WorldWideScience

Sample records for biodesulfurization thiobacillus cuprinus

  1. Recent developments in biodesulfurization of fossil fuels.

    Science.gov (United States)

    Xu, Ping; Feng, Jinhui; Yu, Bo; Li, Fuli; Ma, Cuiqing

    2009-01-01

    The emission of sulfur oxides can have adverse effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some techniques of desulfurization have been used or studied to meet the stricter limitation on sulfur content in China. Recent advances have demonstrated the mechanism and developments for biodesulfurization of gasoline, diesel and crude oils by free cells or immobilized cells. Genetic technology was also used to improve sulfur removal efficiencies. In this review, we summarize recent progress mainly in China on petroleum biodesulfurization.

  2. Molecular biological enhancement of coal biodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II; Bielaga, B.A.

    1991-12-01

    The overall objective of this project was to use molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal, and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. (VC)

  3. Reductive pyrolysis study of biodesulfurized subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    S.P. Marinov; L. Gonsalvesha; M. Stefanova; Y. Yueeriem; A.G. Dumanli; N. Kolankaya; M. Sam; R. Carleer; G. Reggers; J. Yperman [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of Organic Chemistry

    2007-07-01

    Biodesulfurization is one of the perspective methods for production of friendly fuels. Reductive pyrolysis in mode of atmospheric pressure temperature programmed reduction (AP-TPR) combined with varied detection systems gave us possibility to obtain more satisfactory explanation of biodesulfurization effects. AP-TPR coupled 'on-line' and 'off-line' with potentiometry, mass spectrometry and GC/MS analysis with inner sulfur standards for quantification were applied. Subbituminous coal from 'Pirin' basin, Bulgaria was treated by three different types of microorganisms with maximal desulfurization effect for total (26%) and organic sulfur (13%). Namely, two types white rot fungi - 'Trametes Versicolor', 'Phanerochaeta Chrysosporium' and one mixed bacterial culture were used. Improved sulfur balance determination was registered. 10 refs., 3 tabs.

  4. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Science.gov (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  5. Factors Influencing Degradation of Mercaptans by Thiobacillus ...

    African Journals Online (AJOL)

    Degradation of methylmercaptans by Thiobacillus thioparus TK-m was influenced by pH of the reaction medium. Ratios of headspace concentrations in empty vials and those of acidified buffer solutions were less than 1.0. 95% of the H2S was in headspace with the remaining 5% in solution upon acidification. The values for ...

  6. Process Considerations in the Biodesulfurization of Crude Oil

    Energy Technology Data Exchange (ETDEWEB)

    Borole, A.P.; Kaufman, E.N.

    1998-10-20

    Biodesulfurization offers an attractive alternative to conventional hydrodesulfurization due to the mild operating conditions and reaction specificity afforded by the biocatalyst. The enzymatic pathway existing in Rhodococcus has been demonstrated to oxidatively desulfhrize the organic sulfbr occurring in dibenzothiophene while leaving the hydrocarbon intact. In order for biodesulfiization to realize commercial success, a variety of process considerations must be addressed including reaction rate, emulsion formation and breakage, biocatalyst recovery, and both gas and liquid mass transport. This study compares batch stirred to electro-spray bioreactors in the biodesulfurization of both model organics and actual crudes in terms of their operating costs, ability to make and break emulsions, ability to effect efficient reaction rates and enhance mass transport. Further, sulfim speciation in crude oil is assessed and compared to the sulfur specificity of currently available biocatalyst.

  7. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  8. Growth of Thiobacillus ferrooxidans on elemental sulfur

    International Nuclear Information System (INIS)

    Espejo, R.T.; Romero, P.

    1987-01-01

    Growth kinetics of Thiobacillus ferrooxidans in batch cultures, containing prills of elementary sulfur as the sole energy source, were studied by measuring the incorporation of radioactive phosphorus in free and adsorbed bacteria. The data obtained indicate an initial exponential growth of the attached bacteria until saturation of the susceptible surface was reached, followed by a linear release of free bacteria due to successive replication of a constant number of adsorbed bacteria. These adsorbed bacteria could continue replication provided the colonized prills were transferred to fresh medium each time the stationary phase was reached. The bacteria released from the prills were unable to multiply, and in the medium employed they lost viability with a half-live of 3.5 days. The spreading of the progeny on the surface was followed by staining the bacteria on the prills with crystal violet; this spreading was not uniform but seemed to proceed through distortions present in the surface. The specific growth rate of T. ferrooxidans ATCC 19859 was about 0.5 day -1 , both before and after saturation of the sulfur surface. The growth of adsorbed and free bacteria in medium containing both ferrous iron and elementary sulfur indicated that T. ferrooxidans can simultaneously utilize both energy sources

  9. An Evaluation of Kinetic Models in the Biodesulfurization of Synthetic Oil by Rhodococcus erythropolis ATCC 4277.

    Science.gov (United States)

    Maass, D; Mayer, D A; Moritz, D E; Oliveira, D; de Souza, A A Ulson; Souza, S M A Guelli

    2015-10-01

    Biodesulfurization is an eco-friendly technology applied in the removal of sulfur from fossil fuels. This technology is based on the use of microorganisms as biocatalysts to convert the recalcitrant sulfur compounds into others easily treatable, as sulfides. Despite it has been studied during the last decades, there are some unsolved questions, as per example the kinetic model which appropriately describes the biodesulfurization globally. In this work, different kinetic models were tested to a batch desulfurization process using dibenzothiophene (DBT) as a model compound, n-dodecane as organic solvent, and Rhodococcus erythropolis ATCC 4277 as biocatalyst. The models were solved by ODE45 function in the MATLAB. Monod model was capable to describe the biodesulfurization process predicting all experimental data with a very good fitting. The coefficients of determination achieved to organic phase concentrations of 20, 80, and 100 % (v/v) were 0.988, 0.995, and 0.990, respectively. R. erythropolis ATCC 4277 presented a good affinity with the substrate (DBT) since the coefficients of saturation obtained to reaction medium containing 20, 80, and 100 % (v/v) were 0.034, 0.07, and 0.116, respectively. This kinetic evaluation provides an improvement in the development of biodesulfurization technology because it showed that a simple model is capable to describe the throughout process.

  10. Molecular biological enhancement of coal biodesulfurization. Final report, October 1988--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II; Bielaga, B.A.

    1991-12-01

    The overall objective of this project was to use molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal, and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. (VC)

  11. Optimization of nicotinamide and riboflavin in the biodesulfurization of dibenzothiophene using response surface methodology

    Directory of Open Access Journals (Sweden)

    Hossein Saber

    2013-01-01

    Full Text Available Introduction: Dibenzothiophene (DBT is a sulfuric compound and resistant to Hydrodesulfurization process.Rhodococcuserythropolis R1, a previously isolated bacterial strain, is capable to bioconversion of DBT to 2-hydroxybiphenyl (2-HBP.Materials and methods: The effect of nicotinamide (precursor of NAD and riboflavin (precursor of FMN on DBT biodesulfurization and growth rate by this strain was studied using Gibbs assay and turbidimeteric assay respectively. The level of cofactor precursors were optimized using response surface methodology (RSM. Results: Analyses showed that both nicotinamide and riboflavin were statistically significant and could enhance the biodesulfurization rate of DBT by induction of dsz operon. The optimum level of nicotinamide and riboflavin was obtained at 10.67 mM and 34.2 µM respectively. Discussion and conclusion: In spite of increasing in BDS, the addition of these cofactor precursors led to decreased growth rate and biomass production due to limitated effect of produced 2-HBP.

  12. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    Science.gov (United States)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  13. Genetic manipulation of the obligate chemolithoautotrophic bacterium Thiobacillus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H.R.; Legler, T.C.; Kane, S.R.

    2011-07-15

    Chemolithoautotrophic bacteria can be of industrial and environmental importance, but they present a challenge for systems biology studies, as their central metabolism deviates from that of model organisms and there is a much less extensive experimental basis for their gene annotation than for typical organoheterotrophs. For microbes with sequenced genomes but unconventional metabolism, the ability to create knockout mutations can be a powerful tool for functional genomics and thereby render an organism more amenable to systems biology approaches. In this chapter, we describe a genetic system for Thiobacillus denitrificans, with which insertion mutations can be introduced by homologous recombination and complemented in trans. Insertion mutations are generated by in vitro transposition, the mutated genes are amplified by the PCR, and the amplicons are introduced into T. denitrificans by electroporation. Use of a complementation vector, pTL2, based on the IncP plasmid pRR10 is also addressed.

  14. Biodesulfurization of Petroleum Distillates—Current Status, Opportunities and Future Challenges

    Directory of Open Access Journals (Sweden)

    Olawumi O. Sadare

    2017-11-01

    Full Text Available Sulfur oxide (SO2 and hydrogen sulfide (H2S are considered as one of the major air pollutants in the world today. In addition, high sulfur levels in petroleum distillates can promote the deactivation of catalysts through poisoning in fluidized catalytic cracking (FCC during hydrocracking of the heavy distillates to lighter ones. The presence of high sulfur-containing compounds in the process streams could cause corrosion of piping and fittings and equipment, thereby damaging the pipelines and leading to air emissions of sulfur-containing compounds, which are undesirable for mankind and his environment. In many cases, a large quantity of SOx is released into the atmosphere when petroleum distillates that contain substantial amount of sulphur-containing compounds are used as fuel and combust. In this article, a short overview of different desulfurization methods that are employed to remove sulfur from petroleum distillates is provided. In particular, the review concentrates on biodesulfurization technique. In addition, this article intends to provide its readers current status of biodesulfurization (BDS. It critically analyses the trend in the development of the technology to showcase its strength and weakness that could pave a way for future opportunities. Approaches that are suitable to remediate sulfur-contaminated environment are discussed as well. Lastly, speculations on future directions or opportunities that require exploration are provided as a way of provoking the thoughts of researchers in this field.

  15. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  16. Molecular biological enhancement of coal biodesulfurization. Seventh quarter report, May--July 1990

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  17. Simultaneously saccharification and fermentation approach as a tool for enhanced fossil fuels biodesulfurization.

    Science.gov (United States)

    Paixão, Susana M; Arez, Bruno F; Roseiro, José C; Alves, Luís

    2016-11-01

    Biodesulfurization can be a complementary technology to the hydrodesulfurization, the commonly physical-chemical process used for sulfur removal from crude oil. The desulfurizing bacterium Gordonia alkanivorans strain 1B as a fructophilic microorganism requires fructose as C-source. In this context, the main goal of this work was the optimization of a simultaneous saccharification and fermentation (SSF) approach using the Zygosaccharomyces bailii strain Talf1 crude enzymes with invertase activity and sucrose as a cheaper fructose-rich commercial C-source (50% fructose) towards dibenzothiophene (DBT) desulfurization by strain 1B. The determination of optimal conditions, for both sucrose hydrolysis and DBT desulfurization was carried out through two sequential experimental uniform designs according to the Doehlert distribution for two factors: pH (5.5-7.5) and temperature (28-38 °C), with the enzyme load of 1.16 U/g/L; and enzyme load (0-4 U/g/L) and temperature (28-38 °C), with pH at 7.5. Based on 2-hydroxybiphenyl production, the analysis of the response surfaces obtained pointed out for pH 7.5, 32 °C and 1.8 U/g/L as optimal conditions. Further optimized SSF of sucrose during the DBT desulfurization process permitted to attain a 4-fold enhanced biodesulfurization. This study opens a new focus of research through the exploitation of sustainable low cost sucrose-rich feedstocks towards a more economical viable bioprocess scale-up. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Molecular biological enhancement of coal biodesulfurization. Quarterly technical report, September 1, 1993--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II [Institute of Gas Technology, Chicago, IL (United States)

    1993-12-31

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. During this quarter the promoter probe vectors that were constructed last quarter were found to be unstable in E. coli. Fragments of R. rhodochrous IGTS8 chromosomal DNA were cloned into pRCAT3 and pRCM1 (previously described in final ICCI report 1993). Many derivatives of pRCM1 and pRCAT3 receiving inserts that regulated the expression of chloramphenicol resistance in Rhodococcus rhodochrous IGTS8 proved to be unstable in E. coli frequently yielding plasmids containing deletions. Stable inserts have been observed ranging from 100 bp to 2.0 kb that regulated expression in Rhodococcus rhodochrous IGTS8. Subtractive hybridization studies continue, several candidates have been isolated and are being confirmed for inducible promoters. Primer extension analysis of the Rhodococcus rhodochrous IGTS8 16S RNA promoter region was initiated this quarter.

  19. Work within the coordinated programme on bacterial leaching of uranium ores. Immunological identification of Thiobacillus ferrooxidans and Thiobacillus thiooxidans

    International Nuclear Information System (INIS)

    Rhee, K.S.

    1978-04-01

    Little is known of the antigenic structure of Thiobacillus. In the composition of the antigens of gram negative bacteria the polysaccharide moiety endows some specificity permitting immunological identification. The report considers work on attempts to isolate the type specific component from T. thiooxidans and T ferrooxidans. The fractionation procedures presented suggest that the presence of one or a few such type specific major protein antigen fractions from both of the T. ferrooxidans and the T. thiooxidans seems to be originated from the cytoplasm of the bacteria, since it is believed that the glycoprotein fractions which was derived from the cell wall are the common antigenic fraction between the T. ferrooxidans and the T. thiooxidans, respectively. In this regard, it is of great interest that the T. ferrooxidans or the T. thiooxidans appears not to have the type-specific antigens on their LPS or polysaccharide moiety in contrast to the other gram-negative bacteria. Thus, it is strongly believed that the envelopes of these bacteria contain both glycoproteins bearing common antigenicity, since the T. ferrooxidans and the T. thiooxidans have a structually different type-specific antigen moiety according to the results polyacrylamide gel electrophoresis

  20. Isolation of Thiobacillus sp. for use in treatment of rubber sheet wastewater

    Directory of Open Access Journals (Sweden)

    Duangporn Kantachote

    2004-09-01

    Full Text Available Thiobacillus spp. are extensively used worldwide for removal of both organic and inorganic sulphur compounds in wastewater; however, a little used in Thailand. Southern Thailand has numerous rubber factories producing wastewater containing high amounts of those compounds. Therefore, in this study, 4 Thiobacillus sp. were isolated from wastewaters of domestic and rubber factories. Each isolate grew both aerobically and anaerobically as both a chemolithotroph and chemoorganotroph. All isolates grew in a pH range from 2.0-7.0 with an optimum of 6.5 and in the temperature range of 25-45ºC with an optimum between 30-35ºC. After 14 days of incubation in rubber sheet wastewater Thiobacillus sp. WI 1 produced the highest removal of COD at 54%; but removal of BOD was only 33%. In contrast, strain WI 4 produced the highest BOD removal at 83% with removal of COD at only 46%.

  1. SULFIDE OXIDATION UNDER OXYGEN LIMITATION BY A THIOBACILLUS-THIOPARUS ISOLATED FROM A MARINE MICROBIAL MAT

    NARCIS (Netherlands)

    VANDENENDE, FP; VANGEMERDEN, H

    1993-01-01

    The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under

  2. Isolation of Thiobacillus spp . and its application in the removal of ...

    African Journals Online (AJOL)

    Two strains of Thiobacillus isolated from native excess activated sludge were identified as Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans by 16S rRNA gene sequencing and physiological-biochemical characteristics. Single and mixed cultures of the strains were used to carry out bioleaching for 9 days in ...

  3. Optimal Production of a Rhodococcus erythropolis ATCC 4277 Biocatalyst for Biodesulfurization and Biodenitrogenation Applications.

    Science.gov (United States)

    Todescato, Diego; Maass, Danielle; Mayer, Diego Alex; Vladimir Oliveira, J; de Oliveira, Débora; Ulson de Souza, Selene M A Guelli; Ulson de Souza, Antônio Augusto

    2017-12-01

    Rhodococcus sp. has a broad catabolic diversity and unique enzymatic capabilities, and it is able to adapt under extreme conditions. Thereby, the production of this remarkable bacterium has a great biotechnological and industrial importance. In this sense, we sought to improve the R. erythropolis ATCC 4277 growth through a central composite design, by varying the components of nutrient medium (glucose, malt extract, yeast extract, CaCO 3 ), temperature, and agitation. It was found that the concentrations of glucose and malt extract are not statistically significant, being reduced of 4.0 and 10.0 g L -1 to 2.0 and 5.0 g L -1 , respectively. The CaCO 3 concentration and temperature were also diminished of 2.0 to 1.16 g L -1 and 28 to 23.7 °C, respectively. Optimal growth conditions provided a 240% increase in final biomass concentration, an increment in specific growth rate, and a growth yield coefficient about five times greater. Application of the optimal conditions in biodesulfurization and biodenitrogenation processes showed that desulfurization capability is not associated with optimal growth conditions; however, it was achieved a 47% of nitrogen removal in the assay containing 10% (w/w) of heavy gas oil. Graphical Abstract ᅟ.

  4. Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam.

    Science.gov (United States)

    Fernández, Maikel; Ramírez, Martín; Gómez, José Manuel; Cantero, Domingo

    2014-01-15

    Biogas biodesulfurization by an anoxic biotrickling filter packed with open pore polyurethane foam at the laboratory scale (packed volume 2.4L) has been studied. The biotrickling system was operated for 620 days with biogas supplied continuously and two nitrate feeding regimes were tested (manual and programmed). Biomass immobilization was carried out under the manual nitrate feeding regime and a study was then carried out on the effects on removal efficiency of the following parameters: nitrate source, H2S inlet load, nitrate concentration, sulfate accumulation, temperature, pH and trickling liquid velocity. The effect of increased H2S inlet load was studied under the programmed nitrate feeding regime. The results show that a removal efficiency of 99% can be obtained when working under the following conditions: inlet loads below 130gSm(-3)h(-1), a programmed nitrate feeding system, temperature of 30°C, sulfate concentration below 33gL(-1), a pH between 7.3 and 7.5, and a trickling liquid velocity higher than 4.6mh(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Production and characterization of a novel yeast extracellular invertase activity towards improved dibenzothiophene biodesulfurization.

    Science.gov (United States)

    Arez, Bruno F; Alves, Luís; Paixão, Susana M

    2014-11-01

    The main goal of this work was the production and characterization of a novel invertase activity from Zygosaccharomyces bailii strain Talf1 for further application to biodesulfurization (BDS) in order to expand the exploitable alternative carbon sources to renewable sucrose-rich feedstock. The maximum invertase activity (163 U ml(-1)) was achieved after 7 days of Z. bailii strain Talf1 cultivation at pH 5.5-6.0, 25 °C, and 150 rpm in Yeast Malt Broth with 25 % Jerusalem artichoke pulp as inducer substrate. The optimum pH and temperature for the crude enzyme activity were 5.5 and 50 °C, respectively, and moreover, high stability was observed at 30 °C for pH 5.5-6.5. The application of Talf1 crude invertase extract (1 %) to a BDS process by Gordonia alkanivorans strain 1B at 30 °C and pH 7.5 was carried out through a simultaneous saccharification and fermentation (SSF) approach in which 10 g l(-1) sucrose and 250 μM dibenzothiophene were used as sole carbon and sulfur sources, respectively. Growth and desulfurization profiles were evaluated and compared with those of BDS without invertase addition. Despite its lower stability at pH 7.5 (loss of activity within 24 h), Talf1 invertase was able to catalyze the full hydrolysis of 10 g l(-1) sucrose in culture medium into invert sugar, contributing to a faster uptake of the monosaccharides by strain 1B during BDS. In SSF approach, the desulfurizing bacterium increased its μmax from 0.035 to 0.070 h(-1) and attained a 2-hydroxybiphenyl productivity of 5.80 μM/h in about 3 days instead of 7 days, corresponding to an improvement of 2.6-fold in relation to the productivity obtained in BDS process without invertase addition.

  6. Estudos da biolixiviação de minerios de uranio por Thiobacillus ferrooxidans

    OpenAIRE

    Oswaldo Garcia Junior

    1989-01-01

    Resumo: O objetivo deste trabalho, foi desenvolver um programa de lixiviaç5o bacteriana de minérios de urânio, constituído por três pontos fundamentais: a) isolamento e purificação de Thiobacillus ferrooxidans (e também Thiobacillus thiooxidans); b) estudos fisiológicos de crescimento e de metabolismo respiratório da espécie T. ferrooxidans: c) lixiviaç5o do urânio de dois tipos distintos de minério pela ação do T. ferrooxidans, em escalas de laborat6rio, semi-piloto e piloto. Utilizando-se a...

  7. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering

    International Nuclear Information System (INIS)

    Sasaki, K.; Tsunekawa, M.; Ohtsuka, T.; Konno, H.

    1998-01-01

    The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone

  8. Study of a bacterial leaching program for uranium ores by Thiobacillus ferroxidans

    International Nuclear Information System (INIS)

    Garcia Junior, O.

    1989-01-01

    The development of a bacterial leaching program for uranium ores is studied. Three basic points are presented: isolation and purification of Thiobacillus ferroxidans, as well Thiobacillus thio oxidans; physiological studies of growth and respiratory metabolism of T. ferroxidans; uranium leaching from two types of ore by T. ferroxidans action, on laboratory, semi pilot and pilot scales. The bacterial leaching studies were carried out in shake flasks, percolation columns (laboratory and semi pilot) and in heap leaching (pilot). The potential of the ores studied in relation to bacterial action, was first showed in shake flask experiments. The production of H 2 S O 4 and Fe 3+ was a result of the bacterial activity on both ore samples containing pyrite (Fe S 2 ). These two bacterial products resulted in a high uranium and molybdenum extraction and a lower sulfuric acid consumption compared to the sterilized treatments. Similar results were obtained in percolation column at the same scale (lab). (author)

  9. [Research on anti-corrosion of Thiobacillus for the geopolymer solidification MSWI fly ash].

    Science.gov (United States)

    Jin, Man-Tong; Sun, Xin; Dong, Hai-Li; Jin, Zan-Fang

    2012-09-01

    In order to discuss the anti-Thiobacillus corrosion performance of geopolymer solidification MSWI fly ash, the research simulated the Thiobacillus corrosion process by experiment, investigated the change of mass, compressive strength, leaching concentration. The results showed that geopolymer had a good anti-corrosion ability: weight loss within 1%, the compressive strength still reached 21.88 MPa after 28 days, the corrosion resistance coefficient was above 0.9. The maximum leaching concentration of Cr, Cu, Zn, Cd, Hg, Pb were 107.7 microg x L(-1), 22.71 microg x L(-1), 39.18 microg x L(-1), 0.56 microg x L(-1), 34.84 microg x L(-1) and 3.03 microg x L(-1), respectively. And the leaching concentration of geopolymer reduced with the immersion time, showed a good anti-Thiobacillus corrosion performance. Through the X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope spectra of geopolymer, we investigated the microstructure and mechanism of geopolymer anti-corrosion.

  10. Linking TFT-LCD wastewater treatment performance to microbial population abundance of Hyphomicrobium and Thiobacillus spp.

    Science.gov (United States)

    Fukushima, Toshikazu; Whang, Liang-Ming; Chen, Po-Chun; Putri, Dyah Wulandari; Chang, Ming-Yu; Wu, Yi-Ju; Lee, Ya-Ching

    2013-08-01

    This study investigated the linkage between performance of two full-scale membrane bioreactor (MBR) systems treating thin-film transistor liquid crystal display (TFT-LCD) wastewater and the population dynamics of dimethylsulfoxide (DMSO)/dimethylsulfide (DMS) degrading bacteria. High DMSO degradation efficiencies were achieved in both MBRs, while the levels of nitrification inhibition due to DMS production from DMSO degradation were different in the two MBRs. The results of real-time PCR targeting on DMSO/DMS degrading populations, including Hyphomicrobium and Thiobacillus spp., indicated that a higher DMSO oxidation efficiency occurred at a higher Hyphomicrobium spp. abundance in the systems, suggesting that Hyphomicrobium spp. may be more important for complete DMSO oxidation to sulfate compared with Thiobacillus spp. Furthermore, Thiobacillus spp. was more abundant during poor nitrification, while Hyphomicrobium spp. was more abundant during good nitrification. It is suggested that microbial population of DMSO/DMS degrading bacteria is closely linking to both DMSO/DMS degradation efficiency and nitrification performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans

    International Nuclear Information System (INIS)

    Jin, S.M.; Yan, W.M.; Wang, Z.N.

    1992-01-01

    Thiobacillus thiooxidans is an acidophilic, obligately autotrophic bacterium which derives its energy by oxidizing reduced or partially reduced sulfur compounds and obtains its carbon by fixing carbon dioxide from the atmosphere. The strain is able to live in inorganic, acidic environments and is present in large numbers in coal mine drainage and in mineral ores. T. thiooxidans has been used industrially in metal leaching from mineral ores and in the microbial desulfurization of coal in combination with Thiobacillus ferrooxidans. Although T. thiooxidans has been well studied physiologically, very little is known about it genetics. The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and pUB307 were transferred directly to extremely acidophilic Thiobacillus thiooxidans from Escherichia coli by conjugation at frequencies of 10 -5 to 10 -7 per recipient. The ability of T. thiooxidans to receive and express the antibiotic resistance markers was examined. The plasmid RP4 was transferred back to E. coli from T. thiooxidans at a frequency of 1.0 x 10 -3 per recipient

  12. PERFORMANCE OF A BIOTRICKLING FILTER EMPLOYING THIOBACILLUS THIOPARUS IMMOBILIZED ON POLYURETHANE FOAM FOR HYDROGEN SULFIDE REMOVAL

    Directory of Open Access Journals (Sweden)

    N. Abdehagh

    2011-09-01

    Full Text Available The removal of hydrogen sulfide (H2S from contaminated airstream was studied in a biotrickling filter (BTF packed with open-pore polyurethane foam as a carrier of Thiobacillus thioparus (DSMZ5368 with counter current gas/liquid flows. The effect of operating parameters on BTF performance was studied. Experiments were performed at different Empty Bed Residence Times (EBRT from 9 to 45 seconds, and different initial H2S concentration from 25 to 85 ppm. The results showed reasonable performance of the BTF, in H2S removal from the synthetic gas stream. However, the performance was somewhat lower than other studies in BTF in which either Thiobacillus thioparus with other packings or polyurethane foam with other microbial cultures were used. The effect of liquid recirculation rate (LRR in the range of 175-525 ml/min (0.46-1.34 m/h on BTF performance was also studied. Results showed that increasing LRR from 175 to 350 mL/min resulted in significant enhancement of H2S removal efficiency, but further increase in LRR up to 525 mL/min had an insignificant effect. H2S elimination at different heights of the bed was studied and it was found that decrease in EBRT results in more homogeneous removal of the pollutant in BTF. Determination of microbial species in the BTF after 100 days performance showed that during BTF operation the only H2S degrading specie was Thiobacillus thioparus.

  13. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  14. Hydrogen sulfide removal by Thiobacillus thioparus bacteria on seashell bed biofilters

    OpenAIRE

    Massoudinejad, M. R.; Manshouri, M.; Khatibi, M.; Adibzadeh, A.; Amini, H.

    2008-01-01

    The aim of this research is to achieve an efficient and cheap methods to remove H2S from the factories emissions. Four serial cylinders are designed, 40 cm in height and 15 cm in diameter each. They are filled with bivalve seashells with 63% porosity which contains Thiobacillus thioparus bacteria to the maximum height of 27.5 cm. By mixing phosphoric acid and sodium sulfide, H2S gas is released and its concentration is measured as mg m(-3) before injecting into the cylinders. A permanent meas...

  15. The Effect of Inoculants of Thiobacillus and Aspergillus on Corn Growth

    Directory of Open Access Journals (Sweden)

    M. Mohammdi Aria

    2011-01-01

    Full Text Available Abstract Phosphorus (P is one of the essential macronutrients for growth and development of plant. Phosphorus is added to soil in the form of phosphatic fertilizers, part of which is utilized by plants and the remainder converted into insoluble fixed forms. Increasingly high cost of chemical fertilizers has been the major stimulus to search for an alternative, naturally-occurring, phosphate source. The researchers offered phosphorus rocks as a valuable alternative source for P. fertilizer. Unfortunately, rock phosphate is not plant available in soils with a pH greater than 6. One method to increase soluble form inorganic P is application of phosphate solublizing microorganisms and sulfur oxidizing bacteria (Thiobacillus with rock phosphate. A greenhouse experiment was carried out with two bio fertilizers (bio fertilizers santes in incubation condition in a soil with low available P on corn growth. The bio fertilizers were: rock phosphate with 20% sulfur, 15% vermicompost, Thiobacillus bacteria and Aspergillus fungi (BFS20V15 at three rates: 440 kg/ha (BF1 , 880 kg/ha (BF2, 1320kg/ha (BF3, rock phosphate with 20% sulfur, 15% vermicompost, Thiobacillus bacteria (BFS20V15 at three rates: 440 kg/ha (B1 , 880 kg/ha (B2, 1320kg/ha (B3, triple super phosphate (TSP, and control without phosphorus. In the greenhouse experiment, shoot dry matter, p uptake in plant and available p in soil were determined. The results showed that maximum yield obtained from BF3 with the shoot dry weight 7.2 g per plant and with no significant difference in relation to the triple super phosphate (7.5g at 5% level. Also highest rate p-uptake resulted from BF3. There was significant difference between treatment BF3 and TSP on p-uptake. Results indicated that it could be possible to substitute rock phosphate inoculated with sulfur-oxidizing bacteria and phosphorous-solublizing fungus for super phosphate. Keywords: Uptake-p, pH Rock phosphate, Solfur, Vermicompost

  16. Kinetic properties of ATP sulfurylase and APS kinase from Thiobacillus denitrificans.

    Science.gov (United States)

    Gay, Sean C; Fribourgh, Jennifer L; Donohoue, Paul D; Segel, Irwin H; Fisher, Andrew J

    2009-09-01

    The Thiobacillus denitrificans genome contains two sequences corresponding to ATP sulfurylase (Tbd_0210 and Tbd_0874). Both genes were cloned and expressed protein characterized. The larger protein (Tbd_0210; 544 residues) possesses an N-terminal ATP sulfurylase domain and a C-terminal APS kinase domain and was therefore annotated as a bifunctional enzyme. But, the protein was not bifunctional because it lacked ATP sulfurylase activity. However, the enzyme did possess APS kinase activity and displayed substrate inhibition by APS. Truncated protein missing the N-terminal domain had APS kinase activity suggesting the function of the inactive sulfurylase domain is to promote the oligomerization of the APS kinase domains. The smaller gene product (Tbd_0874; 402 residues) possessed strong ATP sulfurylase activity with kinetic properties that appear to be kinetically optimized for the direction of APS utilization and ATP+sulfate production, which is consistent with an enzyme that functions physiologically to produce inorganic sulfate.

  17. Influence oFe3+ Ions on Nitrate Removal by Autotrophic Denitrification Using Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Z. Blažková

    2017-07-01

    Full Text Available he sulphur-based autotrophic denitrification process utilizing Thiobacillus denitrificans was studied experimentally as an alternative method of removing nitrates from industrial wastewater. The objective of the work was to examine the effect of ferric iron addition to the reaction mixture and determine optimal dosage for specific conditions. All experiments were carried out in anoxic batch bioreactor, and elemental sulphur was used as an electron donor. Compared to the control operation without ferric iron addition, significant increases in nitrates removal were demonstrated for the concentration of ferric iron equal to 0.1 mg L–1. However, under these conditions, increased nitrite content was detected in the reaction mixture which exceeds the limits for drinking water.

  18. Evaluation of integrated impact of sulfur and Thiobacillus on qualitative and morphological characteristics of safflower (CarthamustinctoriusL.

    Directory of Open Access Journals (Sweden)

    F.S. Noorbakhsh

    2016-05-01

    Full Text Available Considering high alkalinity of Iranian soils and lack of availability of some nutrients in those conditions, sulfur consumption is one approach to increase the availability of insoluble nutrients especially in calcareous and alkaline soils. Effectiveness of sulfur depends on activity of sulfur oxidizing bacteria especially Thiobacillus genus (T. In order to study the qualitative yield and morphological characteristics of safflower (Carthamustinctorius L., a field experiment was carried out as factorial layout based on a randomized complete block design with three replications at the Agricultural Research Station, College of Agriculture, Birjand University during growing season 2010-2011. Treatments were including four sulfur levels (0, 300, 400 and 500 kg.ha-1 and four levels of Thiobacillus (0, 1, 2 and 3 kg.ha-1 per 100 kg.ha-1 organic sulfur. Studied traits were height and diameter of stems and qualitative characteristics of safflower such as protein and oil contents in seed and sulfur and phosphorus concentrations in leaf. Results showed that the effect of sulfur and biosulfur with Thiobacillusas a biofertilizer and their interaction effects were significant (p≤0.01 on oil and protein contents of seed, phosphorus and sulfur concentrations of leaf, and also on height and stem diameter of safflower. The highest seed protein content was observed in 500 kg.ha-1sulfur with 20.4% and the lowest was for control plots with 17.1%. The minimum oil content was recorded in control plots (18.7% and the highest improvement compared to control was obtained in 500 kg.ha-1sulfur with 26%. The highest height and stem diameter of safflower were observed in 400 and 500 kg.ha-1sulfur with 3 kg.ha-1Thiobacillus. So, it seems that integrated application of sulfur with Thiobacillus inoculation is an ecological strategy for improving of qualitative and quantitative growth and producing of oil crops such as safflower.

  19. Co-Inoculation Effects of Thiobacillus thiooxidans Bacteria and Mycorrhiza (Glomus spp. on Maize Nutrition at Different Levels of Sulfur

    Directory of Open Access Journals (Sweden)

    A. Gholami

    2016-02-01

    Full Text Available Introduction: Sulfur is the key element for higher crops and plays an important role in the formation of proteins, vitamins, and enzymes. It is a constituent of amino acids such as cysteine and methionine, which act for the synthesis of other compounds containing reduced sulfur, such as chlorophyll and utilization of phosphorus and otheressential nutrients.Deficiency of this nutrient in soil is usually compensated by using chemical fertilizers. However, these fertilizers have harmful effects on the environment and decrease the quality of the agriculture products. Therefore, biological fertilizers are more useful for using in agricultural ecosystems.Sulfurshould be addedto the soil, usually in a reduced form such as elemental sulfur. Use of S oxidizers enhances the rate of natural oxidation of S and speeds up the production of sulfates and makes them available to plants consequently resulting in an increased plant yield. The role of chemolithotrophic bacteria of the genus Thiobacillus through oxidation process in the soil is usually emphasized. Sulfur oxidation is the most important step of sulfur cycle, which improves soil fertility. The result is formation of sulfate, which can be used by the plants, while the acidity produced by oxidation helps to solubilize nutrients in alkaline soils. These bacteria can solubilise the soil minerals through the production of H2SO4 that reacts with these non-soluble minerals and oxidised them to be available nutrients to the cultivated plants. Arbuscular MycorrhizalFungi isan important component ofthe microbiota, mutualistic symbioticsoilfungithatcolonizesthe rootsofmost cropplants.The AM symbiosis involves an about 80% of land plant species and 92% of plant families. They have theability to enhance host uptake of relativelyimmobile nutrientsparticularly phosphorus (P andzinc (Zn,Manganese (Mn andiron(Fe.Arbuscular mycorrhizal fungi increased plant uptake of phosphorus, nitrogen and water absorption

  20. A kinetic study of the depyritization of oil shale HCl-kerogen concentrate by Thiobacillus ferrooxidans at different temperatures

    OpenAIRE

    OLGA CVETKOVIC; DRAGOMIR VITOROVIC; SNEZANA SPASIC; VALERIJA MATIC; VESNA DRAGUTINOVIC; MIROSLAV M. VRVIC

    2003-01-01

    The results of kinetic studies of bacterial depyritization of HCl-kerogen concentrate of Aleksinac (Serbia) oil shale by the chemolithoautotrophic thionic bacteria Thiobacillus ferrooxidans under discontinuous laboratory conditions at various temperatures (0, 20, 28 and 37°C) at a pH of ca. 1.5 are presented in this paper. Low pH prevents the occurrence of the precipitation of iron(III)-ion hydrolysis products on the substrate particles and thereby reduces the process efficiency. Bacterial de...

  1. Adenosine 5'-triphosphate formation in Thiobacillus ferrooxidans vesicles by H+ ion gradients comparable to those of environmental conditions.

    OpenAIRE

    Apel, W A; Dugan, P R; Tuttle, J H

    1980-01-01

    Vesicles prepared from iron-grown Thiobacillus ferrooxidans, and subsequently loaded with adenosine 5'-diphosphate and inorganic phosphate, produced adenosine 5'-triphosphate when subjected to H+ gradients comparable to those in the cells' normal environment (i.e., an internal pH in the range of 6.0 to 8.0 with an optimum of 7.0 to 7.8 and an external pH in the range of 2.1 to 4.1 with an optimum of 2.8). Nigericin, dicyclohexylcarbodiimide, and pentachlorophenol decreased adenosine 5'-tripho...

  2. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales.

    Science.gov (United States)

    Boden, Rich; Hutt, Lee P; Rae, Alex W

    2017-05-01

    The genus Thiobacillus comprises four species with validly published names, of which Thiobacillus aquaesulis DSM 4255T (=ATCC 43788T) is the only species that can grow heterotrophically or mixotrophically - the rest being obligate autotrophs - and has a significant metabolic difference in not producing tetrathionate during the oxidation of thiosulfate during autotrophic growth. On the basis of this and differential chemotaxonomic properties and a 16S rRNA gene sequence similarity of 93.4 % to the type species Thiobacillus thioparus DSM 505T, we propose that it is moved to a novel genus, Annwoodia gen. nov., for which the type species is Annwoodia aquaesulis gen. nov., comb. nov. We confirm that the position of the genus Thiobacillus in the Betaproteobacteria falls within the Nitrosomonadales rather than the Hydrogenophilales as previously proposed. Within the Nitrosomonadales we propose the circumscription of genera to form the Thiobacilliaceae fam. nov. and the Sterolibacteriaceae fam. nov. We propose the merging of the family Methylophilaceae into the Nitrosomonadales, and that the Sulfuricellaceae be merged into the Gallionellaceae, leaving the orders Methylophilales and Sulfuricellales defunct. In the Rhodocyclales we propose the Azonexaceae fam. nov. and the Zoogloeaceae fam. nov. We also reject the Hydrogenophilales from the Betaproteobacteria on the basis of a very low 16S rRNA gene sequence similarity with the class-proper as well as physiological properties, forming the Hydrogenophilalia class. nov. in the 'Proteobacteria'. We provide emended descriptions of Thiobacillus, Hydrogenophilales, Hydrogenophilaceae, Nitrosomonadales, Gallionellaceae, Rhodocyclaceae and the Betaproteobacteria.

  3. Hydrogen sulfide removal by Thiobacillus thioparus bacteria on seashell bed biofilters.

    Science.gov (United States)

    Massoudinejad, M R; Manshouri, M; Khatibi, M; Adibzadeh, A; Amini, H

    2008-03-15

    The aim of this research is to achieve an efficient and cheap methods to remove H2S from the factories emissions. Four serial cylinders are designed, 40 cm in height and 15 cm in diameter each. They are filled with bivalve seashells with 63% porosity which contains Thiobacillus thioparus bacteria to the maximum height of 27.5 cm. By mixing phosphoric acid and sodium sulfide, H2S gas is released and its concentration is measured as mg m(-3) before injecting into the cylinders. A permanent measuring instrument is equipped to control the gas coming out of the cylinders. In order to prevent the outdoor environment from pollution, first the gas is sent through two activated carbon columns and then sent through a ferrous chloride scrubber. Finally it is burnt directly by flames. There were 550 sample readings in 15 weeks. The changes in the discharge of the air which carries the gas are considered between 1-12 L min(-1) and the concentration of the influent pollutant is considered between 1-140 mg m(-3). Also the humidity in the atmosphere is fixed between 77-93% and the optimum temperature required for growing of the microorganisms is retained between 20.5-30 degrees C. After feeding the system for three weeks the efficiency started to increase so that by the end of the final week of this research the efficiency reached to 90% with the discharge of 6 L min(-1) of the carrier gas. The results achieved from this research show that because of not using Filamentous bacteria, clogging did not occur in the biological system in biofilters. The amount of head loss in cylinder was only 2 mm water and during this research, head loss was the same due to unclogging of filter. On the other hand the traditional methods are expensive in terms of using chemicals, carbon recycling and using fuel and etc. Therefore researchers have started new studies in this field. The above mentioned method, according to high efficiency, inexpensiveness and easiness of control and maintenance is

  4. [Thiobacillus sajanensis sp. nov., a new obligately autotrophic sulfur-oxidizing bacterium isolated from Khoito-Gol hydrogen-sulfide springs, Buryatia].

    Science.gov (United States)

    Dul'tseva, N M; Turova, T P; Spiridonova, E M; Kolganova, T V; Osipov, G A; Gorlenko, V M

    2006-01-01

    Four strains of rod-shaped gram-negative sulfur-oxidizing bacteria were isolated from Khoito-Gol hydrogen-sulfide springs in the eastern Sayan Mountains (Buryatia). The cells of the new isolates were motile by means of a single polar flagellum. The strains were obligately chemolithoautotrophic aerobes that oxidized thiosulfate (with the production of sulfur and sulfates) and hydrogen sulfide. They grew in a pH range of 6.8-9.5, with an optimum at pH 9.3 and in a temperature range of 5-39 degrees C, with an optimum at 28-32 degrees C. The cells contained ubiquinone Q-8. The DNA G+C content of the new strains was 62.3-64.2 mol %. According to the results of analysis of their 16S rRNA genes, the isolates belong to the genus Thiobacillus within the subclass Betaproteobacteria. However, the similarity level of nucleotide sequences of the 16S rRNA genes was insufficient to assign the isolates to known species of this genus. The affiliation to the genus Thiobacillus was confirmed by DNA-DNA hybridization of the isolates with the type strain of the type species of the genus Thiobacillus, T. thioparus DSM 505T (= ATCC 8158T). Despite the phenotypic similarity, the hybridization level was as low as 21-29%. In addition, considerable differences were revealed in the structure of the genes encoding RuBPC, the key enzyme of autotrophic CO2 assimilation, between the known Thiobacillus species and the new isolates. Based on molecular-biological features and certain phenotypic distinctions, the new isolates were assigned to a new Thiobacillus species, T. sajanensis sp. nov., with the type strain 4HGT (= VKM B-2365T).

  5. Anaerobic biodesulfurization of thiophenes

    NARCIS (Netherlands)

    Marcelis, C.

    2002-01-01

    Distillates from crude oil such as diesel and fuel oil may contain significant amounts of dibenzothiophenes and their alkylated derivatives, containing organically bound sulfur. Combustion of those fossil fuels leads to the release of polluting sulfur dioxide into the atmosphere, where it causes

  6. Evaluating Maize Yield and the Quality of Response to Vermicompost, in Thiobacillus and Foliar Application of Fe and Zn

    Directory of Open Access Journals (Sweden)

    Elnaz Davaran Hagh

    2017-08-01

    Full Text Available Introduction Half of the world's population suffers from micronutrients malnutrition. Use of bio-fertilizers in sustainable agricultural systems is important in production and enables plants to absorb more water from soil and improves plant nutrient uptake and photosynthesis. Benefits of vermicompost application in agriculture is due to its content of organic matter, plant nutrients and plant growth promotion. Vermicompost increases the absorption and transition of nutrients from soil to roots and improves plant growth (Simsek-Ersahin, 2011. Zn and Fe application is highly important; foliar application causes faster and higher absorption rate and cures deficiencies symptoms (Ghaffari et al., 2010. Thiobacillus is a chemolithotroph bacterium, receiving energy from sulfur oxidation. This bacterium acidifies microcites in the rhizosphere, increasing the availability of nutrients to plant roots (Kaya et al., 2009. Regarding the benefits of integrated nutrient management, this experiment was conducted with the aim of testing the effects of Fe and Zn foliar spraying, Thiobacillu sthiooxidans inoculation and vermicompost application on growth, yield and bio fortification of popcorn maize. Materials and methods This experiment was conducted in 2012 at the research field of Islamic Azad University, Tabriz branch, Iran. The experiment was conducted in factorial in the form of a randomized complete block design with three replications and four factors: vermicompost application in soil (0 and 2 t.ha-1, applied in strip form below the seeds before cultivation, inoculation with Thiobacillus thiooxidans, with a population of 108cfu.g-1. Sulfur was inoculated with T. thiooxidans prior to application. Fe chelate foliar application (without spraying and two times spraying of 0.002 concentration of 13% Fe chelate and Zn chelate foliar application (without spraying and two times spraying of 0.002 concentration of 15% Zn chelate. Maize seeds (Zea mays L. var

  7. Evaluating Maize Yield and the Quality of Response to Vermicompost, in Thiobacillus and Foliar Application of Fe and Zn

    Directory of Open Access Journals (Sweden)

    Elnaz Davaran Hagh

    2017-01-01

    Full Text Available Introduction Half of the world's population suffers from micronutrients malnutrition. Use of bio-fertilizers in sustainable agricultural systems is important in production and enables plants to absorb more water from soil and improves plant nutrient uptake and photosynthesis. Benefits of vermicompost application in agriculture is due to its content of organic matter, plant nutrients and plant growth promotion. Vermicompost increases the absorption and transition of nutrients from soil to roots and improves plant growth (Simsek-Ersahin, 2011. Zn and Fe application is highly important; foliar application causes faster and higher absorption rate and cures deficiencies symptoms (Ghaffari et al., 2010. Thiobacillus is a chemolithotroph bacterium, receiving energy from sulfur oxidation. This bacterium acidifies microcites in the rhizosphere, increasing the availability of nutrients to plant roots (Kaya et al., 2009. Regarding the benefits of integrated nutrient management, this experiment was conducted with the aim of testing the effects of Fe and Zn foliar spraying, Thiobacillu sthiooxidans inoculation and vermicompost application on growth, yield and bio fortification of popcorn maize. Materials and methods This experiment was conducted in 2012 at the research field of Islamic Azad University, Tabriz branch, Iran. The experiment was conducted in factorial in the form of a randomized complete block design with three replications and four factors: vermicompost application in soil (0 and 2 t.ha-1, applied in strip form below the seeds before cultivation, inoculation with Thiobacillus thiooxidans, with a population of 108cfu.g-1. Sulfur was inoculated with T. thiooxidans prior to application. Fe chelate foliar application (without spraying and two times spraying of 0.002 concentration of 13% Fe chelate and Zn chelate foliar application (without spraying and two times spraying of 0.002 concentration of 15% Zn chelate. Maize seeds (Zea mays L. var

  8. Structure/function relationship of the rusticyanin among thiobacillus ferroxidans: from the fermenter to the crystal; Relations structure/fonction de la rusticyanine chez thiobacillus ferrooxidans: du fermenteur au cristal

    Energy Technology Data Exchange (ETDEWEB)

    Nunzi, F.

    1996-09-23

    The commercial extraction of copper and uranium from ores by microbial leaching turns to account the iron oxidation capacity of Thiobacillus ferroxidans. The iron oxidation involves an electron transport chain localized in the peri-plasmic space of the cell. The aim of our work is to study the structure-function relationships of rusticyanin, the most important component of this respiratory chain. Rusticyanin is a blue copper protein and has been characterized from a new strain of Thilbacillus ferrooxidans. A preliminary electrochemical study has been made with a new modified-gold electrode and we have examined, in particular, the pH dependence of the high redox potential of rusticyanin. Its amino acid sequence has been determined and a comparison with two other rusticyanin sequences, isolated from different strains, shows a high degree of homology. A structural alignment with six other blue copper proteins allows to propose four residues as copper ligands, His 84, Cys 138, His 143 and Met 148. The supposed factors responsible for the high redox potential of rusticyanin are discussed. (author)

  9. Charge and softness of the outer part of the cell wall of Thiobacillus ferrooxidans in the low ionic strength medium

    Directory of Open Access Journals (Sweden)

    Škvarla Jiří

    2002-03-01

    Full Text Available The surface charge and surface potential are parameters influencing the microbial adhesion phenomenon through the electrostatic interaction between bacteria and substrates. The Smoluchowski equation, originally developed for estimating the above parameters from the experimentally accessible electrophoretic mobility of rigid colloid particles, is however inapplicable to the elastic bacterial cells. The problem is that the outer cell wall of bacteria is a layer with a complex polyelectrolyte structure. In this article, the OhshimaLs model of the gsofth particle is applied to describe the surface electrostatics of Thiobacillus ferrooxidans cells by measuring their electrophoretic mobility in distilled water as a function of a (low ionic strength and pH. In this model, the rigid core is considered to be covered with a charged ion-penetrable layer of polyelectrolytes. Two model parameters have been determined by the curve fitting at pH from 3.2 to 5.8, namely the number density of the dissociated groups N and the softness parameter 1/ƒÉ of the polyelectrolyte layer of the bacterium. A disagreement of the best fit parameters (evaluated by the correlation coefficient with the analogous parameters determined for other colloids (including bacterial cells in aqueous solutions of a high ionic strength is discussed.

  10. A kinetic study of the depyritization of oil shale HCl-kerogen concentrate by Thiobacillus ferrooxidans at different temperatures

    Directory of Open Access Journals (Sweden)

    OLGA CVETKOVIC

    2003-05-01

    Full Text Available The results of kinetic studies of bacterial depyritization of HCl-kerogen concentrate of Aleksinac (Serbia oil shale by the chemolithoautotrophic thionic bacteria Thiobacillus ferrooxidans under discontinuous laboratory conditions at various temperatures (0, 20, 28 and 37°C at a pH of ca. 1.5 are presented in this paper. Low pH prevents the occurrence of the precipitation of iron(III-ion hydrolysis products on the substrate particles and thereby reduces the process efficiency. Bacterial depyritization is developed as per kinetics of the first order. The activation energy which points to a successive mechanism of pyrite biooxidation, was computed from the Arrhenius plot. The biochemical kinetics indicators point to a high affinity of the bacteria toward pyrite but small values of Vmax, which are probably the result of decelerated metabolic processes due to the low pH value of the environment resp. the large difference of the pH between the external medium and the cell interior.

  11. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Harry R Beller

    2013-08-01

    Full Text Available Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV and Fe(II oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II oxidation, namely (a whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV oxides as electron donors under denitrifying conditions], (b Fe(II oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c random transposon-mutagenesis studies with screening for Fe(II oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III, which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV oxidation, nor have other c-type cytochromes yet been implicated in the process.

  12. Evaluation of the Effect of Sulfur Application and Thiobacillus on Some Soil Chemical Characteristics and Yield of Canola in Wheat-Canola Rotation System

    Directory of Open Access Journals (Sweden)

    H. Besharati

    2016-09-01

    Full Text Available Introduction: After soybean and palm oil, canola is third important oil seed in the world which belongs to the genus Brassicaceae, that its seeds contain about 40% oil. The per capita consumption of oil in Iran is about 14 kg, so approximately 900 thousand tons of oil will be required for each year. However, only less than 10% of this oil is produced in the country. In recent years, special attention has been paid to canola cultivation in order to increase oil production, so during recent years an apparent increase in canola cultivated lands is significant. In most of these canola cultivated lands, the soil is calcareous therefore; some available nutrients such as phosphorus, iron and zinc are less than the amounts required by plants. Increasing qualitative and quantitative yield of canola in calcareous soils is a priority to canola cultivation improvement. Sulfur plays an important role in oil content of oily seed crops. On the other hands sulfur oxidation in calcareous soils can improve some nutrients availability. The present study was designed to investigate the effect of sulfur on yield, oil content and nutrients uptake and also its impact on soil chemical properties with 8 treatments, in 3 replications. Materials and Methods: This study was conducted in Ekbatan research station in Hamedan province for 2 years as completely randomized block design with 8 treatments and 3 repetitions. The treatments were: T1: Control (Without sulfur and Thiobacillus, T2: Application of 150 kg sulfur per ha, T3: T2+ Thiobacillus inoculums (2% of applied sulfur, T4: Application of 300 kg sulfur per ha, T5: T4+ Thiobacillus inoculums (2% of applied sulfur, T6: Application of 600 kg sulfur per ha, T7: T6+ Thiobacillus inoculums (2% of applied sulfur T8: Fertilizing based on soil test without sulfur and Thiobacillus. Thiobacillus inoculant containing about 107 cells of Thiobacillus bacteria which belonged to neutrophile Thiobacilli were prepared at soil biology

  13. Amplification of ribulose biphosphate carboxylase/oxygenase large subunit (RuBisCO LSU) gene fragments from Thiobacillus ferrooxidans and a moderate thermophile using polymerase chain reaction.

    Science.gov (United States)

    Holden, P J; Brown, R W

    1993-07-01

    Southern blot analysis of DNA from an iron-oxidising moderate thermophile NMW-6 and from Thiobacillus ferrooxidans strain TFI-35 demonstrated sequences homologous to the RuBisCO LSU gene of Synechococcus. DNA fragments (457 bp) encoding part of the RuBisCO LSU gene (amino acids 73-200) were amplified from the genomic DNA of Thiobacillus ferrooxidans and the moderate thermophile NMW-6 using the polymerase chain reaction (PCR) technique (Saiki et al. (1985) Science 233, 1350-1354). A comparison with the LSU sequences from T. ferrooxidans, Alcaligenes eutrophus, Chromatium vinosum, Synechococcus and Spinacea oleracea, which all have RuBisCOs with a hexadecameric structure, showed that the RuBisCO LSU gene sequence from NMW-6 appeared to be most closely related to that of the hydrogen bacterium A. eutrophus which showed 71.9% homology at the amino acid level. Despite its physiological similarity, T. ferrooxidans showed only 64.1% homology to the amino acid sequence from NMW-6 and had the lowest DNA homology (60.9%) of the hexadecameric type RuBisCOs. In the region sequenced, T. ferrooxidans and the RuBisCOs of the phototrophs C. vinosum, Synechococcus and S. oleracea, had 17 residues that were completely conserved which were substituted in both NMW-6 and A. eutrophus, 11 of these being identical substitutions. Comparison of the nucleotide and derived amino acid sequences of the RuBisCO LSU fragment from T. ferrooxidans with other RuBisCO sequences indicated a closer relationship to the hexadecameric type LSU genes of photosynthetic origin than to that of A. eutrophus. The T. ferrooxidans amino acid sequence showed 93.8%, 78.9% and 77.3% homology, respectively, to the C. vinosum, Synechococcus and S. oleracea (spinach) sequences but only 56.2% to A. eutrophus. The DNA sequence from Rhodospirillum rubrum, which has the atypical large subunit dimer RuBisCO structure with no small subunit, showed 39.2% and 42.7% homology, respectively, with the sequences of NMW-6 and T

  14. Biodesulfurization of dibenzothiophene and its alkylated derivatives ...

    African Journals Online (AJOL)

    RIPI-S81 is a new dibenzothiophene (DBT)-desulfurizing bacterium, which was isolated by Research Institute of Petroleum Industry in Iran. Resting cells and growing cells of RIPI-S81 was able to convert alkylated dibenzothiophenes (Cx DBTs) to hydroxybiphenyls such that they were almost stoichiometrically accumulated ...

  15. Leaching of Copper Ore by Thiobacillus Ferrooxidans.

    Science.gov (United States)

    Lennox, John; Biaha, Thomas

    1991-01-01

    A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)

  16. Factors Influencing Degradation of Mercaptans by Thiobacillus ...

    African Journals Online (AJOL)

    MICHAEL

    Sundman, 1975). Little work has been published on the microbial degradation of other thiols with the exception of methanethiol. The biogenesis of methylsulphides provides a principal input of volatile sulphur to the atmosphere. This contribution has significant effects on the sulphur cycle and on global geochemistry (Taylor.

  17. Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization

    NARCIS (Netherlands)

    Leerdam, van R.C.

    2007-01-01

    Due to increasingly stringent environmental legislation car fuels have to be desulfurized to levels below 10 ppm in order to minimize negative effects on the environment as sulfur-containing emissions contribute to acid deposition (‘acid rain’) and to reduce the amount of particulates formed during

  18. Inhibition of carbon disulfide on bio-desulfurization in the process of ...

    African Journals Online (AJOL)

    Biological desulfurization is a novel technology for the removal of hydrogen sulfide from some biogas or sour gas, in which there are always a certain amounts of carbon disulfide together with much hydrogen sulfide. Nowadays, carbon disulfide is found to have negative effect on the biological desulfurization, but seldom ...

  19. Effect of chloride salts on biodesulfurization process of a colombian coal

    Directory of Open Access Journals (Sweden)

    Gerardo Andrés Caicedo Pineda

    2013-01-01

    Full Text Available Se evaluó el efecto de un medio de sales cloruros para un consorcio de Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans en un proceso de biodesulfurización de un carbón colombiano (azufre total: 2.34%, azufre pirítico: 1.34%, azufre orgánico: 0.90% y azufre de sulfatos: 0.10%, bajo tres concentraciones de pulpa (9.09%, 16.67% y 23.08%. Los ensayos se compararon con otros bajo condiciones similares, pero utilizando medio T&K modificado. Todos los procesos se monitorearon con mediciones periódicas de hierro en solución, pH, potencial redox y concentración celular. El carbón fue analizado antes y después de la biodesulfurización por microscopía electrónica de barrido con analizador microquímico (SEM-EDX. Los ensayos con el medio de sales cloruros obtuvieron una oxidación del 70% de azufre pirítico después de 12 días para todas las concentraciones de pulpa evaluadas. En contraste, en los ensayos con el medio T&K modificado, la concentración de pulpa influyó en la oxidación de pirita y fue menor (por debajo de 55%.

  20. Selection and Application of Sulfide Oxidizing Microorganisms Able to Withstand Thiols in Gas Biodesulfurization Systems

    NARCIS (Netherlands)

    Roman, Pawel; Klok, Johannes B.M.; Bastos Sousa, Joao; Broman, Elias; Dopson, Mark; Zessen, van Erik; Bijmans, Martijn F.M.; Sorokin, Dimitry Y.; Janssen, Albert J.H.

    2016-01-01

    After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H2S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we

  1. Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Pienkos, Philip T.

    2002-01-15

    Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19:354-359) method of in vitro recombination. Methods for analysis were developed and a preliminary analysis of the library was performed. A preliminary gasoline process design was constructed and process economics were determined based upon assumptions made from experimental results. The projected cost of gasoline BDS was determined to be competitive with current competing technologies.

  2. EVALUATION OF A COAL BIODESULFURIZATION PROCESS (SEMI-CONTINUOUS MODE ON THE PILOT PLANT LEVEL

    Directory of Open Access Journals (Sweden)

    GERARDO CAICEDO

    2012-01-01

    Full Text Available En un reactor de tanque agitado con capacidad de 4000 L, se llevó a cabo un proceso de biodesulfurización de un carbón con alto contenido de azufre (Spirítico = 1.03%, Sorgánico = 0.9%, Ssulfatos = 0.1%, proveniente del Municipio de Puerto Libertador (Córdoba, Colombia. Se utilizó un cultivo bacteriano compatible con A. ferrooxidans y A. thiooxidans. Se configuró un sistema de descarga-carga bajo condiciones ambientales, pH controlado diariamente (1.8±0.1, oxígeno disuelto 4 mg/l y tamaño de partícula pasante 3/8" (dp<19.05 mm. Se evaluaron dos tiempos de residencia (C2 = 8 días y C1 = 4 días. La máxima oxidación de pirita fue de 59.22% (C1. Lo anterior muestra buenas expectativas del proceso sin llevarse el carbón a molienda fina. Por otra parte, los efluentes líquidos producidos durante la biodesulfurización fueron neutralizados con cal antes de ser descartados a un pH entre 7.5-8.5, observándose remociones del 100% de hierro, 69.81% de sulfatos y 66.09% de los sólidos totales en solución.

  3. Isolation of Thiobacillus spp. and its application in the removal of ...

    African Journals Online (AJOL)

    uwerhiavwe

    archaeal diversity of a mixed thermophilic bioleaching culture by. TGGE and FISH. Syst. Appl. Microbiol. 32: 501–513. Nareshkumar R, Nagendran R, Parvathi K (2008). Bioleaching of heavy metals from contaminated soil using Acidithiobacillus thiooxidans: effect of sulfur/soil ratio. World. J. Microbiol. Biotechnol. 24: 1539–.

  4. Production of ferric sulphate from pyrite by thiobacillus ferrooxidans. Application to uranium ore leaching

    International Nuclear Information System (INIS)

    Rouas, C.

    1988-12-01

    A process for uranium extraction by oxidizing solutions of ferric sulphate produced by T. ferrooxidans from pyrite is developed. A new counting method specific of T. ferrooxidans is designed. An uranium resistant wild strain, with oxidizing properties as high as the strain ATCC 19859, is isolated. Optimal conditions for ferric sulphate production from pyrite are defined (pH 1.8, density of the medium 1.2%, pyrite granulometry [fr

  5. Evidence of biogenic corrosion of titanium after exposure to a continuous culture of thiobacillus ferrooxidans grown in thiosulfate medium

    International Nuclear Information System (INIS)

    Horn, J M; Martin, S I; Masterson, B

    2000-01-01

    Experiments were undertaken to evaluate extreme conditions under which candidate materials intended for use in a proposed nuclear waste repository might be susceptible to corrosion by endogenous microorganisms. Thiobucillus ferrooxidans, a sulfur-oxidizing bacterium, was grown in continuous culture using thiosulfate as an energy source; thiosulfate is oxidized to sulfate as a metabolic endproduct by this organism. Culture conditions were optimized to produce a high-density, metabolically active culture throughout a period of long term incubation in the presence of Alloy 22 (a high nickel-based alloy) and Titanium grade 7 (Tigr7) material coupons. After seven months incubation under these conditions, material coupons were withdrawn and analyzed by high resolution microscopy and energy dispersive x-ray analyses. Alloy 22 coupons showed no detectable signs of corrosion. Tigr7, however, demonstrated distinct roughening of the coupon surface, and [presumably solubilized and precipitated] titanium was detected on Alloy 22 coupons incubated in the same T. ferrooxiduns culture vessel. Control coupons of these materials incubated in sterile thiosulfate medium did not demonstrate any signs of corrosion, thus showing that observed corrosive effects were due to the T. ferrooxidans metabolic activities. T. ferrooxidans intermediates of thiosulfate oxidation or sulfate may have caused the corrosive effects observed on Tigr7

  6. Avaliação da biolixiviação de metais pesados por bacterias do genero Thiobacillus em lodos biologicos para utilização agricola como fertilizante.

    OpenAIRE

    Takamatsu, Alexandre Akira

    2013-01-01

    Resumo: A disposição em solos agrícolas e florestais de lodos resultantes de estações de tratamento de esgoto vem sendo amplamente revisada e questionada nos países que se utilizam desta prática. Embora isto venha a resolver um problema sério de falta de espaço e alto custo de destinação do lodo, e ainda substituindo parcialmente as necessidades de adubação química, os problemas de acréscimo de metais pesados aos solos através do lodo e a presença de patógenos se constituem hoje nos principai...

  7. Degradation of methylmercaptan by crude enzyme extracts of ...

    African Journals Online (AJOL)

    The biodegradation of methyl suphides by crude enzyme extracts of Thiobacillus thioparus TK-m was investigated in this work. The data revealed that crude protein contents of enzyme extracts from cells of Thiobacillus thioparus TK-m was influenced by the saturation levels of the EDTA and ammonium sulphate solutions.

  8. Degradation of methylmercaptan by crude enzyme extracts of ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: The biodegradation of methyl suphides by crude enzyme extracts of Thiobacillus thioparus. TK-m was investigated in this work. The data revealed that crude protein contents of enzyme extracts from cells of Thiobacillus thioparus TK-m was influenced by the saturation levels of the EDTA and ammonium ...

  9. The Biocatalytic Desulfurization Project

    Energy Technology Data Exchange (ETDEWEB)

    David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

    2006-03-03

    The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

  10. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  11. Biotechnological application of microbial sulfidogenesis at haloalkaline conditions

    NARCIS (Netherlands)

    Sousa, João A.B.

    2017-01-01

    Sulfide is a toxic and corrosive sulfur compound present in gas streams, like natural gas or biogas. Thus, before using the gas, sulfide can be removed using sustainable biodesulfurization technologies. These technologies use the natural ability of microbes to transform sulfide into elemental

  12. African Journal of Biotechnology - Vol 5, No 4 (2006)

    African Journals Online (AJOL)

    Biodesulfurization of dibenzothiophene and its alkylated derivatives through the sulfur-specific pathway by the bacterium RIPI-S81 · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Ladan Rashidi, Ghasemali Mohebali, Jafar Towfighi Darian, Behnam Rasekh, 351- ...

  13. Browse Title Index

    African Journals Online (AJOL)

    Vol 5, No 4 (2006), Biodesulfurization of dibenzothiophene and its alkylated derivatives through the sulfur-specific pathway by the bacterium RIPI-S81, Abstract PDF ... Vol 12, No 27 (2013), Biodiesel production from Jatropha curcas oil catalyzed by whole cells of Aureobasidium pullulans var. melanogenum SRY 14-3 ...

  14. Toxicity of substituted benzene derivatives to four chemolithotrophic ...

    African Journals Online (AJOL)

    The toxicity of benzene, hydroxylbenzene (phenol), chlorobenzene, methylbenzene (toluene) and dimethylbenzene (xylene) to four chemolithotrophic bacteria (Nitrosomonas, Nitrobacter, Thiobacillus and Leptothrix isolated from the New Calabar River water was investigated. The static method for acute toxicity assessment ...

  15. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  16. Removal of sulfur-containing organic molecules adsorbed on inorganic supports by Rhodococcus Rhodochrous spp.

    Science.gov (United States)

    Carvajal, P; Dinamarca, M Alejandro; Baeza, P; Camú, E; Ojeda, J

    2017-02-01

    To remove dibenzothiophene (DBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT) adsorbed on alumina, silica and sepiolite through biodesulfurization (BDS) using Rhodococcus Rhodochrous spp., that selectively reduce sulfur molecules without generating of gaseous pollutants. The adsorption of DBT and 4,6-DMDBT was affected by the properties of the supports, including particle size and the presence of surface acidic groups. The highest adsorption of both sulfur-containing organic molecules used particle sizes of 0.43-0.063 mm. The highest percentage removal was with sepiolite (80 % for DBT and 56 % for 4,6-DMDBT) and silica (71 % for DBT and 37 % for 4,6-DMDBT). This is attributed to the close interaction between these supports and the bacteria. Biodesulfurization is effective for removing the sulfur-containing organic molecules adsorbed on inorganic materials and avoids the generation of gaseous pollutants.

  17. Microbial metabolism of alkyl and condensed thiophenes: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fedorak, P.M.

    1992-01-01

    This study was conducted to gain a better understanding of the metabolic pathways used by aerobic microorganisms for the biodegradation or biotransformation of organosulfur compounds found in petroleum. The study used alkyl-substituted thiophenes, benzothiophene and alkyl-substituted benzothiophenes and alkyl-substituted dibenzothiophenes. The results provide information relevant to environmental matters, aspects of microbial transformations in petroleum reservoirs and further assessment of the feasibility of biodesulfurization.

  18. Microbial oxidation and reduction of inorganic sulphur compounds in relation to the development and control of microorganisms active in leaching operations. Part of a coordinated programme on bacterial leaching of uranium ores

    International Nuclear Information System (INIS)

    Tuovinen, O.H.

    1977-01-01

    The project considers the use of Thiobacillus ferroxidans type bacteria for the leaching of metals from ores. The various ways by which Thiobacillus ferroxidans utilizes inorganic sulfur compounds for oxidation, energy, growth and synthesis of cellular material were studied. The report briefly describes the scope and background of the project, and a list of publications describing experimental methods and research materials used is given. Unpublished work commenced during the Research Contract includes three major projects: (1) Transition of Thiobacillus ferroxidans from heterotrophic growth on fucose to autotropic growth on ferrous-iron; (2) development of a method to determine the ATP-content of bacteria attached to ore particles; (3) microbiological and chemical interactions of inorganic sulfur compounds. These three projects are summarized briefly

  19. Bacterial leaching of uranium ores - a review

    International Nuclear Information System (INIS)

    Lowson, R.T.

    1975-11-01

    The bacterial leaching of uranium ores involves the bacterially catalysed oxidation of associated pyrite to sulphuric acid and Fe 3+ by autotrophic bacteria and the leaching of the uranium by the resulting acidic, oxidising solution. Industrial application has been limited to Thiobacillus thiooxidans and Thiobacillus ferrooxidans at pH 2 to 3, and examples of these are described. The bacterial catalysis can be improved with nutrients or prevented with poisons. The kinetics of leaching are controlled by the bed depth, particle size, percolation rate, mineralogy and temperature. Current work is aimed at quantitatively defining the parameters controlling the kinetics and extending the method to alkaline conditions with other autotrophic bacteria. (author)

  20. Chitosan-encapsulated ZnS : M (M: Fe or Mn ) quantum dots for ...

    Indian Academy of Sciences (India)

    Thiobacillus novellus was cultured in nutrition broth medium and bacteria cells are procured. 2.3a Culturing bacteria: 100 ml nutrition broth medium was prepared by adding 1.3 g nutrition media to 100 ml double distilled water and autoclaved for 2 h. The solution was cooled down to room temperature and the bacteria strain.

  1. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... evaluated for Thiobacillus, with Acidiphilium, Paracocus and Starkeya, which are taxonomically reassigned. The evaluation proved the excellent generalization capability of the developed tool. The topology of genera in SOM supported the conventional chemo-biochemical classification reported in the Bergey manual.

  2. Review: Microbial Corrosion Of Metals | Oyeleke | Ife Journal of ...

    African Journals Online (AJOL)

    Many recent investigations have centred on the microbial-influenced corrosion of ferrous and copper alloys and of particular interest are Desulfurvibrio species, Thiobacillus species, Pseudomonas, Methanobacterium, Methanospirillum, Escherichia coli, and Ferrobacillus ferrooxidans. Some of the factors that influence ...

  3. Biosuper as a phosphate fertilizer in a calcareous soil with low ...

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... Laboratory assays were conducted to produce phosphorus (P) biofertilizers from rock phosphate (RP), applying sulphur at ... Key words: Zea mays, phosphorus uptake, phosphorus fertilization, corn, Thiobacillus, rock phosphate. INTRODUCTION ... zers, elemental S due to some favorable properties such.

  4. Effect of amino acids on bioleaching of chalcopyrite ore by ...

    African Journals Online (AJOL)

    Amino acids seem to play a major role during bioleaching of chalcopyrite ore by Thiobacillus ferrooxidans. Efficiency of microbial leaching of chalcopyrite by T. ferrooxidans was investigated in the presence of L-aspartic acid, L-glutamic acid, L-histidine and L-serine. The bioleaching of copper ion (Cu2+) from the low grade ...

  5. Characterization of the bacteria adsorption on many carbon supports in the framework of an electro-chemical reactor for metallic de-pollution; Caracterisation de l'adsorption de bacteries sur differents supports carbones en vue de la conception d'un reacteur electrochimique de depollution metallique

    Energy Technology Data Exchange (ETDEWEB)

    Cerino, F.J.; Magnin, J.P.; Gondrexon, N.; Oeil, P. [Institut National Polytechnique de Grenoble, Lab. d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, UMR 5631, 38 - Saint Martin d' Heres (France)

    2001-07-01

    The bacteria adsorption (acidophilic bacteria Thiobacillus ferrooxidans), on three tested carbon tissues, is governed by the Freundlich sorption model. The sorption equilibrium is quickly established at pH 1,4 in 10-15 minutes. The adsorption capacities of the tissues are function of the bacteria and the used carbon tissue. (A.L.B.)

  6. Treatments of acid waters; Tratamientos pasivos de aguas acidas

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Fernandez, J. L.

    2000-07-01

    The exploitation of coal mining locations causes acid effluents due to the oxidation of the sulfurous minerals content of the rocks, denominated acid waters. There are Pyritic materials, pyres and sulphates associated to acid waters that in presence of water, oxygen and certain bacteria (mainly Thiobacillus ferro oxidants), are oxidized, by means of a chemistry reaction, yielding different products. (Author)

  7. Biotechnology bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette, L.A.; McCready, R.G.L.

    1987-01-01

    Four bibliographies are included in this document, covering articles and scientific papers from around the world written mostly in English. Citations are presented alphabetically by author under the topics of: acid mine drainage (coal and metals) and bioadsorption of metals; solution mining; metabolism and physiology of thiobacillus and other microorganisms; and bacterial leaching of metals.

  8. Biotechnology bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette, L.A.; McCready, R.G.L.

    1986-01-01

    This bibliography consists of articles and scientific papers on biotechnology in areas in which BIOMINET is currently involved. The reports are categorized in four areas: 1) acid mine drainage (coals and metals) and bioadsorption of metals; 2) solution mining; 3) metabolism and physiology of Thiobacillus and other microorganisms; and 4) bacterial leaching of metals.

  9. Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation

    NARCIS (Netherlands)

    vandenEnde, FP; Meier, J; vanGemerden, H

    Stable co-cultures of the sulfate-reducing bacterium Desulfovibrio desulfuricans PA2805 and the colorless sulfur bacterium Thiobacillus thioparus T5 were obtained in continuous cultures supplied with limiting amounts of lactate and oxygen while sulfate was present in excess. Neither species could

  10. Author Details

    African Journals Online (AJOL)

    Adoki, A. Vol 6, No 2 (2002) - Articles Culture characteristics of Candida sp in waste conversion: implications for single-cell- protein-enriched feed supplement production. Abstract PDF · Vol 11, No 3 (2007) - Articles Factors Influencing Degradation of Mercaptans by Thiobacillus thioparus TK-m (1) Abstract PDF · Vol 11, No ...

  11. GenBank blastx search result: AK119219 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119219 001-046-F11 AF046933.1 Thiobacillus intermedius K12 carboxysome polypeptides...enase small subunit (cbbS), and carboxysome structural polypeptides (csoS2, csoS3, csoS1C, csoS1A, csoS1B) genes, complete cds.|BCT BCT 5e-15 +3 ...

  12. GenBank blastx search result: AK288517 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288517 J090043B03 AF046933.1 AF046933 Thiobacillus intermedius K12 carboxysome polypeptides...ase/oxygenase small subunit (cbbS), and carboxysome structural polypeptides (csoS2, csoS3, csoS1C, csoS1A, csoS1B) genes, complete cds. BCT 6e-14 0 ...

  13. GenBank blastx search result: AK288054 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288054 J075152E14 AF046933.1 AF046933 Thiobacillus intermedius K12 carboxysome polypeptides...ase/oxygenase small subunit (cbbS), and carboxysome structural polypeptides (csoS2, csoS3, csoS1C, csoS1A, csoS1B) genes, complete cds. BCT 1e-14 0 ...

  14. GenBank blastx search result: AK061611 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061611 001-032-F07 AF046933.1 Thiobacillus intermedius K12 carboxysome polypeptides...enase small subunit (cbbS), and carboxysome structural polypeptides (csoS2, csoS3, csoS1C, csoS1A, csoS1B) genes, complete cds.|BCT BCT 5e-15 +3 ...

  15. GenBank blastx search result: AK241131 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241131 J065097J24 AF046933.1 AF046933 Thiobacillus intermedius K12 carboxysome polypeptides...ase/oxygenase small subunit (cbbS), and carboxysome structural polypeptides (csoS2, csoS3, csoS1C, csoS1A, csoS1B) genes, complete cds. BCT 2e-14 1 ...

  16. Bacteriological lixiviation of low-grade uranium ores at low temperatures, by phiobacillus ferrooxidaus

    International Nuclear Information System (INIS)

    Lobato Filho, A.N.S.

    1976-12-01

    Laboratory experiments are described that, using selective and mutagenic agents, allowed the isolation of a strain of thiobacillus ferrooxidams capable of developing at 8 0 C, and keeping its oxidesing characteristics tests showed that the isoled sample is capable of solubilizing 95% of the uranium content in samples with U 3 O 8 content below 1000ppm [pt

  17. Biosuper as a phosphate fertilizer in a calcareous soil with low ...

    African Journals Online (AJOL)

    Laboratory assays were conducted to produce phosphorus (P) biofertilizers from rock phosphate (RP), applying sulphur at different rates of 10, 15 and 20% and inoculated with Thiobacillus. A greenhouse experiment was carried out to evaluate the effect of the biofertilizers in a calcareous soil with low available P from the ...

  18. Formation and colloidal behaviour of elemental sulphur produced from the biological oxidation of hydrogensulphide

    NARCIS (Netherlands)

    Janssen, A.J.H.

    1996-01-01


    The formation and aggregation of elemental sulphur from the microbiological oxidation of hydrogensulphide (H 2 S) by a mixed population of aerobic Thiobacillus -like bacteria has been investigated. Sulphide is

  19. Hydrogen Sulfide Removal from Air by Acidithiobacillus thiooxidans in a Trickle Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Ramirez, M.; Gómez, J. M.; Cantero, D.; Páca, J.; Halecký, M.; Kozliak, E. I.; Sobotka, Miroslav

    2009-01-01

    Roč. 54, č. 5 (2009), s. 409-414 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50200510 Keywords : 2-STAGE BIOTRICKLING FILTER * THIOBACILLUS-THIOPARUS * DIMETHYL SULFIDE Subject RIV: EE - Microbiology, Virology Impact factor: 0.978, year: 2009

  20. Effect of inoculum and sulfide type on simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry and microbial mechanism.

    Science.gov (United States)

    Wang, Lan; Wei, Benping; Chen, Ziai; Deng, Liangwei; Song, Li; Wang, Shuang; Zheng, Dan; Liu, Yi; Pu, Xiaodong; Zhang, Yunhong

    2015-12-01

    Four reactors were initiated to study the effect of inoculum and sulfide type on the simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry (Ssu-Nir) process. Anaerobic sludge, aerobic sludge, and water were used as inocula, and Na2S and biogas were used as a sulfide substrate, respectively. Additionally, 454 pyrosequencing of the 16S rRNA gene was used to explore the bacterial diversity. The results showed that sulfur-oxidizing bacteria (Thiobacillus, 42.2-84.4 %) were dominant in Ssu-Nir process and led to the excellent performance. Aerobic sludge was more suitable for inoculation of the Ssu-Nir process because it is better for rapidly enriching dominant sulfur-oxidizing bacteria (Thiobacillus, 54.4 %), denitrifying sulfur-oxidizing bacteria (40.0 %) and denitrifiers (23.9 %). Lower S(2-) removal efficiency (72.6 %) and NO3 (-) removal efficiency (biogas as a sulfide substrate than when Na2S was used. For the Ssu-Nir process with biogas as the sulfide substrate, limiting H2S absorption caused a high relative abundance of sulfur-oxidizing bacteria, Thiobacillus (84.8 %) and Thiobacillus sayanicus (39.6 %), which in turn led to low relative abundance of denitrifiers (1.6 %) and denitrifying sulfur-oxidizing bacteria (24.4 %), low NO3 (-) removal efficiency, and eventually poor performance.

  1. Characteristics of dibenzothiophene desulfurization by Rhodococcus erythropolis R1 and its Dsz-negative mutant

    Directory of Open Access Journals (Sweden)

    Zahra Etemadifar

    2014-01-01

    Full Text Available Introduction: Biodesulfurization is used as a selective method for lowering the sulfur content of petroleum products. Materials and methods: A sulfur-oxidation bacterial strain named Rhodococcus erythropolis R1 (NCBI GenBank Accession No. GU570564 was used in this study for desulfurization of dibenzothiophene (DBT. Results: The induced culture of strain R1 was able to produce 2-hydroxybiphenyl (2- HBP from DBT followed 4S pathway without further degrading carbon backbone. This process confirmed by gas chromatography (GC analysis. The specific activity of DBT desulfurization by R1 was 45 µM (g dry wt-1 h-1. The addition of Tween 80 as surfactant and glycerol as carbon source determines a 100% rate of DBT-desulfurization during 3 days. The heavy plasmid detected in R1 strain carries dsz genes responsible for biodesulfurization of DBT that was shown by PCR reaction. The mutant strains which had lost this plasmid also had lost desulfurization phenotype. Both mutant and wild strain were sensitive to high concentration of 2-HBP and some antibiotics. Discussion and conclusion: Strain R1 desulfurize DBT through the sulfur-specific degradation pathway or 4S pathway with the selective cleavage of carbon-sulfur (C-S bonds without reducing the energy content. Addition of surfactant enhanced the desulfurization of DBT by increasing its bioavailability and also could improve the growth and desulfurization rate. The location of desulfurization genes was on a heavy plasmid in strain R1. Based on the results of this study, R. erythropolis R1 could serve as a model system for efficient biodesulfurization of petroleum oil without reducing the energy value.

  2. Chemi-microbial processing of waste tire rubber: A project overview

    International Nuclear Information System (INIS)

    Romine, R.A.; Snowden-Swan, L.

    1993-12-01

    PNL is developing a method to use thiophillic microorganisms to devulcanize (biodesulfurize) the surface of ground rubber particles, which will improve the bonding and adhesion of the ground tire rubber into the virgin tire rubber matrix. The Chemi-microbial processing approach, introduced in this paper, is targeted at alleviating the waste tire problem in an environmentally conscious manner; it may also be applied to improve asphaltic materials and rubber and polymeric wastes to facilite their recycling. This paper outlines the logic and technical methods that will be used

  3. Biocatalytic removal of organic sulfur from coal

    Energy Technology Data Exchange (ETDEWEB)

    Webster, D.A. [Illinois Inst. of Tech., Chicago, IL (United States); Kilbane, J.J. II [Institute of Gas Technology, Chicadgo, IL (United States)

    1994-09-09

    The objective is to characterize more completely the biochemical ability of the bacterium, Rhodococcus rhodochrous IGTS8, to cleave carbon-sulfur bonds with emphasis on data that will allow the development of a practical coal biodesulfurization process. Another approach for increasing the desulfurization activity of the IGTS8 cultures is to produce strains genetically that have higher activity. The goal of this part of research is to achieve strain improvement by introducing a stronger promoter using genetic engineering techniques. The promoter regulates the transcription of the genes for the desulfurization enzymes, and a stronger promoter, would up-regulate the expression of these genes, resulting in cells with higher desulfurization activity. Promoter probe vectors are used to identify and isolate promoters from a DNA library of the experimental organism. The major accomplishments have been to obtain high biodesulfurization activity in nonaqueous, media, especially using freeze-dried cells, and to have isolated strong promoters from R. rhodochrous IGTS8 which will be used to engineer the organism to produce strains with higher biocatalytic activity.

  4. Isolation and characterization of an interactive culture of two Paenibacillus species with moderately thermophilic desulfurization ability.

    Science.gov (United States)

    Wang, Jia; Davaadelger, Batzaya; Salazar, Joelle K; Butler, Robert R; Pombert, Jean-François; Kilbane, John J; Stark, Benjamin C

    2015-11-01

    To isolate and characterize novel thermophilic bacteria capable of biodesulfurization of petroleum. A culture containing two Paenibacillus spp. (denoted "32O-W" and "32O-Y") was isolated by repeated passage of a soil sample at up to 55 °C in medium containing dibenzothiophene (DBT) as sulfur source. Only 32O-Y metabolized DBT, apparently via the 4S pathway; maximum activity occurred from 40 to 45 °C, with some activity up to at least 50 °C. 32O-W enhanced DBT metabolism by 32O-Y (by 22-74 % at 40-50 °C). With sulfate as sulfur source, 32O-Y and 32O-W grew well up to 58 and 63 °C, respectively. Selection of a mixed culture of 32O-Y and 32O-W at 54 °C increased DBT metabolism 36-42 % from 40 to 45 °C. Genome sequencing identified desulfurization gene homologs in the strains consistent with their desulfurization properties. The 32O-Y/32O-W culture may be a useful starting point for development of an improved thermophilic petroleum biodesulfurization process.

  5. Increasing the production of desulfurizing biocatalysts by means of fed - batch culture

    International Nuclear Information System (INIS)

    Berdugo, C I; Mena, J A; Acero, J R; Mogollon, L

    2001-01-01

    Over the past years, environmental regulations have driven a lot of effort for the development of new technologies for the upgrading of fossil fuels. Biotechnology offers an alternative way to process fossil fuels by means of a biodesulfurization technology where the production of the biocatalyst is one of the key topics. Traditionally, the production is carried out in batch culture where the maximum cellular concentration is restricted by inherent limitations of the culture type and the microorganism growth rate. This work addresses the production of two desulfurizing microorganisms: Rhodococcus erythropolis IGTS8 and gordona rubropertinctus ICP172 using fed-batch culture. Fed-batch cultures were conducted in a 12 L fermentor using ICP 4 medium containing glucose and DMSO as carbon and sulfur sources. As a result, cell concentration was increased 1.5 and 3 times with fed-batch cultures using constant and exponential flow respectively, achieving a maximum cell concentration of 7.3 g DCW/L of biocatalyst igts8 and 12.85 gGDCW/L of the new biocatalyst ICP172. Both biocatalysts presented biodesulfurization activity in a spiked matrix DBT/HXD and in diesel matrix with the detection of 2-HBP which is the end-product of DBT degradation pathway

  6. Survey of sulfur-oxidizing bacterial community in the Pearl River water usingsoxB,sqr, anddsrAas molecular biomarkers.

    Science.gov (United States)

    Luo, Jianfei; Tan, Xiaoqin; Liu, Kexin; Lin, Weitie

    2018-01-01

    In this study, we surveyed the abundance and diversity of three sulfur oxidation genes ( sqr , soxB, and dsrA ) using quantitative assays and Miseq high-throughput sequencing. The quantitative assays revealed that soxB is more abundant than sqr and dsrA and is the main contributor to sulfur oxidation. In the diversity analysis, the SOB community mainly comprised the classes Nitrospira , Alphaproteobacteria , Betaproteobacteria , and Gammaproteobacteria . The genera Gallionella , Hydrogenophaga , Limnohabitans , Methylomonas , Nitrospira , Rhodoferax, and Sulfuritalea were abundant in the communities for sqr ; Dechloromonas , Limnohabitans , Paracoccus , Sulfuritalea , Sulfitobacter, and Thiobacillus were abundant in communities for soxB ; Sulfuritalea , Sulfurisoma , and Thiobacillus were abundant in communities for dsrA . This study presented a high diversity of SOB species and functional sulfur-oxidizing genes in Pearl River via high-throughput sequencing, suggesting that the aquatic ecosystem has great potential to scavenge the sulfur pollutants by itself.

  7. Microbial diversity and community structure in an antimony-rich tailings dump.

    Science.gov (United States)

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.

  8. Using microbiological leaching method to remove heavy metals from sludge

    Directory of Open Access Journals (Sweden)

    Zhuyu Gu

    2017-01-01

    Full Text Available Microbial leaching is one of the most effective methods to remove heavy metals from sludge. In the conducted researches, the sludge samples were processed with Thiobacillus ferrooxidans and Thiobacillus thiooxidans obtained via cultivation, extraction and purification processes. Heavy metals such as Pb, Cd, Cu and Ni were leached from sludge by Thiobacillus ferrooxidans and Thiobacillus thiooxidans within different substrate concentration and pH value conditions. It is defined that from the point of view of economy and efficiency the optimal concentration of FeSO4.7H2O and sulfur for bio-leaching process was 0.2 g. The leaching rates of heavy metals such as Pb, Cd, Cu and Ni of the same concentration were 74.72%, 81.54%, 70.46% and 77.35% respectively. However, no significant differences depending on the pH value among the leaching rates were defined, even for the pH value of 1.5. Along with the removal of heavy metals from sludge, the organic matter, N, P, K were also leached to some extent. The losing rate of phosphorus was the highest and reached 38.44%. However, the content of organic matter, N, P, K in the processed sludge were higher in comparison with level I of the National Soil Quality Standards of China. Ecological risk of heavy metals in sludge before and after leaching was assessed by Index of Geo-accumulation (Igeo and comprehensive potential risk (RI. The results of research defined that the content of heavy metals in sludge meets the level of low ecological risk after leaching and their contents is lower in comparison with the National Agricultural Sludge Standard of China. Sludge leached by biological methods is possible to use for treatment for increasing soil fertility.

  9. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Collins; David Nunn

    2003-10-01

    The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate

  10. Microbial biocatalyst developments to upgrade fossil fuels.

    Science.gov (United States)

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  11. Energy and environmental research emphasizing low-rank coal. Semi-annual report, January--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    Summaries of progress on the following tasks are presented: Mixed waste treatment; Hot water extraction of nonpolar organic pollutant from soils; Aqueous phase thermal oxidation wastewater treatment; Review of results from comprehensive characterization of air toxic emissions from coal-fired power plants; Air toxic fine particulate control; Effectiveness of sorbents for trace elements; Catalyst for utilization of methane in selective catalytic reduction of NOx; Fuel utilization properties; Hot gas cleaning; PFBC; catalytic tar cracking; sulfur forms in coal; resid and bitumen desulfurization; biodesulfurization; diesel fuel desulfurization; stability issues; Sorbent carbon development; Evaluation of carbon products; Stable and supercritical chars; Briquette binders; Carbon molecular sieves; Coal char fuel evaporation canister sorbent; Development of a coal by-product classification protocol for utilization; Use of coal ash in recycled plastics and composite materials; Corrosion of advanced structural materials; Joining of advanced structural materials; Resource data evaluation; and the Usti and Labem (Czech Republic) coal-upgrading program.

  12. 1994 - 1995 annual report of the NRC Biotechnology Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    One of the roles of the Biotechnology Research Institute is to promote leading edge research and development in biotechnology and molecular biology as they relate to industries in the natural resource sectors. To this end, researchers work with industry to develop less polluting, more efficient and economic processes and to solve environmental problems. Scientific studies undertaken in 1994 and 1995 included new analytical techniques and biosensors, bioprocesses for waste and ground water treatment, biopesticides, biodegradation of toxic compounds, biodesulfurization of bitumen, solvent- less sample preparation techniques to analyze environmental pollutants in soils and waste water, protocol for the analysis of petroleum hydrocarbons, gene probes and their applications, biodegradation of energetic compounds, and biofiltration of air emissions. These, and other noteworthy projects undertaken by the Institute, were reviewed and presented ,combined with institutional data. 2 tabs.

  13. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  14. Waste pyritic coal as a raw material for energetic industry

    Energy Technology Data Exchange (ETDEWEB)

    Gasiorek, J. [Institute of Inorganic Chemistry, Poznan (Poland). Dept. of Research and Technology

    1997-11-01

    Results are presented of large laboratory studies on coal desulphurisation with foam flotation method improved by application of bioadsorption of Thiobacillus ferrooxidans bacteria to the modification of superficial properties of pyrite particulates from hydrophobic to hydrophillic ones. Results of coal desulfurization with and without bioadsorption have been compared. Bioadsorption improved pyritic sulfur removal by 30% (for coal from `Sierza mine`, coal size 0.3 to 0.102 mm, S pyritic content 1.69%) after 6-week adaptation of bacteria and 30 min of bioadsorption. Bacteria concentration in 5% water suspension of coal reached 22 {mu}g of biomass cm{sup -3}. 12 refs., 4 figs., 1 tab.

  15. Study on the utilisation of some bacteria types in metal recovery. 1. Theoretical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pascu, T.; Magnin, J.P. [University of Polytechnic Bucharest, Bucharest (Romania). Faculty of Chemical Industry

    2001-11-01

    The paper presents data from literature regarding the recovery of metals by biolixiviation method from mine leakage and waste effluents. A brief description of the fundamental aspects of 'direct' lixiviation, 'indirect' lixiviation and galvanic conversion using iron- and sulphur-oxidative bacteria is given. The most studied bacterium is Thiobacillus ferrooxidans, that can be sometimes used with Leptospirillum ferrooxidans. The paper also discusses the lixiviation attack of other bacteria like Sulfobacillus and Sulfolobus. The most important features of some ecological systems consisting in microbial population in equilibrium with ore or coal deposits are presented.

  16. Biodesulphurization Within Natural Gas in Oil and Gas Field

    Directory of Open Access Journals (Sweden)

    Sri Rahayu

    2010-10-01

    Full Text Available The presence of sulphur compounds in natural gas can interfere to the quality of natural gas. The decline of combustion gas capacity, metal instrument corrosion in gas piping, and the environmental pollution from gas emission can affect by their presence. Bio-filter is one of the methods  that selected to reduce sulphur content in natural gas. A lab scale study of hydrogen sulphide reduction in natural gas had conducted in oil and gas field using bio-filter method. The bio-filter system (±1 L volume contains an active carbon and thiosulphide medium as a substrate, Thiobacillus thioparus as a single culture of sulphur bacteria, and Thiobacillus thioparus with sludge as a mixed culture of sulphur bacteria. The study of hydrogen sulphide reduction was conducted with continuous flow line process. The gas flow rate approximately 1.5 L/min with a fluctuate presence of Hydrogen sulphide (approximately 40 - 70 mg/L. The bio-filter system contains active carbon, thiosulphide medium, and single culture of T. thioparus appear as a good filter for hydrogen sulphide reduction. During 24 hours, the hydrogen sulphide reduction obtains 93% to 16%. When  culture media added, the hydrogen sulphide reduction will increase almost 60% and then the reduction decrease to 4% after 20 hours. It is concluded that the bio-filter have potential to develop for sulphur reduction in natural gas.

  17. Phospholipid anaysis of extant microbiota for monitoring in situ bioremediation effectiveness

    International Nuclear Information System (INIS)

    Pinkart, H.C.; Ringelberg, D.B.; Stair, J.O.; Sutton, S.D..; Pfiffner, S.M.; White, D.C.

    1995-01-01

    Two sites undergoing bioremediation were studied using the signature lipid biomarker (SLB) technique. This technique isolates microbial lipid moieties specifically related to viable biomass and to both prokaryotic and eukaryotic biosynthetic pathways. The first site was a South Pacific atoll heavily contaminated with petroleum hydrocarbons. The second site was a mine waste reclamation area. The SLB technique was applied to quantitate directly the viable biomass, community structure, and nutritional/physiological status of the microbiota in the soils and subsurface sediments of these sites. All depths sampled at the Kwajalein Atoll site showed an increase in biomass that correlated with the co-addition of air, water, and nutrients. Monoenoic fatty acids increased in abundance with the nutrient amendment, which suggested an increase in gram-negative bacterial population. Ratios of specific phospholipid fatty acids indicative of nutritional stress decreased with the nutrient amendment. Samples taken from the mine reclamation site showed increases in total microbial biomass and in Thiobacillus biomass in the plots treated with lime and bactericide, especially when a cover soil was added. The plot treated with bactericide and buffered lime without the cover soil showed some decrease in Thiobacillus numbers, but was still slightly higher than that observed in the control plots

  18. Characteristics of nitrogen removal and microbial distribution by application of spent sulfidic caustic in pilot scale wastewater treatment plant.

    Science.gov (United States)

    Park, S; Lee, J; Park, J; Byun, I; Park, T; Lee, T

    2010-01-01

    Since spent sulfidic caustic (SSC) produced from petrochemical industry contains a high concentration of alkalinity and sulfide, it was expected that SSC could be used as an electron donor for autotrophic denitrification. To investigate the nitrogen removal performance, a pilot scale Bardenpho process was operated. The total nitrogen removal efficiency increased as SSC dosage increased, and the highest efficiency was observed as 77.5% when SSC was injected into both anoxic tank (1) and (2). FISH analysis was also performed to shed light on the effect of SSC dosage on the distribution ratio of nitrifying bacteria and Thiobacillus denitrificans. FISH results indicated that the relative distribution ratio of ammonia-oxidizing bacteria, Nitrobacter spp., Nitrospira genus and Thiobacillus denitrificans to eubacteria varied little with the pH of the tanks, and SSC injection did not give harmful effect on nitrification efficiency. These results show that SSC can be applied as an electron donor of autotrophic denitrification to biological nitrogen removal process effectively, without any inhibitory effects to nitrifying bacteria and sulfur-utilizing denitrifying bacteria.

  19. NOTE TASSONOMICHE E NOMENCLATORIALI SU ALCUNE SPECIE PALEARTICHE DI SIBINIA E TYCHIUS (COLEOPTERA, CURCULIONIDAE

    Directory of Open Access Journals (Sweden)

    Roberto Caldara

    2009-10-01

    . = Sibinia sobrina Voss, 1936 n. syn.; Sibinia variata Gyllenhal, 1836 = Sibinia rubripes Desbrochers, 1907 n. syn.; Sibi­nia viscariae (Linnaeus = Sibinia submeticollis Desbrochers, 1908 n. syn.; Tychiusar­ gentatus Chevrolat, 1859 = Tychius dimidiatipennis Desbrochers, 1873 n. syn. = Tychius argenteosquamosus Desbrochers, 1908 n. syn. = Tychius seductor Desbrochers, 1908 n. syn.; Tychius medicaginis C. Brisout, 1862 = Tychius griseus Petri, 1915 (non Schaeffer, 1908 n. syn.; Tychius breviusculus Desbrochers, 1873 = Tychius humeralis Desbrochers, 1908 n. syn.; Tychius cinnamomeus Kiesenwetter, 1851 = Tychius adspersus Desbrochers, 1908 n. syn. = Tychius barcelonicus Desbrochers, 1908 n. syn.; Tychius cu­prifer (Panzer, 1799 = Myllocerus subcostatus Kolenati, 1858 n. syn.; Tychius cuprinus Rosenhauer, 1856 = Tychius tuberculirostris Hustache, 1944 n. syn.; Tychius dieckmanni Caldara, 1986 = Lepidotychius babaevi Bajtenov & Soyunov, 1990 n. syn.; Tychius ele­gantulus C. Brisout, 1862 = Tychius pulcher Pic, 1925 n. syn.; Tychius elongatulus Desbrochers, 1897 = Tychius longitarsis Desbrochers, 1898 n. syn.; Tychius grenieri C. Brisout, 1861 = Tychius sparsus Hustache, 1944; Tychius immaculicollis Desbrochers, 1907 = Tychius elegans Desbrochers, 1896 (non Brullé, 1832 = Tychius ifranensis Hustache, 1944 n. syn. = Tychius kocheri Hustache, 1944 n. syn. = Tychius teluetensis Hustache, 1944 n. syn.; Tychius lautus Gyllenhal, 1836 = Tychius obductus Hochhuth, 1851 n. syn. = Tychius cilicensis Pic, 1905 n. syn.; Tychius oschianus Faust, 1885 = Tychius pubicol­lis Petri, 1915 n. syn.; Tychius pardalis Escalera, 1914 = Tychius circulatus Hustache, 1944 n. syn.; Tychius picirostris (Fabricius, 1787 = sTychius parvulus Stephens, 1831 n. syn.; Tychius polylineatus (Germar, 1824 = Tychius orbiculatus Hustache, 1944 n. syn.; Tychius stephensi Schoenherr, 1836 = Tychius pallidicornis Desbrochers, 1875 n. syn. Sono considerati nomi infrasubspecifici e pertanto non utilizzabili: Sibinia

  20. Biotic and abiotic carbon to sulfur bond cleavage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.W.

    1994-05-01

    The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

  1. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Steven E. Bonde; David Nunn

    2003-01-01

    During the first quarter of the Biological Desulfurization project several activities were pursued. A project kickoff meeting was held at the Diversa facility in San Diego, CA. Activities that were in process before the meeting and begun afterwards by Diversa Corporation and Petro Star Inc. include: Technology transfer in the form of information generated by Enchira to Diversa, the purchase and installation of equipment by Diversa, development of synthetic methods and preparation of organo-sulfur substrates for use in determining enzyme activities, production of extract via Petro Star's CED process, detailed analysis of Petro Star Inc. diesel and CED extract, and several activities in molecular biology. Diversa Corporation, in the area of molecular biology, engaged in several activities in support of the task list of the contract. These included: construction of a genomic library; development and utilization of a sequence-based gene discovery effort; a parallel discovery approach based on functional expression of enzymes with the ability to oxidize organosulfur compounds. Biodesulfurization genes have already been identified and are being sequenced and subcloned for expression in heterologous biological hosts. Diversa has evaluated and adapted assays developed by Enchira used to assess the activities of DBT and DBTO{sub 2} monooxygenases. Finally, Diversa personnel have developed two novel selection/screen strategies for the improvement of biocatalyst strains by directed evolution.

  2. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Steven E. Bonde; David Nunn

    2003-04-01

    Research activities in the second quarter have largely been a continuation of efforts previously described in the first quarterly report as well as a degree of redirection of effort as a result of discussions during the first quarterly meeting held in San Diego. Chemical synthesis efforts have been refined and are currently being used to support generation of substrates for evaluation and evolution of enzymes for their oxidation. Analysis of the sulfur species in Petro Star diesel, CED extract and refinement of the speciation data is nearly complete. Molecular biology efforts continue with the cloning, expression and characterization of the DszA and DszC proteins as well as the flavin reductases to support regeneration of the essential FMN cofactors. In addition, we have initiated an evolution effort for the extension and improvement of DszA enzyme activity using Diversa's Gene Site Saturation Mutagenesis (GSSM{trademark}) technology. To support the evolution effort as well as of characterization of enzyme activities on a variety of substrates, a high-throughput mass spectroscopy-based assay has been developed. Two selection/screen strategies for the discovery and evolution of biocatalyst enzyme have been developed and are being evaluated for performance using gene libraries constructed from known biodesulfurization strains and environmental libraries.

  3. Variation in synonymous codon usage in Paenibacillus sp. 32O-W genome.

    Science.gov (United States)

    Deb, Sushanta; Basak, Surajit

    2016-01-01

    Paenibacillus sp. 32O-W, which is attributed for biodesulfurization of petroleum, has 56.34% genomic G+C content. Correspondence analysis on Relative Synonymous Codon Usage (RSCU) of the Paenibacillus sp. 32O-W genome has revealed the two different trends of codon usage variation. Two sets of genes have been identified representing the two distinct pattern of codon usage in this bacterial genome. We have measured several codon usage indices to understand the influencing factors governing the differential pattern of codon usage variation in this bacterial genome. We also observed significant differences in many protein properties between the two gene sets (e.g., hydrophobicity, protein biosynthetic cost, protein aggregation propensity). The compositional difference between the two sets of genes and the difference in their potential gene expressivity are the driving force for the differences in protein biosynthetic cost and aggregation propensity. Based on our results we argue that codon usage variation in Paenibacillus sp. 32O-W genome is actually influenced by both mutational bias and translational selection.

  4. Ring cleavage of sulfur heterocycles: how does it happen?

    Science.gov (United States)

    Bressler, D C; Norman, J A; Fedorak, P M

    Sulfur heterocycles are common constituents of petroleum and liquids derived from coal, and they are found in some secondary metabolites of microorganisms and plants. They exist primarily as saturated rings and thiophenes. There are two major objectives driving investigations of the microbial metabolism of organosulfur compounds. One is the quest to develop a process for biodesulfurization of fossil fuels, and the other is to understand the fates of organosulfur compounds in petroleum- or creosote-contaminated environments which is important in assessing bioremediation processes. For these processes to be successful, cleavage of different types of sulfur heterocyclic rings is paramount. This paper reviews the evidence for microbial ring cleavage of a variety of organosulfur compounds and discusses the few well-studied cases which have shown that the C-S bond is most susceptible to breakage leading to disruption of the ring. In most cases, the introduction of one or more oxygen atom(s) onto the adjacent C atom and/or onto the S atom weakens the C-S bond, facilitating its cleavage. Although much is known about the thiophene ring cleavage in dibenzothiophene, there is still a great deal to be learned about the cleavage of other sulfur heterocycles.

  5. Ring cleavage of sulfur heterocycles: how does it happen?

    Energy Technology Data Exchange (ETDEWEB)

    Bressler, D.C.; Norman, J.A.; Fedorak, P.M. [University of Alberta, Edmonton, AB (Canada). Dept. of Biological Sciences

    1997-12-31

    Sulfur heterocycles are common constituents of petroleum and liquids derived from coal, and they are found in some secondary metabolites of microorganisms and plants. They exist primarily as saturated rings and thiophenes. There are two major objectives driving investigations of the microbial metabolism of organosulfur compounds. One is the quest to develop a process for biodesulfurization of fossil fuels, and the other is to understand the fates of organosulfur compounds in petroleum-or-creosote-contaminated environments which is important in assessing bioremediation processes. For these processes to be successful, cleavage of different types of sulfur heterocyclic rings is paramount. This paper reviews the evidence for microbial ring cleavage of a variety of organosulfur compounds and discusses the few well-studied cases which have shown that the C-S bond is most susceptible to breakage leading to disruption of the ring. In most cases, the introduction of one or more oxygen atom(s) onto the adjacent C atom and/or onto the S atom weakens the C-S bond, facilitating its cleavage. Although much is known about the thiophene ring cleavage in dibenzothiophene, there is still a great deal to be learned about the cleavage of other sulfur heterocycles.

  6. Definition of a concrete bio-decontamination process in nuclear substructures; Biodegradation de matrices cimentaires en vue de leur decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, A

    2005-05-15

    The decontamination of sub-structural materials represents a stake of high-importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those micro-organisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  7. Simultaneous removal of nitrate and hydrogen sulfide by autotrophic denitrification in nitrate-contaminated water treatment.

    Science.gov (United States)

    Liu, Yongjie; Chen, Nan; Liu, Ying; Liu, Hengyuan; Feng, Chuanping; Li, Miao

    2018-02-23

    Nitrate contamination is a risk to human health and may cause eutrophication, whereas H 2 S is an undesirable constituent in biogas. In order to better understand denitrification using gaseous H 2 S as electron donor, this study investigated denitrification at different molar ratios of sulfur and nitrogen (S/N ratios) and H 2 S dosages. Although nitrate continued to decrease, a lag in sulfate generation was observed, implying the generation of sulfide oxidizing intermediates, which accumulated even though nitrate was in excess at lower S/N ratios of 0.19 and 0.38. More addition of H 2 S could result in a longer lag of sulfate generation. Before depletion of dissolved sulfide, denitrification could proceed with little nitrite accumulation. High throughout sequencing analysis identified two major genera, Thiobacillus and Sulfurimonas, that were responsible for autotrophic denitrification. The simultaneous removal of nitrate and H 2 S using a wide range of concentrations could be able to be achieved.

  8. Biodegradation of concrete intended for their decontamination; Biodegradation de matrices cimentaires en vue de leur decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, A

    2005-05-15

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  9. Spectrophotometric determination of uranium(VI) in bacterial leach liquors using arsenazo-III

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, T.M.; Mateen, A.; Amin, M.; Malik, K.A.; Khalid, A.M. (National Inst. for Biotechnology and Genetic Engineering, Faisalabad (Pakistan))

    1991-01-01

    A highly sensitive and precise spectrophotometric method for the direct determination of uranium(VI) in bacterial leach liquors, obtained by the action of Thiobacillus ferrooxidans and T. thiooxidans, from low-grade sandstone uranium ores, has been developed. Arsenazo-III formed an intense pink-violet complex at pH 2{center dot}0{+-}0{center dot}1, which showed maximum absorption at 655 nm. Interference due to different metal ions, such as Al, Ca, Co, Cr, Fe, Mn, Mo, Zn and Zr, was successfully masked by diethylenetriaminepenta-acetic acid without inhibiting the formation of the uranium(VI)-arsenazo-III complex. This method was also found suitable for detecting low levels of uranium(VI) in mine waters, acid leach liquors and tailings liquids. The results obtained were found to be in close agreement with the values determined by fluorometric and indirect spectrophotometric methods. (author).

  10. Utilization of low grade and waste uranium ores by means of biological processes. Part of a coordinated programme on bacterial leaching of uranium ores

    International Nuclear Information System (INIS)

    Czegledi, B.

    1978-01-01

    Investigation of the possible affect of bacteria in leaching uranium using alkaline carbonate medium has been investigated. Eleven strains of bacteria were isolated from the alkaline percolation solutions. Most belonged to the genus Thiobacillus. Each strain was characterized by growth under aerobic conditions in Levinthal - bouillon medium and under vaseline (semi-anaerobic in Hetehens medium. Growth of the bacteria was optimum at pH range 7 to 8 but a significant population was found to exist in alkaline leaching solutions of about pH 9 to 9.5 in heap leaching experiments. It was concluded that microbiological processes can play a role in alkaline heap leaching although the quantitative measure is yet uncertain

  11. Fractionation of sulfur isotopes in the chemical and biochemical oxidation of sulfide to sulfate

    International Nuclear Information System (INIS)

    Maass, I.; Wetzel, K.; Weise, G.; Heyer, J.

    1983-01-01

    The behaviour of sulfur isotopes in the chemical and biochemical oxidation of marcasite (FeS 2 ) to sulfate has been investigated in rest and shaker cultures at 30 0 C. The microbiological oxidation was carried out using a mixed culture of Thiobacillus. The results show a considerably faster formation of sulfate in the biochemical oxidation in comparison with the chemical oxidation. Isotope analyses of the formed sulfates indicate no or only very small isotope fractionations depending on experimental conditions. The highest enrichment of 32 S in the sulfate is 1.7 per mille. In accordance with the results of other authors it is concluded that in both chemical and biochemical weathering of sedimentary sulfides resulting in the formation of sulfates isotope effects are not of importance. (author)

  12. Development of an enzyme-linked immunosorbent assay to determine the numbers of chemolithotrophic bacteria at acid-mine-drainage sites. Technical report (Final)

    Energy Technology Data Exchange (ETDEWEB)

    Blake, R.C.; Revis, N.W.; Holdsworth, G.

    1990-09-01

    Thiobacillus ferrooxidans is a prominent member of a group of chemo-lithotrophic bacteria that bear principal responsibility for the formation of acid mine drainage. A prototype enzyme-linked immunosorbent assay (ELISA) for enumerating and qualifying T. ferrooxidans was assembled and characterized. The immunoassay protocol consisted of sequential incubations of the sample with (i) the primary antibody, (ii) the enzyme-labeled secondary antibody, and (iii) a chromogenic substrate specific for the enzyme lable. The necessary reagents comprised primary polyclonal rabbit antibodies directed against T. ferrooxidans ATCC 23270, alkaline phosphatase-copled goat anti-rabbit polyclonal antibodies, and phenolphrhalein monophosphate. The ELISA developed herein correctly identified whether iron-oxidizing bacteria were present in each of 4 samples supplied and analyzed by an independent laboratory. Sufficient preliminary data was obtained to warrant further research and development activities.

  13. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy A. [Univ. of California, Merced, CA (United States); Asta, Maria P. [Univ. of California, Merced, CA (United States); Kanematsu, Masakazu [Univ. of California, Merced, CA (United States); Beller, Harry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Peng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactive transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.

  14. Microbial stabilization of sulfur-landen sorbents; Technical report, September 1--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Miller, K.W. [Illinois State Univ., Normal, IL (United States)

    1993-12-31

    Clean coal technologies that involve limestone for sulfur capture generate lime/limestone products laden with sulfur at various oxidation states. If sulfur is completely stabilized as sulfate, the spent sorbent is ready for commercial utilization as gypsum. However, the presence of reduced sulfur species requires additional processing. Thermal oxidation of reduced sulfur can result in undesirable release of SO{sub 2}. Microbial oxidation might provide an inexpensive and effective alternative. Sorbents laden with reduced forms of sulfur such as sulfide, sulfite, or various polythionate species serve as growth substrates for sulfur-oxidizing bacteria, which have the potential to convert all sulfur to sulfate. This quarter, efforts focused on determining the combined effects of dibasic acids (DBA) and Ca{sup +2} concentration on several strains of neutrophilic thiobacilli, including Thiobacillus neapolitanus ATCC 23639 and ATCC 23641, and an isolate, TQ1, which was obtained from a commercial sulfur dioxide scrubber that utilizes DBA.

  15. Definition of a concrete bio-decontamination process in nuclear substructures

    International Nuclear Information System (INIS)

    Jestin, A.

    2005-05-01

    The decontamination of sub-structural materials represents a stake of high-importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those micro-organisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  16. Performance of denitrifying microbial fuel cell with biocathode over nitrite

    Directory of Open Access Journals (Sweden)

    Zhao eHuimin

    2016-03-01

    Full Text Available Microbial fuel cell (MFC with nitrite as an electron acceptor in cathode provided a new technology for nitrogen removal and electricity production simultaneously. The influences of influent nitrite concentration and external resistance on the performance of denitrifying MFC were investigated. The optimal effectiveness were obtained with the maximum total nitrogen (TN removal rate of 54.80±0.01 g m-3 d-1. It would be rather desirable for the TN removal than electricity generation at lower external resistance. Denaturing gradient gel electrophoresis suggested that Proteobacteria was the predominant phylum, accounting for 35.72%. Thiobacillus and Afipia might benefit to nitrite removal. The presence of nitrifying Devosia indicated that nitrite was oxidized to nitrate via a biochemical mechanism in the cathode. Ignavibacterium and Anaerolineaceae was found in the cathode as a heterotrophic bacterium with sodium acetate as substrate, which illustrated that sodium acetate in anode was likely permeated through proton exchange membrane to the cathode .

  17. Isolation of Sulfur Reducing and Oxidizing Bacteria Found in Contaminated Drywall

    Directory of Open Access Journals (Sweden)

    Frederick T. Guilford

    2010-02-01

    Full Text Available Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans. One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection.

  18. Isolation of sulfur reducing and oxidizing bacteria found in contaminated drywall.

    Science.gov (United States)

    Hooper, Dennis G; Shane, John; Straus, David C; Kilburn, Kaye H; Bolton, Vincent; Sutton, John S; Guilford, Frederick T

    2010-02-05

    Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans). One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection.

  19. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Doye, I.; Duchesne, J. [University of Laval, Quebec City, PQ (Canada)

    2005-08-01

    Acid mine drainage is a serious environmental problem caused by the oxidation of sulfide minerals that releases highly acidic, sulfate, and metals-rich drainage. In this study, alkaline industrial wastes were mixed with acid mine tailings in order to obtain neutral conditions. A series of column leaching tests were performed to evaluate the behavior of reactive mine tailings amended with alkaline-additions under dynamic conditions. Column tests were conducted of oxidized mine tailings combined with cement kiln dust, red mud bauxite, and mixtures of cement kiln dust with red mud bauxite. The pH results show the addition of 10% of alkaline materials permits the maintenance of near neutral conditions. In the presence of 10% alkaline material, the concentration of toxic metals such as Al, Cu, Fe, Zn are significantly reduced as well as the number of viable cells (Thiobacillus ferrooxidans) compared to control samples.

  20. Biodegradation of concrete intended for their decontamination

    International Nuclear Information System (INIS)

    Jestin, A.

    2005-05-01

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  1. Application of bacterial leaching technology to deep solution-mining conditions for uranium extraction. Final report, September 1, 1978-September 30, 1981

    International Nuclear Information System (INIS)

    Brierley, J.A.; Brierley, C.L.; Torma, A.E.

    1982-03-01

    Microorganisms were evaluated for use in recovery of uranium under conditions of in-situ solution mining. The cultures tested were Thiobacillus ferrooxidans, the faculative-thermophilic TH3 strain, and two Sulfolobus species. Growth of the organisms occurred in the presence of 0.34 to 5.0 mM uranyl ion with higher concentrations being inhibitory. Uranium ore from the Anaconda Minerals Co. Jackpile mine was not readily leachable by microorganisms. To support bacterial activity the ore was supplemented with pyrite or ferrous iron. The ore possessed some toxic properties. T. ferrooxidans was able to assist in leaching of uranium from the ore at a hydrostatic pressure of 10.3 MPa

  2. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DEFF Research Database (Denmark)

    Beller, Harry R.; Zhou, Peng; Jewell, Talia N.M.

    2016-01-01

    Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H2S, while fixing CO2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus...... denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO2. A modified thioesterase gene from E. coli (‘tesA) was integrated into the T. denitrificans chromosome under the control of Pkan or one of two native T. denitrificans promoters. The relative...... strength of the two native promoters as assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria...

  3. Mutualism between autotrophic and heterophic bacteria in leaching of low grade ores

    International Nuclear Information System (INIS)

    Khalid, Z.M.; Naeveke, R.

    1991-01-01

    During solubilization processes of low grade sulphidic ores, the auto trophic bacteria oxidize reduced sulphur compounds and ferrous iron to sulphates and ferric iron respectively. The ore leaching bio topes are not only colonized by auto trophic bacteria (Thiobacillus spp., Leptospirillum ferro oxidans and sulfolobus sp.) but the heterotrophic microorganisms, including bacteria and fungi of various species are also found in these habitats. The autotrophs, in addition to energy metabolism, also produce organic compounds which in excess amount inhibit their growth. Through the utilization of such compounds and also through the production of carbon dioxide and ammonia, these heterotorphs can help bio leaching processes. Effect of one of the heterotrophs; methylobacterium sp., a nitrogen scavenger, found in as association with the thio bacilli in one of the leaching bio tope in Germany was studied in leaching of a carbonate bearing complex (containing copper, iron, zinc and lead) sulphidic ore, in shake flask studies. T. ferro oxidans (Strain F-40) reported to be non nitrogen fixer and strain F-41, a nitrogen fixing thiobacillus were studied for leachability behaviour alone and in combination with T. thio oxidans (lacking nitrogen fixing ability) using media with and without added ammonium nitrogen. In addition the effect of methylobacterium sp. (alt-25) was also tested with the afore mentioned combinations. Nitrogen fixation by T. ferro oxidans did not suffice the nitrogen requirement and the leaching system in laboratory needed addition of nitrogen. The heterotrophic nitrogen scavenger also did not have a positive influence in nitrogen limited system. In case where ammonium nitrogen was also provided in the media, this heterotroph had a negative in own growth and leaving lesser amount available for thio bacilli. This high amount of acid is a limiting factor in bio leaching of high carbonate uranium ores. Uranium ore ecosystems have also been found to contain

  4. Microbial sulfur transformations in sediments from Subglacial Lake Whillans

    Directory of Open Access Journals (Sweden)

    Alicia M Purcell

    2014-11-01

    Full Text Available Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW, Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5’-phosphosulfate (APS reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct OTUs. The majority of APS reductase sequences (74% clustered with known sulfur oxidizers including those within the Sideroxydans and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR and 16S rRNA gene sequences further support dominance of Sideroxydans and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm-3d-1 of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.

  5. Microbial ecology of Rum Jungle, III. Leaching behaviour of sulphidic waste material under controlled conditions

    International Nuclear Information System (INIS)

    Babij, T.; Goodman, A.; Khalid, A.M.; Ralph, B.J.

    1981-12-01

    The discharge, into river systems, of acid and heavy metals generated by leaching of sulphidic waste materials at the abandoned opencut uranium mine at Rum Jungle, Northern Territory, is causing continuing pollution of the surrounding environment. The maximum effects of acid and microorganisms on samples from the overburden dump material, under defined and controlled environmental conditions, were assessed using reactor systems. These samples came from the overburden dump resulting from the mining of White's orebody. Similarly, the stability of tailings material under conditions of flooding and increasing acidity was determined. At ph 2.5, metals in White's dump material were solubilised by acid attack only, whereas at pH 3.5, bacterial activity (principally that of Thiobacillus ferrooxidans) generated acidity and contributed significantly to metal release. Under microaerophilic conditions Thiobacillus ferrooxidans continued to effect metal release from the ore, but did not produce further acidity. If White's overburden is returned to the acidic, flooded opencuts, complete solubilisation of the material will occur. The exclusion of oxygen from the dump will not necessarily stop bacterially catalysed leaching processes. Under highly aerated and agitated flooded conditions the tailings material was not active, except for copper release of about 2 g kg -1 ore at pH 4.0. The only deleterious element released by increasing acidity was copper, which was 100 per cent solubilised at pH 2.5. Uranium was always lss than 3 μg kg -1 ore, and lead was detected only at pH 2.5. Indigenous leaching bacteria did not develop

  6. Biodecontamination of concrete

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-01-01

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology

  7. Effects of the surfactant Tween 80 on the growth and dibenzothiophene utilization by Exophiala spinifera isolated from oil- contaminated soil

    Directory of Open Access Journals (Sweden)

    Fatemeh Elmi

    2016-06-01

    Full Text Available Introduction: Oil is one of the most important energy sources that contain variety of organosulfur compounds that are combustible and can produce sulfur dioxide which will cause pollution over the atmosphere and the soil. Dibenzothiophene (DBT is often used as a model for biodesulfurization studies and surfactant Tween80 increases the solubility of DBT in water that leads to higher consumption by microorganisms. Materials and methods: DBT specific UV spectrophotometry at a wavelength of 323 nm was used to evaluate the ability of isolated Exophiala spinifera fungus in removal of DBT. The effect of various concentrations of surfactant Tween80 on the growth of the fungus and DBT utilization was studied. Results: Exophiala spinifera was able to remove 100% DBT after 7 days of incubation at 30 ° C and 180 rpm shaking. The effect of different concentrations of surfactant Tween80 on growth and DBT utilization by this fungus was examined and it was observed that the presence of surfactant in the culture medium increased the growth and removal of DBT, therefore the amount of DBT utilized with 0.4% concentration of the surfactant was about 30% more than that utilized without surfactant. However, higher concentrations of surfactant Tween80 decreased the growth and consumption of DBT by fungi. Discussion and conclusion: Exophiala spinifera was isolated from oil contaminated soil and able to utilize toxic compound DBT as a sulfur source in the presence of other carbon sources such as glucose. So this isolated strain could be a good candidate for the petroleum desulfurization and it is the first report about desulfurization of DBT by fungus Exophiala spinifera. Growth and removal of DBT by fungus increased in the presence of surfactant Tween80. It can be concluded that the surfactant increases the total DBT transfer between the organic and aqueous phases and has a potential application in DBT bioremediation system by the studied fungus biocatalyst.

  8. Anaerobic microbiological method of cleaning water contaminated by metallurgical slags

    Directory of Open Access Journals (Sweden)

    Олена Леонідівна Дан

    2015-11-01

    Full Text Available The problem of environmental protection and rational use of water resources is one of the most important problems of environmental policy in Ukraine. This problem in Mariupol is particularly acute as metallurgical and coke industries cause significant damage to adjacent water bodies (the Kalchyk, the Kalmius and coastal zone of the Sea of Azov. One of the most harmful components of wastewater of these enterprises are sulfide-containing compounds. These compounds in water can cause great harm to both human health and the environment. For example, in 1999 the main city enterprises (AZOVSTAL IRON & STEEL WORKS and ILYICH IRON AND STEEL WORKS discharged 885,0 million m³ of wastewater (including 403,9 million m³ of polluted waste water into water bodies. The slag dumps and landfills in close proximity to the sea form a source of dangerous pollution, because contaminated water infiltration washed out here in the groundwater and surface water, get into the Sea of Azov later on. There are 97 mg/l of sulfides in the protective dam of AZOVSTAL IRON & STEEL WORKS, what exceeds the standards (MPC = 10 mg/l. It makes it possible for us to put forward biochemical purification processes. Anaerobic microbiological method proposed in the article has several advantages (compact hardware design, a minimum amount of activated sludge and lack of energy consumption for aeration over the existing wastewater treatment (chemical, mechanical, biological. The experimental procedure consisted in introducing the medium to be purified purified into microbial communities of high concentration (Thiobacillus «X», Thiobacillus concretivorus, which assimilated organic substances of the medium as a primary energy source. The kinetics of sulfide compounds removal by means of anaerobic microbiological method was considered. The effectiveness of wastewater treatment with changing purification process conditions has been also assessed (concentration of sulfides, reactor type, p

  9. Microbial oxidation of pyrrhotites in coal chars

    Science.gov (United States)

    Miller, K.W.; Risatti, J.B.

    1988-01-01

    The ability of Thiobacillus ferrooxidans to oxidize pyrrhotite minerals occurring in coal chars was investigated, to evaluate the feasibility of microbial char desulphurization. Bio-oxidation of pyrrhotites in chars produced by two different processes was demonstrated conclusively. Microbial removal of sulphur from a char and its parent coal proceeded at the rate of 3.5% and 12% day-1, respectively with a total of 48% and 81% removal after 27 days. The pH of shake flask cultures containing the coal dropped naturally to a final value of 2.2, while the pH of cultures containing the corresponding char rose and had to be lowered artificially with additional acid. Amending char cultures with elemental sulphur to increase acidity upon bio-oxidation and prevent precipitation of ferric iron was successful; however, the extent of pyrrhotite removal, as demonstated by X-ray diffraction analysis, was not improved. As yet, there is no explanation for the failure of microbial removal of pyrrhotitic sulphur to go to completion. ?? 1988.

  10. Exploring the Molecular Basis for Selective Binding of Homoserine Dehydrogenase from Mycobacterium leprae TN toward Inhibitors: A Virtual Screening Study

    Directory of Open Access Journals (Sweden)

    Dongling Zhan

    2014-01-01

    Full Text Available Homoserine dehydrogenase (HSD from Mycobacterium leprae TN is an antifungal target for antifungal properties including efficacy against the human pathogen. The 3D structure of HSD has been firmly established by homology modeling methods. Using the template, homoserine dehydrogenase from Thiobacillus denitrificans (PDB Id 3MTJ, a sequence identity of 40% was found and molecular dynamics simulation was used to optimize a reliable structure. The substrate and co-factor-binding regions in HSD were identified. In order to determine the important residues of the substrate (l-aspartate semialdehyde (l-ASA binding, the ASA was docked to the protein; Thr163, Asp198, and Glu192 may be important because they form a hydrogen bond with HSD through AutoDock 4.2 software. neuraminidaseAfter use of a virtual screening technique of HSD, the four top-scoring docking hits all seemed to cation–π ion pair with the key recognition residue Lys107, and Lys207. These ligands therefore seemed to be new chemotypes for HSD. Our results may be helpful for further experimental investigations.

  11. Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer.

    Science.gov (United States)

    Kellermann, Claudia; Selesi, Draženka; Lee, Natuschka; Hügler, Michael; Esperschütz, Jürgen; Hartmann, Anton; Griebler, Christian

    2012-07-01

    CO(2) fixation is one of the most important processes on the Earth's surface, but our current understanding of the occurrence and importance of chemolithoautotrophy in the terrestrial subsurface is poor. Groundwater ecosystems, especially at organically polluted sites, have all the requirements for autotrophic growth processes, and CO(2) fixation is thus suggested to contribute significantly to carbon flux in these environments. We explored the potential for autotrophic CO(2) fixation in microbial communities of a petroleum hydrocarbon-contaminated aquifer by detection of functional marker genes (cbbL, cbbM), encoding different forms of the key enzyme RubisCO of the Calvin-Benson-Bassham cycle. Quantification of (red-like) cbbL genes revealed highest numbers at the upper fringe of the contaminant plume and the capillary fringe where reduced sulphur and iron species are regularly oxidized in the course of groundwater table changes. Functional gene sequences retrieved from this area were most closely related to sequences of different thiobacilli. Moreover, several cultures could be enriched from fresh aquifer material, all of which are able to grow under chemolithoautotrophic conditions. A novel, nitrate-reducing, thiosulfate-oxidizing bacterial strain, recently described as Thiobacillus thiophilus D24TN(T) sp. nov., was shown to carry and transcribe RubisCO large-subunit genes of form I and II. Enzyme tests proved the actual activity of RubisCO in this strain. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Microbial interspecies electron transfer via electric currents through conductive minerals

    Science.gov (United States)

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2012-01-01

    In anaerobic biota, reducing equivalents (electrons) are transferred between different species of microbes [interspecies electron transfer (IET)], establishing the basis of cooperative behaviors and community functions. IET mechanisms described so far are based on diffusion of redox chemical species and/or direct contact in cell aggregates. Here, we show another possibility that IET also occurs via electric currents through natural conductive minerals. Our investigation revealed that electrically conductive magnetite nanoparticles facilitated IET from Geobacter sulfurreducens to Thiobacillus denitrificans, accomplishing acetate oxidation coupled to nitrate reduction. This two-species cooperative catabolism also occurred, albeit one order of magnitude slower, in the presence of Fe ions that worked as diffusive redox species. Semiconductive and insulating iron-oxide nanoparticles did not accelerate the cooperative catabolism. Our results suggest that microbes use conductive mineral particles as conduits of electrons, resulting in efficient IET and cooperative catabolism. Furthermore, such natural mineral conduits are considered to provide ecological advantages for users, because their investments in IET can be reduced. Given that conductive minerals are ubiquitously and abundantly present in nature, electric interactions between microbes and conductive minerals may contribute greatly to the coupling of biogeochemical reactions. PMID:22665802

  13. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment.

    Science.gov (United States)

    Eyice, Özge; Namura, Motonobu; Chen, Yin; Mead, Andrew; Samavedam, Siva; Schäfer, Hendrik

    2015-11-01

    Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in (13)C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds. Overall, these data suggest that unlike in the marine environment where gammaproteobacterial populations were identified by SIP as DMS degraders, betaproteobacterial Methylophilaceae may have a key role in DMS cycling in terrestrial environments.

  14. The adenosine-5'-phosphosulfate sulfotransferase from spinach (Spinacea oleracea L.). Stabilization, partial purification, and properties.

    Science.gov (United States)

    Schmidt, A

    1976-01-01

    Adenosine-5'-phosphosulfate (APS) sulfotransferase was purified 25-fold from spinach (Spinacea oleracea L.) leaves by Sephadex-G-200 gel filtration and chromatography on DEAE-cellulose. Enzyme activity was stabilized with 0.05 M Tris-HCl pH 8.0 containing 10 mM mercaptoethanol (ME), 10 mM MgCl2, and 30% glycerol. The molecular weight of the APS-sulfotransferase was estimated by gel filtration to be about 110,000 daltons. The enzyme is specific for the sulfonucleotide APS; PAPS is not a sulfur donor for this reaction. The apparent Km for APS was found to be 13 μM. The enzyme activity was determined with dithioerythritol (DTE) as acceptor, which has an apparent Km of 0.6 mM. Glutathione can substitute for DTE; other thiols such as mercaptoethanol and cysteine are less effective. The APS-sulfotransferase activity is inhibited by 5'-AMP, which increases the Km for APS but does not change Vmax, suggesting a competetive inhibition. Reduced methylviologen cannot substitute for a thiol in the spinach enzyme system. Thus it seems that assimilatory APS-sulfotransferase from spinach is different from the dissimilatory APS-reductase from Desulfovibrio or Thiobacillus, where methylviologen can be used as the electron donor.

  15. Report on assessment of the mechanism of bacterially assisted oxidation of pyritic uranium tailings

    International Nuclear Information System (INIS)

    Halbert, B.B.; Scharer, J.M.; Knapp, R.A.

    1984-07-01

    The oxidation of pyritic minerals has been shown to be catalyzed by the presence of iron- and sulphur-oxidizing bacteria. Thiobacillus ferroxidans plays the most significant role in the formation and propagation of acidic conditions. Optimum growth conditions for the T. ferroxidans occurs at a temperature of 35 degrees C and pH of 2 to 3. Bacterially assisted oxidation of pyrite involves both direct and indirect contact mechanisms. The direct contact mechanism entails enzymatic oxidation of the insoluble sulphide moiety. The indirect mechanism involves bacterial oxidation of the dissolved ferrous component to the ferric state. The ferric iron, in turn, acts as the prime oxidant of pyrite and is reduced to ferrous iron. The re-oxidation of the dissolved ferrous component which is catalyzed by bacterial activity, completes the cyclic process. The rate of bacterial oxidation is affected by: the geochemistry and reactivity of the pyritic material; the amount of pyrite present in the waste material and the exposed surface area of the pyritic component; the availability of oxygen and carbon dioxide; the pH and temperature of the leach solution; and the presence (or absence) of organic inhibitors. Of the above factors, oxygen has been frequently identified as the rate limiting reactant in tailings

  16. Exploring the molecular basis for selective binding of homoserine dehydrogenase from Mycobacterium leprae TN toward inhibitors: a virtual screening study.

    Science.gov (United States)

    Zhan, Dongling; Wang, Dongmei; Min, Weihong; Han, Weiwei

    2014-01-24

    Homoserine dehydrogenase (HSD) from Mycobacterium leprae TN is an antifungal target for antifungal properties including efficacy against the human pathogen. The 3D structure of HSD has been firmly established by homology modeling methods. Using the template, homoserine dehydrogenase from Thiobacillus denitrificans (PDB Id 3MTJ), a sequence identity of 40% was found and molecular dynamics simulation was used to optimize a reliable structure. The substrate and co-factor-binding regions in HSD were identified. In order to determine the important residues of the substrate (L-aspartate semialdehyde (L-ASA)) binding, the ASA was docked to the protein; Thr163, Asp198, and Glu192 may be important because they form a hydrogen bond with HSD through AutoDock 4.2 software. neuraminidaseAfter use of a virtual screening technique of HSD, the four top-scoring docking hits all seemed to cation-π ion pair with the key recognition residue Lys107, and Lys207. These ligands therefore seemed to be new chemotypes for HSD. Our results may be helpful for further experimental investigations.

  17. Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China.

    Science.gov (United States)

    Liu, Jun; Chen, Xi; Shu, Hao-Yue; Lin, Xue-Rui; Zhou, Qi-Xing; Bramryd, Torleif; Shu, Wen-Sheng; Huang, Li-Nan

    2017-12-27

    The release of toxic organic pollutants and heavy metals by primitive electronic waste (e-waste) processing to waterways has raised significant concerns, but little is known about their potential ecological effects on aquatic biota especially microorganisms. We characterized the microbial community composition and diversity in sediments sampled along two rivers consistently polluted by e-waste, and explored how community functions may respond to the complex combined pollution. High-throughput 16S rRNA gene sequencing showed that Proteobacteria (particularly Deltaproteobacteria) dominated the sediment microbial assemblages followed by Bacteroidetes, Acidobacteria, Chloroflexi and Firmicutes. PICRUSt metagenome inference provided an initial insight into the metabolic potentials of these e-waste affected communities, speculating that organic pollutants degradation in the sediment might be mainly performed by some of the dominant genera (such as Sulfuricurvum, Thiobacillus and Burkholderia) detected in situ. Statistical analyses revealed that toxic organic compounds contributed more to the observed variations in sediment microbial community structure and predicted functions (24.68% and 8.89%, respectively) than heavy metals (12.18% and 4.68%), and Benzo(a)pyrene, bioavailable lead and electrical conductivity were the key contributors. These results have shed light on the microbial assemblages in e-waste contaminated river sediments, indicating a potential influence of e-waste pollution on the microbial community structure and function in aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H 13 CO 3 - and H 12 CO 3 - as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H 13 CO 3 - , demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the 13 C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis.

    Science.gov (United States)

    Zhang, Zhengwen; Han, Yuxing; Xu, Chunyan; Ma, Wencheng; Han, Hongjun; Zheng, Mengqi; Zhu, Hao; Ma, Weiwei

    2018-04-21

    Mixotrophic denitrification coupled biological denitrification with iron and carbon micro-electrolysis (IC-ME) is a promising emerging bioprocess for nitrate removal of biologically enhanced treated coal gasification wastewater (BECGW) with low COD to nitrate ratio. TN removal efficiency in R1 with IC-ME assisted was 16.64% higher than R2 with scrap zero valent iron addition, 23.05% higher than R3 with active carbon assisted, 30.51% higher than R4 with only active sludge addition, 80.85% higher than R5 utilizing single IC-ME as control. Fe 2+ generated from IC-ME decreased the production of N 2 O and enriched more Nitrate-reducing Fe(Ⅱ) oxidation bacteria (NRFOB) Acidovorax and Thiobacillus, which could convert nitrate to nitrogen gas. And the presence of Fe 3+ , as the Fe 2+ oxidation product, could stimulate the growth of Fe(III)-reducing strain (FRB) that indicated by redundancy analysis. Microbial network analysis demonstrated FRB Geothrix had a co-occurrence relationship with other bacteria, revealing its dominant involvement in nitrate removal of BECGW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Micro-electrolysis/retinervus luffae-based simultaneous autotrophic and heterotrophic denitrification for low C/N wastewater treatment.

    Science.gov (United States)

    Li, Jinlong; Li, Desheng; Cui, Yuwei; Xing, Wei; Deng, Shihai

    2017-07-01

    Nitrogen bioremediation in organic insufficient wastewater generally requires an extra carbon source. In this study, nitrate-contaminated wastewater was treated effectively through simultaneous autotrophic and heterotrophic denitrification based on micro-electrolysis carriers (MECs) and retinervus luffae fructus (RLF), respectively. The average nitrate and total nitrogen removal rates reached 96.3 and 94.0% in the MECs/RLF-based autotrophic and heterotrophic denitrification (MRAHD) system without ammonia and nitrite accumulation. The performance of MRAHD was better than that of MEC-based autotrophic denitrification for the wastewater treatment with low carbon nitrogen (COD/N) ratio. Real-time quantitative polymerase chain reaction (qPCR) revealed that the relative abundance of nirS-type denitrifiers attached to MECs (4.9%) and RLF (5.0%) was similar. Illumina sequencing suggested that the dominant genera were Thiobacillus (7.0%) and Denitratisoma (5.7%), which attached to MECs and RLF, respectively. Sulfuritalea was discovered as the dominant genus in the middle of the reactor. The synergistic interaction between autotrophic and heterotrophic denitrifiers played a vital role in the mixotrophic substrate environment.

  1. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs. Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-, SO4(2-/total sulfur ratio, and Fe(2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  2. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments.

    Science.gov (United States)

    Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi

    2014-01-01

    In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration.

  3. A Comparative Study on the Effect of Flotation Reagents on Growth and Iron Oxidation Activities of Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari

    2016-12-01

    Full Text Available Recently, extraction of metals from different resources using a simple, efficient, and low-cost technique-known as bioleaching-has been widely considered, and has turned out to be an important global technology. Leptospirillum ferrooxidans and Acidithiobacillus (Thiobacillus ferrooxidans are ubiquitous bacteria in the biomining industry. To date, the effects of commercial flotation reagents on the biooxidation activities of these bacteria have not been thoroughly studied. This investigation, by using various systematic measurement methods, studied the effects of various collectors and frothers (collectors: potassium amylxanthate, potassium isobutyl-xanthate, sodium ethylxanthate, potassium isopropylxanthate, and dithiophosphate; and frothers: pine oil and methyl isobutyl carbinol on L. ferrooxidans and A. ferrooxidans activities. In general, results indicate that in the presence of these collectors and frothers, L. ferrooxidans is less sensitive than T. ferrooxidans. In addition, the inhibition effect of collectors on both bacteria is recommended in the following order: for the collectors, potassium isobutyl-xanthate > dithiophosphate > sodium ethylxanthate > potassium isobutyl-xanthate > potassium amylxanthate; and for the frothers, methyl isobutyl carbinol > pine oil. These results can be used for the optimization of biometallurgical processes or in the early stage of a process design for selection of flotation reagents.

  4. Characterization of the bacterial flora in mineral waters in upstreaming fluids of deep igneous rock aquifers

    Science.gov (United States)

    Wagner, C.; Mau, M.; SchlöMann, M.; Heinicke, J.; Koch, U.

    2007-03-01

    The bacterial community of the mineral spring Wettinquelle in the Vogtland/NW Bohemian region (German-Czech border) was characterized by sequence analysis of amplified small subunit ribosomal RNA genes. The acidulous spring water consists mostly of old groundwater from deep aquifers, which is mixed with 15-20% young water from upper groundwater horizons. The spring water contains high concentrations of iron, Ca2+ and SO42- ions. A remarkable attribute is the high radon activity of 27 kBq L-1 water. Free escaping spring gas consists mainly of CO2 originating from the mantle, N2 (1.2%) and traces of other gases, like methane and helium. Close relatives of Gallionella ferruginea, a micro-aerobic oxidizer of ferrous iron, contributed most to the clone library. Clones with sequences related to Thiobacillus aquaesulis, members of the Sulfuricurvum-cluster and members of several branches of the OP11 group were present in significantly lower numbers but still with some microdiversity. These bacterial groups, which contributed strongly to the clone library and have known physiology, obviously depend on the oxygen in the younger water and reduced compounds from the below.

  5. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  6. Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry.

    Science.gov (United States)

    Houghton, J L; Foustoukos, D I; Flynn, T M; Vetriani, C; Bradley, Alexander S; Fike, D A

    2016-09-01

    Previous studies of the stoichiometry of thiosulfate oxidation by colorless sulfur bacteria have failed to demonstrate mass balance of sulfur, indicating that unidentified oxidized products must be present. Here the reaction stoichiometry and kinetics under variable pH conditions during the growth of Thiomicrospira thermophila strain EPR85, isolated from diffuse hydrothermal fluids at the East Pacific Rise, is presented. At pH 8.0, thiosulfate was stoichiometrically converted to sulfate. At lower pH, the products of thiosulfate oxidation were extracellular elemental sulfur and sulfate. We were able to replicate previous experiments and identify the missing sulfur as tetrathionate, consistent with previous reports of the activity of thiosulfate dehydrogenase. Tetrathionate was formed under slightly acidic conditions. Genomic DNA from T. thermophila strain EPR85 contains genes homologous to those in the Sox pathway (soxAXYZBCDL), as well as rhodanese and thiosulfate dehydrogenase. No other sulfur oxidizing bacteria containing sox(CD)2 genes have been reported to produce extracellular elemental sulfur. If the apparent modified Sox pathway we observed in T. thermophila is present in marine Thiobacillus and Thiomicrospira species, production of extracellular elemental sulfur may be biogeochemically important in marine sulfur cycling. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the Dead Sea.

    Science.gov (United States)

    Häusler, Stefan; Weber, Miriam; Siebert, Christian; Holtappels, Moritz; Noriega-Ortega, Beatriz E; De Beer, Dirk; Ionescu, Danny

    2014-12-01

    Abundant microbial mats, recently discovered in underwater freshwater springs in the hypersaline Dead Sea, are mostly dominated by sulfur-oxidizing bacteria. We investigated the source of sulfide and the activity of these communities. Isotopic analysis of sulfide and sulfate in the spring water showed a fractionation of 39-50‰ indicative of active sulfate reduction. Sulfate reduction rates (SRR) in the spring sediment (salinity and O2 from the Dead Sea water are responsible for the abundant microbial biomass around the springs. The springs flow is highly variable and accordingly the local salinities. We speculate that the development of microbial mats dominated by either Sulfurimonas/Sulfurovum-like or Thiobacillus/Acidithiobacillus-like sulfide-oxidizing bacteria, results from different mean salinities in the microenvironment of the mats. SRR of up to 10 nmol cm(-3) day(-1) detected in the Dead Sea sediment are surprisingly higher than in the less saline springs. While this shows the presence of an extremely halophilic sulfate-reducing bacteria community in the Dead Sea sediments, it also suggests that extensive salinity fluctuations limit these communities in the springs due to increased energetic demands for osmoregulation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. The geomicrobiology of bauxite deposits

    Directory of Open Access Journals (Sweden)

    Xiluo Hao

    2010-10-01

    Full Text Available Bauxite deposits are studied because of their economic value and because they play an important role in the study of paleoclimate and paleogeography of continents. They provide a rare record of the weathering and evolution of continental surfaces. Geomicrobiological analysis makes it possible to verify that microorganisms have played a critical role during the formation of bauxite with the possibility already intimated in previous studies. Ambient temperature, abundance of water, organic carbon and bioavailable iron and other metal substrates provide a suitable environment for microbes to inhabit. Thiobacillus, Leptospirilum, Thermophilic bacteria and Heterotrophs have been shown to be able to oxidize ferrous iron and to reduce sulfate-generating sulfuric acid, which can accelerate the weathering of aluminosilicates and precipitation of iron oxyhydroxides. Microorganisms referred to the genus Bacillus can mediate the release of alkaline metals. Although the dissimilatory iron-reducing and sulfate-reducing bacteria in bauxites have not yet been identified, some recorded authigenic carbonates and “bacteriopyrites” that appear to be unique in morphology and grain size might record microbial activity. Typical bauxite minerals such as gibbsite, kaolinite, covellite, galena, pyrite, zircon, calcium plagioclase, orthoclase, and albite have been investigated as part of an analysis of microbial mediation. The paleoecology of such bauxitic microorganisms inhabiting continental (sub surfaces, revealed through geomicrobiological analysis, will add a further dimension to paleoclimatic and paleoenvironmental studies.

  9. Bio-leaching of toxic metals from geothermal waste. A preliminary engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dobryn, D.G.; Brisson, A.L.; Lee, C.M.; Roll, S.M.

    1986-02-01

    The feasibility of a biological facility to treat geothermal sludge from a base case 50-MW double-flash geothermal power plant in the Imperial Valley, California was evaluated. The effect of sludge and nutrient concentration, agitation air bubbling and sterility on the rate of metal solubilization by the bacteria Thiobacillus thiooxidans and ferrooxidans was examined. All experiments were performed in batch flasks and monitored daily for bacterial growth. T. Thiooxidans leached 36% of the zinc in the sludge after 288 hr but leached little chromium. T. ferrooxidans removed 60% of the chromium in the sludge after 250 hr but did not leach zinc. Sludge to medium ratios of greater than 10% were toxic to the microorganisms studied. the experimental results were used to design a biological solid-waste treatment plant. The design basis used was 5 wt % sludge in the leaching vessel with a residence time of 10 days. The non-regulated waste resulting from the treatment plant could be used for land fill or construction materials. The total capital cost for the bio-leaching plant is $3.3 million with an annual operating cost of $690,000. The total cost of this plant is about 0.2 cents/kWh of electricity produced, which is essentially the same cost as hauling the solid waste to a hazardous disposal site. This cost accounts for about 5% of the cost of producing electricity from geothermal power (4 cent/kWh).

  10. FY 2000 report on the results of the research and development project for utilization of information of high-molecular-weight structures in a living body. Survey on the technological trends of utilizing the reactions with metals in a living body; 2000 nendo seitai kobunshi kozo joho riyo gijutsu kaihatsu chosa hokokusho. 'Seitai kinzoku hanno riyo gijutsu' ni kansuru gijutsu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the survey on the technological trends of utilizing the reactions with metals in a living body, noting the bio-processes effectively coping with the environmental problems. The effects of heavy metals on microorganisms have been investigated on the molecular biology level, but are not fully elucidated. Recently, the microorganisms capable of converting inorganic metal ions in water into the insoluble compounds have been known, leading to possibility of bioremediation to solve pollution by heavy metals, which have detrimental effects on human health. Heavy metals must be recovered, because they are not extinct by decomposition. The plant aided purification has been attracting attention to cope with heavy metals accumulated in soil. Application of bacteria-aided leaching, which is adopted as one ore smelting process, to the technologies for utilizing metals in a living body has been expected, because diversified activities of inanimate matters in extreme environments have been known. Recently, bio-machining of metals aided by Thiobacillus ferrooxidans, one species of independent nutrient bacteria capable of eating metals, has been developed to a potentially viable stage. (NEDO)

  11. Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing.

    Science.gov (United States)

    Li, Qiang; Zhang, Bingjian; He, Zhang; Yang, Xiaoru

    The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D.) and Qing dynasties (1636-1912 A.D.) and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.

  12. Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D. and Qing dynasties (1636-1912 A.D. and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.

  13. Accelerated biodegradation of BPA in water-sediment microcosms with Bacillus sp. GZB and the associated bacterial community structure.

    Science.gov (United States)

    Xiong, Jukun; An, Taicheng; Li, Guiying; Peng, Ping'an

    2017-10-01

    Bisphenol A (BPA) is a synthetic chemical primarily used to produce polycarbonate plastics and epoxy resins. Significant industrial and consumer's consumption of BPA-containing products has contributed to extensive contamination in different environmental matrices. In this study, microcosms bioaugmented with Bacillus sp. GZB were constructed to investigate BPA biodegradation, identify the main bacterial community, and evaluate bacterial community responses in the microcosms. Under aerobic conditions, BPA was quickly depleted as a result of bioaugmentation with Bacillus sp. GZB in water-sediment contaminated with pollutants. The pollutants used were generally associated with the electronic wastes (mobile phones, computers, televisions) dismantling process. Adding BPA affected the bacterial community composition in the water-sediment. Furthermore, BPA biodegradation was enhanced by adding electron donors/co-substrates: humic acid, NaCl, glucose, and yeast extract. Metagenomic analysis of the total 16S rRNA genes from the BPA-degrading microcosms with bioaugmentation illustrated that the genera Bacillus, Thiobacillus, Phenylobacterium, and Cloacibacterium were dominant after a 7-week incubation period. A consortium of microorganisms from different bacterial genera may be involved in BPA biodegradation in electronic waste contaminated water-sediment. This study provides new insights about BPA bioaugmentation and bacterial ecology in the BPA-degrading environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Acid resistance of sewer pipe concrete mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. G.; Fourie, C. [Cape Town Univ., Dept. of Civil Engineering (South Africa)

    2000-07-01

    Using hydrochloric acid in a test method developed at the University of Cape Town, six different sets of concrete materials were measured for acid resistance. One of the six mixtures was a standard mix used for the preparation of sewer pipes by the roller suspension method; the other five were variations of the standard mix, modified by the partial replacement of the standard cement with slag, fly ash, condensed silica fume or metakaolin. In one test mixture, normal portland cement was replaced by a calcium aluminate cement. At 28 days the physical properties of concrete with admixtures of silica fume and metakaolin were superior to the other concretes, although the acid resistance of metakaolin concrete showed no improvement despite otherwise superior quality. The concrete containing condensed silica fume showed marked improvement in acid resistance It showed a lower percentage of mass loss and hydrogen ion consumption than other concretes. This concrete also compacted well, indicating its high suitability for the production of sewer pipes with the roller suspension method. Slag and fly ash concretes did not gain strength rapidly enough and calcium aluminate also showed limited capacity to protect the sewer pipes from bacterial attack, despite its reputed toxicity to the Thiobacillus bacteria, which is the principal agent of acid attack in sewer pipes. 8 refs., 5 tabs., 3 figs.

  15. Microbial ecology of Rum Jungle II: environmental study of two flooded opencuts and smaller, associated water bodies

    International Nuclear Information System (INIS)

    Goodman, A.E.; Khalid, A.M.; Ralph, B.J.

    1981-12-01

    The microbial status of the flooded Intermediate and White's opencuts of the abandoned uranium mine at Rum Jungle was investigated by sampling the water column and sediments of several areas in each opencut. Smaller water bodies, associated with the experimental heap-leach pile, were also investigated. Several groups of bacteria were identified and population sizes were estimated using selective media techniques. Various physicochemical parameters of each sample were determined and correlated with the occurence of bacteria. Both opencuts, although behaving differently, were found to be heavily polluted by sulphuric acid and heavy metals, White's more so than Intermediate. White's opencut was found to be stratified into an aerobic zone, about five metres deep, and a microaerophilic zone below this. Large populations of Thiobacillus ferrooxidans and autotrophic sulphur-oxidising bacteria indicated that degradation of sulphidic minerals in the walls and floors of the opencuts was still occurring. The isolation of T. ferrooxidans from sediments also containing anaerobic bacterial species suggested that T. ferrooxidans was degrading sulphidic minerals, either anaerobically or microaerophilically. The smaller water bodies also were found to be heavily polluted by acid and heavy metals from drainage and seepage from the sulphidic heap-leach pile

  16. Effects of toxic organic flotation reagent (aniline aerofloat) on an A/O submerged membrane bioreactor (sMBR): Microbial community dynamics and performance.

    Science.gov (United States)

    Lin, Weixiong; Sun, Shuiyu; Wu, Chun; Xu, Pingting; Ye, Ziwei; Zhuang, Shengwei

    2017-08-01

    Bio-treatment of flotation wastewater has been proven to be both effective and economical, as a treatment method. Despite this, little is known regarding the effects of toxic organic floatation reagents such as Dianilinodithiophosphoric acid (DDA), on the microbial community performance or dynamics, which are critical to the effective performance of the bio-treatment reactor. A submerged membrane bioreactor (sMBR) was constructed to continuously treat simulated wastewater contaminated with DDA, an organic flotation reagent that is now considered a significant pollutant. The performance of the sMBR system was investigated at different DDA loading concentrations, with assessment of the effects of DDA on the microbial communities within the sMBR, in particular the biodiversity and succession within the microbial community. Results showed that, with increased DDA loadings, the performance of the sMBR was initially negatively affected, but the system adapted efficiently and consistently reached a COD removal rate of up to 80%. Increased DDA loading concentrations had an adverse effect on the activity of both the activated sludge and microbial communities, resulting in a large alteration in microbial dynamics, especially during the start-up stage and the high DDA loading stage. Strains capable of adapting to the presence of DDA, capable of degrading DDA or utilizing its byproducts, were enriched within the sMBR community, such as Zoogloea, Clostridium, Sideroxydans lithotrophicus, Thiobacillus, Thauera amino aromatica and Alicycliphilus denitrificans. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Seasonal bacterial community succession in four typical wastewater treatment plants: correlations between core microbes and process performance.

    Science.gov (United States)

    Zhang, Bo; Yu, Quanwei; Yan, Guoqi; Zhu, Hubo; Xu, Xiang Yang; Zhu, Liang

    2018-03-15

    To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.

  18. Molecular cloning and sequence of the thdF gene involved in the thiophene and furan oxidation by Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Alam, K.Y.; Clark, D.P.

    1990-01-01

    Since sulfur dioxide emission from burning high sulfur coals is a major contributor to acid rain, it is important to develop bacteria which are capable of efficiently removing the sulfur from coal before combustion. Inorganic sulfur can be removed from coal by certain strains of Thiobacillus or Sulfolobus; however the organic sulfur remains intransigent. Since high sulfur Illinois coals typically contain 60% to 70% of their sulfur in the form of the heterocyclic thiophene ring we have started to investigate the biodegradation of derivatives of thiophene and the corresponding oxygen heterocycle, furan. Our previous work resulted in the isolation of a triple mutant, NAR30, capable of oxidizing a range of furan and thiophene derivatives. However, NAR30 does not completely degrade thiophenes or furans and its oxidation of these compounds is slow and inefficient. We decided to clone the thd genes both in order to increase the efficiency of degradation and to investigate the nature of the reactions involved. 37 refs., 4 figs., 3 tabs.

  19. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent

    Energy Technology Data Exchange (ETDEWEB)

    Felfoldi, T.; Szekely, A.J.; Goral, R.; Barkacs, K.; Scheirich, G.; Andras, J.; Racz, A.; Marialigeti, K. [Eotvos Lorand University, Budapest (Hungary). Dept. of Microbiology

    2010-05-15

    Biological purification processes are effective tools in the treatment of hazardous wastes such as toxic compounds produced in coal coking. In this study, the microbial community of a lab-scale activated sludge system treating coking effluent was assessed by cultivation-based (strain isolation and identification, biodegradation tests) and culture-independent techniques (sequence-aided T-RFLP, taxon-specific PCR). The results of the applied polyphasic approach showed a simple microbial community dominated by easily culturable heterotrophic bacteria. Comamonas badia was identified as the key microbe of the system, since it was the predominant member of the bacterial community, and its phenol degradation capacity was also proved. Metabolism of phenol, even at elevated concentrations (up to 1500 mg/L), was also presented for many other dominant (Pseudomonas, Rhodanobacter, Oligella) and minor (Alcaligenes, Castellaniella, Microbacterium) groups, while some activated sludge bacteria (Sphingomonas, Rhodopseudomonas) did not tolerate it even in lower concentrations (250 mg/L). In some cases, closely related strains showed different tolerance and degradation properties. Members of the genus Thiobacillus were detected in the activated sludge, and were supposedly responsible for the intensive thiocyanate biodegradation observed in the system. Additionally, some identified bacteria (e.g. C. badia and the Ottowia-related strains) might also have had a significant impact on the structure of the activated sludge due to their floc-forming abilities.

  20. Pioneer microbial communities of the Fimmvörðuháls lava flow, Eyjafjallajökull, Iceland.

    Science.gov (United States)

    Kelly, Laura C; Cockell, Charles S; Thorsteinsson, Thorsteinn; Marteinsson, Viggó; Stevenson, John

    2014-10-01

    Little is understood regarding the phylogeny and metabolic capabilities of the earliest colonists of volcanic rocks, yet these data are essential for understanding how life becomes established in and interacts with the planetary crust, ultimately contributing to critical zone processes and soil formation. Here, we report the use of molecular and culture-dependent methods to determine the composition of pioneer microbial communities colonising the basaltic Fimmvörðuháls lava flow at Eyjafjallajökull, Iceland, formed in 2010. Our data show that 3 to 5 months post eruption, the lava was colonised by a low-diversity microbial community dominated by Betaproteobacteria, primarily taxa related to non-phototrophic diazotrophs such as Herbaspirillum spp. and chemolithotrophs such as Thiobacillus. Although successfully cultured following enrichment, phototrophs were not abundant members of the Fimmvörðuháls communities, as revealed by molecular analysis, and phototrophy is therefore not likely to be a dominant biogeochemical process in these early successional basalt communities. These results contrast with older Icelandic lava of comparable mineralogy, in which phototrophs comprised a significant fraction of microbial communities, and the non-phototrophic community fractions were dominated by Acidobacteria and Actinobacteria.

  1. Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria.

    Science.gov (United States)

    Ramírez, Martín; Fernández, Maikel; Granada, Claudia; Le Borgne, Sylvie; Gómez, José Manuel; Cantero, Domingo

    2011-03-01

    The present work aims to use a two-stage biotrickling filters for simultaneous treatment of hydrogen sulphide (H(2)S), methyl mercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS). The first biofilter was inoculated with Acidithiobacillus thiooxidans (BAT) and the second one with Thiobacillus thioparus (BTT). For separate feeds of reduced sulphur compounds (RSC), the elimination capacity (EC) order was DMDS>DMS>MM. The EC values were 9.8 g(MM-S)/m(3)/h (BTT; 78% removal efficiency (RE); empty bed residence time (EBRT) 58 s), 36 g(DMDS-S)/m(3)/h (BTT; 94.4% RE; EBRT 76 s) and 57.5 g(H2S-S)/m(3)/h (BAT; 92% RE; EBRT 59 s). For the simultaneous removal of RSC in BTT, an increase in the H(2)S concentration from 23 to 293 ppmv (EBRT of 59 s) inhibited the RE of DMS (97-84% RE), DMDS (86-76% RE) and MM (83-67% RE). In the two-stage biofiltration, the RE did not decrease on increasing the H(2)S concentration from 75 to 432 ppmv. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas.

    Science.gov (United States)

    Hong, Chen; Si, Yanxiao; Xing, Yi; Li, Yang

    2015-07-01

    Mine activities leaked heavy metals into surrounding soil and may affected indigenous microbial communities. In the present study, the diversity and composition of the bacterial community in soil collected from three regions which have different pollution degree, heavy pollution, moderate pollution, and non-pollution, within the catchment of Chao River in Beijing City, were compared using the Illumina MiSeq sequencing technique. Rarefaction results showed that the polluted area had significant higher bacterial alpha diversity than those from unpolluted area. Principal component analysis (PCA) showed that microbial communities in the polluted areas had significant differences compared with the unpolluted area. Moreover, PCA at phylum level and Matastats results demonstrated that communities in locations shared similar phyla diversity, indicating that the bacterial community changes under metal pollution were not reflected on phyla structure. At genus level, the relative abundance of dominant genera changed in sites with degrees of pollution. Genera Bradyrhizobium, Rhodanobacter, Reyranella, and Rhizomicrobium significantly decreased with increasing pollution degree, and their dominance decreased, whereas several genera (e.g., Steroidobacter, Massilia, Arthrobacter, Flavisolibacter, and Roseiflexus) increased and became new dominant genera in the heavily metal-polluted area. The potential resistant bacteria, found within the genera of Thiobacillus, Pseudomonas, Arthrobacter, Microcoleus, Leptolyngbya, and Rhodobacter, are less than 2.0 % in the indigenous bacterial communities, which play an important role in soil ecosystem. This effort to profile the background diversity may set the first stage for better understanding the mechanism underlying the community structure changes under in situ mild heavy metal pollution.

  3. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils.

    Science.gov (United States)

    Navarro-Noya, Yendi E; Jan-Roblero, Janet; González-Chávez, Maria del Carmen; Hernández-Gama, Regina; Hernández-Rodríguez, César

    2010-05-01

    In this study, the bacterial communities associated with the rhizospheres of pioneer plants Bahia xylopoda and Viguiera linearis were explored. These plants grow on silver mine tailings with high concentration of heavy metals in Zacatecas, Mexico. Metagenomic DNAs from rhizosphere and bulk soil were extracted to perform a denaturing gradient gel electrophoresis analysis (DGGE) and to construct 16S rRNA gene libraries. A moderate bacterial diversity and twelve major phylogenetic groups including Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Firmicutes, Verrucomicrobia, Nitrospirae and Actinobacteria phyla, and divisions TM7, OP10 and OD1 were recognized in the rhizospheres. Only 25.5% from the phylotypes were common in the rhizosphere libraries and the most abundant groups were members of the phyla Acidobacteria and Betaproteobacteria (Thiobacillus spp., Nitrosomonadaceae). The most abundant groups in bulk soil library were Acidobacteria and Actinobacteria, and no common phylotypes were shared with the rhizosphere libraries. Many of the clones detected were related with chemolithotrophic and sulfur-oxidizing bacteria, characteristic of an environment with a high concentration of heavy metal-sulfur complexes, and lacking carbon and organic energy sources.

  4. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.

    Science.gov (United States)

    Huber, B; Drewes, J E; Lin, K C; König, R; Müller, E

    2014-01-01

    Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion.

  5. Screening of novel yeast inulinases and further application to bioprocesses.

    Science.gov (United States)

    Paixão, Susana M; Teixeira, Pedro D; Silva, Tiago P; Teixeira, Alexandra V; Alves, Luís

    2013-09-25

    Inulin is a carbohydrate composed of linear chains of β-2,1-linked D-fructofuranose molecules terminated by a glucose residue through a sucrose-type linkage at the reducing end. Jerusalem artichoke (JA) is one of the most interesting materials among unconventional and renewable raw materials, with levels of inulin reaching 50-80% of dry matter. Inulin or inulin-rich materials can be actively hydrolyzed by microbial inulinases to produce glucose and fructose syrups that can be used in bioprocesses. In this study, several microbial strains were isolated and their ability to inulinase biosynthesis was evaluated. The novel yeast strain Talf1, identified as Zygosaccharomyces bailii, was the best inulinase producer, attaining 8.67 U/ml of inulinase activity when JA juice was used as the inducer substrate. Z. bailii strain Talf1 and/or its enzymatic crude extract were further applied for bioethanol production and biodesulfurization (BDS) processes, using inulin and JA juice as carbon source. In a consolidated bioprocessing for ethanol production from 200 g/l inulin, Z. bailii strain Talf1 was able to produce 67 g/l of ethanol. This ethanol yield was improved in a simultaneous saccharification and fermentation (SSF) process, with the ethanologenic yeast Saccharomyces cerevisiae CCMI 885 and the Talf1 inulinases, achieving a production of 78 g/l ethanol. However, the highest ethanol yield (∼48%) was obtained in a SSF process from JA juice (∼130 g/l fermentable sugars), where the S. cerevisiae produced 63 g/l ethanol. Relatively to the dibenzothiophene BDS tests, the Gordonia alkanivorans strain 1B achieved a desulfurization rate of 4.8 μM/h within a SSF process using Talf1 inulinases and JA juice, highlighting the potential of JA as a less expensive alternative carbon source. These results showed the high potential of Z. bailii strain Talf1 inulinases as a versatile tool for bioprocesses using inulin-rich materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Proteomics and Metabolomics Analyses to Elucidate the Desulfurization Pathway of Chelatococcus sp.

    Directory of Open Access Journals (Sweden)

    Naba K Bordoloi

    /proteins support growth of bacteria at an expense of DBT. These combined results suggest that Chelatococcus sp. prefers sulfur-specific extended 4S pathway for deep-desulphurization which may have an advantage for its intended future application as a promising biodesulfurizing agent.

  7. Sulfur source-mediated transcriptional regulation of the rhlABC genes involved in biosurfactants production by Pseudomonas sp. strain AK6U.

    Science.gov (United States)

    Ismail, Wael; El Nayal, Ashraf M; Ramadan, Ahmed R; Abotalib, Nasser

    2014-01-01

    biodesulfurization.

  8. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion

    Science.gov (United States)

    House, Mitchell Wayne

    Concrete is the most widely used material for construction of wastewater collection, storage, and treatment infrastructure. The chemical and physical characteristics of hydrated portland cement make it susceptible to degradation under highly acidic conditions. As a result, some concrete wastewater infrastructure may be susceptible to a multi-stage degradation process known as microbially induced corrosion, or MIC. MIC begins with the production of aqueous hydrogen sulfide (H2S(aq)) by anaerobic sulfate reducing bacteria present below the waterline. H2S(aq) partitions to the gas phase where it is oxidized to sulfuric acid by the aerobic sulfur oxidizing bacteria Thiobacillus that resides on concrete surfaces above the waterline. Sulfuric acid then attacks the cement paste portion of the concrete matrix through decalcification of calcium hydroxide and calcium silica hydrate coupled with the formation of expansive corrosion products. The attack proceeds inward resulting in reduced service life and potential failure of the concrete structure. There are several challenges associated with assessing a concrete's susceptibility to MIC. First, no standard laboratory tests exist to assess concrete resistance to MIC. Straightforward reproduction of MIC in the laboratory is complicated by the use of microorganisms and hydrogen sulfide gas. Physico-chemical tests simulating MIC by immersing concrete specimens in sulfuric acid offer a convenient alternative, but do not accurately capture the damage mechanisms associated with biological corrosion. Comparison of results between research studies is difficult due to discrepancies that can arise in experimental methods even if current ASTM standards are followed. This thesis presents two experimental methods to evaluate concrete resistance to MIC: one biological and one physico-chemical. Efforts are made to address the critical aspects of each testing method currently absent in the literature. The first method presented is a new test

  9. Sour gas-gobbling bugs

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2001-03-01

    In 1977, a scientific expedition discovered life forms deep in the hydrothermal vents of the Galapagos. Some of the bacteria discovered (Thiobacillus) metabolized hydrogen sulphide and excrete elemental sulphur, and are now being coveted for natural gas processing facilities. It represents a low pressure and low temperature process on the regenerative side, without exotic metallurgy required. The Canadian rights to the process were acquired by New Paradigm Gas Processing Ltd., which was developed by Shell Global Solutions International B.V. and Paques Natural Solutions. The introduction of this process on natural gas facilities would relegate the use of on-site flaring and incineration systems to emergency, non-routine occurrences. The process has been implemented at 15 different locations, one of which since 1993 in a very sensitive environment in Holland. PanCanadian is holding consultations with Bantry area residents is taking place about the introduction of this process at the deep gas refrigeration plant in southeastern Alberta. It would enable the PanCanadian plant to produce the shut-in wells. The close proximity of residents would make it a better solution that flaring or incinerating. It also reduces the capital and operating costs. Under the right circumstances, both methane purification and sulphur recovery can be accomplished by one unit. The process enables the direct treatment of gas streams with carbon dioxide content of less than two per cent, in which case the requirement for an ethanolamine unit is eliminated. The gas does not need to be under pressure. Safety is greatly enhanced, whereby no high concentrations of pressurized hydrogen sulphide into the atmosphere. New Paradigm is also actively investigating new markets for the resulting sulphur. 2 figs.

  10. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates (“Iron Snow”)

    Science.gov (United States)

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B.; Neu, Thomas R.; Hettich, Robert L.

    2013-01-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies. PMID:23645202

  11. Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow").

    Science.gov (United States)

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B; Neu, Thomas R; Hettich, Robert L; Küsel, Kirsten

    2013-07-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates ("iron snow") at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 10(8) copies g (dry weight)(-1) in the acidic central lake basin (pH 3.3) to 4.0 × 10(10) copies g (dry weight)(-1) in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.

  12. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    Science.gov (United States)

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Extraction of metals from ores by bacterial leaching: present status and future prospects

    International Nuclear Information System (INIS)

    Kelly, D.P.

    1977-01-01

    The principal organism effecting bacterial leaching of ferrous and sulfide ores is Thiobacillus ferrooxidans, though other thiobacilli and other bacteria may be involved. The process depends on (a) direct solubilization of metal sulfides by bacterial oxidation; (b) dissolution of metal sulfides or oxides by ferric iron produced by bacterial pyrite oxidation. Mining spoil dumps and low grade ores can be leached for copper or uranium by cheap low-level technology. Dump leaching enables maximum recovery of valuable metal from any ore, but makes possible exploitation of very low grade Cu and U ores. Continuous extraction processes are possible where a continuously growing bacterial culture is fed with pyritic ores (or FeSO 4 or other sulfide) and continuous metal solubilization proceeds. Intimate contact between the bacteria and the ore to be leached (especially with uranium oxide ores) is not always necessary: leaching of UO 2 ores probably depends only on ferric iron reaction with the ore. Degradation of pyrite-containing rocks may also be developed as part of future recovery processes for petroleum from oil shales. Two-stage leaching systems present the best prospect for developing a higher-level technology for metal extraction. State 1: bacterial generation of Fe 3+ from pyrite or a Fe 2+ source; Stage 2: chemical leaching of ore by Fe 3+ in acid solution. Two-stage processes can be surface processes using crushed or milled ores or can be applied to underground solution mining, when an ore (e.g. uranium) can be leached by pumping Fe 3+ solutions through shattered underground deposits, metal recovered (e.g. solvent extraction) and Fe 3+ regenerated by bacterial oxidation at the surface. The use of controlled continuous microbial cultures to generate either bacteria or ferric iron is outlined

  14. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance and bacterial community structure.

    Science.gov (United States)

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Qu, Jiuhui

    2015-03-01

    This paper investigates a novel sulfur-oxidizing autotrophic denitrifying anaerobic fluidized bed membrane bioreactor (AnFB-MBR) that has the potential to overcome the limitations of conventional sulfur-oxidizing autotrophic denitrification systems. The AnFB-MBR produced consistent high-quality product water when fed by a synthetic groundwater with NO3 (-)-N ranging 25-80 mg/L and operated at hydraulic retention times of 0.5-5.0 h. A nitrate removal rate of up to 4.0 g NO3 (-)-N/Lreactord was attained by the bioreactor, which exceeded any reported removal capacity. The flux of AnFB-MBR was maintained in the range of 1.5-15 L m(-2) h(-1). Successful membrane cleaning was practiced with cleaning cycles of 35-81 days, which had no obvious effect on the AnFB-MBR performance. The (15) N-tracer analyses elucidated that nitrogen was converted into (15) N2-N and (15) N-biomass accounting for 88.1-93.1 % and 6.4-11.6 % of the total nitrogen produced, respectively. Only 0.3-0.5 % of removed nitrogen was in form of (15)N2O-N in sulfur-oxidizing autotrophic denitrification process, reducing potential risks of a significant amount of N2O emissions. The sulfur-oxidizing autotrophic denitrifying bacterial consortium was composed mainly of bacteria from Proteobacteria, Chlorobi, and Chloroflexi phyla, with genera Thiobacillus, Sulfurimonas, and Ignavibacteriales dominating the consortium. The pyrosequencing assays also suggested that the stable microbial communities corresponded to the elevated performance of the AnFB-MBR. Overall, this research described relatively high nitrate removal, acceptable flux, indicating future potential for the technology in practice.

  15. Biotransformation of nitrogen- and sulfur-containing pollutants during coking wastewater treatment: Correspondence of performance to microbial community functional structure.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Gao, Yinxin; Liu, Yuan; Yang, Min

    2017-09-15

    Although coking wastewater is generally considered to contain high concentration of nitrogen- and sulfur-containing pollutants, the biotransformation processes of these compounds have not been well understood. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina MiSeq sequencing of the 16S rRNA gene were used to identify microbial functional traits and their role in biotransformation of nitrogen- and sulfur-containing compounds in a bench-scale aerobic coking wastewater treatment system operated for 488 days. Biotransformation of nitrogen and sulfur-containing pollutants deteriorated when pH of the bioreactor was increased to >8.0, and the microbial community functional structure was significantly associated with pH (Mantels test, P nitrogen and sulfate was correlated with both the taxonomic and functional microbial community structure (P nitrogen and sulfate, aromatic dioxygenases (e.g. xylXY, nagG), nitrilases (e.g. nhh, nitrilase), dibenzothiophene oxidase (DbtAc), and thiocyanate hydrolase (scnABC) were important functional genes for biotransformation of nitrogen- and sulfur-containing pollutants. Functional characterization of taxa and network analysis suggested that Burkholderiales, Actinomycetales, Rhizobiales, Pseudomonadales, and Hydrogenophiliales (Thiobacillus) were key functional taxa. Variance partitioning analysis showed that pH and influent ammonia nitrogen jointly explained 25.9% and 35.5% of variation in organic pollutant degrading genes and microbial community structure, respectively. This study revealed a linkage between microbial community functional structure and the likely biotransformation of nitrogen- and sulfur-containing pollutants, along with a suitable range of pH (7.0-7.5) for stability of the biological system treating coking wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Tian, Zhe; Gao, Yingxin; Yang, Min

    2016-09-01

    The combined anaerobic-aerobic biosystem is assumed to consume less energy for the treatment of high strength industrial wastewater. In this study, pollutant removal performance and microbial diversity were assessed in a long-term (over 300 days) bench-scale sequential anaerobic-aerobic bioreactor treating coking wastewater. Anaerobic treatment removed one third of the chemical oxygen demand (COD) and more than half of the phenols with hydraulic retention time (HRT) of 42 h, while the combined system with total HRT of 114 h removed 81.8, 85.6, 99.9, 98.2, and 85.4 % of COD, total organic carbon (TOC), total phenols, thiocyanate, and cyanide, respectively. Two-dimensional gas chromatography with time-of-flight mass spectrometry showed complete removal of phenol derivatives and nitrogenous heterocyclic compounds (NHCs) via the combined system, with the anaerobic process alone contributing 58.4 and 58.6 % removal on average, respectively. Microbial activity in the bioreactors was examined by 454 pyrosequencing of the bacterial, archaeal, and fungal communities. Proteobacteria (61.2-93.4 %), particularly Betaproteobacteria (34.4-70.1 %), was the dominant bacterial group. Ottowia (14.1-46.7 %), Soehngenia (3.0-8.2 %), and Corynebacterium (0.9-12.0 %), which are comprised of phenol-degrading and hydrolytic bacteria, were the most abundant genera in the anaerobic sludge, whereas Thiobacillus (6.6-43.6 %), Diaphorobacter (5.1-13.0 %), and Comamonas (0.2-11.1 %) were the major degraders of phenol, thiocyanate, and NHCs in the aerobic sludge. Despite the low density of fungi, phenol degrading oleaginous yeast Trichosporon was abundant in the aerobic sludge. This study demonstrated the feasibility and optimization of less energy intensive treatment and the potential association between abundant bacterial groups and biodegradation of key pollutants in coking wastewater.

  17. A dynamic mathematical model for microbial removal of pyritic sulfur from coal.

    Science.gov (United States)

    Kargi, F; Weissman, J G

    1984-06-01

    A dynamic mathematical model has been developed to describe microbial desulfurization of coal by Thiobacillus ferrooxidans. The model considers adsorption and desorption of cells on coal particles and microbial oxidation of pyritic sulfur on particle surfaces. The influence of certain parameters, such as microbial growth rate constants, adsorption-description constants, pulp density, coal particle size, initial cell and solid phase substrate concentration on the maximum rate of pyritic sulfur removal, have been elucidated. The maximum rate of pyritic sulfur removal was strongly dependent upon the number of attached cells per coal particle. At sufficiently high initial cell concentrations, the surfaces of coal particles are nearly saturated by the cells and the maximum leaching rate is limited either by total external surface area of coal particles or by the concentration of pyritic sulfur in the coal phase. The maximum volumetric rate of pyritic sulfur removal (mg S/h cm(3) mixture) increases with the pulp density of coal and reaches a saturation level at high pulp densities (e.g. 45%). The maximum rate also increases with decreasing particle diameter in a hyperbolic form. Increases in adsorption coefficient or decreases in the desorption coefficient also result in considerable improvements in this rate. The model can be applied to other systems consisting of suspended solid substrate particles in liquid medium with microbial oxidation occurring on the particle surfaces (e.g., bacterial ore leaching). The results obtained from this model are in good agreement with published experimental data on microbial desulfurization of coal and bacterial ore leaching.

  18. The effect of plant growth promoting rhizobacteria (PGPR on quantitative and qualitative characteristics of Sesamum indicum L. with application of cover crops of Lathyrus sp. and Persian clover (Trifolium resopinatum L.

    Directory of Open Access Journals (Sweden)

    M. Jahan

    2016-05-01

    Full Text Available Cover crops cultivation and application of plant growth rhizobacteria are the key factors to enhance agroecosystem health. A field experiment was conducted at the Research Farm of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2009-2010. A split plot arrangement based on a complete randomized block design with three replications was used. Cultivation and no cultivation of Lathyrus sp. and Persian clover (Trifolium resopinatum in autumn assigned to the main plots. The sub plot factor consisted of three different types of biofertilizers plus control, including 1-nitroxin (containing of Azotobacter sp. and Azospirillum sp., 2- phosphate solubilizing bacteria (PSB (containing of Bacillus sp. and Pseudomonas sp., 3- biosulfur (containing of Thiobacillus ssp. and 4- control (no fertilizer. The results showed the effect of cover crops on seed number and seed weight per plant, biological and seed yield was significant, as the seed yield increased of 9 %. In general, biofertilizers showed superiority due to the most studied traits compared to control. Nitroxin, PSB and biosulfur increased biological yield of 44, 28 and 26 % compared to control, respectively. Cover crops and biofertilizers interactions, showed significant effect on all studied traits, as the highest and the lowest harvest index resulted in cover crop combined with biofertilizers (22.1% and cultivation and no cultivation of cover crops combined with control (15.3%, respectively. The highest seed oil and protein content resulted from cover crops plus biofertilizers (42.4% and cover crops plus PSB (22.5%, respectively. In general, the results showed cover crops cultivation in combination with biofertilizers application could be an ecological alternative for chemical fertilizers, in addition of achieving advantages of cover crops. According to the results, it should be possible to design an ecological cropping system and produce appropriate and healthy

  19. Coal desulfurization by bacterial treatment and column flotation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K. [Michigan Technological Univ., Houghton, MI (United States)

    1994-06-01

    A review of the literature showed that bacterial leaching, using the microorganism Thiobacillus ferrooxidans, was a very effective technique for removing pyrite from coal, as it could dissolve even the finest pyrite particles without the need for expensive reagents or extreme processing conditions. Unfortunately, bacterial leaching is also rather slow, and so the initial goal of this research was to decrease the leaching time as much as possible. However, this still left the bacteria needing approximately a week to remove half of the pyritic sulfur, and so a faster technique was sought. Since it had been reported in the literature that T. ferrooxidans could be used to depress the flotation of pyrite during froth flotation of coal, this was investigated further. By studying the recovery mechanisms of coal-pyrite in froth flotation, it was found that pyrite was being recovered by entrainment and by locking to coal particles, not by true flotation of hydrophobic pyrite. Therefore, no pyrite depressant could be of any significant benefit for keeping pyrite out of the coal froth product, and it was much more important to prevent entrainment from occurring. Countercurrent flotation columns were invented to essentially eliminate entrainment effects, by washing the froth and reducing mixing of the froth and tailings products. Existing flotation columns tend to be quite simple, and in order to give reasonable product quality they must be very tall (typically 30--45 feet). As a result, they have difficulty in handling the high froth volumes which occur in coal flotation, and are awkward to install in existing plants. The bulk of this project therefore concentrated on developing an improved coal flotation column, and testing it under actual plant conditions.

  20. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica.

    Science.gov (United States)

    Achberger, Amanda M; Christner, Brent C; Michaud, Alexander B; Priscu, John C; Skidmore, Mark L; Vick-Majors, Trista J

    2016-01-01

    Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus , and Albidiferax ) and archaea ( Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34-36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans , and Smithella ), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing

  1. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica

    Directory of Open Access Journals (Sweden)

    Amanda M Achberger

    2016-09-01

    Full Text Available Subglacial Lake Whillans (SLW, located beneath ~800 m of ice on the Whillans Ice Stream in West Antarctica was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax and archaea (Candidatus Nitrosoarcheaum related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34-36 cm provided evidence for methane cycling beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several OTUs abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella, suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new organic matter that sustains a

  2. Effects of organic, biological and chemical fertilizers on vegetative indices and essential oil content of coriander (Coriandrum sativum L.

    Directory of Open Access Journals (Sweden)

    M Aghhavani Shajari

    2016-05-01

    Full Text Available This experiment was conducted to study the effects of single and combined application of organic, biological and chemical fertilizers on qualitative and quantitative characteristics of vegetative part of coriander, (Coriandrum sativum L.. The experiment was carried out as split plot in time based on Complete Randomized Block Design with three replications and 12 treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2010-2011. Treatments included: (1 mycorrhiza (Glomus mosseae, (2 biosulfur (Thiobacillus sp., (3 chemical fertilizer (NPK, (4 cow manure, (5 vermicompost, (6 mycorrhiza + chemical fertilizer, (7 mycorrhiza + cow manure, (8 mycorrhiza + vermicompost, (9 biosulfur + chemical fertilizer, (10 biosulfur + cow manure, (11 biosulfur + vermicompost and (12 control. Vegetative parts of coriander were cut at 5% of flowering stage in two dates (19 May and 5 June. Results showed that the highest plant height (28 cm and lateral branches (5.2 were obtained in combined application of biosulfur with cow manure treatment. The highest fresh and dry leaf weight, fresh and dry matter yield and stem dry matter weight were obtained in single application of chemical fertilizer. Single application of biosulfur increased leaf/stem ratio. The highest essential oil percentage and essential oil yield were observed in cow manure treatment (0.2% and 1753 g.ha-1, respectively. The maximum leaf/stem ratio were observed in the first cutting, while the highest lateral branches, stem fresh and dry matter yield, essential oil percentage and essential oil yield were obtained in second cut. Overall, results of this study showed that the plant vegetative yield increased by using chemical fertilizer, while essential oil percentage and essential oil yield of coriander were improved by using organic and biological fertilizers.

  3. Effects of Single and Combined Application of Organic and Biological Fertilizers on Quantitative and Qualitative Yield of Anisum (Pimpinella anisum

    Directory of Open Access Journals (Sweden)

    N Kamayestani

    2015-07-01

    Full Text Available In order to study the effects of single and combined applications of biofertilazer and organic fertilizers on quantitative and qualitative characteristics of anisum (Pimpinella anisum, an experiment was conducted based on a Randomized Complete Block Design with three replications and fifteen treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2011 year. Treatments were: (1 mycorrhiza (Glomus intraradices, (2 mycorrhiza + cow manure, (3 mycorrhiza + vermicompost, (4 mycorrhiza+ compost, (5 mycorrhiza + chemical fertilizer, (6 biosulfur (Thiobacillus sp. + Bentonite, (7 biosulfur + chemical fertilizer, (8 biosulfur + cow manure, (9 biosulfur + vermicompost, (10 biosulfur+compost,11 (cow manure, (12 vermicompost, (13 chemical fertilizer (NPK, (14compost and (15 control. The results showed that application of fertilizer treatments had significant effect on most characteristics of anisum. The highest number of seed per umbelet (7.24, economic yield (1263.4kg/ha were obtained fram biosulfur treatment. The highest dry matter yield (4504.1 kg/ha resulted from combined application of biosulfur + chemical fertilizer and the highest harvest index (25.97% observed in biosulfur+cow manure. The combined application of mycorrhiza affected some qualification traits, as the highest number of umbel per plant (65.7, 1000 seed-weight (3.24 g and essential oil percentage (5.3% resulted from combined application of mycorrhiza+chemical fertilizer. In general, it can be concluded that application of organic and biological fertilizer particularly mycorrhiza and biosulfur had a significant effect on improving of quantitative and qualitative characteristics of anisum. Furthermore, the combined application of organic and biological fertilizer had higher positive effects than their single application.

  4. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-12-31

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  5. EXAFS investigation of uranium(6) complexes formed at Acidithiobacillus ferro oxidans types

    International Nuclear Information System (INIS)

    Merroun, M.; Reich, T.; Hennig, Ch.; Selenska-Pobell, S.

    2002-01-01

    Mining activities have brought excessive amounts of uranium into the environment. In uranium deposits a number of acidophilic chemo-litho-autotrophic bacteria have been identified which are able to oxidize sulphide minerals, elemental sulphur, ferrous iron and also (in the presence of uranium mineral) U(IV). In particular, the interaction of one representative of the group Acidithiobacillus ferro oxidans (new designation of Thiobacillus ferro oxidans) with uranium has been investigated. Uranium(VI) complex formations at the surfaces of Acidithiobacillus ferro oxidans were studied using uranium L III -edge extended X-ray absorption fine structure (EXAFS) spectroscopy. In all samples uranium is co-ordinated by two axial oxygen atoms (O ax ) at a distance of 1.77-1.78 angstrom. The average distance between uranium and the equatorial oxygen atoms (O eq ) is 2.35 angstrom. The co-ordination number for O eq is 5-6. In comparison to the uranium crystal structure data, the U-O eq distance indicates a co-ordination number of the equatorial oxygen of 5. Within the experimental error, there are no differences in the U-O bond distances between samples from the three types of A. ferro oxidans investigated. The fit to the EXAFS data of samples measured as wet pastes gave the same results as for dried samples. No significant structural differences were observed for the uranium complexes formed by the eco-types of A. ferro oxidans. However, the EXAFS spectra do indicate a formation of uranium complexes which are different from those formed by Bacilli where the bond length of 2.28 angstrom indicates a co-ordination number of 4 for the equatorial oxygen atoms. (authors)

  6. Biodegradation Of Thiocyanate Using Microbial Consortia Cultured From Gold Mine Tailings

    Science.gov (United States)

    Moreau, J. W.; Watts, M. P.; Spurr, L. P.; Vu, H. P.

    2015-12-01

    Some bacteria possess the capability to degrade SCN-; therefore, harnessing this metabolic trait offers a biotechnological remediation strategy for SCN- produced in gold ore processing. A tailings storage facility (TSF) at a gold mine in Victoria, Australia holds large quantities of thiocyanate (SCN-) contaminated mine waste. The surface water in the TSF typically contains SCN- concentrations of >800 mg L-1, and seepage from the facility has contaminated the groundwater at the site. This study aimed to culture SCN-degrading microbes from the TSF, characterize the microbial consortia and test its operational parameters for use in a thiocyanate-degrading bioreactor. Surface samples were obtained from several locations around the TSF facility and used to inoculate medium reflective of the moderately saline and alkaline tailings water at the TSF, in the absence of organic carbon but subject to additions of phosphate and trace metals. Four microbial consortia capable of rapid SCN- degradation were successfully cultured. Sequencing of 16S rRNA genes found that the consortia were dominated by Thiobacillus species, a genus of known SCN- degraders. Lower abundances of other SCN- degraders; Sphingopyxis and Rhodobacter, were also identified. The impact of a number of geochemical conditions, including pH, temperature and SCN- concentration, upon the growth and SCN- degrading capacity of these consortia was determined. These results informed the optimization of a lab-scale thiocyanate degrading bioreactor. In summary, the cultured bacterial consortia proved effective towards SCN- degradation at the prevailing geochemical conditions of the TSF, requiring minimal nutrient additions. These consortia were dominated by genera of known autotrophic SCN- degraders. The comprehensive characterisation of these SCN- degrading consortia will provide the fundamental operational parameters required for deployment of this technique at the field scale.

  7. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost.

    Science.gov (United States)

    Ramzani, Pia Muhammad Adnan; Shan, Lin; Anjum, Shazia; Khan, Waqas-Ud-Din; Ronggui, Hu; Iqbal, Muhammad; Virk, Zaheer Abbas; Kausar, Salma

    2017-07-01

    Quinoa (Chenopodium quinoa Willd.) is a traditional Andean agronomical resilient seed crop having immense significance in terms of high nutritional qualities and its tolerance against various abiotic stresses. However, finite work has been executed to evaluate the growth, physiological, chemical, biochemical, antioxidant properties, and mineral nutrients bioavailability of quinoa under abiotic stresses. Depending on the consistency in the stability of pH, intended rate of S was selected from four rates (0.1, 0.2, 0.3, 0.4 and 0.5% S) for the acidification of biochar and compost in the presence of Thiobacillus thiooxidans by pH value of 4. All three soils were amended with 1% (w/w) acidified biochar (BC A ) and compost (CO A ). Results revealed that selective plant growth, yield, physiological, chemical and biochemical improved significantly by the application of BC A in all stressed soils. Antioxidants in quinoa fresh leaves increased in the order of control > CO A  > BC A , while reactive oxygen species decreased in the order of control < CO A  < BC A . A significant reduction in anti-nutrients (phytate and polyphenols) was observed in all stressed soils with the application of BC A . Moreover, incorporation of CO A and BC A reduced the pH of rhizosphere soil by 0.4-1.6 units in all stressed soils, while only BC A in bulk soil decreased pH significantly by 0.3 units. These results demonstrate that BC A was more effective than CO A to enhance the bioavailability, translocation of essential nutrients from the soil to plant and their enhanced bioavailability in the seed. Copyright © 2017. Published by Elsevier Masson SAS.

  8. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower.

    Science.gov (United States)

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2016-02-01

    The potential of vermicompost, elemental sulphur, Thiobacillus thiooxidans and Pseudomonas putida for phytoremediation is well known individually but their integrated approach has not been discovered so far. The present work highlights the consideration of so far overlooked aspects of their integrated treatment by growing the ornamental plant, Gladiolus grandiflorus L in uncontaminated and sewage-contaminated soils (sulphur-deficient alluvial Entisols, pH 7.6-7.8) for phytoremediation of cadmium and lead under pot experiment. Between vermicompost and elemental sulphur, the response of vermicompost was higher towards improvement in the biometric parameters of plants, whereas the response of elemental sulphur was higher towards enhanced bioaccumulation of heavy metals under soils. The integrated treatment (T7: vermicompost 6g and elemental sulphur 0.5gkg(-1) soil and co-inoculation of the plant with T. thiooxidans and P. putida) was found superior in promoting root length, plant height and dry biomass of the plant. The treatment T7 caused enhanced accumulation of Cd up to 6.96 and 6.45mgkg(-1) and Pb up to 22.6 and 19.9mgkg(-1) in corm and shoot, respectively at the contaminated soil. T7 showed maximum remediation efficiency of 0.46% and 0.19% and bioaccumulation factor of 2.92 and 1.21 and uptake of 6.75 and 21.4mgkg(-1) dry biomass for Cd and Pb respectively in the contaminated soil. The integrated treatment T7 was found significant over the individual treatments to promote plant growth and enhance phytoremediation. Hence, authors conclude to integrate vermicompost, elemental sulphur and microbial co-inoculation for the enhanced clean-up of Cd and Pb-contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast.

    Science.gov (United States)

    Guadalupe-Medina, Víctor; Wisselink, H Wouter; Luttik, Marijke Ah; de Hulster, Erik; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius Ja

    2013-08-29

    Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of CO2 as electron acceptor for NADH oxidation in heterotrophic microorganisms would increase product yields in industrial biotechnology. A hitherto unexplored strategy to address this redox challenge is the functional expression in yeast of enzymes from autotrophs, thereby enabling the use of CO2 as electron acceptor for NADH reoxidation. Functional expression of the Calvin cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in Saccharomyces cerevisiae led to a 90% reduction of the by-product glycerol and a 10% increase in ethanol production in sugar-limited chemostat cultures on a mixture of glucose and galactose. Co-expression of the Escherichia coli chaperones GroEL and GroES was key to successful expression of CbbM, a form-II Rubisco from the chemolithoautotrophic bacterium Thiobacillus denitrificans in yeast. Our results demonstrate functional expression of Rubisco in a heterotrophic eukaryote and demonstrate how incorporation of CO2 as a co-substrate in metabolic engineering of heterotrophic industrial microorganisms can be used to improve product yields. Rapid advances in molecular biology should allow for rapid insertion of this 4-gene expression cassette in industrial yeast strains to improve production, not only of 1st and 2nd generation ethanol production, but also of other renewable fuels or chemicals.

  10. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    Science.gov (United States)

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    Science.gov (United States)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  12. Chemical composition influence of cement based mortars on algal biofouling

    Science.gov (United States)

    Estelle, Dalod; Alexandre, Govin; Philippe, Grosseau; Christine, Lors; René, Guyonnet; Denis, Damidot

    2013-04-01

    The main cause of building-facade biodegradation is the growth of microorganisms. This phenomenon depends on several parameters such as the geographical situation, the environmental conditions and the surface state of the substrate. Several researches have been devoted to the study of the effect of porosity and roughness on the biofouling of stones and mortars. However, none of them have addressed the influence of the mortar chemistry on the microorganism growth kinetic. The main objective of this study is to highlight the influence of the mortar chemistry in relationship with its physical properties on biological weathering. Earlier work showed a good resistance of Calcium Aluminate Cements to biodeterioration by acidogenic bacteria (Thiobacillus) and fungi (Alternaria alternata, Aspergillus Niger and Coniosporium uncinatum). In order to characterize the influence of the mortar chemistry on biofouling, two Portland cements and two alumina cements are used. Among micro-organisms able to grow, green algae are most involved in the aesthetic deterioration of facades. Indeed, they can colonize any type of media and can be a source of nutrients for other micro-organisms such as fungi. The green algae Klebsormidium flaccidum is chosen because of its representativeness. It is indeed the species the most frequently identified and isolated from samples taken on sites. The biofouling kinetic is followed on samples exposed outdoor and on samples tested in a laboratory bench which consists in spraying an algae culture on mortar specimens. The results obtained by in situ trials are compared with the results obtained on the laboratory bench. The microorganism growth kinetic is measured by image analysis. To improve the detection of algae on the surface of the cementitious samples, the raw image is converted in the YIQ color space. Y, I and Q correspond respectively to luminance, in-phase, and quadrature. On the Q channel, the areas covered by algae and the areas of clean mortar

  13. Search for the algorithm of genes distribution during the process of microbial evolution

    Science.gov (United States)

    Pikuta, Elena V.

    2015-09-01

    Previous two and three dimensional graph analysis of eco-physiological data of Archaea demonstrated specific geometry for distribution of major Prokaryotic groups in a hyperboloid function. The function of a two-sheet hyperboloid covered all known biological groups, and therefore, could be applied for the entire evolution of life on Earth. The vector of evolution was indicated from the point of hyper temperature, extreme acidity and low salinity to the point of low temperature and increased alkalinity and salinity. According to this vector, the following groups were chosen for the gene screening analysis. In the vector "High-Temperature → Low-Temperature" within extreme acidic pH (0-3), it is: 1) the hyperthermophilic Crenarchaeota - order Sulfolobales, 2) moderately thermophilic Euryarchaeota - Class Thermoplasmata, and 3) mesophilic acidophiles- genus Thiobacillus and others. In the vector "Low pH → High pH" the following groups were selected in three temperature ranges: a) Hyperthermophilic Archaea and Eubacteria, b) moderately thermophilic - representatives of the genera Anaerobacter and Anoxybacillus, and c) mesophilic haloalkaliphiles (Eubacteria and Archaea). The genes associated with acidophily (H+ pump), chemolitho-autotrophy (proteins of biochemichal cycles), polymerases, and histones were proposed for the first vector, and for the second vector the genes associated with halo-alkaliphily (Na+ pumps), enzymes of organotrophic metabolisms (sugar- and proteolytics), and others were indicated for the screening. Here, an introduction to the phylogenetic constant (ρη) is presented and discussed. This universal characteristic is calculated for two principally different life forms -Prokaryotes and Eukaryotes; Existence of the second type of living forms is impossible without the first one. The number of chromosomes in Prokaryotic organisms is limited to one (with very rare exceptions, to two), while in Eukaryotic organisms this number is larger. Currently

  14. Geomicrobiology of basal ice in a temperate glacier: implications for primary microbial production and export, elemental cycling and soil formation

    Science.gov (United States)

    Toubes-Rodrigo, Mario; Potgieter-Vermaak, Sanja; Sen, Robin; Elliott, David R.; Cook, Simon J.

    2017-04-01

    Basal ice is a significant sub-glacial component of glaciers and ice sheets that arises from ice-bedrock/substrate interaction. As a result, basal ice of a glacier retains a distinctive physical and chemical signature characterised by a high sediment- and low bubble-content and selective ionic enrichment. Previous research concluded that sediment entrapped in the basal ice matrix originates from the bedrock/substrate, and harbours an active microbial community. However, the nature and significance of the microbial community inhabiting basal ice facies remains poorly characterised. This paper reports on an integrated chemical, mineralogical, and microbial community analysis of basal ice in the subglacial environment at Svínafellsjökull, in south-east Iceland. Basal ice sediment supported 10E7 cells g^-1 and, based on glacier velocity and sediment flux, an estimated 10E17 cells a^-1 are exported to the glacier foreland. Furthermore, 16S rRNA gene analysis highlighted a glacier basal ice bacterial community dominated by Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi. Sequences ascribed to chemolithotrophic-related species (Thiobacillus, Syderoxidans) were highly abundant. Minerological analyses of basal ice sediment confirmed dominant silicates and iron-containing minerals that represent susceptible substrates open to oxidation by the aforementioned chemolithotrophs. Previous studies have suggested that basal ice could constitute a good analogue for astrobiology. Svínafellsjökull and Mars geology are similar - volcanically derived rocks with a high abundance of silicates and iron-rich minerals, reinforcing this idea. Understanding where the limits of life in extreme environments, such as debris-rich basal ice, could help to unravel how life on other planets could succeed, and could help to identify which markers to use in order to find it. In dark and isolated basal ice niches, the dominating chemolithotrophic bacterial community are likely to act

  15. Metatranscriptomic Evidence of Chemolithoautotrophy in the Rifle (CO) Subsurface Relevant to C, S, N, and Fe Cycling

    Science.gov (United States)

    Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.

    2014-12-01

    Although there is a limited understanding of the chemolithoautotrophic activity of aquifer microorganisms, such subsurface microbial activity could greatly influence the cycling of elements such as C, S, N, and Fe. Here, we present transcriptional (RNA-Seq) evidence of the emergence of such chemolithoautotrophic activities in groundwater filter samples from a 2-month experiment in which up to 1.5 mM nitrate (a native electron acceptor) was injected into a perennially suboxic/anoxic aquifer (Rifle, CO) containing a large reservoir of reduced Fe- and S-containing compounds. Illumina sequence data from rRNA-subtracted cDNA libraries was assembled and mapped to phylogenetically binned Rifle metagenome data. Indicative of the activity of Fe(II)-oxidizing bacteria, many high-abundance transcripts mapped to the Gallionellaceae family, whose known members are chemolithoautotrophic bacteria that catalyze Fe(II) oxidation. For example, included among the most abundant transcripts were a cold-shock protein and an acyl carrier protein with 96-98% protein sequence identity to Gallionella capsiferriformans and a nitrite reductase (nirS) gene likely belonging to a Sideroxydans relative. The apparent activity of Gallionellaceae members is consistent with 16S rRNA iTag analyses of these samples, which indicated that Gallionella-related taxa accounted for up to ~50% of these communities. Evidence of sulfide oxidation also was apparent in these samples. For example, highly expressed subunits of APS reductase were very similar to those of the obligately chemolithoautotrophic S- and Fe(II)-oxidizing Thiobacillus denitrificans in terms of sequence identity (98-99%) and synteny of the mapped scaffold. Also highly expressed were a ß-Proteobacterial Form II RubisCO gene and a hydrazine oxidoreductase gene (93% identity to the planctomycete KSU-1), the latter strongly indicative of anaerobic ammonia oxidation (anammox) activity, which has seldom been reported in aquifer environments. Such

  16. Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems† ▿

    Science.gov (United States)

    Okabe, Satoshi; Odagiri, Mitsunori; Ito, Tsukasa; Satoh, Hisashi

    2007-01-01

    Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O32−). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the

  17. Bacterial diversity exploration in hydrocarbon polluted soil: metabolic potential and degrader community evolution revealed by isotope labeling

    International Nuclear Information System (INIS)

    Martin, F.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds produced by incomplete combustion of organic matter. They are a source of environmental pollution, especially associated to oil product exploitation, and represent a threat for living organisms including human beings because of their toxicity. Many bacteria capable of degrading PAHs have been isolated and studied. However, since less than 5% of soil bacteria can be cultivated in the laboratory, bacterial species able to degrade PAHs in situ have been poorly studied. The first goal of this study was to identify bacteria that degrade PAHs in soil using culture-independent molecular methods. To this end, a strategy known a stable isotope probing has been implemented based on the use of phenanthrene, a three rings PAH, in which the natural isotope of carbon was replaced by 13 C. This molecule has been introduced as a tracer in microcosms containing soil from a constructed wetlands collecting contaminated water from highway runoff. Bacteria having incorporated the 13 C were then identified by 16 S rRNA gene sequence analysis after PCR amplification from labeled genomic DNA extracted from soil. The results show that so far little studied Betaproteobacteria, belonging to the genera Acidovorax, Rhodoferax, Hydrogenophaga and Thiobacillus, as well as Rhodocyclaceae, were the key players in phenanthrene degradation. Predominance of Betaproteobacteries was established thanks to quantitative PCR measurements. A dynamic analysis of bacterial diversity also showed that the community structure of degraders depended on phenanthrene bioavailability. In addition, the phylogenetic diversity of ring-hydroxylating di-oxygenases, enzymes involved in the first step of PAH degradation, has been explored. We detected new sequences, mostly related to di-oxygenases from Sphingomonadales and Burkholderiales. For the first time, we were able to associate a catalytic activity for oxidation of PAHs to partial gene sequences

  18. Sulfur isotopic fractionation of carbonyl sulfide during degradation by soil bacteria and enzyme

    Science.gov (United States)

    Kamezaki, Kazuki; Hattori, Shohei; Ogawa, Takahiro; Toyoda, Sakae; Kato, Hiromi; Katayama, Yoko; Yoshida, Naohiro

    2017-04-01

    Carbonyl sulfide (COS) is an atmospheric trace gas that possess great potential for tracer of carbon cycle (Campbell et al., 2008). COS is taken up by vegetation during photosynthesis like absorption of carbon dioxide but COS can not emit by respiration of vegetation, suggesting possible tracer for gross primary production. However, some studies show the COS-derived GPP is larger than the estimates by using carbon dioxide flux because COS flux by photolysis and soil flux are not distinguished (e.g. Asaf et al., 2013). Isotope analysis is a useful tool to trace sources and transformations of trace gases. Recently our group developed a promising new analytical method for measuring the stable sulfur isotopic compositions of COS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ enabling us to easily analyze sulfur isotopes in COS (Hattori et al., 2015). Soil is thought to be important as both a source and a sink of COS in the troposphere. In particular, soil has been reported as a large environmental sink for atmospheric COS. Bacteria isolated from various soils actively degrade COS, with various enzymes such as carbonic anhydrase and COSase (Ogawa et al., 2013) involved in COS degradation. However, the mechanism and the magnitude of bacterial contribution in terms of a sink for atmospheric COS is still uncertain. Therefore, it is important to quantitatively evaluate this contribution using COS sulfur isotope analysis. We present isotopic fractionation constants for COS by laboratory incubation experiments during degradation by soil bacteria and COSase. Incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia, Cupriavidus, and Thiobacillus, isolated from natural soil or activated sludge and enzyme purified from a bacteria. As a result, the isotopic compositions of OCS were increased during degradation of

  19. Relationships between microbial communities and environmental parameters at sites impacted by mining of volcanogenic massive sulfide deposits, Prince William Sound, Alaska

    Science.gov (United States)

    Foster, A.L.; Munk, L.; Koski, R.A.; Shanks, Wayne C.; Stillings, L.L.

    2008-01-01

    produced a very different sample arrangement. Specifically, the sediment parameter PCA grouped samples with high bulk trace metal concentration regardless of whether the metals were incorporated into secondary precipitates or primary sulfides. The water chemistry PCA and FAMEs PCA appear to be less prone to this type of artifact. Signature lipids in sulfide-rich sediments could indicate the presence of acid-tolerant and/or acidophilic members of the genus Thiobacillus or they could indicate the presence of SO4-reducing bacteria. The microbial community documented in subtidal and offshore sediments is rich in SRB and/or facultative anaerobes of the Cytophaga-Flavobacterium group; both could reasonably be expected in PWS coastal environments. The results of this study provide evidence for substantial feedback between local (meter to centimeter-scale) geochemical variations, and sediment microbial community composition, and show that microbial community signatures in the intertidal zone are significantly altered at sites where ARD drainage is present relative to sites where it is not, even if the sediment geochemistry indicates net accumulation of ARD-generated trace metals in the intertidal zone. ?? 2007 Elsevier Ltd. All rights reserved.

  20. Characterization of microbial communities in former neutral uranium mines in Saxony and studies on the microbial immobilization of uranium and arsenic

    International Nuclear Information System (INIS)

    Gagell, Corinna

    2015-01-01

    Abandoned uranium mines contribute significantly to the emission of contaminants such as uranium and arsenic into partly densely populated regions due to emerging flood water. To get a deeper understanding of ongoing processes in underground environments and for the development of alternative strategies to conventional, cost-intensive water treatment, the objective of this thesis was to characterize microbial communities from three former uranium mines in Saxony, namely Poehla, Schlema, and Zobes representing different flooding stages and to investigate the microbial influence on the mobility of uranium and arsenic. To find out which microorganisms could affect hydrochemical processes in underground environments, the diversity and compostion of microbial communities was investigated by pyrosequencing of a 16S rRNA gene (16S rDNA) fragment together with CARD-FISH. Though cluster analyses showed that planktonic communities differed with regard to bacterial composition between the three uranium mines, all were dominated by chemolithotrophic sulfur oxidizers of Betaproteobacteria with members of genus Thiobacillus and Sulfuritalea and Epsilonproteobacteria belonging to Sulfuricurvum and Sulfurimonas. Unlike planktonic communities, in situ biofilms grown on BACTRAPs during three month of exposition in flood water consisted of metal and sulfate reducing Deltaproteobacteria to a substantial or even dominant proportion based on pyrosequencing results. In biofilm communities from Zobes mainly Geobacter sp. were detected which are known Fe(III)- and U(VI)-reducing bacteria. Although CARD-FISH analysis revealed that Archaea represented only a very small part of the planktonic communities, planktonic Euryarchaeota of the Thermoprotei class were detected in all mines by pyrosequencing. In planktonic communities and 3-month biofilms of Poehla and Zobes methanogenic Crenarchaeota, especially Methanobacteria and partially Methanomicrobia, were determined, too. 16S rRNA analysis

  1. Effects of Single and Combined Application of Organic, Biological and Chemical Fertilizers on Quantitative and Qualitative Yield of Coriander (Coriandrum sativum

    Directory of Open Access Journals (Sweden)

    M. Aghhavani Shajari

    2016-07-01

    Full Text Available Introduction: Medicinal plants were one of the main natural resources of Iran from ancient times. Coriander (Coriandrum sativum L. is from Apiaceae family that it has cultivated extensively in the world. Management and environmental factors such as nutritional management has a significant impact on the quantity and quality of plants. Application of organic fertilizers in conventional farming systems is not common and most of the nutritional need of plants supply through chemical fertilizers for short period. Excessive and unbalanced use of fertilizers in the long period, reduce crop yield and soil biological activity, accumulation of nitrates and heavy metals, and finally cause negative environmental effects and increase the cost of production. The use of bio-fertilizers and organic matter are taken into consideration to reduce the use of chemical fertilizers and increase the quality of most crops. Stability and soil fertility through the use of organic fertilizers are important due to having most of the elements required by plants and beneficial effects on physical, chemical, biological and soil fertility. Therefore, the aim of this research was to evaluate the effects of organic, biological and chemical fertilizers on quality and quantity characteristics of coriander. Materials and Methods: In order to study the effects of single and combined applications of organic, biological and chemical fertilizers on quantitative and qualitative characteristics of Coriander (Coriandrum sativum, an experiment was conducted based on a randomized complete block design with three replications and 12 treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in - 2011. Treatments included: (1 mycorrhizae (Glomus mosseae (2 biosulfur (Thiobacillus sp., (3 chemical fertilizer (NPK, (4 cow manure, 5( vermin compost, 6( mycorrhizae + chemical fertilizer, 7( mycorrhizae + cow manure, 8( mycorrhizae + vermicompost, 9( biosulfur

  2. The effect of biological fertilizers on yield, yield components and seed oil contents of three cultivars of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2016-05-01

    achieve this goal is optimization and improvement of resources use efficiencies. Considering medicinal importance of savory and its role in the food and pharmaceutical industries (Omidbeigi, 2000, beside the limited nutrient resources and need to increase healthy production through using ecological inputs, this study was designed and conducted aimed to evaluate agroecological characteristics of savory as affected by the application of bio fertilizers, chemical and organic fertilizers under Mashhad conditions. Materials and methods In order to study the effects of organic, biological and chemical fertilizers on quantitative and qualitative characteristics of summer savory, a split-plot design based on RCBD with three replications was conducted during the growing season of 2012 at the Agricultural Research Station, College of Agriculture, Ferdowsi University of Mashhad, Iran. Different levels of cattle manure (0 and 25 t.ha-1 were assigned to the main plots and different types of bio fertilizers (Nitroxin, containing Azotobacter sp. and Azospirillum sp., Biophosphor, containing phosphate-solubilizing bacteria (Bacillus sp. and Pseudomonas sp., Biosulfur, containing sulfur-solubilizing bacteria (Thiobacillus ssp., combination of Nitroxin+Biophosphor+ Biosulfur, vermicompost (7 t.ha-1, chemical fertilizers (NPK: 60, 60 and 70 kg.ha-1 and control (no fertilizer were used in the sub- plots. Results and discussion According to the results, all studied characteristics including plant height, lateral branches, flowering shoot yield, stem yield, percentage of essential oil and dry matter yield were affected positively by cattle manure. The highest plant height and number of lateral branches resulted from vermicompost and combination of Nitroxin+Biophosphor+Biosulfur, respectively. Biosulfur fertilizer produced the highest dry matter yield, flowering shoot yield and stem yield. Percentage of essential oil was also significantly affected by fertilizer treatments as the most