between the predicted value and experimental values of cold flow properties.

  3. Innovative Canadian Process Technology For Biodiesel Production

    Energy Technology Data Exchange (ETDEWEB)

    Johar, Sangat; Norton, Kevin

    2010-09-15

    The need for increasing renewable and alternative energy in the global energy mix has been well recognized by Governments and major scientific forums to reduce climate change impact for this living planet. Biodiesel has very high potential for GHG emission reduction. An innovative process developed in Canada provides solution to mitigate the feedstock, yield and quality issues impacting the industry. The Biox process uses a continuous process which reduces reaction times, provides > 99% yield of high quality biodiesel product. The process is feedstock flexible and can use cheaper higher FFA feedstock providing a sustainable approach for biodiesel production.

  4. Aqueous solubility, dispersibility and toxicity of biodiesels

    International Nuclear Information System (INIS)

    Hollebone, B.P.; Fieldhouse, B.; Lumley, T.C.; Landriault, M.; Doe, K.; Jackman, P.

    2007-01-01

    The renewed interest in the use of biological fuels can be attributed to that fact that feedstocks for fatty-acid ester biodiesels are renewable and can be reclaimed from waste. Although there are significant benefits to using biodiesels, their increased use leaves potential for accidental release to the environment. Therefore, their environmental behaviours and impacts must be evaluated along with the risk associated with their use. Biodiesel fuels may be made from soy oil, canola oil, reclaimed restaurant grease, fish oil and animal fat. The toxicological fate of biofuel depends on the variability of its chemical composition. This study provided an initial assessment of the aqueous fate and effects of biodiesel from a broad range of commonly available feedstocks and their blends with petroleum diesels. The study focused primarily on the fate and impact of these fuels in fresh-water. The use of chemical dispersion as a countermeasure for saltwater was also investigated. The exposure of aquatic ecosystems to biodiesels and petroleum diesel occurs via the transfer of material from the non-aqueous phase liquid (NAPL) into the aqueous phase, as both soluble and dispersed components. The aqueous solubilities of the fuels were determined from the equilibrium water-accommodated fraction concentrations. The acute toxicities of many biodiesels were reported for 3 test species used by Environment Canada for toxicological evaluation, namely rainbow trout, the water flea and a luminescent bacterium. This study also evaluated the natural potential for dispersion of the fuels in the water column in both low and high-energy wave conditions. Chemical dispersion as a potential countermeasure for biodiesel spills was also evaluated using solubility testing, acute toxicity testing, and dispersibility testing. It was shown that biodiesels have much different fates and impacts from petroleum diesels. The compounds partitioning into the water column are also very different for each

  5. Isothermal structural relaxation of Fe40Ni40B20 metallic glass in the relaxation times spectrum model

    NARCIS (Netherlands)

    Csach, K; Haruyama, O; Kasardova, A; Ocelik, Vaclav

    1997-01-01

    The structural relaxation of amorphous as-quenched Fe40Ni40B20 sample was investigated during isothermal annealing at temperatures close to 400 degrees C by: (i) the residual electrical resistance measured at liquid N-2 temperature; (ii) the in-situ electrical resistance; and (iii) the length

  6. Increased expression of clp genes in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress and bile salts.

    Science.gov (United States)

    Ferreira, A B; De Oliveira, M N V; Freitas, F S; Alfenas-Zerbini, P; Da Silva, D F; De Queiroz, M V; Borges, A C; De Moraes, C A

    2013-12-01

    The ability to survive in harsh environments is an important criterion to select potential probiotics strains. The objective of this study was to identify and carry out phylogenetic and expression analysis by quantitative real-time PCR of the clpP, clpE, clpL and clpX genes in the probiotic strain Lactobacillus delbrueckii UFV H2b20 exposed to the conditions prevailing in the gastrointestinal tract (GIT). Phylogenetic trees reconstructed by Bayesian inference showed that the L. delbrueckii UFV H2b20 clpP, clpL and clpE genes and the ones from L. delbrueckii ATCC 11842 were grouped. The exposure of cells to MRS broth of pH 3.5 for 30 and 60 min resulted in an increased expression of the four genes. Exposure of the L. delbrueckii UFV H2b20 cells for 30 and 60 min to MRS broth containing 0.1% bile salts increased the expression of the clpP and clpE genes, while the expression level of the clpL and clpX genes increased only after 30 min of exposure. The involvement of the studied genes in the responses to acid stress and bile salts suggests a possible central role of these genes in the survival of L. delbrueckii UFV H2b20 during the passage through the GIT, a characteristic necessary for probiotic strains.

  7. Desempenho e emissões de um motor-gerador ciclo diesel sob diferentes concentrações de biodiesel de soja Performance and emissions of a diesel engine-generator cycle under different concentrations of soybean biodiesel

    Directory of Open Access Journals (Sweden)

    Elton F. dos Reis

    2013-05-01

    Full Text Available No cenário atual brasileiro de constantes quedas de energia e iminência de uma crise no setor elétrico, a utilização de grupos geradores tem sido bastante comum no meio rural e os bicombustíveis, como o biodiesel, representam uma opção para diversificação da matriz energética. Este trabalho objetivou avaliar o uso do biodiesel de soja em diferentes concentrações em um motor de ciclo diesel sob diferentes demandas de cargas do motor. Foram utilizadas as concentrações: 5% (B5, 10% (B10, 20% (B20, 50% (B50, 75% (B75 e 100% de biodiesel (B100 em um grupo gerador a diesel, com motor de 5 Hp de quatro tempos, em diferentes condições de operação do motor, por meio de demandas de cargas elétricas: 500, 1.000, 1.500, 2.000 W e desligadas conectadas ao grupo gerador. Foram realizados ensaios para quantificação do consumo horário de combustível e da emissão de gases. As variáveis sofreram influência significativa conforme foram alteradas as cargas elétricas e as misturas de combustível. O uso do biodiesel em concentrações maiores reduz consideravelmente a emissão da maioria dos gases poluentes e se tem praticamente anulada a emissão de enxofre para concentrações acima de 65% de biodiesel.In the current scenario of constant power drops in Brazil and an imminent crisis in the electricity sector, the use of generators and biofuels such as biodiesel has been quite common in rural areas represents an option for diversification of the energy matrix. This study evaluated the use of soybean biodiesel in different concentrations in a diesel engine cycle under different demands of engine loads. Concentrations used were: 5% (B5, 10% (B10, 20% (B20, 50% (B50, 75% (B75 and 100% biodiesel (B100 in a diesel generator with engine of 5 Hp of four-stroke under different operating conditions of the engine, through the demands of electrical loads: 500, 1.000, 1.500, 2.000 W and off connected to the generator. Tests were conducted to quantify

  8. Characterization and effect of using Mahua oil biodiesel as fuel in compression ignition engine

    Science.gov (United States)

    Kapilan, N.; Ashok Babu, T. P.; Reddy, R. P.

    2009-12-01

    There is an increasing interest in India, to search for suitable alternative fuels that are environment friendly. This led to the choice of Mahua Oil (MO) as one of the main alternative fuels to diesel. In this investigation, Mahua Oil Biodiesel (MOB) and its blend with diesel were used as fuel in a single cylinder, direct injection and compression ignition engine. The MOB was prepared from MO by transesterification using methanol and potassium hydroxide. The fuel properties of MOB are close to the diesel and confirm to the ASTM standards. From the engine test analysis, it was observed that the MOB, B5 and B20 blend results in lower CO, HC and smoke emissions as compared to diesel. But the B5 and B20 blends results in higher efficiency as compared to MOB. Hence MOB or blends of MOB and diesel (B5 or B20) can be used as a substitute for diesel in diesel engines used in transportation as well as in the agriculture sector.

  9. ANALYSIS OF COCONUT ETHYL ESTER (BIODIESEL) AND ...

    African Journals Online (AJOL)

    eobe

    Energy is an indispensable and significant issue of world concern. ... both metal parts of diesel engine whereas biodiesel from other ... study reported on the blend characterization and ... weighing balance was used to measure the weight of.

  10. Current status of biodiesel development in Brazil.

    Science.gov (United States)

    Ramos, Luiz Pereira; Wilhelm, Helena Maria

    2005-01-01

    In recent years, the concept of producing biodiesel from renewable lipid sources has regained international attention. In Brazil, a national program was launched in 2002 to evaluate the technical, economic, and environmental competitiveness of biodiesel in relation to the commercially available diesel oil. Several research projects were initiated nationwide to investigate and/or optimize biodiesel production from renewable lipid sources and ethanol derived from sugarcane (ethyl esters). Once implemented, this program will not only decrease our dependence on petroleum derivatives but also create new market opportunities for agribusiness, opening new jobs in the countryside, improving the sustainability of our energy matrix, and helping the Brazilian government to support important actions against poverty. This article discusses the efforts to develop the Brazilian biodiesel program in the context of technical specifications as well as potential oilseed sources.

  11. Biodiesel Production from Azolla filiculoides (Water Fern)

    African Journals Online (AJOL)

    1Department of Microbiology, Rasht Branch, Islamic Azad University, Rasht, Iran, 2Department of Biology, Faculty of ... Conclusion: The results indicate that biodiesel can be produced from ... Consequently, microalgae that can grow rapidly.

  12. Biodiesel production with immobilized lipase: A review.

    Science.gov (United States)

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Sustainable Future for Biodiesel in Brazil

    DEFF Research Database (Denmark)

    Dias, Maria Amélia de Paula

    This thesis aims to study alternatives to biodiesel industry in Brazil, for 2030, taking in account the sustainability dimensions, namely economic, environmental, ecological, social, national and international politics, territorial, cultural, and technological, through the development of scenarios...... for agriculture and pasture. Thus, a simulation, using linear programming models, was made in order to verify the alternatives of feedstock to produce biodiesel. It was observed that it is possible to decentralize the market, reduce land use, and regionalize production, making better use of the availability...... to identify the driving forces to develop the scenario storylines. This proposition was tested in an in-depth interview with the biodiesel market stakeholders. Based on the findings of the two approaches, the simulations and the interviews, it was possible to obtain future alternatives, where the biodiesel...

  14. Enzymatic biodiesel production: Technical and economical considerations

    DEFF Research Database (Denmark)

    Munk Nielsen, Per; Brask, Jesper; Fjerbæk, Lene

    2008-01-01

    It is well documented in the literature that enzymatic processing of oils and fats for biodiesel is technically feasible. However, with very few exceptions, enzyme technology is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process design...... and a lack of available costeffective enzymes. The technology to re-use enzymes has typically proven insufficient for the processes to be competitive. However, literature data documenting the productivity of enzymatic biodiesel together with the development of new immobilization technology indicates...... that enzyme catalysts can become cost effective compared to chemical processing. This work reviews the enzymatic processing of oils and fats into biodiesel with focus on process design and economy....

  15. Isothermal calorimetry on enzymatic biodiesel production

    DEFF Research Database (Denmark)

    Fjerbæk, Lene

    2008-01-01

    information about effects taking place when using lipases immobilized on an inert carrier for transesterification of a triglyceride and an alcohol as for biodiesel production. The biodiesel is produced by rapeseed oil and methanol as well as ethanol and a commercial biocatalyst Novozym 435 from Novozymes...... containing a Candida Antarctica B lipase immobilized on an acrylic resin. The reaction investigated is characterized by immiscible liquids (oil, methanol, glycerol and biodiesel) and enzymes imm. on an inert carrier during reaction, which allows several effects to take place that during normal reaction...... conditions can not be elucidated. These effects have been observed with isothermal calorimetry bringing forth new information about the reaction of enzymes catalyzing transesterification. Enzymatic biodiesel production has until now not been investigated with isothermal microcalorimetry, but the results...

  16. Operation and Control of Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Huusom, Jakob Kjøbsted; Nordblad, Mathias

    This work explores the control of biodiesel production via an enzymatic catalyst. The process involves the transesterification of oils/fats with an alcohol (usually methanol or ethanol), using enzymatic catalysts to generate mono-alkyl esters (the basis of biodiesel) and glycerol as by......-product. Current literature indicates that enzymatic processing of oils and fats to produce biodiesel is technically feasible and developments in immobilization technology indicate that enzyme catalysts can become cost effective compared to chemical processing. However, with very few exceptions, enzyme technology...... is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process designs, which do not use the full potential of the catalysts in a cost-efficient way. Furthermore is it unclear what process variables need to be monitored and controlled to ensure optimal economics...

  17. Sustainable Algae Biodiesel Production in Cold Climates

    OpenAIRE

    Baliga, Rudras; Powers, Susan E.

    2010-01-01

    This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA) are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a ...

  18. Price Comovement Between Biodiesel and Natural Gas

    OpenAIRE

    Janda, Karel; Kourilek, Jakub

    2016-01-01

    We study relationship between biodiesel, as a most important biofuel in the EU, relevant feedstock commodities and fossil fuels. Our main interest is to capture relationship between biodiesel and natural gas. They are both used either directly as a fuel or indirectly in form of additives in transport. Therefore, our purpose is to �nd price linkage between biofuel and natural gas to support or reject the claim that they compete as alternative fuels and potential substitutes. The estimated p...

  19. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT

    International Nuclear Information System (INIS)

    KRISHNA, C.R.

    2001-01-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible

  20. Environmental sustainability of biodiesel in Brazil

    International Nuclear Information System (INIS)

    Geraldes Castanheira, Érica; Grisoli, Renata; Freire, Fausto; Pecora, Vanessa; Coelho, Suani Teixeira

    2014-01-01

    Biodiesel production in Brazil has grown from 736 m 3 in 2007 to 2.7 Mm 3 in 2012. It is an emergent bioenergy for which it is important to guarantee environmental sustainability. The objective of this article is to characterise the biodiesel production chain in Brazil, to identify potential environmental impacts and to analyse key drivers and barriers for biodiesel environmental sustainability. This article explores these aspects and focusses on the increasing demand for the main feedstocks for biodiesel production in Brazil: soybean oil and beef tallow. The impacts of land use and land-use change on greenhouse gas emissions, biodiversity and water, as well as the energy balance, were found to be critical for the environmental sustainability assessment and development of biodiesel chains. Increasing agriculture yields, diversifying feedstocks and adopting ethyl transesterification can contribute to minimise environmental impacts. It was also found that environmental impacts could be mitigated by appropriate policies aiming at an integrated optimisation of food and bioenergy production and through agro-economic–ecological zoning, allowing adequate use of land for each purpose. Despite the limitation and weakness of some sustainability tools and initiatives, certification and zoning can play an important role in the sustainability of the emerging biodiesel production in Brazil

  1. Corrosion mechanism of copper in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Corrosion of copper in biodiesel increases with the increase of immersion time. ► The corrosion patina is found to be composed of CuO, Cu 2 O, CuCO 3 and Cu(OH) 2 . ► Green CuCO 3 was found as the major corrosion product. ► The mechanisms governing corrosion of copper in palm biodiesel are discussed. - Abstract: Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu 2 O, CuO, Cu(OH) 2 and CuCO 3. Dissolved O 2 , H 2 O, CO 2 and RCOO − radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel.

  2. Degradation of automotive materials in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2012-01-01

    As compared to petroleum diesel, biodiesel is more corrosive for automotive materials. Studies on the characterization of corrosion products of fuel exposed automotive materials are scarce. Automotive fuel system and engine components are made from different ferrous and non-ferrous materials. The present study aims to investigate the corrosion products of different types of automotive materials such as copper, brass, aluminum and cast iron upon exposure to diesel and palm biodiesel. Changes in fuel properties due to exposure of different materials were also examined. Degradation of metal surface was characterized by digital camera, SEM/EDS and X-ray diffraction (XRD). Fuel properties were examined by measuring TAN (total acid number), density and viscosity. Among the metal investigated, copper is found to be least resistant in biodiesel and formed comparatively more corrosion products than other metals. Upon exposure of metals in biodiesel, TAN number crosses the limit given by standard while density and viscosity remain within the acceptable range of limit. -- Highlights: ► Order of incompatible metals in palm biodiesel: copper > brass > aluminum > cast iron. ► The possible reactions for the degradation of copper and cast iron have been discussed. ► For metal exposed biodiesel, only TAN number crosses the limit while density and viscosity remain within the limit. ► Copper and copper based alloy (brass) increase TAN number comparatively more than other metals.

  3. Perspectives of microbial oils for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang; Du Wei; Liu Dehua [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering

    2008-10-15

    Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed. (orig.)

  4. Energy analysis and environmental impacts of microalgal biodiesel in China

    International Nuclear Information System (INIS)

    Liao Yanfen; Huang Zehao; Ma Xiaoqian

    2012-01-01

    The entire life cycle of biodiesel produced by microalgal biomasses was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impact loading of the system. The life cycle considers microalgae cultivation, harvesting, drying, oil extraction, anaerobic digestion, oil transportation, esterification, biodiesel transportation and biodiesel combustion. The investigation results show that the fossil energy requirement for the biodiesel production is 0.74 MJ/MJ biodiesel, indicating that 1 MJ of biodiesel requires an input of 0.74 MJ of fossil energy. Accordingly, biodiesel production is feasible as an energy producing process. The environmental impact loading of microalgal biodiesel is 3.69 PET 2010 (Person Equivalents, Targeted, in 2010) and the GWP is 0.16 kg CO 2-eq /MJ biodiesel. The effects of photochemical ozone formation were greatest among all calculated categorization impacts. The fossil energy requirement and GWP in this operation were found to be particularly sensitive to oil content, drying rate and esterification rate. Overall, the results presented herein indicate that the cultivation of microalgae has the potential to produce an environmentally sustainable feedstock for the production of biodiesel. - Highlights: ► Do energy analysis and environmental impacts of algal biodiesel in China. ► GWP and energy consumption are sensitive to lipid content and drying rate. ► Fossil energy consumption for algal biodiesel is 0.74 MJ/MJ. ► Microalgae are an environmentally sustainable feedstock for biodiesel production.

  5. Genes involved in protein metabolism of the probiotic lactic acid bacterium Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Do Carmo, A P; da Silva, D F; De Oliveira, M N V; Borges, A C; De Carvalho, A F; De Moraes, C A

    2011-09-01

    A basic requirement for the prediction of the potential use of lactic acid bacteria (LAB) in the dairy industry is the identification of specific genes involved in flavour-forming pathways. The probiotic Lactobacillus delbrueckii UFV H2b20 was submitted to a genetic characterisation and phylogenetic analysis of genes involved in protein catabolism. Eight genes belonging to this system were identified, which possess a closely phylogenetic relationship to NCFM strains representative, as it was demonstrated for oppC and oppBII, encoding oligopeptide transport system components. PepC, PepN, and PepX might be essential for growth of LAB, probiotic or not, since the correspondent genes are always present, including in L. delbrueckii UFV H2b20 genome. For pepX gene, a probable link between carbohydrate catabolism and PepX expression may exists, where it is regulated by PepR1/CcpA-like, a common feature between Lactobacillus strains and also in L. delbrueckii UFV H2b20. The well conserved evolutionary history of the ilvE gene is evidence that the pathways leading to branched-chain amino acid degradation, such as isoleucine and valine, are similar among L. delbrueckii subsp. bulgaricus strains and L. delbrueckii UFV H2b20. Thus, the involvement of succinate in flavour formation can be attributed to IlvE activity. The presence of aminopeptidase G in L. delbrueckii UFV H2b20 genome, which is absent in several strains, might improve the proteolytic activity and effectiveness. The nucleotide sequence encoding PepG revealed that it is a cysteine endopeptidase, belonging to Peptidase C1 superfamily; sequence analysis showed 99% identity with L. delbrueckii subsp. bulgaricus ATCC 11842 pepG, whereas protein sequence analysis revealed 100% similarity with PepG from the same organism. The present study proposes a schematic model to explain how the proteolytic system of the probiotic L. delbrueckii UFV H2b20 works, based on the components identified so far.

  6. Model Biaya Produksi Biodiesel Berbasis Minyak Sawit

    Directory of Open Access Journals (Sweden)

    Meilita Tryana Sembiring

    2015-06-01

    Full Text Available Biodiesel is a renewable energy source in Indonesia of which the use is regulated by the government in the form of mandatory policy of biodiesel and diesel fuel blending. The production of biodiesel in Indonesia is not developed (the need is 3.4 million kiloliters but the total national production is only 1,703 kiloliters. It is because the selling price (referring to Mean of Platts Singapore is always lower than the production cost. Biodiesel production is influenced by raw materials and process technology, so it needs to be conducted biodiesel production modeling as a basis in determining the supporting policies of biodiesel selling price. The purpose of this study is to identify the raw materials, process technology, and modeling the production cost structure of palm oil-based biodiesel. Identification of raw materials was conducted by literature study and field survey to biodiesel producers. Identification of process technology was conducted by field survey and mass balance calculation using Grand Inizio technology to get the number of yield of each raw material. Then, production cost study was based on the specifications of raw materials and process technology with heuristic approach. Types and specifications of palm oil widely used by Indonesian producers are Crude Palm Oil (CPO FFA<5%, Refined Palm Oil (RPO FFA<5%, Refined Oil FFA<1%, Palm Fatty Acid Distillated (PFAD FFA 90%. The technology process used was transesterification for FFA level <1% and esterification-transesterification for FFA level <5%. The resulting yield for 1000 kg of raw material is 1051.75 kg CPO, 975.94 kg RPO and PFAD, 973.81 kg Refined Oil with Grand Inizio technology approach. The production cost model represents the total production cost influenced by the costs of Inside Battery Limit, Outside Battery Limit, general cost and glycerol value-added.ABSTRAKBiodiesel adalah sumber energi terbarukan di Indonesia yang diatur penggunaannya oleh pemerintah dalam bentuk

  7. Algae biodiesel - a feasibility report

    Science.gov (United States)

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  8. Algae biodiesel - a feasibility report

    Directory of Open Access Journals (Sweden)

    Gao Yihe

    2012-04-01

    Full Text Available Abstract Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model.

  9. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  10. Assessment of Physicochemical Properties of Biodiesel from African ...

    African Journals Online (AJOL)

    according to standard method for oil and fuel analysis to evaluate its suitability as oil crop for biodiesel production in Nigeria. ... Keywords: African Grape, Lannea microcarpa, Seeds, Oil, Biodiesel .... characterization (Dalai, 2004). The oil was.

  11. Business Management for Biodiesel Producers: August 2002--January 2004

    Energy Technology Data Exchange (ETDEWEB)

    Van Gerpen, J.

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  12. Low-Cost feedstock conversion to biodiesel via ultrasound technology

    CSIR Research Space (South Africa)

    Babajide, O

    2010-10-01

    Full Text Available shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial...

  13. Production of Biodiesel from Parinari polyandra B. Seed Oil using ...

    African Journals Online (AJOL)

    Akorede

    catalysts for the transesterification of Parinari polyandra seeds oil and the results .... reduction in free fatty acids. .... Development and Characterization of Biodiesel from Shea Nut ... comparative review of biodiesel production from Jatropha.

  14. Improved oxidative stability of biodiesel fuels : antioxidant research and development.

    Science.gov (United States)

    2011-01-01

    Biodiesel is a domestic, renewable fuel that is gaining wide acceptance, especially in Europe. : When blended with conventional petroleum diesel, biodiesel reduces hydrocarbon, particulate : and carbon monoxide emissions, while having minimal to no e...

  15. Factors of enzymatic biodiesel production from sludge palm oil (SPO ...

    African Journals Online (AJOL)

    ika

    2013-07-31

    Jul 31, 2013 ... Biodiesel is a non-toxic, renewable and environmental friendly fuel. This study ... of biodiesel from sludge palm oil (SPO), a low-cost waste oil via enzymatic catalysis. ... Increasing energy crisis and environmental concerns by.

  16. In situ Transesterification of Microalgal Oil to Produce Algal Biodiesel

    Science.gov (United States)

    2012-06-01

    This research was to process whole microalgae cells for biodiesel production without first extracting lipids. The ultimate : goal is develop a novel process for algal biodiesel production directly from microalgae cells in a single step, i.e., in situ...

  17. Particulate emissions from biodiesel fuelled CI engines

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Gupta, Tarun; Shukla, Pravesh C.; Dhar, Atul

    2015-01-01

    Highlights: • Physical and chemical characterization of biodiesel particulates. • Toxicity of biodiesel particulate due to EC/OC, PAHs and BTEX. • Trace metals and unregulated emissions from biodiesel fuelled diesel engines. • Influence of aftertreatment devices and injection strategy on biodiesel particulates. • Characterization of biodiesel particulate size-number distribution. - Abstract: Compression ignition (CI) engines are the most popular prime-movers for transportation sector as well as for stationary applications. Petroleum reserves are rapidly and continuously depleting at an alarming pace and there is an urgent need to find alternative energy resources to control both, the global warming and the air pollution, which is primarily attributed to combustion of fossil fuels. In last couple of decades, biodiesel has emerged as the most important alternative fuel candidate to mineral diesel. Numerous experimental investigations have confirmed that biodiesel results in improved engine performance, lower emissions, particularly lower particulate mass emissions vis-à-vis mineral diesel and is therefore relatively more environment friendly fuel, being renewable in nature. Environmental and health effects of particulates are not simply dependent on the particulate mass emissions but these change depending upon varying physical and chemical characteristics of particulates. Particulate characteristics are dependent on largely unpredictable interactions between engine technology, after-treatment technology, engine operating conditions as well as fuel and lubricating oil properties. This review paper presents an exhaustive summary of literature on the effect of biodiesel and its blends on exhaust particulate’s physical characteristics (such as particulate mass, particle number-size distribution, particle surface area-size distribution, surface morphology) and chemical characteristics (such as elemental and organic carbon content, speciation of polyaromatic

  18. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets

    International Nuclear Information System (INIS)

    Huang, S X; Chen, Fei; Zang, Jiadong; Chien, C L; Kang, Jian; Shu, G J; Chou, F C

    2016-01-01

    The B20 chiral magnets with broken inversion symmetry and C 4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii–Moriya that gives rise to the helical and Skyrmion states. We report the unusual magnetoresistance (MR) of B20 chiral magnet Fe 0.85 Co 0.15 Si that directly reveals the broken C 4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin–orbit coupling. The unusual MR serves as a transport signature for the Skyrmion phase. (paper)

  19. Effects of FAME biodiesel and HVORD on emissions from an older-technology diesel engine.

    Science.gov (United States)

    Bugarski, A D; Hummer, J A; Vanderslice, S E

    2017-12-01

    The results of laboratory evaluations were used to compare the potential of two alternative, biomass-derived fuels as a control strategy to reduce the exposure of underground miners to aerosols and gases emitted by diesel-powered equipment. The effects of fatty acid methyl ester (FAME) biodiesel and hydrotreated vegetable oil renewable diesel (HVORD) on criteria aerosol and gaseous emissions from an older-technology, naturally aspirated, mechanically controlled engine equipped with a diesel oxidation catalytic converter were compared with those of widely used petroleum-derived, ultralow-sulfur diesels (ULSDs). The emissions were characterized for four selected steady-state conditions. When fueled with FAME biodiesel and HVORD, the engine emitted less aerosols by total particulate mass, total carbon mass, elemental carbon mass and total number than when it was fueled with ULSDs. Compared with ULSDs, FAME biodiesel and HVORD produced aerosols that were characterized by single modal distributions, smaller count median diameters, and lower total and peak concentrations. For the majority of test cases, FAME biodiesel and HVORD favorably affected nitric oxide (NO) and adversely affected nitrogen dioxide (NO 2 ) generation. Therefore, the use of these alternative fuels appears to be a viable tool for the underground mining industry to address the issues related to emissions from diesel engines, and to transition toward more universal solutions provided by advanced engines with integrated exhaust after treatment technologies.

  20. Thermodynamic diagnosis of diesel and biodiesel combustion processes during load-increase transient sequences

    International Nuclear Information System (INIS)

    Armas, Octavio; Ballesteros, Rosario; Cardenas, María Dolores

    2012-01-01

    Highlights: ► Thermodynamic diagnosis was applied to diesel combustion process during transient operation. ► Comparative analysis of thermodynamic results with different biodiesel fuels has been carried out. ► Biodiesel fuels studied have a slight effect on timing of the combustion process. ► Methodology used can be applied to improve engine control when using different alternative fuels. -- Abstract: The study of the diesel combustion process is a current topic by the need of thermal efficiency improving and the reduction of pollutant emissions. This circumstance has forced researchers and manufacturers to optimize this process not only in steady state operating conditions but also during transient operation. A zero dimensional thermodynamic diagnostic model, with three species (air, fuel evaporated and burned products), has been used to characterize the combustion process during load increase transient sequences at two different engine speed. In both sequences, three variables were studied: the valve position of the exhaust gas recirculation (EGR), the elapsed time of the transition process and the type of fuel. Three biodiesel fuels were tested pure: rapeseed, soybean and sunflower which were compared to a commercial diesel fuel used as reference. Results are presented comparing the in-cylinder average maximum pressure and temperature, and the phasing of the combustion process based on the calculation of heat release. This study has allowed the detection of the effect of the tested engine parameters and the biodiesel fuels used on the in-cylinder thermodynamic conditions during the load transient sequences studied.

  1. Predicting specific gravity and viscosity of biodiesel fuels

    OpenAIRE

    Tesfa, Belachew; Mishra, Rakesh; Gu, Fengshou; Ball, Andrew

    2009-01-01

    Biodiesel is a promising non-toxic and biodegradable alternative fuel in transport sector. Of all the biodiesel properties, specific gravity and viscosity are the most significant for the effects they have on the utilization of biodiesel fuels in unmodified engines. This paper presents models, which have been derived from experimental data, for predicting the specific gravity and dynamic viscosity of biodiesel at various temperatures and fractions. In addition a model has also been developed ...

  2. Survival of Lactobacillus delbrueckii UFV H2b20 in fermented milk under simulated gastric and intestinal conditions.

    Science.gov (United States)

    da Conceição, L L; Leandro, E S; Freitas, F S; de Oliveira, M N V; Ferreira-Machado, A B; Borges, A C; de Moraes, C A

    2013-09-01

    The survival of Lactobacillus delbrueckii UFV H2b20 was assessed in fermented milk, both during the storage period and after exposure to simulated gastric and intestinal juices, as well the detection of the gene fbpA involved in adherence to human gastrointestinal tract. L. delbrueckii UFV H2b20 remained stable and viable for 28 days under refrigerated storage conditions. After one day of storage, that strain exhibited a one-log population reduction following exposure in tandem to simulated gastric and intestinal juices. After 14 days of storage, a two-log reduction was observed following 90 min of exposure to the simulated gastric conditions. However, the strain did not survive following exposure to the simulated intestinal juice. The observed tolerance to storage conditions and resistance to the simulated gastric and intestinal conditions confirm the potential use of L. delbrueckii UFV H2b20 as a probiotic, which is further reinforced by the detection of fbpA in this strain.

  3. Market penetration of biodiesel and ethanol

    Science.gov (United States)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  4. Determinants of stakeholders' attitudes towards biodiesel.

    Science.gov (United States)

    Amin, Latifah; Hashim, Hasrizul; Mahadi, Zurina; Ibrahim, Maznah; Ismail, Khaidzir

    2017-01-01

    Concern about the inevitable depletion of global energy resources is rising and many countries are shifting their focus to renewable energy. Biodiesel is one promising energy source that has garnered much public attention in recent years. Many believe that this alternative source of energy will be able to sustain the need for increased energy security while at the same time being friendly to the environment. Public opinion, as well as proactive measures by key players in industry, may play a decisive role in steering the direction of biodiesel development throughout the world. Past studies have suggested that public acceptance of biofuels could be shaped by critical consideration of the risk-benefit perceptions of the product, in addition to the impact on the economy and environment. The purpose of this study was to identify the relevant factors influencing stakeholders' attitudes towards biodiesel derived from crops such as palm oil for vehicle use, as well as to analyse the interrelationships of these factors in an attitude model. A survey of 509 respondents, consisting of various stakeholder groups in the Klang Valley region of Malaysia, was undertaken. The results of the study have substantiated the premise that the most important direct predictor of attitude to biodiesel is the perceived benefits ( β  = 0.80, p  < 0.001). Attitude towards biodiesel also involves the interplay between other factors, such as engagement to biotechnology, trust of key players, attitude to technology, and perceived risk. Although perceived benefit has emerged as the main predictor of public support of biodiesel, the existence of other significant interactions among variables leads to the conclusion that public attitude towards biodiesel should be seen as a multi-faceted process and should be strongly considered prior to its commercialisation.

  5. Base catalyzed transesterification of sunflower oil biodiesel | Ahmad ...

    African Journals Online (AJOL)

    In this study, sunflower oil was investigated for biodiesel production. Sunflower is one of the leading oil seed crop, cultivated for the production of oil in the world. It has also been considered as an important crop for biodiesel production. Seeds for biodiesel production were procured from local farmers of Attock and ...

  6. Alternative Fuels Data Center: Alabama City Leads With Biodiesel and

    Science.gov (United States)

    Ethanol Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Twitter Bookmark Alternative Fuels

  7. Economic feasibility of biodiesel production from Macauba in Brazil

    International Nuclear Information System (INIS)

    Lopes, Daniela de Carvalho; Steidle Neto, Antonio José; Mendes, Adriano Aguiar; Pereira, Débora Tamires Vítor

    2013-01-01

    In this work the economic feasibility of biodiesel production in Brazil by using the Macauba oil as raw matter is studied. The software SIMB-E, in which a cash flow model applied to biodiesel production is implemented, was used during simulations. Economic indexes related to biodiesel production features, as well as the competitiveness between selling prices of biodiesel and petrodiesel were considered. It was found that all of the 8 simulated scenarios were potentially profitable, but only 2 of them presented competitive biodiesel selling prices, being considered as worthwhile projects. These were seed-oil plants with alkaline transesterification. Results also indicated that the success of biodiesel production still requires additional revenues beyond that derived from biodiesel itself, including income from the feedstock coproducts and glycerol. Macauba showed to be a potential crop to be used in biodiesel production. However, the domestication and improvement on processing of this species are indispensable to ensure its availability of long-term use. - Highlights: • Competitiveness between selling prices of biodiesel and petrodiesel was the main evaluated criterion. • The main criterion to suggest worthwhile projects was the biodiesel selling price. • Biodiesel plants with integrated oil mill and alkaline transesterification were profitable. • Macauba showed to be a potential crop to be used in biodiesel production. • The domestication and improvement on processing of Macauba are indispensable

  8. Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel

    Science.gov (United States)

    Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont to someone by E -mail Share Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont on Facebook Tweet about Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in

  9. Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel

    Science.gov (United States)

    Trucks Seattle Bakery Delivers With Biodiesel Trucks to someone by E-mail Share Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Facebook Tweet about Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Twitter Bookmark Alternative Fuels

  10. Systematic sustainable process design and analysis of biodiesel processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Ismail, Muhammad Imran; Babi, Deenesh Kavi

    2013-01-01

    Biodiesel is a promising fuel alternative compared to traditional diesel obtained from conventional sources such as fossil fuel. Many flowsheet alternatives exist for the production of biodiesel and therefore it is necessary to evaluate these alternatives using defined criteria and also from...... a biodiesel production case study....

  11. Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas

    Science.gov (United States)

    Tree Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative

  12. Performance evaluation of a direct injection engine using different blends of soybeans methyl biodiesel; Avaliacao do desempenho de um motor de injecao direta utlizando diferentes misturas de biodiesel metilico de soja

    Energy Technology Data Exchange (ETDEWEB)

    Nietiedt, G.H.; Schlosser, J.F.; Uhry, D.; Casali, A.L.; Ribas, R.L. [Universidade Federal de Santa Maria (UFSM), RS (Brazil)], email: gustavoheller@hotmail.com

    2011-07-01

    The diesel fuel is used widely in the country and the world. However, growing environmental awareness leads to a larger demand for renewable energy resources. The pioneering in the use of ethanol makes Brazil also consolidate itself in the use of the biodiesel in larger scales, in replacement or as a blend with mineral diesel. Thus, this work aimed to evaluate the use of soybeans methyl biodiesel blends and diesel in an ignition compression engine with fuel direct injection. The tests were performed on a dynamometer bench, using the blends B10, B20 and B100 in comparison to the commercial diesel (B5). The engine performance was analyzed by tractor power take off (PTO) for each fuel, and the best results obtained for the power and the specific fuel consumption, respectively, were: B5 (44,62 kW; 234,87 g/kW.h{sup -1}); B10 (44,73 kW; 233,78 g/kW.h{sup -1}); B20 (44,40 kW; 236,20 g/kW.h{sup -1}) e B100 (43,40 kW; 263,63 g/kW.h{sup -1}). The best performance happened on the use of B5 and B10 fuel, without significant differences between these blends. The B100 fuel showed significant differences compared to the other fuels. (author)

  13. Biodiesel of distilled hydrogenated fat and biodiesel of distilled residual oil: fuel consumption in agricultural tractor

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe Thomaz da; Lopes, Afonso; Silva, Rouverson Pereira da; Oliveira, Melina Cais Jejcic; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil); Dabdoub, Miguel Joaquim [Universidade de Sao Paulo (USP), Ribeirao Preto (Brazil)

    2008-07-01

    Great part of the world-wide oil production is used in fry process; however, after using, such product becomes an undesirable residue, and the usual methods of discarding of these residues, generally contaminate the environment, mainly the rivers. In function of this, using oil and residual fat for manufacturing biodiesel, besides preventing ambient contamination, turning up an undesirable residue in to fuel. The present work had as objective to evaluate the fuel consumption of a Valtra BM100 4x2 TDA tractor functioning with methylic biodiesel from distilled hydrogenated fat and methylic biodiesel from distilled residual oil, in seven blends into diesel. The work was conducted at the Department of Agricultural Engineering, at UNESP - Jaboticabal, in an entirely randomized block statistical design, factorial array of 2 x 7, with three repetitions. The factors combinations were two types of methylic distilled biodiesel (residual oil and hydrogenated fat) and seven blends (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 and B{sub 1}00). The results had evidenced that additioning 15% of biodiesel into diesel, the specific consumption was similar, and biodiesel of residual oil provided less consumption than biodiesel from hydrogenated fat. (author)

  14. BiodieselFAO: An Integrated Decision Support System for Investment Analysis in the Biodiesel Production Chain

    Directory of Open Access Journals (Sweden)

    Aziz Galvão da Silva Júnior

    2015-06-01

    Full Text Available In the short and medium terms, biofuels are the most viable alternative to reduce the environmental impact of fossil fuels. The recent controversy over the competition between biofuels and food production increases the complexity of investment decisions in the biodiesel production chain. In this context, decision support tools are highly relevant. The purpose of this article is to describe the BiodieselFAO using the Unified Modeling Language (UML. An integrated analysis considering both agricultural and industrial sectors was identified as a key requirement to the system. Therefore, farmers and industry are the main actors in the use case diagram. As the raw material represents around 70% of the industrial cost of biodiesel production, the price negotiation of raw material (oilseeds is the central use case. Configuration, agriculture, industry, results and scenarios are the modules, which encompass the functionalities derived from the UML diagrams. The Food and Agriculture Organization of the United Nations (FAO has made the BiodieselFAO available, free of charge, to around 180 professionals from 17 Latin American countries. Additionally, the developing team has supported the usage of the BiodieselFAO in several biodiesel investment analyses throughout Latin America. The system was also useful in the design and analysis of policy related to biodiesel industry in Brazil.

  15. ECOTOXICOLOGICAL EFFECTS OF BIODIESEL IN THE SOIL

    Directory of Open Access Journals (Sweden)

    Małgorzata Hawrot-Paw

    2015-11-01

    Full Text Available The paper analysed the toxic effect of the presence of biodiesel in the soil. The study involved tests with microorganisms that evaluated changes in their number and activity, and phytotoxicity tests with garden cress (Lepidium sativum and spring barley (Hordeum vulgare. Biodiesel produced in laboratory conditions and biofuel purchased at a petrol station were introduced to the soil. Two levels of contamination were used – 1% and 5% (per dry mass of the soil. Based on the results, it was discovered that biofuels both stimulated and reduced the number and activity of microorganisms. The changes observed depended on the type of biofuel and, most often, on its dose. Laboratory biodiesel exhibited more toxic effects, especially for actinobacteria and fungi. The tested plants showed diverse sensitivity to the presence of biodiesel. Given the determined value of the germination index, laboratory biodiesel was more toxic to spring barley and commercial biofuel to garden cress. In both cases, toxicity increased with an increase in the amount of biofuel.

  16. Compatibility of elastomers in palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Masjuki, H.H.; Siang, C.T.; Fazal, M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-10-15

    In recent time, environmental awareness and concern over the rapid exhaustion of fossil fuels have led to an increased popularity of biodiesel as an alternative fuel for automobiles. However, there are concerns over enhanced degradation of automotive materials in biodiesel. The present study aims to investigate the impact of palm biodiesel on the degradation behavior of elastomers such as nitrile rubber (NBR), polychloroprene, and fluoro-viton A. Static immersion tests in B0 (diesel), B10 (10% biodiesel in diesel), B100 (biodiesel) were carried out at room temperature (25 C) and at 50 C for 500 h. At the end of immersion test, degradation behavior was investigated by measuring mass, volume, hardness as well as tensile strength and elongation. The exposed elastomer surface was studied by scanning electron microscopy (SEM). Fourier Transform Infrared (FTIR) spectroscopy was carried out to identify the chemical and structural changes. Results showed that the extent of degradation was higher for both polychloroprene and NBR while fluoro-viton exhibited good resistance to degradation and was least attacked. (author)

  17. Production of biodiesel from Coelastrella sp. microalgae

    Science.gov (United States)

    Mansur, Dieni; Fitriady, Muhammad Arifuddin; Susilaningsih, Dwi; Simanungkalit, Sabar Pangihutan

    2017-11-01

    Microalgae have a wide area of usage and one of them it can be used for biodiesel production. In biodiesel production, lipids containing triglyceride or free fatty acid are converted into methyl ester through trans/esterification reactions. Lipids from microalgae can be extracted by acetone and dimethyl carbonate using homogenizer. Esterification of the lipids was investigated using various catalysts and source of methyl group. Activity of homogeneous catalyst such as HCl and H2SO4 and heterogeneous catalysts such as montmorillonit K-10 and ledgestone was investigated. Moreover, methanol and dimethyl carbonate as source of methyl group were also studied. Among of catalysts with methanol as source of methyl group, it was found that yield of crude biodiesel derived from Choelestrella Sp. microalgae was high over H2SO4 catalyst. On the other hand, over H2SO4 catalyst using dimethyl carbonate as source of methyl group, yield of crude biodiesel significant increase. However, FAME composition of crude biodiesel was high over HCl catalyst.

  18. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  19. Enzymatisk omestring til produktion af biodiesel

    DEFF Research Database (Denmark)

    Fjerbæk, Lene

    2007-01-01

      Biodiesel er i dag sammen med bioethanol et bud på, hvordan transportsektoren kan nedbringe sin netto CO2-emission til atmosfæren og lagrene af fossilt brændstof kan strækkes. På verdensplan forventes der en produktion af biodiesel på 7,9 mio. tons i 2007. Ved den industrielle fremstilling af...... biodiesel benyttes i dag kemiske katalysatorer såsom H2SO4, NaOH, MeONa eller KOH, der efterfølgende fjernes fra den producerede biodiesel med store mængder vand og derved produceres store mængder spildevand. Ved at benytte enzymer i processen kan man reducere mængden af spildevand, der skal renses. Enzymer...... benyttes ikke i de eksisterende processer, men det forventes, at udviklingen af processerne vil øge deres anvendelse i biodieselproduktion. I artiklen præsenteres fordele og ulemper ved anvendelse af enzymer til biodiesel produktion....

  20. Particulate Emissions and Biodiesel: A review

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2013-05-01

    Full Text Available Abstract The current mode of transport using fuel it cannot be characterized as harmless to human health or as sustainable. The whole process of extracting, processing and using of petroleum products can be seen as the raw material cycle in nature. This cycle also cause serious damage to the environment and human health. Many studies on air pollutant emissions with biodiesel have been carried out worldwide. Studies have shown that diesel-powered vehicles are the major contributors of PM emissions. PM particulates are especially important in regard to adverse health outcomes, such as increased cardiovascular, respiratory morbidity and mortality rates, due to their larger active surface and the higher likelihood of deposition in the alveolar region of the lungs. Hence, it is overwhelming argument that the use of biodiesel instead of diesel causes reduce of PM emissions. Of course, this reduction will become smaller with the reduction of biodiesel proportion in the blended fuel. The trend with which PM emissions of biodiesel will be reduced, is due to lower aromatic and sulfur compounds and higher cetane number for biodiesel, but the more important factor is the higher oxygen content.

  1. Biodiesel as a motor fuel price stabilization mechanism

    International Nuclear Information System (INIS)

    Serra, Teresa; Gil, José M.

    2012-01-01

    This article studies the capacity of biofuels to reduce motor fuel price fluctuations. For this purpose, we study dependence between crude oil and biodiesel blend prices in Spain. Copula models are used for this purpose. Results suggest that the practice of blending biodiesel with diesel can protect consumers against extreme crude oil price increases. - Highlights: ► We study the capacity of biofuels to reduce fuel price fluctuations. ► We focus on Spanish biodiesel market. ► Biodiesel and crude oil price dependence is studied using copula functions. ► Biodiesel can protect consumers against extreme crude oil price increases.

  2. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.

    Science.gov (United States)

    Wang, Jinghan; Yang, Haizhen; Wang, Feng

    2014-04-01

    Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

  3. Biodiesel Basics (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This Spanish-language fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  4. The economics of producing biodiesel from algae

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Brian J. [Ecotonics Environmental Scientists, 1801 Century Park East, Suite 2400, Los Angeles, CA 90067 (United States)

    2011-01-15

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  5. The economics of producing biodiesel from algae

    International Nuclear Information System (INIS)

    Gallagher, Brian J.

    2011-01-01

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  6. Valorization of crude glycerol from biodiesel production

    Directory of Open Access Journals (Sweden)

    Konstantinović Sandra S.

    2016-01-01

    Full Text Available The increased production of biodiesel as an alternative fuel involves the simultaneous growth in production of crude glycerol as its main by-product. Therefore, the feasibility and sustainability of biodiesel production requires the effective utilization of crude glycerol. This review describes various uses of crude glycerol as a potential green solvent for chemical reactions, a starting raw material for chemical and biochemical conversions into value-added chemicals, a substrate or co-substrate in microbial fermentations for synthesis of valuable chemicals and production of biogas and biohydrogen as well as a feedstuff for animal feed. A special attention is paid to various uses of crude glycerol in biodiesel production. [Projekat Ministarstva nauke Republike Srbije, br. III 45001

  7. Energy aspects of microalgal biodiesel production

    Directory of Open Access Journals (Sweden)

    Edith Martinez-Guerra

    2016-03-01

    Full Text Available Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.

  8. Improvement of biodiesel methanol blends

    Directory of Open Access Journals (Sweden)

    Y. Datta Bharadwaz

    2016-06-01

    Full Text Available The main objective of this work was to improve the performance of biodiesel–methanol blends in a VCR engine by using optimized engine parameters. For optimization of the engine, operational parameters such as compression ratio, fuel blend, and load are taken as factors, whereas performance parameters such as brake thermal efficiency (Bth and brake specific fuel consumption (Bsfc and emission parameters such as carbon monoxide (CO, unburnt hydrocarbons (HC, Nitric oxides (NOx and smoke are taken as responses. Experimentation is carried out as per the design of experiments of the response surface methodology. Optimization of engine operational parameters is carried out using Derringers Desirability approach. From the results obtained it is inferred that the VCR engine has maximum performance and minimum emissions at 18 compression ratio, 5% fuel blend and at 9.03 kg of load. At this optimized operating conditions of the engine the responses such as brake thermal efficiency, brake specific fuel consumption, carbon monoxide, unburnt hydrocarbons, nitric oxide, and smoke are found to be 31.95%, 0.37 kg/kW h, 0.036%, 5 ppm, 531.23 ppm and 15.35% respectively. It is finally observed from the mathematical models and experimental data that biodiesel methanol blends have maximum efficiency and minimum emissions at optimized engine parameters.

  9. Economic assessment of biodiesel production from wastewater sludge.

    Science.gov (United States)

    Chen, Jiaxin; Tyagi, Rajeshwar Dayal; Li, Ji; Zhang, Xiaolei; Drogui, Patrick; Sun, Feiyun

    2018-04-01

    Currently, there are mainly two pathways of the biodiesel production from wastewater sludge including 1) directly extracting the lipid in sludge and then converting the lipid to biodiesel through trans-esterification, and 2) employing sludge as medium to cultivate oleaginous microorganism to accumulate lipid and then transferring the lipid to biodiesel. So far, the study was still in research stage and its cost feasibility was not yet investigated. In this study, biodiesel production from wastewater sludge was designed and the cost was estimated with SuperPro Designer. With consideration of converting the lipid in raw sludge to biodiesel, the unit production cost was 0.67 US $/kg biodiesel (0.59 US $/L biodiesel). When the sludge was used as medium to grow oleaginous microorganism to accumulate lipid for producing biodiesel, the unit production cost was 1.08 US $/kg biodiesel (0.94 US $/L biodiesel). The study showed that sludge has great potential in biodiesel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Consumption and combustion efficiency in a generator engine using biodiesel; Consumo e eficiencia de combustao em um motor gerador utilizando biodisel

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Joao Paulo Barreto; Delmond, Josue G.; Couto, Rodney Ferreira; Neiva Filho, Neyber Cristiano; Reis, Elton F. dos [Universidade Estadual de Goias (UNUCET/UEG), Anapolis, GO (Brazil). Unidade Universitaria de Ciencias Exatas e Tecnologicas], Email: bcunha_2@hotmail.com

    2011-07-01

    Due to the increasing demand for biodiesel, associated to the aim of reduction in pollutants emissions, technical feasibility studies are increasingly needed. This study aimed to evaluate the use of biodiesel in different concentrations (B5, B10, B20, B50, B75 and B100) in a diesel generator set, with an engine with 3,73 KW four-stroke with direct injection. Assays were performed to quantify the hourly fuel consumption and emission of gases under different conditions of engine operation, through demands of electrical loads (500 W, 1.000W, 1.500W, 2,000 W and off) connected to the generator group. A completely randomized design was used with 5x6 factorial arrangement of treatment, six of biodiesel blends and five electric load demands, with three repetitions. The results demonstrated that the mixtures showed a significant difference in fuel consumption and combustion efficiency, and revealed that the use of biodiesel in higher concentrations in general provided a combustion process more efficient compared to conventional diesel. (author)

  11. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    Science.gov (United States)

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Electrical, thermal and magnetic behaviour of the metallic glass Fe80B20 in the crystallization process

    International Nuclear Information System (INIS)

    Isalgue, A.; Cusido, J.A.

    1986-01-01

    The thermal, electrical DC conductivity and magnetic properties have been studied in the crystallization process of the metallic glass Fe 80 B 20 (Metglass 2605) induced by heat treatment. The electrical and thermal conductivity, the coercive force and the remanence are strongly affected with the crystallization of the glass. Two steps can be dicerned from the magnetic measurements; the differences between the two steps are interpreted in the basis of the ''spherulite-type'', grown of Fe 3 B in the first crystallization step and the aparition of Fe 2 B in the second step. (author)

  13. Magnetic and Mössbauer studies of amorphous Fe 72- xY xHo 8B 20 alloys

    Science.gov (United States)

    Krishnan, R.; Driouch, L.; Lassri, H.; Dumond, Y.; Ajan, Antony; Shringi, S. N.; Prasad, Shiva

    1996-11-01

    We have carried out magnetic and Mössbauer studies of amorphous Fe 72- xY xHo 8B 20 alloys. The Fe moment decreases with the addition of Y and a magnetic compensation occurs at 4 K for x = 16. The temperature and field dependences of the magnetization have been interpreted using the mean field theory and Chudnovsky's model, respectively. These analyses yield some interesting parameters such as the random anisotropy, the exchange interactions JFe-Fe, JFe-Ho, etc. The Mössbauer studies show that the average hyperfine field decreases linearly with the addition of Y, in accordance with the decrease in the Fe moment.

  14. Field-induced non-collinear magnetic structures in amorphous Co80-xDy xB20 alloys

    International Nuclear Information System (INIS)

    Annouar, F.; Roky, K.; Lassri, H.; Elmoussaoui, A.; Driouch, L.; Ayadi, M.; Omri, M.; Krishnan, R.

    2005-01-01

    Amorphous Co 80-x Dy x B 20 alloys have been prepared by melt spinning technique and their magnetic properties have been studied. The mean field theory has been used to explain the temperature dependence of the magnetization. High-field magnetization studies performed at 4.2 K in magnetic fields up to 38 T have revealed, for samples with stoichiometry close to that of a compensated ferrimagnet, a magnetic behavior that is characteristic of a non-collinear magnetic structure of the Dy and Co sublattices. From the non-collinear regime the exchange interactions between the Co and Dy magnetic sublattices and the magnetic anisotropy constants have been evaluated

  15. Algal biodiesel economy and competition among bio-fuels.

    Science.gov (United States)

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Microbial degradation of palm (Elaeis guineensis biodiesel

    Directory of Open Access Journals (Sweden)

    Giselle Lutz

    2006-03-01

    Full Text Available The kinetics of biodegradation of palm-derived fatty methyl and ethyl esters (Elaeis guineensis biodiesel by a wild-type aerobic bacterial population was measured at 20 °C, as the rate of oxygen uptake by a manometric technique. The methyl and ethyl biodiesels were obtained by potassium-hydroxide catalysed transesterification of palm oil, respectively. The bacterial flora included the genera Bacillus, Proteus, Pseudomonas, Citrobacter and Enterobacter. The rate of oxygen uptake for palm biodiesel is similar to the quantity observed in the biodegradation of 1.0 mM solutions of simple substrates such as carbohydrates or amino acids.Palm methyl or ethyl biodiesel is subjected to facile aerobic biodegradation by wild-type bacteria commonly present in natural open environments. This result should lessen any environmental concern for its use as alternative fuel, solvent or lubricant. Rev. Biol. Trop. 54(1: 59-63.Epub 2006 Mar 31.La cinética de la biodegradación de los ésteres metílicos y etílicos derivados de palma (biodiesel por una población silvestre de bacterias aeróbicas fue medida a 20 °C, como medición manométrica del consumo de oxígeno. Los ésteres metílicos y etílicos se obtuvieron por transesterificación del aceite de palma con metanol y etanol,respectivamente. La flora bacteriana incluyó a los géneros Bacillus, Proteus, Pseudomonas, Citrobacter y Enterobacter. Las velocidades de consumo de oxígeno para las muestras de biodiesel fueron similares a lo observado en la biodegradación de disoluciones 1.0 mM de sustratos sencillos solubles en agua, tales como carbohidratos, aminoácidos y albúmina de huevo.

  17. History and policy of biodiesel in Brazil

    International Nuclear Information System (INIS)

    Pousa, Gabriella P.A.G.; Santos, Andre L.F.; Suarez, Paulo A.Z.

    2007-01-01

    Historically, during petroleum shortage, vegetable oils and their derivatives have been proposed as alternatives to petroleum diesel fuel. Since 1930, different approaches have been proposed by Brazilian's universities and research institutes, including the use of neat vegetable oils (pure or in blends) or their derivatives, such as hydrocarbons obtained by thermal-catalytic cracking and fatty acids' methyl or ethyl esters (nowadays known as 'biodiesel') produced by alcoholysis. Recently, the external dependence on imported diesel fuel and the present petroleum crisis have increased the discussion in Brazil in the sense of starting to use alternatives to diesel fuel, biodiesel being the main alternative for a large petroleum diesel substitution program

  18. Cetane Number of Biodiesel from Karaya Oil

    KAUST Repository

    Wasfi, Bayan

    2017-04-01

    Biodiesel is a renewable fuel alternative to petroleum Diesel, biodiesel has similar characteristic but with lesser exhaust emission. In this study, transesterification of Karaya oil is examined experimentally using a batch reactor at 100-140°C and 5 bar in subcritical methanol conditions, residence time from 10 to 20 minutes, using a mass ratio 6 methanol-to-vegetable oil. Methanol is used for alcoholysis and sodium hydroxide as a catalyst. Experiments varied the temperature and pressure, observing the effect on the yield and reaction time. In addition, biodiesel from corn oil was created and compared to biodiesel from karaya oil. Kinetic model proposed. The model estimates the concentration of triglycerides, diglycerides, monoglycerides and methyl esters during the reaction. The experiments are carried out at temperatures of 100°C and above. The conversion rate and composition of methyl esters produced from vegetable oils are determined by Gas Chromatography Analysis. It was found that the higher the temperature, the higher reaction rate. Highest yield is 97% at T=140°C achieved in 13 minutes, whereas at T=100°C yield is 68% in the same time interval. Ignition Quality Test (IQT) was utilized for determination of the ignition delay time (IDT) inside a combustion chamber. From the IDT cetane number CN inferred. In case of corn oil biodiesel, the IDT = 3.5 mS, leading to a CN = 58. Whereas karaya oil biodiesel showed IDT = 2.4 mS, leading to a CN = 97. The produced methyl esters were also characterized by measurements of viscosity (υ), density (ρ), flash point (FP) and heat of combustion (HC). The following properties observed: For corn biodiesel, υ = 8.8 mPa-s, ρ = 0.863 g/cm3, FP = 168.8 °C, and HC = 38 MJ/kg. For karaya biodiesel, υ = 10 mPa-s, ρ = 0.877 g/cm3, FP = 158.2 °C, and HC = 39 MJ/kg.

  19. Isothermal calorimetry of enzymatic biodiesel reaction

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Westh, Peter; Christensen, Knud Villy

    2010-01-01

      Isothermal calorimetry ITC has been used to investigate enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by the immobilized lipase Novozym 435 at 40°C. The ITC-experiments clearly demonstrate the possibilities of investigating complex...... and composition change in the system, the heat of reaction at 40°C for the two systems has been determined to -9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and - 9.3 ± 0.7 kJ/mole when rapeseed oil and ethanol is used....

  20. Alternative Fuel Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    vehicle evaluations. Biodiesel Regional Transit District Effect of B20 and Low Aromatic Diesel on Transit Buses Operated on Biodiesel Blends. Kenneth Proc, Robb Barnitt, Robert Hayes, Matthew Ratcliff, and Robert McCormick. (2006) Operating Experience and Teardown Analysis for Engines Operated on Biodiesel

  1. Cottonseed oil for biodiesel production; Oleo de algodao para a producao de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna L.M.T.; Park, Kil J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)], E-mail: annalets@feagri.unicamp.br; Ferrari, Roseli A; Miguel, Ana M.R.O. [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil)], Emails: roseliferrari@ital.sp.gov.br, anarauen@ital.sp.gov.br, kil@feagri.unicamp.br

    2009-07-01

    Crude cottonseed oil is an alternative for biodiesel production, mostly in Mato Grosso State, where its production is the biggest of Brazil. Even being an acid oil, esterification reaction, followed by transesterification, could make possible the biodiesel production. In this study, crude cottonseed oil obtained from expelled process was reacted to evaluate molar ration and catalyst concentration effects in biodiesel yield. Molar ratio varied from 3 to 15 moles of ethanol to 1 mol of oil, and catalyst, from 1 to 5% by oil mass. Statistic analysis showed that none of studied variables was significant, for the values range. Biodiesel yield had a maximum of 88%, for molar ratio of 4.7 and 4.42% of catalyst concentration. A combination of oil with high free fatty acid content and ethanol as alcohol, affected the separation between esters and glycerol. (author)

  2. Phase equilibrium data and thermodynamic modeling of the system (CO{sub 2} + biodiesel + methanol) at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Leandro F.; Segalen da Silva, Diogo Italo [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Rosa da Silva, Fabiano; Ramos, Luiz P. [Department of Chemistry, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Ndiaye, Papa M. [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil); Corazza, Marcos L., E-mail: corazza@ufpr.br [Department of Chemical Engineering, Federal University of Parana, CEP 81531-990, Curitiba, PR (Brazil)

    2012-01-15

    Highlights: > We measured phase behavior for the system involving {l_brace}CO{sub 2} + biodiesel + methanol{r_brace}. > The saturation pressures were obtained using a variable-volume view cell. > The experimental data were modeled using PR-vdW2 and PR-WS equations of state. - Abstract: The main objective of this work was to investigate the high pressure phase behavior of the binary systems {l_brace}CO{sub 2}(1) + methanol(2){r_brace} and {l_brace}CO{sub 2}(1) + soybean methyl esters (biodiesel)(2){r_brace} and the ternary system {l_brace}CO{sub 2}(1) + biodiesel(2) + methanol(3){r_brace} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {l_brace}CO{sub 2}(1) + methanol(2){r_brace}; (0.4201 to 0.9931) for the binary system {l_brace}CO{sub 2}(1) + biodiesel(2){r_brace}; (0.4864 to 0.9767) for the ternary system {l_brace}CO{sub 2}(1) + biodiesel(2) + methanol(3){r_brace} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {l_brace}CO{sub 2} + biodiesel + methanol{r_brace} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR-WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR-WS presented the best performance.

  3. FP-(LAPW + lo study of mechanical stability and electronic behavior of CoGe in B20 structure

    Directory of Open Access Journals (Sweden)

    Timaoui M. A.

    2017-10-01

    Full Text Available The aim of this work is a theoretical study of structural, elastic, electronic and thermal properties of CoGe compound in B20 structure using All-electron self-consistent Full Potential Augmented Plane Waves plus local orbital “FP(LAPW + lo” within the framework of Density Functional Theory DFT. GGA-PBEsol is the exchange-correlation potential selected in this work. This choice is motivated by the success of this functional in predicting structural and mechanical properties of solids. The values obtained by the study of structural properties are in very good agreement with those found previously. In this work, the elastic constants have been predicted for the first time and the obtained values confirm the mechanical stability of the CoGe compound in its B20 structure. The electronic part of this work shows that CoGe has metallic behavior with a mixed bonding between cobalt and germanium of covalent-metallic type. The effect of temperature and hydrostatic pressure on the lattice parameter - a0, heat capacity at constant volume - CV, thermal expansion coefficient - α and entropy - S of the CoGe have been studied using Debye model.

  4. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2006-01-01

    Vegetable oil (m)ethyl esters, commonly referred to as 'biodiesel,' are prominent candidates as alternative Diesel fuels. Biodiesel is technically competitive with or offers technical advantages compared to conventional petroleum Diesel fuel. The vegetable oils, as alternative engine fuels, are all extremely viscous with viscosities ranging from 10 to 20 times greater than that of petroleum Diesel fuel. The purpose of the transesterification process is to lower the viscosity of the oil. Transesterifications of vegetable oils in supercritical methanol are performed without using any catalyst. The most important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. The cost of biodiesel, however, is the main obstacle to commercialization of the product. With cooking oils used as raw material, the viability of a continuous transesterification process and recovery of high quality glycerol as a biodiesel by product are primary options to be considered to lower the cost of biodiesel. Supercritical methanol has a high potential for both transesterification of triglycerides and methyl esterification of free fatty acids to methyl esters for a Diesel fuel substitute. In the supercritical methanol transesterification method, the yield of conversion increases to 95% in 10 min. The viscosity values of vegetable oils are between 27.2 and 53.6 mm 2 /s, whereas those of vegetable oil methyl esters are between 3.59 and 4.63 mm 2 /s. The flash point values of vegetable oil methyl esters are much lower than those of vegetable oils. An increase in density from 860 to 885 kg/m 3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm 2 /s. Biodiesel is an environmentally friendly fuel that can be used in any Diesel engine without modification

  5. Thermodegradation of biodiesel: thermoanalytical and rheological characterization; Degradacao termica de biodiesel: caracterizacao termoanalitica e reologica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Everson L.; Carvalho, Laura H.; Araujo, Gilmar T.; Gadelha, Tatiana S. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    Brazil is a country of extensive agricultural land and great oil consumption and these factors favor biodiesel production in this country. In order for diesel/biodiesel mixtures to be effectively employed in diesel engines, a rigid quality control of these mixtures is needed. Biodiesel and mixtures must have their quality monitored with respect to oxidative resistance, thermal stability, fluidity and volatility, properties which can be modified by the adverse transport and stock conditions prior to consumption. Oxidation is the main degradation mechanism of products under transport and stock conditions, which can lead to significant economical losses. In this work sought the thermal degradation of neat biodiesel, synthesized in our laboratories was monitored. Thermal aging was conducted at 210 deg C for up to 1000 h. Virgin and thermally degraded samples were characterized by rheological measurements (in different shear conditions); FTIR; density and by color changes. We concluded that the soy biodiesel was successfully synthesized and that thermal exposure caused thermal-oxidative degradation of the biodiesel sample, significantly changing its properties as a function of thermal exposure times. (author)

  6. Emission factors and congener-specific characterization of PCDD/Fs, PCBs, PBDD/Fs and PBDEs from an off-road diesel engine using waste cooking oil-based biodiesel blends.

    Science.gov (United States)

    Chen, Shui-Jen; Tsai, Jen-Hsiung; Chang-Chien, Guo-Ping; Huang, Kuo-Lin; Wang, Lin-Chi; Lin, Wen-Yinn; Lin, Chih-Chung; Yeh, C Kuei-Jyum

    2017-10-05

    Few studies have been performed up to now on the emission factors and congener profiles of persistent organic pollutants (POPs) emitted from off-road diesel engines. This investigation elucidates the emission factors and congener profiles of various POPs, namely polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyl (PCBs), polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs), in the exhausts of a diesel generator fueled with different waste cooking oil-based biodiesel (WCO-based biodiesel) blends. The PCDD/Fs contributed 87.2% of total dioxin-like toxicity (PCDD/Fs+PCBs+PBDD/Fs) in the exhaust, while the PCBs and PBDD/Fs only contributed 8.2% and 4.6%, respectively. Compared with petroleum diesel, B20 (20vol% WCO-based biodiesel+80vol% diesel) reduced total toxicity by 46.5% for PCDD/Fs, 47.1% for PCBs, and 24.5% for PBDD/Fs, while B40 (40vol% WCO-based biodiesel+60vol% diesel) reduced it by 89.5% for PCDD/Fs, 57.1% for PCBs, and 63.2% for PBDD/Fs in POP emission factors. The use of WCO-based biodiesel not only solves the problem of waste oil disposal, but also lowers POP emissions from diesel generators. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. KINETIKA TRANSESTERIFIKASI BIODIESEL JARAK PAGAR

    Directory of Open Access Journals (Sweden)

    Buchori Luqman

    2012-07-01

    Full Text Available Biodiesel were produced by trans-etherification of castor oil with alcohol in the presence of NaOH catalyst. Thereaction mechanism and model of castor oil trans-etherification isA + 3B C + 3 DA, B, C, and D were castor oil, alcohol, glycerol, and ester. The reaction rate equation was r=-dCA/dt =k1(CA(CB3–k2(CC(CD3. In this study was used two measurement method of free fat acid as the rest content ofcastor oil with SNI 01-3555-1998 and AOAC (Association of Analytical Chemist. It found that SNI 01-3555-1998 method was the easier and the acurate measurement. The classification of alcohol used was methanol andethanol to compare the action both of them. Methanol produces the higher conversion than ethanol. The reactionin a batch reactor with temperature 40, 50, and 60°C in atmospheric pressure as the operation condition tolooking for kinetics parameter of trans-etherification. Coefficient reaction rate and activation energy were lookinto kinetics study. Reaction rate was a mathematics model as a function of concentration and time which solvedby Runge-Kutta, multivariable optimization and SSE (some square error method using Matlab. The activationenergy (Ea and impact factor (A obtained by linier regression method. The result of study obtained the kineticsparameter of trans-etherification with methanol k1=1.9313x1031exp (-41.940/RT average error 0.0010 andk2=2.7678x1025exp(-37.362/ RT average error 0.0003. While kinetics parameter of trans-etherification withethanol obtained k1=1.168x1019exp(-24.588/ RT average error 0.0306 and k2=4.9966x106exp(-10.328/RTaverage error 0.1589. It means, more reactive alcohol then bigger the value of kinetics parameter.

  8. Biodiesel waste products as soil amendments : evaluation of microbial, biological, and plant toxicity.

    Science.gov (United States)

    2011-10-22

    During biodiesel production, about 200 lbs of glycerol, commonly called glycerin, is produced for every 1 ton of biodiesel. As the : biodiesel industry grows, so does the need to dispose of this waste product. While potential uses for glycerin exist,...

  9. Mackerel biodiesel production from the wastewater containing fish oil

    International Nuclear Information System (INIS)

    Wu, Y.P.; Huang, H.M.; Lin, Y.F.; Huang, W.D.; Huang, Y.J.

    2014-01-01

    Marine fish such as mackerel are important for coastal fisheries in Taiwan. Nearly 60,000 tons of mackerel are produced in Suao, I-lan, Taiwan every year. In this study, oil from the discarded parts of mackerel fish contained in wastewater stream were used as the raw material to produce biodiesel through transesterification reaction. The major fuel properties of MB (mackerel biodiesel), including the iodine value, dynamic viscosity, flash point, and heat value, were determined and compared with sunflower seed oil methyl ester (SFM), JCB (Jatropha curcas biodiesel), and premium diesel (D). MB had a higher iodine value, dynamic viscosity, density, and flash point, but a lower heat value, than did D. MB was also used as fuel in a regular diesel engine to verify its emission characteristics. The MB fuel used for exhaust emission test included pure MB (MB100) and a 20% MB blend with premium diesel (MB20). The exhaust emission of MB was also compared with the exhaust emissions of D and JCB. The results showed that MB20 provided a significant reduction in NO, NO x , and SO 2 emissions under varied engine loads, and required no engine modification. - Highlights: • Biodiesel was produced from wastewater containing mackerel fish oil. • Mackerel biodiesel is compared with Jatropha biodiesel and sunflower seed biodiesel. • MBE (mackerel biodiesel) was found to contain higher amount of unsaturated fatty acids. • Mackerel biodiesel, diesel, and Jatropha biodiesel emissions are compared

  10. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan

    2014-01-01

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  11. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan, E-mail: lin7108@ntou.edu.tw [Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan (China)

    2014-02-24

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  12. Critical review of jatropha biodiesel promotion policies in India

    International Nuclear Information System (INIS)

    Kumar, Sunil; Chaube, Alok; Jain, Shashi Kumar

    2012-01-01

    Jatropha, a non-edible oil seed yielding plant has been identified by the Government of India to produce biodiesel under National Biodiesel Mission. Failure of phase-I of National Biodiesel Mission and likely failure of phase-II requires critical analysis of policy frameworks related to its long term sustainability. Indian biofuel promotion policies like Biodiesel Purchase Policy and National Biofuel Policy have failed to yield any visible results. No tangible ground work is visible as of now to ensure success of various government plans and policies related to adoption of jatropha biodiesel. It is clearly evident that some serious bottlenecks are delaying the adoption of jatropha biodiesel. Present work identifies important policy bottlenecks like availability of land, non-remunerative pricing policy and state fear relating to loss of revenue in the case of zero duty regimes. This paper attempts to explore and critically analyze present policies and possible options taking into account the recent Indian experiences for successful adoption of jatropha biodiesel. - Highlights: ► Wrong waste land estimates for jatropha has failed Biodiesel Mission. ► No redressal of technological problems with biodiesel usage. ► Present estimated costing of jatropha biodiesel is Rs. 46.45 per liter. ► Promotion of any biofuel needs central government assistance to the states. ► Targets under National Biofuel Policy are also unlikely to be met.

  13. Biodiesel production over copper vanadium phosphate

    International Nuclear Information System (INIS)

    Chen, Lei; Yin, Ping; Liu, Xiguang; Yang, Lixia; Yu, Zhongxi; Guo, Xin; Xin, Xinquan

    2011-01-01

    In the present study, copper vanadium phosphate (CuVOP) with three-dimensional network structure was synthesized by hydrothermal method, and was characterized by Infrared spectrum (IR), elemental analysis (EA), EDXRF (energy dispersive X ray fluorescence) etc. Moreover, soybean oil was used as feedstock for producing biodiesel, and biodiesel was produced by CuVOP-catalyzed transesterification process. Response surface methodology was employed to statistically evaluate and optimize the conditions for the maximum conversion to biodiesel, and the effects of amount of catalyst, ratio of methanol to oil, reaction time and reaction temperature were investigated by the 2 4 full-factorial central composite design. The maximum conversion is obtained at amount of catalyst of 1.5%, methanol/oil molar ratio of 6.75, reaction temperature of 65 o C and reaction time of 5 h. Copper vanadium phosphate CuVOP resulted very active in the transesterification reaction for biodiesel production. -- Research highlights: → Copper vanadium phosphate CuVOP with three-dimensional network structure was prepared successfully. Moreover, for the transesterification reaction of soybean oil with methanol under atmospheric pressure, CuVOP had higher catalytic activity and the effects of production conditions such as amount of catalysts etc. were analyzed by response surface methodology.

  14. Evaluation of Physicochemical Properties of Biodiesel Produced ...

    African Journals Online (AJOL)

    The non-edible vegetable oils of Jatropha curcas, neem, castor, rubber and edible oils of soyabean and cotton were investigated for their use as biodiesel feedstock. The analysis of different oil properties, fuel properties of non-edible and edible vegetable oils were investigated in detail. A two-step and transesterification ...

  15. Jatropha bio-diesel production and use

    Energy Technology Data Exchange (ETDEWEB)

    Achten, W.M.J.; Aerts, R.; Muys, B. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 2411, BE-3001 Leuven (Belgium); Verchot, L. [World Agroforestry Centre (ICRAF) Head Quarters, United Nations Avenue, P.O. Box 30677, Nairobi (Kenya); Franken, Y.J. [FACT Foundation, Horsten 1, 5612 AX Eindhoven (Netherlands); Mathijs, E. [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Willem de Croylaan 42 Box 2424, BE-3001 Leuven (Belgium); Singh, V.P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India)

    2008-12-15

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  16. Biodiesel intercity passenger rail revenue service test.

    Science.gov (United States)

    2013-10-01

    Amtrak, with the support of the Federal Railroad Administration, operated a P-32 passenger locomotive in revenue service for a : period of 12 months, on a blend of 20 percent pure biodiesel and 80 percent #2 ultra-low sulfur diesel (ULSD) fuel. The G...

  17. Jatropha bio-diesel production and use

    International Nuclear Information System (INIS)

    Achten, W.M.J.; Aerts, R.; Muys, B.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.

    2008-01-01

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  18. Determination of optimum growth conditions and biodiesel ...

    African Journals Online (AJOL)

    Lotfy H.

    as one of the most promising sources for biodiesel production. In this study, a higher ... years, cultivation of microalgae has received renewed attention on account of ... fuel is highly bio-degradable, and algae consume carbon dioxide as they ...

  19. Biodiesel Production Technology: August 2002--January 2004

    Energy Technology Data Exchange (ETDEWEB)

    Van Gerpen, J.; Shanks,B.; Pruszko,R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is gaining attention in the United States after reaching a considerable level of success in Europe. The purpose of this book is to describe and explain the process and issues involved in producing this fuel.

  20. Determination of optimum growth conditions and biodiesel ...

    African Journals Online (AJOL)

    Lotfy H.

    Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, P. Bag 13301,. Windhoek ... global warming that is associated with burning fossil fuels ... quantities of lipids per dry weight biomass, algae biofuel contains no ... They can form dense .... Transesterification reaction to produce biodiesel.

  1. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xylose assimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 ...

  2. Characterization of residual oils for biodiesel production

    Directory of Open Access Journals (Sweden)

    Edmilson Antonio Canesin

    2014-01-01

    Conclusions: The obtained results suggesting that it is possible to take advantage of these residues for biodiesel production as the obtained products were approved according to the rules established by the National Association of Petroleum (ANP; the bovine samples were the exception regarding moisture and acidity.

  3. Sustainable biodiesel production by catalytic reactive distillation

    NARCIS (Netherlands)

    Kiss, A.A.; Rothenberg, G.

    2008-01-01

    This chapter outlines the properties of biodiesel as renewable fuel, as well as the problems associated with its conventional production processes. The synthesis via fatty acid esterification using solid acid catalysts is investigated. The major challenge is finding a suitable catalyst that is

  4. Uncertainties in the Bidirectional Biodiesel Supply Chain

    NARCIS (Netherlands)

    Bot, Pieter; van Donk, Dirk Pieter; Pennink, Bartjan; Simatupang, Togar M.

    2015-01-01

    For remote areas, small-scale local biodiesel production is particularly attractive if producers and consumers are the same. Such supply chains are labeled as bidirectional. However, little is known on how raw material supply, transportation, logistics, production and operations uncertainties impact

  5. Novel polymeric products derived from biodiesel

    Science.gov (United States)

    Biodiesel (produced by reacting a triglyceride with an alcohol) is increasingly being used as diesel fuel and heating oil, especially in Europe. Because of its availability and favorable environmental profile, it may be useful as a renewable feedstock for new polymers. In this work we introduced t...

  6. Room temperature synthesis of biodiesel using sulfonated ...

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  7. THEORETICAL INVESTIGATION OF THE BIODIESEL ENGINE CYCLE

    Directory of Open Access Journals (Sweden)

    А. Lyevtyerov

    2016-06-01

    Full Text Available The results of studies of the influence of properties of biodiesel fuel compositions to change indicator parameters of diesel compared with those obtained when using oil fuel. The effect of these changes on the fuel efficiency and environmental performance of a diesel engine when switching on the power binary fuel.

  8. Hydrotreatment of Oils and Fats for Biodiesel

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Riisager, Anders; Fehrmann, Rasmus

    The use of renewable biofuels in the transport sector represents an important step towards a sustainable society. Biodiesel is currently produced by the transesterification of fats and oils with methanol, but another viable method could be reaction of the feedstock with H2 to produce long...

  9. The Current Status of Biodiesel Production Technology: A Review

    Directory of Open Access Journals (Sweden)

    Rizal Alamsyah

    2007-12-01

    Full Text Available Biodiesel is addressed to the name of fuel which consist of mono-alkyl ester that made from renewable and biodegradable resources, such as oils from plants (vegetable oils, waste or used cooking oil, and animal fats. Such oils or fats are chemically reacted with alcohols or methanol In producing chernical compounds called fatty acid methyl ester (FAME and these reactions are called transesterification and esterification. Glycerol, used in the pharmaceutical and cosmetics industry is produced from biodiesel production as a by-product. Researches on biodiesel as an alternative petroleum diesel have been done for more than 20 years. Transesterification reaction can be acid-catalyzed, alkali-catatyzed, or enzyme-catalyzed. Commercially biodiesel is processed by transesterification with alkali catalyst. This process, however, requires refining of products and recovery of catalysts, Such biodiesel production accelerates researches on biodiesel to obtain simpler methods, better quality. and minimum production cost. Besides the catalytic production for biodiesel, there is a method for biodiesel production namely non-catalytic production. Non-catalytic transesterification method was developed since catalytic tranestertfification still has two main problems assoclated With long reaction time and complicated purification. The first problem occurres because of the two phase nature of vegetable oil/methanol mixture, and the last problem is due to purification of catalyst and glycerol. The application of catalytic tranestertfication method leads to condition of high biodiesel production cost and high energy consumption. This paper provides information of biodiesel production progress namely catalytic tranestertfification (acid, alkali, and enzymatic tranesterfification, and non-catalytic tranesterification (at sub-critical­-supercritical temperature under pressurized conditions. It was found that every method of biodiesel production still has advantages and

  10. Thermal stability of biodiesel in supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hiroaki Imahara; Eiji Minami; Shusaku Hari; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science

    2008-01-15

    Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270{sup o}C/17 MPa and 380{sup o}C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270{sup o}C/17 MPa, but at 350{sup o}C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270{sup o}C/17 MPa and 350{sup o}C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300{sup o}C, preferably 270{sup o}C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production. 9 refs., 3 figs., 4 tabs.

  11. BIODIESELS AS A FUNCTION OF ENVIRONMENTAL PROTECTION

    Directory of Open Access Journals (Sweden)

    Lovro Babić

    2013-04-01

    Full Text Available As of July 1st 2013. the Republic of Croatia will be a member of the European Union, which will primarily bring necessary harmonisation of ecological standards and requirements. Biodiesel, as a renewable source of energy, can be produced from algae, vegetable oil, and animal fats, and thus it is biodegradable. Biodiesel in Croatia is mainly produced from oilseed rape which, as an agricultural plant, has an increasing share in the past three years and records positive trends. This paper analyses the trend of production in the Republic of Croatia, and compares it with the production and consumption of fossil fuels. On the grounds of Croatia’s favourable agriculture-related climatic characteristics, in particular in the region of Slavonija and Baranja, more intense exploitation of farm land under the cultures intended for biodiesel production can be organised aiming at bumper yield and production. Croatia has already harmonised its standards of production of biodiesel, and by 2020 the consumption of biodiesel is bound to reach 20%. The data used in this paper are obtained from the sources available by Croatian Institute of Statistics, Market Information System in Agriculture, as well as Eurostat, and the rest used here are translated from the sources in the English language. The reviewed are the surfaces planted with oilseed rape in the period between 2007. and 2011., an average yield, and overall production. On the grounds of available information, the calculations of the quantity of bio fuel to be consumed in Croatia by 2020. and the percentage of the land surfaces planted with oilseed rape have been made.

  12. Change of electrical resistivity and Young's modulus during crystallization of amorphous Fe40Ni40B20

    International Nuclear Information System (INIS)

    Stel, J. van der; Veldhuizen, H.B. van; Koebrugge, G.W.; Sietsma, J.; Beukel, A. van den

    1989-01-01

    The kinetics of crystallization of amorphous Fe 40 Ni 40 B 20 is studied by measuring isothermal changes of the electrical resistivity and Young's modulus in the temperature range 600 to 700 K. The results satisfy very well the Johnson-Mehl-Avrami equation for phase transformations with a constant activation energy of 317 kJ/mol and a constant Avrami exponent n ∼ 2. This result is interpreted as two-dimensional growth of pre-existing nuclei which become as thick as the specimen in an early stage of crystallization. The relative change in electrical resistivity upon crystallization strongly depends on the measuring temperature T m , varying from 47% at T m = 77 K to 5% at T m = 600 K. It extrapolates to zero at T m ∼ 700 K. (author)

  13. Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend

    International Nuclear Information System (INIS)

    Wakil, M.A.; Kalam, M.A.; Masjuki, H.H.; Atabani, A.E.; Rizwanul Fattah, I.M.

    2015-01-01

    Highlights: • Short identification of selected biodiesel feedstock. • Review of physicochemical properties for blended biodiesel. • Mathematical model for predicting properties of various biodiesel blends. - Abstract: The growing demand for green world serves as one of the most significant challenges of modernization. Requirements like largest usage of energy for modern society as well as demand for friendly milieu create a deep concern in field of research. Biofuels are placed at the peak of the research arena for their underlying benefits as mentioned by multiple researches. Out of a number of vegetable oils, only a few are used commercially for biodiesel production. Due to various limitations of edible oil, non-edible oils are becoming a profitable choice. Till today, very little percentage of biodiesel is used successfully in engine. The research is still continuing for improving the biodiesel usage level. Recently, it is found that the blended biodiesel from more than one feedstock provides better performance in engine. This paper reviews the physicochemical properties of different biodiesel blends obtained from various feedstocks with a view to properly understand the fuel quality. Moreover, a short description of each feedstock is given along with graphical presentation of important properties for various blend percentages from B0 to B100. Finally, mathematical model is formed for predicting various properties of biodiesel blend with the help of different research data by using polynomial curve fitting method. The results obtained from a number of literature based on this work shows that the heating value of biodiesel is about 11% lower than diesel except coconut (14.5% lower) whereas kinematic viscosity is in the range of 4–5.4 mm 2 /s. Flash point of all biodiesels are more than 150 °C, except neem and coconut. Cold flow properties of calophyllum, palm, jatropha, moringa are inferior to others. This would help to determine important properties of

  14. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine

    International Nuclear Information System (INIS)

    Oener, Cengiz; Altun, Sehmus

    2009-01-01

    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NO x ), sulphur dioxide (SO 2 ) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NO x emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification. (author)

  15. Oxidation stability of biodiesel fuel as prepared by supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Jiayu Xin; Hiroaki Imahara; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science, Graduate School of Energy Science

    2008-08-15

    A non-catalytic supercritical methanol method is an attractive process to convert various oils/fats efficiently into biodiesel. To evaluate oxidation stability of biodiesel, biodiesel produced by alkali-catalyzed method was exposed to supercritical methanol at several temperatures for 30 min. As a result, it was found that the tocopherol in biodiesel is not stable at a temperature higher than 300{sup o}C. After the supercritical methanol treatment, hydroperoxides were greatly reduced for biodiesel with initially high in peroxide value, while the tocopherol slightly decreased in its content. As a result, the biodiesel prepared by the supercritical methanol method was enhanced for oxidation stability when compared with that prepared by alkali-catalyzed method from waste oil. Therefore, supercritical methanol method is useful especially for oils/fats having higher peroxide values. 32 refs., 8 figs., 3 tabs.

  16. Study of oxidation stability of Jatropha curcas biodiesel/ diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Biofuel Research Laboratory, Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Uttarakhand- 247667 (India)

    2011-07-01

    Biodiesel production is undergoing rapid technological reforms in industries and academia. This has become more obvious and relevant since the recent increase in the petroleum prices and the growing awareness relating to the environmental consequences of the fuel overdependency. However, the possibilities of production of biodiesel from edible oil resources in India is almost impossible, as primary need is to first meet the demand of edible oil that is already imported therefore it is essential to explore non-edible seed oils, like Jatropha curcas and Pongamia as biodiesel raw materials. The oxidation stability of biodiesel from Jatropha curcas oil is very poor. Therefore the aim of the present paper is to study the oxidation stability of Jatropha curcas biodiesel/ diesel blend. Also the effectiveness of various antioxidants is checked with respect to various blends of biodiesel with diesel.

  17. Environmental impacts the of production and use of biodiesel.

    Science.gov (United States)

    Živković, Snežana; Veljković, Milan

    2018-01-01

    Biodiesel as renewable, environmental friendly, less toxic, and biodegradable is an attractive alternative to fossil fuels and is produced mainly from vegetable oils and animal fats. It is expected, globally, that the use of renewable biofuels, in general, will increase rapidly in the near future. The growing biodiesel production and usage have encouraged assessment of its impact on the environment. The present paper reviews various aspects of biodiesel production using commercial processing technology and biodiesel use through evaluation and analysis of the studies concerning environmental impacts of biodiesel. As a general conclusion, it can be said that biodiesel has the potential to offer a series of perceived benefits such as political, economical, and agricultural, as well as environmental (due to its biodegradability, less toxicity, renewability) and health (greenhouse gas-saving, less harmful exhaust emissions).

  18. Properties of various plants and animals feedstocks for biodiesel production.

    Science.gov (United States)

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Biodiesel production with special emphasis on lipase-catalyzed transesterification.

    Science.gov (United States)

    Bisen, Prakash S; Sanodiya, Bhagwan S; Thakur, Gulab S; Baghel, Rakesh K; Prasad, G B K S

    2010-08-01

    The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.

  20. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  1. A First Law Thermodynamic Analysis of Biodiesel Production from Soybean

    Science.gov (United States)

    Patzek, Tad W.

    2009-01-01

    A proper First Law energy balance of the soybean biodiesel cycle shows that the overall efficiency of biodiesel production is 0.18, i.e., only 1 in 5 parts of the solar energy sequestered as soya beans, plus the fossil energy inputs, becomes biodiesel. Soybean meal is produced with an overall energetic efficiency of 0.38, but it is not a fossil…

  2. Optimization of emergy sustainability index for biodiesel supply network design

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Yang, Le

    2015-01-01

    sustainable design. In the proposed model, the emergy sustainability index of the whole biodiesel supply networks in a life cycle perspective is employed as the measure of the sustainability, and multiple feedstocks, multiple transport modes, multiple regions for biodiesel production and multiple distribution...... centers can be considered. After describing the process and mathematic framework of the model, an illustrative case was studied and demonstrated that the proposed methodology is feasible for finding the most sustainable design and planning of biodiesel supply chains....

  3. Partial characterization of ribosomal operons of Lactobacillus delbrueckii UFV H2b20 Caracterização parcial de operons ribossomais de Lactobacillus delbrueckii UFV H2b20

    Directory of Open Access Journals (Sweden)

    Juliana Teixeira de Magalhães

    2005-06-01

    Full Text Available Ribosomal operons are great tools for microbe community characterization and for microorganisms relationship study, particularly in the case of the acid lactic bacteria. The ribosomal operon of the probiotic strain Lactobacillus delbrueckii UFV H2b20 was partially characterized. A genomic library of this strain was constructed and the clones with partial ribosomal operon were sub-cloned using the shot-gun method for subsequent sequencing with the forward primer. The sequence analysis revealed that the 3' end of the rDNA 16S was following by the short spacer region 1 (16S-23S and that the 3' end of the rDNA 23S was following by the short spacer region 2 (23S-5S, which preceded the rDNA 5S. In the flanking region of the rDNA 5S gene of this operon rrn, a region encoding six tRNAs was detected.Operons ribossomais têm sido instrumentos importantes na caracterização de comunidades microbianas e no estudo de relacionamentos entre microrganismos, principalmente em bactérias do ácido láctico. Operons ribossomais da linhagem probiótica, Lactobacillus delbrueckii UFV H2b20, foram parcialmente caracterizados. Um banco genômico da linhagem foi construído e os clones, contendo parte do operon ribossomal, foram subclonados pelo método de "shot gun", para em seguida serem seqüenciados com primer "forward". As seqüências indicaram a presença da extremidade 3' do rDNA 16S seguida da região espaçadora curta 1 (16S-23S e a presença da extremidade 3' do rDNA 23S seguido da região espaçadora 2 (23S-5S, que por sua vez precedia o rDNA 5S. Adjacente ao gene rDNA 5S deste operon rrn uma região codificadora de 6 tRNAs foi detectada.

  4. Studying nearest neighbor correlations by atom probe tomography (APT) in metallic glasses as exemplified for Fe40Ni40B20 glassy ribbons

    KAUST Repository

    Shariq, Ahmed; Al-Kassab, Talaat; Kirchheim, Reiner

    2012-01-01

    resolution of the analytical technique. However, fitting Gaussian distributions to the distribution of atomic distances yields average distances with statistical uncertainties of 2 to 3 hundredth of an Angstrom. Fe 40Ni40B20 metallic glass ribbons

  5. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  6. Biodiesel fuel costs and environmental issues when powering railway locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Abdul; Ziemer, Norbert; Tatara, Robert; Moraga, Reinaldo; Mirman, Clifford; Vohra, Promod

    2010-09-15

    Issues for adopting biodiesel fuel, instead of petrodiesel, to power railroad locomotives are engine performance and emissions, fuel infrastructure, and fuel cost. These are evaluated for B2 through B100 blends. Biodiesel's solvent action on fuel systems is addressed. With biodiesel, hydrocarbon, carbon monoxide, and particulate emissions are unchanged or reduced. Nitrogen oxides are elevated but it is believed that engine alterations can minimize these emissions. A Transportation Model, using data from a major railway, has demonstrated that refueling depots can be fully supplied with biodiesel at a pricing premium of 1% to 26%, depending on blend and geographical location.

  7. Biodiesel production from waste frying oils and its quality control.

    Science.gov (United States)

    Sabudak, T; Yildiz, M

    2010-05-01

    The use of biodiesel as fuel from alternative sources has increased considerably over recent years, affording numerous environmental benefits. Biodiesel an alternative fuel for diesel engines is produced from renewable sources such as vegetable oils or animal fats. However, the high costs implicated in marketing biodiesel constitute a major obstacle. To this regard therefore, the use of waste frying oils (WFO) should produce a marked reduction in the cost of biodiesel due to the ready availability of WFO at a relatively low price. In the present study waste frying oils collected from several McDonald's restaurants in Istanbul, were used to produce biodiesel. Biodiesel from WFO was prepared by means of three different transesterification processes: a one-step base-catalyzed, a two-step base-catalyzed and a two-step acid-catalyzed transesterification followed by base transesterification. No detailed previous studies providing information for a two-step acid-catalyzed transesterification followed by a base (CH(3)ONa) transesterification are present in literature. Each reaction was allowed to take place with and without tetrahydrofuran added as a co-solvent. Following production, three different procedures; washing with distilled water, dry wash with magnesol and using ion-exchange resin were applied to purify biodiesel and the best outcome determined. The biodiesel obtained to verify compliance with the European Standard 14214 (EN 14214), which also corresponds to Turkish Biodiesel Standards. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    International Nuclear Information System (INIS)

    Sarin, Amit; Singh, Meetu; Sharma, Neerja; Singh, N. P.

    2017-01-01

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  9. Assessment of the biodiesel distribution infrastructure in Canada

    International Nuclear Information System (INIS)

    Lagace, C.

    2007-08-01

    Canada's biodiesel industry is in its infancy, and must work to achieve the demand needed to ensure its development. This assessment of Canada's biodiesel distribution infrastructure was conducted to recommend the most efficient infrastructure pathway for effective biodiesel distribution. The study focused on the establishment of a link between biodiesel supplies and end-users. The current Canadian biodiesel industry was discussed, and future market potentials were outlined. The Canadian distillate product distribution infrastructure was discussed. Technical considerations and compliance issues were reviewed. The following 2 scenarios were used to estimate adaptations and costs for the Canadian market: (1) the use of primary terminals to ensure quality control of biodiesel, and (2) storage in secondary terminals where biodiesel blends are prepared before being transported to retail outlets. The study showed that relevant laboratory training programs are needed as well as proficiency testing programs in order to ensure adequate quality control of biodiesel. Standards for biodiesel distribution are needed, as well as specifications for the heating oil market. It was concluded that this document may prove useful in developing government policy objectives and identifying further research needs. 21 refs., 12 tabs., 13 figs

  10. Environmental sustainability assessment of palm biodiesel production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2012-01-01

    The study assesses the environmental sustainability of palm biodiesel production systems in Thailand by focusing on their energy efficiency and environmental impact potentials. The Net Energy Balance (NEB) and Renewability indicate energy gain for palm biodiesel and its co-products as compared to fossil energy inputs. In addition, life cycle assessment also reveals lower values of environmental impact potentials of biodiesel as compared to conventional diesel. For example, palm biodiesel can provide greenhouse gas (GHG) reduction of around 46–73% as compared to diesel. Nitrogen-fertilizer production and application in the plantation and the air emissions from the ponds treating palm oil mill effluent (POME) are found to be the major environmental aspects. However, the energy and environmental performances depend on various factors such as the management efficiency of empty fruit bunches (EFB) and POME and the possible land-use change in the future. Recommendations are made for improving environmental performance of palm biodiesel and for securing the long-term availability of crude palm oil supply with a view towards sustainable palm biodiesel production. -- Highlights: ► Environmental sustainability of palm biodiesel production in Thailand is assessed. ► Palm biodiesel can provide GHG reduction of around 46–73% as compared to diesel. ► Net energy ratio and renewability of palm biodiesel both range between 2 and 4. ► Efficient use of by-products in the value chain enhances environmental benefits.

  11. Biodiesel production from sediments of a eutrophic reservoir

    International Nuclear Information System (INIS)

    Kuchkina, A.Yu.; Gladyshev, M.I.; Sushchik, N.N.; Kravchuk, E.S.; Kalachova, G.S.

    2011-01-01

    Sediments from eutrophic reservoir Bugach (Siberia, Russia) were tested for possibility to produce biodiesel. We supposed that the sediments could be a promising biodiesel producer. The major reason of high price of biodiesel fuel is cost of a raw material. The use of dredging sediments for biodiesel production reduces production costs, because the dredging sediments are by-products which originated during lake restoration actions, and are free of cost raw materials. Lipid content in sediments was 0.24% of dry weight. To assess the potential of from sediments as a substitute of diesel fuel, the properties of the biodiesel such as cetane number, iodine number and heat of combustion were calculated. All of this parameters complied with limits established by EN 14214 and EN 14213 related to biodiesel quality. -- Highlights: → Dredging sediments were considered as a new feedstock for biodiesel production. → Lipid and fatty acid content in the sediments were determined. → Main properties of the biodiesel were calculated basing on fatty acid composition. → The properties well complied with limits established in biodiesel standards.

  12. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit, E-mail: amit.sarin@yahoo.com [Department of Physical Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Singh, Meetu [Department of Applied Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Sharma, Neerja [PG Department of Physics and Electronics, DAV College, Amritsar (India); Singh, N. P. [Department of Planning and External Development, I.K. Gujral Punjab Technical University, Kapurthala (India)

    2017-10-26

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  13. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  14. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bambang Tri Nugroho

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.23.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.23.23-31

  15. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31.  doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115

  16. Study about the particularities of biodiesel in Brazil; Estudo sobre as particularidades do biodiesel no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcia Franca Ribeiro Fernandes dos [Instituto Brasileiro de Geografia e Estatistica (IBGE), Brasilia, DF (Brazil); Peixoto, Jose Antonio Assuncao; Souza, Cristina Gomes de [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The environmental concern associated with the impending shortage of oil, which is pressing to raise the price of the barrel, has forced governments and society to seek alternatives that will replace the use of fossil fuels. The biodiesel, in particular, has been set up as an alternative energy by it of fuel come from renewable sources, and less polluting the environment. In this context, the objective of this article is to present some features of the production of biodiesel in Brazil, identifying the characteristics of the main oil used, as well as regional motivations for the use of biodiesel in Brazil. The methodology adopted in this study was exploratory in nature based on a literature search and documentary from a survey of information available in literature. The main results, the article points out that: unlike alcohol, which is in sugar cane their ideal raw material, biodiesel is still in a stage of intensive research and development in order to identify the most appropriate its oil production - with emphasis on soybean and castor bean, and the motivations for regional use of biodiesel are different for the Brazilian regions. The study aims to contribute to the discussion on the subject, emphasizing that technological research should be directed taking into consideration the conditions and needs of Brazil. (author)

  17. The U.S. biodiesel use mandate and biodiesel feedstock markets

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Wyatt; Meyer, Seth; Green, Travis [University of Missouri, 101 Park deVille Drive, Suite E; Columbia, MO 65203 (United States)

    2010-06-15

    Studies of individual biodiesel feedstocks or broad approaches that lump animal fats and vegetable oils into a single aggregate straddle the true case of imperfect but by no means inconsequential substitution among fats and oils by different users. United States biofuel policy includes a biodiesel use mandate that rises to almost 4 hm{sup 3} by 2012, calling for biomass feedstock analysis that recognizes the complex interdependence among potential feedstocks and competition for food and industrial uses. We model biodiesel input markets to investigate the implications of the mandate for quantities and prices with and without a provision disallowing biodiesel made from soybean oil. Findings suggest a hierarchy of price effects that tends to be largest for cheaper fats and oils typically used for industrial and feed purposes and smallest for fats and oils traditionally used exclusively for direct consumption, with the cross-commodity effects and other key economic parameters playing a critical part in determining the scale in each case. Although sensitive to the exact parameters used, our results argue against overly simplifying feedstock markets by holding prices constant when considering the economics of a particular feedstock or if estimating the broader impacts of rising biodiesel production on competing uses. (author)

  18. Biodiesel: uma energia alternativa e verde

    Directory of Open Access Journals (Sweden)

    Milena Carvalho Teixeira

    2010-12-01

    Full Text Available O presente texto busca expor a importância do uso de energias alternativas. O biodiesel é apontado como uma das soluções para o esgotamento do petróleo e seus derivados e para o problema do aquecimento global, e o Brasil, por apresentar biodiversidade e forte economia agrícola, permitiu que o Governo Federal criasse o Programa Nacional de Produção e Uso de Biodiesel (PNPB com chances de sucesso. O programa explora várias fontes energéticas, de culturas temporárias e perenes ao uso do óleo residual, além de trazer benefícios ao desenvolvimento do país, gerando emprego e renda, e, principalmente, redução nas emissões de gás carbônico.

  19. Optimization of biodiesel production from castor oil.

    Science.gov (United States)

    da Silva, Nivea de Lima; Maciel, Maria Regina Wolf; Batistella, César Benedito; Maciel Filho, Rubens

    2006-01-01

    The transesterification of castor oil with ethanol in the presence of sodium ethoxide as catalyst is an exceptional option for the Brazilian biodiesel production, because the castor nut is quite available in the country. Chemically, its oil contains about 90% of ricinoleic acid that gives to the oil some beneficial characteristics such as its alcohol solubility at 30 degrees C. The transesterification variables studied in this work were reaction temperature, catalyst concentration and alcohol oil molar ratio. Through a star configuration experimental design with central points, this study shows that it is possible to achieve the same conversion of esters carrying out the transesterification reaction with a smaller alcohol quantity, and a new methodology was developed to obtain high purity biodiesel.

  20. Evaluating the economics of biodiesel in Africa

    International Nuclear Information System (INIS)

    Mulugetta, Yacob

    2009-01-01

    Road transport in Sub-Saharan Africa is expected to rise in the coming years. Paradoxically, this expansion is occurring at a time when oil prices have reached new heights. Unstable oil prices do indeed increase the vulnerability of importers. However, it also presents them with a unique opportunity to explore promising technical options to help reduce their over-reliance on imported petroleum fuels. This paper takes a closer look at the potential for biodiesel, with an emphasis on fuels produced from oil palm, castor oil and jatropha in Ghana, Kenya and Tanzania, respectively. The paper provides an economic appraisal of biodiesels from these feedstocks, and sets the context for further discussions on biofuels in Africa. (author)

  1. Environmental Sustainability Analysis of Biodiesel Production

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Michael Zwicky; Birkved, Morten

    Due to their generally positive carbon dioxide balance, biofuels are seen as one of the energy carriers in a more sustainable future transportation energy system, but how good is their environmental sustainability, and where lie the main potentials for improvement of their sustainability? Questions...... like these require a life cycle perspective on the biofuel - from the cradle (production of the agricultural feedstock) to the grave (use as fuel). An environmental life cycle assessment is performed on biodiesel to compare different production schemes including chemical and enzymatic esterification...... with the use of methanol or ethanol. The life cycle assessment includes all processes needed for the production, distribution and use of the biodiesel (the product system), and it includes all relevant environmental impacts from the product system, ranging from global impacts like climate change and loss...

  2. Biodiesel Reactor Design with Glycerol Separation to Increase Biodiesel Production Yield

    Directory of Open Access Journals (Sweden)

    Budy Rahmat

    2013-09-01

    Full Text Available The study consisted of reactor design used for transesterification process, effect of glycerol separation ontransesterification reaction, determination of biodiesel quality, and mass balance analysis. The reactor was designed byintegrating circulated pump/stirrer, static mixer, and sprayer that intensify the reaction in the outer tank reactor. The objective was to reduce the use of methanol in excess and to shorten the processing time. The results showed that thereactor that applied the glycerol separation was able to compensate for the decreased use of the reactant methanol from 6:1 to 5:1 molar ratio, and changed the mass balance in the product, including: (i the increase of biodiesel productionfrom 42.37% to 49.34%, and (ii the reduction of methanol in excess from 42.37% to 32.89%. The results suggested that the efficiency of biodiesel production could be increased with the glycerol separation engineering.

  3. Alcohol biodiesel from frying oil residues; Biodiesel etilico a partir de oleo de fritura residual

    Energy Technology Data Exchange (ETDEWEB)

    Festa, Brunna Simoes; Marques, Luiz Guilherme da Costa [Universidade Federal do Rio de Janeiro (IVIG/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Inst. Virtual Internacional de Mudancas Globais], E-mail: lguilherme@ivig.coppe.ufrj.br

    2010-07-01

    This paper describes the reaction optimization and production of biodiesel through the use of frying residual oil made available by the restaurant placed at the PETROBRAS Research Center (CENPES-RJ), using ethanol, so that to permit the production of sustainable bio diesel. The environmental gains obtained by the utilization of residual oil, avoiding that this oil be released in the nature, and the economic gains coming from the generation and utilization of ethanol allowing the production of biodiesel be an viable alternative. The obtained results during laboratory tests shown that biodiesel produced from the transesterification in alkaline medium, of the frying residual oil collected presented a reaction yield of approximately 80% considering in mass.

  4. Castor oil biodiesel: an economic evaluation; Biodiesel de mamona: uma avaliacao economica

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Monica de Moura; Alves, Jaenes Miranda; Almeida Neto, Jose Adolfo de; Almeida, Cezar Menezes; Sousa, Geovania Silva de; Cruz, Rosenira Serpa da; Monteiro, Renata; Lopes, Beatriz Sampaio; Robra, Sabine [Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Grupo Bioenergia e Meio Ambiente]. E-mails: mpires@uesc.br; jaenes@uesc.br; jalmeida@uesc.br; roserpa@uesc.br

    2004-07-01

    The production cost of castor oil biodiesel by methyl way and its economic viability, using as reference the production cost data of castor oil and the implantation of the pilot plant at UESC - state university of Santa Cruz, Bahia State, Brazil was determined. From this information, it was seen that the estimated price of castor oil biodiesel is close to the diesel price in the Itabuna market, Bahia state, Brazil. The indicators show economic viability of the mini-power plant installation. Such information are preliminary estimative for the market and can be modified as function of changes in the main factors used to have the production costs, as well as the sectorial policies that drives the activity as much in levels of raw material production as in biodiesel.

  5. Biodiesel production from Jatropha curcas oil

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2010-12-15

    In view of the fast depletion of fossil fuel, the search for alternative fuels has become inevitable, looking at huge demand of diesel for transportation sector, captive power generation and agricultural sector, the biodiesel is being viewed a substitute of diesel. The vegetable oils, fats, grease are the source of feedstocks for the production of biodiesel. Significant work has been reported on the kinetics of transesterification of edible vegetable oils but little work is reported on non-edible oils. Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstocks for biodiesel production in India and limited work is reported on the kinetics of transesterification of high FFA containing oil. The present study reports a review of kinetics of biodiesel production. The paper also reveals the results of kinetics study of two-step acid-base catalyzed transesterification process carried out at pre-determined optimum temperature of 65 and 50 C for esterification and transesterification process, respectively, under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H{sub 2}SO{sub 4} and NaOH and 400 rpm of stirring. The yield of methyl ester (ME) has been used to study the effect of different parameters. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. This is the first study of its kind dealing with simplified kinetics of two-step acid-base catalyzed transesterification process carried at optimum temperature of both the steps which took about 6 h for complete conversion of TG to ME. (author)

  6. Fremtidens Biodiesel: Kom fedtaffald i tanken!

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Taarning, Esben; Christensen, Claus Hviid

    2009-01-01

    Mange tror måske, at det er svært for menigmand at lave biobrændstof. Det er faktisk forkert, fordi biodiesel nemt kan laves af kemikalier, der er ret almindelige i laboratorier og hos købmanden og materialisten. Det kræver blot en såkaldt om-estring af planteolie eller fedt med methanol, samt...

  7. Determinants of stakeholders? attitudes towards biodiesel

    OpenAIRE

    Amin, Latifah; Hashim, Hasrizul; Mahadi, Zurina; Ibrahim, Maznah; Ismail, Khaidzir

    2017-01-01

    Background Concern about the inevitable depletion of global energy resources is rising and many countries are shifting their focus to renewable energy. Biodiesel is one promising energy source that has garnered much public attention in recent years. Many believe that this alternative source of energy will be able to sustain the need for increased energy security while at the same time being friendly to the environment. Public opinion, as well as proactive measures by key players in industry, ...

  8. Property modification of jatropha oil biodiesel by blending with other biodiesels or adding antioxidants

    International Nuclear Information System (INIS)

    Chen, Yi-Hung; Chen, Jhih-Hong; Luo, Yu-Min; Shang, Neng-Chou; Chang, Cheng-Hsin; Chang, Ching-Yuan; Chiang, Pen-Chi; Shie, Je-Lueng

    2011-01-01

    The feasibility of biodiesel production from jatropha (Jatropha curcas) oil was investigated with respect to the biodiesel blending properties and its oxidation stability with antioxidants. The JME (jatropha oil methyl esters) had the cetane number of 54, cold filter plugging point of -2 o C, density of 881 kg/m 3 at 15 o C, ester content of 99.4 wt.%, iodine value of 96.55 g I 2 /100 g, kinematic viscosity of 4.33 mm 2 /s at 40 o C, and oxidation stability of 3.86 h. Furthermore, the JME was blended with palm oil biodiesel and soybean oil biodiesel at various weight ratios and evaluated for fuel properties as compared to the relevant specifications. In addition, several antioxidants at concentrations between 100 and 1000 ppm were studied for their potential to improve the oxidation stability of the JME. The relationship between the IP (induction period) in the measurement of the oxidation stability associated with the antioxidant consumption in the JME was described by first-order reaction rate kinetics. Moreover, the ln IP (natural logarithm of the IP) at various concentrations of pyrogallol showed a linear relationship with the test temperature. The oxidation stability at ambient temperatures was predicted on the basis of an extrapolation of the temperature-dependent relationship. -- Highlights: → Jatropha oil methyl esters had satisfactory biodiesel properties except for the oxidation stability. → The oxidation stability and cold filter plugging point of the jatropha-based biodiesel blends cannot meet the EN 14214 requirements simultaneously. → The addition of pyrogallol was recommended for the stabilization of the jatropha oil methyl esters with a concentration of 100-250 ppm.

  9. Light vehicle regulated and unregulated emissions from different biodiesels

    International Nuclear Information System (INIS)

    Karavalakis, George; Stournas, Stamoulis; Bakeas, Evangelos

    2009-01-01

    In this study, the regulated and unregulated emissions profile and fuel consumption of an automotive diesel and biodiesel blends, prepared from two different biodiesels, were investigated. The biodiesels were a rapeseed methyl ester (RME) and a palm-based methyl ester (PME). The tests were performed on a chassis dynamometer with constant volume sampling (CVS) over the New European Driving Cycle (NEDC) and the non-legislated Athens Driving Cycle (ADC), using a Euro 2 compliant passenger vehicle. The objectives were to evaluate the impact of biodiesel chemical structure on the emissions, as well as the influence of the applied driving cycle on the formation of exhaust emissions and fuel consumption. The results showed that NOx emissions were influenced by certain biodiesel properties, such as those of cetane number and iodine number. NOx emissions followed a decreasing trend over both cycles, where the most beneficial reduction was obtained with the application of the more saturated biodiesel. PM emissions were decreased with the palm-based biodiesel blends over both cycles, with the exception of the 20% blend which was higher compared to diesel fuel. PME blends led to increases in PM emissions over the ADC. The majority of the biodiesel blends showed a tendency for lower CO and HC emissions. The differences in CO2 emissions were not statistically significant. Fuel consumption presented an increase with both biodiesels. Total PAH and nitro-PAH emission levels were decreased with the use of biodiesel independently of the source material. Lower molecular weight PAHs were predominant in both gaseous and particulate phases. Both biodiesels had a negative impact on certain carbonyl emissions. Formaldehyde and acetaldehyde were the dominant aldehydes emitted from both fuels.

  10. Multi-jump magnetic switching in ion-beam sputtered amorphous Co20Fe60B20 thin films

    International Nuclear Information System (INIS)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-01-01

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co 20 Fe 60 B 20 (5–75 nm) thin films grown on Si/amorphous SiO 2 are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices

  11. Influence of (TiC+TiB) on the microstructure and tensile properties of Ti-B20 matrix alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rahoma, H.K.S. [National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Chen, Y.Y., E-mail: yychen@hit.edu.cn [National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, X.P.; Xiao, S.L. [National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-05

    Highlights: • After forging, the microstructure was significantly refined and uniform. • The presence of carbide and boride also led to uniform and finer precipitation of α during aging as compared to the matrix alloy. • The size of secondary α phase increased with the increase of aging temperature. This trend leads to the decrease of strength and the increase of ductility. - Abstract: A hybrid of (TiB+TiC) reinforced beta titanium matrix (Ti-B20) were produced by non-consumable arc-melting technology and hot-forging. Microstructures of the composites were observed by optical microscopy (OM), transmission electron microscope (TEM) and scanning electron microscopy (SEM). The results show that both the TiB whiskers and TiC particles tend to segregate at β boundaries. The β grain size and secondary α lath width are refined by reinforcements and aging treatment. Evolution of tensile properties shows that enhancement in yield strength and ultimate tensile strength with the addition of reinforcements, as well as the remarkable increase in the ductility can be attributed to aging treatment at 600 °C and 650 °C. The size of secondary α phase increased with the increase of aging temperature. This trend leads to the decrease of strength and the increase of ductility to get good balance of properties. The fracture mechanism of the composite can be attributed to the cracking of the reinforcements.

  12. Mitigating crystallization of saturated FAMEs in biodiesel 6: The binary phase behavior of 1, 2-dioleoyl-3-stearoyl sn-glycerol – Methyl stearate

    International Nuclear Information System (INIS)

    Mohanan, Athira; Bouzidi, Laziz; Narine, Suresh S.

    2016-01-01

    The derivatives of vegetable oils with specific chemical structures, such as TAG (triacylglycerols) having mixed straight and kinked moieties, have proven very effective in lowering the crystallization of biodiesel. SOO (1, 2-dioleoyl-3-stearoyl sn-glycerol)/MeS (methyl stearate) is part of a series of studies of TAG/FAME (fatty acid methyl ester) binary model systems conducted to establish structure–function relationships of lipid-based cold flow improvers in biodiesel with a particular attention to the effect of molecular symmetry in contrast with a previously published study of the OSO (1, 3-dioleoyl-2-stearoyl sn-glycerol)/MeS binary system. The phase behavior of several SOO/MeS mixtures were investigated at different length scales with XRD (X-ray diffraction), DSC (differential scanning calorimetry) and PLM (polarized light microscope). A complete phase diagram including the transformation lines, crystal structure and microstructure was constructed. The solubility behavior was discussed using a simple thermodynamic model based on the Hildebrand equation and pair interactions. The asymmetric position of the oleic moieties of SOO was shown to be crucial in modifying the thermal transformation behavior of MeS. The findings may be used to design effective crystallization modifiers of biodiesel based on particular structural determinants, and underscores the importance of symmetry in such designs. - Highlights: • Effect of symmetry of triglyceride on biodiesel crystallization established. • Complete phase diagram of model triacylglycerol/biodiesel binary system achieved. • Correlation between thermal transitions, crystal structure and microstructure revealed. • Transformation points useful for improving the cold flow of biodiesel identified. • Necessary knowledge gathered to design effective biodiesel cold flow improvers.

  13. Production of biodiesel using the microwave technique

    Directory of Open Access Journals (Sweden)

    Shakinaz A. El Sherbiny

    2010-10-01

    Full Text Available Biodiesel production is worthy of continued study and optimization of production procedures because of its environmentally beneficial attributes and its renewable nature. Non-edible vegetable oils such as Jatropha oil, produced by seed-bearing shrubs, can provide an alternative and do not have competing food uses. However, these oils are characterized by their high free fatty acid contents. Using the conventional transesterification technique for the production of biodiesel is well established. In this study an alternative energy stimulant, “microwave irradiation”, was used for the production of the alternative energy source, biodiesel. The optimum parametric conditions obtained from the conventional technique were applied using microwave irradiation in order to compare the systems. The study showed that the application of radio frequency microwave energy offers a fast, easy route to this valuable biofuel with the advantages of enhancing the reaction rate (2 min instead of 150 min and of improving the separation process. The methodology allows for the use of high free fatty acid content feedstock, including Jatropha oil. However, this emerging technology needs to be further investigated for possible scale-up for industrial application.

  14. Use of waste materials for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Vitiello, R.; Tesser, R.; Di Serio, M.; Santacesaria, E. [Napoli Univ. (Italy). Dipt. di Scienze Chimiche; Buonerba, A.; Grassi, A. [Salerno Univ. (Italy). Dipt. di Chimica e Biologia

    2012-07-01

    Waste raw materials obtained by several sources of both food and agro industries could be considered for biofuel production. In the last years, this topic has growing in interest. At this purpose, our research, has been focused on the development of new technologies to obtain biodiesel from the mentioned wastes feedstock. In particular from oleins, that are mixtures of free fatty acids (FFAs) and triglycerides. Therefore, we are studying the way to produce biodiesel in two steps: an esterification reaction of FFAs with glycerol and a transesterification with methanol of the whole mixture. The esterification of FFAs with glycerol has the advantage of using a relatively high temperature favouring the stripping of water formed during the esterification. In this way esterification equilibrium is shifted to the right. Then, the mixture of mono-, di- and triglycerides, obtained by esterification with glycerol, can be submitted to transesterification with methanol, in the usual way, to produce biodiesel Catalysts promoting esterification, normally, are mineral acids or heterogeneous Bronsted acid catalysts. At this purpose, the classical sulphonated polystyrene acid resins cannot be used at temperature greater than 120 C. Therefore, a new class of sulfonated polymers, with enhanced temperature resistance, has been developed by selective and quantitative sulfonation of olefinic butadiene units in multiblock copolymers syndiotactic polystyrene-co-1,4-cis-polybutadiene. This catalytic system has been successfully tested in the above mentioned esterification reaction and compared to classic commercial strong acid catalysts like Amberlyst {sup registered}, Nafion {sup registered} and sulfuric acid. (orig.)

  15. Refining of biodiesel by ceramic membrane separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong; Ou, Shiyi; Tan, Yanlai; Tang, Shuze [Department of Food Science and Engineering, Jinan University, Guangzhou 510632 (China); Wang, Xingguo; Liu, Yuanfa [School of Food Science and Technology, Jiangnan University, Wuxi 214112 (China)

    2009-03-15

    A ceramic membrane separation process for biodiesel refining was developed to reduce the considerable usage of water needed in the conventional water washing process. Crude biodiesel produced by refined palm oil was micro-filtered by ceramic membranes of the pore size of 0.6, 0.2 and 0.1 {mu}m to remove the residual soap and free glycerol, at the transmembrane pressure of 0.15 MPa and temperature of 60 C. The flux through membrane maintained at 300 L m{sup -} {sup 2} h{sup -} {sup 1} when the volumetric concentrated ratio reached 4. The content of potassium, sodium, calcium and magnesium in the whole permeate was 1.40, 1.78, 0.81 and 0.20 mg/kg respectively, as determined by inductively coupled plasma-atomic emission spectroscopy. These values are lower than the EN 14538 specifications. The residual free glycerol in the permeate was estimated by water extraction, its value was 0.0108 wt.%. This ceramic membrane technology was a potential environmental process for the refining of biodiesel. (author)

  16. Technoeconomic study of supercritical biodiesel production plant

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2008-01-01

    Over the last years, biodiesel has gained more market due to its benefits and because it appears as the natural substitute for diesel. However, the highest cost of this process is associated with the raw material employed, making it a less competitive and more expensive fuel. Therefore, research is being done in order to use low price raw material, such as acid oils, frying oils or soapstocks. In this work, a biodiesel production plant was developed using supercritical methanol and acid oils as raw materials. This technology was compared with some other alternatives previously described with the aim of making a comparative study, not only on the technical aspects but also on the economic results. A process simulator was employed to produce the conceptual design and simulate each technology. Using these models, it was possible to analyze different scenarios and to evaluate productivity, raw material consumption, economic competitiveness and environmental impacts of each process. Although the supercritical alternative appears as a good technical possibility to produce biodiesel, today, it is not an economic alternative due to its high operating costs

  17. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Young, Li-Hao, E-mail: lhy@mail.cmu.edu.tw [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Liou, Yi-Jyun [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Cheng, Man-Ting [Department of Environmental Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40254, Taiwan (China); Lu, Jau-Huai [Department of Mechanical Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40254, Taiwan (China); Yang, Hsi-Hsien [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Jifeng E. Road, Taichung 41349, Taiwan (China); Tsai, Ying I. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, 60, Sec. 1, Erh-Jen Road, Tainan 71710, Taiwan (China); Wang, Lin-Chi [Department of Chemical and Materials Engineering, Cheng Shiu University, 840, Chengcing Road, Kaohsiung 83347, Taiwan (China); Chen, Chung-Bang [Fuel Quality and Engine Performance Research, Refining and Manufacturing Research Institute, Chinese Petroleum Corporation, 217, Minsheng S. Road, Chiayi 60036, Taiwan (China); Lai, Jim-Shoung [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The effects of waste cooking oil biodiesel, engine load and DOC + DPF on nonvolatile particle size distributions in HDDE exhaust. Black-Right-Pointing-Pointer Increasing biodiesel blends cause slight decreases in the total particle number concentrations and negligible changes in size distributions. Black-Right-Pointing-Pointer Increasing load results in modest increases in both the total particle number concentrations and sizes. Black-Right-Pointing-Pointer The effects of semivolatile materials are strongest at idle, during which nonvolatile cores <16 nm were observed. Black-Right-Pointing-Pointer The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of biodiesel blend and load. - Abstract: Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC + DPF) under steady modes. For a given load, the total particle number concentrations (N{sub TOT}) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N{sub TOT} and mode diameters increase modestly with increasing load of above 25%. The N{sub TOT} at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N{sub TOT} post the DOC + DPF are comparable to typical ambient levels of

  18. Progress and Challenges in Microalgal Biodiesel Production

    Science.gov (United States)

    Mallick, Nirupama; Bagchi, Sourav K.; Koley, Shankha; Singh, Akhilesh K.

    2016-01-01

    The last decade has witnessed a tremendous impetus on biofuel research due to the irreversible diminution of fossil fuel reserves for enormous demands of transportation vis-a-vis escalating emissions of green house gasses (GHGs) into the atmosphere. With an imperative need of CO2 reduction and considering the declining status of crude oil, governments in various countries have not only diverted substantial funds for biofuel projects but also have introduced incentives to vendors that produce biofuels. Currently, biodiesel production from microalgal biomass has drawn an immense importance with the potential to exclude high-quality agricultural land use and food safe-keeping issues. Moreover, microalgae can grow in seawater or wastewater and microalgal oil can exceed 50–60% (dry cell weight) as compared with some best agricultural oil crops of only 5–10% oil content. Globally, microalgae are the highest biomass producers and neutral lipid accumulators contending any other terrestrial oil crops. However, there remain many hurdles in each and every step, starting from strain selection and lipid accumulation/yield, algae mass cultivation followed by the downstream processes such as harvesting, drying, oil extraction, and biodiesel conversion (transesterification), and overall, the cost of production. Isolation and screening of oleaginous microalgae is one pivotal important upstream factor which should be addressed according to the need of freshwater or marine algae with a consideration that wild-type indigenous isolate can be the best suited for the laboratory to large scale exploitation. Nowadays, a large number of literature on microalgal biodiesel production are available, but none of those illustrate a detailed step-wise description with the pros and cons of the upstream and downstream processes of biodiesel production from microalgae. Specifically, harvesting and drying constitute more than 50% of the total production costs; however, there are quite a less

  19. Quality Assessment of Biodiesels from Lophira Lanceolata and Zi

    African Journals Online (AJOL)

    M.KYARI

    The purpose of this study was to produce and characterize biodiesels obtained from seeds of ... of biodiesel is very low as compared to fossil ... Sangere town in Adamawa and Maiduguri ... round bottom flask and pre-heated at .... rapeseed and soybean oils, indicating the oils ... storage; high level of unsaturated fatty acid.

  20. Optimization of biodiesel production from rice bran oil via ...

    African Journals Online (AJOL)

    ... 9,12-octadecadienoic and 9-octadecadienoic acid. The fourier transform infrared spectrum of biodiesel also showed the characteristic bands of C=O, O-C-O, C=C and –(CH2)n-. Key words: Rice bran oil, biodiesel, response surface methodology, gas chromatography mass spectrometry, fourier transform infrared spectrum ...

  1. Plant latex lipase as biocatalysts for biodiesel production | Mazou ...

    African Journals Online (AJOL)

    Plant latex lipase as biocatalysts for biodiesel production. ... This paper provides an overview regarding the main aspects of latex, such as the reactions catalyzed, physiological functions, specificities, sources and their industrial applications. Keywords: Plant latex, lipase, Transesterification, purification, biodiesel ...

  2. Rapid biodiesel production using wet microalgae via microwave irradiation

    International Nuclear Information System (INIS)

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2014-01-01

    Highlights: • Lipid was directly extracted from wet microalgae using microwave irradiation. • The microwave irradiation and water bath-assisted solvent extraction are applied. • Cell walls are significantly disrupted under microwave irradiation. • Highly disrupted cell walls led to higher biodiesel yield in microwave irradiation. • Microwave irradiation is a promising direct technique with high biodiesel yields. - Abstract: The major challenges for industrial commercialized biodiesel production from microalgae are the high cost of downstream processing such as dewatering and drying, utilization of large volumes of solvent and laborious extraction processes. In order to address these issues the microwave irradiation method was used to produce biodiesel directly from wet microalgae biomass. This alternative method of biodiesel production from wet microalgae biomass is compared with the conventional water bath-assisted solvent extraction. The microwave irradiation extracted more lipids and high biodiesel conversion was obtained compared to the water bath-assisted extraction method due to the high cell disruption achieved and rapid transesterification. The total content of lipid extracted from microwave irradiation and water bath-assisted extraction were 38.31% and 23.01% respectively. The biodiesel produced using microwave irradiation was higher (86.41%) compared to the conventional method. Thus microwave irradiation is an attractive and promising technology to be used in the extraction and transesterification process for efficient biodiesel production

  3. Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation

    International Nuclear Information System (INIS)

    Silva, Wellington Costa; Castro, Maria Priscila Pessanha; Perez, Victor Haber; Machado, Francisco A.; Mota, Leonardo; Sthel, Marcelo Silva

    2016-01-01

    The aim of this paper was to study the thermal degradation of soybean biodiesel attained by ethanolic route. The soybean biodiesel samples were subjected to heating treatment at 150 °C for 24 h in a closed oven under controlled atmosphere. During the experiments, samples were withdrawn at intervals of 3, 6, 9, 12, 15 and 24 h for physicochemical and thermophysical properties analysis. The biodiesel degradation was validated by Thermogravimetric analysis since their profiles for control and treated biodiesel were different. Also, "1H NMR confirmed this result due to a significant reduction at the signals related to the "1H located near to the double bonds in the unsaturated ethyl esters in agreement with an iodine index reduction and viscosity increase observed during degradation. Nevertheless, degraded biodiesel, under study conditions, preserved its thermophysical properties. These results may be relevant to qualify the produced biodiesel quality and collect physicochemical and thermophysical data important for applications in combustion studies including project of fuel injection systems. - Highlights: • Soybean biodiesel from ethanolic route was subjected to thermal degradation to verify its stability. • Thermal degradation of biodiesel was correlated with physicochemical properties. • Thermal effusivity, diffusivity and conductivity were estimate by photothermal techniques.

  4. Assessment of Physicochemical Properties of Biodiesel from African ...

    African Journals Online (AJOL)

    The African Grape (Lannea microcarpa) seed oil was extracted and subjected to fuel properties tests according to standard method for oil and fuel analysis to evaluate its suitability as oil crop for biodiesel production in Nigeria. The oil was transesterified using alkali hydrolysis to biodiesel. The yields of the oil and its methyl ...

  5. SVOC emissions from diesel trucks operating of biodiesel fuels

    Science.gov (United States)

    The U.S. currently produces roughly 5 billion liters of biodiesel per year. Use of biodiesel is projected to increase based on its potential economic, energy, and environmental benefits. Despite these benefits, there is public health concern about the possible direct and indirect...

  6. Water Consumption Estimates of the Biodiesel Process in the US

    Science.gov (United States)

    As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...

  7. Enzymatic biodiesel production from sludge palm oil (SPO) using ...

    African Journals Online (AJOL)

    Biodiesel is a non-toxic, renewable and environmental friendly fuel. This study involved the production of biodiesel from sludge palm oil (SPO), a low-cost waste oil via enzymatic catalysis. The enzyme catalyst was a Candida cylindracea lipase, locally-produced using palm oil mill effluent as the low cost based medium.

  8. An Investigation of Biodiesel Production from Wastes of Seafood Restaurants

    Directory of Open Access Journals (Sweden)

    Nour Sh. El-Gendy

    2014-01-01

    Full Text Available This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp. in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst.

  9. 13, 2014 1 Production and characterization of biodiesel

    African Journals Online (AJOL)

    The possibility of biodiesel production from traditional tannery fleshing wastes was ... Based on worldwide standard procedures (ASTM specification), the biodiesel fuel ... affect economic and social development (Eisenberg ... Besides, the low cost of non-edible oils as raw ..... seed, leather industry fleshing wastes, corn germ.

  10. Biodiesel by catalytic reactive distillation powered by metal oxides

    NARCIS (Netherlands)

    Kiss, A.A.; Dimian, A.C.; Rothenberg, G.

    2008-01-01

    The properties and use of biodiesel as a renewable fuel as well as the problems associated with its current production processes are outlined. A novel sustainable esterification process based on catalytic reactive distillation is proposed. The pros and cons of manufacturing biodiesel via fatty acid

  11. Production and analysis of biodiesel from Jatropha curcas seed ...

    African Journals Online (AJOL)

    ADOWIE PERE

    production of biodiesel via transesterification of resultant oil. The effects of methanol-to-oil .... mass and energy balance, cost analysis involved in producing biodiesel from ..... Chen, Q; Song, B.A;Yang, S (2011) Production and selected fuel ...

  12. Moringa oleifera oil: Studies of characterization and biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    da Silva, Jhosianna P.V.; Serra, Tatiana M.; Meneghetti, Simoni M.P. [Universidade Federal de Alagoas, Instituto de Quimica e Biotecnologia, Laboratorio de Oleoquimica, Maceio, Alagoas, CEP 57072-970 (Brazil); Gossmann, Marcelo; Wolf, Carlos R.; Meneghetti, Mario R. [Universidade Luterana do Brasil, Instituto de Quimica, Canoas, Rio Grande do Sul, CEP 92420-280 (Brazil)

    2010-10-15

    This work describes studies with the seeds of Moringa oleifera (MO), obtained in the northeast of Brazil, evaluating some properties and chemical composition of the oil, as well any potential application in biodiesel production. The studied physicochemical properties of the MO biodiesel, suggest that this material may be used as fuel in diesel engines, mainly as a mixture to petrodiesel. (author)

  13. Overview on the current trends in biodiesel production

    International Nuclear Information System (INIS)

    Yusuf, N.N.A.N.; Kamarudin, S.K.; Yaakub, Z.

    2011-01-01

    Research highlights: → Various method for the production of biodiesel from vegetable oil were reviewed. → Such as direct use and blending, microemulsion, pyrolysis and transesterification. → The advantages and disadvantages of the different biodiesel-production methods are also discussed. → Finally, the economics of biodiesel production was discussed using Malaysia as a case study. -- Abstract: The finite nature of fossil fuels necessitates consideration of alternative fuels from renewable sources. The term biofuel refers to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include bioethanol, biomethanol, biodiesel and biohydrogen. Biodiesel, defined as the monoalkyl esters of vegetable oils or animal fats, is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. Here, we review the various methods for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsion, pyrolysis and transesterification. The advantages and disadvantages of the different biodiesel-production methods are also discussed. Finally, we analyze the economics of biodiesel production using Malaysia as a case study.

  14. Biodiesel: A fuel, a lubricant, and a solvent

    Science.gov (United States)

    Biodiesel is well-known as a biogenic alternative to conventional diesel fuel derived from petroleum. It is produced from feedstocks such as plant oils consisting largely of triacylglycerols through transesterification with an alcohol such as methanol. The properties of biodiesel are largely compet...

  15. The effect of economic variables over a biodiesel production plant

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, J.M., E-mail: jmarchetti@plapiqui.edu.ar [Planta Piloto de Ingenieria Quimica (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahia Blanca (Argentina)

    2011-09-15

    Highlights: {yields} Influence of the mayor economic parameters for biodiesel production. {yields} Variations of profitability of a biodiesel plant due to changes in the market scenarios. {yields} Comparison of economic indicators of a biodiesel production facility when market variables are modified. - Abstract: Biodiesel appears as one of the possible alternative renewable fuels to substitute diesel fuel derived from petroleum. Several researches have been done on the technical aspects of biodiesel production in an attempt to develop a better and cleaner alternative to the conventional process. Economic studies have been carried out to have a better understanding of the high costs and benefits of different technologies in the biodiesel industry. In this work it is studied the effect of the most important economic variables of a biodiesel production process over the general economy of a conventional plant which employs sodium methoxide as catalyst. It has been analyzed the effect of the oil price, the amount of free fatty acid, the biodiesel price, the cost of the glycerin, the effect due to the modification on the methanol price, the washing water price, and several others. Small variations on some of the major market variables would produce significant effects over the global economy of the plant, making it non profitable in some cases.

  16. Overview on the current trends in biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Yusuf, N.N.A.N. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Kamarudin, S.K., E-mail: ctie@eng.ukm.m [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yaakub, Z. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-07-15

    Research highlights: {yields} Various method for the production of biodiesel from vegetable oil were reviewed. {yields} Such as direct use and blending, microemulsion, pyrolysis and transesterification. {yields} The advantages and disadvantages of the different biodiesel-production methods are also discussed. {yields} Finally, the economics of biodiesel production was discussed using Malaysia as a case study. -- Abstract: The finite nature of fossil fuels necessitates consideration of alternative fuels from renewable sources. The term biofuel refers to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include bioethanol, biomethanol, biodiesel and biohydrogen. Biodiesel, defined as the monoalkyl esters of vegetable oils or animal fats, is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. Here, we review the various methods for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsion, pyrolysis and transesterification. The advantages and disadvantages of the different biodiesel-production methods are also discussed. Finally, we analyze the economics of biodiesel production using Malaysia as a case study.

  17. The effect of economic variables over a biodiesel production plant

    International Nuclear Information System (INIS)

    Marchetti, J.M.

    2011-01-01

    Highlights: → Influence of the mayor economic parameters for biodiesel production. → Variations of profitability of a biodiesel plant due to changes in the market scenarios. → Comparison of economic indicators of a biodiesel production facility when market variables are modified. - Abstract: Biodiesel appears as one of the possible alternative renewable fuels to substitute diesel fuel derived from petroleum. Several researches have been done on the technical aspects of biodiesel production in an attempt to develop a better and cleaner alternative to the conventional process. Economic studies have been carried out to have a better understanding of the high costs and benefits of different technologies in the biodiesel industry. In this work it is studied the effect of the most important economic variables of a biodiesel production process over the general economy of a conventional plant which employs sodium methoxide as catalyst. It has been analyzed the effect of the oil price, the amount of free fatty acid, the biodiesel price, the cost of the glycerin, the effect due to the modification on the methanol price, the washing water price, and several others. Small variations on some of the major market variables would produce significant effects over the global economy of the plant, making it non profitable in some cases.

  18. Lipids from yeasts and fungi: Tomorrow's source of Biodiesel?

    NARCIS (Netherlands)

    Meeuwse, P.; Sanders, J.P.M.; Tramper, J.; Rinzema, A.

    2013-01-01

    In the search for new transport fuels from renewable resources, biodiesel from microbial lipids comes into view. We have evaluated the lipid yield and energy use of a process for production of biodiesel from agricultural waste using lipid-accumulating yeast and fungi. We included different

  19. Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel

    Science.gov (United States)

    SmartWay Transport Partnership is a market-based public-private collaboration between the U.S operate vehicle fleets, the public, and other interested entities about the benefits of biodiesel use Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center

  20. Cleaning up a biodiesel plant

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    Full text: The project at Biodiesel Producers Limited in Victoria involved remediation of a wastewater treatment process containing a large covered anaerobic lagoon, an aerobic sequencing batch reactor (SBR) and a series of downstream open ponds. The pond downstream of the SBR was heavily loaded with a thick hard grease cap. The CAL was believed to have a metre-plus grease cap and the SBR had developed a thick foam cap that prevented aeration and mixing. Environmental Biotech was called in to assist with bioremediation using its Grease Eradication System bacteria cultures, with the aim of reducing the fats, oil and grease in the CAL discharge to less than 150 milligrams per litre, eliminating the stable fat foam in the SBR to allow the denitrification sequencing program to be reinstated and to clean up the hard fat layer from the surfaces of the comany's open ponds. The inflow to the CAL was designed for a flow of 210kL per day with a loading of 6900mg/L biochemical oxygen demand and FOG of 425mg/L. The actual load, as measured by Environmental Biotech, was 100kL with 20,000mg/L BOD and 1800mg/L (180kg) FOG. The CAL had been in use for more than two years, generating methane but assumed to be working well in the breakdown of chemical oxygen demand and FOG. In December 2009 the quality of the effluent began to decrease, overloading the SBR with FOG. It caused the formation of dense foam on aeration and mixing. The foam would not break down despite a variety of methods being employed and would overflow from the walls of the SBR. “Due to the foaming issue the SBR became a large holding tank for the fat and because of the reduced mixing, the solids were settling on the bottom of the tank,” Environmental Biotech project manager and franshisee Craig Barr said. “We were brought in to start work inApril 2010 and initially we slug dosed the CAL with 400 litres of GES bacteria in addition to a constant metered dosing rate of 400 litres per fortnight with the

  1. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A; Northrop, William F; Bohac, Stanislav V; Assanis, Dennis N

    2012-11-15

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NO x ), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM 2.5 , EC, formaldehyde, and most VOCs; however, NO x brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM 2.5 , EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM 2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM 2.5 . The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for

  2. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment

  3. Experimental investigation of urea injection parameters influence on NOx emissions from blended biodiesel-fueled diesel engines.

    Science.gov (United States)

    Mehregan, Mina; Moghiman, Mohammad

    2018-02-01

    The present work submits an investigation about the effect of urea injection parameters on NO x emissions from a four-stroke four-cylinder diesel engine fueled with B20 blended biodiesel. An L 9 (3 4 ) Taguchi orthogonal array was used to design the test plan. The results reveal that increasing urea concentration leads to lower NO x emissions. Urea flow rate increment has the same influence on NO x emission. The same result is obtained by an increase in spray angle. Also, according to the analysis of variance (ANOVA), urea concentration and then urea flow rate are the most effective design parameters on NO x emissions, while spray angle and mixing length have less influence on this pollutant emission. Finally, since the result of confirmation test is in good agreement with the predicted value based on the Taguchi technique, the predictive capability of this method in the present study could be deduced.

  4. Thermal behavior of diesel/biodiesel blends of biodiesel obtained from buriti oil=Comportamento térmico de blendas de diesel/biodiesel de biodiesel obtido a partir do óleo de buriti

    Directory of Open Access Journals (Sweden)

    Alexandre Gustavo Soares do Prado

    2012-04-01

    Full Text Available Biodiesel has been obtained from methanolysis of buriti oil. This biodiesel was added in fossil diesel in order to obtain diesel/biodiesel blends. Thermal analysis of blends were carried on 30-600oC range at rate of 10oC min.-1. Kinetic parameters such as activation energy (Ea, pre-exponential factor (A, Gibbs energy (≠G, enthalpy (≠H and entropy (≠S of activation were determined by using Coats–Redfern equation. The Ea, ≠H and ≠G values presented a linear increase with biodiesel amount added in blends. The heat of combustion of diesel/biodiesel blends was determined, and it was observed that the heat of combustion decreased with the addition of biodiesel in diesel/biodiesel blends.O biodiesel foi obtido a partir de metanólise de óleo de buriti. O biodiesel foi adicionado ao diesel fóssil a fim de obter misturas de biodiesel/diesel. Análises térmica das misturas foram realizadas entre 30-600°C com uma taxa de aquecimento de 10ºC min.-1. Parâmetros cinéticos como a energia de ativação (Ea, fator pré-exponencial (A, energia livre de Gibbs (≠G, entalpia (≠H e entropia de ativação (≠S foram determinadas usando equação de Coats-Redfern. Os valores de Ea, ≠H and ≠G apresentaram aumento linear com a quantidade de biodiesel adicionado na mistura. O calor de combustão de misturas de biodiesel/diesel foi determinada, e foi observado que o calor de combustão diminuiu com a adição de biodiesel no diesel e nas misturas de biodiesel.

  5. Uso da cromatografia gasosa bidimensional abrangente (GC×GC na caracterização de misturas biodiesel/diesel: aplicação ao biodiesel de sebo bovino

    Directory of Open Access Journals (Sweden)

    Maria Silvana A Moraes

    2011-01-01

    Full Text Available The growth of biodiesel market and the implementation of regulations related to biodiesel production and biodiesel/diesel blending has encouraged the development of appropriate analytical methods to control the composition of this type of mixture. In this study, an evaluation of the potential of GC×GC for the characterization of samples of beef tallow biodiesel and the composition of blends of biodiesel/diesel is presented. The methodology was applied to beef tallow biodiesel and its mixtures with petrodiesel, ranging from B2 to B50. Results allowed not only the identification and quantification of the biodiesel esters, but also the biodiesel percentage in biodiesel/diesel blends.

  6. Reduction of amine and biological antioxidants on NOx emissions powered by mango seed biodiesel

    Directory of Open Access Journals (Sweden)

    Velmurugan Kolanjiappan

    2017-01-01

    Full Text Available Este estudio analiza la influencia de la amina y algunos antioxidantes biológicos en la reducción de las emisiones de NOx en un motor diesel alimentado con B100 (100% volumen de éster metílico de semillas de mango y B20 (20% en volumen de semillas de mango y 80% en volumen de mezcla de combustible diesel, Se probaron tres antioxidantes de amina, p-fenilendiamina (PPD, etilendiamina (EDA y N, N’-difenil-1,4-fenilendiamina (DPPD y tres antioxidantes biológicos, diclorometano (DCM, acetato de alfa-tocoferol ( α -T y ácido L-ascórbico (L-asc.acid en un motor diesel kirloskar de cuatro tiempos refrigerado por agua, 5,9 KW de potencia. Hay cinco concentraciones usadas en la mezcla antioxidante de mezclas de biodiesel. Es decir, 0,005% -m, 0,010% -m, 0,025% -m, 0,05% -m y 0,1%, valores en los cuales %-m corresponde a la concentración molar empleada en la mezcla antioxidante. Los resultados muestran que la reducción consiguiente de NOx podría ser adquirida por la adhesión de aditivo antioxidante DPPD con la concentración de 0,025% de combustible B20 en un 15,4% y combustible B100 en un 39%. El aditivo DPPD aumentó las emisiones de CO más de 7,42% para el combustible B100 y 6,44% para el combustible B20. El DCM antioxidante biológico exhibe 0,235 g/kWh para combustible B100 y 0,297 g/kWh para combustible B20. Se ha comprobado que la emisión de humo ha aumentado con la adición de antioxidantes. Un ligero incremento en la eficiencia térmica del freno (0,91% se logra con la adición de antioxidantes a plena carga. Los resultados experimentales se comparan con el análisis de varianza y el resultado es simplemente el mismo que el de la experimentación.

  7. Comparison between conventional and ultrasonic preparation of beef tallow biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Leonardo S.G. [Instituto de Quimica - Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280 - Salvador, Bahia (Brazil); Assis, Julio C.R.; Santos, Iran T.V.; Guimaraes, Paulo R.B.; Pontes, Luiz A.M. [Universidade Salvador - UNIFACS - Departamento de Engenharia e Arquitetura, - Av. Cardeal da Silva 132, 40.220-141 - Salvador, Bahia (Brazil); Mendonca, Daniel R. [Escola Politecnica - Universidade Federal da Bahia, Av. Aristides Novis 2, 40.210-630, Salvador, Bahia (Brazil); Teixeira, Josanaide S.R. [Instituto Federal de Educacao Ciencia e Tecnologica da Bahia - IFBAHIA - Rua Emidio de Morais S/N, 40.625-650, Salvador - BA (Brazil)

    2009-09-15

    Tallow is biodiesel feedstock that, due to its highly centralized generation in slaughter/processing facilities and historically low prices, may have energetic, environmental, and economic advantages that could be exploited. Transesterification of fatty acids by means of ultrasonic energy has been used for biodiesel production from different vegetable oils. However, application of ultrasonic irradiation for biodiesel production from beef tallow has received little attention. In this work, the transesterification of beef tallow with methanol was performed in the presence of potassium hydroxide as a catalyst using ultrasound irradiation (400 W, 24 kHz). The reaction time, conversion and biodiesel quality were compared with that seen in conventional transesterification. The results indicated that the reaction conversion and biodiesel quality were similar; however, the use of ultrasonic irradiation decreased the reaction time, showing that this method may be a promising alternative to the conventional method. (author)

  8. Biodiesel production through hydrodynamic cavitation and performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Amit; Verma, Ashish; Kachhwaha, S.S.; Maji, S. [Department of Mechanical Engineering, Delhi College of Engineering, Bawana Road, Delhi 110042 (India)

    2010-03-15

    This paper presents the details of development of a biodiesel production test rig based on hydrodynamic cavitation followed by results of experimental investigation carried out on a four cylinder, direct injection water cooled diesel engine operating on diesel and biodiesel blend of Citrullus colocyntis (Thumba) oil. The experiment covers a wide range of engine rpm. Results show that biodiesel of Thumba oil produced through hydrodynamic cavitation technique can be used as an alternative fuel with better performance and lower emissions compared to diesel. The most significant conclusions are that (1) Biodiesel production through hydrodynamic cavitation technique seems to be a simple, efficient, time saving, eco-friendly and industrially viable process. (2) 30% biodiesel blend of Thumba oil shows relatively higher brake power, brake thermal efficiency, reduced bsfc and smoke opacity with favourable p-{theta} diagram as compared to diesel. (author)

  9. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de, E-mail: mmoura@ufpi.edu.br [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Departamento de Quimica; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/IQ/CEMPEQC), Araraquara, SP (Brazil). Instituto de Quimica. Centro de Monitoramento e Pesquisa da Qualidade de Combustiveis, Biocombustiveis, Petroleo e Derivados

    2013-04-15

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO{sub 3} + SrO + Sr (OH){sub 2}) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  10. Studies of Terminalia catappa L. oil: characterization and biodiesel production.

    Science.gov (United States)

    Dos Santos, I C F; de Carvalho, S H V; Solleti, J I; Ferreira de La Salles, W; Teixeira da Silva de La Salles, K; Meneghetti, S M P

    2008-09-01

    Since the biodiesel program has been started in Brazil, the investigation of alternative sources of triacylglycerides from species adapted at semi-arid lands became a very important task for Brazilian researchers. Thus we initiated studies with the fruits of the Terminalia catappa L (TC), popularly known in Brazil as "castanhola", evaluating selected properties and chemical composition of the oil, as well any potential application in biodiesel production. The oil was obtained from the kernels of the fruit, with yields around 49% (% mass). Also, its fatty acid composition was quite similar to that of conventional oils. The crude oil of the TC was transesterified, using a conventional catalyst and methanol to form biodiesel. The studied physicochemical properties of the TC biodiesel are in acceptable range for use as biodiesel in diesel engines.

  11. Use of Reactive Distillation for Biodiesel Production: A Literature Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Dani Supardan

    2006-06-01

    Full Text Available Biodiesel has been shown to be the best substitute for fossil-based fuels to its environmental advantages and renewable resource availability. There is a great demand for the commercialization of biodiesel production, which in turn calls for a technically and economically reactor technology. The production of biodiesel in existing batch and continuous-flow processes requires excess alcohol, typically 100%, over the stoichiometric molar requirement in order to drive the chemical reaction to completion. In this study, a novel reactor system using a reactive distillation (RD technique was discussed for biodiesel production. RD is a chemical unit operation in which chemical reactions and separations occur simultaneously in one unit. It is an effective alternative to the classical combination of reactor and separation units especially when involving reversible or consecutive chemical reactions such as transesterication process in biodiesel production.

  12. Enzymatic biodiesel synthesis. Key factors affecting efficiency of the process

    Energy Technology Data Exchange (ETDEWEB)

    Szczesna Antczak, Miroslawa; Kubiak, Aneta; Antczak, Tadeusz; Bielecki, Stanislaw [Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz (Poland)

    2009-05-15

    Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis. (author)

  13. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    International Nuclear Information System (INIS)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de

    2013-01-01

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO 3 + SrO + Sr (OH) 2 ) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  14. Assessing the greenhouse gas emissions from poultry fat biodiesel

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Bikker, Paul; Herrmann, Ivan Tengbjerg

    2012-01-01

    This article attempts to answer the question: What will most likely happen in terms of emitted greenhouse gases if the use of poultry fat for making biodiesel used in transportation is increased? Through a well-to-wheel assessment, several different possible scenarios are assessed, showing...... that under average conditions, the use of poultry fat biodiesel instead of diesel leads to a slight reduction (6%) in greenhouse gas emissions. The analysis shows that poultry fat is already used for different purposes and using poultry fat for biodiesel will therefore remove the poultry fat from its...... original use. This implies that even though the use of biodiesel is assumed to displace petrochemical diesel, the ‘original user’ of the poultry fat will have to find a substitute, whose production leads to a greenhouse gas emissions comparable to what is saved through driving on poultry fat biodiesel...

  15. Policy measures to increase the competitiveness of biodiesel fuel

    International Nuclear Information System (INIS)

    Assink, R.A.J.; Kerkhof, F.P.J.M.; Das, A.

    1993-01-01

    As a transport fuel of agricultural origin, biodiesel, which may be produced by means of a simple process from any available vegetable oil, is gathering more and more interest. Biodiesel is a mixture of methylesters of linear carbonic acids, which may be combusted in existing diesel engines. In this article the cultivation of the agricultural raw material and the fuel characteristics of biodiesel from rapeseed oil are elucidated. Also attention is paid to technological backgrounds and economical aspects of biodiesel production. At a rapeseed oil price of 750 Dutch guilders per ton, the cost price of biodiesel is 0.90 Dutch guilders per liter. Commercial demand can be created at an 85% reduction of the usual excises and levies. 9 figs., 4 tabs., 9 refs

  16. Comparison between conventional and ultrasonic preparation of beef tallow biodiesel

    International Nuclear Information System (INIS)

    Teixeira, Leonardo S.G.; Assis, Julio C.R.; Santos, Iran T.V.; Guimaraes, Paulo R.B.; Pontes, Luiz A.M.; Mendonca, Daniel R.; Teixeira, Josanaide S.R.

    2009-01-01

    Tallow is biodiesel feedstock that, due to its highly centralized generation in slaughter/processing facilities and historically low prices, may have energetic, environmental, and economic advantages that could be exploited. Transesterification of fatty acids by means of ultrasonic energy has been used for biodiesel production from different vegetable oils. However, application of ultrasonic irradiation for biodiesel production from beef tallow has received little attention. In this work, the transesterification of beef tallow with methanol was performed in the presence of potassium hydroxide as a catalyst using ultrasound irradiation (400 W, 24 kHz). The reaction time, conversion and biodiesel quality were compared with that seen in conventional transesterification. The results indicated that the reaction conversion and biodiesel quality were similar; however, the use of ultrasonic irradiation decreased the reaction time, showing that this method may be a promising alternative to the conventional method. (author)

  17. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  18. Production possibility frontier analysis of biodiesel from waste cooking oil

    International Nuclear Information System (INIS)

    Kagawa, Shigemi; Takezono, Kanako; Suh, Sangwon; Kudoh, Yuki

    2013-01-01

    This paper presents an assessment of the productive efficiency of an advanced biodiesel plant in Japan using Data Envelopment Analysis (DEA). The empirical analysis uses monthly input data (waste cooking oil, methanol, potassium hydroxide, power consumption, and the truck diesel fuel used for the procurement of waste cooking oil) and output data (biodiesel) of a biodiesel fuel plant for August 2008–July 2010. The results of this study show that the production activity with the lowest cost on the biodiesel production possibility frontier occurred in March 2010 (production activity used 1.41 kL of waste cooking oil, 0.18 kL of MeOH, 16.33 kg of KOH, and 5.45 kW h of power), and the unit production cost in that month was 18,517 yen/kL. Comparing this efficient production cost to the mean unit production cost on the production possibility frontier at 19,712 yen/kL, revealed that the cost of producing 1 kL of biodiesel could be reduced by as much as 1195 yen. We also find that the efficiency improvement will contribute to decreasing the cost ratio (cost per sale) of the biodiesel production by approximately 1% during the study period (24 months) between August 2008 and July 2010. - Highlights: ► This paper analyzes the productive efficiency of an advanced biodiesel plant using DEA. ► We examine the optimal production activities of biodiesel from waste cooking oil. ► Considering the production frontier, the unit cost of biodiesel could be reduced by 1195 yen. ► The efficiency improvement contributes to decreasing the cost ratio of the biodiesel by 1%

  19. Process Simulation of enzymatic biodiesel production -at what cost can biodiesel be made with enzymes?

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Christensen, Knud Villy; Rong, Benguang

    as well as environmental impacts of the alternative process must be evaluated towards the conventional process. With process simulation tools, an evaluation will be carried out looking at what it will cost to produce biodiesel with enzymes. Different scenarios will be taken into account with variations...... in raw material prices, process designs and enzyme cost and performance....

  20. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    Science.gov (United States)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  1. Western Kentucky University Research Foundation Biodiesel Project

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [Principal Investigator; Cao, Yan [Co-Principal Investigator

    2013-03-15

    Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the next 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily

  2. Comparison of Life Cycle energy consumption and GHG emissions of natural gas, biodiesel and diesel buses of the Madrid transportation system

    International Nuclear Information System (INIS)

    García Sánchez, Juan Antonio; López Martínez, José María; Lumbreras Martín, Julio; Flores Holgado, Maria Nuria

    2012-01-01

    This paper presents a comparative study on the use of three after-treatment technologies: i) EGR + DPF, ii) SCR + Urea and iii) 3-way catalyst when implemented in urban buses, to determinate the energy requirements, greenhouse gas emissions (GHG), direct Land Use Change (dLUC), abiotic depletion of fossil energy by means of a Life Cycle Assessment (LCA). The process of production, conditioning and transporting of the fuels used by the buses (diesel, biodiesel (B100), a blended biodiesel at 20% (B20) and natural gas) were also analyzed (Well-to-Tank analysis) along with the environmental impact due to its combustion in the bus (Tank-to-Wheel analysis). The environmental impact of the manufacturing, maintenance and recycling process of the urban buses and exhaust after-treatment systems has also been evaluated. Main results shows that Life Cycle of SCR + Urea technology reduces environmental impact to a greater extent than its global Life Cycle increases it when gasoil is used resulting in a final balance more efficient than the other options, the same behavior is observed with the use of B20 and B100 but only when 0%dLUC is assumed since if the percentage of dLUC increases the effectiveness of the SCR + Urea technology in the reduction of environmental impact tend to decrease. -- Highlights: ► We examine the environmental impact caused by the Life Cycle of each technology, fossil fuel, biofuel and vehicle. ► Biodiesel environmental impact depends largely on land transformed for grow crops. ► Using SCR + Urea technology and gasoil as a fuel in the bus further reduces the environmental impact.

  3. Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling

    International Nuclear Information System (INIS)

    Xu, Yanzhi; Gbologah, Franklin E.; Lee, Dong-Yeon; Liu, Haobing; Rodgers, Michael O.; Guensler, Randall L.

    2015-01-01

    applies the FEC to second-by-second GPS position data collected from buses operating in metropolitan Atlanta, GA. These operations, from two different transit agencies, feature distinctly different transit service types: local transit bus operations and longer-distance express bus operations. The results illustrate that the decision as to which bus technology-fuel combination produces the least greenhouse gas emissions is a function of location and route characteristics. For the express bus operations monitored, the case study shows that CNG vehicles offer greater emissions reductions than Biodiesel (B20). For local bus services, battery electric buses show the greatest emissions savings in the fuel cycle, as long as range limitations can be met for the specific routes. The amount of these emissions savings is, however, highly dependent on the power generation mix. Among CNG, B20, parallel hybrid, series hybrid, and fuel cell buses, the least emitting option varies by location, due to complex interactions of factors such as duty cycle, meteorology, and terrain

  4. Production of Biodiesels from Multiple Feedstocks and Properties of Biodiesels and Biodiesel/Diesel Blends: Final Report; Report 1 in a Series of 6

    Energy Technology Data Exchange (ETDEWEB)

    Kinast, J. A.

    2003-03-01

    In a project sponsored by the National Renewable Energy Laboratory, the Institute of Gas Technology is conducting an investigation of biodiesels produced from vegetable and animal based feedstocks. This subcontract report presents their findings.

  5. Biodiesel II: A new concept of biodiesel production - transesterification with supercritical methanol

    Directory of Open Access Journals (Sweden)

    Skala Dejan U.

    2004-01-01

    Full Text Available Biodiesel is defined as a fuel that might be used as a pure biofuel or at high concentration in mineral oil derivatives, in accordance with specific quality standards for transport applications. The main raw material used for biodiesel production is rapeseed, which contains mono-unsaturated (about 60% and also, in a lower quantity, poly-unsaturated fatty acids (C 18:1 and C 18:3, as well as some amounts of undesired saturated fatty acids (palmitic and stearic acids. Other raw materials have also been used in the research and industrial production of biodiesel (palm-oil, sunflower-oil, soybean-oil, waste plant oil, animal fats, etc. The historical background of the biodiesel production, installed industrial capacities, as well as Directives of the European Parliament and of the Council (May 2003 regarding the promotion of the use of biofuels or other renewable fuels for transport are discussed in the first part of this article (Chem. Ind. 58 (2004. The second part focused on some new concepts and the future development of technology for biodiesel production based on the use of non-catalytic transesterification under supercritical conditions. A literature review, as well as original results based on the transesterification of animal fats, plant oil and used plant oil were discussed. Obtained results were compared with the traditional concept of transesterification based on base or acid catalysis. Experimental investigations of transesterification with supercritical methanol were performed in a 2 dm3 autoclave at 140 bar pressure and at 300°C with molar ratio of methanol to triglycerides of about 41. The degree of esterification strongly depends on the density of supercritical methanol and on the possibility of reaction occurring in one phase.

  6. Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology

    International Nuclear Information System (INIS)

    Dharma, S.; Masjuki, H.H.; Ong, Hwai Chyuan; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Mahlia, T.M.I.

    2016-01-01

    Highlights: • Jatropha curcas and Ceiba pentandra are potential feedstock for biodiesel. • Optimization of biodiesel production by response surface methodology. • Jatropha curcas–Ceiba pentandra mixed biodiesel yield was 93.33%. • The properties of mixed biodiesel fulfill ASTM (D6751) standard. - Abstract: Exploring and improvement of biodiesel production from non-edible vegetable oil is one of the effective ways to solve limited amount of traditional raw materials and their high prices. The main objective of this study is to optimize the biodiesel production process parameters (methanol-to-oil ratio, agitation speed and concentration of the potassium hydroxide catalyst) of a biodiesel derived from non-edible feedstocks, namely Jatropha curcas and Ceiba pentandra, using response surface methodology based on Box–Behnken experimental design. Based on the results, the optimum operating parameters for transesterification of the J50C50 oil mixture at 60 °C over a period of 2 h are as follows: methanol-to-oil ratio: 30%, agitation speed: 1300 rpm and catalyst concentration: 0.5 wt.%. These optimum operating parameters gives the highest yield for the J50C50 biodiesel with a value of 93.33%. The results show that there is a significant improvement in the physicochemical properties of the J50C50 biodiesel after optimization, whereby the kinematic viscosity at 40 °C, density at 15 °C, calorific value, acid value and oxidation stability is 3.950 mm"2/s, 831.2 kg/m"3, 40.929 MJ/kg, 0.025 mg KOH/g and 10.01 h, respectively. The physicochemical properties of the optimized J50C50 biodiesel fulfill the requirements given in the ASTM (D6751) and (EN14214) standards.

  7. Production of Biodiesel from Vegetable Oil Using Microware Irradiation

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2012-01-01

    Full Text Available The petroleum oil supply crisis, the increase in demand and the price eruption have led to a search for an alternative fuel of bio-origin in India. Among the alternative fuels, biodiesel is considered as a sustainable renewable alternative fuel to fossil diesel. Non-edible jatropha oil has considerable potential for the production of biodiesel in India. The production of biodiesel from jatropha oil using a conventional heating method takes more than 1h. In this work, microwave irradiation has been used as a source of heat for the transesterification reaction. A domestic microwave oven was modified and used for microwave heating of the reactants. The time taken for biodiesel production using microwave irradiation was 1 min. The fuel property analysis shows that the properties of jatropha oil biodiesel satisfy the biodiesel standards, and are close to the fossil diesel standards. From this work, it is concluded that biodiesel can be produced from vegetable oil using microwave irradiation, with a significant reduction in production time.

  8. Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia

    International Nuclear Information System (INIS)

    Jayed, M.H.; Masjuki, H.H.; Kalam, M.A.; Mahlia, T.M.I.; Liaquat, A.M.; Husnawan, M.

    2011-01-01

    Petro diplomacy has played its role in last few decades and that makes energy security a major concern worldwide. Rapid climate change and environmental protection is another vital issue to be addressed in recent energy policies. So an alternative carbon neutral transport fuel is a must in new sustainable energy mix. Biodiesel has immense potentiality to be a part of a sustainable energy mix. In this energy scenario, Brazil's success is a role model in utilizing its agro-industry for reducing poverty, greenhouse gas emission and petro-dependency simultaneously. Brazil commercialized bioethanol in mass scale by introducing flexible fuel vehicles in market. This dedicated engine idea moralizes a new concept of dedicated biodiesel engine vehicles for Malaysia and Indonesia. Southeast Asian countries, i.e. Malaysia and Indonesia is the largest producer as well as exporter of palm oil. Growing at highest yield rate among other biodiesel feedstock, palm based biodiesel is a top exported product for this region. This paper will quantify the prospects of a dedicated biodiesel engine vehicle for Malaysia and Indonesia that will initiate palm based biodiesel in fuel supply chain by leapfrogging the barriers of biodiesel utilization by boosting local automobile industry simultaneously. This article will also review on energy scenario of Malaysia and Indonesia and their renewable energy policies and challenges for coming decades. (author)

  9. Biodiesel Production from Waste Cooking Oil Using Hydrodinamic Cavitation

    Directory of Open Access Journals (Sweden)

    Muhammad Supardan

    2013-04-01

    Full Text Available The aim of this research was to study biodiesel production from low cost feedstock of waste cooking oil (WCO using hydrodynamic cavitation apparatus. A two-step processes esterification process and transesterification process using hydrodynamic cavitation for the production of biodiesel from WCO is presented. The first step is acid-catalyzed esteri-fication process for reducing free fatty acid (FFA content of WCO and followed by base-catalyzed transesterification process for converting WCO to biodiesel as the second step. The result of esterification process with methanol to oil molar ratio of 5 and temperature of 60 oC showed that the initial acid value of WCO of 3.9 mg KOH/g can be decreased to 1.81 mg KOH/g in 120 minutes. The highest yield of biodiesel in transesterification process of 89.4% obtained at reaction time of 150 minutes with methanol to oil molar ratio of 6. The biodiesel produced in the experiment was analyzed by gas chromatography-mass spectrometry (GC-MS, which showed that it mainly contained five fatty acid methyl esters. In addition, the properties of biodiesel showed that all of the fuel properties met the Indonesian National Standard (INS No. 04-7182-2006 for biodiesel

  10. Prospects of biodiesel production from microalgae in India

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shakeel A.; Hussain, Mir Z.; Prasad, S. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Rashmi; Banerjee, U.C. [Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, Phase X, S.A.S. Nagar, Mohali 160062, Punjab (India)

    2009-12-15

    Energy is essential and vital for development, and the global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment. Renewable and carbon neutral biodiesel are necessary for environmental and economic sustainability. Biodiesel demand is constantly increasing as the reservoir of fossil fuel are depleting. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Production of biodiesel using microalgae biomass appears to be a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. Microalgae are photosynthetic microorganisms which convert sunlight, water and CO{sub 2} to sugars, from which macromolecules, such as lipids and triacylglycerols (TAGs) can be obtained. These TAGs are the promising and sustainable feedstock for biodiesel production. Microalgal biorefinery approach can be used to reduce the cost of making microalgal biodiesel. Microalgal-based carbon sequestration technologies cover the cost of carbon capture and sequestration. The present paper is an attempt to review the potential of microalgal biodiesel in comparison to the agricultural crops and its prospects in India. (author)

  11. Biodiesel production from microbial granules in sequencing batch reactor.

    Science.gov (United States)

    Liu, Lin; Hong, Yuling; Ye, Xin; Wei, Lili; Liao, Jie; Huang, Xu; Liu, Chaoxiang

    2018-02-01

    Effect of reaction variables of in situ transesterification on the biodiesel production, and the characteristic differences of biodiesel obtained from aerobic granular sludge (AG) and algae-bacteria granular consortia (AAG) were investigated. The results indicated that the effect of variables on the biodiesel yield decreased in the order of methanol quantity > catalyst concentration > reaction time, yet the parameters change will not significantly affect biodiesel properties. The maximum biodiesel yield of AAG was 66.21 ± 1.08 mg/g SS, what is significant higher than that of AG (35.44 ± 0.92 mg/g SS). Although methyl palmitate was the dominated composition of biodiesel obtained from both granules, poly-unsaturated fatty acid in the AAG showed a higher percentage (21.86%) than AG (1.2%) due to Scenedesmus addition. Further, microbial analysis confirmed that the composition of biodiesel obtained from microbial granules was also determined by bacterial community, and Xanthomonadaceae and Rhodobacteraceae were the dominant bacteria of AG and AAG, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Column chromatography purification and analysis of biodiesel by transesterification].

    Science.gov (United States)

    Liu, Yang; Yi, Huai-feng; Chen, Yu; Wu, Yu-long; Yang, Ming-de; Chen, Zeng; Tong, Jun-mao

    2012-02-01

    In the present paper, crude biodiesel prepared with sorbifolia oil as raw material by transesterification was purified by column chromatography, then the composition of biodiesel was analyzed by gas chromatography, FTIR, GC-MS and 1H NMR. Column chromatography can separate the crude biodiesel into two fractions: petroleum ether eluted fraction (A1) and methanol eluted fraction (A2). Petroleum ether eluted fraction was mainly biodiesel fraction, which was produced from sorbifolia oil by transesterification, including methyl linoleate, methyl cis-9-octadecenoate and so on; methanol eluted fraction was mainly glycerol fraction, which came from the side reaction of transesterification. The results show that the purity of refined biodiesel increased from 77.51% to 93.872, and the product recovery rate reached up to 91.04% after the purification by column chromatography. The results obtained by FTIR and 1H NMR further showed that the column chromatography can effectively improve the purity of biodiesel. This paper provides a basis for industrialization of purification of biodiesel.

  13. Thermally assisted sensor for conformity assessment of biodiesel production

    Science.gov (United States)

    Kawano, M. S.; Kamikawachi, R. C.; Fabris, J. L.; Muller, M.

    2015-02-01

    Although biodiesel can be intentionally tampered with, impairing its quality, ineffective production processes may also result in a nonconforming final fuel. For an incomplete transesterification reaction, traces of alcohol (ethanol or methanol) or remaining raw material (vegetable oil or animal fats) may be harmful to consumers, the environment or to engines. Traditional methods for biodiesel assessment are complex, time consuming and expensive, leading to the need for the development of new and more versatile processes for quality control. This work describes a refractometric fibre optic based sensor that is thermally assisted, developed to quantify the remaining methanol or vegetable oil in biodiesel blends. The sensing relies on a long period grating to configure an in-fibre interferometer. A complete analytical routine is demonstrated for the sensor allowing the evaluation of the biodiesel blends without segregation of the components. The results show the sensor can determine the presence of oil or methanol in biodiesel with a concentration ranging from 0% to 10% v/v. The sensor presented a resolution and standard combined uncertainty of 0.013% v/v and 0.62% v/v for biodiesel-oil samples, and 0.007% v/v and 0.22% v/v for biodiesel-methanol samples, respectively.

  14. Biodiesel production methods of rubber seed oil: a review

    Science.gov (United States)

    Ulfah, M.; Mulyazmi; Burmawi; Praputri, E.; Sundari, E.; Firdaus

    2018-03-01

    The utilization of rubber seed as raw material of biodiesel production is seen highly potential in Indonesia. The availability of rubber seeds in Indonesia is estimated about 5 million tons per annum, which can yield rubber seed oil about 2 million tons per year. Due to the demand of edible oils as a food source is tremendous and the edible oil feedstock costs are far expensive to be used as fuel, production of biodiesel from non-edible oils such as rubber seed is an effective way to overcome all the associated problems with edible oils. Various methods for producing biodiesel from rubber seed oil have been reported. This paper introduces an optimum condition of biodiesel production methods from rubber seed oil. This article was written to be a reference in the selection of methods and the further development of biodiesel production from rubber seed oil. Biodiesel production methods for rubber seed oils has been developed by means of homogeneous catalysts, heterogeneous catalysts, supercritical method, ultrasound, in-situ and enzymatic processes. Production of biodiesel from rubber seed oil using clinker loaded sodium methoxide as catalyst is very interesting to be studied and developed further.

  15. Assessment of boundary lubrication in biodiesels by nanotribological tests

    International Nuclear Information System (INIS)

    Maru, Marcia M.; Almeida, Clara M.; Silva, Rui F.; Achete, Carlos A.

    2013-01-01

    Nanoscale measurements using atomic force microscopy are performed in order to scrutinize the friction phenomena observed in microscale ball-on-disc tribological tests under (boundary lubrication) BL regime. Two reference biodiesels, one derived from a vegetable source (soybean) and the other from animal fat, are compared. A linear dependence of the friction coefficient (μ) with the Stribeck parameter (S = viscosity × velocity/load) is observed: μ = 0.11 − 26.54 × S for the animal fat and μ = 0.12 − 51.56 × S for the soybean biodiesel. The nanotribological tests allowed highlighting the cohesion component of friction force in the BL regime that is associated to the intrinsic characteristics of the biodiesels, the respective friction coefficients being μ = 0.0206 for the animal fat and μ = 0.0233 for the soybean biodiesel. The better lubricity of the animal fat biodiesel compared to the soybean observed in microscale is attributed to the presence of sulfur and to the higher amount of mono- and di-glycerides contaminants in it. The polarity and/or chemical affinity of the respective sulfur and OH groups facilitate them to reacting with the steel surfaces during the rubbing action. At nanoscale level, the same ranking in friction is observed among the biodiesels, being that here the friction phenomena are attributed to the cohesive forces other than those related to viscosity. - Highlights: • The frictional behavior of standard reference biodiesels is studied. • Nanotribology tests help scrutinizing microscale friction in boundary lubrication. • AFM tests allowed highlighting the cohesion component of friction in the BL regime. • Animal fat biodiesel promotes lower and more stable friction than soybean biodiesel

  16. Production and characterization of biodiesel from Camelus dromedarius (Hachi) fat

    International Nuclear Information System (INIS)

    Sbihi, Hassen Mohamed; Nehdi, Imededdine Arbi; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2014-01-01

    Highlights: • Transesterification reaction with methanol in the presence of NaOH as a catalyst. • Optimization of key reaction parameters were performed. • Some fuel properties of biodiesel were measured and compared with biodiesel standards. • Ten of the properties that were evaluated for the diesel conform to the ASTM and EN standards values. - Abstract: Recently, biodiesel has been gaining market share against fossil-origin diesel due to its ecological benefits and because it can be directly substituted for traditional diesel oils. However, the high cost of the raw materials required to produce biodiesel make it more expensive than fossil diesel. Therefore, low-priced raw materials, such as waste cooking oil and animal fats, are of interest because they can be used to drive down the cost of biodiesel. We have produced biodiesel from camel fat using a transesterification reaction with methanol in the presence of NaOH. The experimental variables investigated in this study were the temperature (30–75 °C), reaction time (20–160 min), catalyst concentration (0.25–1.5%), and methanol/fat molar ratio (4:1–9:1). A maximum biodiesel yield of 98.6% was obtained. The fuel properties of biodiesel, such as iodine value, saponification value, density, kinematic viscosity, cetane number, flash point, sulfur content, carbon residue, water and sediment, high heating value, refractive index, cloud point, pour point, and distillation characteristics, were measured. The properties were compared with EN 14214 and ASTM 6751 biodiesel standards, and an acceptable level of agreement was obtained

  17. Combustion of biodiesel in a large-scale laboratory furnace

    International Nuclear Information System (INIS)

    Pereira, Caio; Wang, Gongliang; Costa, Mário

    2014-01-01

    Combustion tests in a large-scale laboratory furnace were carried out to assess the feasibility of using biodiesel as a fuel in industrial furnaces. For comparison purposes, petroleum-based diesel was also used as a fuel. Initially, the performance of the commercial air-assisted atomizer used in the combustion tests was scrutinized under non-reacting conditions. Subsequently, flue gas data, including PM (particulate matter), were obtained for various flame conditions to quantify the effects of the atomization quality and excess air on combustion performance. The combustion data was complemented with in-flame temperature measurements for two representative furnace operating conditions. The results reveal that (i) CO emissions from biodiesel and diesel combustion are rather similar and not affected by the atomization quality; (ii) NO x emissions increase slightly as spray quality improves for both liquid fuels, but NO x emissions from biodiesel combustion are always lower than those from diesel combustion; (iii) CO emissions decrease rapidly for both liquid fuels as the excess air level increases up to an O 2 concentration in the flue gas of 2%, beyond which they remain unchanged; (iv) NO x emissions increase with an increase in the excess air level for both liquid fuels; (v) the quality of the atomization has a significant impact on PM emissions, with the diesel combustion yielding significantly higher PM emissions than biodiesel combustion; and (vi) diesel combustion originates PM with elements such as Cr, Na, Ni and Pb, while biodiesel combustion produces PM with elements such as Ca, Mg and Fe. - Highlights: • CO emissions from biodiesel and diesel tested are similar. • NO x emissions from biodiesel tested are lower than those from diesel tested. • Diesel tested yields significantly higher PM (particulate matter) emissions than biodiesel tested. • Diesel tested originates PM with Cr, Na, Ni and Pb, while biodiesel tested produces PM with Ca, Mg and Fe

  18. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.

    Science.gov (United States)

    Mazivila, Sarmento Júnior

    2018-04-01

    Discrimination of biodiesel feedstock present in diesel-biodiesel blend is challenging due to the great similarity in the spectral profile as well as digital image profile of each type of feedstock employed in biodiesel production. Once the marketed diesel-biodiesel blend is subsidized, in which motivates adulteration in biofuel blend by cheaper supplies with high solubility to obtain profits associated with the subsidies involved in biodiesel production. Non-destructive analytical methods based on qualitative and quantitative analysis for detecting marketed diesel-biodiesel blend adulteration are reviewed. Therefore, at the end is discussed the advantage of the qualitative analysis over quantitative analysis, when the systems require immediate decisions such as to know if the marketed diesel-biodiesel blend is unadulterated or adulterated in order to aid the analyst in selecting the most appropriate green analytical procedure for detecting diesel-biodiesel blend adulteration proceeding in fast way. This critical review provides a brief review on the non-destructive analytical methods reported in scientific literature based on different first-order multivariate calibration models coupled with spectroscopy data and digital image data to identify the type of biodiesel feedstock present in diesel-biodiesel blend in order to meets the strategies adopted by European Commission Directive 2012/0288/EC as well as to monitoring diesel-biodiesel adulteration. According to that Directive, from 2020 biodiesel produced from first-generation feedstock, that is, oils employed in human food such as sunflower, soybean, rapeseed, palm oil, among other oils should not be subsidized. Therefore, those non-destructive analytical methods here reviewed are helpful for discrimination of biodiesel feedstock present in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC as well as for detecting diesel-biodiesel blend adulteration. Copyright © 2017 Elsevier B

  19. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  20. Modelling and operation of reactors for enzymatic biodiesel production

    DEFF Research Database (Denmark)

    Price, Jason Anthony

    to the production of high fructose corn syrup, upgrading of fats and oils and biodiesel production to name a few. Despite these examples of industrial enzymatic applications, it is still not “clear cut” how to implement biocatalyst in industry and how best to optimize the processes. This is because the processing...... aspects of the enzyme with reaction/reactor engineering is performed. This strategy is applied to a case study of biodiesel production catalysed by a liquid enzyme formulation. The use of enzymes for biodiesel production is still in its infancy with non-optimized process designs. Furthermore is it unclear...

  1. Speed of sound in biodiesel produced by low power ultrasound

    Science.gov (United States)

    Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2018-03-01

    The quality control of the biodiesel produced is an important issue to be addressed for every manufacturer or retailer. The speed of sound is a property that has an influence on the quality of the produced fuel. This work presents the evaluation about the speed of sound in biodiesel produced with the aid of low power ultrasound in the frequencies of 1 MHz and 3 MHz. The speed of sound was measured by pulse-echo technique. The ultrasonic frequency used during reaction affects the speed of sound in biodiesel. The larger expanded uncertainty for adjusted curve was 4.9 m.s-1.

  2. Experimental modeling of NOx and PM generation from combustion of various biodiesel blends for urban transport buses : research brief.

    Science.gov (United States)

    2016-08-01

    Although it is generally accepted : that biodiesel fuel contributes : to the reduction of pollutants, : biodiesel still needs more study : for better control of combustion emissions and engine performance. Biodiesel has very diverse : sources of feed...

  3. French bio-diesel demand and promoting measures analysis by 2010; Analyse de la demande et des mesures de promotion francaises du biodiesel a l'horizon 2010

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, F

    2008-02-15

    The researches presented aim at assessing bio-diesel promoting measures under consideration in France by 2010. This assessment is based on a deep study of French bio-diesel demand. The use of a linear model for optimizing the whole French refining industry costs allow us to take into account the physicochemical characteristics of bio-diesel useful for gas oil blending operation. This researches show that bio-diesel can be incorporated up to 27% blend in volume to diesel fuel without major technical problem. A decomposition of the value allotted to the bio-diesel by French refiners according to its physicochemical characteristics shows that energy content is the most disadvantageous characteristics for bio-diesel incorporation and, up to 17%, density become also constraining. However, the low bio-diesel sulphur content could become interesting from now to 2010. On the basis of this bio-diesel demand analysis, we proceed to an external coupling of an agro-industrial model of bio-diesel supply with the French refining model. Thus, we study the impact of the 2010 French bio-diesel consumption objective on agricultural surface need, the competitiveness of the bio-diesel, the reduction of greenhouse gases emissions and the trade balance of the petroleum products. On this basis, we propose a critical analysis of French bio-diesel promoting measures under consideration by 2010. (author)

  4. Biomass for biodiesel production on family farms in Brazil: promise or failure? : integrated assessment of biodiesel crops, farms, policies and producer organisations

    NARCIS (Netherlands)

    Belo Leite, Dal J.G.

    2013-01-01

    In Brazil, a biodiesel policy was implemented as a way of reducing poverty among family farms. The objective of this thesis is to perform an integrated assessment of biodiesel crops, farm types, biodiesel policies and producer organisations that reveals opportunities and limitations of family

  5. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  6. Evaluation of biodiesel obtained from cottonseed oil

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Umer [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad-38040 (Pakistan); Department of Industrial Chemistry, Government College University, Faisalabad-38000 (Pakistan); Anwar, Farooq [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad-38040 (Pakistan); Knothe, Gerhard [United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604 (United States)

    2009-09-15

    Esters from vegetable oils have attracted a great deal of interest as substitutes for petrodiesel to reduce dependence on imported petroleum and provide a fuel with more benign environmental properties. In this work biodiesel was prepared from cottonseed oil by transesterification with methanol, using sodium hydroxide, potassium hydroxide, sodium methoxide and potassium methoxide as catalysts. A series of experiments were conducted in order to evaluate the effects of reaction variables such as methanol/oil molar ratio (3:1-15:1), catalyst concentration (0.25-1.50%), temperature (25-65 C), and stirring intensity (180-600 rpm) to achieve the maximum yield and quality. The optimized variables of 6:1 methanol/oil molar ratio (mol/mol), 0.75% sodium methoxide concentration (wt.%), 65 C reaction temperature, 600 rpm agitation speed and 90 min reaction time offered the maximum methyl ester yield (96.9%). The obtained fatty acid methyl esters (FAME) were analyzed by gas chromatography (GC) and {sup 1}H NMR spectroscopy. The fuel properties of cottonseed oil methyl esters (COME), cetane number, kinematic viscosity, oxidative stability, lubricity, cloud point, pour point, cold filter plugging point, flash point, ash content, sulfur content, acid value, copper strip corrosion value, density, higher heating value, methanol content, free and bound glycerol were determined and are discussed in the light of biodiesel standards such as ASTM D6751 and EN 14214. (author)

  7. Biodiesel and renewable diesel: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Knothe, Gerhard [National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University St., Peoria, IL 61604 (United States)

    2010-06-15

    The search for alternatives to petroleum-based fuels has led to the development of fuels from various sources, including renewable feedstocks such as fats and oils. Several types of fuels can be derived from these triacylglycerol-containing feedstocks. One of them is biodiesel, which is defined as the mono-alkyl esters of vegetable oils or animal fats. Biodiesel is produced by transesterifying the oil or fat with an alcohol such as methanol under mild conditions in the presence of a base catalyst. Another kind of product that can be obtained from lipid feedstocks is a fuel whose composition simulates that of petroleum-derived diesel fuel. This kind of fuel, probably best termed ''renewable diesel'', is produced from the fat or oil by a hydrodeoxygenation reaction at elevated temperature and pressure in the presence of a catalyst. This article discusses in a general and comparative fashion aspects such as fuel production and energy balance, fuel properties, environmental effects including exhaust emissions and co-products. Among the questions that are addressed are if these fuels compete with or complement each other and what the effect of production scale may be. (author)

  8. Treatment of Biodiesel Wastewater by Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Anchalee Srirangsan

    2009-07-01

    Full Text Available The objective of this research was to determine the optimum conditions for biodiesel wastewater treatment using an electrocoagulation process. Wastewater samples were obtained from a small-scale, commercial biodiesel production plant that employs an alkali-catalyzed tranesterification process. The wastewater was characterized by the high contents of alkali and high oil content of 6,020 mg/L. Tested operational conditions included types of electrode, current density, retention time and initial pH. The tested electrode materials for electrocoagulation were aluminum (Al, iron (Fe and graphite (C. Five tested pairs of anode and cathode materials included Fe-Fe, Fe-C, Al-Al, Al-C, C-C. Results show that the optimum conditions were achieved by using the electrodes of Al-C, applying the current density of 8.32 mA/cm2 to the wastewater with an initial pH value of 6 for 25 min. The removal efficiency was found to be 97.8 % for grease & oil (G&O, 96.9 % for SS and 55.4 % for COD. Moreover, the small amount of produced sludge was readily to remove from the treated wastewater.

  9. Genomic Prospecting for Microbial Biodiesel Production

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Lykidis, Athanasios; Ivanova, Natalia

    2008-03-20

    Biodiesel is defined as fatty acid mono-alkylesters and is produced from triacylglycerols. In the current article we provide an overview of the structure, diversity and regulation of the metabolic pathways leading to intracellular fatty acid and triacylglycerol accumulation in three types of organisms (bacteria, algae and fungi) of potential biotechnological interest and discuss possible intervention points to increase the cellular lipid content. The key steps that regulate carbon allocation and distribution in lipids include the formation of malonyl-CoA, the synthesis of fatty acids and their attachment onto the glycerol backbone, and the formation of triacylglycerols. The lipid biosynthetic genes and pathways are largely known for select model organisms. Comparative genomics allows the examination of these pathways in organisms of biotechnological interest and reveals the evolution of divergent and yet uncharacterized regulatory mechanisms. Utilization of microbial systems for triacylglycerol and fatty acid production is in its infancy; however, genomic information and technologies combined with synthetic biology concepts provide the opportunity to further exploit microbes for the competitive production of biodiesel.

  10. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  11. Equilibrium study for ternary mixtures of biodiesel

    Science.gov (United States)

    Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.

    2017-11-01

    The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.

  12. Performance characteristics of rubber seed oil biodiesel

    Science.gov (United States)

    Liu, P.; Qin, M.; Wu, J.; Chen, B. S.

    2018-01-01

    The lubricity, ignition quality, oxidative stability, low temperature flow property and elastomeric compatibility of rubber seed oil biodiesel(RSM) were evaluated and compared with conventional petro-diesel. The results indicated that RSM and its blends with petro-diesel possessed outstanding lubricity manifested by sharp decrease in wear scar diameters in the high-frequency reciprocating rig(HFRR) testing. They also provided acceptable flammability and cold flow property,although the cetane numbers (CN) and cold filter plugging points(CFPP) of biodiesel blends slightly decreased with increasing contents of petro-diesel. However, RSM proved to be very susceptible to oxidation at elevated temperatures during prolonged oxidation durations, characterized by increased peroxide values, viscosity, acid values and isooctane insolubles. The oxidation stability of RSM could be significantly improved by antioxidants such as BD100, a phenol antioxidant produced by Ciba corporation. Furthermore, RSM provided poor compatibility with some elastomeric rubbers such as polyacrylate, nitrile-butadiene and chloroprene, but was well compatible with the hydrogenated nitrile-butadiene elastomer.

  13. Biodiesel production using waste frying oil

    International Nuclear Information System (INIS)

    Charpe, Trupti W.; Rathod, Virendra K.

    2011-01-01

    Research highlights: → Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. → Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. → Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. → Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

  14. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  15. Biodiesel production by transesterification of duck tallow with methanol on alkali catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyong-Hwan [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea); Kim, Jin [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea)]|[Department of Advanced Chemicals Graduate School, Chonnam National University, Gwangju 500-757 (Korea); Lee, Ki-Young [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea)]|[Department of Applied Chemical Engineering and The Research Institute for Catalysis, Chonnam National University, Gwangju 500-757 (Korea)

    2009-01-15

    Duck tallow was employed as a feedstock for the production of biodiesel by transesterification with methanol. The content of fatty acid methyl ester (FAME) was evaluated on various alkali catalysts during transesterification. The composition and chemical properties of the FAME were investigated in the raw duck tallow and the biodiesel products. The major constituent in the biodiesel product was oleic acid. The FAME content was 97% on KOH catalyst in the reaction. It was acceptable for the limit of European biodiesel qualities for BD100. Acid value, density, and kinematic viscosity of the biodiesel products also came up to the biodiesel qualities. (author)

  16. Impact of high soot-loaded and regenerated diesel particulate filters on the emissions of persistent organic pollutants from a diesel engine fueled with waste cooking oil-based biodiesel

    International Nuclear Information System (INIS)

    Chen, Chia-Yang; Lee, Wen-Jhy; Wang, Lin-Chi; Chang, Yu-Cheng; Yang, Hsi-Hsien; Young, Li-Hao; Lu, Jau-Huai; Tsai, Ying I.; Cheng, Man-Ting; Mwangi, John Kennedy

    2017-01-01

    Highlights: • WCO-based biodiesel blends cannot stimulate POPs formation in uncatalyzed DPF. • Formation mechanism of POPs in diesel engines is homogeneous gas-phase formation. • The gas-phase POPs are highly dominant in the raw exhausts of diesel engines. • The regeneration of the DPF can drastically reduce the formation potential of POPs in the DPFs. - Abstract: This study evaluated the impact on persistent organic pollutant (POP) emissions from a diesel engine when deploying a diesel oxidation catalyst (DOC) combined with an uncatalyzed diesel particulate filter (DPF), as well as fueling with conventional diesel (B2) and waste cooking oil-based (WCO-based) biodiesel blends (B10 and B20). When the engine was fueled with WCO-based biodiesel blends (B10 and B20) in combination with deploying DOC+A-DPF, their levels of the chlorine and potassium contents could not stimulate the formation of chlorinated POPs (PCDD/Fs and PCBs), although previous studies had warned that happened on diesel engines fueled with biodiesel and deployed with iron-catalyzed DPFs. In contrast, the WCO-based biodiesel with a lower aromatic content reduced the precursors for POP formation, and its higher oxygen content compared to diesel promoted more complete combustion, and thus using WCO-based biodiesel could reduce both PM_2_._5 and POP emissions from diesel engines. This study also evaluated the impact of DPF conditions on the POP emissions from a diesel engine; that is, the difference in POP emissions before and just after the regeneration of the DPF. In comparison to the high soot-loaded DPF scenario, the regeneration of the DPF can drastically reduce the formation potential of POPs in the DPFs. An approach was developed to correct the effects of sampling artifacts on the partitioning of gas- and particle-phase POPs in the exhaust. The gas-phase POPs are highly dominant (89.7–100%) in the raw exhausts of diesel engines, indicating that the formation mechanism of POPs in diesel

  17. Rheological behavior of oil and biodiesel from Moringa oleifera

    International Nuclear Information System (INIS)

    Díaz Domínguez, Yosvany; Tabio García, Danger; Rondón Macías, Maylin; Fernández Santana, Elina; Rodríguez Muñoz, Susana; Piloto‐Rodríguez, Ramón

    2017-01-01

    The seeds of Moringa oleifera contain between 30 and 45% of oil, which has motivated the development of investigations with a view to their possible use. The present work aims to determine the rheological behavior of Moringa oleifera oil and biodiesel. The synthesis of biodiesel from crude Moringa oleifera oil was made using methanol with presence of sodium hydroxide. The average yield of this stage was 93%. The results of the rheological study shown that the viscosity at 40°C of Moringa oleifera oil is independent of the shear rate, which corresponds to the behavior of a Newtonian fluid. However, for biodiesel it was demonstrated that there is a dependence of the viscosity with the shear rate (non-Newtonian fluid). This result is corroborated by the fluidity curve, assuring that Moringa oleifera biodiesel behaves as a dilating fluid. (author)

  18. Nitrile rubber and carboxylated nitrile rubber resistance to soybean biodiesel

    Directory of Open Access Journals (Sweden)

    Felipe Nunes Linhares

    2018-03-01

    Full Text Available Abstract Biodiesel has been considered a suitable substitute for petroleum diesel, but their chemical composition differs greatly. For this reason, biodiesel interacts differently than petroleum diesel with various materials, including rubbers. Therefore, the resistance of some elastomers should be thoroughly evaluated, specifically those which are commonly used in automotive industry. Nitrile rubber (NBR is widely used to produce vehicular parts that are constantly in contact with fuels. This paper aimed to assess the resistance of carboxylated nitrile rubber (XNBR with 28% of acrylonitrile content to soybean biodiesel in comparison with non-carboxylated nitrile rubber samples, with high and medium acrylonitrile content (33 and 45%. NBR with medium acrylonitrile content showed little resistance to biodiesel. However, carboxylated nitrile rubber even with low acrylonitrile content had similar performance to NBR with high acrylonitrile content.

  19. Glycerol extracting dealcoholization for the biodiesel separation process.

    Science.gov (United States)

    Ye, Jianchu; Sha, Yong; Zhang, Yun; Yuan, Yunlong; Wu, Housheng

    2011-04-01

    By means of utilizing sunflower oil and Jatropha oil as raw oil respectively, the biodiesel transesterification production and the multi-stage extracting separation were carried out experimentally. Results indicate that dealcoholized crude glycerol can be utilized as the extracting agent to achieve effective separation of methanol from the methyl ester phase, and the glycerol content in the dealcoholized methyl esters is as low as 0.02 wt.%. For the biodiesel separation process utilizing glycerol extracting dealcoholization, its technical and equipment information were acquired through the rigorous process simulation in contrast to the traditional biodiesel distillation separation process, and results show that its energy consumption decrease about 35% in contrast to that of the distillation separation process. The glycerol extracting dealcoholization has sufficient feasibility and superiority for the biodiesel separation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Biodiesel in Belgium. From rapeseed oil to used vegetable oils

    International Nuclear Information System (INIS)

    Pelkmans, L.

    1997-01-01

    There are two motives for the search for alternative motor fuels: reducing the growing pressure of traffic on environment, and looking for a replacement for petrol and diesel oil that are bound to be worn-out in a few decades. A promising alternative motor fuel is biodiesel. The author's institute is involved in its second biodiesel demonstration project. In the first project RME (rapeseed methyl ester) was used undiluted in five passenger cars for two years. There were no technical problems and a clear environmental advantage was noticed. However, the price remains a problem. The use of waste vegetable oils for the production of biodiesel could help to overcome this problem. Therefore, a second biodiesel demonstration project was started in which UVOME (used vegetable oil methyl ester) is used. The preliminary results show a great similarity with the RME results and no technical problems in real life use. 1 fig., 1 tab., 5 refs

  1. Biodiesel Production from Rubber Seed Oil via Esterification Process

    Directory of Open Access Journals (Sweden)

    W Widayat

    2012-07-01

    Full Text Available One promise source of alternative energy is biodiesel from rubber seed oil, because the raw materials available in plentiful quantities and can be renewed. In addition, the rubber seed is still lack of utilization, and Indonesia is one of the largest rubbers producing country in the world. The objective of this research is to studied on biodiesel production by esterification process. Parameters used in this study are the ratio of catalyst and temperature and its influence on the characteristics of the resulting biodiesel product. Characterization of rubber seed include acid content number analysis, saponification numbers, density, viscosity, iodine number, type of free fatty acids and triglyceride oils. The results of analysis showed that rubber seed oil content obtained is 50.5%. The results of the GCMS analysis showed that a free fatty acid level in rubber seed is very high. Conversion into bio-diesel oil is obtained by at most 59.91% and lowest 48.24%.

  2. Investigation of Oxidation stability of Pongamia Biodiesel and its blends

    Directory of Open Access Journals (Sweden)

    Gaurav Dwivedi

    2016-03-01

    Full Text Available Biodiesel from Pongamia oil is one of the promising non edible sources in India. But the main problem of using Pongamia biodiesel as fuel is its poor stability characteristics. Poor stability leads to gum formation which further leads to a storage problem of these fuels for a longer period of time. This paper investigates the methodology of improving the stability characteristics of Pongamia biodiesel by blending with diesel and use of the antioxidant Pyrogallol. The experimental investigation shows that blending with diesel and using of antioxidant Pyrogallol improves the stability characteristics of Pongamia biodiesel significantly. Results of the study show that the optimum amount of antioxidant (PY for pure PB20 is 300 ppm to maintain the oxidation stability specification and blending of diesel with Pongamia shows that PB10 requires no additive to maintain its stability characteristics.

  3. Microreactors - a marvel of modern manufacturing technology: biodiesel case study

    CSIR Research Space (South Africa)

    Buddoo, SR

    2008-11-01

    Full Text Available Microreactors are miniature reactors for carrying out chemical reactions. CSIR Biosciences has been investigating the production of biodiesel using various sources of vegetable oils, for example, soya, sunflower, canada, Jatropha, palm and peanuts...

  4. Sustainable and Intensified Design of a Biodiesel Production Process

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Ismail, Muhammad I.; Babi, Deenesh Kavi

    impact and maximum profitability is needed. In this work a computer-aided framework for process synthesis and process intensification is applied for sustainable production of biodiesel from pure/waste palm oil as the feedstock. This approach examines several biodiesel processing routes that were...... collected through available data and current technologies reported in the literature. Using this information, a generic superstructure of processing routes was created that described a network of configurations representing multiple designs for the production of biodiesel. Therefore, based on the currently...... of economic and environmental sustainability was identified. For the case of biodiesel production, the intensified process alternative turned out to be the most economical and more sustainable than other alternatives. The computer-aided methods and tools used in this work are: SustainPro (method and tool...

  5. Analysis of national Jatropha biodiesel programme in Senegal

    DEFF Research Database (Denmark)

    Dafrallah, Touria; Ackom, Emmanuel

    2016-01-01

    and other biodiesel crop options, based on findings from an agro-environmental mapping exercise have been shown. Findings show that prior policies in agricultural and energy sectors had been instrumental in developing the NJP. It highlights significant challenges in the value chain, the implementation...... of NJP and on the importance of using empirical assessment of evidence to inform on the biodiesel crop type compared to a focus on only one crop, Jatropha. Agro-environmental mapping was identified as useful technique prior to biodiesel cultivation. The work reported here indicates Jatropha having...... on the suitability of areas for Jatropha cultivation and on environmentally, socially and culturally sensitive areas. Policy options have been suggested for environmentally benigned sustained biodiesel activities in Senegal....

  6. Production of biodiesel using lipase encapsulated in κ-carrageenan

    CERN Document Server

    Ravindra, Pogaku

    2015-01-01

    This book explores a novel technique for processing biodiesel using lipase immobilization by encapsulation and its physical properties, stability characteristics, and application in stirred tank and re-circulated packed bed immobilized reactors for biodiesel production. The enzymatic processing of biodiesel addresses many of the problems associated with chemical processing. It requires only moderate operating conditions and yields a high-quality product with a high level of conversion and the life cycle assessment of enzymatic biodiesel production has more favourable environmental consequences. The chemical processing problems of waste water treatment are lessened and soap formation is not an issue, meaning that waste oil with higher FFA can be used as the feedstock. The by product glycerol does not require any purification and it can be sold at higher price. However, soluble enzymatic processing is not perfect. It is costly, the enzyme cannot be recycled and its removal from the product is difficult. For...

  7. Biodiesel production from castor oil in Brazil: A difficult reality

    International Nuclear Information System (INIS)

    Silva Cesar, Aldara da; Otavio Batalha, Mario

    2010-01-01

    The Brazilian National Program for Production and Use of Biodiesel (PNPB in Portuguese) has created a huge demand for biodiesel in Brazil. The PNPB is strongly based on social development through the inclusion of family farmers in projects integrated with biodiesel power plants. Among the various oilseeds, castor bean (Ricinus communis L.) was identified as the ideal one to promote social development in the semi-arid region. However, although promising, the mechanisms of the federal program are still insufficient to promote the effective participation of family farmers. This research shows that companies are facing huge problems in implementing contracts with family farmers. It describes and analyzes the functioning dynamics of this agro-production chain. This paper addresses the identification and the discussion of these obstacles, in order to increase the competitiveness of the biodiesel agribusiness chain, based on castor oil social projects in Brazil.

  8. Biodegradation of biodiesel/diesel blends by Candida viswanathii

    African Journals Online (AJOL)

    USER

    2009-06-17

    diesel blends and neat biodiesel since it preferable ... alkanes and aromatic compounds obtained from the ... technique based on the action of microorganisms, which turn hazardous contaminants into non toxic substances.

  9. Brown Grease to Biodiesel Demonstration Project Report

    Energy Technology Data Exchange (ETDEWEB)

    San Francisco Public Utilities Commission; URS Corporation; Biofuels, Blackgold; Carollo Engineers

    2013-01-30

    Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a good example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas. The research goals are given below: To validate technology performance; To determine the costs and benefits [including economic, socioeconomic, and GHG emissions reduction] associated with co-locating this type of operation at a municipal wastewater treatment plant (WWTP); To develop a business case or model for replication of the

  10. Technical aspects of biodiesel production from vegetable oils

    OpenAIRE

    Krishnakumar Janahiraman; Venkatachalapathy Karuppannan V.S.; Elancheliyan Sellappan

    2008-01-01

    Biodiesel, a promising substitute as an alternative fuel has gained significant attention due to the finite nature of fossil energy sources and does not produce sulfur oxides and minimize the soot particulate in comparison with the existing one from petroleum diesel. The utilization of liquid fuels such as biodiesel produced from vegetable oil by transesterification process represents one of the most promising options for the use of conventional fossil fuels. In the first step of this experim...

  11. Oil extraction from plant seeds for biodiesel production

    OpenAIRE

    Keneni, Yadessa Gonfa; Marchetti, Jorge Mario

    2017-01-01

    Energy is basic for development and its demand increases due to rapid population growth, urbanization and improved living standards. Fossil fuels will continue to dominate other sources of energy although it is non-renewable and harm global climate. Problems associated with fossil fuels have driven the search for alternative energy sources of which biodiesel is one option. Biodiesel is renewable, non-toxic, environmental-friendly and an economically feasible options to tackle the depleting fo...

  12. Biodiesel de microalgas: avanços e desafios

    Directory of Open Access Journals (Sweden)

    André Luiz Custódio Franco

    2013-01-01

    Full Text Available Microalgae biomass has been described by several authors as the raw material with the greatest potential to meet the goals of replacing petroleum diesel by biodiesel while not competing with arable land suitable for food production. Research groups in different countries are seeking the most appropriate production model for productivity, economic viability and environmental sustainability. This review focused on recent advances and challenges of technology for the production of biodiesel from microalgae, including the procedures used to obtain biomass.

  13. A skeletal mechanism for biodiesel blend surrogates combustion

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Maghbouli, A.; Li, J.; Chua, K.J.

    2014-01-01

    Highlights: • A skeletal biodiesel reaction mechanism with 112 species was constructed. • The developed mechanism contains the CO, NO x and soot formation kinetics. • It was well validated against detailed reaction mechanism and experimental results. • The mechanism is suitable to simulate biodiesel, diesel and their blend fuels. - Abstract: A tri-component skeletal reaction mechanism consisting of methyl decanoate, methyl-9-decenoate, and n-heptane was developed for biodiesel combustion in diesel engine. It comprises 112 species participating in 498 reactions with the CO, NO x and soot formation mechanisms embedded. In this study, a detailed tri-component biodiesel mechanism was used as the start of mechanism reduction and the reduced mechanism was combined with a previously developed skeletal reaction mechanism for n-heptane to integrate the soot formation kinetics. A combined mechanism reduction strategy including the directed relation graph with error propagation and sensitivity analysis (DRGEPSA), peak concentration analysis, isomer lumping, unimportant reactions elimination and reaction rate adjustment methods was employed. The reduction process for biodiesel was performed over a range of initial conditions covering the pressures from 1 to 100 atm, equivalence ratios from 0.5 to 2.0 and temperatures from 700 to 1800 K, whereas for n-heptane, ignition delay predictions were compared against 17 shock tube experimental conditions. Extensive validations were performed for the developed skeletal reaction mechanism with 0-D ignition delay testing and 3-D engine simulations. The results indicated that the developed mechanism was able to accurately predict the ignition delay timings of n-heptane and biodiesel, and it could be integrated into 3-D engine simulations to predict the combustion characteristics of biodiesel. As such, the developed 112-species skeletal mechanism can accurately mimic the significant reaction pathways of the detailed reaction

  14. Global sale of green air travel supported using biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Wardle, D.A. [Auckland (New Zealand)

    2003-02-01

    The technical feasibility of operating commercial aircraft on low concentration biodiesel in kerosene blends is reviewed. Although the analysis is preliminary, it seems plausible that a biodiesel component could be introduced without significant modification to aircraft, airport infrastructure, and flight operations. The use of a biodiesel component, even for only a subset of flight operations, would open the possibility of giving all passengers, the world over, regardless of route, the option to pay a premium to make their journey on 'green' fuel (actually biodiesel). In this way, the airline industry could recover the additional cost of biodiesel in comparison to kerosene. The costs associated with such a scheme are estimated, as is consumer demand. Although the analysis is preliminary, the scheme appears commercially viable. From a humanitarian and/or environmental perspective, marketing flight on biodiesel as 'green air travel' is problematic. On the one hand, the use of biodiesel in aviation would reduce addition of carbon dioxide to the atmosphere and foster development of sustainable technology. On the other hand, it would require that agricultural resources be dedicated to air travel, nominally a luxury, in a world where agricultural resources appear destined to come under increasing strain merely to satisfy humanity's basic food and energy needs. A preliminary discussion of these issues is presented. It is hoped that this can serve as the starting point for further discussion, at an international level, to reach consensus on whether marketing of flight on biodiesel as 'green air travel' should be allowed to proceed, or whether it should be declared unethical. (author)

  15. Biodiesel Production from Waste Cooking Oil Using Hydrodinamic Cavitation

    OpenAIRE

    Muhammad Supardan; Satriana Satriana; Mahlinda Mahlinda

    2013-01-01

    The aim of this research was to study biodiesel production from low cost feedstock of waste cooking oil (WCO) using hydrodynamic cavitation apparatus. A two-step processes esterification process and transesterification process using hydrodynamic cavitation for the production of biodiesel from WCO is presented. The first step is acid-catalyzed esteri-fication process for reducing free fatty acid (FFA) content of WCO and followed by base-catalyzed transesterification process for converting WCO ...

  16. Nitrile rubber and carboxylated nitrile rubber resistance to soybean biodiesel

    OpenAIRE

    Felipe Nunes Linhares; Cléverson Fernandes Senra Gabriel; Ana Maria Furtado de Sousa; Marcia Christina Amorim Moreira Leite; Cristina Russi Guimarães Furtado

    2018-01-01

    Abstract Biodiesel has been considered a suitable substitute for petroleum diesel, but their chemical composition differs greatly. For this reason, biodiesel interacts differently than petroleum diesel with various materials, including rubbers. Therefore, the resistance of some elastomers should be thoroughly evaluated, specifically those which are commonly used in automotive industry. Nitrile rubber (NBR) is widely used to produce vehicular parts that are constantly in contact with fuels. T...

  17. Biodiesel as an Alternative Fuel for Diesel Engines

    OpenAIRE

    F. Halek; A. Kavousi; M. Banifatemi

    2009-01-01

    There is growing interest in biodiesel (fatty acid methyl ester or FAME) because of the similarity in its properties when compared to those of diesel fuels. Diesel engines operated on biodiesel have lower emissions of carbon monoxide, unburned hydrocarbons, particulate matter, and air toxics than when operated on petroleum-based diesel fuel. Production of fatty acid methyl ester (FAME) from rapeseed (nonedible oil) fatty acid distillate having high free fatty acids (FFA) ...

  18. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production

    OpenAIRE

    Arjun B. Chhetri; K. Chris Watts; M. Rafiqul Islam

    2008-01-01

    As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester) was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was ...

  19. Modeling of a membrane bioreactor for production of biodiesel

    International Nuclear Information System (INIS)

    Solano, Paola Andrea; Moncada, Jorge Andres; Cardona, Carlos Ariel; Ruiz, Orlando Simon

    2008-01-01

    Through the use of an enzymatic catalyst lipase, produced by Candida Antarctica a membrane bioreactor was modeled and simulated to obtain biodiesel from palm oil and ethanol. A conversion of 0.97 was reached for a residence time of 10.64 min. The membrane bioreactor was compared to a CSTR reactor, where a conversion of 0.76 was obtained. It was concluded that the membrane bioreactor is a better way of producing biodiesel than the CSTR

  20. TREATMENT OF BIODIESEL WASTEWATER USING YELLOW MUSTARD SEEDS

    OpenAIRE

    SAVCI, Serpil

    2017-01-01

    In thisstudy, removal of original biodiesel wastewater (BOD, COD, oil&greas) by yellow mustard seeds was examined bya batch system. The effect of the adsorption time 300 minutes, adsorbent dose(1.0 g/L) and mixing rate (120 rpm) on the adsorption capacity of pollutants.The applicability of the Langmuir and Freundlich isotherms were examined.According to the data obtained from experiments, biodiesel wastewater can betreated by adsorption using yellow mustard seeds.

  1. Physico-chemical characterization of biodiesel from pests attacked corn oil; Caracterizacao fisico-quimica do biodiesel de oleo de milho danificado por pragas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fabia M.; Correa, Paulo C.; Martins, Marcio A.; Santos, Silmara B.; Damian, Amanda D. [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: copace@ufv.br, aredes@ufv.br, syllmara@vicosa.ufv.br

    2009-07-01

    The biodiesel is a renewable energy source alternative to fossil fuels. The biodiesel synthesis can be made by many types of triglycerides transesterification, it is possible to use this biofuel in vehicles if it has the quality required from Agencia Nacional de Petroleo, Gas Natural e Biocombustiveis (ANP). Searching an application for pests attacked corn, there is feasibility technical for the biodiesel production from this corn oil. The biodiesel synthesis was made through ethyl transesterification process with alkaline catalyst using ethanol. The biodiesel physical-chemical characterization was performed using ANP methods. (author)

  2. Analysis of a combustion, performance and emission characteristics of a CNG-B20 fuelled diesel engine under dual fuel mode

    Directory of Open Access Journals (Sweden)

    Pankaj S. Shelke

    2016-09-01

    Full Text Available The Carbon dioxide (CO2 is one of the primary greenhouse gases emitted by various human activities. CO2 is naturally present in the atmosphere as part of carbon cycle. Human activities are altering the carbon cycle by adding or removing CO2 to the atmosphere. The main human activity that emits the CO2 is combustion of fossil fuels for energy and transportation. Compression ignition (CI engines emit high amount of CO2 emission as it is the end product of complete combustion of hydro carbon fuels. Moreover, they emit higher NOx (nitrogen oxides and PM (particulate matter emissions and have higher fuel consumption. In the present study, experimental investigations were carried out on a CI engine under dual fuel mode with biodiesel as a pilot fuel and compressed natural gas (CNG as a main fuel. The effects of 10 % and 20 % CNG energy shares on performance and emission characteristics of the engine at rated (100% loads were studied. Experimental results indicate the beneficial of CNG addition on improvement in the engine efficiency, and reduction in NOx and CO2 emissions. The NOx and CO2 emissions decreased by 14.24 % and 30 % respectively at the rated load with biodiesel + CNG (20 % energy share as compared to base diesel. No knocking combustion was observed during the tests which confirm the smooth operation. The dual fuel operation with combination of CNG-biodiesel is an effective method to reduce NOx and CO2 emissions with an additional benefit of lower specific energy consumption.

  3. Characteristics of paddy operations with biodiesel fuelled tractor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Park, S.H.; Kim, C.K.; Im, D.H.; Kim, H.J.; Chung, S.C. [National Academy of Agricultural Science, Seodundong, Suwon (Korea, Democratic People' s Republic of); Kim, S.S. [Daedong Industrial Co., Chang Nyong-Kun, Kyungnam (Korea, Democratic People' s Republic of)

    2010-07-01

    This paper reported on a study in which biofuels were tested for their power and competitiveness in various paddy operations, such as plowing and rotary tilling of paddy fields. The study considered the use of diesel fuel as well as 20 per cent biodiesel (BD20) and 100 per cent biodiesel (BD100) as an alternative fuel for tractors. Ignition problems or abrupt stopping were not monitored during operations of plowing, rotary tilling and travelling on the road. According to tractor power take-off (PTO) test codes, there was no considerable power difference between the 3 fuels. However, fuel consumption rates were quite different between the biodiesels and diesel fuel in the paddy works. Fuel consumption increased when biodiesel content increased. Approximately 35 to 40 per cent more fuel was needed for rotary tilling operations than plowing operations. Within the operations, the maximum difference occurred during the rotary tilling of wet paddy fields. This difference was as high as 20 per cent , between BD100 and diesel fuel. In terms of exhaust gases, more carbon dioxide was discharged from diesel fuel than biodiesels, but more nitrous oxide was discharged with biodiesels. It was difficult to differentiate quantities of carbon monoxide between the 3 different fuels.

  4. PRODUKSI BIODIESEL DARI MINYAK JELANTAH MENGGUNAKAN KATALIS KALSIUM OKSIDA

    Directory of Open Access Journals (Sweden)

    Yulia Tri Rahkadima

    2016-08-01

    Full Text Available The transesterification  reaction  has performed to convert waste cooking oils into biodiesel with assistant of  heterogen catalyst of calcium oxide using reactor  in a laboratory . The reaction was performed in two stages that is the esterification followed transesterification reaction. The aim of research is to study the effect of temperature and time reaction on viscosity and biodiesel yield. The results showed that obtained biodiesel had viscosity value in accordance with SNI 04-7182-2006 about diesel-fuel viscosity.  At lower temperature (40, 45, and 50°C, the longer reaction time could lead to the increasing of biodiesel yield. Meanwhile, at higher temperature reaction (55°C and 60°C the longer reaction time could reduce biodiesel yield. The highest biodiesel yield was obtained at following reaction condition: temperature reaction 50°C, 6 hours reaction time, ratio oil:MeOH = 1:48 molar ratio, % wt CaO = 8% to weight of waste cooking oil.

  5. Oil extraction from plant seeds for biodiesel production

    Directory of Open Access Journals (Sweden)

    Yadessa Gonfa Keneni

    2017-04-01

    Full Text Available Energy is basic for development and its demand increases due to rapid population growth, urbanization and improved living standards. Fossil fuels will continue to dominate other sources of energy although it is non-renewable and harm global climate. Problems associated with fossil fuels have driven the search for alternative energy sources of which biodiesel is one option. Biodiesel is renewable, non-toxic, environmental-friendly and an economically feasible options to tackle the depleting fossil fuels and its negative environmental impact. It can be produced from vegetable oils, animal fats, waste oils and algae. However, nowadays, the major feedstocks of biodiesel are edible oils and this has created food vs fuel debate. Therefore, the future prospect is to use non-edible oils, animal fats, waste oils and algae as feedstock for biodiesel. Selection of non-expensive feedstock and the extraction and preparation of oil for biodiesel production is a crucial step due to its relevance on the overall technology. There are three main conventional oil extraction methods: mechanical, chemical/solvent and enzymatic extraction methods. There are also some newly developed oil extraction methods that can be used separately or in combination with the conventional ones, to overcome some disadvantages of the conventional oil extraction methods. This review paper presents, compare and discusses different potential biofuel feedstocks, various oil extraction methods, advantages and disadvantages of different oil extraction methods, and propose future prospective for the improvement of oil extraction methods and sustainability of biodiesel production and utilization.

  6. Cost analysis of simulated base-catalyzed biodiesel production processes

    International Nuclear Information System (INIS)

    Tasić, Marija B.; Stamenković, Olivera S.; Veljković, Vlada B.

    2014-01-01

    Highlights: • Two semi-continuous biodiesel production processes from sunflower oil are simulated. • Simulations were based on the kinetics of base-catalyzed methanolysis reactions. • The total energy consumption was influenced by the kinetic model. • Heterogeneous base-catalyzed process is a preferable industrial technology. - Abstract: The simulation and economic feasibility evaluation of semi-continuous biodiesel production from sunflower oil were based on the kinetics of homogeneously (Process I) and heterogeneously (Process II) base-catalyzed methanolysis reactions. The annual plant’s capacity was determined to be 8356 tonnes of biodiesel. The total energy consumption was influenced by the unit model describing the methanolysis reaction kinetics. The energy consumption of the Process II was more than 2.5 times lower than that of the Process I. Also, the simulation showed the Process I had more and larger process equipment units, compared with the Process II. Based on lower total capital investment costs and biodiesel selling price, the Process II was economically more feasible than the Process I. Sensitivity analysis was conducted using variable sunflower oil and biodiesel prices. Using a biodiesel selling price of 0.990 $/kg, Processes I and II were shown to be economically profitable if the sunflower oil price was 0.525 $/kg and 0.696 $/kg, respectively

  7. Sustainable Energy Production from Jatropha Bio-Diesel

    Science.gov (United States)

    Yadav, Amit Kumar; Krishna, Vijai

    2012-10-01

    The demand for petroleum has risen rapidly due to increasing industrialization and modernization of the world. This economic development has led to a huge demand for energy, where the major part of that energy is derived from fossil sources such as petroleum, coal and natural gas. Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies. There is a growing interest in using Jatropha curcas L. oil as the feedstock for biodiesel production because it is non-edible and thus does not compromise the edible oils, which are mainly used for food consumption. Further, J. curcas L. seed has a high content of free fatty acids that is converted in to biodiesel by trans esterification with alcohol in the presence of a catalyst. The biodiesel produced has similar properties to that of petroleum-based diesel. Biodiesel fuel has better properties than petro diesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future. Biodiesel has the potential to economically, socially, and environmentally benefit communities as well as countries, and to contribute toward their sustainable development.

  8. An updated comprehensive techno-economic analysis of algae biodiesel.

    Science.gov (United States)

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Different purification methods and quality of sunflower biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, A.L.M.T.; Park, K.J. [Campinas State Univ., Sao Paulo (Brazil). School of Agricultural Engineering; Ferrari, R.A.; Miguel, A.M.R.O. [Food Technology Inst., Sao Paulo (Brazil)

    2010-07-01

    Biodiesel is derived from triacylglycerides and is produced primarily through transesterification, a chemical reaction of vegetable oils with alcohol, methanol or ethanol. The cost of raw material should be considered since 85 per cent of production cost is related to vegetable oil. The purpose of this study was to evaluate oil expression of sunflower seed. It also examined the sunflower crude oil as a raw material for biodiesel by transesterification in both laboratory and pilot scale studies. Three different biodiesel purification methods were examined. The best result for oil expelling (68.4 per cent) at the experimental stage was obtained for seeds with a moisture content of 6.9 per cent at 25 degrees C and at a screw speed of 114 rpm. For biodiesel production at the laboratory scale, the best result for oil expelling was 87.5 per cent. It was obtained with an ethanol:oil molar ratio of 4.7:1 and with a 4.42 per cent catalyst concentration related to the quantity of oil that had to be transesterified. The experimental condition was applied at a bigger scale with a batch stirred tank reactor. For purification with washing, the biodiesel yield was 84.2 per cent. Purification with silica resulted in a yield of 84.6 per cent. A better quality biofuel was obtained through distillation of biodiesel.

  10. Production of Biodiesel from Mixed Waste Cooking and Castor Oil

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2018-01-01

    Full Text Available Due to increasing population growth, the consumption and needs of energy increase significantly. This leads Indonesia government to search alternative energy to cover the lacks of fossil energy reserves. Biodiesel is one of the prospective alternative energy which are renewable and environmental friendly. A common problem in large-scale biodiesel production is the sustainability of feedstock and the biodiesel stability. Therefore, the purpose of this study was to evaluate the production of biodiesel from two oil sources i.e. waste cooking oil and castor oil. This study examined the effect of mixed oil ratio on yield, biodiesel characteristics and stability. The physical properties included kinematic viscosity, acid number, saponification number, iodine number and cetane number have been evaluated as function of oil ratio. Yield of biodiesel was obtained at 35.07%, 99.2% and 83.69% for jatropha:castor oil ratio of 1: 0, 1: 2 and 2: 1, respectively. Most of these characteristics showed an increase by increasing the oil ratio. The result concluded that at the ratio of 1:1(v/v was the best characteristic and stability.

  11. Biodiesel Production from Microalgae by Extraction – Transesterification Method

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Phuong Thao

    2013-11-01

    Full Text Available The environmental impact of using petroleum fuels has led to a quest to find a suitable alternative fuel source. In this study, microalgae were explored as a highly potential feedstock to produce biodiesel fuel. Firstly, algal oil is extracted from algal biomass by using organic solvents (n–hexan.  Lipid is contained in microalgae up to 60% of their weight. Then, Biodiesel is created through a chemical reaction known as transesterification between algal oil and alcohol (methanol with strong acid (such as H2SO4 as the catalyst. The extraction – transesterification method resulted in a high biodiesel yield (10 % of algal biomass and high FAMEs content (5.2 % of algal biomass. Biodiesel production from microalgae was studied through experimental investigation of transesterification conditions such as reaction time, methanol to oil ration and catalyst dosage which are deemed to have main impact on reaction conversion efficiency. All the parameters which were characterized for purified biodiesel such as free glycerin, total glycerin, flash point, sulfur content were analyzed according to ASTM standardDoi: http://dx.doi.org/10.12777/wastech.1.1.6-9Citation:  Thao, N.T.P., Tin, N.T., and Thanh, B.X. 2013. Biodiesel Production from Microalgae by Extraction – Transesterification Method. Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.6-9

  12. Design and optimisation of purification procedure for biodiesel washing

    Directory of Open Access Journals (Sweden)

    S.B. Glišić

    2009-09-01

    Full Text Available Almost complete methanolysis of triglycerides is usually not enough to fulfil the strict standards of biodiesel quality. A key step in this process is neutralization of alkali (catalyst followed by the washing procedure necessary for removing different impurities such as traces of catalyst and methanol and removal of soaps and glycerol from esters phase. The washing with hot water is still widely used in many industrial units for the biodiesel production. In this study, different procedures of biodiesel washing using hot water were investigated. The orto-phosphoric acid was suggested as the best compound for alkali catalyst (sodium hydroxide neutralization. The main goal of the performed analysis was to minimize the water usage in the washing-neutralization step during the biodiesel production. Such solution would make the process of biodiesel synthesis more economical taking into account the decrease of energy consumed for evaporation of water during the final product purification, as well as more acceptable procedure related to the impact on environment (minimal waste water release. Results of the performed simulation of the washing process supported by original experimental data suggested that neutralization after the optimized washing process of the methyl ester layer could be the best solution. The proposed washing procedure significantly decreases the amount of waste water giving at the same time the desired purity of final products (biodiesel and glycerol. The simulation of the process was performed using ASPEN plus software supported by ELCANTREL and UNIQUAC procedure of required properties calculation

  13. Evaluation of Biodiesel Production, Engine Performance, and Emissions

    Science.gov (United States)

    Gürü, Metin; Keskïn, Ali

    2016-08-01

    Nowadays, to decrease environmental pollution and dependence on fossil-based fuels, research on alternative renewable energy sources has been increasing. One such renewable energy source is biodiesel, which is used as an alternative fuel for diesel engines. Biodiesel is renewable, nontoxic, biodegradable, and environmentally friendly. Biodiesel is domestically produced from vegetable oil (edible or nonedible), animal fat, and used cooking oils. In the biodiesel production process, oil or fat undergoes transesterification reaction through use of simple alcohols such as methanol, ethanol, propanol, butanol, etc. Use of methanol is most feasible because of its low cost, and physical and chemical advantages. Acid catalysis, alkali catalysis, and enzyme catalysis are usually used to improve the reaction rate and yield. Glycerol is a byproduct of the reaction and can be used as an industrial raw material. In this study, biodiesel production methods (direct use, pyrolysis, microemulsion, transesterification, supercritical processes, ultrasound- assisted, and microwave-assisted) and types of catalyst (homogeneous, heterogeneous, and enzyme) have been evaluated and compared. In addition, the effects of biodiesel and its blends on diesel engine performance and exhaust emissions are described and reviewed.

  14. Castor oil biodiesel as an alternative fuel for diesel engines

    International Nuclear Information System (INIS)

    Benavides, Alirio; Benjumea, Pedro; Pashova, Veselina

    2007-01-01

    In this paper, a study related to the production and use of castor oil biodiesel is presented. The maximum methyl esters yield of the castor oil transesterification reaction is obtained under the following conditions: ambient temperature, a molar ratio of methanol to vegetable oil equal to 9 and a catalyst percentage equal to 0.8%. The castor oil biodiesel can be blended with petroleum diesel as far as 15% in such way that the resulting blend complies with national and international technical standards for diesel fuels. Its high viscosity becomes the main difficulty for using castor oil biodiesel in engines. However this biofuel exhibits excellent cold flow properties (low values of cloud and pour points). The motor tests using castor oil biodiesel petroleum diesel blends, for the biodiesel proportion tested; show that a biodiesel percentage increase leads to an increase in the specific fuel consumption, a decrease in the fuel air ratio, a slight decrease in smoke opacity, while the fuel conversion efficiency and the CO and CO 2 emissions practically remain constants

  15. Optimization of emergy sustainability index for biodiesel supply network design

    International Nuclear Information System (INIS)

    Ren, Jingzheng; Tan, Shiyu; Yang, Le; Goodsite, Michael Evan; Pang, Chengfang; Dong, Lichun

    2015-01-01

    Highlights: • A MINLP model for designing sustainable biodiesel supply network is developed. • Emergy sustainability index is used as the objective to be maximized. • Multiple alternatives in each stage of biodiesel supply network are considered. • Life cycle perspective is incorporated in the design of biodiesel supply network. - Abstract: Sustainability is an important and difficult consideration for the stakeholders/decision-makers when planning a biofuel supply network. In this paper, a Mixed-Integer Non-linear Programming (MINLP) model was developed with the aim to help the stakeholders/decision-maker to select the most sustainable design. In the proposed model, the emergy sustainability index of the whole biodiesel supply networks in a life cycle perspective is employed as the measure of the sustainability, and multiple feedstocks, multiple transport modes, multiple regions for biodiesel production and multiple distribution centers can be considered. After describing the process and mathematic framework of the model, an illustrative case was studied and demonstrated that the proposed methodology is feasible for finding the most sustainable design and planning of biodiesel supply chains

  16. Enhancing Biodiesel from Kemiri Sunan Oil Manufacturing using Ultrasonics

    Science.gov (United States)

    Supriyadi, Slamet; Purwanto; Anggoro, Didi Dwi; Hermawan

    2018-02-01

    Kemiri Sunan (Reutalis trisperma (Blanco) Airy Shaw) is a potential plant to be developed as biodiesel feedstock. The advantage of Kemiri Sunan seeds when compared to other biodiesel raw materials is their high oil content. This plant is also very good for land conservation. Due the increasingly demand for biodiesel, research and new methods to increase its biodiesel production continue to be undertaken. The weakness of conventional biodiesel manufacturing process is in the mixing process in which mechanical stirring and heating in the trans-esterification process require more energy and a longer time. A higher and stronger mixing process is required to increase the contact area between the two phases of the mixed substance to produce the emulsion. Ultrasonic is a tool that can be useful for a liquid mixing process that tends to be separated. Ultrasonic waves can cause mixing intensity at the micro level and increase mass transfer, so the reaction can be performed at a much faster rate. This study is to figure out the effect of ultrasonic irradiation on the transesterification process of biodiesel from Kemiri Sunan Oil.

  17. Economic evaluation of algae biodiesel based on meta-analyses

    Science.gov (United States)

    Zhang, Yongli; Liu, Xiaowei; White, Mark A.; Colosi, Lisa M.

    2017-08-01

    The objective of this study is to elucidate the economic viability of algae-to-energy systems at a large scale, by developing a meta-analysis of five previously published economic evaluations of systems producing algae biodiesel. Data from original studies were harmonised into a standardised framework using financial and technical assumptions. Results suggest that the selling price of algae biodiesel under the base case would be 5.00-10.31/gal, higher than the selected benchmarks: 3.77/gal for petroleum diesel, and 4.21/gal for commercial biodiesel (B100) from conventional vegetable oil or animal fat. However, the projected selling price of algal biodiesel (2.76-4.92/gal), following anticipated improvements, would be competitive. A scenario-based sensitivity analysis reveals that the price of algae biodiesel is most sensitive to algae biomass productivity, algae oil content, and algae cultivation cost. This indicates that the improvements in the yield, quality, and cost of algae feedstock could be the key factors to make algae-derived biodiesel economically viable.

  18. Production of Biodiesel from Waste Vegetable Oil via KM Micromixer

    Directory of Open Access Journals (Sweden)

    M. F. Elkady

    2015-01-01

    Full Text Available The production of biodiesel from waste vegetable oils through its pretreatment followed by transesterification process in presence of methanol was investigated using a KM micromixer reactor. The parameters affecting biodiesel production process such as alcohol to oil molar ratio, catalyst concentration, the presence of tetrahydrofuran (THF as a cosolvent, and the volumetric flow rates of inlet fluids were optimized. The properties of the produced biodiesel were compared with its parent waste oil through different characterization techniques. The presence of methyl ester groups at the produced biodiesel was confirmed using both the gas chromatography-mass spectrometry (GC-MS and the infrared spectroscopy (FT-IR. Moreover, the thermal analysis of the produced biodiesel and the comparable waste oil indicated that the product after the transesterification process began to vaporize at 120°C which makes it lighter than its parent oil which started to vaporize at around 300°C. The maximum biodiesel production yield of 97% was recorded using 12 : 1 methanol to oil molar ratio in presence of both 1% NaOH and THF/methanol volume ratio 0.3 at 60 mL/h flow rate.

  19. Oxidative stability of biodiesel blends derived from waste frying oils

    Directory of Open Access Journals (Sweden)

    Michael Feroldi

    2017-07-01

    Full Text Available The high cost of biodiesel production is mainly linked to the price of raw material.This factor has favored the use of alternative fats and oils such as those used in frying. Since biodiesel can be obtained from several vegetable and animal raw materials, the physicochemical characteristics of the fuel may vary considerably. One of these characteristics is the fatty acid composition. It directly affects the oxidative stability of biodiesel, which can be impaired when the fuel undergoes exposure to sunlight, metals, oxygen and high temperatures. In order to improve the oxidative stability of biodiesels produced from waste frying oil some studies involving blends of different raw materials have been carried out. In this sense, this work aimed to assess the characteristics resulting from the blending of soybean waste frying oil with other waste biodiesels in what concerns to oxidation. The blends of fatty materials were obtained by means of a 2² factorial design. The induction periods of biodiesel blends were enough to meet the ASTM D6751 standard. Swine fat was responsible for the increase in the induction period values.

  20. Biodiesel exhaust: the need for a systematic approach to health effects research.

    Science.gov (United States)

    Larcombe, Alexander N; Kicic, Anthony; Mullins, Benjamin J; Knothe, Gerhard

    2015-10-01

    Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure. © 2015 Asian Pacific Society of Respirology.