WorldWideScience

Sample records for biodegradable polymeric micelles

  1. Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces.

    Science.gov (United States)

    Kim, Byeong-Su; Park, Sang Wook; Hammond, Paula T

    2008-02-01

    We present the integration of amphiphilic block copolymer micelles as nanometer-sized vehicles for hydrophobic drugs within layer-by-layer (LbL) films using alternating hydrogen bond interactions as the driving force for assembly for the first time, thus enabling the incorporation of drugs and pH-sensitive release. The film was constructed based on the hydrogen bonding between poly(acrylic acid) (PAA) as an H-bond donor and biodegradable poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as the H-bond acceptor when assembled under acidic conditions. By taking advantage of the weak interactions of the hydrogen-bonded film on hydrophobic surfaces, it is possible to generate flexible free-standing films of these materials. A free-standing micelle LbL film of (PEO-b-PCL/PAA)60 with a thickness of 3.1 microm was isolated, allowing further characterization of the bulk film properties, including morphology and phase transitions, using transmission electron microscopy and differential scanning calorimetry. Because of the sensitive nature of the hydrogen bonding employed to build the multilayers, the film can be rapidly deconstructed to release micelles upon exposure to physiological conditions. However, we could also successfully control the rate of film deconstruction by cross-linking carboxylic acid groups in PAA through thermally induced anhydride linkages, which retard the drug release to the surrounding medium to enable sustained release over multiple days. To demonstrate efficacy in delivering active therapeutics, in vitro Kirby-Bauer assays against Staphylococcus aureus were used to illustrate that the drug-loaded micelle LbL film can release significant amounts of an active antibacterial drug, triclosan, to inhibit the growth of bacteria. Because the micellar encapsulation of hydrophobic therapeutics does not require specific chemical interactions, we believe this noncovalent approach provides a new route to integrating active small

  2. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  3. pH-Responsive biodegradable polymeric micelles with anchors to interface magnetic nanoparticles for MR imaging in detection of cerebral ischemic area

    Science.gov (United States)

    Yang, Hong Yu; Jang, Moon-Sun; Gao, Guang Hui; Lee, Jung Hee; Lee, Doo Sung

    2016-06-01

    A novel type of pH-responsive biodegradable copolymer was developed based on methyloxy-poly(ethylene glycol)-block-poly[dopamine-2-(dibutylamino) ethylamine-l-glutamate] (mPEG-b-P(DPA-DE)LG) and applied to act as an intelligent nanocarrier system for magnetic resonance imaging (MRI). The mPEG-b-P(DPA-DE)LG copolymer was synthesized by a typical ring opening polymerization of N-carboxyanhydrides (NCAs-ROP) using mPEG-NH2 as a macroinitiator, and two types of amine-terminated dopamine groups and pH-sensitive ligands were grafted onto a side chain by a sequential aminolysis reaction. This design greatly benefits from the addition of the dopamine groups to facilitate self-assembly, as these groups can act as high-affinity anchors for iron oxide nanoparticles, thereby increasing long-term stability at physiological pH. The mPEG moiety in the copolymers helped the nanoparticles to remain well-dispersed in an aqueous solution, and pH-responsive groups could control the release of hydrophobic Fe3O4 nanoparticles in an acidic environment. The particle size of the Fe3O4-loaded mPEG-b-P(DPA-DE)LG micelles was measured by dynamic light scattering (DLS) and cryo-TEM. The superparamagnetic properties of the Fe3O4-loaded mPEG-b-P(DPA-DE)LG micelles were confirmed by a superconducting quantum interference device (SQUID). T2-weighted magnetic resonance imaging (MRI) of Fe3O4-loaded mPEG-b-P(DPA-DE)LG phantoms exhibited enhanced negative contrast with an r2 relaxivity of approximately 106.7 mM-1 s-1. To assess the ability of the Fe3O4-loaded mPEG-P(DE-DPA)LG micelles to act as MRI probes, we utilized a cerebral ischemia disease rat model with acidic tissue. We found that a gradual change in contrast in the cerebral ischemic area could be visualized by MRI after 1 h, and maximal signal loss was detected after 24 h post-injection. These results demonstrated that the Fe3O4-loaded mPEG-b-P(DPA-DE)LG micelles can act as pH-triggered MRI probes for diagnostic imaging of acidic

  4. Polymeric Micelles for Acyclovir Drug Delivery

    OpenAIRE

    Sawdon, Alicia J.; Peng, Ching-An

    2014-01-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ε-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. 1H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-P...

  5. Rearrangement of micelle structures during polymerization

    International Nuclear Information System (INIS)

    Chatjaroenporn, K.; Baker, R.; FitzGerald, P.; Warr, G.

    2009-01-01

    Full text: Using small angle neutron scattering (SANS), we studied the shape transition of micelles of 11(methacryloyloxy)undecyltrimethylammonium bromide (MUTAB) as this tail-polymerisable cationic surfactant polymerized. Previous studies of such systems have suggested kinetic 'locking' of the micelle structure during polymerization. However, we found a transition from spheres (unpolymerised) to rods (at intermediate conversions) back to spheres (fully polymerized), see Figure 1. By comparing these results to the micelle shapes formed by the mixtures of 100% polymerized and unpolymerised MUTAB, we show that the shape transitions observed during polymerization are due to equilibrium structures that undergo rearrangement as the composition changes. In addition, atomic force microscopy (AFM) reveals that besides the monolayer of unpolymerised MUTAB, the rearranged structures of this surfmer in bulk, when polymerization proceeded, retained their shapes after adsorbing at mica/solution interface, providing potential for the manipulating of thin film structures. This understanding assists design of templating or encapsulating nanostructured materials.

  6. Polymeric micelles for acyclovir drug delivery.

    Science.gov (United States)

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Hyaluronan polymeric micelles for topical drug delivery

    Czech Academy of Sciences Publication Activity Database

    Šmejkalová, D.; Muthný, T.; Nešporová, K.; Hermannová, M.; Achbergerová, E.; Huerta-Angelesa, G.; Marek Svoboda, M.; Čepa, M.; Machalová, V.; Luptáková, Dominika; Velebný, V.

    2017-01-01

    Roč. 156, JAN 20 (2017), s. 86-96 ISSN 0144-8617 Institutional support: RVO:61388971 Keywords : Skin penetration * Polymeric micelle * Hyaluronan Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.811, year: 2016

  8. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Hoes, C.J.T.; Feijen, Jan

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  9. Preparation and Evaluation of Inhalable Itraconazole Chitosan Based Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Esmaeil Moazeni

    2012-12-01

    Full Text Available Background: This study evaluated the potential of chitosan based polymeric micelles as a nanocarrier system for pulmonary delivery of itraconazole (ITRA.Methods: Hydrophobically modified chitosan were synthesized by conjugation of stearic acid to the hydrophilic depolymerized chitosan. FTIR and 1HNMR were used to prove the chemical structure and physical properties of the depolymerized and the stearic acid grafted chitosan. ITRA was entrapped into the micelles and physicochemical properties of the micelles were investigated. Fluorescence spectroscopy, dynamic laser light scattering andtransmission electron microscopy were used to characterize the physicochemical properties of the prepared micelles. The in vitro pulmonary profile of polymeric micelles was studied by an air-jet nebulizer connected to a twin stage impinger.Results: The polymeric micelles prepared in this study could entrap up to 43.2±2.27 μg of ITRA per milliliter. All micelles showed mean diameter between 120–200 nm. The critical micelle concentration of the stearic acid grafted chitosan was found to be 1.58×10-2 mg/ml. The nebulization efficiency was up to 89% and the fine particle fraction (FPF varied from 38% to 47%. The micelles had enough stability to remain encapsulation of the drug during nebulization process.Conclusions: In vitro data showed that stearic acid grafted chitosan based polymeric micelles has a potential to be used as nanocarriers for delivery of itraconazole through inhalation.

  10. Treating acute cystitis with biodegradable micelle-encapsulated quercetin

    Science.gov (United States)

    Wang, Bi Lan; Gao, Xiang; Men, Ke; Qiu, Jinfeng; Yang, Bowen; Gou, Ma Ling; Huang, Mei Juan; Huang, Ning; Qian, Zhi Yong; Zhao, Xia; Wei, Yu Quan

    2012-01-01

    Intravesical application of an anti-inflammatory drug is an efficient strategy for acute cystitis therapy. Quercetin (QU) is a potent anti-inflammatory agent; however, its poor water solubility restricts its clinical application. In an attempt to improve water solubility of QU, biodegradable monomethoxy poly(ethylene glycol)-poly(ɛ-caprolactone) (MPEG-PCL) micelles were used to encapsulate QU by self-assembly methods, creating QU/MPEG-PCL micelles. These QU/MPEG-PCL micelles with DL of 7% had a mean particle size of <34 nm, and could release QU for an extended period in vitro. The in vivo study indicated that intravesical application of MPEG-PCL micelles did not induce any toxicity to the bladder, and could efficiently deliver cargo to the bladder. Moreover, the therapeutic efficiency of intravesical administration of QU/MPEG-PCL micelles on acute cystitis was evaluated in vivo. Results indicated that QU/MPEG-PCL micelle treatment efficiently reduced the edema and inflammatory cell infiltration of the bladder in an Escherichia coli-induced acute cystitis model. These data suggested that MPEG-PCL micelle was a candidate intravesical drug carrier, and QU/MPEG-PCL micelles may have potential application in acute cystitis therapy. PMID:22661886

  11. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong, E-mail: pharmsong@henu.edu.cn [Henan University, Institute of Pharmacy (China)

    2016-11-15

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  12. Treating acute cystitis with biodegradable micelle-encapsulated quercetin

    Directory of Open Access Journals (Sweden)

    Wang BL

    2012-05-01

    Full Text Available Bi Lan Wang1, Xiang Gao1,2, Ke Men1, Jinfeng Qiu1, Bowen Yang3, Ma Ling Gou1, Mei Juan Huang1, Ning Huang2, Zhi Yong Qian1, Xia Zhao1, Yu Quan Wei11State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, 2Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, 3College of Life Science, Sichuan University, Chengdu, People’s Republic of ChinaAbstract: Intravesical application of an anti-inflammatory drug is an efficient strategy for acute cystitis therapy. Quercetin (QU is a potent anti-inflammatory agent; however, its poor water solubility restricts its clinical application. In an attempt to improve water solubility of QU, biodegradable monomethoxy poly(ethylene glycol-poly(ε-caprolactone (MPEG-PCL micelles were used to encapsulate QU by self-assembly methods, creating QU/MPEG-PCL micelles. These QU/MPEG-PCL micelles with DL of 7% had a mean particle size of ~34 nm, and could release QU for an extended period in vitro. The in vivo study indicated that intravesical application of MPEG-PCL micelles did not induce any toxicity to the bladder, and could efficiently deliver cargo to the bladder. Moreover, the therapeutic efficiency of intravesical administration of QU/MPEG-PCL micelles on acute cystitis was evaluated in vivo. Results indicated that QU/MPEG-PCL micelle treatment efficiently reduced the edema and inflammatory cell infiltration of the bladder in an Escherichia coli-induced acute cystitis model. These data suggested that MPEG-PCL micelle was a candidate intravesical drug carrier, and QU/MPEG-PCL micelles may have potential application in acute cystitis therapy.Keywords: nanomedicine, MPEG-PCL, self-assembly

  13. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin

    Science.gov (United States)

    Mohamed, Elham Abdelmonem; Abu Hashim, Irhan Ibrahim; Yusif, Rehab Mohammad; Shaaban, Ahmed Abdel Aziz; El-Sheakh, Ahmed Ramadan; Hamed, Mohammed Fawzy; Badria, Farid Abd Elreheem

    2018-01-01

    Naringin is one of the most interesting phytopharmaceuticals that has been widely investigated for various biological actions. Yet, its low water solubility, limited permeability, and suboptimal bioavailability limited its use. Therefore, in this study, polymeric micelles of naringin based on pluronic F68 (PF68) were developed, fully characterized, and optimized. The optimized formula was investigated regarding in vitro release, storage stability, and in vitro cytotoxicity vs different cell lines. Also, cytoprotection against ethanol-induced ulcer in rats and antitumor activity against Ehrlich ascites carcinoma in mice were investigated. Nanoscopic and nearly spherical 1:50 micelles with the mean diameter of 74.80±6.56 nm and narrow size distribution were obtained. These micelles showed the highest entrapment efficiency (EE%; 96.14±2.29). The micelles exhibited prolonged release up to 48 vs 10 h for free naringin. The stability of micelles was confirmed by insignificant changes in drug entrapment, particle size, and retention (%) (91.99±3.24). At lower dose than free naringin, effective cytoprotection of 1:50 micelles against ethanol-induced ulcer in rat model has been indicated by significant reduction in mucosal damage, gastric level of malondialdehyde, gastric expression of tumor necrosis factor-alpha, caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, and interleukin-6 with the elevation of gastric reduced glutathione and superoxide dismutase when compared with the positive control group. As well, these micelles provoked pronounced antitumor activity assessed by potentiated in vitro cytotoxicity particularly against colorectal carcinoma cells and tumor growth inhibition when compared with free naringin. In conclusion, 1:50 naringin–PF68 micelles can be represented as a potential stable nanodrug delivery system with prolonged release and enhanced antiulcer as well as antitumor activities. PMID:29497294

  14. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete...... as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent‐like copolymers......‐life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A glycerolipid and a cholesteryl ether were synthesized with free primary alcohols and a series of their sulphonates (Ms, Ts, Tf) were...

  15. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ingemann Jensen, A.T.

    2013-06-01

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  16. Thermally sensitive dual fluorescent polymeric micelles for probing cell properties

    NARCIS (Netherlands)

    Li Feng, F.; Westphal, A.H.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2011-01-01

    Dual fluorescent micelles with a hydrophobic probe (HMA) embedded in the micelle core and a hydrophilic probe (TRITC) attached on the micelle corona were prepared. These micelles can act as nanometre-sized thermal sensors. Within a short temperature range, the fluorescent emission of the micelles

  17. Polymeric Biodegradable Stent Insertion in the Esophagus

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2016-04-01

    Full Text Available Esophageal stent insertion has been used as a well-accepted and effective alternative to manage and improve the quality of life for patients diagnosed with esophageal diseases and disorders. Current stents are either permanent or temporary and are fabricated from either metal or plastic. The partially covered self-expanding metal stent (SEMS has a firm anchoring effect and prevent stent migration, however, the hyperplastic tissue reaction cause stent restenosis and make it difficult to remove. A fully covered SEMS and self-expanding plastic stent (SEPS reduced reactive hyperplasia but has a high migration rate. The main advantage that polymeric biodegradable stents (BDSs have over metal or plastic stents is that removal is not require and reduce the need for repeated stent insertion. But the slightly lower radial force of BDS may be its main shortcoming and a post-implant problem. Thus, strengthening support of BDS is a content of the research in the future. BDSs are often temporarily effective in esophageal stricture to relieve dysphagia. In the future, it can be expect that biodegradable drug-eluting stents (DES will be available to treat benign esophageal stricture, perforations or leaks with additional use as palliative modalities for treating malignant esophageal stricture, as the bridge to surgery or to maintain luminal patency during neoadjuvant chemoradiation.

  18. Diclofenac/biodegradable polymer micelles for ocular applications

    Science.gov (United States)

    Li, Xingyi; Zhang, Zhaoliang; Li, Jie; Sun, Shumao; Weng, Yuhua; Chen, Hao

    2012-07-01

    In this paper, methoxypoly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelle formulations as promising nano-carriers for poorly water soluble drugs were investigated for the delivery of diclofenac to the eye. Diclofenac loaded MPEG-PCL micelles were prepared by a simple solvent-diffusion method and characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), Fourier transform infra-red (FTIR), X-ray diffraction (XRD), differential scanning calorimetery (DSC), etc. With the analysis of XRD and DSC, the diclofenac was present as an amorphous state in the formulation. The in vitro release profile indicated a sustained release manner of diclofenac from the micelles. Meanwhile, in vivo studies on eye irritation were performed with blank MPEG-PCL micelles (200 mg ml-1). The results showed that the developed MPEG-PCL micelles were non-irritants to the eyes of rabbits. In vitro penetration studies across the rabbit cornea demonstrated that the micelle formulations exhibited a 17-fold increase in penetration compared with that of diclofenac phosphate buffered saline (PBS) solution. The in vivo pharmacokinetics profile of the micelle parent drug in the aqueous humor of the rabbit was evaluated and the data showed that the diclofenac loaded MPEG-PCL micelles exhibited a 2-fold increase in AUC0-24 h than that of the diclofenac PBS solution eye drops. These results suggest a great potential of our micelle formulations as a novel ocular drug delivery system to improve the bioavailability of the drugs.

  19. Core-shell structure of degradable, thermosensitive polymeric micelles studied by small-angle neutron scattering.

    Science.gov (United States)

    Ramzi, Aissa; Rijcken, Cristianne J F; Veldhuis, Theo F J; Schwahn, Dietmar; Hennink, Wim E; van Nostrum, Cornelus F

    2008-01-24

    The structure of assemblies of block copolymers composed of thermosensitive, biodegradable poly(N-(2-hydroxypropyl) methacrylamide-dilactate) and poly(ethylene glycol) (pHPMAmDL-b-PEG) has been studied by small-angle neutron scattering (SANS). Three amphiphilic copolymers with a fixed PEG of 5 kDa and a partially deuterated pHPMAmDL(d) block of 6700, 10400, or 21200 Da were used to form micelles in aqueous media by heating the polymeric solution from below to above the cloud point temperature (around 10 degrees C) of the thermosensitive block. Simultaneous and quantitative analysis of the scattering cross sections obtained at three different solvent contrasts is expedited using core-shell model, which assumed a homogeneous core of uniform scattering length density. The mean core radius increased from 13 to 18.5 nm with the molecular weight of the pHPMAmDL(d) block, while the thickness of the stabilizing PEG layer was around 8 nm for the three investigated assemblies. In addition, the volume fraction values of the stabilizing PEG chains in the shell are low and decreased from 31% to 14% with increasing the size of pHPMAmDL(d) block which shows that the shell layer of the assemblies is highly hydrated. The corresponding PEG chain grafting densities decreased from 0.22 to 0.11 nm-2 and the distance between PEG chains on the nanoparticles surface increased from 2.4 to 3.4 nm. The pHPMAmDL-b-PEG micelles showed a controlled instability due to hydrolysis of the lactic acid side groups in the thermosensitive block; that is, an increase of the degradation time leads to an increase of the size of the core which becomes less hydrophobic and consequently more hydrated. Neutron experiments supplied accurate information on how the size of the core and the micelle's aggregation number changed with the incubation time. This feature and the initially small size and dense structure in aqueous solution make the polymeric micelles suitable as carriers for hydrophobic drugs.

  20. Radiolabeling polymeric micelles for in vivo evaluation : a novel, fast, and facile method

    NARCIS (Netherlands)

    Laan, A.C.; Santini, Costanza; Jennings, Laurence; de Jong, Marion; Bernsen, Monique R.; Denkova, A.G.

    2016-01-01

    Background: Single photon emission computed tomography (SPECT) is an indispensable tool in the determination of the in vivo fate of polymeric micelles. However, for this purpose, the micelles need to be radiolabeled, and almost all radiolabeling procedures published to date involve the

  1. Radiolabeling polymeric micelles for in vivo evaluation: a novel, fast, and facile method

    NARCIS (Netherlands)

    A.C. Laan (Adrianus C.); C. Santini (Costanza); L. Jennings (Laurence); M. De Jong (Marion); M.R. Bernsen (Monique); A.G. Denkova (Antonia G.)

    2016-01-01

    textabstractBackground: Single photon emission computed tomography (SPECT) is an indispensable tool in the determination of the in vivo fate of polymeric micelles. However, for this purpose, the micelles need to be radiolabeled, and almost all radiolabeling procedures published to date involve the

  2. Radiolabeling polymeric micelles for in vivo evaluation : A novel, fast, and facile method

    NARCIS (Netherlands)

    Laan, A.C.; Santini, C.; Jennings, L.; De Jong, M.; Bernsen, M.R.; Denkova, A.G.

    2016-01-01

    Background Single photon emission computed tomography (SPECT) is an indispensable tool in the determination of the in vivo fate of polymeric micelles. However, for this purpose, the micelles need to be radiolabeled, and almost all radiolabeling procedures published to date involve the conjugation of

  3. Influence of serum albumin on intracellular delivery of drug-loaded hyaluronan polymeric micelles

    Czech Academy of Sciences Publication Activity Database

    Nešporová, K.; Sogorková, J.; Smejkalova, D.; Kulhánek, J.; Huerta-Angeles, G.; Kubala, Lukáš; Velebný, V.

    2016-01-01

    Roč. 511, č. 1 (2016), s. 638-647 ISSN 0378-5173 Institutional support: RVO:68081707 Keywords : Polymeric micelle * Hyaluronan * Fatty acid Subject RIV: BO - Biophysics Impact factor: 3.649, year: 2016

  4. Preparation of Polymeric Micelles for use as Carriers of ...

    African Journals Online (AJOL)

    These micelles were characterized by dynamic light scattering, to measure the micelle diameter; by acid-base titration, to determine the percentage of carboxylic groups occupied by the tuberculostatic; by Sudan III solubility tests, to estimate the critical micelle concentration (CMC); and visual control and spectrophotometric ...

  5. Micelles based on biodegradable poly(L-glutamic acid)-b-polylactide with paramagnetic Gd ions chelated to the shell layer as a potential nanoscale MRI-visible delivery system.

    Science.gov (United States)

    Zhang, Guodong; Zhang, Rui; Wen, Xiaoxia; Li, Li; Li, Chun

    2008-01-01

    There is much interest in the development of a nanoscale drug delivery system with MRI visibility to optimize the delivery efficiency and therapeutic efficacy under image guidance. Here we report on the successful fabrication of nanoscale micelles based on biodegradable poly( L-glutamic acid)- b-polylactide (PG- b-PLA) block copolymer with paramagnetic Gd3+ ions chelated to their shell. PG- b-PLA was synthesized by sequential polymerization reactions: anionic polymerization of L-lactide followed by ring-opening polymerization of benzyl glutamate N-carboxylic anhydride. The metal chelator p-aminobenzyldiethylenetriaminepenta(acetic acid) (DTPA) was readily conjugated to the side chain carboxylic acids of poly( L-glutamic acid). The resulting copolymer formed spherical micelles in aqueous solution with an average diameter of 230 nm at pH 7.4. The size of PG(DTPA)- b-PLA micelles decreased with increasing pH value. DTPA-Gd chelated to the shell layer of the micelles exhibited significantly higher spin-lattice relaxivity (r1) than a small-molecular-weight MRI contrast agent, indicating that water molecules could readily access the Gd ions in the micelles. Because of the presence of multiple carboxylic acid functional groups in the shell layer, polymeric micelles based on biodegradable PG(DTPA-Gd)- b-PLA may be a suitable platform for the development of MRI-visible, targeted nanoscale drug delivery systems.

  6. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations

    Science.gov (United States)

    Gädt, Torben; Ieong, Nga Sze; Cambridge, Graeme; Winnik, Mitchell A.; Manners, Ian

    2009-02-01

    Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core-corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder-cylinder and platelet-cylinder connections, respectively, that involve different core-forming metalloblocks.

  7. Influence of serum albumin on intracellular delivery of drug-loaded hyaluronan polymeric micelles.

    Science.gov (United States)

    Nešporová, Kristina; Šógorková, Jana; Šmejkalová, Daniela; Kulhánek, Jaromír; Huerta-Angeles, Gloria; Kubala, Lukáš; Velebný, Vladimír

    2016-09-10

    Polymeric micelles are attractive drug delivery systems for intravenously administered nonpolar drugs. Although physical parameters like size, shape and loading capacity are considered as the most important for their efficiency, here we demonstrate that the effects of serum protein interaction and characteristics of loaded compound cannot be neglected during the micelle development and design of experimental set up. Polymeric micelles prepared from amphiphilic hyaluronic acid grafted with short (hexanoic) and long fatty acids (oleic) were tested after loading with two different hydrophobic models, Nile red and curcumin. The composition of micelles affected mainly the loading capacity. Both encapsulated compounds behaved differently in the in vitro cell uptake, which was also influenced by serum concentration, where serum albumin was found to be the primary destabilizing component. This destabilization was found to be influenced by polymeric micelle concentration. Thus, the chemical structure of micelle, the properties of non-covalently loaded substance and serum albumin/polymeric micelle ratio modulate the in vitro intracellular uptake of drugs loaded in nanocarriers. Copyright © 2016. Published by Elsevier B.V.

  8. Structural properties of self-assembled polymeric micelles

    DEFF Research Database (Denmark)

    Mortensen, K.

    1998-01-01

    At present, the thermodynamic understanding of complex copolymer systems is undergoing important developments. Block copolymers aggregate in selective solvents into micelles of various form and size depending on molecular architecture and interaction parameters. The micelles constitute the basis...... for a variety of novel mesophases, including biocontinuous phases and networks of ordered cross-linking micelles. Research has focused on structural studies of block copolymer systems, using small-angle scattering of X-rays and neutrons....

  9. Core-cross-linked polymeric micelles: a versatile nanomedicine platform with broad applicability

    NARCIS (Netherlands)

    Hu, Q.

    2015-01-01

    This dissertation addresses the broad applicability of the nanomedicine platform core-cross-linked polymeric micelles (CCL-PMs) composed of thermosensitive mPEG-b-pHPMAmLacn block copolymers. In Chapter 1, a general introduction to nanomedicines is provided, with a particular focus on polymeric

  10. Multifunctional polymeric micelles for delivery of drugs and siRNA

    Directory of Open Access Journals (Sweden)

    Aditi M. Jhaveri

    2014-04-01

    Full Text Available Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend towards designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to smart, multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA. The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs.

  11. Micelles Based on Biodegradable Poly(L-glutamic acid)-b-Polylactide with Paramagnetic Gd Ions Chelated to the Shell Layer as a Potential Nanoscale MRI-Visible Delivery System

    OpenAIRE

    Zhang, Guodong; Zhang, Rui; Wen, Xiaoxia; Li, Li; Li, Chun

    2007-01-01

    There is much interest in the development of nanoscale drug delivery system with MRI visibility to optimize the delivery efficiency and therapeutic efficacy under image guidance. Here we report on the successful fabrication of nanoscale micelles based on biodegradable poly(L-glutamic acid)-b-polylactide (PG-b-PLA) block copolymer with paramagnetic Gd3+ ions chelated to their shell. (PG-b-PLA) was synthesized by sequential polymerization reactions: anionic polymerization of L-lactide followed ...

  12. Preparation of Polymeric Micelles for Use as Carriers of ...

    African Journals Online (AJOL)

    Erah

    and, not infrequently, the low water solubility of the carrier itself, can easily result in the precipitation of the polymer derivative, and often does 5, 6, 7, 8. To overcome this problem, a promising technique is to make polymer drugs that take the form of micelles 5, 6, 7, 8. In line with this approach, micelle-forming polymer.

  13. Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles

    NARCIS (Netherlands)

    Shi, Yang; Cardoso, Renata M.; Van Nostrum, Cornelus F.; Hennink, Wim E.

    2015-01-01

    An anthracene-functionalized thermosensitive block copolymer was synthesized, which formed micelles by heating its aqueous solution above the lower critical solution temperature (LCST). The micelles were subsequently crosslinked by UV illumination at 365 nm with a normal handheld UV lamp. The

  14. Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weisai; Li, Caibin; Wang, Zhiyu; Zhang, Wenli, E-mail: zwllz@163.com; Liu, Jianping, E-mail: liujianpingljp@hotmail.com [China Pharmaceutical University, Department of Pharmaceutics (China)

    2016-09-15

    Polymeric micelles (PMs) self-assembled by amphiphilic block copolymers have been used as promising nanocarriers for tumor-targeted delivery due to their favorable properties, such as excellent biocompatibility, prolonged circulation time, favorable particle sizes (10–100 nm) to utilize enhanced permeability and retention effect and the possibility for functionalization. However, PMs can be easily destroyed due to dilution of body fluid and the absorption of proteins in system circulation, which may induce drug leakage from these micelles before reaching the target sites and compromise the therapeutic effect. This paper reviewed the factors that influence stability of micelles in terms of thermodynamics and kinetics consist of the critical micelle concentration of block copolymers, glass transition temperature of hydrophobic segments and polymer–polymer and polymer–cargo interaction. In addition, some effective strategies to improve the stability of micelles were also summarized.Graphical Abstract.

  15. Tamoxifen-loaded polymeric micelles: preparation, physico-chemical characterization and in vitro evaluation studies.

    Science.gov (United States)

    Cavallaro, Gennara; Maniscalco, Laura; Licciardi, Mariano; Giammona, Gaetano

    2004-11-20

    Several samples of polymeric micelles, formed by amphiphilic derivatives of PHEA, obtained by grafting into polymeric backbone of PEGs and/or hexadecylamine groups (PHEA-PEG-C(16) and PHEA-C(16)) and containing different amount of Tamoxifen, were prepared. All Tamoxifen-loaded polymeric micelles showed to increase drug water solubility. TEM studies provided evidence of the formation of supramolecular core/shell architectures containing drug, in the nanoscopic range and with spherical shape. Samples with different amount of encapsulated Tamoxifen were subjected to in vitro cytotoxic studies in order to evaluate the effect of Tamoxifen micellization on cell growth inhibition. All samples of Tamoxifen-loaded polymeric micelles showed a significantly higher antiproliferative activity in comparison with free drug, probably attributable to fluidification of cellular membranes, caused by amphiphilic copolymers, that allows a higher penetration of the drug into tumoral cells. To gain preliminary information about the potential use of prepared micelles as Tamoxifen drug delivery systems, studies evaluating drug release ability of micelle systems in media mimicking biological fluids (buffer solutions at pH 7.4 and 5.5) and in human plasma were carried out. These studies, performed evaluating the amount of Tamoxifen that remains in solution as a function of time, showed that at pH 7.4, as well as in plasma, PHEA-C(16) polymeric micelles were able to release lower drug amounts than PHEA-PEG(5000)-C(16) ones, while at pH 5.5, the behavior difference between two kind of micelles was less pronounced.

  16. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-05-01

    Full Text Available Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.

  17. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices.

    Science.gov (United States)

    Lu, Yu; Chowdhury, Danial; Vladisavljević, Goran T; Koutroumanis, Konstantinos; Georgiadou, Stella

    2016-05-25

    Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL(-1) of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF) or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol(-1) and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5-2.5 mg·mL(-1) fluconazole and 1.5 mg·mL(-1) copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.

  18. Folated Synperonic-Cholesteryl Hemisuccinate Polymeric Micelles for the Targeted Delivery of Docetaxel in Melanoma

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2015-01-01

    Full Text Available The objective of this study was the synthesis of folic acid- (FA- targeted polymeric micelles of Synperonic PE/F 127-cholesteryl hemisuccinate (PF127-Chol for specific delivery of docetaxel (DTX. Targeted or nontargeted micelles loaded with DTX were prepared via dialysis method. The effects of processing variables on the physicochemical properties of targeted micelles were evaluated using a full factorial design. After the optimization of the polymer/drug ratio, the organic solvent type used for the preparation of the micelles, and the temperature of dialyzing medium, the in vitro cytotoxicity and cellular uptake of the optimized micelles were studied on B16F10 melanoma cells by flow cytometry and fluorescent microscopy. The anticancer efficacy of DTX-loaded FA-PF127-Chol was evaluated in mice bearing melanoma tumor. Optimized targeted micelles had the particle size of 171.3 nm, zeta potential of −7.8 mV, PDI of 0.325, and a high encapsulation efficiency that released the drug within 144 h. The MTT assay indicated that targeted micelles carrying DTX were significantly more cytotoxic, had higher cellular uptake, and reduced the tumor volume significantly more than the nontargeted micelles and the free drug. FA-PF127-Chol could be, therefore, a promising biomaterial for tumors overexpressing folate receptors.

  19. Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure.

    Science.gov (United States)

    Zhao, Bo; Wang, Xue-Qing; Wang, Xiao-You; Zhang, Hua; Dai, Wen-Bing; Wang, Jun; Zhong, Zhen-Lin; Wu, Hou-Nan; Zhang, Qiang

    2013-10-03

    Nanocarriers represent an attractive means of drug delivery, but their biosafety must be established before their use in clinical research. Four kinds of amphiphilic polymeric (PEG-PG-PCL, PEEP-PCL, PEG-PCL and PEG-DSPE) micelles with similar hydrophilic or hydrophobic structure were prepared and their in vitro and in vivo safety were evaluated and compared. In vitro nanotoxicity evaluations included assessments of cell morphology, cell volume, inflammatory effects, cytotoxicity, apoptosis and membrane fluidity. An umbilical vein cell line (Eahy.926) and a kind of macrophages (J774.A1) were used as cell models considering that intravenous route is dominant for micelle delivery systems. In vivo analyses included complete blood count, lymphocyte subset analysis, detection of plasma inflammatory factors and histological observations of major organs after intravenous administration to KM mice. All the micelles enhanced inflammatory molecules in J774.A1 cells, likely resulting from the increased ROS levels. PEG-PG-PCL and PEEP-PCL micelles were found to increase the J774.A1 cell volume. This likely correlated with the size of PEG-PG-PCL micelles and the polyphosphoester structure in PEEP-PCL. PEG-DSPE micelles inhibited the growth of Eahy.926 cells via inducing apoptosis. This might relate to the structure of DSPE, which is a type of phospholipid and has good affinity with cell membrane. No evidence was found for cell membrane changes after treatment with these micelles for 24 h. In the in vivo study, during 8 days of 4 time injection, each of the four nanocarriers altered the hematic phase differently without changes in inflammatory factors or pathological changes in target organs. These results demonstrate that the micelles investigated exhibit diverse nanotoxicity correlated with their structures, their biosafety is different in different cell model, and there is no in vitro and in vivo correlation found. We believe that this study will certainly provide more

  20. Polymeric micelles in anticancer therapy : Targeting, imaging and triggered release

    NARCIS (Netherlands)

    Oerlemans, Chris; Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J. Frank W.; Hennink, Wim E.

    2010-01-01

    Micelles are colloidal particles with a size around 5-100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use

  1. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy

    Czech Academy of Sciences Publication Activity Database

    Talelli, M.; Oliveira, S.; Rijcken, C. J. F.; Pieters, E. H. E.; Etrych, Tomáš; Ulbrich, Karel; van Nostrum, R. C. F.; Storm, G.; Hennink, W. E.; Lammers, T.

    2013-01-01

    Roč. 34, č. 4 (2013), s. 1255-1260 ISSN 0142-9612 R&D Projects: GA AV ČR IAA400500806; GA ČR GAP301/11/0325 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymeric micelle * doxorubicin * active targeting Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.312, year: 2013

  2. Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications

    Czech Academy of Sciences Publication Activity Database

    Hu, Q.; Rijcken, C. J. F.; van Gaal, E.; Brundel, P.; Kostková, Hana; Etrych, Tomáš; Weber, B.; Barz, M.; Kiessling, F.; Prakash, J.; Storm, G.; Hennink, W. E.; Lammers, T.

    2016-01-01

    Roč. 244, Part B (2016), s. 314-325 ISSN 0168-3659. [European Symposium on Controlled Drug Delivery /14./. Egmond aan Zee, 13.04.2016-15.04.2016] Institutional support: RVO:61389013 Keywords : nanomedicine * drug targeting * polymeric micelles Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.786, year: 2016

  3. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin

    Czech Academy of Sciences Publication Activity Database

    Talelli, M.; Iman, M.; Varkouhi, A. K.; Rijcken, C. J. F.; Schiffelers, R. M.; Etrych, Tomáš; Ulbrich, Karel; van Nostrum, C. F.; Lammers, T.; Storm, G.; Hennink, W. E.

    2010-01-01

    Roč. 31, č. 30 (2010), s. 7797-7804 ISSN 0142-9612 R&D Projects: GA AV ČR KAN200200651; GA AV ČR IAA400500806 Institutional research plan: CEZ:AV0Z40500505 Keywords : doxorubicin * cancer therapy * polymeric micelle Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.883, year: 2010

  4. Biodegradable polymers in Quebec; Les polymeres biodegradables au Quebec

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Poly-hydroxy-alkanoates (PHA) are natural polymers made from renewable resources and are easily recyclable, hydrolyzable and biodegradable. Thanks to genetic technologies, PHA can be synthesized from plants or bacteria and can be used in various domains ranging from the manufacturing of packing materials to medical applications. Moreover, their properties make them good substitutes of equivalent petroleum-derived compounds. This report makes a status of Quebec's research work on PHAs and presents the three main research centers in which such studies are carried out: the biotechnology research institute, the Mc Gill university and the Polytechnique school of Montreal. (J.S.)

  5. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish

    Directory of Open Access Journals (Sweden)

    Zhou T

    2016-12-01

    Full Text Available Tian Zhou,1 Qinglei Dong,1 Yang Shen,2 Wei Wu,1 Haide Wu,1 Xianglin Luo,3 Xiaoling Liao,4 Guixue Wang1 1Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 2Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, 3College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, 4Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallury and Materials Engineering, Chongqing University of Science and Technology, Chongqing, People’s Republic of China Abstract: Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol (PEG-b-poly(ε-caprolactone (PCL, namely PEG-b-PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG-b-PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG-b-PCL nano-micelle on cardiovascular development. The results showed that PEG-b-PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG-b-PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs and caudal vessels (CVs in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1, an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR and in situ whole-mount hybridization were also analyzed. PEG-b-PCL nano-micelle decreased growth of ISVs and CVs, as

  6. Polymeric topology and composition constrained polyether-polyester micelles for directional antitumor drug delivery.

    Science.gov (United States)

    Li, Di; Sun, Hai; Ding, Jianxun; Tang, Zhaohui; Zhang, Ying; Xu, Weiguo; Zhuang, Xiuli; Chen, Xuesi

    2013-11-01

    Amphiphilic linear and dumbbell-shaped poly(ethylene glycol)-poly(lactide-co-glycolide) (PEG-PLGA) copolymers were simply synthesized by the ring-opening polymerization of lactide and glycolide using PEG or tetrahydroxyl-functionalized PEG as the macroinitiator and stannous octoate as the catalyst. The copolymers spontaneously self-assembled into spherical micelles in phosphate-buffered saline at pH 7.4. The self-assembly behavior was dependent on both the polymeric topology and composition. Doxorubicin (DOX), an anthracycline antitumor drug, was loaded into micelles through nanoprecipitation. The in vitro release behavior could be adjusted by regulating the topology or composition of the copolymer, or the pH of the release medium. The effective intracellular DOX release from DOX-loaded micelles was confirmed by confocal laser scanning microscopy and flow cytometry in vitro. DOX-loaded micelles displayed great cellular proliferation inhibition efficacies after incubation for 24, 48 or 72 h. The hemolysis ratio of DOX was significantly reduced by the presence of copolymer. These properties indicated that the micelles derived from linear or dumbbell-shaped copolymers were promising candidates as smart antitumor drug carriers for malignancy therapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zheng S

    2016-06-01

    Full Text Available Songping Zheng,1,* Xiang Gao,1,2,* Xiaoxiao Liu,1 Ting Yu,1 Tianying Zheng,1 Yi Wang,1 Chao You1 1Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China; 2Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA *These authors contributed equally to this work Abstract: Curcumin (Cur, a natural polyphenol of Curcuma longa, has been recently reported to possess antitumor activities. However, due to its poor aqueous solubility and low biological availability, the clinical application of Cur is quite limited. The encapsulation of hydrophobic drugs into nanoparticles is an effective way to improve their pharmaceutical activities. In this research, nanomicelles loaded with Cur were formulated by a self-assembly method with biodegradable monomethoxy poly(ethylene glycol-poly(lactide copolymers (MPEG-PLAs. After encapsulation, the cellular uptake was increased and Cur could be released from MPEG-PLA micelles in a sustained manner. The Cur-loaded MPEG-PLA micelles (Cur/MPEG-PLA micelles exhibited an enhanced toxicity on C6 and U251 glioma cells and induced more apoptosis on C6 glioma cells compared with free Cur. Moreover, the therapy efficiency of Cur/MPEG-PLA micelles was evaluated at length on a nude mouse model bearing glioma. The Cur/MPEG-PLA micelles were more effective on suppressing tumor growth compared with free Cur, which indicated that Cur/MPEG-PLA micelles improved the antiglioma activity of Cur in vivo. The results of immunohistochemical and immunofluorescent analysis indicated that the induction of apoptosis, antiangiogenesis, and inhibition of cell proliferation may contribute to the improvement in antiglioma effects. Our data suggested that Cur/MPEG-PLA may have potential clinic applications in glioma therapy. Keywords: curcumin, glioma, cell apoptosis, cell proliferation, angiogenesis 

  8. Radiation-induced crosslinking of polymeric micelles as nanoparticle for immobilization of bioactive compound

    International Nuclear Information System (INIS)

    Rida Tajau; Khairul Zaman Mohd Dahlan; Mohd Hilmi Mahmood; Wan Md Zin Wan Yunus; Kamaruddin Hashim; Nor Azowa Ibrahim; Maznah Ismail; Mek Zah Salleh

    2012-01-01

    The purpose of this study was to develop the bioactive-loaded polymeric nanoparticle by radiation-induced crosslinking technique. The polymeric micelles consist of acrylated palm oil (APO), anionic surfactant and aqueous solution was prepared for immobilization of bioactive compound for example the Thymoquinone (TQ). The TQ-loaded APO micelle was subjected to ionizing radiation to induce crosslinked polymeric structure of the TQ-loaded APO nanoparticle. The formation of TQ-loaded APO micro micelle and nano particle were evaluated by the Dynamic Light Scattering (DLS), the Fourier Transform Infrared (FTIR) Spectroscopy and the Transmission Electron Microscopy (TEM) for characterization the size, the shape, the chemical structure and the irradiation effect of the micelle and the nano particle. The results indicate that the size of APO micro and nano particles varies from 120 to 270 nanometer (nm) upon gamma irradiation at doses ranging from 1 to 25 kilo gray (kGy). In addition, size of the particle was found decreasing upon irradiation due to the crosslinking interaction. The study demonstrated that the APO micro-and nanoparticle can retained and controlled the release rate of the thymoquinone at up to 24 hours as determined using ultraviolet-visible (UV-Vis) spectrophotometer. These findings suggested that the ionizing radiation method can be utilized to prepare nano-size APO particles, with the presence of TQ. (author)

  9. Biodegradable Polyelectrolyte Obtained by Radiation Polymerization

    International Nuclear Information System (INIS)

    Craciun, G.; Martin, D.; Manaila, E.; Nemtanu, M.; Brasoveanu, M.; Ighigeanu, D.

    2009-01-01

    Poly electrolytes are water-soluble polymers carrying ionic charge along the polymer chain. Depending upon the charge, these polymers are anionic or cationic. The inherent solid - liquid separating efficiency makes these poly electrolytes a unique class of polymers which find extensive application in potable water, industrial raw and process water, municipal sewage treatment, mineral processing and metallurgy, oil drilling and recovery, etc. Also, due to their ability to produce advanced induced coagulation, a considerable amount of bacteria and viruses are precipitated together with the suspended solids. Especially the acrylamide polymers are very efficacious for water treatment but acrylamide is a toxic monomer and therefore their use are governed by international standards that provide the residual acrylamide monomer content (RAMC) in them be less than 0.05%. Under these circumstances our attention was focused on the following research steps that are presented in this paper: 1) Preparation of a special class of poly electrolytes, named Pn, with very low RAMC values, based on electron beam (EB), microwave (MW) and EB + MW induced co-polymerization of aqueous solutions containing appropriate mixtures of acrylamide (AMD) and acrylic acid (AA) monomers (AMD - AA co-polymers). The Pn were obtained by radiation technology with very small RAMC (under 0.01%) as well as in a wide range of molecular weights and charge densities. Very low AMD monomer content of Pn is due to the major advantages of radiation induced polymerization in aqueous solution containing monomers. Due to water presence in the EB irradiated system, irradiated water radicals facilitate the polymerization process and increase rate and level of monomers conversion in co-polymers. Also, once again, by the presence of water, which absorbs MW energy very strongly, the MW polymerization reaction rate is much enhanced resulting in a reaction time about 50-100 times lowers than by conventional heating. Also

  10. Biodegradable polymeric nanocarriers for pulmonary drug delivery.

    Science.gov (United States)

    Rytting, Erik; Nguyen, Juliane; Wang, Xiaoying; Kissel, Thomas

    2008-06-01

    Pulmonary drug delivery is attractive for both local and systemic drug delivery as a non-invasive route that provides a large surface area, thin epithelial barrier, high blood flow and the avoidance of first-pass metabolism. Nanoparticles can be designed to have several advantages for controlled and targeted drug delivery, including controlled deposition, sustained release, reduced dosing frequency, as well as an appropriate size for avoiding alveolar macrophage clearance or promoting transepithelial transport. This review focuses on the development and application of biodegradable polymers to nanocarrier-based strategies for the delivery of drugs, peptides, proteins, genes, siRNA and vaccines by the pulmonary route. The selection of natural or synthetic materials is important in designing particles or nanoparticle clusters with the desired characteristics, such as biocompatibility, size, charge, drug release and polymer degradation rate.

  11. Polymeric micelles as a drug delivery system enhance cytotoxicity of vinorelbine through more intercellular accumulation.

    Science.gov (United States)

    Lu, Xiaoyan; Zhang, Fayun; Qin, Lei; Xiao, Fengying; Liang, Wei

    2010-05-01

    Polymeric micelles had been used as an efficacious carrier system for anti-cancer drug delivery. However, it is not clear whether the molecular mechanism of drug encapsulated in micelles is same as free drug. In this study, the mechanism of vinorelbine loaded in glycol-phosphatidylethanolamine (PEG-PE) micelles (M-Vino) on tumor cells was investigated. Compared with free vinorelbine (Free Vino), M-Vino was more effective in inhibiting the growth of tumor cells in vitro, inducing G(2)/M phase arrest and apoptosis of tumor cells. M-Vino showed a faster entry and higher accumulation in 4T1 cells than free vinorelbine. Therefore, M-Vino destabilized microtubules, induced cell death, and enhanced its cytotoxicity through more intercellular accumulation of vinorelbine.

  12. Cylindrical micelles of a POSS amphiphilic dendrimer as nano-reactors for polymerization.

    Science.gov (United States)

    Weng, Jing-Ting; Yeh, Tso-Fan; Samuel, Ashok Zachariah; Huang, Yi-Fan; Sie, Jyun-Hao; Wu, Kuan-Yi; Peng, Chi-How; Hamaguchi, Hiro-O; Wang, Chien-Lung

    2018-02-15

    A low generation amphiphilic dendrimer, POSS-AD, which has a POSS core and eight amphiphilic arms, was synthesized and used as a nano-reactor to produce well-defined polymer nano-cylinders. Confirmed by small-angle X-ray scattering (SAXS), Raman and NMR spectrometry, monodispersed cylindrical micelles that contain a hydrophilic cavity with a diameter of 2.09 nm and a length of 4.26 nm were produced via co-assembling POSS-AD with hydrophilic liquids, such as H 2 O and HEMA in hydrophobic solvents. Taking the HEMA/POSS-AD cylindrical micelles as nano-reactors, polymerization of HEMA within the micelles results in polymer nano-cylinders (POSS-ADNPs) with a diameter of 2.24 nm and a length of 5.02 nm. The study confirmed that despite the inability to maintain specific shape in solution, low generation dendrimers form well-defined nano-containers or nano-reactors, which relies on co-assembling with hydrophilic guest molecules. These nano-reactors are robust enough to maintain their shape during the polymerization of the guest molecules. Polymer nano-cylinders with dimensions less than 10 nm can thus be produced from the HEMA/POSS-AD micelles. Since the chemical structure of low-generation dendrimers and the contents of the co-assembled nano-reactors can be easily adjusted, the concept holds the potential for the further developments of low-generation amphiphilic dendrimers.

  13. Polymeric Micelle-Mediated Delivery of DNA-Targeting Organometallic Complexes for Resistant Ovarian Cancer Treatment.

    Science.gov (United States)

    Duan, Xiaopin; Liu, Demin; Chan, Christina; Lin, Wenbin

    2015-08-26

    Three half-sandwich iridium and ruthenium organometallic complexes with high cytotoxicity are synthesized, and their anticancer mechanisms are elucidated. The organometallic complexes can interact with DNA through coordination or intercalation, thereby inducing apoptosis and inhibiting proliferation of resistant cancer cells. The organometallic complexes are then incorporated into polymeric micelles through the polymer-metal coordination between poly(ethylene glycol)-b-poly(glutamic acid) [PEG-b-P(Glu)] and organometallic complexes to further enhance their anticancer effects as a result of the enhanced permeability and retention effect. The micelles with particle sizes of ≈60 nm are more efficiently internalized by cancer cells than the corresponding complexes, and selectively dissociate and release organometallic anticancer agents within late endosomes and lysosomes, thereby enhancing drug delivery to the nuclei of cancer cells and facilitating their interactions with DNA. Thus, the micelles display higher antitumor activity than the organometallic complexes alone with a lack of the systemic toxicity in a mouse xenograft model of cisplatin-resistant human ovarian cancer. These results suggest that the polymeric micelles carrying anticancer organometallic complexes provide a promising platform for the treatment of resistant ovarian cancer and other hard-to-treat solid tumors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Assessment of Palmitoyl and Sulphate Conjugated Glycol Chitosan for Development of Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Ikram Ullah Khan

    2013-06-01

    Full Text Available Introduction: Amphiphilic copolymers are capable of forming core shell-like structures at the critical micellar concentration (CMC; hence, they can serve as drug carriers. Thus, in the present work, polymeric micelles based on novel chitosan derivative were synthesized. Methods: Block copolymer of palmitoyl glycol chitosan sulfate (PGCS was prepared by grafting palmitoyl and sulfate groups serving as hydrophobic and hydrophilic fractions, respectively. Then, fourier transform infrared spectra (FTIR and spectral changes in iodine/iodide mixture were carried out. Results: FTIR studies confirmed the formation of palmitoyl glycol chitosan sulfate (PGCS and spectral changes in iodine/iodide mixture indicated CMC which lies in the range of 0.003-0.2 mg/ml. Conclusion: Therefore, our study indicated that polymeric micelles based on palmitoyl glycol chitosan sulphate could be used as a prospective carrier for water insoluble drugs.

  15. Toxicity evaluation of methoxy poly(ethylene oxide)-block-poly(ε-caprolactone) polymeric micelles following multiple oral and intraperitoneal administration to rats.

    Science.gov (United States)

    Binkhathlan, Ziyad; Qamar, Wajhul; Ali, Raisuddin; Kfoury, Hala; Alghonaim, Mohammed

    2017-09-01

    Methoxy poly(ethylene oxide)- block -poly(ɛ-caprolactone) (PEO- b -PCL) copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO- b -PCL block copolymers and assess the toxic effects of drug-free PEO- b -PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip) administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO- b -PCL micelles, sixty animals were divided into two major groups: The first group received PEO- b -PCL micelles (100 mg/kg) by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen) were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.

  16. Toxicity evaluation of methoxy poly(ethylene oxide-block-poly(ε-caprolactone polymeric micelles following multiple oral and intraperitoneal administration to rats

    Directory of Open Access Journals (Sweden)

    Ziyad Binkhathlan

    2017-09-01

    Full Text Available Methoxy poly(ethylene oxide-block-poly(ɛ-caprolactone (PEO-b-PCL copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO-b-PCL block copolymers and assess the toxic effects of drug-free PEO-b-PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO-b-PCL micelles, sixty animals were divided into two major groups: The first group received PEO-b-PCL micelles (100 mg/kg by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.

  17. Spectroscopic investigation of the aggregation state of amphotericin B during loading, freeze-drying, and reconstitution of polymeric micelles.

    Science.gov (United States)

    Adams, Monica; Kwon, Glen S

    2004-11-22

    To investigate the relative aggregation state of amphotericin B (AmB) during loading and reconstitution of polymeric micelles. Hexanoate and stearate derivatives of PEO-b-p (L-Asp) were prepared. The polymers and AmB were dissolved in methanol (MeOH). Milli-Q water was then added slowly, and the MeOH was removed via rotary evaporation. The solutions were freeze-dried in the presence of trehalose. During micelle preparation, the aggregation state of AmB was assessed using absorption spectroscopy. Upon reconstitution, the samples were analyzed using vapor-pressure osmometry, size-exclusion chromatography (SEC), and absorption spectroscopy. The absorption spectrum of AmB in the presence of the block copolymers was compared to that of AmB alone under the same conditions. AmB was loaded into micelles prepared from acyl derivatives of PEO-b-p (L-Asp). Absorption spectroscopy indicated that the aggregation state was preserved during the loading process. AmB exists in a self-aggregated state in polymeric micelles containing hexanoate ester cores and in a relatively monomeric state in polymeric micelles containing stearate ester cores. Vapor-pressure osmometry confirmed the isotonicity of the formulations, while SEC indicated that the micelles were approximately 10(6) g/mol. Depending on the polymer structure and assembly conditions, it is possible to encapsulate AmB in a relatively nonaggregated or aggregated state in micelles prepared from acyl derivatives of PEO-b-p (L-Asp). In polymeric micelles containing stearate side chains, AmB was loaded in a nearly monomeric state, possibly due to interaction with the stearate side chains. The final aggregation state of the drug is preserved during lyophilization and reconstitution of polymeric micelles prepared by a novel solvent evaporation procedure.

  18. The effect of block copolymer structure on the internalization of polymeric micelles by human breast cancer cells.

    Science.gov (United States)

    Mahmud, Abdullah; Lavasanifar, Afsaneh

    2005-10-10

    The objective of this study was to assess the effect of hydrophilic/hydrophobic block chain lengths on the internalization of poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles by cancer cells. PEO-b-PCL block copolymers with varied PEO and PCL chain lengths were synthesized, assembled to polymeric micelles and loaded with a hydrophobic fluorescent probe (DiI) through a co-solvent evaporation method of physical encapsulation. The slow release of the fluorescent probe from the micellar structure was evidenced following DiI transfer to lipid vesicles. The extent of micellar uptake by cancer cells was investigated through their incubation with MCF-7 cells followed by measurement of the fluorescent emission intensity of DiI (lambda=550 nm) in separated lysed cells. Cellular internalization of polymeric micelles was confirmed by laser scanning microscopy. The mechanism of micellar uptake was investigated by pretreatment of MCF-7 cells with chlorpromazine and cytochalasin B. Encapsulation of DiI in PEO-b-PCL micelles lowered the extent and rate of hydrophobic probe internalization by cancer cells. For polymeric micelles with 5000 gmol(-1) of PCL and varied PEO molecular weights of 2000, 5000 and 13,000 gmol(-1), maximum uptake was observed at a PEO molecular weight of 5000 gmol(-1). For polymeric micelles with 5000 gmol(-1) of PEO and varied PCL molecular weights of 5000, 13,000 and 24,000 gmol(-1), maximum uptake was observed at 13,000 gmol(-1) of PCL. Chlorpromazine reduced the cellular uptake of PEO-b-PCL micelles independent from the block copolymer structure, pointing to the involvement of clathrin mediated endocytosis mechanisms in the uptake of polymeric micelles by cancer cells. Inhibition of cellular uptake of PEO-b-PCL micelles by cytochalasin B, on the other hand, was found to be dependent on the chemical structure of the core/shell forming blocks.

  19. Research regarding biodegradable properties of food polymeric products under microorganism activity

    Science.gov (United States)

    Opran, Constantin; Lazar, Veronica; Fierascu, Radu Claudiu; Ditu, Lia Mara

    2018-02-01

    Aim of this research is the structural analysis by comparison of the biodegradable properties of two polymeric products made by non-biodegradable polymeric material (polypropylene TIPPLEN H949 A) and biodegradable polymeric material (ECOVIO IS 1335), under microorganism activity in order to give the best solution for the manufacture of food packaging biodegradable products. It presents the results of experimental determinations on comparative analysis of tensile strength for the two types of polymers. The sample weight variations after fungal biodegradation activity revealed that, after 3 months, there are no significant changes in polymeric substratum for non-biodegradable polymeric. The microscopically analysis showed that the fungal filaments did not strongly adhered on the non-biodegradable polymeric material, instead, both filamentous fungi strains adhered and covered the surface of the biodegradable sample with germinated filamentous conidia. The spectral analysis of polymer composition revealed that non-biodegradable polymer polypropylene spectra are identical for control and for samples that were exposed to fungal activity, suggesting that this type of sample was not degraded by the fungi strains. Instead, for biodegradable polymer sample, it was observed significant structural changes across multiple absorption bands, suggesting enzyme activity manifested mainly by Aspergillus niger strain. Structural analysis of interdisciplinary research results, lead, to achieving optimal injection molded technology emphasizing technological parameters, in order to obtain food packaging biodegradable products.

  20. Control of in vivo disposition and immunogenicity of polymeric micelles by adjusting poly(sarcosine) chain lengths on surface

    Science.gov (United States)

    Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku

    2017-07-01

    Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.

  1. Polymeric micelles: Theranostic co-delivery system for poorly water-soluble drugs and contrast agents.

    Science.gov (United States)

    Upponi, Jaydev R; Jerajani, Kaushal; Nagesha, Dattatri K; Kulkarni, Praveen; Sridhar, Srinivas; Ferris, Craig; Torchilin, Vladimir P

    2018-03-31

    Interest in theranostic agents has continued to grow because of their promise for simultaneous cancer detection and therapy. A platform-based nanosized combination agent suitable for the enhanced diagnosis and treatment of cancer was prepared using polymeric polyethylene glycol-phosphatidylethanolamine-based micelles loaded with both, poorly soluble chemotherapeutic agent paclitaxel and hydrophobic superparamagnetic iron oxide nanoparticles (SPION), a Magnetic Resonance Imaging contrast agent. The co-loaded paclitaxel and SPION did not affect each other's functional properties in vitro. In vivo, the resulting paclitaxel-SPION-co-loaded PEG-PE micelles retained their Magnetic Resonance contrast properties and apoptotic activity in breast and melanoma tumor mouse models. Such theranostic systems are likely to play a significant role in the combined diagnosis and therapy that leads to a more personalized and effective form of treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. PSMA ligand conjugated PCL-PEG polymeric micelles targeted to prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Jian Jin

    Full Text Available In this content, a small molecular ligand of prostate specific membrane antigen (SMLP conjugated poly (caprolactone (PCL-b-poly (ethylene glycol (PEG copolymers with different block lengths were synthesized to construct a satisfactory drug delivery system. Four different docetaxel-loaded polymeric micelles (DTX-PMs were prepared by dialysis with particle sizes less than 60 nm as characterized by dynamic light scattering (DLS and transmission electron microscope (TEM. Optimization of the prepared micelles was conducted based on short-term stability and drug-loading content. The results showed that optimized systems were able to remain stable over 7 days. Compared with Taxotere, DTX-PMs with the same ratio of hydrophilic/hydrophobic chain length displayed similar sustained release behaviors. The cytotoxicity of the optimized targeted DTX-PCL12K-PEG5K-SMLP micelles (DTX-PMs2 and non-targeted DTX-PCL12K-mPEG5K micelles (DTX-PMs1 were evaluated by MTT assays using prostate specific membrane antigen (PSMA positive prostate adenocarcinoma cells (LNCaP. The results showed that the targeted micelles had a much lower IC50 than their non-targeted counterparts (48 h: 0.87 ± 0.27 vs 13.48 ± 1.03 µg/ml; 72 h: 0.02 ± 0.008 vs 1.35 ± 0.54 µg/ml. In vitro cellular uptake of PMs2 showed 5-fold higher fluorescence intensity than that of PMs1 after 4 h incubation. According to these results, the novel nano-sized drug delivery system based on DTX-PCL-PEG-SMLP offers great promise for the treatment of prostatic cancer.

  3. Evaluation of the uptake of CDDP-containing polymeric micelles in single pancreatic cancer cells

    International Nuclear Information System (INIS)

    Mizuno, Kazue; Uesaka, Mitsuru; Matsuyama, Shigeo; Ito, Y.; Ishii, Keizo; Yamazaki, Hiromichi

    2010-01-01

    Highly functionalized drugs delivered via a drug delivery system are expected to have less side effects and higher accumulation rates compared to conventional anticancer drugs. An understanding of the kinetics of drugs contained within a delivery system is necessary to obtain the maximum therapeutic effect. We performed micro-elemental analysis of human pancreatic cancer cells treated with cis-diamminedichloroplatinum(II) (CDDP)-containing polymeric micelles. The results showed that the platinum signals were distributed inside the cellular nuclei and the cytoplasm indicating that CDDP was delivered into the cells. The results from this study will be useful for designing an optimum carrier for platinum-containing anticancer drugs. (author)

  4. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  5. Cryoprotection–lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles

    Science.gov (United States)

    Moretton, Marcela A.; Chiappetta, Diego A.; Sosnik, Alejandro

    2012-01-01

    Rifampicin-loaded poly(ε-caprolactone)–b-poly(ethylene glycol)–poly(ε-caprolactone) flower-like polymeric micelles display low aqueous physical stability over time and undergo substantial secondary aggregation. To improve their physical stability, the lyoprotection–lyophilization process was thoroughly characterized. The preliminary cryoprotectant performance of mono- and disaccharides (e.g. maltose, glucose), hydroxypropyl-β-cyclodextrin (HPβCD) and poly(ethylene glycol) (PEG) of different molecular weights was assessed in freeze–thawing assays at −20°C, −80°C and −196°C. The size and size distribution of the micelles at the different stages were measured by dynamic light scattering (DLS). A cryoprotectant factor (fc) was determined by taking the ratio between the size immediately after the addition of the cryoprotectant and the size after the preliminary freeze–thawing assay. The benefit of a synergistic cryoprotection by means of saccharide/PEG mixtures was also assessed. Glucose (1 : 20), maltose (1 : 20), HPβCD (1 : 5) and glucose or maltose mixtures with PEG3350 (1 : 20) (copolymer:cryoprotectant weight ratio) were the most effective systems to protect 1 per cent micellar systems. Conversely, only HPβCD (1 : 5) cryoprotected more concentrated drug-loaded micelles (4% and 6%). Then, those micelle/cryoprotectant systems that displayed fc values smaller than 2 were freeze-dried. The morphology of freeze-dried powders was characterized by scanning electron microscopy and atomic force microscopy and the residual water content analysed by the Karl Fisher method. The HPβCD-added lyophilisates were brittle porous cakes (residual water was between 0.8% and 3%), easily redispersable in water to form transparent systems with a minimal increase in the micellar size, as determined by DLS. PMID:21865255

  6. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system

    International Nuclear Information System (INIS)

    Locatelli, Erica; Comes Franchini, Mauro

    2012-01-01

    During the past decades many synthetic polymers have been studied for nanomedicine applications and in particular as drug delivery systems. For this purpose, polymers must be non-toxic, biodegradable, and biocompatible. Polylactic-co-glycolic acid (PLGA) is one of the most studied polymers due to its complete biodegradability and ability to self-assemble into nanometric micelles that are able to entrap small molecules like drugs and to release them into body in a time-dependent manner. Despite fine qualities, using PLGA polymeric nanoparticles for in vivo applications still remains an open challenge due to many factors such as poor stability in water, big diameter (150–200 nm), and the removal of these nanocarriers from the blood stream by the liver and spleen thus reducing the concentration of drugs drastically in tumor tissue. Polyethylene glycol (PEG) is the most used polymers for drug delivery applications and the first PEGylated product is already on the market for over 20 years. This is due to its stealth behavior that inhibits the fast recognition by the immune system (opsonization) and generally leads to a reduced blood clearance of nanocarriers increasing blood circulation time. Furthermore, PEG is hydrophilic and able to stabilize nanoparticles by steric and not ionic effects especially in water. PLGA–PEG block copolymer is an emergent system because it can be easily synthesized and it possesses all good qualities of PLGA and also PEG capability so in the last decade it arose as one of the most promising systems for nanoparticles formation, drug loading, and in vivo drug delivery applications. This review will discuss briefly on PLGA-b-PEG synthesis and physicochemical properties, together with its improved qualities with respect to the single PLGA and PEG polymers. Moreover, we will focus on but in particular will treat nanoparticles formation and uses as new drug delivery system for nanomedical applications.

  7. Rapid analysis of water- and fat-soluble vitamins by electrokinetic chromatography with polymeric micelle as pseudostationary phase.

    Science.gov (United States)

    Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2014-11-28

    A novel polymeric micelle, formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) has been used as pseudostationary phase (PSP) in electrokinetic chromatography (EKC) for simultaneous and rapid determination of 11 kinds of water- and fat-soluble vitamins in this work. The running buffer consisting of 1% (w/v) P(SMA-co-MAA), 10% (v/v) 1-butanol, 20% (v/v) acetonitrile, and 30 mM Palitzsch buffer solution (pH 9.2) was applied to improve the selectivity and efficiency, as well as to shorten analysis time. 1-Butanol and acetonitrile as the organic solvent modifiers played the most important roles for rapid separation of these vitamins. The effects of organic solvents on microstructure of the polymeric micelle were investigated. The organic solvents swell the polymeric micelle by three folds, lower down the surface charge density and enhance the microenviromental polarity of the polymeric micelle. The 11 kinds of water- and fat-soluble vitamins could be baseline separated within 13 min. The method was applied to determine water- and fat-soluble vitamins in commercial vitamin sample; the recoveries were between 93% and 111% with the relative standard derivations (RSDs) less than 5%. The determination results matched the label claim. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance

    Directory of Open Access Journals (Sweden)

    Dong K

    2016-10-01

    Full Text Available Kai Dong,1 Yan Yan,2 Pengchong Wang,2 Xianpeng Shi,2 Lu Zhang,2 Ke Wang,2 Jianfeng Xing,2 Yalin Dong1 1Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, 2School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Abstract: In this study, a type of multifunctional mixed micelles were prepared by a novel biodegradable amphiphilic polymer (MPEG-SS-2SA and a multidrug resistance (MDR reversal agent (D-α-tocopheryl polyethylene glycol succinate, TPGS. The mixed micelles could achieve rapid intracellular drug release and reversal of MDR. First, the amphiphilic polymer, MPEG-SS-2SA, was synthesized through disulfide bonds between poly (ethylene glycol monomethyl ether (MPEG and stearic acid (SA. The structure of the obtained polymer was similar to poly (ethylene glycol-phosphatidylethanolamine (PEG-PE. Then the mixed micelles, MPEG-SS-2SA/TPGS, were prepared by MPEG-SS-2SA and TPGS through the thin film hydration method and loaded paclitaxel (PTX as the model drug. The in vitro release study revealed that the mixed micelles could rapidly release PTX within 24 h under a reductive environment because of the breaking of disulfide bonds. In cell experiments, the mixed micelles significantly inhibited the activity of mitochondrial respiratory complex II, also reduced the mitochondrial membrane potential, and the content of adenosine triphosphate, thus effectively inhibiting the efflux of PTX from cells. Moreover, in the confocal laser scanning microscopy, cellular uptake and 3-(4,5-dimethyl-thiazol-2-yl-2,5-diphenyl-tetrazolium bromide assays, the MPEG-SS-2SA/TPGS micelles achieved faster release and more uptake of PTX in Michigan Cancer Foundation-7/PTX cells and showed better antitumor effects as compared with the insensitive control. In conclusion, the biodegradable mixed micelles, MPEG-SS-2SA/TPGS, could be potential vehicles for delivering hydrophobic chemotherapeutic drugs in

  9. Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Emmanuel O. Akala

    2015-12-01

    Full Text Available Quality by design (QbD in the pharmaceutical industry involves designing and developing drug formulations and manufacturing processes which ensure predefined drug product specifications. QbD helps to understand how process and formulation variables affect product characteristics and subsequent optimization of these variables vis-à-vis final specifications. Statistical design of experiments (DoE identifies important parameters in a pharmaceutical dosage form design followed by optimizing the parameters with respect to certain specifications. DoE establishes in mathematical form the relationships between critical process parameters together with critical material attributes and critical quality attributes. We focused on the fabrication of biodegradable nanoparticles by dispersion polymerization. Aided by a statistical software, d-optimal mixture design was used to vary the components (crosslinker, initiator, stabilizer, and macromonomers to obtain twenty nanoparticle formulations (PLLA-based nanoparticles and thirty formulations (poly-ɛ-caprolactone-based nanoparticles. Scheffe polynomial models were generated to predict particle size (nm, zeta potential, and yield (% as functions of the composition of the formulations. Simultaneous optimizations were carried out on the response variables. Solutions were returned from simultaneous optimization of the response variables for component combinations to (1 minimize nanoparticle size; (2 maximize the surface negative zeta potential; and (3 maximize percent yield to make the nanoparticle fabrication an economic proposition.

  10. Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization.

    Science.gov (United States)

    Akala, Emmanuel O; Adesina, Simeon; Ogunwuyi, Oluwaseun

    2015-12-22

    Quality by design (QbD) in the pharmaceutical industry involves designing and developing drug formulations and manufacturing processes which ensure predefined drug product specifications. QbD helps to understand how process and formulation variables affect product characteristics and subsequent optimization of these variables vis-à-vis final specifications. Statistical design of experiments (DoE) identifies important parameters in a pharmaceutical dosage form design followed by optimizing the parameters with respect to certain specifications. DoE establishes in mathematical form the relationships between critical process parameters together with critical material attributes and critical quality attributes. We focused on the fabrication of biodegradable nanoparticles by dispersion polymerization. Aided by a statistical software, d-optimal mixture design was used to vary the components (crosslinker, initiator, stabilizer, and macromonomers) to obtain twenty nanoparticle formulations (PLLA-based nanoparticles) and thirty formulations (poly-ɛ-caprolactone-based nanoparticles). Scheffe polynomial models were generated to predict particle size (nm), zeta potential, and yield (%) as functions of the composition of the formulations. Simultaneous optimizations were carried out on the response variables. Solutions were returned from simultaneous optimization of the response variables for component combinations to (1) minimize nanoparticle size; (2) maximize the surface negative zeta potential; and (3) maximize percent yield to make the nanoparticle fabrication an economic proposition.

  11. Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization

    Science.gov (United States)

    Akala, Emmanuel O.; Adesina, Simeon; Ogunwuyi, Oluwaseun

    2015-01-01

    Quality by design (QbD) in the pharmaceutical industry involves designing and developing drug formulations and manufacturing processes which ensure predefined drug product specifications. QbD helps to understand how process and formulation variables affect product characteristics and subsequent optimization of these variables vis-à-vis final specifications. Statistical design of experiments (DoE) identifies important parameters in a pharmaceutical dosage form design followed by optimizing the parameters with respect to certain specifications. DoE establishes in mathematical form the relationships between critical process parameters together with critical material attributes and critical quality attributes. We focused on the fabrication of biodegradable nanoparticles by dispersion polymerization. Aided by a statistical software, d-optimal mixture design was used to vary the components (crosslinker, initiator, stabilizer, and macromonomers) to obtain twenty nanoparticle formulations (PLLA-based nanoparticles) and thirty formulations (poly-ɛ-caprolactone-based nanoparticles). Scheffe polynomial models were generated to predict particle size (nm), zeta potential, and yield (%) as functions of the composition of the formulations. Simultaneous optimizations were carried out on the response variables. Solutions were returned from simultaneous optimization of the response variables for component combinations to (1) minimize nanoparticle size; (2) maximize the surface negative zeta potential; and (3) maximize percent yield to make the nanoparticle fabrication an economic proposition. PMID:26703678

  12. Ring-Opening Polymerization of Lactide to Form a Biodegradable Polymer

    Science.gov (United States)

    Robert, Jennifer L.; Aubrecht, Katherine B.

    2008-01-01

    In this laboratory activity for introductory organic chemistry, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide (PLA). As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be…

  13. Controlling the kinetic chain length of the crosslinks in photo-polymerized biodegradable networks

    NARCIS (Netherlands)

    Jansen, J.; Ghaffar, A.; van der Horst, T.N.S.; Mihov, G.; van der Wal, S.; Feijen, J.; Grijpma, D.W.

    2013-01-01

    Biodegradable polymer networks were prepared by photo-initiated radical polymerization of methacrylate functionalized poly(D, L-lactide) oligomers. The kinetic chains formed in this radical polymerization are the multifunctional crosslinks of the networks. These chains are carbon-carbon chains that

  14. Novel Amphiphilic, Biodegradable, Biocompatible, Thermo-Responsive ABA Triblock Copolymers Based on PCL and PEG Analogues via a Combination of ROP and RAFT: Synthesis, Characterization, and Sustained Drug Release from Self-Assembled Micelles

    Directory of Open Access Journals (Sweden)

    Wenyan Ning

    2018-02-01

    Full Text Available Well-defined novel, linear, biodegradable, amphiphilic thermo-responsive ABA-type triblock copolymers, poly[2-(2-methoxyethoxy ethyl methacrylate-co-oligo(ethylene glycol methacrylate]-b-poly(ε-caprolactone-b-poly[2-(2-methoxyethoxy ethyl methacrylate-co-oligo(ethylene glycol methacrylate] [P(MEO2MA-co-OEGMA-b-PCL-b-P(MEO2MA-co-OEGMA] (tBPs, were synthesized via a combination of ring-opening polymerization (ROP of ε-caprolactone (εCL and reversible addition-fragmentation chain transfer polymerization (RAFT of MEO2MA and OEGMA comonomers. The chemical structures and compositions of these copolymers were characterized using Fourier transform infrared spectroscopy (FT-IR and proton nuclear magnetic resonance (1H NMR. The molecular weights of the copolymers were obtained using gel permeation chromatography (GPC measurements. Thermo-responsive micelles were obtained by self-assembly of copolymers in aqueous medium. The temperature sensitivity and micelllization behavior of amphiphilic triblock copolymers solutions were studied by transmittance, fluorescence probe, surface tension, dynamic light scattering (DLS and transmission electron microscopy (TEM. A hydrophobic drug, anethole, was encapsulated in micelles by using the dialysis method. The average particle sizes of drug-loaded micelles were determined by dynamic light scattering measurement. In vitro, the sustained release of the anethole was performed in pH 7.4 phosphate-buffered saline (PBS at different temperatures. Results showed that the triblock copolymer’s micelles were quite effective in the encapsulation and controlled release of anethole. The vial inversion test demonstrated that the triblock copolymers could trigger the sol-gel transition which also depended on the temperature, and its sol-gel transition temperature gradually decreased with increasing concentration. The hydrogel system could also be used as a carrier of hydrophobic drugs in medicine.

  15. Biodegradable polymeric foam with food waste; Shokumotsu zansa wo mochiita seibunkai kobunshi hahhotai

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Kenji; Matsuyama, Kiyoshi; Yamauchi, Satoru; Takarabe, Shin' ichi

    1999-09-01

    A huge amount of food waste such as tea and beer dregs becomes a serious problem because of the lack of industrial waste space in Japan. On the other hand, the new polymeric foam is expected to be developed since the dangerous pollution of endorphin disrupters from industrial polymer foam is pointed out. In this work, we try to develop the biodegradable polymeric foam using the tea and beer dregs as secondary resources. And we examined the degradability of biodegradable polymer in the hydrothermal water for fundamental knowledge of polymeric foam production. We used an extruder equipped with a high pressure device to make the polymeric foam. And we examined the effect of the component ratio on the foam properties, foaming rate, strength, shrinkage rate, water-resistant. As a result, it was found that the amount of polymer is effective of quality of form and the biodegradability can be controlled by the amount of water and temperature. (author)

  16. Effect of Molecular Weight and Molar Ratio of Dextran on Self-Assembly of Dextran Stearate Polymeric Micelles as Nanocarriers for Etoposide

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2012-01-01

    Full Text Available Amphiphilic polymer surfactants are composed of hydrophilic and hydrophobic polymers and are widely used in targeted drug delivery. The purpose of this study was the evaluation of the effect of molecular weight and molar ratio of dextran on physicochemical properties of dextran stearate polymeric micelles. Dextran stearate was synthesized by acylation of dextran with stearoyl chloride. Etoposide loaded polymeric micelles were prepared by dialysis method. The resulting micelles were evaluated for particle size, zeta potential, critical micelle concentration (CMC, drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of micelles were studied in CT-26 colorectal carcinoma cell line. Molecular weight and molar ratio of dextran-stearate were impressive on zeta potential, CMC, drug loading capacity, and release efficiency. Unlike polymer molecular weight, molar ratio of stearate had a significant effect on cytotoxicity and particle size of etoposide loaded micelles. Although molecular weight of dextran had no significant effect on cytotoxicity of micelles on CT-26 cells, it had drastic attributes for stability of polymeric micelles. Consequently, both variables of molecular weight of dextran and molar ratio of stearate should be taken into account to have a stable and effective micelle of dextran-stearate.

  17. PET imaging with copper-64 as a tool for real-time in vivo investigations of the necessity for crosslinking of polymeric micelles in nanomedicine

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann; Binderup, Tina; Ek, Pramod Kumar

    2017-01-01

    Polymeric micelles in nanomedicine are often crosslinked to prevent disintegration in vivo. This typically requires clinically problematic chemicals or laborious procedures. In addition, crosslinking may interfere with advanced release strategies. Despite this, it is often not investigated whether...

  18. Self-assembly of block copolymer micelles: synthesis via reversible addition-fragmentation chain transfer polymerization and aqueous solution properties.

    Science.gov (United States)

    Mya, Khine Y; Lin, Esther M J; Gudipati, Chakravarthy S; Gose, Halima B A S; He, Chaobin

    2010-07-22

    Poly(hexafluorobutyl methacrylate) (PHFBMA) homopolymer was synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated living radical polymerization in the presence of cyano-2-propyl dithiobenzoate (CPDB) RAFT agent. A block copolymer of PHFBMA-poly(propylene glycol acrylate) (PHFBMA-b-PPGA) with dangling poly(propylene glycol) (PPG) side chains was then synthesized by using CPDB-terminated PHFBMA as a macro-RAFT agent. The amphiphilic properties and self-assembly of PHFBMA-b-PPGA block copolymer in aqueous solution were investigated by dynamic and static light scattering (DLS and SLS) studies, in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). Although PPG shows moderately hydrophilic character, the formation of nanosize polymeric micelles was confirmed by fluorescence and TEM studies. The low value of the critical aggregation concentration exhibited that the tendency for the formation of copolymer aggregates in aqueous solution was very high due to the strong hydrophobicity of the PHFBMA(145)-b-PPGA(33) block copolymer. The combination of DLS and SLS measurements revealed the existence of micellar aggregates in aqueous solution with an association number of approximately 40 +/- 7 for block copolymer micelles. It was also found in TEM observation that there are 40-50 micelles accumulated into one aggregate and these micelles are loosely packed inside the aggregate.

  19. Fabrication and Optimal Design of Biodegradable Polymeric Stents for Aneurysms Treatments

    Directory of Open Access Journals (Sweden)

    Xue Han

    2017-02-01

    Full Text Available An aneurysm is a balloon-like bulge in the wall of blood vessels, occurring in major arteries of the heart and brain. Biodegradable polymeric stent-assisted coiling is expected to be the ideal treatment of wide-neck complex aneurysms. This paper presents the development of methods to fabricate and optimally design biodegradable polymeric stents for aneurysms treatment. Firstly, a dispensing-based rapid prototyping (DBRP system was developed to fabricate coil and zigzag structures of biodegradable polymeric stents. Then, compression testing was carried out to characterize the radial deformation of the stents fabricated with the coil or zigzag structure. The results illustrated the stent with a zigzag structure has a stronger radial stiffness than the one with a coil structure. On this basis, the stent with a zigzag structure was chosen for the development of a finite element model for simulating the real compression tests. The result showed the finite element model of biodegradable polymeric stents is acceptable within a range of radial deformation around 20%. Furthermore, the optimization of the zigzag structure was performed with ANSYS DesignXplorer, and the results indicated that the total deformation could be decreased by 35.7% by optimizing the structure parameters, which would represent a significant advance of the radial stiffness of biodegradable polymeric stents.

  20. Polymeric Nano-Micelles as Novel Cargo-Carriers for LY2157299 Liver Cancer Cells Delivery

    Directory of Open Access Journals (Sweden)

    Nemany Abdelhamid Nemany Hanafy

    2018-03-01

    Full Text Available LY2157299 (LY, which is very small molecule bringing high cancer diffusion, is a pathway antagonist against TGFβ. LY dosage can be diluted by blood plasma, can be captured by immune system or it might be dissolved during digestion in gastrointestinal tract. The aim of our study is to optimize a “nano-elastic” carrier to avoid acidic pH of gastrointestinal tract, colon alkaline pH, and anti-immune recognition. Polygalacturonic acid (PgA is not degradable in the gastrointestinal tract due to its insolubility at acidic pH. To avoid PgA solubility in the colon, we have designed its conjugation with Polyacrylic acid (PAA. PgA-PAA conjugation has enhanced their potential use for oral and injected dosage. Following these pre-requisites, novel polymeric nano-micelles derived from PgA-PAA conjugation and loading LY2157299 are developed and characterized. Efficacy, uptake and targeting against a hepatocellular carcinoma cell line (HLF have also been demonstrated.

  1. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines.

    Science.gov (United States)

    Zeng, Qin; Li, Hanmei; Jiang, Hao; Yu, Jiao; Wang, Ying; Ke, Huan; Gong, Tao; Zhang, Zhirong; Sun, Xun

    2017-04-01

    It has been widely accepted that lymph nodes (LNs) are critical targets of cancer vaccines and particles sized between 10 and 100 nm with a neutral or negative surface charge are preferred for lymphatic transfer after subcutaneous or intradermal injection. However their limited uptake by antigen presenting cells (APCs) and inadequate retention within LNs undoubtedly restrains their strength on activating T cell immunity. Here, we address this issue by tailoring the physicochemical properties of polymeric hybrid micelles (HMs), which are self-assembled from two amphiphilic diblock copolymers, poly-(ethylene glycol) phosphorethanolamine (PEG-PE) and polyethylenimine-stearic acid conjugate (PSA) via hydrophobic and electrostatic interactions. We successfully encapsulate melanoma antigen peptide Trp2 and Toll-like receptor-9 (TLR-9) agonist CpG ODN into HMs with a size of sub-30 nm. Their surface characteristics which are found closely related to their in vivo kinetics can be modulated by simply adjusting the molar ratio of PEG-PE and PSA. Our results demonstrated the optimized HMs with an equal mol of PEG-PE and PSA can potently target proximal LNs where their cargos are efficiently internalized by DCs. Furthermore, HMs mediated Trp2/CpG delivery system greatly expands antigen specific cytotoxic T lymphocytes (CTLs) and offers a strong anti-tumor effect in a lung metastatic melanoma model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Polymeric Micelles for Delivery of Poorly Soluble Drugs: Preparation and Anticancer Activity In Vitro of Paclitaxel Incorporated into Mixed Micelles Based on Poly(ethylene Glycol)-Lipid Conjugate and Positively Charged Lipids

    Science.gov (United States)

    WANG, JUNPING; MONGAYT, DIMITRY; TORCHILIN, VLADIMIR P.

    2006-01-01

    Paclitaxel-loaded mixed polymeric micelles consisting of poly(ethylene glycol)-distearoyl phosphoethanolamine conjugates (PEG-PE), solid triglycerides (ST), and cationic Lipofectin® lipids (LL) have been prepared. Micelles with the optimized composition (PEG-PE/ST/LL/paclitaxel = 12/12/2/1 by weight) had an average micelle size of about 100 nm, and zeta-potential of about 26 mV. Micelles were stable and did not release paclitaxel when stored at 4°C in the darkness (just 2.9% of paclitaxel have been lost after 4 months with the particle size remaining unchanged). The release of paclitaxel from such micelles at room temperature was also insignificant. However, at 37°C, approx. 16% of paclitaxel was released from PEG-PE/ST/LL/paclitaxel micelles in 72 h, probably, because of phase transition in the ST-containing micelle core. In vitro anticancer effects of PEG-PE/ST/LL/paclitaxel and control micelles were evaluated using human mammary adenocarcinoma (BT-20) and human ovarian carcinoma (A2780) cell lines. Paclitaxel in PEG-PE/ST/LL micelles demonstrated the maximum anti-cancer activity. Cellular uptake of fluorescently-labeled paclitaxel-containing micelles by BT-20 cells was investigated using a fluorescence microscopy. It seems that PEG-PE/ST/LL micelles, unlike micelles without the LL component, could escape from endosomes and enter the cytoplasm of BT-20 cancer cells thus increasing the anticancer efficiency of the micellar paclitaxel. PMID:15848957

  3. Formulation and in vitro evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric mixed micelles for glioblastoma multiforme.

    Science.gov (United States)

    Saxena, Vipin; Hussain, Muhammad Delwar

    2013-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in human. 17-Allylamino-17-demethoxy geldanamycin (17-AAG) is an inhibitor of heat shock protein 90 (HSP90). The highly lipophilic nature and selective targeting of tumor cells makes 17-AAG a promising candidate for therapy of GBMs but poor water solubility, short biological half-life and hepatotoxicity limited its clinical use. Polymeric mixed micelles composed of Pluronic® P-123 and F-127 (2:1 (w/w)) containing 17-AAG were prepared and characterized. Cellular uptake and in vitro cytotoxicity of the prepared micelles were determined in U87MG human glioblastoma cells. The particle size of 17-AAG loaded Pluronic(®) P-123 and F-127 mixed micelles was 22.2 ± 0.1 nm; drug loading was about 4.0 ± 0.5% (w/w) with 88.2 ± 3.1% (w/w) encapsulation efficiency. About 90% of drug was released from the nanoparticles over 8 days. Cellular uptake studies showed intracellular uptake of mixed micelles. Cytotoxicity study showed 5-fold increase (P AAG-loaded mixed micelles to free 17-AAG. Due to their targeting ability, size, high drug loading and controlled release behavior, 17-AAG loaded Pluronic(®) P-123 and F-127 mixed micelles might be developed as a delivery system for GBM treatment. © 2013 Elsevier B.V. All rights reserved.

  4. Ring-Opening Polymerization of ε-Caprolactone Initiated by Ganciclovir (GCV for the Preparation of GCV-Tagged Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Alicia J. Sawdon

    2015-02-01

    Full Text Available Ganciclovir (GCV is a nucleoside analogue with antiviral activity against herpes viral infections, and the most widely used antiviral to treat cytomegalovirus infections. However, the low bioavailability and short half-life of GCV necessitate the development of a carrier for sustained delivery. In this study, guanosine-based GCV was used as the initiator directly in ring-opening polymerization of ε-caprolactone (ε-CL to form hydrophobic GCV-poly(caprolactone (GCV-PCL which was then grafted with hydrophilic chitosan to form amphiphilic copolymers for the preparation of stable micellar nanoparticles. Successful synthesis of GCV-PCL and GCV-PCL-chitosan were verified by 1H-NMR analysis. Self-assembled micellar nanoparticles were characterized by dynamic light scattering and zetasizer with an average size of 117 nm and a positive charge of 24.2 mV. The drug release kinetics of GCV was investigated and cytotoxicity assay demonstrated that GCV-tagged polymeric micelles were non-toxic. Our results showed that GCV could be used directly in the initiation of ring-opening polymerization of ε-CL and non-toxic polymeric micelles for GCV delivery can be formed.

  5. Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles.

    Science.gov (United States)

    Lu, Lu; Zheng, Yan; Weng, Shuqiang; Zhu, Wenwei; Chen, Jinhong; Zhang, Xiaomin; Lee, Robert J; Yu, Bo; Jia, Huliang; Qin, Lunxiu

    2016-06-01

    7-Ethyl-10-hydroxy-comptothecin (SN38) is an active metabolite of irinotecan (CPT-11) and the clinical application of SN38 is limited by its hydrophobicity and instability. To address these issues, a series of novel amphiphilic mPEG-PLA-SN38-conjugates were synthesized by linking SN38 to mPEG-PLA-SA, and they could form micelles by self-assembly. The effects of mPEG-PLA composition were studied in vitro and in vivo. The mean diameters of mPEG2K-PLA-SN38 micelles and mPEG4K-PLA-SN38 micelles were 10-20nm and 120nm, respectively, and mPEG2K-PLA-SN38 micelles showed greater antitumor efficacy than mPEG4K-PLA-SN38 micelles both in vitro and in vivo. These data suggest that the lengths of mPEG and PLA chains had a major impact on the physicochemical characteristics and antitumor activity of SN38-conjugate micelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation.

    Science.gov (United States)

    Iyer, Arun K; Greish, Khaled; Seki, Takahiro; Okazaki, Shoko; Fang, Jun; Takeshita, Keizo; Maeda, Hiroshi

    2007-01-01

    Polymeric micelles of zinc protoporphyrin (ZnPP) with water soluble biocompatible and amphiphilic polymer, polyethylene glycol (PEG) demonstrated unique characteristics to target tumor tissues selectively based on the enhanced permeability and retention (EPR) effect. The micellar macromolecular drug of ZnPP (SMA-ZnPP and PEG-ZnPP) previously showed notable anticancer activity as a consequence of selective tumor targeting ability and its potent HO-1 inhibitory potential, resulting in suppressed biliverdin/bilirubin production in tumors thereby leading to oxystress induced tumor cell killing. Furthermore, recent findings also showed that ZnPP efficiently generated reactive singlet oxygen under illumination of visible light, laser, or xenon light source, which could augment its oxystress induced cell killing abilities. In the present paper, we report the synergistic effects of light induced photosensitizing capabilities and HO-1 inhibitory potentials of these unique micelles when tested in vitro and in vivo on tumor models under localized, mild illumination conditions using a tungsten-xenon light source. The results indicate that these water soluble polymeric micelles of ZnPP portend to be promising candidates for targeted chemotherapy as well as photodynamic therapy against superficial tumors as well as solid tumors located at light penetrable depths.

  7. Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Capretto L

    2012-01-01

    Full Text Available Lorenzo Capretto1, Stefania Mazzitelli2, Eleonora Brognara2, Ilaria Lampronti2, Dario Carugo1, Martyn Hill1, Xunli Zhang1, Roberto Gambari2, Claudio Nastruzzi31Engineering Sciences, University of Southampton, Southampton, UK; 2Department of Biochemistry and Molecular Biology, 3Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, ItalyAbstract: This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH, based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of ß-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying ß-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol

  8. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2015-01-01

    at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors.Both approaches provide stable nanosensors with similar pKa profiles and thereby...

  9. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles

    International Nuclear Information System (INIS)

    Gou Maling; Shi Huashan; Guo Gang; Men Ke; Zhang Juan; Li Zhiyong; Luo Feng; Qian Zhiyong; Wei Yuquan; Zheng Lan; Zhao Xia

    2011-01-01

    In an attempt to improve anticancer activity and reduce systemic toxicity of doxorubicin (Dox), we encapsulated Dox in monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles by a novel self-assembly procedure without using surfactants, organic solvents or vigorous stirring. These Dox encapsulated MPEG-PCL (Dox/MPEG-PCL) micelles with drug loading of 4.2% were monodisperse and ∼ 20 nm in diameter. The Dox can be released from the Dox/MPEG-PCL micelles; the Dox-release at pH 5.5 was faster than that at pH 7.0. Encapsulation of Dox in MPEG-PCL micelles enhanced the cellular uptake and cytotoxicity of Dox on the C-26 colon carcinoma cell in vitro, and slowed the extravasation of Dox in the transgenic zebrafish model. Compared to free Dox, Dox/MPEG-PCL micelles were more effective in inhibiting tumor growth in the subcutaneous C-26 colon carcinoma and Lewis lung carcinoma models, and prolonging survival of mice bearing these tumors. Dox/MPEG-PCL micelles also induced lower systemic toxicity than free Dox. In conclusion, incorporation of Dox in MPEG-PCL micelles enhanced the anticancer activity and decreased the systemic toxicity of Dox; these Dox/MPEG-PCL micelles are an interesting formulation of Dox and may have potential clinical applications in cancer therapy.

  10. Use of polymeric dyes in lignin biodegradation assays

    International Nuclear Information System (INIS)

    Gold, M.H.; Alic, M.; Glenn, J.K.

    1988-01-01

    This paper reviews the historical use of various 14 C-radiolabeled and unlabeled substrates to screen for ligninolytic activity. The disadvantages of these assays are presented. The authors describe the development of assays utilizing polymeric dyes

  11. Synthesis of biodegradable amphiphilic Y-shaped block co-polymers via ring-opening polymerization for drug delivery.

    Science.gov (United States)

    Jia, Lin; Yan, Lifeng; Li, Yang

    2011-01-01

    A series of novel Y-shaped biodegradable block co-polymers of poly(ε-caprolactone) (PCL) and poly(ethyl ethylene phosphate) (PEEP) (PCL-(PEEP)2) were synthesized via ring-opening polymerization (ROP) of EEP with bis-hydroxy-functional ROP initiator (init-PCL-(OH)2). The init-PCL-(OH)2 was synthesized by ROP of CL using 4-hydroxybutyl acrylate (HBA) as initiator and L-tartaric acid as catalyst in bulk, and subsequently the resulting vinyl-terminated PCL was end-capped by acetyl chloride, followed by Michael addition using excess diethanolamine. The Y-shaped co-polymers and their intermediates were characterized by (1)H-, (13)C-, (31)P-NMR, FT-IR and gel-permeation chromatography. The results indicated that the molecular weight of the Y-shaped co-polymers increased with the increasing of the molar ratios of EEP to init-PCL-(OH)2 in the feed, while the PCL chain length was kept constant. The amphiphilic block co-polymers could self-assemble into micelles in aqueous solution, which was demonstrated by dynamic light scattering, (1)H-NMR and atomic force microscopy. A study of controlled release of indomethacin indicated that the amphiphilic block co-polymers could potentially provide novel vehicles for drug delivery.

  12. PET imaging with copper-64 as a tool for real-time in vivo investigations of the necessity for cross-linking of polymeric micelles in nanomedicine.

    Science.gov (United States)

    Jensen, Andreas I; Binderup, Tina; Ek, Pramod Kumar; Grandjean, Constance E; Rasmussen, Palle H; Kjaer, Andreas; Andresen, Thomas L

    2017-06-30

    Polymeric micelles in nanomedicine are often cross-linked to prevent disintegration in vivo. This typically requires clinically problematic chemicals or laborious procedures. In addition, cross-linking may interfere with advanced release strategies. Despite this, it is often not investigated whether cross-linking is necessary for efficient drug delivery. We used positron emission tomography (PET) imaging with 64 Cu to demonstrate general methodology for real-time in vivo investigations of micelle stability. Triblock copolymers with 4-methylcoumarin cores of ABC-type (PEG-PHEMA-PCMA) were functionalized in the handle region (PHEMA) with CB-TE2A chelators. Polymeric micelles were formed by dialysis and one half was core cross-linked (CL) by UV light and the other half was not (nonCL). Both CL and nonCL were radiolabeled with 64 Cu and compared in vivo in tumor-bearing mice, with free 64 Cu as control. Accumulation in relevant organs was quantified by region of interest analysis on PET images and ex vivo counting. It was observed that CL and nonCL showed limited differences in biodistribution from each other, whereas both differed markedly from control (free 64 Cu). This demonstrated that 4-methylcoumarin core micelles may form micelles that are stable in circulation even without cross-linking. The methodology presented here where individual unimers are radiolabeled is applicable to a wide range of polymeric micelle types. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Shih YH

    2015-12-01

    Full Text Available Ying-Hsia Shih,1,2 Cheng-Liang Peng,2 Ping-Fang Chiang,1,2 Wuu-Jyh Lin,2 Tsai-Yueh Luo,2,3 Ming-Jium Shieh1,4 1Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; 2Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan; 3Institute of Radiological Science, Central University, Taichung, Taiwan; 4Department of Oncology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan Abstract: This study evaluated a multifunctional micelle simultaneously loaded with doxorubicin (Dox and labeled with radionuclide rhenium-188 (188Re as a combined radiotherapy and chemotherapy treatment for hepatocellular carcinoma. We investigated the single photon emission computed tomography, biodistribution, antitumor efficacy, and pathology of 188Re-Dox micelles in a murine orthotopic luciferase-transfected BNL tumor cells hepatocellular carcinoma model. The single photon emission computed tomography and computed tomography images showed high radioactivity in the liver and tumor, which was in agreement with the biodistribution measured by γ-counting. In vivo bioluminescence images showed the smallest size tumor (P<0.05 in mice treated with the combined micelles throughout the experimental period. In addition, the combined 188Re-Dox micelles group had significantly longer survival compared with the control, 188ReO4 alone (P<0.005, and Dox micelles alone (P<0.01 groups. Pathohistological analysis revealed that tumors treated with 188Re-Dox micelles had more necrotic features and decreased cell proliferation. Therefore, 188Re-Dox micelles may enable combined radiotherapy and chemotherapy to maximize the effectiveness of treatment for hepatocellular carcinoma. Keywords: 188Re-Dox micelles, radiotherapeutic, chemotherapeutic, hepatocellular carcinoma

  14. Folate-targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: combined small size and high MRI sensitivity

    Directory of Open Access Journals (Sweden)

    Hong GB

    2012-06-01

    -PEG-PCL-SPIONs in the tumor tissue.Keywords: tumor targeting, magnetic resonance imaging, polymeric micelles, superparamagnetic iron oxide

  15. Synthesis and in vitro experiments of carcinoma vascular endothelial targeting polymeric nano-micelles combining small particle size and supermagnetic sensitivity.

    Science.gov (United States)

    Zhang, Yi; Pan, Jielin; Xu, Qilan; Li, Hao; Wang, Jianhao; Zhang, Chao; Hong, Guobin

    2018-01-01

    Objective: To construct carcinoma vascular endothelial-targeted polymeric nanomicelles with high magnetic resonance imaging (MRI) sensitivity and to evaluate their biological safety and in vitro tumor-targeting effect, and to monitor their feasibility using clinical MRI scanner. Method: Amphiphilic block copolymer, poly(ethylene glycol)- b -poly(ε-caprolactone) (PEG-PCL) was synthesized via the ring-opening polymerization of ε-caprolactone (CL) initiated by poly(ethylene glycol) (PEG), in which cyclic pentapeptide Arg-Gly-Asp (cRGD) was conjugated with the terminal of hydrophilic PEG block. During the self-assembly of PEG-PCL micelles, superparamagnetic γ-Fe 2 O 3 nanoparticles (11 nm) was loaded into the hydrophobic core. The cRGD-terminated γ-Fe 2 O 3 -loaded polymeric micelles targeting to carcinoma vascular endothelial cells, were characterized in particle size, morphology, loading efficiency and so on, especially high MRI sensitivity in vitro. Normal hepatic vascular endothelial cells (ED25) were incubated with the resulting micelles for assessing their safety. Human hepatic carcinoma vascular endothelial cells (T3A) were cultured with the resulting micelles to assess the micelle uptake using Prussian blue staining and the cell signal intensity using MRI. Results: All the polymeric micelles exhibited ultra-small particle sizes with approximately 50 nm, high relaxation rate, and low toxicity even at high iron concentrations. More blue-stained iron particles were present in the targeting group than the non-targeting and competitive inhibition groups. In vitro MRI showed T 2 WI and T 2 relaxation times were significantly lower in the targeting group than in the other two groups. Conclusion: γ-Fe 2 O 3 -loaded PEG-PCL micelles not only possess ultra-small size and high superparamagnetic sensitivity, also can be actively targeted to carcinoma vascular endothelial cells by tumor-targeted cRGD. It appears to be a promising contrast agent for tumor

  16. High performance nature of biodegradable polymeric nanocomposites for oil-well drilling fluids

    Directory of Open Access Journals (Sweden)

    Tarek M. Madkour

    2016-06-01

    Full Text Available Multi-walled carbon nanotube (MWCNT and graphene nanoplatelet reinforced thermoplastic poly(lactic acid (PLA biodegradable nanocomposites were designed and prepared using solution casting techniques. The prepared biodegradable polymers are expected to provide an environmentally friendly alternative to petroleum-based polymers. Both nanocomposite systems exhibited better thermal stability and improved mechanical performance over the unreinforced polymer exhibiting excellent strength and degradability. The addition of graphene nanofiller in varied amounts was aimed to enhance the thermal and mechanical properties of the nanocomposites even further and incorporate the outstanding characteristics of graphene nanoplatelets into the nanocomposites. The polymeric nanocomposites showed also superior advantages for oil drilling relevances, automotive lubricating purposes, membrane technology and food packaging. Scanning electron microscopy images indicated a homogeneous dispersion of the nanofiller within the polymeric matrix at low filler loadings and a cluster formation at higher loadings that could be responsible for the polymeric matrix movement restrictions. The enthalpy of mixing (the polymer and the nanofiller measured could explain the cause of the repulsive interactions between the nanoparticles and the polymeric chains, which created an additional excluded volume that the polymeric segments were restricted to occupy, thus forcing the conformational characteristics of the polymeric chains to deviate away from those of the bulk chains. The prepared polymeric nano composites (poly lactic acid carbon nano tube and poly lactic acid graphene nanoplatelets were utilized in the formulation of oil-base mud as a viscosifier. The rheological, filtration properties and electrical stability of the oil based mud formulation with the new polymeric nanocomposite were studied and the result compared to the oil-based mud formulation with commercial viscosifier.

  17. Polymeric micelles for apoptosis-targeted optical imaging of cancer and intraoperative surgical guidance.

    Directory of Open Access Journals (Sweden)

    Hyunah Cho

    Full Text Available In a two-step strategy, an intraperitoneal (IP injection of poly(ethylene glycol-block-poly(ε-caprolactone (PEG-b-PCL micelles containing paclitaxel (PTX, cyclopamine (CYP, and gossypol (GSP at 30, 30, and 30 mg/kg, respectively, debulked tumor tissues by 1.3-fold, based on loss of bioluminescence with <10% body weight change, and induced apoptosis in peritoneal tumors when used as neoadjuvant chemotherapy (NACT in an ES-2-luc-bearing xenograft model for ovarian cancer. In a second step, a single intravenous (i.v. injection of apoptosis-targeting GFNFRLKAGAKIRFGS-PEG-b-PCL micelles containing a near-infrared (NIR fluorescence probe, DiR (1,1'-dioctadecyltetramethyl indotricarbocyanine iodide, resulted in increased peritoneal DiR accumulation in apoptosis-induced ES-2-luc tumor tissues (ex vivo by 1.5-fold compared with DiR molecules delivered by methoxy PEG-b-PCL micelles (non-targeted at 48 h after i.v. injection in a second step. As a result, a tandem of PEG-b-PCL micelles enabled high-resolution detection of ca. 1 mm diameter tumors, resulting in resection of approximately 90% of tumors, and a low peritoneal cancer index (PCI of ca. 7. Thus, a tandem of PEG-b-PCL micelles used for NCAT and NIR fluorescence imaging of therapy-induced apoptosis for intraoperative surgical guidance may be a promising treatment strategy for metastatic ovarian cancer.

  18. Drug Combination Synergy in Worm-like Polymeric Micelles Improves Treatment Outcome for Small Cell and Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Wan, Xiaomeng; Min, Yuanzeng; Bludau, Herdis; Keith, Andrew; Sheiko, Sergei S; Jordan, Rainer; Wang, Andrew Z; Sokolsky-Papkov, Marina; Kabanov, Alexander V

    2018-03-27

    Nanoparticle-based systems for concurrent delivery of multiple drugs can improve outcomes of cancer treatments, but face challenges because of differential solubility and fairly low threshold for incorporation of many drugs. Here we demonstrate that this approach can be used to greatly improve the treatment outcomes of etoposide (ETO) and platinum drug combination ("EP/PE") therapy that is the backbone for treatment of prevalent and deadly small cell lung cancer (SCLC). A polymeric micelle system based on amphiphilic block copolymer poly(2-oxazoline)s (POx) poly(2-methyl-2-oxazoline- block-2-butyl-2-oxazoline- block-2-methyl-2-oxazoline) (P(MeOx- b-BuOx- b-MeOx) is used along with an alkylated cisplatin prodrug to enable co-formulation of EP/PE in a single high-capacity vehicle. A broad range of drug mixing ratios and exceptionally high two-drug loading of over 50% wt. drug in dispersed phase is demonstrated. The highly loaded POx micelles have worm-like morphology, unprecedented for drug loaded polymeric micelles reported so far, which usually form spheres upon drug loading. The drugs co-loading in the micelles result in a slowed-down release, improved pharmacokinetics, and increased tumor distribution of both drugs. A superior antitumor activity of co-loaded EP/PE drug micelles compared to single drug micelles or their combination as well as free drug combination was demonstrated using several animal models of SCLC and non-small cell lung cancer.

  19. Folate-conjugated polymeric micelle HB-loaded on targeting effect by intraperitoneal to ovarian cancer in vitro and in vivo.

    Science.gov (United States)

    Li, Jie; Yao, Shu; Wang, Kai; Lu, Zaijun; Su, Xuantao; Li, Li; Yuan, Cunzhong; Feng, Jinbo; Yan, Shi; Kong, Beihua; Song, Kun

    2018-04-04

    Photodynamic therapy (PDT) is considered as an innovative and attractive modality to treat ovarian cancer. In this study, a biodegradable polymer poly (ethylene glycol)-poly (lactic acid)(PLA)-folate (FA-PEG-PLA) was prepared in order to synthesize an active targeting, water soluble and pharmacomodulated photosensitizer nano-carriers. The drug loading content, encapsulation efficiency, in vitro and in vivo release were characterized, in which HB/FA-PEG-PLA micelles had a high encapsulation efficiency and much slower control release for drugs compared to free drugs (pHB/FA-PEG-PLA micelles, the cellular uptake study in vitro were tested, which owned significantly enhanced uptake of HB/FA-PEG-PLA micelles in SKOV3 (FR+) compared to A2780 cancer cells (FR-). The enhanced uptake of HB/FA-PEG-PLA micelles to cancer cells resulted in a more effective post-PDT killing of SKOV3 cells compared to plain micelles and free drugs. Binding and uptake of HB/FA-PEG-PLA micelles by SKOV3 cells were also observed in vivo after intraperitoneal injection of folate targeted micelles in tumor-bearing ascitic ovarian cancer animals. The drug levels in ascitic tumor tissues were increased by 20-fold (pHB-loaded micelles were mainly distributed in kidney and liver (the main clearance organs) in biodistribution. These results demonstrated that our new developed PDT photosensitizer HB/FA-PEG-PLA micelles has a high drug-loading capacity, good biocompatibility, control drug release, and enhanced targeting and antitumor effect, which is a potential approach to future targeting ovarian cancer therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery.

    Science.gov (United States)

    Mandracchia, Delia; Rosato, Antonio; Trapani, Adriana; Chlapanidas, Theodora; Montagner, Isabella Monia; Perteghella, Sara; Di Franco, Cinzia; Torre, Maria Luisa; Trapani, Giuseppe; Tripodo, Giuseppe

    2017-04-01

    Here, long-circulating behaviors of Inulin-based nanomicelles are demonstrated for the first time in vivo. We show the synthesis and evaluation of biotin (BIO)-decorated polymeric INVITE micelles constituted of substances of natural origin, Inulin (INU) and Vitamin E (VITE), as long-circulating carriers for receptor-mediated targeted drug delivery. The resulting INVITE or INVITE-BIO micelles, nanometrically sized, did not reveal any cytotoxicity after 24h of incubation with Caco-2 cells. Moreover, in vitro studies on Caco-2 cells monolayers indicated that the transport of INVITE-BIO micelles was faster than surface unmodified INVITE micelles. In vivo optical imaging studies evidenced that, upon intravenous administration, INVITE-BIO micelles were quantitatively present in the body up to 48h. Instead, after oral administration, the micelles were not found in the systemic circulation but eliminated with the normal intestinal content. In conclusion, INVITE-BIO micelles may enhance drug accumulation in tumor-cells over-expressing the receptor for biotin through receptor mediated endocytosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Biodegradable polymeric nanoformulation based on the antiprotozoal canthin-6-one

    International Nuclear Information System (INIS)

    Arias, José L.; Cebrián-Torrejón, Gerardo; Poupon, Erwan; Fournet, Alain; Couvreur, Patrick

    2011-01-01

    The efficacy of antiprotozoal agents against intracellular infections is very often limited by an almost negligible access to the cellular level where the pathogens are hidden. As a result, high doses of the chemotherapy agents are needed to be administered, but the great incidence of severe adverse drug effects generally leads to pharmacotherapy failure. To enhance the pharmacological effect of the antiprotozoal and antifungal canthin-6-one, loading into biodegradable poly(octylcyanoacrylate) nanoparticles has been considered. The preparation of canthin-6-one nanoformulation (average size ≈170 nm) has been performed by a single-absorption procedure with high drug loading and little burst release as determined by RP-HPLC. Further characterization of this nanoformulation has been carry out by electrophoretic measurements, analysis of the surface thermodynamics of the nanoparticles, and 1 H-NMR analysis. Nanoparticles loaded with canthin-6-one were characterized by a significant hydrophobicity and a great surface electrical charge under physiological conditions. These are two key physicochemical factors determining recognition by the reticuloendothelial system, resulting in a fast intracellular uptake by infected phagocytes. It is expected that this nanoformulation offers potential applications for an efficient canthin-6-one delivery to intracellular infections.

  2. Flexible biodegradable citrate-based polymeric step-index optical fiber.

    Science.gov (United States)

    Shan, Dingying; Zhang, Chenji; Kalaba, Surge; Mehta, Nikhil; Kim, Gloria B; Liu, Zhiwen; Yang, Jian

    2017-10-01

    Implanting fiber optical waveguides into tissue or organs for light delivery and collection is among the most effective ways to overcome the issue of tissue turbidity, a long-standing obstacle for biomedical optical technologies. Here, we report a citrate-based material platform with engineerable opto-mechano-biological properties and demonstrate a new type of biodegradable, biocompatible, and low-loss step-index optical fiber for organ-scale light delivery and collection. By leveraging the rich designability and processibility of citrate-based biodegradable polymers, two exemplary biodegradable elastomers with a fine refractive index difference and yet matched mechanical properties and biodegradation profiles were developed. Furthermore, we developed a two-step fabrication method to fabricate flexible and low-loss (0.4 db/cm) optical fibers, and performed systematic characterizations to study optical, spectroscopic, mechanical, and biodegradable properties. In addition, we demonstrated the proof of concept of image transmission through the citrate-based polymeric optical fibers and conducted in vivo deep tissue light delivery and fluorescence sensing in a Sprague-Dawley (SD) rat, laying the groundwork for realizing future implantable devices for long-term implantation where deep-tissue light delivery, sensing and imaging are desired, such as cell, tissue, and scaffold imaging in regenerative medicine and in vivo optogenetic stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors.

    Science.gov (United States)

    Fathi, Marziyeh; Barar, Jaleh

    2017-01-01

    Introduction: Polymeric nanoparticles (NPs) formulated using biodegradable polymers offer great potential for development of de novo drug delivery systems (DDSs) capable of delivering a wide range of bioactive agents. They can be engineered as advanced multifunctional nanosystems (NSs) for simultaneous imaging and therapy known as theranostics or diapeutics. Methods: A brief prospective is provided on biomedical importance and applications of biodegradable polymeric NSs through reviewing the recently published literature. Results: Biodegradable polymeric NPs present unique characteristics, including: nanoscaled structures, high encapsulation capacity, biocompatibility with non-thrombogenic and non-immunogenic properties, and controlled-/sustained-release profile for lipophilic and hydrophilic drugs. Once administered in vivo, all classes of biodegradable polymers (i.e., synthetic, semi-synthetic, and natural polymers) are subjected to enzymatic degradation; and hence, transformation into byproducts that can be simply eliminated from the human body. Natural and semi-synthetic polymers have been shown to be highly stable, much safer, and offer a non-/less-toxic means for specific delivery of cargo drugs in comparison with synthetic polymers. Despite being biocompatible and enzymatically-degradable, there are some drawbacks associated with these polymers such as batch to batch variation, high production cost, structural complexity, lower bioadhesive potential, uncontrolled rate of hydration, and possibility of microbial spoilage. These pitfalls have bolded the importance of synthetic counterparts despite their somewhat toxicity. Conclusion: Taken all, to minimize the inadvertent effects of these polymers and to engineer much safer NSs, it is necessary to devise biopolymers with desirable chemical and biochemical modification(s) and polyelectrolyte complex formation to improve their drug delivery capacity in vivo.

  4. Characterization of progesterone loaded biodegradable blend polymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Fernanda Vitória Leimann

    2015-11-01

    Full Text Available ABSTRACT: The encapsulation of progesterone in poly (hydroxybutirate-co-hydroxyvalerate (PHBV, poly (ε-caprolactone (PCL, poly (L-lactic acid (PLLA nanoparticles and PHBV/PCL and PHBV/PLLA blend nanoparticles was investigated in this research. Nanoparticles were produced by miniemulsion/solvent evaporation technique with lecithin as surfactant and were characterized regarding to z-average diameter (Dz and polydispersity (PDI, progesterone recovery yield and encapsulation efficiency. Possible interactions between progesterone and the polymer matrices were investigated by Fourier Transform Infrared Spectroscopy (FTIR. High recoveries (up to 102.43±1.80% for the PHBV/PLLA blend and encapsulation efficiencies (up to 99.53±0.04% for PCL were achieved and the nanoparticles presented narrow size distribution (0.12±0.03 for PLLA. PCL nanoparticles (217.5±2.12nm presented significant difference with the Dz from all the other formulations (P<0.05. The most evident interaction between progesterone and the nanoparticles polymeric matrix was found to PHBV/PCL due to the increase in the intensity of the band located in 1631 cm-1.

  5. Co-delivery of resveratrol and docetaxel via polymeric micelles to improve the treatment of drug-resistant tumors

    DEFF Research Database (Denmark)

    Guo, Xiong; Zhao, Zhiyue; Chen, Dawei

    2018-01-01

    Co-delivery of anti-cancer drugs is promising to improve the efficacy of cancer treatment. This study was aiming to investigate the potential of concurrent delivery of resveratrol (RES) and docetaxel (DTX) via polymeric nanocarriers to treat breast cancer. To this end, methoxyl poly(ethylene glycol...... profiles, and enhanced cytotoxicity in vitro against MCF-7 cells. The AUC(0→t) of DTX and RES in mPEG-PDLA micelles after i.v. administration to rats were 3.0-fold and 1.6-fold higher than that of i.v. injections of the individual drugs. These findings indicated that the co-delivery of RES and DTX using m...

  6. Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery.

    Science.gov (United States)

    Li, Xiaolong; Li, Huan; Liu, Guoqiang; Deng, Ziwei; Wu, Shuilin; Li, Penghui; Xu, Zushun; Xu, Haibo; Chu, Paul K

    2012-04-01

    Magnetite (Fe(3)O(4)) - loaded polymer micelles (denoted as "magnetomicelles") are produced by self-assembly of fluorine-containing amphiphilic poly(HFMA-g-PEGMA) copolymers with oleic acid modified Fe(3)O(4) nanoparticles in an aqueous medium. The oleic acid modified Fe(3)O(4) nanoparticles form small clusters in the poly(HFMA-g-PEGMA) micelles with a mean diameter of 100 nm and the magnetomicelles show high stability in an aqueous medium due to the high hydrophobic fluorine segments in graft copolymers enhance the stability of the micelles. The magnetomicelles also show good cytocompatibility based on the MTT cytotoxicity assay and possess paramagnetic properties with saturation magnetization of 17.14 emu/g.Their good stability, cytocompatibility, and paramagnetic properties render the materials attractive in drug delivery and in vivo magnetic resonance imaging (MRI) applications. Controlled release of hydrophobic drug-5-fluorouracil is achieved from the magnetomicelles with a loading efficiency of 20.94 wt%. The magnetomicelles have transverse relaxivity rates (r(2)) of 134.27 mM(-1) s(-1) and exhibit high efficacy as a negative MRI agent in T(2)-weighted imaging. In vivo MRI studies demonstrate that the contrast between liver and spleen is enhanced by the magnetomicelles. These favorable properties suggest clinical use as nanocarriers in drug delivery applications and contrast agents in MRI. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy.

    Science.gov (United States)

    Wang, Qin; Jiang, Hao; Li, Yan; Chen, Wenfei; Li, Hanmei; Peng, Ke; Zhang, Zhirong; Sun, Xun

    2017-04-01

    The transcription factor NF-kB plays a pivotal role in the pathogenesis of rheumatoid arthritis. Here we attempt to slow arthritis progression by co-delivering the glucocorticoid dexamethasone (Dex) and small-interfering RNA targeting NF-kB p65 using our previously developed polymeric hybrid micelle system. These micelles contain two similar amphiphilic copolymers: polycaprolactone-polyethylenimine (PCL-PEI) and polycaprolactone-polyethyleneglycol (PCL-PEG). The hybrid micelles loaded with Dex and siRNA effectively inhibited NF-kB signaling in murine macrophages more efficiently than micelles containing either Dex or siRNA on their own. In addition, the co-delivery system was able to switch macrophages from the M1 to M2 state. Injecting hybrid micelles containing Dex and siRNA into mice with collagen-induced arthritis led the therapeutic agents to accumulate in inflamed joints and reduce inflammation, without damaging renal or liver function. Thus, blocking NF-kB activation in inflammatory tissue using micelle-based co-delivery may provide a new approach for treating inflammatory disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    International Nuclear Information System (INIS)

    Gong Changyang; Wei Xiawei; Wang Xiuhong; Wang Yujun; Guo Gang; Mao Yongqiu; Luo Feng; Qian Zhiyong

    2010-01-01

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  9. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    Science.gov (United States)

    Gong, ChangYang; Wei, XiaWei; Wang, XiuHong; Wang, YuJun; Guo, Gang; Mao, YongQiu; Luo, Feng; Qian, ZhiYong

    2010-05-01

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  10. Lenghty reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) polymeric micelles and gels for sustained release of antifungal drugs.

    Science.gov (United States)

    Figueroa-Ochoa, Edgar B; Villar-Alvarez, Eva M; Cambón, Adriana; Mistry, Dharmista; Llovo, José; Attwood, David; Barbosa, Silvia; Soltero, J F Armando; Taboada, Pablo

    2016-08-20

    In this work, we present a detailed study of the potential application of polymeric micelles and gels of four different reverse triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) copolymers (BOnEOmBOn, where n denotes the respective block lengths), specifically BO8EO90BO8, BO14EO378BO14, BO20EO411BO20 and BO21EO385BO21, as effective drug transport nanocarriers. In particular, we tested the use of this kind of polymeric nanostructures as reservoirs for the sustained delivery of the antifungals griseofulvin and fluconazole for oral and topical administration. Polymeric micelles and gels formed by these copolymers were shown to solubilize important amounts of these two drugs and to have a good stability in physiologically relevant conditions for oral or topical administration. These polymeric micellar nanocarriers were able to release drugs in a sustained manner, being the release rate slower as the copolymer chain hydrophobicity increased. Different sustained drug release profiles were observed depending on the medium conditions. Gel nanocarriers were shown to display longer sustained release rates than micellar formulations, with the existence of a pulsatile-like release mode under certain solution conditions as a result of their inner network structure. Certain bioadhesive properties were observed for the polymeric physical gels, being moderately tuned by the length and hydrophobicity of the polymeric chains. Furthermore, polymeric gels and micelles showed activity against the yeast Candida albicans and the mould demartophytes (Trichophyton rubrum and Microsporum canis) and, thus, may be useful for the treatment of different cutaneous fungal infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Paracetamol biodegradation by activated sludge and photocatalysis and its removal by a micelle-clay complex, activated charcoal, and reverse osmosis membranes.

    Science.gov (United States)

    Karaman, Rafik; Khamis, Mustafa; Abbadi, Jehad; Amro, Ahmad; Qurie, Mohannad; Ayyad, Ibrahim; Ayyash, Fatima; Hamarsheh, Omar; Yaqmour, Reem; Nir, Shlomo; Bufo, Sabino A; Scrano, Laura; Lerman, Sofia; Gur-Reznik, Shirra; Dosoretz, Carlos G

    2016-10-01

    Kinetic studies on the stability of the pain killer paracetamol in Al-Quds activated sludge demonstrated that paracetamol underwent biodegradation within less than one month to furnish p-aminophenol in high yields. Characterizations of bacteria contained in Al-Quds sludge were accomplished. It was found that Pseudomonas aeruginosa is the bacterium most responsible for the biodegradation of paracetamol to p-aminophenol and hydroquinone. Batch adsorptions of paracetamol and its biodegradation product (p-aminophenol) by activated charcoal and a composite micelle (octadecyltrimethylammonium)-clay (montmorillonite) were determined at 25°C. Adsorption was adequately described by a Langmuir isotherm, and indicated better efficiency of removal by the micelle-clay complex. The ability of bench top reverse osmosis (RO) plant as well as advanced membrane pilot plant to remove paracetamol was also studied at different water matrixes to test the effect of organic matter composition. The results showed that at least 90% rejection was obtained by both plants. In addition, removal of paracetamol from RO brine was investigated by using photocatalytic processes; optimal conditions were found to be acidic or basic pH, in which paracetamol degraded in less than 5 min. Toxicity studies indicated that the effluent and brine were not toxic except for using extra low energy membrane which displayed a half maximal inhibitory concentration (IC-50) value of 80%.

  12. Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery.

    Science.gov (United States)

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Chevalier, Yves

    2017-10-05

    Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Polymeric micelles based on poly(ethylene oxide) and α-carbon substituted poly(ɛ-caprolactone): An in vitro study on the effect of core forming block on polymeric micellar stability, biocompatibility, and immunogenicity.

    Science.gov (United States)

    Garg, Shyam M; Vakili, Mohammad Reza; Lavasanifar, Afsaneh

    2015-08-01

    A series of block copolymers based on methoxy poly(ethylene oxide)-block-poly(ɛ-caprolactone) (PEO-b-PCL), PEO-b-PCL bearing side groups of benzyl carboxylate (PEO-b-PBCL), or free carboxyl (PEO-b-PCCL) on the PCL backbone with increasing degrees of polymerization of the PCL backbone were synthesized. Prepared block copolymers assembled to polymeric micelles by co-solvent evaporation. The physical stability of prepared micelles was assessed by measuring their tendency toward aggregation over time using dynamic light scattering (DLS). The resistance of micelles against dissociation in the presence of a micelle destabilizing agent, i.e., sodium dodecyl sulfate (SDS), was also investigated using DLS. The rate of micellar core degradation was determined using (1)H NMR for polymer molecular weight measurement upon incubation of micelles in PBS (pH=7.4) at 37°C followed by dialysis of the remaining polymer at different time intervals. The effect of pendent group chemistry in the micellar core on the adsorption of serum proteins to micellar structure was then evaluated using Bradford Protein assay kit. Finally, the effect of micellar core structure on the induction of bone marrow derived dendritic cell (BMDC) maturation and secretion of IL-12 was studied as a measure of micellar immunogenicity. The results showed micelle structures from polymers with higher degree of polymerization in the hydrophobic block and/or those with more hydrophobic substituents on the core-forming block, to be more stable. This was reflected by a decreased tendency for micellar aggregation, reduced dissociation of micelles in the presence of SDS, and diminished core degradation. All micelles were shown to have insignificant adsorption of serum protein suggesting that the hydrophilic PEO shell provided sufficient protection of the core. However, the protein adsorption increased with increase in the hydrophobicity and molecular weight of the core-forming block. Irrespective of the micellar core

  14. Biodegradable polymeric microsphere-based drug delivery for inductive browning of fat

    Directory of Open Access Journals (Sweden)

    Chunhui eJiang

    2015-11-01

    Full Text Available Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide (PLGA, a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue (WAT depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.

  15. Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly

    KAUST Repository

    Nunes, Suzana Pereira

    2011-05-24

    A process is described to manufacture monodisperse asymmetric pH-responsive nanochannels with very high densities (pore density >2 × 10 14 pores per m2), reproducible in m2 scale. Cylindric pores with diameters in the sub-10 nm range and lengths in the 400 nm range were formed by self-assembly of metal-block copolymer complexes and nonsolvent-induced phase separation. The film morphology was tailored by taking into account the stability constants for a series of metal-polymer complexes and confirmed by AFM. The distribution of metal-copolymer micelles was imaged by transmission electron microscopy tomography. The pH response of the polymer nanochannels is the strongest reported with synthetic pores in the nm range (reversible flux increase of more than 2 orders of magnitude when switching the pH from 2 to 8) and could be demonstrated by cryo-field emission scanning electron microscopy, SAXS, and ultra/nanofiltration experiments. © 2011 American Chemical Society.

  16. Investigations on Clonazepam Loaded Polymeric Micelle-like Nanoparticles for Safe Drug Administration During Pregnancy.

    Science.gov (United States)

    Sezgin-Bayindir, Zerrin; Elcin, Ayse Eser; Parmaksiz, Mahmut; Elcin, Yasar Murat; Yuksel, Nilufer

    2018-03-01

    Medication during pregnancy is often a necessity for women to treat their acute or chronic diseases. The goal of this study is to evaluate the potential of micelle-like nanoparticles (MNP) for providing safe drug usage in pregnancy and protect both fetus and mother from medication side effects. Clonazepam loaded MNP were prepared from copolymers (polystyrene-poly(acrylic acid) (PS-PAA), poly(ethylene glycol)-b-poly(lactic acid) (PEG-PLA) and distearyl-sn-glycero-3-phosphoethanolamine-N-[methoxy-poly(ethylene glycol) (PEG-DSPE)) with varying monomer ratios and their drug loading efficiency, drug release ratio, particle size, surface charge and morphology were characterized. The cellular transport and cytotoxicity experiments were conducted on clonazepam and MNP formulations using placenta-choriocarcinoma-BeWo and brain-endothelial-bEnd3 cells. Clonazepam loaded PEG 5000 -PLA 4500 MNP reduced the drug transport through BeWo cells demonstrating that MNP may lower fetal drug exposure, thus reduce the drug side effects. However, lipofectamine modified MNP improved the transport of clonazepam and found to be promising for brain and in-utero specific drug treatment.

  17. Triolimus: A Multi-Drug Loaded Polymeric Micelle Containing Paclitaxel, 17-AAG, and Rapamycin as a Novel Radiosensitizer.

    Science.gov (United States)

    Tomoda, Keishiro; Tam, Yu Tong; Cho, Hyunah; Buehler, Darya; Kozak, Kevin R; Kwon, Glen S

    2017-01-01

    Triolimus is a multi-drug loaded polymeric micelle containing paclitaxel (PTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), and rapamycin (RAP). This study examines the radiosensitizing effect of Triolimus in vitro and in vivo. Radiosensitizing effects of Triolimus on A549 cells are dose dependent and at 2 × 10 -9 m, Triolimus shows significant radiosensitization even at low radiation doses (2 Gy). By sensitivity enhancement ratio, PTX alone, dual drug combinations, and Triolimus treatment at 2 × 10 -9 m have radiosensitizing effects with potency as follows: PTX alone (PTX) > PTX and RAP (P/R) > Triolimus (TRIO) > PTX and 17-AAG (P/17) >17-AAG and RAP (17/R). In vivo, fractionated radiation of 15 Gy preceded by infusion of PTX alone, dual drug combinations, or an intermediate dose of Triolimus (Int. TRIO: PTX/17-AAG/RAP at 15/15/7.5 mg kg -1 ) strongly inhibits A549 tumor growth. Notably, pretreatment with high dose of Triolimus (High TRIO: PTX/17-AAG/RAP at 60/60/30 mg kg -1 ) before the fractionated radiation leads to tumor control for up to 24 weeks. An enhanced radiosensitizing effect is observed without an increase in acute toxicity compared to PTX alone or radiation alone. These results suggest that further investigations of Triolimus in combination with radiation therapy are merited. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Novel pH-sensitive biodegradable polymeric drug delivery systems based on ketal polymers.

    Science.gov (United States)

    Chen, Daquan; Wang, Hongbo

    2014-01-01

    This article reviews the recent developments on novel pH-sensitive ketal-based biodegradable polymeric drug delivery systems. Due to the degradation of ketal derivatives, neutral alcohols and ketones, ketal derivatives can be used to fabricate pH-degradable polymer with pH-degradable ketal linkages in new drug delivery systems by avoiding inflammatory problems. Due to the novelty of ketal polymers, there were few reports about ketal polymers. The review starts with a brief introduction to the pH-sensitive drug delivery system, followed by the structure, preparation and characterization techniques of ketal polymers. Thereafter, the promising applications in various diseases in relation to micro/nano drug carriers based on ketal polymers are summarized and discussed.

  19. A Near-Infrared Photothermal Effect-Responsive Drug Delivery System Based on Indocyanine Green and Doxorubicin-Loaded Polymeric Micelles Mediated by Reversible Diels-Alder Reaction.

    Science.gov (United States)

    Li, Hui; Li, Junjie; Ke, Wendong; Ge, Zhishen

    2015-10-01

    Near-infrared light (NIR) possesses great advantages for light-responsive controllable drug release, such as deep tissue penetration and low damage to healthy tissues. Herein, a NIR-responsive drug delivery system is developed based on a NIR dye, indocyanine green (ICG), and anticancer drug, doxorubicin (DOX)-loaded thermoresponsive block copolymer micelles, in which the drug release can be controlled via NIR irradiation. First, block copolymers, poly(oligo(ethylene glycol) methacrylate)-block-poly(furfuryl methacrylate) (POEGMA-b-PFMA), are synthesized by sequential reversible addition-fragmentation chain-transfer (RAFT) polymerization, followed by modification with N-octyl maleimide through Diels-Alder (DA) reaction to produce POEGMA-b-POMFMA. The self-assembly of POEGMA-b-POMFMA by nano-precipitation in aqueous solution affords the polymeric micelles which are used to simultaneously encapsulate ICG and DOX. Upon irradiation by NIR light (805 nm), the loaded DOX is released rapidly from the micelles due to partial retro DA reaction and local temperature increase-induced faster drug diffusion by the photothermal effect. Cytotoxicity evaluation and intracellular distribution observation demonstrate significant synergistic effects of NIR-triggered drug release, photothermal, and chemotherapy toward cancer cells under NIR irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    International Nuclear Information System (INIS)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-01-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties. - Highlights: ► Chitosan and starch-based biodegradable films were prepared by casting. ► With the increase of chitosan in starch, the strength of the films improved significantly. ► Monomer, 2-Butane diol-diacrylate was grafted with the films by gamma radiation. ► Mechanical properties of synthetic polymeric films improved by gamma radiation. ► The irradiated polymer films showed better water vapor barrier properties.

  1. Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric

    International Nuclear Information System (INIS)

    Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio

    2010-01-01

    A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9x10 5 and 1.0x10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1 , which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.

  2. Physico-chemical properties of meso-tetrakis(p-methoxyphenylporphyrin (TMPP incorporated into pluronicTM p-123 and f-127 polymeric micelles

    Directory of Open Access Journals (Sweden)

    Bruno H. Vilsinski

    2014-01-01

    Full Text Available The physicochemical properties (solubilization, structural organization and stability of meso-tetrakis(p-methoxyphenylporphyrin (TMPP, a promising photosensitizer for photodynamic therapy, solubilized in polymeric micelles of tri-block copolymers PluronicTM P-123 and F-127, were studied. The formulations obtained by the solid dispersion method led to monomerization of TMPP in these copolymers. Solubility studies showed that P-123 solubilizes double the photosensitizer than F-127. The self-aggregation phenomenon was affected by the [TMPP]/[poloxamer] ratio and medium temperature. The decrease in the temperature of these systems promoted the formation of different kinds of TMPP aggregates intrinsically connected with the structural changes occurring in the micelles.

  3. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation. Copyright © 2015. Published by Elsevier Ltd.

  4. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles

    Directory of Open Access Journals (Sweden)

    Cheng CC

    2013-04-01

    Full Text Available Chun-Chia Cheng,1,2,* Chiung-Fang Huang,3,4,* Ai-Sheng Ho,5 Cheng-Liang Peng,6 Chun-Chao Chang,7,8 Fu-Der Mai,1,9 Ling-Yun Chen,10 Tsai-Yueh Luo,2 Jungshan Chang1,11,121Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, 2Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, 3School of Dental Technology, Taipei Medical University, Taipei, 4Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei, 5Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, 6Institute of Biomedical Engineering, National Taiwan University, Taipei, 7Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 8Department of Internal Medicine, Taipei Medical University, Taipei, 9Department of Biochemistry, Taipei Medical University, Taipei, 10Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, 11Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 12Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan*These authors contributed equally to this workAbstract: Increased expression of cellular membrane bound glucose-regulated protein 78 (GRP78 is considered to be one of the biomarkers for gastric cancers. Therefore, peptides or molecules with specific recognition to GRP78 can act as a guiding probe to direct conjugated imaging agents to localized cancers. Based on this rationale, GRP78-guided polymeric micelles were designed and manufactured for nuclear imaging detection of tumors. Thiolated GRP78 binding peptide (GRP78BP was first labeled with maleimide-terminated poly(ethylene glycol–poly(ε-caprolactone and then mixed with diethylenetriaminepentaacetic acid (DTPA-linked poly(ethylene glycol–poly(ε-caprolactone to form DTPA/GRP78BP-conjugated micelles. The coupling efficiency of micelles with

  5. Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance.

    Science.gov (United States)

    Zhang, Jiulong; Zhao, Xiufeng; Chen, Qing; Yin, Xiaoyi; Xin, Xiu; Li, Kexin; Qiao, Mingxi; Hu, Haiyang; Chen, Dawei; Zhao, Xiuli

    2017-03-01

    Multidrug resistance (MDR) of tumor cells is becoming the main reason for the failure of chemotherapy and P-glycoprotein (P-gp) mediated drug efflux has demonstrated to be the key factor for MDR. To address this issue, a novel pH-responsive mixed micelles drug delivery system composed of dextran-g-poly(lactide-co-glycolide)-g-histidine (HDP) and folate acid-D-α-tocopheryl polyethylene glycol 2000 (FA-TPGS2K) copolymers has been designed for the delivery of antitumor agent, paclitaxel (PTX) via FA-receptor mediated cell endocytosis, into PTX-resistant breast cancer MCF-7 cells (MCF-7/PTX). PTX-loaded FA-TPGS2K/HDP mixed micelles were characterized to have a small size distribution, high loading content and excellent pH-responsive drug release profiles. Compared with HDP micelles, FA-TPGS2K/HDP mixed micelles showed a higher cytotoxicity against MCF-7 and MCF-7/PTX cells due to the synergistic effect of FA-receptor mediated cell endocytosis, pH-responsive drug release and TPGS mediated P-gp inhibition. P-gp expression level, ATP content and mitochondrial membrane potential change have been measured, the results indicated blank FA-TPGS2K/HDP mixed micelles could inhibit the P-gp activity by reducing the mitochondrial membrane potential and depleting ATP content but not down-regulating the P-gp expression. In vivo antitumor activities demonstrated FA-TPGS2K/HDP mixed micelles could reach higher antitumor activity compared with HDP micelles for MCF-7/PTX tumor cells. Histological assay also indicated that FA-TPGS2K/HDP mixed micelles showed strongly apoptosis inducing effect, anti-proliferation effect and anti-angiogenesis effect. All these evidences demonstrated this pH-sensitive FA-TPGS2K/HDP micelle-based drug delivery system is a promising approach for overcoming MDR. In this work, a novel FA-TPGS2K copolymer has been synthesized and used it to construct mixed micelles with HDP copolymer to overcome MDR effect. Furthermore, a series in vitro and in vivo evaluations

  6. New Biofunctional Loading of Natural Antimicrobial Agent in Biodegradable Polymeric Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Bakhtawar Ghafoor

    2016-01-01

    Full Text Available The study focuses on the development of novel Aloe vera based polymeric composite films and antimicrobial suture coatings. Polyvinyl alcohol (PVA, a synthetic biocompatible and biodegradable polymer, was combined with Aloe vera, a natural herb used for soothing burning effects and cosmetic purposes. The properties of these two materials were combined together to get additional benefits such as wound healing and prevention of surgical site infections. PVA and Aloe vera were mixed in a fixed quantity to produce polymer based films. The films were screened for antibacterial and antifungal activity against bacterial (E. coli, P. aeruginosa and fungal strains (Aspergillus flavus and Aspergillus tubingensis screened. Aloe vera based PVA films showed antimicrobial activity against all the strains; the lowest Aloe vera concentration (5% showed the highest activity against all the strains. In vitro degradation and release profile of these films was also evaluated. The coating for sutures was prepared, in vitro antibacterial tests of these coated sutures were carried out, and later on in vivo studies of these coated sutures were also performed. The results showed that sutures coated with Aloe vera/PVA coating solution have antibacterial effects and thus have the potential to be used in the prevention of surgical site infections and Aloe vera/PVA based films have the potential to be used for wound healing purposes.

  7. Nano-sized Soluplus® polymeric micelles enhance the induction of tetanus toxin neutralising antibody response following transcutaneous immunisation with tetanus toxoid.

    Science.gov (United States)

    Saydam, Manolya; Cheng, Woei Ping; Palmer, Nathan; Tierney, Robert; Francis, Robert; MacLellan-Gibson, Kirsty; Khan, Ambreen; Mawas, Fatme

    2017-04-25

    The use of Soluplus® polymeric micelles as a novel adjuvant for tetanus toxoid (TTxd) in transcutaneous immunisation was evaluated. TTxd was added to Soluplus® polymeric micelles to form TTxd-Soluplus® nano-aggregates with a size of 68nm. Non-adjuvanted TTxd commonly induces very poor antibody response by the transcutaneous route. However, in this study, the use of TTxd-Soluplus® resulted in a significant increase in the antibody response to TTxd, which was similar to that induced in the presence of CPG-oligodeoxynucleotides (CPG-ODNs) adjuvant. The toxin neutralising potency of the immune sera induced by TTxd-Soluplus® was also much stronger than that from TTxd alone, in a passive transfer experiment in mice. Soluplus® also enhanced the immunogenicity of the toxoid when TTxd-Soluplus® was stored at 4°C for 4weeks, but not at higher temperatures. Confocal microscopy imaging showed a much higher uptake of TTxd in the epidermis and dermis layers of the skin when it was associated with Soluplus®, suggesting that the mechanism for Soluplus® adjuvanticity is through enhanced uptake of the TTxd through the skin. Overall, our findings demonstrated that Soluplus® is an effective novel adjuvant for transcutaneous immunisation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Preparation of porous structures with shape memory properties from biodegradable polymeric networks

    NARCIS (Netherlands)

    Sharifi, Shahriar; Blanquer, Sebastien; Grijpma, Dirk W.

    2012-01-01

    Preparing porous biodegradable structures from shape memory polymers can combine the structure-defining properties of porous structures with the minimally invasive implanting possibilities of shape memory polymers. In this study, porous biodegradable shape memory structures were prepared using

  9. Preparation of core-crosslinked linear-dendritic copolymer micelles with enhanced stability and their application for drug solubilisation.

    Science.gov (United States)

    Zhou, Zhengyuan; Forbes, Robert T; D'Emanuele, Antony

    2017-05-15

    In this study we explore the preparation of core-crosslinked micelles of linear-dendritic methoxy-poly(ethylene glycol) (MPEG)-co-poly(ester-sulfide) (PES) polymers to improve the stability of such polymeric micelle systems against premature disintegration and drug release. A series of MPEG-PES copolymers were synthesised via stepwise reactions of acetylation and thiol-ene photoreaction. Surface tension measurement showed that the copolymers with ethenyl surface groups could self-associate in dilute aqueous solutions to form micelles. Crosslinking within the micelle cores in the presence of dithioerythritol (DTT) linker was initiated under UV radiation. The formation of core-crosslinked micelles was confirmed by HPLC in combination with charged aerosol detection (CAD). The copolymers were found to readily hydrolyse under acidic conditions due to the ester-containing dendrons. Drug solubilisation capacities of the micellar solutions were determined using griseofulvin as a poorly water-soluble model drug. The solubility of griseofulvin showed a 10-fold enhancement in 1% w/v micelle solution and increased with the concentration of the copolymers. Drug release studies indicated that a more sustained release of griseofulvin was achieved for the core-crosslinked micelles compared to the non-crosslinked micelles, attributable to greater stability of the crosslinked core structure. The findings of this study present a new pathway towards developing biodegradable polymeric nanocarriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Positron Emission Tomography Based Analysis of Long-Circulating Cross-Linked Triblock Polymeric Micelles in a U87MG Mouse Xenograft Model and Comparison of DOTA and CB-TE2A as Chelators of Copper-64

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann; Binderup, Tina; Ek, Pramod Kumar

    2014-01-01

    Copolymers of ABC-type (PEG-PHEMA-PCMA) architecture were prepared by atom transfer radical polymerization and formulated as micelles with functionalizable primary alcohols in the shell-region (PHEMA-block) to which the metal-ion chelators DOTA or CB-TE2A were conjugated. Using this micelle system...... we compared the in vivo stabilities of DOTA and CB-TE2A as chelators of 64Cu in micelle nanoparticles. The coumarin polymer (PCMA-block) micelle core was cross-linked by UV irradiation at 2 W/cm2 for 30 min. The cross-linked micelles were labeled with 64Cu at room temperature for 2 h (DOTA) or 80 °C...... for 3 h (CB-TE2A), giving labeling efficiencies of 60–76% (DOTA) and 40–47% (CB-TE2A). 64Cu-micelles were injected into tumor-bearing mice (8 mg/kg) and PET/CT scans were carried out at 1, 22, and 46 h postinjection. The micelles showed good blood stability (T1/2: 20–26 h) and tumor uptake...

  11. Effect of nonionic surfactants in release media on accelerated in-vitro release profile of sirolimus eluting stents with biodegradable polymeric coating

    Directory of Open Access Journals (Sweden)

    Ami Raval

    2018-02-01

    Full Text Available It is a well-known fact that sirolimus (SRL undergoes degradation process via hydrolysis in aqueous media, leading to incorrect assessment of drug amount and thus release characteristics of formulations. The main objective of the present study was to evaluate the effect of nonionic surfactants in media on in-vitro release profiles for sirolimus eluting stents (SES coated with biodegradable polymeric matrix. Phosphate buffer and acetate buffer incorporating nonionic surfactants with varying concentrations were examined for adequate solubility and stability (by RP-HPLC. Good sink condition was achieved in phosphate buffer (at pH 4.0 with 1.0% Tween 20, 1.0% Brij 35% and 0.5% Brij 58. Hydrodynamic size (by DLS and the micelle-water partition coefficient (P with standard free energy of solubilization (∆Gs° of drug were evaluated to get some understanding about the solubilization phenomena. About 80% of drug release during the period of 48 h was achieved in optimized drug release media which was 1.0% Tween 20 in phosphate buffer pH 4.0. The obtained accelerated SRL release profile in optimized medium correlated well with the real time in-vitro release in phosphate buffer (pH 7.4. Surface morphology changes (by SEM, changes in gravimetric weights and molecular weight change (by GPC were examined before and after drug release to understand the drug release mechanism which explains that the polymer did not undergo degradation during the drug release.

  12. Polymeric micelles as a diagnostic tool for image-guided drug delivery and radiotherapy of HER2 overexpressing breast cancer

    Science.gov (United States)

    Hoang, Nu Bryan

    Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to

  13. In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles.

    Science.gov (United States)

    Liaw, J; Chang, S F; Hsiao, F C

    2001-07-01

    The primary objective of this study was to investigate the feasibility of using PEO-PPO-PEO non-ionic copolymeric micelles as a carrier for eye-drop gene delivery of plasmid DNA with lacZ gene in vivo. Using pyrene fluorescence probe methods, zeta potential, and dynamic light scattering test (DLS), the ability of micelle formation of these block copolymers with plasmid was studied. Gene expressions were visualized by both the quality of enzymatic color reaction using X-gal staining and by the quantification of the substrate chlorophenol red galactopyranoside (CPRG) in enucleated eyes on day 2 after gene transfer. In addition, microscopy to identify the types of cell showing uptake and expression of the transferred gene was used. We found that the block polymeric micelles were formed above 0.1% (w/v) of block copolymer with a size of 160 nm and a zeta potential of -4.4 mV. After 2 days of topically delivery three times a day, the most intense gene expression was observed on days 2 and 3. Reporter expression was detected around the iris, sclera, conjunctiva, and lateral rectus muscle of rabbit eyes and also in the intraocular tissues of nude mice upon in vivo topical application for 48 h with a DNA/polymeric micelle formulation. Furthermore, after two enhancement treatments, the transport mechanisms of the block copolymeric micelles were found through endocytosis in tissues by enhancement through the tight junction pathway. Thus, efficient and stable transfer of the functional gene could be achieved with PEO-PPO-PEO polymeric micelles through topical delivery in mice and rabbits. These in vivo experiments indicate the possible potential use of block copolymers for DNA transfer.

  14. Folate-targeted paclitaxel-conjugated polymeric micelles inhibits pulmonary metastatic hepatoma in experimental murine H22 metastasis models

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2014-04-01

    Full Text Available Yan Zhang,1 Hui Zhang,2 Wenbin Wu,2 Fuhong Zhang,3,4 Shi Liu,3 Rui Wang,3 Yingchun Sun,1 Ti Tong,1 Xiabin Jing3 1Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China; 2Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, People's Republic of China; 3State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China; 4Department of Otolaryngology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China Abstract: Hepatocellular carcinoma shows low response to most conventional chemotherapies; additionally, extrahepatic metastasis from hepatoma is considered refractory to conventional systemic chemotherapy. Target therapy is a promising strategy for advanced hepatoma; however, targeted accumulation and controlled release of therapeutic agents into the metastatic site is still a great challenge. Folic acid (FA and paclitaxel (PTX containing composite micelles (FA-M[PTX] were prepared by coassembling the FA polymer conjugate and PTX polymer conjugate. The main purpose of this study is to investigate the inhibitory efficacy of FA-M(PTX on the pulmonary metastasis of intravenously injected murine hepatoma 22 (H22 on BALB/c mice models. The lung metastatic burden of H22 were measured and tissues were analyzed by immunohistochemistry and histology (hematoxylin and eosin stain, followed by survival analysis. The results indicated that FA-M(PTX prevented pulmonary metastasis of H22, and the efficacy was stronger than pure PTX and simple PTX-conjugated micelles. In particular, the formation of lung metastasis colonies in mice was evidently inhibited, which was paralleled with the downregulated expression of matrix metalloproteinase-2 and matrix metalloproteinase-9. Furthermore, the mice bearing pulmonary metastatic hepatoma in the FA

  15. Biodegradability of biobased polymeric materials in natural environments: Structures and Chemistry

    CSIR Research Space (South Africa)

    Muniyasamy, S

    2017-03-01

    Full Text Available The development of biobased polymer materials from renewable resources meets the concept of sustainability, offering the potential of renewability, biodegradation, and a path away from the problems associated with plastic derived from nonrenewable...

  16. Biodegradable Polymeric Nanoparticles for Tumor-Selective Tamoxifen Delivery: In Vitro and In Vivo Studies

    National Research Council Canada - National Science Library

    Shenoy, Dinesh B; Chawla, Jugminder S; Amiji, Mansoor M

    2005-01-01

    ... into biodegradable, surface-modified poly(e-caprolactone) (PCL) nanoparticles. PCL (MW ̂ 15,000) nanoparticles were prepared by the solvent displacement method and characterized for particle size/change and surface morphology...

  17. Dominant role of wormlike micelles in temperature-responsive viscoelastic properties of their mixtures with polymeric chains

    KAUST Repository

    Molchanov, Vyacheslav S.

    2013-03-01

    Temperature effects on the rheological properties of viscoelastic solutions containing entangled wormlike micelles of potassium oleate and hydrophobically modified polyacrylamide were studied in a wide range of polymer concentrations. A very pronounced drop of viscosity by four orders of magnitude was observed at heating from 20 to 78 °C both in the presence and in the absence of polymer indicating that the wormlike micelles are mainly responsible for this effect. The highly thermosensitive behavior was attributed to the shortening of micellar chains induced by heating. Although the decrease in viscosity is almost the same for both surfactant and surfactant/polymer systems, the absolute values of the viscosity in the presence of polymer are by few orders of magnitude higher, which is due to the formation of a common network of entangled polymer and micellar chains. As a result, the added polymer allows one to get highly temperature responsive system that keeps viscoelastic properties in a much wider range of temperatures, which makes it very promising for various practical applications. © 2012 Elsevier Inc.

  18. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles

    Directory of Open Access Journals (Sweden)

    Chen YC

    2015-12-01

    Full Text Available Ying-Chen Chen,* Chia-Yu Su,* Hua-Jun Jhan, Hsiu-O Ho, Ming-Thau Sheu School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan *These authors contributed equally to this work Abstract: To alleviate the inherent problems of amphotericin B (AmB, such as poor water solubility and nephrotoxicity, a novel self-assembling mixed polymeric micelle delivery system based on lecithin and combined with amphiphilic polymers, Pluronic®, Kolliphor®, d-alpha tocopheryl polyethylene glycol succinate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(poly(ethylene glycol-2000 (DSPE-PEG2K was developed. An optimal formulation (Ambicelles composed of AmB:lecithin:DSPE-PEG2K in a 1:1:10 weight ratio was obtained. The particle size, polydispersion index, drug encapsulation efficiency, and drug loading were 187.20±10.55 nm, 0.51±0.017, 90.14%, and 7.51%, respectively, and the solubility was increased from 0.001 to 5 mg/mL. Compared with that of Fungizone®, the bioavailability of Ambicelles administered intravenously and orally increased 2.18- and 1.50-fold, respectively. Regarding the in vitro cytotoxicity, Ambicelles had a higher cell viability than free AmB solution or Fungizone® did. With pretreatment of 50 µg/mL ethanolic extract of Taiwanofungus camphoratus followed by AmB to HT29 colon cancer cells, the 50% inhibitory concentration of AmB solution was 12 µg/mL, whereas that of Ambicelles was 1 µg/mL, indicating that Ambicelles exerted a greater synergistic anticancer effect. Keywords: amphotericin B, micelle, amphiphilic polymer, lecithin, DSPE-PEG

  19. Drug ‘‘supersaturation’’ states induced by polymeric micelles and liposomes: A mechanistic investigation into permeability enhancements

    DEFF Research Database (Denmark)

    Di Cagno, Massimiliano; Luppi, Barbara

    2013-01-01

    entrapped plus non-entrapped in the carriers) as well as the concentration of molecularly dissolved drug (i.e. fraction non-entrapped into carriers) were characterized. Subsequently, the permeability of hydrocortisone was assessed for each type of formulation using the in-vitro sheep nasal mucosa...... liposome formulations as well as d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) micelle dispersions and polyvinylpyrrolidone (PVP) supersaturated solutions were prepared in order to increase the apparent solubility of HC. Both the apparent solubility of hydrocortisone (i.e. amount of drug...... permeability assay. In all formulations where solubilizing agents are present, an enhanced flux of HC (compared to the pure drug powder suspension) is observed. The expected linear correlation between apparent solubilities and fluxes was not found. Whereas, the concentrations of molecularly dissolved HC were...

  20. Conjugated and Entrapped HPMA-PLA Nano-Polymeric Micelles Based Dual Delivery of First Line Anti TB Drugs: Improved and Safe Drug Delivery against Sensitive and Resistant Mycobacterium Tuberculosis.

    Science.gov (United States)

    Upadhyay, Seema; Khan, Iliyas; Gothwal, Avinash; Pachouri, Praveen K; Bhaskar, N; Gupta, Umesh D; Chauhan, Devendra S; Gupta, Umesh

    2017-09-01

    First line antiTB drugs have several physical and toxic manifestations which limit their applications. RIF is a hydrophobic drug and has low water solubility and INH is hepatotoxic. The main objective of the study was to synthesize, characterize HPMA-PLA co-polymeric micelles for the effective dual delivery of INH and RIF. HPMA-PLA co-polymer and HPMA-PLA-INH (HPI) conjugates were synthesized and characterized by FT-IR and 1 H-NMR spectroscopy. Later on RIF loaded HPMA-PLA-INH co-polymeric micelles (PMRI) were formulated and characterized for size, zeta potential and surface morphology (SEM, TEM) as well as critical micellar concentration. The safety was assessed through RBC's interaction study. The prepared PMRI were evaluated through MABA assay against sensitive and resistant strains of M. Tuberculosis. Size, zeta and entrapment efficiency for RIF loaded HPMA-PLA-INH polymeric micelles (PMRI) was 87.64 ± 1.98 nm, -19 ± 1.93 mV and 97.2 ± 1.56%, respectively. In vitro release followed controlled and sustained delivery pattern. Sustained release was also supported by release kinetics. Haemolytic toxicity of HPI and PMRI was 8.57 and 7.05% (p PLA polymeric micelles (PMRI) were more effective against sensitive and resistant M tuberculosis. The developed approach can lead to improved patient compliance and reduced dosing in future, offering improved treatment of tuberculosis.

  1. Hydrazone-Containing Triblock Copolymeric Micelles for pH-Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Peilan Qi

    2018-01-01

    Full Text Available In this study, the structure–activity relationship of amphiphilic block copolymer micelles as nanosized drug delivery system was revealed. Firstly, a biodegradable triblock polymers PEG-DiHyd-PLA containing hydrazone bond was synthesized through the ring-opening polymerization. In this method, PEG-DiHyd-Phenol was used as the initiator and L-lactide as the monomer. Then, the polymeric micelles were formed and used as nano-drug carriers with pH sensitivity. The structure and composition of the polymer were characterized by infrared (IR, nuclear magnetic resonance (1H-NMR, and gel permeation chromatography (GPC, we characterized the self-assembling process of the triblock polymers and the pH sensitivity of the micelles by the means of transmission electron microscopy (TEM, dynamic light scattering method (DLS. Doxorubicin (DOX acts as the model drug, and we researched the capacities of drug loading and release in vitro of the micelles. MTT experiments showed that the blank micelles of PEG-DiHyd-PLA were not cytotoxic to tumor cells (HepG-2, MCF-7 and normal cell (L-02 cells, but the DOX loaded ones displayed more toxicity than the ones without hydrazone, which was consistent to the further confocal laser scanning microscopy and flow cytometry study.

  2. Development and validation of a RP-HPLC method to determine the xanthyletin content in biodegradable polymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Cristiane de Melo Cazal

    2014-01-01

    Full Text Available Xanthyletin is used as an inhibitor of the symbiotic fungus (Leucoagaricus gongylophorus of the leaf-cutting ant (Atta sexdens rubropilosa, one of the most significant agricultural plague insects. The incorporation of this compound into nanoparticles is a promising approach to effectively control leaf-cutting ants. This study presents the development and validation of a specific analytical method using high-performance liquid chromatography (HPLC for quantification of the xanthyletin content in biodegradable polymeric nanoparticles. The analytical methodology developed was specific, linear, accurate, precise, and robust. The absolute recovery of xanthyletin in colloidal suspensions was nearly 100%. The HPLC method proved reliable for the quantification of xanthyletin content in nanoparticle formulations.

  3. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    Science.gov (United States)

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.

  4. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies.

    Science.gov (United States)

    Nour, Samia A; Abdelmalak, Nevine S; Naguib, Marianne J; Rashed, Hassan M; Ibrahim, Ahmed B

    2016-11-01

    Clonazepam (CZ) is an anti-epileptic drug used mainly in status epilepticus (SE). The drug belongs to Class II according to BCS classification with very limited solubility and high permeability and it suffers from extensive first-pass metabolism. The aim of the present study was to develop CZ-loaded polymeric micelles (PM) for direct brain delivery allowing immediate control of SE. PM were prepared via thin film hydration (TFH) technique adopting a central composite face-centered design (CCFD). The seventeen developed formulae were evaluated in terms of entrapment efficiency (EE), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and in vitro release. For evaluating the in vivo behavior of the optimized formula, both biodistrbution using 99m Tc-radiolabeled CZ and pharmacodynamics studies were done in addition to ex vivo cytotoxicty. At a drug:Pluronic® P123:Pluronic® L121 ratio of 1:20:20 (PM7), a high EE, ZP, Q8h, and a low PDI was achieved. The biodistribution studies revealed that the optimized formula had significantly higher drug targeting efficiency (DTE = 242.3%), drug targeting index (DTI = 144.25), and nose-to-brain direct transport percentage (DTP = 99.30%) and a significant prolongation of protection from seizures in comparison to the intranasally administered solution with minor histopathological changes. The declared results reveal the ability of the developed PM to be a strong potential candidate for the emergency treatment of SE.

  5. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.

    Science.gov (United States)

    Hu, Liwen; Tu, Jiguo; Jiao, Shuqiang; Hou, Jungang; Zhu, Hongmin; Fray, Derek J

    2012-12-05

    Highly porous nanorod-PANI-Graphene composite films were prepared by in situ electrochemical polymerization onto an ITO substrate in a reverse micelle electrolyte. The morphology and microstructure of the composite films were analyzed by using a field emission scanning electron microscope. It was observed that the films were highly porous and the nanorod PANI films were inserted by graphene nanosheets. This indicated that a good conductive network between PANI nanorods and graphene sheets was formed. Further electrochemical tests involved cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 1 mol L(-1) HClO(4) solution. The results showed that the composite film had a favorable capacitance with a high electron transfer rate and low resistance. The highest specific capacitance that could be achieved was as high as 878.57 F g(-1) with the charge loading of 500 mC at a current density of 1 A g(-1). The GCD at different charge loadings showed good cycle stability with a low fading rate of specific capacitance after 1000 cycles. The results demonstrated that the nanorod-PANI-Graphene composite was proved to be of great potential as an electrode material for supercapacitors.

  6. Physicochemical aspects behind the size of biodegradable polymeric nanoparticles: a step forward

    Czech Academy of Sciences Publication Activity Database

    de Oliveira, A. M.; Jäger, Eliezer; Jäger, Alessandro; Štěpánek, Petr; Giacomelli, F. C.

    2013-01-01

    Roč. 436, 5 September (2013), s. 1092-1102 ISSN 0927-7757 R&D Projects: GA ČR GA202/09/2078 Institutional support: RVO:61389013 Keywords : sub-100 nm polymeric nanoparticles * light scattering * nanoprecipitation Subject RIV: BO - Biophysics Impact factor: 2.354, year: 2013

  7. Extrusion of xylans extracted from corn cobs into biodegradable polymeric materials.

    Science.gov (United States)

    Bahcegul, Erinc; Akinalan, Busra; Toraman, Hilal E; Erdemir, Duygu; Ozkan, Necati; Bakir, Ufuk

    2013-12-01

    Solvent casting technique, which comprises multiple energy demanding steps including the dissolution of a polymer in a solvent followed by the evaporation of the solvent from the polymer solution, is currently the main technique for the production of xylan based polymeric materials. The present study shows that sufficient water content renders arabinoglucuronoxylan (AGX) polymers extrudable, enabling the production of AGX based polymeric materials in a single step via extrusion, which is economically advantageous to solvent casting process for mass production. AGX polymers with water content of 27% were found to yield extrudates at an extrusion temperature of 90°C. The extruded strips showed very good mechanical properties with an ultimate tensile strength of 76 ± 6 MPa and elongation at break value of 35 ± 8%, which were superior to the mechanical properties of the strips obtained from polylactic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The suppression of IgE-mediated histamine release from mast cells following exocytic exclusion of biodegradable polymeric nanoparticles.

    Science.gov (United States)

    Tahara, Kohei; Tadokoro, Satoshi; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Hirashima, Naohide

    2012-01-01

    The objective of this study is to evaluate the effect of polymeric nanoparticles (NPs) on the allergic response of mast cells that release inflammatory mediators such as histamine through exocytosis. Submicron-sized biodegradable poly(DL-lactide-co-glycolide) (PLGA) NPs were prepared by the emulsion solvent diffusion method. Here, we examined the interactions of the mast cells with two types of PLGA NPs, unmodified NPs and NPs modified with chitosan (CS), a biodegradable cationic polymer. The cellular uptake of NPs increased by CS modification due to electrostatic interactions with the plasma membrane. NPs were taken up by mast cells through an endocytic pathway (endocytic phase) and then the cellular uptake was saturated and maintained plateau level by the exclusion of NPs through exocytosis (exocytic phase). Antigen-induced histamine release from mast cells was inhibited during the exocytic phase. The extent of histamine release inhibition was related to the amount of excluded NPs. Exocytic exclusion of NPs competitively antagonize the antigen-induced exocytotic release of histamine by highjacking exocytosis machinery such as SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, since histamine release was recovered in mast cells that overexpress SNAP-23. The inhibitory effect of the allergic response by PLGA NPs was also evaluated in vivo using the mouse model for systemic anaphylaxis. The administration of NPs suppressed the antigen-induced systemic allergic response in vivo. In conclusion, PLGA NP itself has actions to inhibit the allergic responses mediated by mast cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug-gene co-delivery to cancer cells

    Science.gov (United States)

    Chen, Chih-Kuang; Law, Wing-Cheung; Aalinkeel, Ravikumar; Yu, Yun; Nair, Bindukumar; Wu, Jincheng; Mahajan, Supriya; Reynolds, Jessica L.; Li, Yukun; Lai, Cheng Kee; Tzanakakis, Emmanuel S.; Schwartz, Stanley A.; Prasad, Paras N.; Cheng, Chong

    2014-01-01

    Having unique architectural features, cationic polymeric nanocapsules (NCs) with well-defined covalently stabilized biodegradable structures were generated as potentially universal and safe therapeutic nanocarriers. These NCs were synthesized from allyl-functionalized cationic polylactide (CPLA) by highly efficient UV-induced thiol-ene interfacial cross-linking in transparent miniemulsions. With tunable nanoscopic sizes, negligible cytotoxicity and remarkable degradability, they are able to encapsulate doxorubicin (Dox) with inner cavities and bind interleukin-8 (IL-8) small interfering RNA (siRNA) with cationic shells. The Dox-encapsulated NCs can effectively bypass the P-glycoprotein (Pgp)-mediated multidrug resistance of MCF7/ADR cancer cells, thereby resulting in increased intracellular drug concentration and reduced cell viability. In vitro studies also showed that the NCs loaded with Dox, IL-8 siRNA and both agents can be readily taken up by PC3 prostate cancer cells, resulting in a significant chemotherapeutic effect and/or IL-8 gene silencing.Having unique architectural features, cationic polymeric nanocapsules (NCs) with well-defined covalently stabilized biodegradable structures were generated as potentially universal and safe therapeutic nanocarriers. These NCs were synthesized from allyl-functionalized cationic polylactide (CPLA) by highly efficient UV-induced thiol-ene interfacial cross-linking in transparent miniemulsions. With tunable nanoscopic sizes, negligible cytotoxicity and remarkable degradability, they are able to encapsulate doxorubicin (Dox) with inner cavities and bind interleukin-8 (IL-8) small interfering RNA (siRNA) with cationic shells. The Dox-encapsulated NCs can effectively bypass the P-glycoprotein (Pgp)-mediated multidrug resistance of MCF7/ADR cancer cells, thereby resulting in increased intracellular drug concentration and reduced cell viability. In vitro studies also showed that the NCs loaded with Dox, IL-8 siRNA and both

  10. Curcumin-carboxymethyl chitosan (CNC) conjugate and CNC/LHR mixed polymeric micelles as new approaches to improve the oral absorption of P-gp substrate drugs.

    Science.gov (United States)

    Ni, Jiang; Tian, Fengchun; Dahmani, Fatima Zohra; Yang, Hui; Yue, Deren; He, Shuwang; Zhou, Jianping; Yao, Jing

    2016-11-01

    The low oral bioavailability of numerous drugs has been mostly attributed to the significant effect of P-gp-mediated efflux on intestinal drug transport. Herein, we developed mixed polymeric micelles (MPMs) comprised of curcumin-carboxymethyl chitosan (CNC) conjugate, as a potential inhibitor of P-gp-mediated efflux and gastrointestinal absorption enhancer, and low-molecular-weight heparin-all-trans-retinoid acid (LHR) conjugate, as loading material, with the aim to improve the oral absorption of P-gp substrate drugs. CNC conjugate was synthesized by chemical bonding of curcumin (Cur) and carboxymethyl chitosan (CMCS) taking advantage of the inhibition of intestinal P-gp-mediated secretion by Cur and the intestinal absorption enhancement by CMCS. The chemical structure of CNC conjugate was characterized by 1 H NMR with a degree of substitution of Cur of 4.52-10.20%. More importantly, CNC conjugate markedly improved the stability of Cur in physiological pH. Cyclosporine A-loaded CNC/LHR MPMs (CsA-CNC/LHR MPMs) were prepared by dialysis method, with high drug loading 25.45% and nanoscaled particle size (∼200 nm). In situ single-pass perfusion studies in rats showed that both CsA + CNC mixture and CsA-CNC/LHR MPMs achieved significantly higher K a and P eff than CsA suspension in the duodenum and jejunum segments (p CNC mixture and CsA-CNC/LHR MPMs significantly increased the oral bioavailability of CsA as compared to CsA suspension. These results suggest that CNC conjugate might be considered as a promising gastrointestinal absorption enhancer, while CNC/LHR MPMs had the potential to improve the oral absorption of P-gp substrate drugs.

  11. Nano-hydrogels of methoxy polyethylene glycol-grafted branched polyethyleneimine via biodegradable cross-linking of Zn2+-ionomer micelle template

    Science.gov (United States)

    Abolmaali, Samira Sadat; Tamaddon, Ali Mohammad; Dinarvand, Rasoul

    2013-12-01

    Soft polymeric nanomaterials were synthesized by the template-assisted method involving self-association of methoxy polyethylene glycol- g-branched polyethyleneimine (mPEG- g-branched PEI) ionomer by transition metal ions such as Zn2+ followed by chemical cross-linking of the polyamine core by dithiopropionic acid. The formation of donor-acceptor complexes of Zn2+ and PEI ionomer was characterized by FT-IR spectroscopy and potentiometric titration. Turbidimetry was performed to study the solution property of the complexes which depended on pH, relative weight fraction of mPEG, and the molar ratio of Zn2+. The cross-linking reaction was studied by TNBS assay, 1H-NMR, and size exclusion chromatography. Upon removal of Zn2+ from cl-mPEG- g-branched PEI/Zn2+ at pH 3 by dialysis, the resulting cross-linked self-assembly represented a uniform, stable, and less positively charged hydrogel-like nanosphere with an intensity-averaged size ranging from 150 to 250 nm as determined by a Zetasizer. Atomic forced microscopy imaging was performed in intermittent contact mode in air that revealed discrete and oval-to-spherically shaped particles with average sizes ranging from 40 to 50 nm depending on the degree of cross-linking. This functional nanocarrier is expected to exhibit some key features such as active encapsulation of negatively charged hydrophilic agents in the swollen core of polyamine network and a hydrophilic mPEG shell which provides an increased solubility and passive targeting of active pharmaceutical agents to impaired tissues. The nano-hydrogels especially at 12 % degrees of cross-link demonstrated excellent biocompatibility determined by different experiments such as albumin aggregation, erythrocyte aggregation, hemolysis, and MTT cytotoxicity assay. Moreover, biodegradability of the cross-links as shown by the Ellman assay can offer a time-dependent degradation and redox-stimulated release of active agents.

  12. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, Casey L.; Dorsey, Christopher L. [Texas State University, Department of Chemistry and Biochemistry (United States); Özel, Tuğba [Texas State University, Materials Science, Engineering, and Commercialization Program (United States); Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania, E-mail: tb26@txstate.edu [Texas State University, Department of Chemistry and Biochemistry (United States)

    2016-07-15

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.Graphical abstract.

  13. Building Stable MMP2-Responsive Multifunctional Polymeric Micelles by an All-in-One Polymer-Lipid Conjugate for Tumor-Targeted Intracellular Drug Delivery.

    Science.gov (United States)

    Yao, Qing; Dai, Zhi; Hoon Choi, Jong; Kim, Dongin; Zhu, Lin

    2017-09-27

    In this study, we described an "all-in-one" polymer-lipid conjugate (PEG2k-ppTAT-PEG1k-PE) that could self-assemble to matrix metalloproteinase 2 (MMP2)-sensitive multifunctional micelles. The assembled micelles had several key features, including a protective long chain poly(ethylene glycol) (PEG2k) (the outer shell), an MMP2-sensitive peptide linker (pp) (the tumor-targeting middle layer), a trans-activating transcriptional activator (TAT) peptide (the cell-penetrating middle layer), and a stable PEG1k-PE micelle for drug loading (the inner core). In the absence of MMP2, the PEG2k-ppTAT-PEG1k-PE micelles were intact and showed low bioactivity due to the surface-anchored PEG2k, whereas in the presence of MMP2, the pp was cleaved, resulting in the PEG2k deshielding and exposure of the previously hidden TAT for enhanced intracellular drug delivery. Even if completely cleaved by MMP2, the remaining PEG1k-PE micelles were stable and the micelles' particle size and drug release were not significantly influenced. The paclitaxel (PTX)-loaded PEG2k-ppTAT-PEG1k-PE micelles showed significant MMP2-dependent cellular uptake, tumor penetration, and anticancer activity in various cancer cells and three-dimensional multicellular spheroids. Because of the enhanced intracellular drug accumulation, these multifunctional micelles were able to sensitize the drug-resistant cancer cells and their spheroids to PTX treatments. Furthermore, in vivo tumor uptake and retention data indicated that the PEG2k-ppTAT-PEG1k-PE micelles could dramatically increase the residence time of their payloads in the tumor.

  14. Fabrication, Physicochemical Characterization, and Performance Evaluation of Biodegradable Polymeric Microneedle Patch System for Enhanced Transcutaneous Flux of High Molecular Weight Therapeutics.

    Science.gov (United States)

    Shah, Viral; Choudhury, Bijaya Krushna

    2017-11-01

    A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.

  15. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    Science.gov (United States)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-08-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20-80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5-25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties.

  16. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    International Nuclear Information System (INIS)

    Wu, Minming; Guo, Kai; Dong, Hongwei; Zeng, Rong; Tu, Mei; Zhao, Jianhao

    2014-01-01

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by 1 H and 31 P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior

  17. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Minming; Guo, Kai; Dong, Hongwei; Zeng, Rong, E-mail: tzengronga@jnu.edu.cn; Tu, Mei; Zhao, Jianhao

    2014-12-01

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by {sup 1}H and {sup 31}P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior.

  18. Biodegradable glycopolymer-b-poly(ε-caprolactone) block copolymer micelles: Versatile construction, tailored lactose functionality, and hepatoma-targeted drug delivery

    NARCIS (Netherlands)

    Chen, Wei; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2015-01-01

    Glycopolymer-b-poly(ε-caprolactone) (GP-PCL) block copolymer micelles (‘glycomicelles’) with tailored lactose functionalities were developed and investigated for hepatoma-targeted doxorubicin (DOX) delivery. Amphiphilic GP-PCL copolymers were readily prepared with controlled lactobionic acid (LBA)

  19. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Mady FM

    2017-10-01

    Full Text Available Fatma M Mady,1,2 Mohamed A Shaker1,3 1Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madina Al Munawara, Saudi Arabia; 2Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, 3Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt Abstract: Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone (PCL was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion–diffusion–evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA

  20. Pluronic F127 polymeric micelles for co-delivery of paclitaxel and lapatinib against metastatic breast cancer: preparation, optimization and in vitro evaluation.

    Science.gov (United States)

    Dehghan Kelishady, Pooya; Saadat, Ebrahim; Ravar, Fatemeh; Akbari, Hamid; Dorkoosh, Farid

    2014-09-29

    Abstract The aim of this study was to develop and characterize the paclitaxel (PTX)-lapatinib (LPT) loaded micelles for simultaneous delivery against metastatic breast cancer. Efflux pump-mediated drug resistance influences the efficacy of chemotherapeutic regimens. However, in the newly developed delivery system, LPT was selected to act as chemosensetizer. LPT increases the intracellular level of PTX by inhibition of efflux pumps. Pluronic F127 was selected for the preparation of the micelles, and its critical micelle concentration was determined to be 0.012 mg/ml. D-optimal design was used to analyze the impact of different experimental parameters on PTX and LPT encapsulation ratio. PTX encapsulation ratio was optimized at 68.3%, while LPT encapsulation ratio found to be 70.1%. Transmission electron microscope analyses demonstrate that micelles possess a good core-shell structure without any sharp edge. Laser scattering method results indicated that size of the optimized micelles is 64.81 nm with acceptable polydispersity index (0.309). In vitro release studies showed a sustain release pattern. PTX-LPT-loaded micelles suppressed the proliferation of resistant T-47D cell line (IC 50  = 0.6 ± 0.1 µg/ml) compared to binary mixture of PTX and LPT (IC 50  = 6.7 ± 1.2 µg/ml). Therefore, it is concluded that the developed formulation might increase the therapeutic efficacy in drug resistant metastatic breast cancer.

  1. Folate and CD44 receptors dual-targeting hydrophobized hyaluronic acid paclitaxel-loaded polymeric micelles for overcoming multidrug resistance and improving tumor distribution.

    Science.gov (United States)

    Liu, Yanhua; Sun, Jin; Lian, He; Cao, Wen; Wang, Yongjun; He, Zhonggui

    2014-05-01

    The drug efflux mediated by P-glycoprotein (P-gp) transporter is one of the important factors responsible for multidrug resistance (MDR), and then the efficient intracellular drug delivery is an important strategy to overcome MDR of tumor cells. We describe and compare CD44 receptor single-targeting and folate (FA), CD44 receptors dual-targeting hyaluronic acid-octadecyl (HA-C18 ) micellar formulations to overcome MDR of tumor cells and to improve tumor distribution. In comparison with Taxol solution, the cytotoxicity of paclitaxel (PTX) loaded in HA-C18 and FA-HA-C18 micelles against drug-resistant tumor cells was improved significantly because of the increased intracellular delivery by active receptor-mediated endocytosis. Compared with the single-targeting micelles, dual-targeting micelles possessed better MDR-overcoming performance. Pharmacokinetic study demonstrated HA-C18 and FA-HA-C18 PTX-loaded micelles possessed much longer circulation and moderately larger AUC than Taxol solution. Above all, the tumor distribution in MCF-7 tumor-bearing mice of PTX encapsulated in HA-C18 and FA-HA-C18 micelles were 2.8 and 4.0 times higher than that of Taxol solution. It was concluded that dual-targeting FA-HA-C18 micelles demonstrate excellent MDR-overcoming ability and improved tumor distribution, and provide a novel effective nanoplatform for anticancer drug delivery in cancer chemotherapy. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Reduction of protein adsorption to a solid surface by a coating composed of polymeric micelles with a glass-like core

    NARCIS (Netherlands)

    Hofs, P.S.; Brzozowska, A.M.; Keizer, de A.; Norde, W.; Cohen Stuart, M.A.

    2008-01-01

    Adsorption studies by optical reflectometry show that complex coacervate core micelles (C3Ms) composed of poly([4-(2-amino-ethylthio)-butylene] hydrochloride)49-block-poly(ethylene oxide)212 and poly([4-(2-carboxy-ethylthio)-butylene] sodium salt)47-block-poly(ethylene oxide)212 adsorb in equal

  3. Reduction of protein adsorption to a solid surface by a coating composed of polymeric micelles with a glass-like core

    NARCIS (Netherlands)

    Hofs, B.; Brzozowska, A.; de Keizer, A.; Norde, W.; Stuart, Martien A. Cohen

    2008-01-01

    Adsorption studies by optical reflectometry show that complex coacervate core micelles (C3Ms) composed of poly([4-(2-amino-ethylthio)-butylene]hydrochloride)(49)-block-poly(ethylene oxide)(212) and poly([4-(2carboxy-ethylthio)-butylene] sodium salt)(47)-block-poly(ethylene oxide)(212) adsorb in

  4. Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents.

    Science.gov (United States)

    Im, Seung Hyuk; Jung, Youngmee; Kim, Soo Hyun

    2017-09-15

    Because of the increasing incidence of coronary artery disease, the importance of cardiovascular stents has continuously increased as a treatment of this disease. Biodegradable scaffolds fabricated from polymers and metals have emerged as promising materials for vascular stents because of their biodegradability. Although such stent framework materials have shown good clinical efficacy, it is difficult to decide whether polymers or metals are better vascular scaffolds because their properties are different. Therefore, there are still obstacles in the development of biodegradable vascular scaffolds in terms of improving clinical efficacy. This review analyzes the pros and cons of current stent materials with respect to five key factors for next-generation stent and discusses methods of improvement. Furthermore, we discuss biodegradable electronic stents with electrical conductivity, which has been considered unimportant until now, and highlight electrical conductivity as a key factor in the development of next-generation stents. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Synthesis and immobilization of polystyreneb-polyvinyltriethoxysilane micelles

    KAUST Repository

    Zhu, Saisai

    2018-01-31

    Diblock copolymers polystyrene-block-polyvinyltriethoxysilane (PS-b-PVTES) were synthesized via atom transfer radical polymerization (ATRP), which self-assembled into spherical micelles in solvent of THF-methanol mixtures. The self-assembled micelles were immobilized by cross-linking reaction of VTES in a shell layer of micelles. The chemical structures of block copolymers and morphology of micelles were characterized in detail. It was found that the size of immobilized micelles was strongly affected by the copolymer concentration, composition of mixture solvent, and block ratios.

  6. Self-assembled biodegradable amphiphilic PEG-PCL-lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery.

    Science.gov (United States)

    Endres, Thomas K; Beck-Broichsitter, Moritz; Samsonova, Olga; Renette, Thomas; Kissel, Thomas H

    2011-10-01

    Amphiphilic PEG-PCL-PEI triblock copolymers self-assemble into nano-scaled, positively charged, multifunctional carriers, suitable for drug and gene delivery. A set of block copolymers with varying hydrophilic/hydrophobic ratio (systematically altered at the borderline of micelle and particle forming polymers) was synthesized, characterized and assembled into carriers. A detailed structural characterization in the liquid state of these assemblies was carried out: carrier size was determined using dynamic light scattering, cryogenic scanning electron microscopy and atomic force microscopy. Nuclear magnetic resonance analyses elucidated carrier's core-shell structure. ζ-potential and thickness of the hydrophilic outer polymer shell were determined by laser Doppler anemometry. Subsequently the impact of carrier's structure on its features (stability and toxicity) was investigated. Polymers hydrophilic in nature formed small (polymers aggregated to larger particle-like assemblies (>100 nm). Monitoring carrier size as a function of initial polymer concentration clarified different assembly mechanisms. Shell thickness, colloidal stability and toxicity were found to depend on the length of the hydrophilic polymer block. Due to controllable size, charge, stability and toxicity, this class of novel carriers is a promising candidate for prospective co-delivery of drugs and nucleic acids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Combination of "living" nitroxide-mediated and photoiniferter-induced "grafting from" free-radical polymerizations: from branched copolymers to unimolecular micelles and microgels

    Czech Academy of Sciences Publication Activity Database

    Gromadzki, Daniel; Filippov, Sergey K.; Netopilík, Miloš; Makuška, R.; Jigounov, A.; Pleštil, Josef; Horský, Jiří; Štěpánek, Petr

    2009-01-01

    Roč. 45, č. 6 (2009), s. 1748-1758 ISSN 0014-3057 R&D Projects: GA AV ČR IAA400500703; GA ČR GA202/09/2078 Institutional research plan: CEZ:AV0Z40500505 Keywords : controlled "living" radical polymerization * branched copolymers * conformation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.310, year: 2009

  8. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng Meng [Tsinghua University, Department of Chemical Engineering (China); Kang, Yoon Joong [Jungwon University, Department of Biomedical Science (Korea, Republic of); Sohn, Youngjoo [Kyung Hee University, Department of Anatomy, College of Korean Medicine (Korea, Republic of); Kim, Do Kyung, E-mail: eurokorean@gmail.com, E-mail: dokyung@konyang.ac.kr [Konyang University, Industry Cooperation Foundation (Korea, Republic of)

    2015-06-15

    A double targeting strategy of anti-neoplastic agent paclitaxel (PTX) was developed by incorporating magnetic nanoparticles and RGD peptide for enhanced cell cytotoxicity effect at lower dosage. A dual targeting mechanism including magnetic targeting and RGD ligand-specific targeting enhanced the overall cytotoxicity and reduced the effective dosage of PTX to achieve enhanced and sustained release of PTX in vitro. We addressed the issues of water-insolubility of oleic acid (OA)-stabilized SPIONs and low incorporation efficiency of hydrophobic PTX with SPION nanocarriers by using an amphiphilic polymer poly[(N-isopropylacrylamide-r-acrylamide)-b-l-lactic acid] (PNAL) as micelle-forming materials. A targeting moiety, GGGGRGD peptide, a RGD sequence-containing peptide with a short linker, is attached to the surface of PNAL-SPIONs via a homo-crosslinker. Confocal microscopy image analysis revealed that the cellular uptake was increased from (1.5 ± 0.5 % (PNAL) to 11.7 ± 0.8 % (RGD-PNAL-SPIONs) at 6 h incubation, once both RGD peptide and magnetic force attraction were incorporated into the carriers. Such multi-targeting nanocarriers showed promising potential in cancer-oriented diagnosis and therapy.

  9. Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control

    Directory of Open Access Journals (Sweden)

    Alejandro Lucia

    2017-04-01

    Full Text Available Background Essential oil components (EOCs are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control. Methods Micellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using an ex vivo immersion test. Results The poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%, 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407. These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole, α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%. Discussion Since these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.

  10. D-Optimal mixture experimental design for stealth biodegradable crosslinked docetaxel-loaded poly-ε-caprolactone nanoparticles manufactured by dispersion polymerization.

    Science.gov (United States)

    Ogunwuyi, O; Adesina, S; Akala, E O

    2015-03-01

    We report here our efforts on the development of stealth biodegradable crosslinked poly-ε-caprolactone nanoparticles by free radical dispersion polymerization suitable for the delivery of bioactive agents. The uniqueness of the dispersion polymerization technique is that it is surfactant free, thereby obviating the problems known to be associated with the use of surfactants in the fabrication of nanoparticles for biomedical applications. Aided by a statistical software for experimental design and analysis, we used D-optimal mixture statistical experimental design to generate thirty batches of nanoparticles prepared by varying the proportion of the components (poly-ε-caprolactone macromonomer, crosslinker, initiators and stabilizer) in acetone/water system. Morphology of the nanoparticles was examined using scanning electron microscopy (SEM). Particle size and zeta potential were measured by dynamic light scattering (DLS). Scheffe polynomial models were generated to predict particle size (nm) and particle surface zeta potential (mV) as functions of the proportion of the components. Solutions were returned from simultaneous optimization of the response variables for component combinations to (a) minimize nanoparticle size (small nanoparticles are internalized into disease organs easily, avoid reticuloendothelial clearance and lung filtration) and (b) maximization of the negative zeta potential values, as it is known that, following injection into the blood stream, nanoparticles with a positive zeta potential pose a threat of causing transient embolism and rapid clearance compared to negatively charged particles. In vitro availability isotherms show that the nanoparticles sustained the release of docetaxel for 72 to 120 hours depending on the formulation. The data show that nanotechnology platforms for controlled delivery of bioactive agents can be developed based on the nanoparticles.

  11. Forensic engineering of advanced polymeric materials Part IV: Case study of oxo-biodegradable polyethylene commercial bag - Aging in biotic and abiotic environment.

    Science.gov (United States)

    Musioł, Marta; Rydz, Joanna; Janeczek, Henryk; Radecka, Iza; Jiang, Guozhan; Kowalczuk, Marek

    2017-06-01

    The public awareness of the quality of environment stimulates the endeavor to safe polymeric materials and their degradation products. The aim of the forensic engineering case study presented in this paper is to evaluate the aging process of commercial oxo-degradable polyethylene bag under real industrial composting conditions and in distilled water at 70°C, for comparison. Partial degradation of the investigated material was monitored by changes in molecular weight, thermal properties and Keto Carbonyl Bond Index and Vinyl Bond Index, which were calculated from the FTIR spectra. The results indicate that such an oxo-degradable product offered in markets degrades slowly under industrial composting conditions. Even fragmentation is slow, and it is dubious that biological mineralization of this material would occur within a year under industrial composting conditions. The slow degradation and fragmentation is most likely due to partially crosslinking after long time of degradation, which results in the limitation of low molecular weight residues for assimilation. The work suggests that these materials should not be labeled as biodegradable, and should be further analyzed in order to avoid the spread of persistent artificial materials in nature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Redução da hidrofilicidade de filmes biodegradáveis à base de amido por meio de polimerização por plasma Reduction of hydrophilicity of biodegradable starch-based films by plasma polymerization

    Directory of Open Access Journals (Sweden)

    Rossana M. S. M. Thiré

    2004-03-01

    Full Text Available Devido ao baixo custo de produção e excelente biodegradabilidade, o amido constitui-se em matéria-prima promissora para a produção de plásticos biodegradáveis. No entanto, a grande hidrofilicidade dos filmes à base de amido representa uma séria limitação tecnológica à sua comercialização, uma vez que as propriedades dos filmes são afetadas pela variação da umidade relativa do ar durante a sua estocagem ou o seu uso. Neste trabalho, filmes de amido termoplástico foram recobertos com uma fina camada protetora polimérica gerada por intermédio da tecnologia de plasma frio. 1-Buteno e 1,3-butadieno foram utilizados como monômeros para a polimerização por plasma. Os filmes recobertos apresentaram uma redução de até 80% na absorção de água e aumento do ângulo de contato em relação à água. Estes resultados indicaram uma redução significativa na natureza hidrofílica do material à base de amido após o recobrimento.Due to low cost and excellent biodegradability, the use of starch as a raw material for bioplastic production is growing in interest. However, the properties of starch-based materials are affected by relative humidity during their use and storage due to their hydrophilic character. In this work, thermoplastic cornstarch films were coated by cold plasma technology with a protective thin layer in order to reduce water sensitivity. 1-Butene and 1,3-butadiene were used as monomers for plasma polymerization. Coated films presented a reduction of water absorption up to 80% an increase in contact angle related to water. These results indicated that the coating process reduced significantly the hydrophilic nature of the starch-based materials.

  13. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(2-(diisopropylaminoethyl methacrylate (MPC-DPA polymeric nanoparticle micelles for nanomedicine applications

    Directory of Open Access Journals (Sweden)

    Jonathan P. Salvage

    2016-01-01

    Full Text Available Abstract Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(2-(diisopropylaminoethyl methacrylate (MPC-DPA. Atom transfer radical polymerisation (ATRP, and gel permeation chromatography (GPC were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64–69 nm, and increased upon hydrophobic compound loading, circa 65–71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system

  14. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys.

    Science.gov (United States)

    Ostrowski, Nicole; Lee, Boeun; Enick, Nathan; Carlson, Benjamin; Kunjukunju, Sangeetha; Roy, Abhijit; Kumta, Prashant N

    2013-11-01

    Composite coatings of electrostatically assembled layer-by-layer anionic and cationic polymers combined with an Mg(OH)2 surface treatment serve to provide a protective coating on AZ31 magnesium alloy substrates. These ceramic conversion coating and layer-by-layer polymeric coating combinations reduced the initial and long-term corrosion progression of the AZ31 alloy. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the successful application of coatings. Potentiostatic polarization tests indicate improved initial corrosion resistance. Hydrogen evolution measurements over a 2 week period and magnesium ion levels over a 1 week period indicate longer range corrosion protection and retention of the Mg(OH)2 passivation layer in comparison to the uncoated substrates. Live/dead staining and DNA quantification were used as measures of biocompatibility and proliferation while actin staining and scanning electron microscopy were used to observe the cellular morphology and integration with the coated substrates. The coatings simultaneously provided improved biocompatibility, cellular adhesion and proliferation in comparison to the uncoated alloy surface utilizing both murine pre-osteoblast MC3T3 cells and human mesenchymal stem cells. The implementation of such coatings on magnesium alloy implants could serve to improve the corrosion resistance and cellular integration of these implants with the native tissue while delivering vital drugs or biological elements to the site of implantation. Copyright © 2013. Published by Elsevier Ltd.

  15. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  16. Musk Oxen and Micelles

    Science.gov (United States)

    Hill, John W.

    1996-09-01

    Musk oxen behavior provides an analogy to micelle formation by amphipathic substances. Mature male musk oxen protect their young and females from wolves by forming a protective circle around them. The males stand with their tails to the inside and their heads facing outward. Amphipathic substances such as soap form micelles. The hydrophobic hydrocarbon tails of the soap are turned to the inside of the micelle and the hydrophilic carboxylate heads are on the outside at the interface with the polar water molecules.

  17. Thermoresponsive polymer micelles as potential nanosized cancerostatics

    Czech Academy of Sciences Publication Activity Database

    Laga, Richard; Janoušková, Olga; Ulbrich, Karel; Pola, Robert; Blažková, Jana; Filippov, Sergey K.; Etrych, Tomáš; Pechar, Michal

    2015-01-01

    Roč. 16, č. 8 (2015), s. 2493-2505 ISSN 1525-7797 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : RAFT polymerization * polymer therapeutics * thermo-responsive micelles Subject RIV: CE - Biochemistry Impact factor: 5.583, year: 2015

  18. Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer

    Directory of Open Access Journals (Sweden)

    Gao X

    2013-03-01

    Full Text Available Xiang Gao,1 BiLan Wang,1 XiaWei Wei,1 Wang Rao,2 Fang Ai,2 Fen Zhao,2 Ke Men,1 Bowen Yang,1 Xingyu Liu,1 Meijuan Huang,1 Maling Gou,1 ZhiYong Qian,1 Ning Huang,1 Yuquan Wei11Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China; 2Department of Surgery, First Affiliated Hospital, Xinxiang Medical School, Xinxiang, People's Republic of ChinaAbstract: Star-shaped polymer micelles have good stability against dilution with water, showing promising application in drug delivery. In this work, biodegradable micelles made from star-shaped poly(ε-caprolactone/poly(ethylene glycol (PCL/PEG copolymer were prepared and used to deliver doxorubicin (Dox in vitro and in vivo. First, an acrylated monomethoxy poly (ethylene glycol-poly(ε-caprolactone (MPEG-PCL diblock copolymer was synthesized, which then self-assembled into micelles, with a core-shell structure, in water. Then, the double bonds at the end of the PCL blocks were conjugated together by radical polymerization, forming star-shaped MPEG-PCL (SSMPEG-PCL micelles. These SSMPEG-PCL micelles were monodispersed (polydispersity index = 0.11, with mean diameter of ≈25 nm, in water. Blank SSMPEG-PCL micelles had little cytotoxicity and did not induce obvious hemolysis in vitro. The critical micelle concentration of the SSMPEG-PCL micelles was five times lower than that of the MPEG-PCL micelles. Dox was directly loaded into SSMPEG-PCL micelles by a pH-induced self-assembly method. Dox loading did not significantly affect the particle size of SSMPEG-PCL micelles. Dox-loaded SSMPEG-PCL (Dox/SSMPEG-PCL micelles slowly released Dox in vitro, and the Dox release at pH 5.5 was faster than that at pH 7.0. Also, encapsulation of Dox in SSMPEG-PCL micelles enhanced the anticancer activity of Dox in vitro. Furthermore, the

  19. PLGA-soya lecithin based micelles for enhanced delivery of methotrexate: Cellular uptake, cytotoxic and pharmacokinetic evidences.

    Science.gov (United States)

    Singh, Anupama; Thotakura, Nagarani; Kumar, Rajendra; Singh, Bhupinder; Sharma, Gajanand; Katare, Om Prakash; Raza, Kaisar

    2017-02-01

    Biocompatible and biodegradable polymers like PLGA have revolutionized the drug delivery approaches. However, poor drug loading and substantially high lipophilicity, pave a path for further tailing of this promising agent. In this regard, PLGA was feathered with biocompatible phospholipid and polymeric micelles were developed for delivery of Methotrexate (MTX) to cancer cells. The nanocarriers (114.6nm±5.5nm) enhanced the cytotoxicity of MTX by 2.13 folds on MDA-MB-231 cells. Confocal laser scanning microscopy confirmed the increased intracellular delivery. The carrier decreased the protein binding potential and enhanced the bioavailable fraction of MTX. Pharmacokinetic studies vouched substantial enhancement in AUC and bioresidence time, promising an ideal carrier to effectively deliver the drug to the site of action. The developed nanocarriers offer potential to deliver the drug in the interiors of cancer cells in an effective manner for improved therapeutic action. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Polymeric micelles based on poly(ethylene glycol block poly(racemic amino acids hybrid polypeptides: conformation-facilitated drug-loading behavior and potential application as effective anticancer drug carriers

    Directory of Open Access Journals (Sweden)

    Gu PF

    2012-01-01

    Full Text Available Peng Fei Gu1, Hui Xu1, Bo Wen Sui2, Jing Xin Gou1, Ling Kuo Meng1, Feng Sun1, Xiu Jun Wang1, Na Qi1, Yu Zhang1, Hai Bing He1, Xing Tang11Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 2School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of ChinaAbstract: In this work, racemic hybrid polypeptides poly(ethylene glycol (PEG-b-poly(racemic-leucine (PRL copolymers with different leucine residues have been synthesized and characterized. Using docetaxel as a model molecule, the high drug-loaded spherical micelles based on PEG-PRL were prepared successfully using dialysis, with a tunable particle size from 170 nm to 250 nm obtained by changing the length of the hydrophobic blocks. Facilitated drug-loading behavior (higher drug-loading ability and easier drug-loading process of PEG-PRL compared with their corresponding levo forms (PEG-b-poly[levo leucine] was observed and clarified for the first time. With this facilitation, the highest drug-loading content and efficiency of PEG-PRL micelles can achieve 11.2% ± 0.4% and 67.2% ± 2.4%, respectively. All drug-loaded PEG-PRL micelles exhibit a similar release behavior with a sustained release up to 72 hours. The PEG-PRL was shown to be nontoxic against MCF-7 and human umbilical vein endothelial cells up to a concentration of 100 µg/mL, displaying a good biocompatibility. Also, the docetaxel-loaded PEG-PRL micelles were more toxic than the free drug against MCF-7 human breast cancer cells – both dose and time dependent. Therefore, these high docetaxel-loaded micelles based on racemic hybrid polypeptides appear to be a novel promising nanomedicine for anticancer therapy.Keywords: racemic polypeptides, micelles, conformation, high drug-loading ability, anticancer nanomedicine

  1. Polysarcosine-Based Lipids: From Lipopolypeptoid Micelles to Stealth-Like Lipids in Langmuir Blodgett Monolayers

    Directory of Open Access Journals (Sweden)

    Benjamin Weber

    2016-12-01

    Full Text Available Amphiphiles and, in particular, PEGylated lipids or alkyl ethers represent an important class of non-ionic surfactants and have become key ingredients for long-circulating (“stealth” liposomes. While poly-(ethylene glycol (PEG can be considered the gold standard for stealth-like materials, it is known to be neither a bio-based nor biodegradable material. In contrast to PEG, polysarcosine (PSar is based on the endogenous amino acid sarcosine (N-methylated glycine, but has also demonstrated stealth-like properties in vitro, as well as in vivo. In this respect, we report on the synthesis and characterization of polysarcosine based lipids with C14 and C18 hydrocarbon chains and their end group functionalization. Size exclusion chromatography (SEC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS analysis reveals that lipopeptoids with a degree of polymerization between 10 and 100, dispersity indices around 1.1, and the absence of detectable side products are directly accessible by nucleophilic ring opening polymerization (ROP. The values for the critical micelle concentration for these lipopolymers are between 27 and 1181 mg/L for the ones with C18 hydrocarbon chain or even higher for the C14 counterparts. The lipopolypeptoid based micelles have hydrodynamic diameters between 10 and 25 nm, in which the size scales with the length of the PSar block. In addition, C18PSar50 can be incorporated in 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC monolayers up to a polymer content of 3%. Cyclic compression and expansion of the monolayer showed no significant loss of polymer, indicating a stable monolayer. Therefore, lipopolypeptoids can not only be synthesized under living conditions, but my also provide a platform to substitute PEG-based lipopolymers as excipients and/or in lipid formulations.

  2. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  3. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle

    Science.gov (United States)

    Lapteva, Maria; Möller, Michael; Gurny, Robert; Kalia, Yogeshvar N.

    2015-11-01

    Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn 400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A® Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 +/- 1.1% vs. 0.4 +/- 0.1% and 7.5 +/- 0.8% vs. 0.8 +/- 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm® (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A® Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A® Micro in terms of delivery efficiency to PSU presenting human skin (10.4 +/- 3.2% vs. 0.6 +/- 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU, potentially translating to a safer and more efficient

  4. Small angle neutron scattering study of the micelle structure of amphiphilic block copolymers

    International Nuclear Information System (INIS)

    Yamaoka, H.; Matsuoka, H.; Sumaru, K.; Hanada, S.

    1994-01-01

    The amphiphilic block copolymers of vinyl ether were prepared by living cationic polymerization. The partially deuterated copolymers for SANS experiments were especially synthesized by introducing deuterated phenyl units in the hydrophobic chain. SANS measurements were performed for aqueous solutions of these copolymers by changing H 2 O/D 2 O ratios. The SANS profiles indicate that the micelles in the present system exhibit a core-shell structure and that the size and shape of micelles are largely dependent on the length of hydrophobic chain. The micelle of shorter hydrophobic chain was found to be nearly spherical, whereas the micelle of longer hydrophobic chain was confirmed to have an ellipsoidal shape

  5. Effects of copolymer component on the properties of phosphorylcholine micelles

    Directory of Open Access Journals (Sweden)

    Wu Z

    2017-01-01

    Full Text Available Zhengzhong Wu,1 Mengtan Cai,1 Jun Cao,2 Jiaxing Zhang,1 Xianglin Luo1,3 1College of Polymer Science and Engineering, 2National Engineering Research Center for Biomaterials, 3State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People’s Republic of China Abstract: Zwitterionic polymers have unique features, such as good compatibility, and show promise in the application of drug delivery. In this study, the zwitterionic copolymers, poly(ε-caprolactone-b-poly(2-methacryloyloxyethyl phosphorylcholine with disulfide (PCL-ss-PMPC or poly(ε-caprolactone-b-poly(2-methacryloyloxyethyl phosphorylcholine or without disulfide (PCL-PMPC and with different block lengths in PCL-ss-PMPC, were designed. The designed copolymers were obtained by a combination of ring-opening polymerization and atom transferring radical polymerization. The crystallization properties of these polymers were investigated. The micelles were prepared based on the obtained copolymers with zwitterionic phosphorylcholine as the hydrophilic shell and PCL as the hydrophobic core. The size distributions of the blank micelles and the doxorubicin (DOX-loaded micelles were uniform, and the micelle diameters were <100 nm. In vitro drug release and intracellular drug release results showed that DOX-loaded PCL-ss-PMPC micelles could release drugs faster responding to the reduction condition and the intracellular microenvironment in contrast to PCL-PMPC micelles. Moreover, in vitro cytotoxicity evaluation revealed that the designed copolymers possessed low cell toxicity, and the inhibiting effect of DOX-loaded phosphorylcholine micelles to tumor cells was related to the components of these copolymers. These results reveal that the reduction-responsive phosphorylcholine micelles with a suitable ratio of hydrophilic/hydrophobic units can serve as promising drug carriers. Keywords: zwitterionic, reduction-sensitive, disulfide, phosphorylcholine

  6. Engineering single-polymer micelle shape using nonuniform spontaneous surface curvature

    Science.gov (United States)

    Moths, Brian; Witten, T. A.

    2018-03-01

    Conventional micelles, composed of simple amphiphiles, exhibit only a few standard morphologies, each characterized by its mean surface curvature set by the amphiphiles. Here we demonstrate a rational design scheme to construct micelles of more general shape from polymeric amphiphiles. We replace the many amphiphiles of a conventional micelle by a single flexible, linear, block copolymer chain containing two incompatible species arranged in multiple alternating segments. With suitable segment lengths, the chain exhibits a condensed spherical configuration in solution, similar to conventional micelles. Our design scheme posits that further shapes are attained by altering the segment lengths. As a first study of the power of this scheme, we demonstrate the capacity to produce long-lived micelles of horseshoe form using conventional bead-spring simulations in two dimensions. Modest changes in the segment lengths produce smooth changes in the micelle's shape and stability.

  7. Micellization of St/MMA gradient copolymers: a general picture of structural transitions in gradient copolymer micelles.

    Science.gov (United States)

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2013-10-01

    In this work, a gradient copolymer of styrene (St) and methyl methacrylate (MMA) is synthesized via reversible addition-fragmentation chain transfer living radical polymerization and its micellization behaviors in an acetone and water mixture are investigated by transmission electron microscopy, light scattering, and NMR spectroscopy. Three different kinds of transitions were found to coexist in a single system for the first time: a unimers to micelles transition, a star-like micelles to crew-cut micelles transition resulting from the shrinkage of micelles, and morphological transitions from spherical micelles to cylindrical micelles to vesicles. Our findings provide a general picture of structural transitions and relaxation processes in gradient copolymer micelles, which can lead to the development of novel materials and applications based on gradient copolymers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Long circulating micelles of an amphiphilic random copolymer bearing cell outer membrane phosphorylcholine zwitterions.

    Science.gov (United States)

    Zhao, Jing; Chai, Yu-Dong; Zhang, Jing; Huang, Peng-Fei; Nakashima, Kenichi; Gong, Yong-Kuan

    2015-04-01

    Polymeric micelles with cell outer membrane mimetic structure were prepared in water from amphiphilic random copolymers bearing both the hydrophilic phosphorylcholine zwitterions and hydrophobic octadecyl side chains of cell outer membrane. The polymeric micelles showed sizes ranging from 80 nm to 120 nm in hydrodynamic diameter and zeta-potentials from -6.4 mV to -2.4 mV by dynamic light scattering measurements. The micelles loaded with 6-coumarin as a fluorescence probe were stable to investigate their blood circulation and biodistribution. The in vitro phagocytosis results using murine peritoneal macrophages showed 10-fold reduction compared with a reference micelle. The in vivo blood circulation half-life of the polymeric micelles following intravenous administration in New Zealand Rabbits was increased from 0.55 h to 90.5h. More interestingly, tissue distribution results showed that the concentration of the micelles in the kidney is 4-fold higher than that in the liver and other organs 48 h after administration. The results of this work show great promise for designing more effective stealth drug carriers that can minimize reticuloendothelial system clearance and circulate for long time to reach target by using simple cell membrane mimetic random copolymer micelles. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Synthesis, characterization, and property of biodegradable PEG-PCL-PLA terpolymers with miktoarm star and triblock architectures as drug carriers.

    Science.gov (United States)

    Zhang, Yixin; Luo, Song; Liang, Yan; Zhang, Hai; Peng, Xinyu; He, Bin; Li, Sai

    2018-03-01

    A series of amphiphilic terpolymers with miktoarm star and triblock architectures of poly(ethylene glycol) (PEG), poly(ε-caprolactone) (PCL) and poly(l-lactide acid) (PLLA) or poly(DL-lactide acid) (PDLLA) terpolymers were synthesized as carriers for drug delivery. The architecture, molecular weight and crystallization behavior of the terpolymers were characterized. Anticancer drug doxorubicin was encapsulated in the micelles to investigate their drug loading properties. The miktoarm star terpolymers exhibited stronger crystallization capability, smaller size and better stability than that of triblock polymeric micelle, owing to the lower CMC values of miktoarm star polymeric micelle. Furthermore, the drug-loaded miktoarm star polymeric micelles showed the cumulative DOX release account of the micelles with PDLLA blocks was 65.3% while the release account of the corresponding micelles containing PLLA blocks was 45.2%. The IC 50 values of drug-loaded miktoarm star polymeric micelle were lower than triblock polymeric micelle. Meanwhile, Confocal laser scanning microscopy (CLSM) and Flow Cytometry results demonstrated that the miktoarm star micelles were more favorable for cellular internalization. The miktoarm star micelles with PDLLA blocks were promising carriers for anticancer drug delivery.

  10. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid.

    Science.gov (United States)

    Gaur, Swati; Singh Raman, R K; Khanna, A S

    2014-09-01

    A silane-based biodegradable coating was developed and investigated to improve corrosion resistance of an Mg-6Zn-Ca magnesium alloy to delay the biodegradation of the alloy in the physiological environment. Conditions were optimized to develop a stable and uniform hydroxide layer on the alloys surface-known to facilitate silane-substrate adhesion. A composite coating of two silanes, namely, diethylphosphatoethyltriethoxysilane (DEPETES) and bis-[3-(triethoxysilyl) propyl] tetrasulfide (BTESPT), was developed, by the sol-gel route. Corrosion resistance of the coated alloy was characterized in a modified-simulated body fluid (m-SBF), using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The silane coating provided significant and durable corrosion resistance. During the course of this, hydrogen evolution and pH variation, if any, were monitored for both bare and coated alloys. The coating morphology was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and the cross-linking in the coating was studied using Fourier transform infrared spectroscopy (FTIR). As indicated by X-ray diffraction (XRD) results, an important finding was the presence of hydrated magnesium phosphate on the sample that was subjected to immersion in m-SBF for 216h. Magnesium phosphate is reported to support osteoblast formation and tissue healing. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Synthesis and Characterization of a Micelle-Based pH Nanosensor with an Unprecedented Broad Measurement Range

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Feldborg, Lise N.; Almdal, Kristoffer

    2013-01-01

    A new cross-linked micelle pH nanosensor design was investigated. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, poly(ethylene glycol)-b-poly(2-amino ethyl methacrylate)-b-poly(coumarin methacrylate) (PEG-b-PAEMA-b-PCMA), which was synthesized by isolated...... macroinitiator atom transfer radical polymerization. Micelles were formed by PEG-b-PAEMA-b-PCMA self-assembly in water, giving micelles with an average diameter of 45 nm. The PCMA core was employed to utilize coumarin-based photoinduced cross-linking in the core of the micelles, which was performed by UV...

  12. Micelle Formation of Diblock Copolymers in Thin Film Homopolymers and Homopolymer Blends

    Science.gov (United States)

    Chen, Chelsea; Green, Peter

    2010-03-01

    A-b-B diblock copolymers, at very small concentrations, form micelles in a melt of homopolymer chains of type A or B. In the bulk, the critical micelle concentration, φcmc, is a function of the symmetry of the copolymer chain and exhibits a strong dependence on χN, where χ is the interaction parameter and N is the degree of polymerization of the copolymer. We examined micelle formation in thin film mixtures of: (1) polystyrene-b-poly(2-vinylpyridine) (PS-b-PVP)/polystyrene (PS); (2) PS-b-PVP/ blend of PS and tetramethyl bisphenol-A polycarbonate (TMPC); and (3) polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA)/PS. The critical micelle concentration is found to be orders of magnitude larger than the bulk; it is a strong function of film thickness, the substrate/chain segment interactions and the interactions between the different polymeric segments in the system.

  13. Enzyme-Mediated Ring-Opening Polymerization of Pentadecalactone to Obtain Biodegradable Polymer for Fabrication of Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    V. A. Korzhikov

    2013-01-01

    Full Text Available The optimization of enzyme-mediated polymerization of pentadecalactone (PDL was performed to obtain macromolecular products suitable for generation of 3D cell supports (scaffolds for bone tissue engineering. Such parameters as temperature, monomer/enzyme ratio, and monomer concentration were studied. The maximum molecular weight of synthesized polymers was about 90,000. Methods allowing the introduction of reactive double bonds into polypentadecalactone (polyPDL structure were developed. The macroporous matrices were obtained by modification of thermoinduced phase separation method.

  14. Biocompatible and Biodegradable Ultrafine Nanoparticles of Poly(Methyl Methacrylate-co-Methacrylic Acid Prepared via Semicontinuous Heterophase Polymerization: Kinetics and Product Characterization

    Directory of Open Access Journals (Sweden)

    Henned Saade

    2016-01-01

    Full Text Available Ultrafine nanoparticles, less than 10 nm in mean diameter, of the FDA approved copolymer methyl methacrylate- (MMA- co-methacrylic acid (MAA, 2/1 (mol/mol, were prepared. The method used for the preparation of these particles stabilized in a latex containing around 11% solids includes the dosing of the monomers mixture on a micellar solution preserving monomer starved conditions. It is thought that the operation at these conditions combined with the hydrophilicity of MMA and MAA units favors the formation of ultrafine particles; the propagation reaction carried out within so small compartments renders copolymer chains rich in syndiotactic units very likely as consequence of the restricted movements of the end propagation of the chains. Because of their biocompatibility and biodegradability as well as their extremely small size these nanoparticles could be used as vehicles for improved drug delivery in the treatment of chronic-degenerative diseases.

  15. Transformation kinetics of mixed polymeric substrates under ...

    African Journals Online (AJOL)

    bglucosidase and a-mannosidase were abundantly secreted in the growth medium. This research is the first report on mixed polymeric substrate biodegradation under sewer condition by A. niger, and could be considered as an open window on ...

  16. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles

    Directory of Open Access Journals (Sweden)

    Cvetelina Gorinova

    2016-09-01

    Full Text Available Curcumin is a polyphenolic substance with attractive pharmacological activities (e.g. antioxidant, anti-inflammatory, anticancer. Incorporation of curcumin in polymeric micelles could overcome the problems associated with its instability and low aqueous solubility. The aim of this study was to load curcumin in polymeric micelles based on Pluronic® P 123 or Pluronic® F 127 triblock copolymers and evaluate the antioxidant and neuroprotective effects after micellization. The micelles were prepared and loaded with curcumin by applying the dissolution method. Higher encapsulation efficiency was observed in the micelles formulated with Pluronic® P 123. These micelles were characterized with small size and narrow size distribution. The effects of micellar curcumin were investigated in two in vitro models. First, the capacity of micellar curcumin to inhibit iron/ascorbic acid-induced lipid peroxidation in rat liver microsomes was evaluated. Micellar curcumin and free drug showed similar inhibition of lipid peroxidation. Second, micellar curcumin and free curcumin showed protective potential in a model of 6-hydroxydopamine induced neurotoxicity in rat brain synaptosomes. The results from both methods indicated preservation of antioxidant and neuroprotective activity of curcumin in micelles. The small micellar size, high loading capacity and preservation of antioxidant activity of curcumin into Pluronic micelles, suggested their further evaluation as a curcumin delivery system.

  17. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  18. Effects of gamma-irradiation on some properties of bovine casein micelles

    International Nuclear Information System (INIS)

    Saito, Zenichi

    1974-01-01

    Sedimentation studies and electron microscopic observations revealed that an association between casein micelles dispersed in water or milk serum was not induced significantly by gamma-irradiation of exposure up to 3 x 10 6 R, whereas a release of nonprotein nitrogen was observed to a certain extent. It was concluded from the results of turbidi-metry and gel filtration using 3 size groups of casein micelles, namely large, medium and small, that an irradiation-induced polymerization or association occurred within individual casein micelles, and strengthend the micelle structure. Thus the irradiated casein micelles resisted, more or less, to the solubilizing effect of NaCl, EDTA, pyrophosphate and urea. Stabilities of casein micelles for ethanol and for acidification to an isoelectric point were decreased and increased, respectively, after irradiation. Gamma irradiation also caused the decrease of glycomacropeptide released from casein micelles by the action of rennin, and this resulted in the delay of rennin-coagulation of casein. There were no essential differences among the 3 size groups of casein micelles concerning the above described tendencies. (auth.)

  19. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol

    Directory of Open Access Journals (Sweden)

    Li Xinru

    2011-01-01

    Full Text Available Abstract Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol-poly(lactide (mPEG-PLA and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15, were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12. Stability analysis of the mixed micelles in bovine serum albumin (BSA solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

  20. Glutathione-responsive core cross-linked micelles for controlled cabazitaxel delivery

    Science.gov (United States)

    Han, Xiaoxiong; Gong, Feirong; Sun, Jing; Li, Yueqi; Liu, XiaoFei; Chen, Dan; Liu, Jianwen; Shen, Yaling

    2018-02-01

    Stimulus-responsive polymeric micelles (PMs) have recently received attention due to the controlled delivery of drug or gene for application in cancer diagnosis and treatment. In this work, novel glutathione-responsive PMs were prepared to encapsulate hydrophobic antineoplastic drug, cabazitaxel (CTX), to improve its solubility and toxicity. These CTX-loaded micelles core cross-linked by disulfide bonds (DCL-CTX micelles) were prepared by a novel copolymer, lipoic acid grafted mPEG-PLA. These micelles had regular spherical shape, homogeneous diameter of 18.97 ± 0.23 nm, and a narrow size distribution. The DCL-CTX micelles showed high encapsulation efficiency of 98.65 ± 1.77%, and the aqueous solubility of CTX was improved by a factor of 1:1200. In vitro release investigation showed that DCL-CTX micelles were stable in the medium without glutathione (GSH), whereas the micelles had burst CTX release in the medium with 10 mM GSH. Cell uptake results implied that DCL-CTX micelles were internalized into MCF-7 cells through clathrin-mediated endocytosis and released cargo more effectively than Jevtana (commercially available CTX) owing to GSH-stimulated degradation. In MTT assay against MCF-7 cells, these micelles inhibited tumor cell proliferation more effectively than Jevtana due to their GSH-responsive CTX release. All results revealed the potency of GSH-responsive DCL-CTX micelles for stable delivery in blood circulation and for intracellular GSH-trigged release of CTX. Therefore, DCL-CTX micelles show potential as safe and effective CTX delivery carriers and as a cancer chemotherapy formulation.

  1. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    International Nuclear Information System (INIS)

    Cuong, Nguyen-Van; Jiang, Jian-Lin; Li, Yu-Lun; Chen, Jim-Ray; Jwo, Shyh-Chuan; Hsieh, Ming-Fa

    2010-01-01

    The triblock copolymer is composed of two identical hydrophilic segments Monomethoxy poly(ethylene glycol) (mPEG) and one hydrophobic segment poly(ε-caprolactone) (PCL); which is synthesized by coupling of mPEG-PCL-OH and mPEG-COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX) in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo) showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14) of DOX-loaded micelles as compared to multiple administrations of free DOX

  2. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ming-Fa Hsieh

    2010-12-01

    Full Text Available The triblock copolymer is composed of two identical hydrophilic segments: Monomethoxy poly(ethylene glycol (mPEG and one hydrophobic segment poly(ε‑caprolactone (PCL; which is synthesized by coupling of mPEG-PCL-OH and mPEG‑COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14 of DOX-loaded micelles as compared to multiple administrations of free DOX.

  3. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen-Van [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China); Department of Chemical Engineering, Ho Chi Minh City University of Industry, 12 Nguyen Van Bao St, Ho Chi Minh (Viet Nam); Jiang, Jian-Lin; Li, Yu-Lun [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China); Chen, Jim-Ray [Department of Pathology, Chang Gung Memorial Hospital at Keelung, Taiwan and Chang Gung University, College of Medicine, Taoyuan, Taiwan (China); Jwo, Shyh-Chuan [Division of General Surgery, Chang Gung Memorial Hospital at Keelung, Taiwan and Chang Gung University, College of Medicine, Taoyuan, Taiwan (China); Hsieh, Ming-Fa, E-mail: mfhsieh@cycu.edu.tw [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China)

    2010-12-28

    The triblock copolymer is composed of two identical hydrophilic segments Monomethoxy poly(ethylene glycol) (mPEG) and one hydrophobic segment poly(ε-caprolactone) (PCL); which is synthesized by coupling of mPEG-PCL-OH and mPEG-COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX) in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo) showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14) of DOX-loaded micelles as compared to multiple administrations of free DOX.

  4. Enzymatic reactions in reversed micelles

    NARCIS (Netherlands)

    Hilhorst, M.H.

    1984-01-01

    It has been recognised that enzymes in reversed micelles have potential for application in chemical synthesis. Before these expectations will be realised many problems must be overcome. This thesis deals with some of them.
    In Chapter 1 the present knowledge about reversed micelles and

  5. Enzyme recovery using reversed micelles

    NARCIS (Netherlands)

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.

    Reversed micelles are aggregates of surfactant

  6. Glucose-installed, SPIO-loaded PEG- b-PCL micelles as MR contrast agents to target prostate cancer cells

    Science.gov (United States)

    Theerasilp, Man; Sunintaboon, Panya; Sungkarat, Witaya; Nasongkla, Norased

    2017-11-01

    Polymeric micelles of poly(ethylene glycol)- block-poly(ɛ-caprolactone) bearing glucose analog encapsulated with superparamagnetic iron oxide nanoparticles (Glu-SPIO micelles) were synthesized as an MRI contrast agent to target cancer cells based on high-glucose metabolism. Compared to SPIO micelles (non-targeting SPIO micelles), Glu-SPIO micelles demonstrated higher toxicity to human prostate cancer cell lines (PC-3) at high concentration. Atomic absorption spectroscopy was used to determine the amount of iron in cells. It was found that the iron in cancer cells treated by Glu-SPIO micelles were 27-fold higher than cancer cells treated by SPIO micelles at the iron concentration of 25 ppm and fivefold at the iron concentration of 100 ppm. To implement Glu-SPIO micelles as a MR contrast agent, the 3-T clinical MRI was applied to determine transverse relaxivities ( r 2*) and relaxation rate (1/ T 2*) values. In vitro MRI showed different MRI signal from cancer cells after cellular uptake of SPIO micelles and Glu-SPIO micelles. Glu-SPIO micelles was highly sensitive with the r 2* in agarose gel at 155 mM-1 s-1. Moreover, the higher 1/ T 2* value was found for cancer cells treated with Glu-SPIO micelles. These results supported that glucose ligand increased the cellular uptake of micelles by PC-3 cells with over-expressing glucose transporter on the cell membrane. Thus, glucose can be used as a small molecule ligand for targeting prostate cancer cells overexpressing glucose transporter.

  7. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system.

    Science.gov (United States)

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei

    2017-06-01

    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  8. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery.

    Science.gov (United States)

    Son, Suhyun; Shin, Eeseul; Kim, Byeong-Su

    2014-02-10

    Light-responsive polymeric micelles have emerged as site-specific and time-controlled systems for advanced drug delivery. Spiropyran (SP), a well-known photochromic molecule, was used to initiate the ring-opening multibranching polymerization of glycidol to afford a series of hyperbranched polyglycerols (SP-hb-PG). The micelle assembly and disassembly were induced by an external light source owing to the reversible photoisomerization of hydrophobic SP to hydrophilic merocyanine (MC). Transmission electron microscopy, atomic force microscopy, UV/vis spectroscopy, and dynamic light scattering demonstrated the successful assembly and disassembly of SP-hb-PG micelles. In addition, the critical micelle concentration (CMC) was determined through the fluorescence analysis of pyrene to confirm the amphiphilicity of respective SP-hb-PGn (n = 15, 29, and 36) micelles, with CMC values ranging from 13 to 20 mg/L, which is correlated to the length of the polar polyglycerol backbone. Moreover, the superior biocompatibility of the prepared SP-hb-PG was evaluated using WI-38 cells and HeLa cells, suggesting the prospective applicability of the micelles in smart drug delivery systems.

  9. Fabrication of thermo-sensitive complex micelles for reversible cell targeting.

    Science.gov (United States)

    Wu, Yukun; Yang, Chengling; Lai, Quanyong; Zhang, Qian; Wang, Wei; Yuan, Zhi

    2015-11-01

    To ideally solve the contradiction between enhanced cellular uptake and prolonged blood circulation, reversible targeting polymeric micelles based on the expanding and shrinking behavior of a temperature-responsive polymer were developed. The micelle contained a hydrophobic PCL core and a mixed shell consisting of poly(N-isopropylacrylamide) (PNIPAAm) and biotin-terminated poly(ethylene glycol) (Biotin-PEG), and its targeting ability could be switched on/off by temperature. The cellular uptake of the complex polymeric micelles was studied. The results from a quantitative enzyme-linked immunosorbent assay (ELISA) indicated that the surface biotin content increased by as much as 11.6-fold when the temperature increased above the lower critical solution temperature (LCST). More importantly, the ELISA confirmed that biotin-mediated targeting on the surface was reversibly switched on and off for at least five cycles. In addition, the results from quantitative flow cytometry and confocal spectroscopy indicated that the cellular uptake of the targeted micelles at temperatures above the LCST was much higher than that at temperatures below the LCST. This complex polymeric micelle with reversible targeting property could be a promising alternative for drug delivery.

  10. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  11. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  12. Micelle hydrogels for three-dimensional dose verification

    Science.gov (United States)

    Babic, S.; Battista, J.; Jordan, K.

    2009-05-01

    Gelatin hydrogels form a transparent and colourless matrix for polymerization or chromic reactions initiated by absorption of ionizing radiation. Generally, hydrogel chemistries have been limited to water soluble reactants. Work to adapt a water insoluble colourless leuco dye to coloured dye conversion reaction in hydrogels, led to the idea that micelles (i.e. tiny aggregates of surfactant molecules) may provide the necessary polar and nonpolar hybrid environment. Both leucomalachite green and leuco crystal violet radiochromic gels have been developed as three-dimensional (3-D) radiochromic dosimeters for optical computed tomography (CT) scanners. It has been found that the post-irradiation diffusion rates strongly correlate with the solubility of the leuco dyes. Since the crystal violet dye is more soluble in the micelle than in the surrounding water, the dose distribution degrades at the slower rate of micelle diffusion, thus yielding stable images of dose. A dosimetric characterization of leucomalachite green and leuco crystal violet gels, respectively, reveals that tissue equivalent micelle hydrogels are promising dosimeters for radiation therapy 3-D dose verification.

  13. Near-infrared light-triggered dissociation of block copolymer micelles for controlled drug release

    Science.gov (United States)

    Cao, Jie; Huang, Shanshan; Chen, Yuqi; Li, Siwen; Achilefu, Samuel; Qian, Zhiyu; Gu, Yueqing

    2013-02-01

    In this manuscript, a new near-infrared (NIR) light-breakable amphiphilic block copolymer containing light-sensitive triggering group on the hydrophobic block was developed. By encapsulating NIR dye cypate inside micelles of poly (N-succinyl-N'-4- (2-nitrobenzyloxy)-succinyl chitosan) and exposing the micellar solution to 765.9 nm light, the photo-cleavage reaction was activated and leading to the dissociation of micelles and release of co-loaded hydrophobic species. The UV-vis absorption spectra, fourier transform infrared (FTIR) spectra and 1H nuclear magnetic resonance (1H NMR) spectra of micelles were characterized. Triggered burst release of the payload upon NIR irradiation and subsequent degradation of the micelles were observed by transmission electron microscopy (TEM). This system represents a general and efficient method to circumvent the need for UV or visible light excitation that is a common drawback for light-responsive polymeric systems developed for potential biomedical applications.

  14. Toward biodegradable nanogel star polymers via organocatalytic ROP.

    Science.gov (United States)

    Appel, Eric A; Lee, Victor Y; Nguyen, Timothy T; McNeil, Melanie; Nederberg, Frederik; Hedrick, James L; Swope, William C; Rice, Jullia E; Miller, Robert D; Sly, Joseph

    2012-06-21

    Organocatalytic ring opening polymerization (OROP) is used to effect the rapid, scalable, room temperature formation of size-controlled, highly uniform, polyvalent, nanogel star polymer nanoparticles of biodegradable composition.

  15. Corrosion Performance of Carbon Steel in Simulated Pore Solution in the Presence of Micelles

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; De Wit, J.H.W.; Kolev, H.; Van Breugel, K.

    2011-01-01

    This study presents the results on the investigation of the corrosion behavior of carbon steel in model alkaline medium in the presence of very low concentration of polymeric nanoaggregates [0.0024 wt % polyethylene oxide (PEO)113-b-PS70 micelles]. The steel electrodes were investigated in chloride

  16. Competitive and Synergistic Interactions between Polymer Micelles, Drugs, and Cyclodextrins:The Importance of Drug Solubilization Locus

    OpenAIRE

    Valero, Margarita; Castiglione, Franca; Mele, Andrea; Da Silva, Marcelo A.; Grillo, Isabelle; González-Gaitano, Gustavo; Dreiss, Cécile A.

    2016-01-01

    Polymeric micelles, in particular PEO-PPO-based Pluronic, have emerged as promising drug carriers, while cyclodextrins (CD), cyclic oligosaccharides with an apolar cavity, have long been used for their capacity to form inclusion complexes with drugs. Dimethylated β-cyclodextrin (DIMEB) has the capacity to fully breakup F127 Pluronic micelles, while this effect is substantially hindered if drugs are loaded within the micellar aggregates. Four drugs were studied at physiological temperature: li...

  17. Conjugation of Lectin to Poly(ε-caprolactone-block-glycopolymer Micelles for In Vitro Intravesical Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ning Ning Li

    2016-10-01

    Full Text Available Amphiphilic poly(ε-caprolactone-block-poly[2-(α-d-mannopyranosyloxy ethyl acrylamide] (PCL-b-PManEA block copolymers were synthesized via a combination of ring-opening polymerization (ROP, reversible addition-fragmentation chain transfer (RAFT polymerization and reactive ester-amine reaction. The PCL-b-PManEA block copolymers can self-assemble into micelles and encapsulate anticancer drug doxorubicin (DOX. To enhance mucoadhesive property of the resulting DOX-loaded PCL-b-PManEA micelles, Concanavalin A (ConA lectin was further conjugated with the micelles. Turbidimetric assay using mucin shows that the DOX-loaded PCL-b-PManEA@ConA micelles are mucoadhesive. DOX release from the DOX-loaded PCL-b-PManEA@ConA micelles in artificial urine at 37 °C exhibits an initial burst release, followed by a sustained and slow release over three days. Confocal laser scanning microscope (CLSM images indicate that the DOX-loaded PCL-b-PManEA@ConA micelles can be effectively internalized by UMUC3 human urothelial carcinoma cells. The DOX-loaded PCL-b-PManEA@ConA micelles exhibit significant cytotoxicity to these cells.

  18. Bioreducible Micelles Self-Assembled from Poly(ethylene glycol-Cholesteryl Conjugate As a Drug Delivery Platform

    Directory of Open Access Journals (Sweden)

    Chulsu Baek

    2015-11-01

    Full Text Available The ability of polymeric micelles to self-assemble into nanosized particles has created interest in their application as potential anticancer drug delivery systems. A poly(ethylene glycol-cholesteryl conjugate (Chol-ss-PEG-ss-Chol connected by cleavable disulfide linkages was synthesized and used as a nanocarrier for in vitro release of doxorubicin (DOX. Owing to its amphiphilic structure, Chol-ss-PEG-ss-Chol was able to self-assemble into micelles with an average diameter 18.6 nm in aqueous solution. The micelles formed large aggregates due to the shedding of the PEG shell through cleavage of disulfide bonds in a reductive environment. The in vitro release studies revealed that Chol-ss-PEG-ss-Chol micelles released 80% and approximately 9% of the encapsulated DOX within 6 h under reductive and non-reductive conditions, respectively. The glutathione (GSH-mediated intracellular drug delivery was investigated in a KB cell line. The cytotoxicity of DOX-loaded micelles indicated a higher cellular anti-proliferative effect against GSH-pretreated than untreated KB cells. Furthermore, confocal laser scanning microscopy (CLSM measurement demonstrated that Chol-ss-PEG-ss-Chol micelles exhibited faster drug release in GSH-pretreated KB cells than untreated KB cells. These results suggest the potential usefulness of disulfide-based polymeric micelles as controlled drug delivery carriers.

  19. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in

  20. Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles

    Directory of Open Access Journals (Sweden)

    Xu GY

    2015-03-01

    Full Text Available Guangya Xu,1,* Huashan Shi,2,* Laibin Ren,1 Hongfeng Gou,1 Daoyin Gong,1 Xiang Gao,1–3 Ning Huang11Department of Pathophysiology, West China College of Preclinical Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2State Key Laboratory of Biotherapy and Cancer Center, 3Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People’s Republic of China*These authors contributed equally to this workAbstract: Colorectal cancer, a type of malignant neoplasm originating from the epithelial cells lining the colon and/or rectum, has been the third most frequent malignancy and one of the leading causes of cancer-related deaths in the US. As a bioflavonoid with high anticancer potential, quercetin (Qu has been proved to have a prospective applicability in chemotherapy for a series of cancers. However, quercetin is a hydrophobic drug, the poor hydrophilicity of which hinders its clinical usage in cancer therapy. Therefore, a strategy to improve the solubility of quercetin in water and/or enhance the bioavailability is desired. Encapsulating the poorly water-soluble, hydrophobic agents into polymer micelles could facilitate the dissolution of drugs in water. In our study, nanotechnology was employed, and quercetin was encapsulated into the biodegradable nanosized amphiphilic block copolymers of monomethoxy poly(ethylene glycol–poly(ε-caprolactone (MPEG–PCL, attempting to present positive evidences that this drug delivery system of polymeric micelles is effective. The quercetin-loaded MPEG–PCL nanomicelles (Qu-M, with a high drug loading of 6.85% and a minor particle size of 34.8 nm, completely dispersed in the water and released quercetin in a prolonged period in vitro and in vivo. At the same time, compared with free quercetin, Qu-M exhibited improved apoptosis induction and cell growth inhibition effects in CT26 cells in vitro. Moreover

  1. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  2. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs

    Energy Technology Data Exchange (ETDEWEB)

    Alibolandi, Mona [Mashhad University of Medical Sciences, Biotechnology Research Center, School of Pharmacy (Iran, Islamic Republic of); Ramezani, Mohammad; Abnous, Khalil [Mashhad University of Medical Sciences, Pharmaceutical Research Center, School of Pharmacy (Iran, Islamic Republic of); Sadeghi, Fatemeh, E-mail: sadeghif@mums.ac.ir [Mashhad University of Medical Sciences, Targeted Drug Delivery Research Center, School of Pharmacy (Iran, Islamic Republic of); Hadizadeh, Farzin, E-mail: hadizadehf@mums.ac.ir [Mashhad University of Medical Sciences, Biotechnology Research Center, School of Pharmacy (Iran, Islamic Republic of)

    2015-02-15

    Di-block copolymers composed of two biocompatible polymers, poly(ethylene glycol) and poly(d,l-lactide), were synthesized by ring-opening polymerization for the preparation of doxorubicin-loaded self-assembled nanostructures, including polymeric vesicles (polymersomes) and micelles. The capability and stability of the nanostructures prepared for the controlled release of DOX are discussed in this paper. The in vitro drug release at 37 °C was evaluated up to 6 days at pH 7.4 and 5.5 and in the presence of 50 % FBS. The cellular uptake and cytotoxicity effect of both formulations were also evaluated in the MCF-7 cell line. The SEM and AFM images confirmed the hollow spherical structure of the polymersomes and the solid round structures of the micelles. The TEM results also revealed the uniformity in size and shape of the drug-loaded micelle and polymersome nanostructures. The DOX-loaded micelles and polymersomes presented efficient anticancer performance, as verified by flow cytometry and MTT assay tests. The most important finding of this study is that the prepared nanopolymersomes presented significant increases in the doxorubicin encapsulation efficiency and the stability of the formulation in comparison with the micelle formulation. In vitro studies revealed that polymersomes may be stable in the blood circulation and meet the requirements for an effective drug delivery system.

  3. Oil biodegradation

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Langenhoff, Alette A.M.; Smit, Martijn P.J.; Eenennaam, van Justine S.; Murk, Tinka; Rijnaarts, Huub H.M.

    2017-01-01

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study

  4. Polymeric microspheres

    Science.gov (United States)

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  5. Magnetic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol micelles for docetaxel delivery in breast cancer: an in vitro study on two cell lines of breast cancer.

    Science.gov (United States)

    Varshosaz, Jaleh; Dehkordi, Abbas Jafarian; Setayesh, Sahar

    2017-08-01

    The aim of the present study was to load docetaxel (DCT) and Fe 3 O 4 magnetic nanoparticles (MNPs) in polymeric micelles to concentrate them by an external magnetic field in target tissues. Oleic acid (OA) coated MNPs were prepared by hydrothermal method. The micelles were characterized for their zeta potential, particle size, drug loading and release efficacy. Fe loading efficacy was determined by atomic absorption. The magnetic micelles were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), transmission electron microscopy and vibrating sample magnetometer (VSM). The cytotoxicity of the micelles was studied by MTT assay on L929 fibroblast cells and also on two breast cancer cell lines of MCF-7 and MDA-MB-231. The optimum formulation showed 70% drug loading efficiency, zeta potential of -2.58 mV, particle size of 144.3 nm and drug release efficiency within 24 h of 68.9% at pH 5.5. Fe was loaded in these nanomicelles 290 μg/100 ml. TGA results confirmed the coating of MNPs with OA and polymeric micelles. The VSM analysis confirmed superparamagnetic property of the micelles. DCT loaded in micelles showed significantly more cytotoxicity compared to free drug on MCF-7 and MDA-MB-231 cells, but blank magnetic micelles had no significant cytotoxicity on normal fibroblast cells.

  6. Self-assembled micelles of amphiphilic poly(L-phenylalanine)-b-poly(L-serine) polypeptides for tumor-targeted delivery.

    Science.gov (United States)

    Zhao, Ziming; Wang, Yu; Han, Jin; Wang, Keli; Yang, Dan; Yang, Yihua; Du, Qian; Song, Yuanjian; Yin, Xiaoxing

    2014-01-01

    The aim of this work was to design, synthesize, and characterize self-assembled micelles based on polypeptides as a potential antitumor drug carrier. Amphiphilic poly(L-phenylalanine)-b-poly(L-serine) (PFS) polypeptides were obtained through the polymerization of N-carboxyanhydride. As a novel hydrophilic segment, poly(L-serine) was utilized to enhance tumor targeting due to a large demand of tumors for serine. PFS could self-assemble into micelles with an average diameter of 110-240 nm and a slightly negative charge. PFS polypeptides adopted random coil in pH 7.4 phosphate-buffered saline and could partly transform to α-helix induced by trifluoroethanol. PFS micelles with a low critical micelle concentration of 4.0 μg mL(-1) were stable in pH 5-9 buffers and serum albumin solution. PFS micelles had a loading capacity of 3.8% for coumarin-6 and exhibited a sustained drug release. Coumarin-6 loaded rhodamine B isothiocyanate-labeled PFS micelles were incubated with Huh-7 tumor cells to study the correlation between drugs and carriers during endocytosis. The uptake of drugs was consistent with the micelles, illustrating that the intracellular transport of drugs highly depended on the micelles. PFS micelles diffused in whole cytoplasm while coumarin-6 assumed localized distribution, suggesting that the micelles could release the loaded drugs in particular areas. The internalization mechanism of PFS micelles was involved with clathrin-mediated endocytosis and macropinocytosis. Excess serine inhibited the uptake of PFS micelles, which demonstrated that serine receptors played a positive role in the internalization of PFS. The more interesting thing was that the uptake inhibition impacted on normal cells but not on tumor cells at the physiological concentration of serine. The difference in the uptake of PFS micelles was fourfold as high between the tumor cells and the normal cells, which indicated that PFS micelles had good tumor targeting in vitro. In conclusion, PFS

  7. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    Science.gov (United States)

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  8. Uniform electroactive fibre-like micelle nanowires for organic electronics

    Science.gov (United States)

    Li, Xiaoyu; Wolanin, Piotr J.; Macfarlane, Liam R.; Harniman, Robert L.; Qian, Jieshu; Gould, Oliver E. C.; Dane, Thomas G.; Rudin, John; Cryan, Martin J.; Schmaltz, Thomas; Frauenrath, Holger; Winnik, Mitchell A.; Faul, Charl F. J.; Manners, Ian

    2017-06-01

    Micelles formed by the self-assembly of block copolymers in selective solvents have attracted widespread attention and have uses in a wide variety of fields, whereas applications based on their electronic properties are virtually unexplored. Herein we describe studies of solution-processable, low-dispersity, electroactive fibre-like micelles of controlled length from π-conjugated diblock copolymers containing a crystalline regioregular poly(3-hexylthiophene) core and a solubilizing, amorphous regiosymmetric poly(3-hexylthiophene) or polystyrene corona. Tunnelling atomic force microscopy measurements demonstrate that the individual fibres exhibit appreciable conductivity. The fibres were subsequently incorporated as the active layer in field-effect transistors. The resulting charge carrier mobility strongly depends on both the degree of polymerization of the core-forming block and the fibre length, and is independent of corona composition. The use of uniform, colloidally stable electroactive fibre-like micelles based on common π-conjugated block copolymers highlights their significant potential to provide fundamental insight into charge carrier processes in devices, and to enable future electronic applications.

  9. Critical evaluation of biodegradable polymers used in nanodrugs

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  10. Critical evaluation of biodegradable polymers used in nanodrugs.

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed.

  11. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo, E-mail: zghu@htu.cn

    2014-10-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10{sup −4} mg/mL and 3.9 × 10{sup −5} mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability.

  12. Biological evaluation of polymeric micelles with covalently bound doxorubicin

    Czech Academy of Sciences Publication Activity Database

    Větvička, David; Hrubý, Martin; Hovorka, Ondřej; Etrych, Tomáš; Vetrík, Miroslav; Kovář, Lubomír; Kovář, Marek; Ulbrich, Karel; Říhová, Blanka

    2009-01-01

    Roč. 20, č. 11 (2009), s. 2090-2097 ISSN 1043-1802 R&D Projects: GA AV ČR KAN200200651; GA ČR GD310/08/H077; GA AV ČR IAA400480616 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z10480505; CEZ:AV0Z40500505 Keywords : DRUG-DELIVERY SYSTEMS * TUMOR * hpma Subject RIV: EC - Immunology Impact factor: 4.350, year: 2009

  13. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  14. Fluorocarbon-hydrocarbon incompatibility in micellar polymerizations.

    Science.gov (United States)

    Rogers, Sarah E; Eastoe, Julian; Hudson, Laura; Gold, Sarah; Heenan, Richard K; Grillo, Isabelle

    2009-02-15

    A new approach to micellar polymerization is described. It is well known that hydrocarbons and fluorocarbons exhibit local phase segregation (demixing) owing to mutual antipathy; here this effect is employed in monomer swollen micelles with appropriate combinations of hydrocarbon and fluorocarbon monomers and surfactants. A matrix of these hydro- and fluorocarbon components has been investigated to delineate the effects of H-F antipathy on the outcomes of polymerization reactions to generate nanolatices of different size (and possibly morphology). Phase diagrams, (1)H NMR and small-angle neutron (SANS) data have been generated to characterize the systems, indicating new routes to influence nanolatex formation.

  15. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  16. Biodegradation of Moringa oleifera's polymer blends.

    Science.gov (United States)

    Finzi-Quintão, Cristiane Medina; Novack, Kátia Monteiro; Bernardes-Silva, Ana Cláudia; Silva, Thais D; Moreira, Lucas E S; Braga, Luiza E M

    2017-11-10

    Vegetable oils are used as a base for the synthesis of polymers and monomers with structures similar to that of petroleum, as plasticizers for conventional polymers and biodegrading additives. The Moringa oleifera oil was extracted from seeds and polymerized after being submitted to 16 h of microwave irradiation without catalysers. This polymer was characterized and the efficiency of the oil polymerization was verified by the reduction of double bonds and the increase of molecular weight up to 50,000 g mol -1 . Films produced by a mixture of low-density polyethylene (LDPE) with poly(butylene adipate-co-terephthalate)/poly(lactic acid) (PBAT/PLA) present low tensile resistance and low biodegradation behaviour. In order to improve those properties, the Moringa polymer (PMO) was mixed with LDPE and PBAT/PLA in specific mass concentrations. The films produced with this mixture were characterized and submitted to biodegradation analysis. The PMO behaves as a compatibilizer by improving thermal properties, reducing the crystalline phase and improving the biodegradation behaviour. The biodegradation improved up to five times in comparison to conventional polymers and it restores the mechanical properties.

  17. Competitive and Synergistic Interactions between Polymer Micelles, Drugs, and Cyclodextrins: The Importance of Drug Solubilization Locus.

    Science.gov (United States)

    Valero, Margarita; Castiglione, Franca; Mele, Andrea; da Silva, Marcelo A; Grillo, Isabelle; González-Gaitano, Gustavo; Dreiss, Cécile A

    2016-12-13

    Polymeric micelles, in particular PEO-PPO-based Pluronic, have emerged as promising drug carriers, while cyclodextrins (CD), cyclic oligosaccharides with an apolar cavity, have long been used for their capacity to form inclusion complexes with drugs. Dimethylated β-cyclodextrin (DIMEB) has the capacity to fully breakup F127 Pluronic micelles, while this effect is substantially hindered if drugs are loaded within the micellar aggregates. Four drugs were studied at physiological temperature: lidocaine (LD), pentobarbital sodium salt (PB), sodium naproxen (NP), and sodium salicylate (SAL); higher temperatures shift the equilibrium toward higher drug partitioning and lower drug/CD binding compared to 25 °C ( Valero, M.; Dreiss, C. A. Growth, Shrinking, and Breaking of Pluronic Micelles in the Presence of Drugs and/or β-Cyclodextrin, a Study by Small-Angle Neutron Scattering and Fluorescence Spectroscopy . Langmuir 2010 , 26 , 10561 - 10571 ). The impact of drugs on micellar structure was characterized by small-angle neutron scattering (SANS), while their solubilization locus was revealed by 2D NOESY NMR. UV and fluorescence spectroscopy, Dynamic and Static Light Scattering were employed to measure a range of micellar properties and drug:CD interactions: binding constant, drug partitioning within the micelles, critical micellar concentration of the loaded micelles, aggregation number (N agg ). Critically, time-resolved SANS (TR-SANS) reveal that micellar breakup in the presence of drugs is substantially slower (100s of seconds) than for the free micelles (<100 ms) ( Valero, M.; Grillo, I.; Dreiss, C. A. Rupture of Pluronic Micelles by Di-Methylated β-Cyclodextrin Is Not Due to Polypseudorotaxane Formation . J. Phys. Chem. B 2012 , 116 , 1273 - 1281 ). These results combined together give new insights into the mechanisms of protection of the drugs against CD-induced micellar breakup. The outcomes are practical guidelines to improve the design of drug delivery systems

  18. Biodegradable containers from green waste materials

    Science.gov (United States)

    Sartore, Luciana; Schettini, Evelia; Pandini, Stefano; Bignotti, Fabio; Vox, Giuliano; D'Amore, Alberto

    2016-05-01

    Novel biodegradable polymeric materials based on protein hydrolysate (PH), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) were obtained and their physico-chemical properties and mechanical behaviour were evaluated. Different processing conditions and the introduction of fillers of natural origin, as saw dust and wood flour, were used to tailor the mechanical properties and the environmental durability of the product. The biodegradable products, which are almost completely manufactured from renewable-based raw materials, look promising for several applications, particularly in agriculture for the additional fertilizing action of PH or in packaging.

  19. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Dimitrios Skoulas

    2017-06-01

    Full Text Available The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000–2017.

  20. Preparation of Water-soluble Polyion Complex (PIC Micelles Covered with Amphoteric Random Copolymer Shells with Pendant Sulfonate and Quaternary Amino Groups

    Directory of Open Access Journals (Sweden)

    Rina Nakahata

    2018-02-01

    Full Text Available An amphoteric random copolymer (P(SA91 composed of anionic sodium 2-acrylamido-2-methylpropanesulfonate (AMPS, S and cationic 3-acrylamidopropyl trimethylammonium chloride (APTAC, A was prepared via reversible addition-fragmentation chain transfer (RAFT radical polymerization. The subscripts in the abbreviations indicate the degree of polymerization (DP. Furthermore, AMPS and APTAC were polymerized using a P(SA91 macro-chain transfer agent to prepare an anionic diblock copolymer (P(SA91S67 and a cationic diblock copolymer (P(SA91A88, respectively. The DP was estimated from quantitative 13C NMR measurements. A stoichiometrically charge neutralized mixture of the aqueous P(SA91S67 and P(SA91A88 formed water-soluble polyion complex (PIC micelles comprising PIC cores and amphoteric random copolymer shells. The PIC micelles were in a dynamic equilibrium state between PIC micelles and charge neutralized small aggregates composed of a P(SA91S67/P(SA91A88 pair. Interactions between PIC micelles and fetal bovine serum (FBS in phosphate buffered saline (PBS were evaluated by changing the hydrodynamic radius (Rh and light scattering intensity (LSI. Increases in Rh and LSI were not observed for the mixture of PIC micelles and FBS in PBS for one day. This observation suggests that there is no interaction between PIC micelles and proteins, because the PIC micelle surfaces were covered with amphoteric random copolymer shells. However, with increasing time, the diblock copolymer chains that were dissociated from PIC micelles interacted with proteins.

  1. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  2. Redox-responsive core cross-linked prodrug micelles prepared by click chemistry for pH-triggered doxorubicin delivery

    Directory of Open Access Journals (Sweden)

    X. T. Cao

    2017-10-01

    Full Text Available A pH-triggered drug delivery system of degradable core cross-linked (CCL prodrug micelles was prepared by click chemistry. Doxorubicin conjugated block copolymers of azido functional poly(ethylene oxide-b-poly(glycidyl methacrylate were synthesized by the combination of RAFT polymerization, epoxide ring-opening reaction, and acid-cleavable hydrazone linkages. The CCL prodrug micelles were produced by the reaction of dipropargyl 3,3′-dithiodipropionate and dipropargyl adipate cross-linking agents with the azido groups of the micellar core via alkyne-azide click reaction, which were denoted as CCL/SS and CCL/noSS, respectively. The TEM images of CCL/SS prodrug micelles showed a spherical shape with the average diameter of 61.0 nm from water, and the shape was maintained with an increased diameter upon dilution with 5-fold DMF. The high DOX conjugation efficiency was 88.4%. In contrast to a very slow DOX release from CCL/SS prodrug micelles under the physiological condition (pH 7.4, the drug release is much faster (90% at pH 5.0 and 10 mM of GSH after 96 h. The cytotoxicity test and confocal laser scanning microscopy analysis revealed that CCL/SS prodrug micelles had much enhanced intracellular drug release capability in HepG2 cells than CCL/noSS prodrug micelles.

  3. Controlling lipid micelle stability using oligonucleotide headgroups.

    Science.gov (United States)

    Wilner, Samantha E; Sparks, Samuel E; Cowburn, David; Girvin, Mark E; Levy, Matthew

    2015-02-18

    Lipid-based micelles provide an attractive option for therapeutic and diagnostic applications because of their small size (24 h. Using antisense oligonucleotides we demonstrated that disruption of the quadruplex leads to micelle destabilization and cargo release. The ability to use oligonucleotide interactions to control lipid particle stability represents a new approach in the design of programmed nanoscale devices.

  4. Vibrational dynamics of ice in reverse micelles

    NARCIS (Netherlands)

    Dokter, A.M.; Petersen, C.; Woutersen, S.; Bakker, H.J.

    2008-01-01

    he ultrafast vibrational dynamics of HDO:D2O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is

  5. Methotrexate-loaded biodegradable nanoparticles: preparation ...

    Indian Academy of Sciences (India)

    Administrator

    effects as well as to achieve anticipated sustained release properties. In recent years, biodegradable polymeric ... 8 h and lyophilized with vacuum pressure of < 50 mTorr and at a temperature of –40 °C for 48 h. ... out in dialysis tubing using phosphate buffer pH 6∙8 at. 37 ± 0∙5 °C and at 50 rpm. In vitro drug release was.

  6. Self-Assembled Polymeric Micellar Nanoparticles as Nanocarriers for Poorly Soluble Anticancer Drug Ethaselen

    Directory of Open Access Journals (Sweden)

    Yang Zhuoli

    2009-01-01

    Full Text Available Abstract A series of monomethoxy poly(ethylene glycol-poly(lactide (mPEG-PLA diblock copolymers were synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and delivery of a promising anticancer drug ethaselen. Ethaselen was efficiently encapsulated into the micelles by the dialysis method, and the solubility of ethaselen in water was remarkably increased up to 82 μg/mL before freeze-drying. The mean diameter of ethaselen-loaded micelles ranged from 51 to 98 nm with a narrow size distribution and depended on the length of PLA block. In vitro hemolysis study indicated that mPEG-PLA copolymers and ethaselen-loaded polymeric micelles had no hemolytic effect on the erythrocyte. The enhanced antitumor efficacy and reduced toxic effect of ethaselen-loaded polymeric micelle when compared with ethaselen-HP-β-CD inclusion were observed at the same dose in H22human liver cancer cell bearing mouse models. These suggested that mPEG-PLA polymeric micelle nanoparticles had great potential as nanocarriers for effective solubilization of poorly soluble ethaselen and further reducing side effects and toxicities of the drug.

  7. Development of radioisotope labeled polymeric carriers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Jeong, Jea Min; Hwang, Hyun Jeong [Ewha Womans University, Seoul (Korea)

    2000-04-01

    This research was performed with the aim of developing polymeric radioisotope or drug carriers for obtaining efficient diagnostic therapeutic efficacy. As polymers, polyethylene oxides, polylactides, polycaprolactone were chosen to prepare the devices including micelle system, microemulsion, nanospheres. In addition, anticancer drug loaded polylactide microparticulates were fabricated as a regional chemotherapeutics for the treatment of cancer. Technetium or radioactive iodine was labeled to the polymeric carriers via ligands such as DTPA and HPP, respectively. Labeling efficiency was above 90% and stable enough up to 24 hours. Moreover, injected polymer carriers demonstrated higher blood maintenance and bone uptake than Tin colloid, a control. These results suggested that radioisotope carrying polymeric particulate are promising tools for diagnosing blood vessels or bones. Besides, anticancer drug loaded particulates demonstrated appropriate maintenance of therapeutic concentration and localization. Therefore it was proposed that this therapeutic system may be potential as a cancer therapy modality. 20 refs., 24 figs.,5 tabs. (Author)

  8. Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin

    Directory of Open Access Journals (Sweden)

    Zhao J

    2012-09-01

    Full Text Available Jingmou Yu,1 Xin Xie,1 Meirong Zheng,1 Ling Yu,2 Lei Zhang,1 Jianguo Zhao,1 Dengzhao Jiang,1 Xiangxin Che11Key Laboratory of Systems Biology Medicine of Jiangxi Province, College of Basic Medical Science, Jiujiang University, Jiujiang, 2Division of Nursing, 2nd Affiliated Hospital, Yichun University, Yichun, People's Republic of ChinaBackground: Supramolecular micelles as drug-delivery vehicles are generally unable to enter the nucleus of nondividing cells. In the work reported here, nuclear localization signal (NLS-modified polymeric micelles were studied with the aim of improving nuclear drug delivery.Methods: In this research, cholesterol-modified glycol chitosan (CHGC was synthesized. NLS-conjugated CHGC (NCHGC was synthesized and characterized using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX, an anticancer drug with an intracellular site of action in the nucleus, was chosen as a model drug. DOX-loaded micelles were prepared by an emulsion/solvent evaporation method. The cellular uptake of different DOX formulations was analyzed by flow cytometry and confocal laser scanning microscopy. The cytotoxicity of blank micelles, free DOX, and DOX-loaded micelles in vitro was investigated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in HeLa and HepG2 cells.Results: The degree of substitution was 5.9 cholesterol and 3.8 NLS groups per 100 sugar residues of the NCHGC conjugate. The critical aggregation concentration of the NCHGC micelles in aqueous solution was 0.0209 mg/mL. The DOX-loaded NCHGC (DNCHGC micelles were observed as being almost spherical in shape under transmission electron microscopy, and the size was determined as 248 nm by dynamic light scattering. The DOX-loading content of the DNCHGC micelles was 10.1%. The DOX-loaded micelles showed slow drug-release behavior within 72 hours in vitro. The DNCHGC micelles exhibited greater

  9. Synthesis, Characterization and Biocompatibility of Biodegradable Elastomeric Poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via Melting Polymerization

    DEFF Research Database (Denmark)

    Li, Zibiao; Yang, Xiaodi; Wu, Linping

    2009-01-01

    contact angle measurements revealed that surface hydrophilicity of the PUs was enhanced by incorporating the PEG segment into PHBHHx polymer backbone. The mechanical properties assessment of the PUs recorded an improved and adjustable ductility and toughness than pure PHBHHx while preserving the tensile......Poly(ether-ester urethane)s (PUs) multiblock co-polymers were synthesized from telechelic hydroxylated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(ethylene glycol) (PEG) via a melting polymerization (MP) process using 1,6-hexamethylene diisocyanate (HDI) as a non-toxic coupling...... transform infrared spectroscopy (FT-IR). The PU produced via the MP method showed a higher molecular weight than those resulting from the solvent polymerization (SP) reported previously. Thermal properties showed enhanced thermal stability with semi-crystalline morphology via incorporation of PEG...

  10. Multifunctional Biodegradable Polyacrylamide Nanocarriers for Cancer Theranostics - A “See and Treat” Strategy

    OpenAIRE

    Wang, Shouyan; Kim, Gwangseong; Lee, Yong-Eun Koo; Hah, Hoe Jin; Ethirajan, Manivannan; Pandey, Ravindra K.; Kopelman, Raoul

    2012-01-01

    We describe here the development of multifunctional nanocarriers, based on amine functionalized biodegradable polyacrylamide nanoparticles (NPs), for cancer theranostics, including active tumor targeting, fluorescence imaging and photodynamic therapy. The structural design involves adding primary amino groups and biodegradable crosslinkers during the NP polymerization, while incorporating photodynamic and fluorescent imaging agents into the NP matrix, and conjugating PEG and tumor-targeting l...

  11. Chemical reactions in reverse micelle systems

    Science.gov (United States)

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  12. Photosensitizer enhanced disassembly of amphiphilic micelle for ROS-response targeted tumor therapy in vivo.

    Science.gov (United States)

    Dai, Liangliang; Yu, Yonglin; Luo, Zhong; Li, Menghuan; Chen, Weizhen; Shen, Xinkun; Chen, Feng; Sun, Qiang; Zhang, Qingfeng; Gu, Hao; Cai, Kaiyong

    2016-10-01

    This study reports a reactive oxygen species (ROS) sensitive drug delivery system based on amphiphilic polymer of poly(propylene sulfide)-polyethylene glycol-serine-folic acid (PPS-mPEG-Ser-FA). The polymer could form homogeneous micelles with an average diameter of around 80 nm through self-assembly, which would then be loaded with the singlet oxygen-generating photosensitizer of zinc phthalocyanine (ZNPC) and anti-cancer drug of DOX. The disassembly of micelles could be triggered by the hydrophobic to hydrophilic transition of the PPS core in response to ROS-induced oxidation in vitro. ZNPC molecules are capable of producing ROS under laser irradiation, which results in the rapid disassembly of micelles and releasing of the anti-tumor drug for tumor therapy under physiological condition otherwise. Moreover, the excessive ROS production deriving from ZNPC synergically induces cells apoptosis. Furthermore, the DOX loaded amphiphilic micelles could be internalized by tumor cells via FA receptor-mediated endocytosis to effectively inhibit the tumor growth in vivo, while with only minimal toxic side effects. The results in vitro and in vivo consistently demonstrate that the light-responsive micelle is a promising biodegradable nanocarrier for on-command drug release and targeted tumor therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer

    Science.gov (United States)

    Gao, Xiang; Wang, Bilan; Wei, Xiawei; Men, Ke; Zheng, Fengjin; Zhou, Yingfeng; Zheng, Yu; Gou, Maling; Huang, Meijuan; Guo, Gang; Huang, Ning; Qian, Zhiyong; Wei, Yuquan

    2012-10-01

    Encapsulation of hydrophobic agents in polymer micelles can improve the water solubility of cargos, contributing to develop novel drugs. Quercetin (QU) is a hydrophobic agent with potential anticancer activity. In this work, we encapsulated QU into biodegradable monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles and tried to provide proof-of-principle for treating ovarian cancer with this nano-formulation of quercetin. These QU loaded MPEG-PCL (QU/MPEG-PCL) micelles with drug loading of 6.9% had a mean particle size of 36 nm, rendering the complete dispersion of quercetin in water. QU inhibited the growth of A2780S ovarian cancer cells on a dose dependent manner in vitro. Intravenous administration of QU/MPEG-PCL micelles significantly suppressed the growth of established xenograft A2780S ovarian tumors through causing cancer cell apoptosis and inhibiting angiogenesis in vivo. Furthermore, the anticancer activity of quercetin on ovarian cancer cells was studied in vitro. Quercetin treatment induced the apoptosis of A2780S cells associated with activating caspase-3 and caspase-9. MCL-1 downregulation, Bcl-2 downregulation, Bax upregulation and mitochondrial transmembrane potential change were observed, suggesting that quercetin may induce apoptosis of A2780S cells through the mitochondrial apoptotic pathway. Otherwise, quercetin treatment decreased phosphorylated p44/42 mitogen-activated protein kinase and phosphorylated Akt, contributing to inhibition of A2780S cell proliferation. Our data suggested that QU/MPEG-PCL micelles were a novel nano-formulation of quercetin with a potential clinical application in ovarian cancer therapy.

  14. Design and evaluation of mPEG-PLA micelles functionalized with drug-interactive domains as improved drug carriers for docetaxel delivery.

    Science.gov (United States)

    Qi, Dingqing; Gong, Feirong; Teng, Xin; Ma, Mingming; Wen, Huijing; Yuan, Weihao; Cheng, Yi; Lu, Chong

    2017-10-01

    Polymeric micelles are very attractive drug delivery systems for hydrophobic agents, owing to their readily tailorable chemical structure and ease for scale-up preparation. However, the intrinsic poor stability of drug-loaded micelles presents one of the major challenges for most micellar systems in the translation to clinical applications. In this study, a simple, well-defined, and easy-to-scale up 9-Fluorenylmethoxycarbonyl (Fmoc) and tert-butoxycarbonyl (Boc) containing lysine dendronized mPEG-PLA (mPEG-PLA-Lys(FB) 2 ) micellar formulation was designed and prepared for docetaxel (DTX) delivery, in an effort to improve the stability of the micelles, and its physicochemical properties, pharmacokinetics, and anti-tumor efficacy against SKOV-3 ovarian cancer were evaluated. MPEG-PLA-Lys(FB) 2 was synthesized via a three-step synthetic route, and it actively interacted with DTX in aqueous media to form stable micelles with small particle sizes (~17-19 nm) and narrow size distribution (PI PLA-Lys(FB) 2 micelles achieved delayed and sustained release manner of DTX in comparison with mPEG-PLA micelles. Further in vivo xenograft tumor model in nude mice DTX/mPEG-PLA-Lys(FB) 2 micelles demonstrated significantly higher inhibitory effect on tumor growth than the marketed formulation Taxotere. Thus, our system may hold promise as a simple and effective delivery system for DTX with a potential for translation into clinical study.

  15. pH-Sensitive Micelles Based on Star Copolymer Ad-(PCL-b-PDEAEMA-b-PPEGMA4 for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huiyan Yang

    2018-04-01

    Full Text Available Enhancing drug loading efficacy and stability of polymeric micelles remains a grand challenge. Here we develop adamantane-based star copolymers adamantane-[poly(ε-caprolactone-b-poly(2-(diethylaminoethyl methacrylate-b-poly(poly(ethylene glycol methyl ether methacrylate]4 (Ad-(PCL-b-PDEAEMA-b-PPEGMA4 and their self-assembled micelles for controlled drug delivery. Results show that the polymers have excellent stability in solution with low critical micelle concentration (CMC (0.0025–0.0034 mg/mL and the apparent base dissociation constant (pKb of the polymers is from 5.31 to 6.05. Dynamic light scattering analysis exhibits the great environmental response capability of the pH-sensitive micelles according to particle sizes and zeta potentials. With the synergy effect of the adamantane and hydrophobic block, the micelles display the high Doxorubicin (DOX loading efficacy (up to 22.4%. The DOX release study shows that the micelles are capable of controlled release for drug. This work indicates the Ad-(PCL-b-PDEAEMA-b-PPEGMA4 micelles may provide new guidelines for drug control and release system in overcoming cancer treatment.

  16. Thermal polymerization of Moringa oleifera oil

    International Nuclear Information System (INIS)

    Melo, Tania M.S.; Novack, Katia M.; Leandro, Cristiano

    2011-01-01

    It is increasingly clear both for society and the scientific community, that is necessary to find alternatives to reduce the use of polymeric materials because of their damage to the environment. One way to minimize the environmental problems related to the use of polymers is try to make them quickly degradable. In this study it was obtained a material with polymeric appearance derived from heating of the vegetable oil extracted from seeds of Moringa oleifera. The resulting product is an interesting alternative to obtain polymeric materials that may have biodegradable characteristics, coming from a renewable source and low cost. Moringa oil can be used since it has a high content of unsaturated fatty acids, and its main constituent oleic acid. All samples were characterized by FTIR, NMR and GPC. It was obtained a polymeric material, malleable, high viscosity, with some elasticity, low crystallinity and no unpleasant odor. (author)

  17. Condensation Polymerization

    Indian Academy of Sciences (India)

    building blocks, is essentially the process of polycondensation or step-growth polymerization. Before we leave this LEGO-style discussion, I would leave you with two alternate scenarios; one is to use building blocks bearing two sockets and two balls, as de- picted in the figure, and the other is to use blocks that contain two.

  18. Condensation Polymerization

    Indian Academy of Sciences (India)

    At first, let us begin by treating molecules as LEGO-type building blocks with certain strict rules for linking them; a ball can readily fit with a socket, ... is essentially the process of polycondensation or step-growth polymerization. Before we leave this LEGO-style discussion, I would leave you with two alternate scenarios; one is.

  19. Polysaccharide-Based Micelles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  20. Structure and reactivity in reverse micelles

    International Nuclear Information System (INIS)

    Pileni, M.P.

    1989-01-01

    This book gives an up-to-date, comprehensive assessment of current knowledge in the very fast-moving field of reverse micelles, ranging from physical studies to biotechnological applications. Starting with physical and spectroscopic studies of reverse micelle structure at the macro- and microstructural levels, topics dealt with in detail are the NMR spectroscopy of reverse micells, fluorescence quenching kinetics, photochemical behaviour, role and behaviour of hydrated electrons in reverse micelles, including femtosecond phenomena, reactivity-dependent applications such as microlatex formation, protein partitioning, extraction, and purification. The microreactor characteristics of reverse micelles are shown to allow formation of semiconductor clusters, peptide synthesis through enzyme-catalyzed reactions, reaction product extraction, and enhanced-reactivity phenomena. The reactivity effects and their consequences are particularly highlighted throughout the book

  1. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation

    International Nuclear Information System (INIS)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C.; Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M.

    2015-01-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  2. Micelles As Delivery System for Cancer Treatment.

    Science.gov (United States)

    Keskin, Dilek; Tezcaner, Aysen

    2017-01-01

    Micelles are nanoparticles formed by the self-assembly of amphiphilic block copolymers in certain solvents above concentrations called critical micelle concentration (CMC). Micelles are used in different fields like food, cosmetics, medicine, etc. These nanosized delivery systems are under spotlight in the recent years with new achievements in terms of their in vivo stability, ability to protect entrapped drug, release kinetics, ease of cellular penetration and thereby increased therapeutic efficacy. Drug loaded micelles can be prepared by dialysis, oil-in-water method, solid dispersion, freezing, spray drying, etc. The aim of this review is to give an overview of the research on micelles (in vitro, in vivo and clinical) as delivery system for cancer treatment. Passive targeting is one route for accumulation of nanosized micellar drug formulations. Many research groups from both academia and industry focus on developing new strategies for improving the therapeutic efficacy of micellar systems (active targeting to the tumor site, designing multidrug delivery systems for overcoming multidrug resistance or micelles formed by prodrug conjugates, etc). There is only one micellar drug formulation in South Korea that has reached clinical practice. However, there are many untargeted anticancer drug loaded micellar formulations in clinical trials, which have potential for use in clinics. Many more products are expected to be on the market in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. The Organization of Nanoporous Structure Using Controlled Micelle Size from MPEG-b-PDLLA Block Copolymers

    International Nuclear Information System (INIS)

    Chang, Jeong Ho; Kim, Kyung Ja; Shin, Young Kook

    2004-01-01

    Selected MPEG-b-PDLLA block copolymers have been synthesized by ring-opening polymerization with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. The size and shape of the micelles that spontaneously form in solution are then controlled by the characteristics of the block copolymer template. All the materials prepared in this study showed the tunable pore size of 20-80 A with the increase of hydrophobic chain lengths and up to 660 m 2 /g of specific surface area. The formation mechanism of these nanoporous structures obtained by controlling the micelle size has been confirmed using both liquid and solid state 13 C and 29 Si NMR techniques. This work verifies the formation mechanism of nanoporous structures in which the pore size and wall thickness are closely dependent on the size of hydrophobic cores and hydrophilic shells of the block copolymer templates

  4. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  5. Time-resolved small-angle neutron scattering study on soap-free emulsion polymerization

    International Nuclear Information System (INIS)

    Motokawa, Ryuhei; Koizumi, Satoshi; Hashimoto, Takeji; Nakahira, Takayuki; Annaka, Masahiko

    2006-01-01

    We investigated an aqueous soap-free emulsion polymerization process of Poly(N-isopropylacrylamide)-block-poly(ethylene glycol) by ultra-small-angle and time-resolved small-angle neutron scattering methods. The results indicate that the compartmentalization of chain end radicals into solid-like micelle cores crucially leads to the quasi-living behavior of the radical polymerization by prohibiting recombination process

  6. Synthesis and Characterization of Micelle-Forming PEG-Poly(Amino Acid) Copolymers with Iron-Hydroxamate Cross-Linkable Blocks for Encapsulation and Release of Hydrophobic Drugs.

    Science.gov (United States)

    Sill, Kevin N; Sullivan, Bradford; Carie, Adam; Semple, J Edward

    2017-06-12

    Described is the development of a polymeric micelle drug delivery platform that addresses the physical property limitations of many nanovectors. The system employs triblock copolymers comprised of a hydrophilic poly(ethylene glycol) (PEG) block, and two poly(amino acid) (PAA) blocks: a stabilizing cross-linking central block, and a hydrophobic drug encapsulation block. Detailed description of synthetic strategies and considerations found to be critical are discussed. Of note, it was determined that the purity of the α-amino acid-N-carboxyanhydrides (NCA) monomers and PEG macroinitiator are ultimately responsible for impurities that arise during the polymerization. Also, contrary to current beliefs in the field, the presence of water does not adversely affect the polymerization of NCAs. Furthermore, we describe the impact of poly(amino acid) conformational changes, through the incorporation of d-amino acids to form mixed stereochemistry PAA blocks, with regard to the physical and pharmacokinetic properties of the resulting micelles.

  7. Biodegradable polymers derived from amino acids.

    Science.gov (United States)

    Khan, Wahid; Muthupandian, Saravanan; Farah, Shady; Kumar, Neeraj; Domb, Abraham J

    2011-12-08

    In the past three decades, the use of polymeric materials has increased dramatically for biomedical applications. Many α-amino acids derived biodegradable polymers have also been intensely developed with the main goal to obtain bio-mimicking functional biomaterials. Polymers derived from α-amino acids may offer many advantages, as these polymers: (a) can be modified further to introduce new functions such as imaging, molecular targeting and drugs can be conjugated chemically to these polymers, (b) can improve on better biological properties like cell migration, adhesion and biodegradability, (c) can improve on mechanical and thermal properties and (d) their degradation products are expected to be non-toxic and readily metabolized/excreted from the body. This manuscript focuses on biodegradable polymers derived from natural amino acids, their synthesis, biocompatibility and biomedical applications. It is observed that polymers derived from α-amino acids constitute a promising family of biodegradable materials. These provide innovative multifunctional polymers possessing amino acid side groups with biological activity and with innumerous potential applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Amyloid Beta Peptide Folding in Reverse Micelles.

    Science.gov (United States)

    Eskici, Gözde; Axelsen, Paul H

    2017-07-19

    Previously published experimental studies have suggested that when the 40-residue amyloid beta peptide is encapsulated in a reverse micelle, it folds into a structure that may nucleate amyloid fibril formation (Yeung, P. S.-W.; Axelsen, P. H. J. Am. Chem. Soc. 2012, 134, 6061 ). The factors that induce the formation of this structure have now been identified in a multi-microsecond simulation of the same reverse micelle system that was studied experimentally. Key features of the polypeptide-micelle interaction include the anchoring of a hydrophobic residue cluster into gaps in the reverse micelle surface, the formation of a beta turn at the anchor point that brings N- and C-terminal segments of the polypeptide into proximity, high ionic strength that promotes intramolecular hydrogen bond formation, and deformation of the reverse micelle surface to facilitate interactions with the surface along the entire length of the polypeptide. Together, these features cause the simulation-derived vibrational spectrum to red shift in a manner that reproduces the red-shift previously reported experimentally. On the basis of these findings, a new mechanism is proposed whereby membranes nucleate fibril formation and facilitate the in-register alignment of polypeptide strands that is characteristic of amyloid fibrils.

  9. Design and Synthesis of Self-Assembled Polymeric Nanoparticles for Cancer Drug Delivery

    Science.gov (United States)

    Logie, Jennifer

    Current chemotherapeutics are plagued by poor solubility and selectivity, requiring toxic excipients in formulations and causing a number of dose limiting side effects. Nanoparticle delivery has emerged as a strategy to more effectively deliver chemotherapeutics to the tumour site. Specifically, polymeric micelles enable the solubilization of hydrophobic small molecule drugs within the core and mitigate the necessity of excipients. Notwithstanding the significant progress made in polymeric micelle delivery, translation is limited by poor stability and low drug loading. In this work, a rational design approach is used to chemically modify poly(D,L-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-graft-poly(ethylene glycol) (P(LA-co-TMCC)-g-PEG) in order to overcome these limitations and effectively deliver drug to tumours. The PEG density of the polymer system was optimized to enhance the stability of our polymeric micelles. Higher PEG densities permitted the lyophilization of micelles and enhanced the serum stability of the system. To increase the drug loading of our system, we facilitated specific intermolecular interactions within the micelle core. For drugs that form colloidal aggregates, such as pentyl-PABC doxazolidine, polymers were used to stabilize the colloidal core against aggregation and protein adsorption. For more challenging molecules, where self-assembly cannot be controlled, such as docetaxel, we modified the polymeric backbone with a peptide from the binding site of the drug to achieve loadings five times higher than those achieved in conventional micelle systems. This novel docetaxel nanoparticle was assessed in vivo in an orthotopic mouse model of breast cancer, where it showed a wider therapeutic index than the conventional ethanolic polysorbate 80 formulation. The improved tolerability of this formulation enabled higher dosing regimens and led to heightened efficacy and survival in this mouse model. Combined, these studies validated P

  10. Stability of complex coacervate core micelles containing metal coordination polymer

    NARCIS (Netherlands)

    Yan, Y.; Keizer, de A.; Cohen Stuart, M.A.; Drechsler, M.; Besseling, N.A.M.

    2008-01-01

    We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and

  11. Estimation of interfacial acidity of sodium dodecyl sulfate micelles

    Indian Academy of Sciences (India)

    on various molecules in micro-heterogeneous media such as micelles,3 cyclodextrins4 and polymer-micelle ... of the micro-heterogenous media such as sodium dode- cyl sulfate (SDS) micelles to enhance the ESPT ...... tations. AD thanks Council of Scientific and Indus- trial Research, New Delhi (CSIR) for junior research.

  12. Statistical crystallography of surface micelle spacing

    Science.gov (United States)

    Noever, David A.

    1992-01-01

    The aggregation of the recently reported surface micelles of block polyelectrolytes is analyzed using techniques of statistical crystallography. A polygonal lattice (Voronoi mosaic) connects center-to-center points, yielding statistical agreement with crystallographic predictions; Aboav-Weaire's law and Lewis's law are verified. This protocol supplements the standard analysis of surface micelles leading to aggregation number determination and, when compared to numerical simulations, allows further insight into the random partitioning of surface films. In particular, agreement with Lewis's law has been linked to the geometric packing requirements of filling two-dimensional space which compete with (or balance) physical forces such as interfacial tension, electrostatic repulsion, and van der Waals attraction.

  13. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  14. Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media.

    Science.gov (United States)

    Pęziak, Daria; Piotrowska, Aleksandra; Marecik, Roman; Lisiecki, Piotr; Woźniak, Marta; Szulc, Alicja; Ławniczak, Łukasz; Chrzanowski, Łukasz

    2013-01-01

    The aim of our study was to investigate the effect of Triton X-100 on the biodegradation efficiency of hexadecane and phenanthrene carried out by two bacterial consortia. It was established that the tested consortia were not able to directly uptake compounds closed in micelles. It was observed that in micellar systems the nonionic synthetic surfactant was preferentially degraded (the degradation efficiency of Triton X-100 after 21 days was 70% of the initial concentration - 500 mg/l), followed by a lesser decomposition of hydrocarbon released from the micelles (30% for hexadecane and 20% for phenanthrene). However, when hydrocarbons were used as the sole carbon source, 70% of hexadecane and 30% of phenanthrene were degraded. The degradation of the surfactant did not contribute to notable shifts in bacterial community dynamics, as determined by Real-Time PCR. The obtained results suggest that if surfactant-supplementation is to be used as an integral part of a bioremediation process, then possible bioavailability decrease due to entrapment of the contaminant into surfactant micelles should also be taken into consideration, as this phenomenon may have a negative impact on the biodegradation efficiency. Surfactant-induced mobilization of otherwise recalcitrant hydrocarbons may contribute to the spreading of contaminants in the environment and prevent their biodegradation.

  15. DiPyMe in SDS Micelles: Artifacts and Their Implications in the Interpretation of Micellar Properties.

    Science.gov (United States)

    Fowler, Michael; Hisko, Victoria; Henderson, Jason; Casier, Remi; Li, Lu; Thoma, Janine Lydia; Duhamel, Jean

    2015-11-10

    This study provides experimental evidence that di(1-pyrenylmethyl) ether or DiPyMe, a well-known fluorescent probe employed to determine the microviscosity of surfactant or polymeric micelles, is being hydrolyzed in the presence of water upon UV irradiation. This effect was established from a careful analysis of the fluorescence spectra and decays acquired with aqueous solutions of DiPyMe dissolved in micelles of sodium dodecyl sulfate (SDS). The size of the SDS micelles could be adjusted from an aggregation number (N(agg)) of 70 to 172 by increasing the ionic strength of the aqueous solution from 0.0 to 0.5 M NaCl. The hydrolysis of DiPyMe was much reduced in the larger SDS micelles. While the degradation of DiPyMe in aqueous solutions of SDS micelles affected the analysis of the fluorescence spectra, model-free analysis (MFA) of the fluorescence decays of DiPyMe could reliably retrieve the rate constant ⟨k⟩ of excimer formation for DiPyMe. After calibration with mixtures of organic solvents of known macroscopic viscosity, the ⟨k⟩ values obtained for DiPyMe yielded the microviscosity (μη) of the SDS micelles as a function of salt concentration. The μη was found to increase from 4.0 to 8.8 mPa·s as the salt concentration increased from 0.0 to 0.5 M. This study demonstrated that, regardless of the problem of its hydrolysis that jeopardizes its use in steady-state fluorescence experiments, DiPyMe remains an extremely valuable probe for describing the microviscosity of hydrophobic domains in aqueous solution as long as its decays are analyzed with a model that accounts for the presence of degradation products as the MFA does.

  16. New amphiphilic glycopolypeptide conjugate capable of self-assembly in water into reduction-sensitive micelles for triggered drug release

    International Nuclear Information System (INIS)

    Yang, Hui-Kang; Zhang, Li-Ming

    2014-01-01

    For the development of biomimetic carriers for stimuli-sensitive delivery of anticancer drugs, a novel amphiphilic glycopolypeptide conjugate containing the disulfide bond was prepared for the first time by the ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of (propargyl carbamate)ethyl dithio ethylamine and then click conjugation with α-azido dextran. Its structure was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance analyses. Owing to its amphiphilic nature, such a conjugate could self assemble into nanosize micelles in aqueous medium, as confirmed by fluorometry, transmission electron microscopy and dynamic light scattering. For the resultant micelles, it was found to encapsulate poorly water-soluble anticancer drug (methotrexate, MTX) with the loading efficiency of 45.2%. By the in vitro drug release tests, the release rate of encapsulated MTX was observed to be accelerated significantly in the presence of 10 mM 1,4-dithio-DL-threitol (DTT), analogous to the intracellular redox potential. - Graphical abstract: New amphiphilic glycopolypeptide conjugate containing the disulfide bond could self-assemble in aqueous solution into reduction-sensitive micelles for triggered release of an anticancer drug (methotrexate, MTX) in the presence of 10 mM 1,4-dithio-DL-threitol (DTT). - Highlights: • Amphiphilic glycopolypeptide conjugate containing disulfide bond was prepared. • Such a conjugate self assembled in aqueous solution into nanosize micelles. • The resultant micelles could encapsulate effectively methotrexate drug. • The drug-loaded micelles showed a reduction-sensitive drug release behavior

  17. Solubilization of Phenol Derivatives in Polymer Micelles Formed by Cationic Block Copolymer

    Directory of Open Access Journals (Sweden)

    Irma Fuentes

    2017-01-01

    Full Text Available The aggregation of cationic block copolymers formed by polystyrene (PS and poly(ethyl-4-vinylpyridine (PS-b-PE4VP was studied in aqueous solution. Diblock copolymers of PS and poly(4-vinylpyridine were synthesized by sequential anionic polymerization using BuLi as initiator. Subsequently, the 4-vinylpyridine units were quaternized with ethyl bromide to obtain cationic PS-b-PE4VP block copolymers with different quaternization degree. The self-aggregation of cationic block copolymers was studied by fluorescence probing, whereas the morphology and size of polymer micelles were determined by transmission electronic microscopy. Results indicate that spherical micelles with sizes lower than 100 nm were formed, whereas their micropolarity decreases with increasing quaternization degree. The partition of phenols between the micellar and aqueous phase was studied by using the pseudo-phase model, and the results show that the partition coefficients increase with increasing length of the side alkyl chain and are larger for star micelles. These results are discussed in terms of three-region model.

  18. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    International Nuclear Information System (INIS)

    Ray, D.; Aswal, V. K.

    2015-01-01

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles

  19. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D., E-mail: debes.phys@gmail.com; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  20. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    Science.gov (United States)

    Ray, D.; Aswal, V. K.

    2015-06-01

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle-surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  1. Characterization of polymeric microneedle arrays for transdermal drug delivery.

    Directory of Open Access Journals (Sweden)

    Yusuf K Demir

    Full Text Available Microfabrication of dissolvable, swellable, and biodegradable polymeric microneedle arrays (MNs were extensively investigated based in a nano sensitive fabrication style known as micromilling that is then combined with conventional micromolding technique. The aim of this study was to describe the polymer selection, and optimize formulation compounding parameters for various polymeric MNs. Inverse replication of micromilled master MNs reproduced with polydimethylsiloxane (PDMS, where solid out of plane polymeric MNs were subsequently assembled, and physicochemically characterized. Dissolvable, swellable, and biodegradable MNs were constructed to depth of less than 1 mm with an aspect ratio of 3.6, and 1/2 mm of both inter needle tip and base spacing. Micromolding step also enabled to replicate the MNs very precisely and accurate. Polymeric microneedles (MN precision was ranging from ± 0.18 to ± 1.82% for microneedle height, ± 0.45 to ± 1.42% for base diameter, and ± 0.22 to ± 0.95% for interbase spacing. Although dissolvable sodium alginate MN showed less physical robustness than biodegradable polylactic-co-glycolic acid MN, their thermogravimetric analysis is of promise for constructing these polymeric types of matrix devices.

  2. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin☆

    OpenAIRE

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-01-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to mani...

  3. SANS analysis of aqueous ionic perfluoropolyether micelles

    CERN Document Server

    Gambi, C M C; Chittofrati, A; Pieri, R; Baglioni, P; Teixeira, J

    2002-01-01

    Preliminary SANS results of ionic chlorine terminated perfluoropolyether micelles in water are given. The experimental spectra have been analyzed by a two-shell ellipsoidal model for the micellar form factor and a screened Coulombic plus hard-sphere repulsion potential for the structure factor. (orig.)

  4. Co-assembly towards Janus micelles

    NARCIS (Netherlands)

    Voets, I.K.; Leermakers, F.A.M.; Keizer, de A.; Charlaganov, M.; Cohen Stuart, M.A.

    2011-01-01

    In this paper, we report on our recent findings concerning the structure of complex coacervate core micelles composed of two types of (complementary) block copolymers. Both copolymers have a polyelectrolyte (one cationic and the other anionic) block combined with a neutral one. The opposite charges

  5. Micelle-encapsulated fullerenes in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ala-Kleme, T., E-mail: timo.ala-kleme@utu.fi [Department of Chemistry, University of Turku, 20014 Turku (Finland); Maeki, A.; Maeki, R.; Kopperoinen, A.; Heikkinen, M.; Haapakka, K. [Department of Chemistry, University of Turku, 20014 Turku (Finland)

    2013-03-15

    Different micellar particles Mi(M{sup +}) (Mi=Triton X-100, Triton N-101 R, Triton CF-10, Brij-35, M{sup +}=Na{sup +}, K{sup +}, Cs{sup +}) have been prepared in different aqueous H{sub 3}BO{sub 3}/MOH background electrolytes. It has been observed that these particles can be used to disperse the highly hydrophobic spherical [60]fullerene (1) and ellipsoidal [70]fullerene (2). This dispersion is realised as either micelle-encapsulated monomers Mi(M{sup +})1{sub m} and Mi(M{sup +})2{sub m} or water-soluble micelle-bound aggregates Mi(M{sup +})1{sub agg} and Mi(M{sup +})2{sub agg}, where especially the hydration degree and polyoxyethylene (POE) thickness of the micellar particle seems to play a role of vital importance. Further, the encapsulation microenvironment of 1{sub m} was found to depend strongly on the selected monovalent electrolyte cation, i.e., the encapsulated 1{sub m} is accommodated in the more hydrophobic microenvironment the higher the cationic solvation number is. - Highlights: Black-Right-Pointing-Pointer Different micellar particles is used to disperse [60]fullerene and [70]fullerene. Black-Right-Pointing-Pointer Fullerene monomers or aggregates are dispersed encaging or bounding by micelles. Black-Right-Pointing-Pointer Effective facts are hydration degree and polyoxyethylene thickness of micelle.

  6. Spontaneous symmetry breaking: formation of Janus micelles

    NARCIS (Netherlands)

    Voets, I.K.; Fokkink, R.G.; Hellweg, T.; King, S.M.; Waard, de P.; Keizer, de A.; Cohen Stuart, M.A.

    2009-01-01

    We describe the preparation and solution properties of Janus micelles, i.e., non-centrosymmetric nanoparticles with compartmentalized shells, via co-assembly of two fully water-soluble block copolymers. They consist of a mixed core of poly(N-methyl-2-vinyl pyridinium iodide) (P2MVP) and poly(acrylic

  7. Colloidal Electrolytes and the Critical Micelle Concentration

    Science.gov (United States)

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  8. POLYMER MICELLE INTERACTIONS - PHYSICAL ORGANIC ASPECTS

    NARCIS (Netherlands)

    Brackman, J C; Engberts, J B F N

    This review presents a summary of attempts to characterize the morphology of the complexes formed between ionic and non-ionic surfactants and water-soluble polymers. It is now generally accepted that complex formation involves the binding of micelles to the macromolecule. This binding process

  9. Grey water biodegradability.

    Science.gov (United States)

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  10. Temperature Effect on the Nanostructure of SDS Micelles in Water.

    Science.gov (United States)

    Hammouda, Boualem

    2013-01-01

    Sodium dodecyl sulfate (SDS) surfactants form micelles when dissolved in water. These are formed of a hydrocarbon core and hydrophilic ionic surface. The small-angle neutron scattering (SANS) technique was used with deuterated water (D2O) in order to characterize the micelle structure. Micelles were found to be slightly compressed (oblate ellipsoids) and their sizes shrink with increasing temperature. Fits of SANS data to the Mean Spherical Approximation (MSA) model yielded a calculated micelle volume fraction which was lower than the SDS surfactant (sample mixing) volume fraction; this suggests that part of the SDS molecules do not participate in micelle formation and remain homogeneously mixed in the solvent. A set of material balance equations allowed the estimation of the SDS fraction in the micelles. This fraction was found to be high (close to one) except for samples around 1 % SDS fraction. The micelle aggregation number was found to decrease with increasing temperature and/or decreasing SDS fraction.

  11. TNYL peptide functional chitosan-g-stearate conjugate micelles for tumor specific targeting

    Directory of Open Access Journals (Sweden)

    Chen FY

    2014-09-01

    tumor. Keywords: chitosan-g-stearate, polymeric micelles, TNYL, active targeting, antitumor activity

  12. IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer.

    Science.gov (United States)

    Chen, Yangjun; Li, Zuhong; Wang, Haibo; Wang, Yin; Han, Haijie; Jin, Qiao; Ji, Jian

    2016-03-23

    IR-780 iodide, a near-infrared (near-IR) fluorescent dye, can be utilized as an effective theranostic agent for both imaging and photothermal therapy. However, its lipophilicity limits its further biomedical applications. Herein, we synthesized a phospholipid mimicking amphiphilic homopolymer poly(12-(methacryloyloxy)dodecyl phosphorylcholine) (PMDPC) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The amphiphilic homopolymer PMDPC can be self-assembled into micelles and used for the encapsulation of IR-780. The IR-780 loaded micelles (PMDPC-IR-780) exhibited low cytotoxicity in the dark, whereas remarkable photothermal cytotoxicity to pancreatic cancer cells (BxPC-3) was observed upon near-IR laser irradiation. We further investigated in vivo biodistribution of PMDPC-IR-780 micelles. Higher accumulation of PMDPC-IR-780 than that of free IR-780 in tumor tissue was verified, which might be ascribed to the enhanced permeability and retention (EPR) effect and long circulation time benefiting from the zwitterionic phosphorylcholine surface. Therefore, the IR-780 loaded phospholipid mimicking homopolymeric micelles could have great potential for cancer theranostics.

  13. Degradable polymeric materials for osteosynthesis: Tutorial

    Directory of Open Access Journals (Sweden)

    D Eglin

    2008-12-01

    Full Text Available This report summarizes the state of the art and recent developments and advances in the use of degradable polymers devices for osteosynthesis. The current generation of biodegradable polymeric implants for bone repair utilising designs copied from metal implants, originates from the concept that devices should be supportive and as “inert” substitute to bone tissue. Today degradable polymeric devices for osteosynthesis are successful in low or mild load bearing applications. However, the lack of carefully controlled randomized prospective trials that document their efficacy in treating a particular fracture pattern is still an issue. Then, the choice between degradable and non-degradable devices must be carefully weighed and depends on many factors such as the patient age and condition, the type of fracture, the risk of infection, etc. The improvement of the biodegradable devices mechanical properties and their degradation behaviour will have to be achieved to broaden their use. The next generation of biodegradable implants will probably see the implementation of the recent gained knowledge in cell-material interactions and cells therapy, with a better control of the spatial and temporal interfaces between the material and the surrounding bone tissue.

  14. Effect of hydrostatic pressure on gas solubilization in micelles.

    Science.gov (United States)

    Meng, Bin; Ashbaugh, Henry S

    2015-03-24

    Molecular dynamics simulations of anionic sodium decylsulfate and nonionic pentaethylene glycol monodecyl ether micelles in water have been performed to examine the impact of hydrostatic pressure on argon solubilization as a function of pressure. The potential-of-mean force between the micelles and argon demonstrates that nonpolar gases are attracted to the interiors of both micelles. The affinity of argon for micelle interiors, however, decreases with increasing pressure as a result of the comparatively higher molar volume of argon inside assemblies. We evaluate solubility enhancement coefficients, which describe the drop in the solute chemical potential as a function of the micellized surfactant concentration, to quantify the impact of micellization on gas solubilization. While argon is similarly attracted to the hydrophobic cores of both micelles, the gas is more effectively sequestered within nonionic micelles compared with anionic micelles as a result of salting out by charged head groups and accompanying counterions. The solubility enhancement coefficients of both micelles decrease with increasing pressure, reflecting the changing forces observed in the potentials-of-mean force. An analytical liquid drop model is proposed to describe the pressure dependence of argon solubilization within micelles that captures the simulation solubility enhancement coefficients after fitting an effective micelle radius for each surfactant.

  15. Smart wormlike micelles design, characteristics and applications

    CERN Document Server

    Feng, Yujun; Dreiss, Cécile A

    2015-01-01

    This Brief provides an up-to-date overview of smart surfactants and describes a broad spectrum of triggers that induce the formation of wormlike micelles or reversibly tune the morphology of surfactant aggregates from wormlike micelles to another state, or vice versa. Combining the fields of chemistry, physics, polymer science, and nanotechnology, its primary focus is on the design, formulation, and processing of intelligent viscoelastic surfactant solutions, covering the scientific principles governing responsiveness to one or more particular triggers, down to the end-use-driven functions. The first chapter explains why and how surfactants self-assemble into viscoelastic wormlike micellar solutions reminiscent of polymer solutions, while the following chapters show how the response to a given trigger translates into macroscopic rheological changes, including temperature, light, pH, CO2, redox, hydrocarbon, etc. The last chapter demonstrates the applications of these viscoelastic assemblies in oil and gas pro...

  16. Novel biocompatible hydrogel nanoparticles: generation and size-tuning of nanoparticles by the formation of micelle templates obtained from thermo-responsive monomers mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khandadash, Raz; Machtey, Victoria [Bar Ilan University, Department of Chemistry (Israel); Shainer, Inbal [Tel-Aviv University, Department of Neurobiology, The George S. Wise Faculty of Life Sciences (Israel); Gottlieb, Hugo E. [Bar Ilan University, Department of Chemistry (Israel); Gothilf, Yoav [Tel-Aviv University, Department of Neurobiology, The George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience (Israel); Ebenstein, Yuval [Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry (Israel); Weiss, Aryeh [Bar Ilan University, School of Engineering (Israel); Byk, Gerardo, E-mail: gerardo.byk@biu.ac.il [Bar Ilan University, Department of Chemistry (Israel)

    2014-12-15

    Biocompatible hydrogel nanoparticles are prepared by polymerization and cross-linking of N-isopropyl acrylamide in a micelle template formed by block copolymers macro-monomers at high temperature. Different monomer ratios form, at high temperature, well-defined micelles of different sizes which are further polymerized leading to nanoparticles with varied sizes from 20 to 390 nm. Physico-chemical characterization of the nanoparticles demonstrates their composition and homogeneity. The NPs were tested in vitro and in vivo biocompatibility assays, and their lack of toxicity was proven. The NPs can be labeled with fluorescent probes, and their intracellular fate can be visualized and quantified using confocal microscopy. Their uptake by live stem cells and distribution in whole developing animals is reported. On the basis of our results, a mechanism of nanoparticle formation is suggested. The lack of toxicity makes these nanoparticles especially attractive for biological applications such as screening and bio-sensing.

  17. SANS study of coated block copolymer micelles

    Czech Academy of Sciences Publication Activity Database

    Pleštil, Josef; Kříž, Jaroslav; Koňák, Čestmír; Pospíšil, Herman; Kadlec, Petr; Sedláková, Zdeňka; Grillo, I.; Cubitt, R.

    2005-01-01

    Roč. 206, č. 12 (2005), s. 1206-1215 ISSN 1022-1352 R&D Projects: GA ČR GA203/03/0600; GA AV ČR IAA1050201; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z40500505 Keywords : block copolymer micelles * core-shell polymers * nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.111, year: 2005

  18. Thermosensitive mPEG-b-PA-g-PNIPAM comb block copolymer micelles: effect of hydrophilic chain length and camptothecin release behavior.

    Science.gov (United States)

    Yang, Xiao-Li; Luo, Yan-Ling; Xu, Feng; Chen, Ya-Shao

    2014-02-01

    Block copolymer micelles are extensively used as drug controlled release carriers, showing promising application prospects. The comb or brush copolymers are especially of great interest, whose densely-grafted side chains may be important for tuning the physicochemical properties and conformation in selective solvents, even in vitro drug release. The purpose of this work was to synthesize novel block copolymer combs via atom transfer radical polymerization, to evaluate its physicochemical features in solution, to improve drug release behavior and to enhance the bioavailablity, and to decrease cytotoxicity. The physicochemical properties of the copolymer micelles were examined by modulating the composition and the molecular weights of the building blocks. A dialysis method was used to load hydrophobic camptothecin (CPT), and the CPT release and stability were detected by UV-vis spectroscopy and high-performance liquid chromatography, and the cytotoxicity was evaluated by MTT assays. The copolymers could self-assemble into well-defined spherical core-shell micelle aggregates in aqueous solution, and showed thermo-induced micellization behavior, and the critical micelle concentration was 2.96-27.64 mg L(-1). The micelles were narrow-size-distribution, with hydrodynamic diameters about 128-193 nm, depending on the chain length of methoxy polyethylene glycol (mPEG) blocks and poly(N-isopropylacrylamide) (PNIPAM) graft chains or/and compositional ratios of mPEG to PNIPAM. The copolymer micelles could stably and effectively load CPT but avoid toxicity and side-effects, and exhibited thermo-dependent controlled and targeted drug release behavior. The copolymer micelles were safe, stable and effective, and could potentially be employed as CPT controlled release carriers.

  19. Sucrose monoester micelles size determined by Fluorescence Correlation Spectroscopy (FCS.

    Directory of Open Access Journals (Sweden)

    Susana A Sanchez

    Full Text Available One of the several uses of sucrose detergents, as well as other micelle forming detergents, is the solubilization of different membrane proteins. Accurate knowledge of the micelle properties, including size and shape, are needed to optimize the surfactant conditions for protein purification and membrane characterization. We synthesized sucrose esters having different numbers of methylene subunits on the substituent to correlate the number of methylene groups with the size of the corresponding micelles. We used Fluorescence Correlation Spectroscopy (FCS and two photon excitation to determine the translational D of the micelles and calculate their corresponding hydrodynamic radius, R(h. As a fluorescent probe we used LAURDAN (6-dodecanoyl-2-dimethylaminonaphthalene, a dye highly fluorescent when integrated in the micelle and non-fluorescent in aqueous media. We found a linear correlation between the size of the tail and the hydrodynamic radius of the micelle for the series of detergents measured.

  20. Biodegradable micellar HPMA-based polymer-drug conjugates with betulinic acid for passive tumor targeting

    Czech Academy of Sciences Publication Activity Database

    Lomkova, Ekaterina A.; Chytil, Petr; Janoušková, Olga; Mueller, T.; Lucas, H.; Filippov, Sergey K.; Trhlíková, Olga; Aleshunin, P. A.; Skorik, Y. A.; Ulbrich, Karel; Etrych, Tomáš

    2016-01-01

    Roč. 17, č. 11 (2016), s. 3493-3507 ISSN 1525-7797 R&D Projects: GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA ČR(CZ) GA15-02986S Institutional support: RVO:61389013 Keywords : N-(2-hydroxypropyl)methacrylamide (HPMA) * polymeric micelles * drug delivery Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.246, year: 2016

  1. Mechanisms of pH-Sensitivity and Cellular Internalization of PEOz-b-PLA Micelles with Varied Hydrophilic/Hydrophobic Ratios and Intracellular Trafficking Routes and Fate of the Copolymer.

    Science.gov (United States)

    Wang, Dishi; Zhou, Yanxia; Li, Xinru; Qu, Xiaoyou; Deng, Yunqiang; Wang, Ziqi; He, Chuyu; Zou, Yang; Jin, Yiguang; Liu, Yan

    2017-03-01

    pH-responsive polymeric micelles have shown promise for the targeted and intracellular delivery of antitumor agents. The present study aimed to elucidate the possible mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles in detail, further unravel the effect of hydrophilic/hydrophobic ratio of the micelles on their cellular internalization, and examine the intracellular trafficking routes and fate of PEOz-b-PLA after internalization of the micelles. The results of variations in the size and Zeta potential of PEOz-b-PLA micelles and cross-sectional area of PEOz-b-PLA molecules with pH values suggested that electrostatic repulsion between PEOz chains resulting from ionization of the tertiary amide groups along PEOz chain at pH lower than its pK a was responsible for pH-sensitivity of PEOz-b-PLA micelles. Furthermore, the studies on internalization of PEOz-b-PLA micelles by MCF-7 cells revealed that the uptake of PEOz-b-PLA micelles was strongly influenced by their structural features, and showed that PEOz-b-PLA micelles with hydrophilic/hydrophobic ratio of 1.7-2.0 exhibited optimal cellular uptake. No evident alteration in cellular uptake of PEOz-b-PLA micelles was detected by flow cytometry upon the existence of EIPA and chlorpromazine. However, the intracellular uptake of the micelles in the presence of MβCD and genistein was effectively inhibited. Hence, the internalization of such micelles by MCF-7 cells appeared to proceed mainly through caveolae/lipid raft-mediated endocytosis without being influenced by their hydrophilic/hydrophobic ratio. Confocal micrographs revealed that late endosomes, mitochondria and endoplasmic reticulum were all involved in the intracellular trafficking of PEOz-b-PLA copolymers following their internalization via endocytosis, and then part of them was excreted from tumor cells to extracellular medium. These findings provided valuable information for developing desired PEOz-b-PLA micelles to improve their

  2. Modelling degradation of bioresorbable polymeric medical devices

    CERN Document Server

    Pan, J

    2015-01-01

    The use of bioresorbable polymers in stents, fixation devices and tissue engineering is revolutionising medicine. Both industry and academic researchers are interested in using computer modelling to replace some experiments which are costly and time consuming. This book provides readers with a comprehensive review of modelling polymers and polymeric medical devices as an alternative to practical experiments. Chapters in part one provide readers with an overview of the fundamentals of biodegradation. Part two looks at a wide range of degradation theories for bioresorbable polymers and devices.

  3. Polymeric biomaterials structure and function, v.1

    CERN Document Server

    Dumitriu, Severian

    2013-01-01

    Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume

  4. Bioavailability and biodegradation of weathered diesel fuel in aquifer material under denitrifying conditions

    International Nuclear Information System (INIS)

    Bregnard, T.P.A.; Hoehener, P.; Zeyer, J.

    1998-01-01

    During the in situ bioremediation of a diesel fuel-contaminated aquifer in Menziken, Switzerland, aquifer material containing weathered diesel fuel (WDF) and indigenous microorganisms was excavated. This material was used to identify factors limiting WDF biodegradation under denitrifying conditions. Incubations of this material for 360 to 390 d under denitrifying conditions resulted in degradation of 23% of the WDF with concomitant consumption of NO 3 - and production of inorganic carbon. The biodegradation of WDF and the rate of NO 3 - consumption was stimulated by agitation of the microcosms. Biodegradation was not stimulated by the addition of a biosurfactant (rhamnolipids) or a synthetic surfactant (Triton X-100) at concentrations above their critical micelle concentrations. The rhamnolipids were biodegraded preferentially to WDF, whereas Triton X-100 was not degraded. Both surfactants reduced the surface tension of the growth medium from 72 to <35 dynes/cm and enhanced the apparent aqueous solubility of the model hydrocarbon n-hexadecane by four orders of magnitude. Solvent-extracted WDF, added at a concentration equal to that already present in the aquifer material, was also biodegraded by the microcosms, but not at a higher rate than the WDF already present in the material. The results show that the denitrifying biodegradation of WDF is not necessarily limited by bioavailability but rather by the inherent recalcitrance of WDF

  5. Stereocomplex-Reinforced PEGylated Polylactide Micelle for Optimized Drug Delivery

    Directory of Open Access Journals (Sweden)

    Chunsheng Feng

    2016-04-01

    Full Text Available The instability of PEGylated polylactide micelles is a challenge for drug delivery. Stereocomplex interaction between racemic polylactide chains with different configurations provides an effective strategy to enhance the stability of micelles as the nanocarriers of drugs. In this work, a stereocomplex micelle (SCM self-assembled from the amphiphilic triblock copolymers comprising poly(ethylene glycol (PEG, and dextrorotatory and levorotatory polylactides (PDLA and PLLA was applied for efficient drug delivery. The spherical SCM showed the smallest scale and the lowest critical micelle concentration (CMC than the micelles with single components attributed to the stereocomplex interaction between PDLA and PLLA. 10-Hydroxycamptothecin (HCPT as a model antitumor drug was loaded into micelles. Compared with the loading micelles from individual PDLA and PLLA, the HCPT-loaded SCM exhibited the highest drug loading efficiency (DLE and the slowest drug release in phosphate-buffered saline (PBS at pH 7.4, indicating its enhanced stability in circulation. More fascinatingly, the laden SCM was demonstrated to have the highest cellular uptake of HCPT and suppress malignant cells most effectively in comparison to the HCPT-loaded micelles from single copolymer. In summary, the stereocomplex-enhanced PLA–PEG–PLA micelle may be promising for optimized drug delivery in the clinic.

  6. Brij-micelle and polyacrylic acid interaction investigated by Cu 2+-induced pyrene fluorescence: Effect of brij-micelle structure

    Science.gov (United States)

    Bandyopadhyay, Prasun; Ghosh, Amit K.; Bandyopadhyay, Sayan

    2009-07-01

    Fluorescence response of pyrene has been studied in the presence of polyacrylic acid (PAA) and brij surfactant micelles with Cu 2+ as an ionic quencher. The quenched pyrene emission is completely recovered with the addition of PAA (conc. 2.4 × 10 -4 M) for brij 35 (poly-oxyethylene-23 lauryl ether) micelle indicating PAA-Cu 2+ complex formation at the micelle-water interface. This could be due to the relatively easier accessibility of PAA polymer chains near poly-oxyethylene chain of brij 35 micelle compared to brij 30 (poly-oxyethylene-4 lauryl ether) micelle. The interaction between brij-micelle and polymer is confirmed by turbidimetry and NMR spectroscopy.

  7. Delivery of Vaccines by Biodegradable Polymeric Microcapsules with Bioadhesion Properties.

    Science.gov (United States)

    1997-05-01

    Pritchard, 1971, "The Role of Hydrogen Boning in Adhesion", Aspects Adhes., 6, 11, 1971. A. Pusztai, Plant Lectins, Cambridge University Press...Copolymer Delivery System", J. of Pharmokinetics and Biopharmaceutics , 11, 369. A.C. Sharon, and D.L. Wise, 1981, "Development of Drug Delivery Systems for

  8. Polymeric multilayer capsules in drug delivery.

    Science.gov (United States)

    De Cock, Liesbeth J; De Koker, Stefaan; De Geest, Bruno G; Grooten, Johan; Vervaet, Chris; Remon, Jean Paul; Sukhorukov, Gleb B; Antipina, Maria N

    2010-09-17

    Recent advances in medicine and biotechnology have prompted the need to develop nanoengineered delivery systems that can encapsulate a wide variety of novel therapeutics such as proteins, chemotherapeutics, and nucleic acids. Moreover, these delivery systems should be "intelligent", such that they can deliver their payload at a well-defined time, place, or after a specific stimulus. Polymeric multilayer capsules, made by layer-by-layer (LbL) coating of a sacrificial template followed by dissolution of the template, allow the design of microcapsules in aqueous conditions by using simple building blocks and assembly procedures, and provide a previously unmet control over the functionality of the microcapsules. Polymeric multilayer capsules have recently received increased interest from the life science community, and many interesting systems have appeared in the literature with biodegradable components and biospecific functionalities. In this Review we give an overview of the recent breakthroughs in their application for drug delivery.

  9. Self-folding micropatterned polymeric containers.

    Science.gov (United States)

    Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H

    2011-02-01

    We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

  10. Electrostatic interactions between polyglutamic acid and polylysine yields stable polyion complex micelles for deoxypodophyllotoxin delivery

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-10-01

    Full Text Available Yutong Wang,1–3,* Liping Huang,1,2,* Yan Shen,1,2,* Lidan Tang,1,2,4 Runing Sun,1,5 Di Shi,6 Thomas J Webster,6 Jiasheng Tu,1,2 Chunmeng Sun1,2 1Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, 2State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 3Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 4Changzhou Second People’s Hospital, Changzhou, 5School of Engineering, China Pharmaceutical University, Nanjing, People’s Republic of China; 6Department of Chemical Engineering, Northeastern University, Boston, MA, USA *These authors contributed equally to this work Abstract: To achieve enhanced physical stability of poly(ethylene glycol-poly(D,L-lactide polymeric micelles (PEG-PDLLA PMs, a mixture of methoxy PEG-PDLLA-polyglutamate (mPEG-PDLLA-PLG and mPEG-PDLLA-poly(L-lysine (mPEG-PDLLA-PLL copolymers was applied to self-assembled stable micelles with polyion-stabilized cores. Prior to micelle preparation, the synthetic copolymers were characterized by 1H-nuclear magnetic resonance (NMR and infrared spectroscopy (IR, and their molecular weights were calculated by 1H-NMR and gel permeation chromatography (GPC. Dialysis was used to prepare PMs with deoxypodophyllotoxin (DPT. Transmission electron microscopy (TEM images showed that DPT polyion complex micelles (DPT-PCMs were spherical, with uniform distribution and particle sizes of 36.3±0.8 nm. In addition, compared with nonpeptide-modified DPT-PMs, the stability of DPT-PCMs was significantly improved under various temperatures. In the meantime, the pH sensitivity induced by charged peptides allowed them to have a stronger antitumor effect and a pH-triggered release profile. As a result, the dynamic characteristic of DPT-PCM was retained, and high biocompatibility of DPT-PCM was observed in an in vivo study. These results

  11. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  12. pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol-b-PEG-b-(PAE-g-cholesterol for anticancer drug delivery and controlled release

    Directory of Open Access Journals (Sweden)

    Huang X

    2017-03-01

    Full Text Available Xiangxuan Huang,1 Wenbo Liao,1 Gang Zhang,1 Shimin Kang,1 Can Yang Zhang2 1School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA Abstract: A novel amphiphilic pH-sensitive triblock polymer brush (poly(β-amino esters-g-cholesterol-b-poly(ethylene glycol-b-(poly(β-amino esters-g-cholesterol ((PAE-g-Chol-b-PEG-b-(PAE-g-Chol was designed and synthesized successfully through a three-step reaction, and their self-assembled polymeric micelles were used as hydrophobic anticancer drug delivery carriers to realize effectively controlled release. The critical micelle concentrations were 6.8 µg/mL, 12.6 µg/mL, 17.4 µg/mL, and 26.6 µg/mL at pH values of 7.4, 6.5, 6.0, and 5.0, respectively. The trend of critical micelle concentrations indicated that the polymer had high stability that could prolong the circulation time in the body. The hydrodynamic diameter and zeta potential of the polymeric micelles were influenced significantly by the pH values. As pH decreased from 7.4 to 5.0, the particle size and zeta potential increased from 205.4 nm to 285.7 nm and from +12.7 mV to +47.0 mV, respectively. The pKb of the polymer was confirmed to be approximately 6.5 by the acid–base titration method. The results showed that the polymer had sharp pH-sensitivity because of the protonation of the amino groups, resulting in transformation of the PAE segment from hydrophobic to hydrophilic. Doxorubicin-loaded polymeric micelles were prepared with a high loading content (20% and entrapment efficiency (60% using the dialysis method. The in vitro results demonstrated that drug release rate and cumulative release were obviously dependent on pH values. Furthermore, the drug release mechanism was also controlled by the pH values. The polymer had barely any cytotoxicity, whereas the

  13. Inverted Micelle-in-Micelle Configuration in Cationic/Carbohydrate Surfactant Mixtures.

    Science.gov (United States)

    Das, Saikat; Xu, Wenjin; Lehmler, Hans-Joachim; Miller, Anne-Frances; Knutson, Barbara L; Rankin, Stephen E

    2017-01-04

    Nuclear magnetic resonance is applied to investigate the relative positions and interactions between cationic and non-ionic carbohydrate-based surfactants in mixed micelles with D 2 O as the solvent. This is accomplished by using relaxation measurements [spin-lattice (T 1 ) and spin-spin (T 2 ) analysis] and nuclear Overhauser effect spectroscopy (NOESY). This study focuses on the interactions of n-octyl β-d-glucopyranoside (C8G1) and β-d-xylopyranoside (C8X1) with the cationic surfactant hexadecyltrimethylammonium bromide (C 16 TAB). Whereas the interactions between carbohydrate and cationic surfactants are thermodynamically favorable, the NOESY results suggest that both of the sugar head groups are located preferentially at the interior core of the mixed micelles, so that they are not directly exposed to the bulk solution. The more hydrophilic sugar headgroups of C8G1 have more mobility than sugar heads of C8X1 owing to increased hydration. Herein, an inverted carbohydrate configuration in mixed micelles is proposed for the first time and supported by fluorescence spectroscopy experiments. This inverted carbohydrate headgroup configuration would limit the use of these mixed surfactants when access to the carbohydrate headgroup is important, but may present new opportunities where the carbohydrate-rich core of the micelles can be exploited. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Polymerization Induced Self-Assembly of Alginate Based Amphiphilic Graft Copolymers Synthesized by Single Electron Transfer Living Radical Polymerization.

    Science.gov (United States)

    Kapishon, Vitaliy; Whitney, Ralph A; Champagne, Pascale; Cunningham, Michael F; Neufeld, Ronald J

    2015-07-13

    Alginate-based amphiphilic graft copolymers were synthesized by single electron transfer living radical polymerization (SET-LRP), forming stable micelles during polymerization induced self-assembly (PISA). First, alginate macroinitiator was prepared by partial depolymerization of native alginate, solubility modification and attachment of initiator. Depolymerized low molecular weight alginate (∼12 000 g/mol) was modified with tetrabutylammonium, enabling miscibility in anhydrous organic solvents, followed by initiator attachment via esterification yielding a macroinitiator with a degree of substitution of 0.02, or 1-2 initiator groups per alginate chain. Then, methyl methacrylate was polymerized from the alginate macroinitiator in mixtures of water and methanol, forming poly(methyl methacrylate) grafts, prior to self-assembly, of ∼75 000 g/mol and polydispersity of 1.2. PISA of the amphiphilic graft-copolymer resulted in the formation of micelles with diameters of 50-300 nm characterized by light scattering and electron microscopy. As the first reported case of LRP from alginate, this work introduces a synthetic route to a preparation of alginate-based hybrid polymers with a precise macromolecular architecture and desired functionalities. The intended application is the preparation of micelles for drug delivery; however, LRP from alginate can also be applied in the field of biomaterials to the improvement of alginate-based hydrogel systems such as nano- and microhydrogel particles, islet encapsulation materials, hydrogel implants, and topical applications. Such modified alginates can also improve the function and application of native alginates in food and agricultural applications.

  15. Biodegradable Sonobuoy Decelerators

    Science.gov (United States)

    2015-06-01

    agent. Samples were also analyzed for heavy metals which found concentrations below the toxicity threshold, ruling out metals contamination during...unlimited” 13. SUPPLEMENTARY NOTES 14. ABSTRACT In response to environmental concerns regarding nylon decelerators from sonobuoys polluting the oceans...readiness point for technology transition. 15. SUBJECT TERMS biodegrade, decelerator, sonobuoy, polyvinyl alcohol, polyhydroxyalkanoate, marine

  16. Biodegradable Materials for Nonwovens

    Science.gov (United States)

    Demand for nonwovens is increasing globally, particularly in the disposable products area. As the consumption of nonwoven products with short life increases, the burden on waste disposal also rises. In this context, biodegradable nonwovens become more important today and for the future. Several new ...

  17. The thermal signature of wormlike micelles

    International Nuclear Information System (INIS)

    Ito, Thiago Heiji; Clinckspoor, Karl Jan; Nunes de Souza, Renato; Sabadini, Edvaldo

    2016-01-01

    Highlights: • Giant micelle formation has a characteristic exothermic profile, for these systems. • The enthalpy of formation is dependent on the planarity of the co-solute. • The affinity is dependent on the enthalpy and critical concentration of the species. • The higher the affinity, the higher thermal stability and size of the micelles. - Abstract: The variations in enthalpy (Δ f H WLM ) and critical concentrations associated with the formation of wormlike micelles (WLMs) from combinations of tetradecyltrimethylammonium bromide (C 14 TAB) and various aromatic co-solutes were determined using isothermal titration calorimetry (ITC). Three groups of aromatic molecules were investigated: neutral (phenol), benzoate derivatives and cinnamate derivatives. In addition, the thermal stabilities of the WLMs (of hexadecyltrimethylammonium bromide, C 16 TAB) and the aromatic co-solutes of the three groups were investigated by measuring the temperatures at which the WLMs break and lose their ability to produce hydrodynamic drag reduction. A comparison of the results was used to establish correlations between the spontaneity of WLMs formation, their thermal stability and the molecular structure of the aromatic co-solutes. A characteristic thermal pattern with four steps was observed when WLMs are formed, that depended on the co-solute structure. Micellar growth was found to be an exothermic process, related to the fusion of the end caps allied with the incorporation of more co-solutes. The co-solutes that had negative charge and were able to maintain planar configuration demonstrated stronger interactions and also showed higher thermal stability through drag reduction.

  18. Pressure-induced structural transition of nonionic micelles

    Indian Academy of Sciences (India)

    increased. On addition of KF, rod-like micelles exist at ambient pressure, which results in rod-like to lamellar structural transition at a much lower pressure in the presence of KF. Micellar structural transitions have been observed to be reversible. Keywords. Micelles; dynamic light scattering, small angle neutron scattering.

  19. Structure and Stability of Complex Coacervate Core Micelles with Lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martinus Abraham

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and

  20. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, S.; Vries, de R.J.; Norde, W.; Cohen Stuart, M.A.

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and

  1. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martien A.

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA(42)PAAm(417)

  2. Characterization of Phospholipid Mixed Micelles by Translational Diffusion

    International Nuclear Information System (INIS)

    Chou, James J.; Baber, James L.; Bax, Ad

    2004-01-01

    The concentration dependence of the translational self diffusion rate, D s , has been measured for a range of micelle and mixed micelle systems. Use of bipolar gradient pulse pairs in the longitudinal eddy current delay experiment minimizes NOE attenuation and is found critical for optimizing sensitivity of the translational diffusion measurement of macromolecules and aggregates. For low volume fractions Φ (Φ ≤ 15% v/v) of the micelles, experimental measurement of the concentration dependence, combined with use of the D s =D o (1-3.2λΦ) relationship, yields the hydrodynamic volume. For proteins, the hydrodynamic volume, derived from D s at infinitely dilute concentration, is found to be about 2.6 times the unhydrated molecular volume. Using the data collected for hen egg white lysozyme as a reference, diffusion data for dihexanoyl phosphatidylcholine (DHPC) micelles indicate approximately 27 molecules per micelle, and a critical micelle concentration of 14 mM. Differences in translational diffusion rates for detergent and long chain phospholipids in mixed micelles are attributed to rapid exchange between free and micelle-bound detergent. This difference permits determination of the free detergent concentration, which, for a high detergent to long chain phospholipid molar ratio, is found to depend strongly on this ratio. The hydrodynamic volume of DHPC/POPC bicelles, loaded with an M2 channel peptide homolog, derived from translational diffusion, predicts a rotational correlation time that slightly exceeds the value obtained from peptide 15 N relaxation data

  3. BRANCHED BIODEGRADABLE POLYMERS, A MACROMONOMER, PROCESSES FOR THE PREPARATION OF SAME, AND THEIR USE

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Feijen, Jan; Dijkstra, Pieter J.

    2009-01-01

    The present invention relates to a process for the preparation of branched biodegradable polymers comprising of the steps of: (a) preparing a macromonomer by ring-opening polymerization of at least one cyclic ester, cyclic carbonate, and/or cyclic carboxyanhydride in the presence of a branching

  4. Polymerization in Inverse Microemulsion: An Effective Tool to Produce Biodegradable and non Biodegradable Nanoparticles

    Science.gov (United States)

    2001-11-01

    Education & Research on Macromolecules), University of Libge, Belgium 5 Dip. di Chimica e Fisica per l’Ingegneria e i Materiali, Universito di Brescia...2Ist. Nazionale di Fisica della Materia (INFM), Brescia, Italy 3 Interfacultary Biomaterial Centre, University of Liege, Belgium 4 CERM (Center for

  5. Biodegradation of Cyanuric Acid

    Science.gov (United States)

    Saldick, Jerome

    1974-01-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO2 and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand. PMID:4451360

  6. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  7. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  8. Modeling Biodegradation of Nonylphenol

    International Nuclear Information System (INIS)

    Jahan, Kauser; Ordonez, Raul; Ramachandran, Ravi; Balzer, Shira; Stern, Michael

    2008-01-01

    Nonylphenol is the primary breakdown product of nonylphenol ethoxylates, a certain class of nonionic surfactants. Nonylphenol has been found to be toxic to aquatic organisms and has been suspected of being harmful to humans due to its xenoestrogenic properties. Although there are known releases of nonylphenol to the environment, there is a lack of data describing the extent of biodegradation. This study thus focuses on much needed information on the biodegradation kinetics of nonylphenol. Oxygen uptake, cell growth and nonylphenol removal data were collected using batch reactors in an electrolytic respirometer. Nonylphenol removal, cell growth and substrate removal rates were modeled by the Monod, Haldane, Aiba, Webb, and Yano equations. The differential equations were solved by numerical integration to simulate cell growth, substrate removal, and oxygen uptake as a function of time. All models provided similar results with the Haldane model providing the best fit. The values of the kinetic parameters and the activation energy for nonylphenol were determined. These values can be used for predicting fate and transport of nonylphenol in the environment. The validity of applying each model to the biodegradation of nonylphenol was analyzed by computing the R 2 values of each equation

  9. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin

    Science.gov (United States)

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-08-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to manipulate water content. Hydration properties are probed using the water-sensitive fluorescence from Hb bound pyranine and covalently attached Badan. Protein dynamics are probed through ligand recombination traces derived from photodissociated carbonmonoxy hemoglobin on a log scale that exposes the potential role of both α and β solvent fluctuations in modulating protein dynamics. The results open the possibility of probing hydration level phenomena in this system using a combination of NMR and optical probes.

  10. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  11. HOW DO DEGRADABLE/BIODEGRADABLE PLASTIC MATERIALS DECOMPOSE IN HOME COMPOSTING ENVIRONMENT?

    Directory of Open Access Journals (Sweden)

    Magdalena Vaverková

    2014-10-01

    Full Text Available This paper provides information about biodegradability of polymeric (biodegradable/degradable materials advertised as 100%-degradable or certified as compostable, which may be a part of biodegradable waste, in home composting conditions. It describes an experiment that took place in home wooden compost bins and contained 9 samples that are commonly available in retail chains in the Czech Republic and Poland. The experiment lasted for the period of 12 weeks. Based on the results thereof it can be concluded that polyethylene samples with additive (samples 2, 4, 7 have not decomposed, their color has not changed and that no degradation or physical changes have occurred. Samples 1, 3 and 5 certified as compostable have not decomposed. Sample 6 exhibited the highest decomposition rate. Samples 8, 9 (tableware exhibited high degree of decomposition. The main conclusion from this study is that degradable/biodegradable plastics or plastics certified as compostable are not suitable for home composting.

  12. Fluoroantimonic acid hexahydrate (HSbF6-6H2O) catalysis: The ring-opening polymerization of epoxidized soybean oil

    Science.gov (United States)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by a super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), in ethyl acetate was conducted in an effort to develop useful biodegradable polymers. The resulting polymerized ESO (SA-RPESO) were characterized by using infrared (IR...

  13. Biodegradable packaging materials : case: PLA

    OpenAIRE

    Jama, Mohamed

    2017-01-01

    The main aim of this bachelor thesis was to investigate the possibility of biodegradable packaging materials. Plastics and other non-degradable packaging materials have been used for many years and they have a negative impact on the environment since they do not degrade. Different research methods are used to get authentic results, which simplifies using biodegradable packaging materials. There were two biodegradability testing methods, which has been applied to this task:-, testing biode...

  14. Immunosafety and chronic toxicity evaluation of monomethoxypoly(ethylene glycol)-b-poly(lactic acid) polymer micelles for paclitaxel delivery.

    Science.gov (United States)

    Li, Chang; Shen, Yan; Sun, Chunmeng; Nihad, Cheraga; Tu, Jiasheng

    2016-01-01

    To investigate the physicochemical properties, immunosafety and chronic toxicity of monomethoxypoly(ethylene glycol)-b-poly(lactic acid) (mPEG-PLA), a copolymer used as a carrier for paclitaxel (PTX) delivery. The H-Nuclear Magnetic Resonance (H-NMR), dynamic light scattering and fluorescence probe technique were conducted to determine the physicochemical properties of mPEG-PLA copolymer. PTX-loaded polymeric micelles were characterized regarding their particle size, entrapment efficiency (EE), drug loading (DL), in vitro drug release and hemolysis rate. The complement activation in human serum and mast cells degranulation were performed by ELISA and RBL-2H3 cell line in vitro, respectively. The chronic toxicity study was carried out on beagle dogs. The optimized PTX-loaded mPEG-PLA (40/60) micelles showed a particle size of 37 nm and EE of 98.0% with a DL of 17.0% w/w. Transmission electron microscopy (TEM) analyses showed that mPEG-PLA (40/60) micelles have spherical shape with dense core. In vitro release study showed a sustained release for 24 h, and the hemolysis study revealed that mPEG-PLA (40/60) was a safe nanocarrier for intravenous administration. mPEG-PLA (40/60) showed a lower complement activation ability compared to mPEG-PLA (50/50) and Cremophor® EL (Cr EL). Furthermore, the chronic toxicity of PTX-loaded mPEG-PLA (40/60) micelles was significantly lower than those of mPEG-PLA (50/50) and Cr EL.

  15. Self-assembly of micelles into designed networks

    Directory of Open Access Journals (Sweden)

    Pyatenko Alexander

    2007-01-01

    Full Text Available AbstractThe EO20PO70EO20(molecular weight 5800 amphiphile as a template is to form dispersed micelle structures. Silver nanoparticles, as inorganic precursors synthesized by a laser ablation method in pure water, are able to produce the highly ordered vesicles detected by TEM micrography. The thickness of the outer layer of a micelle, formed by the silver nanoparticles interacting preferentially with the more hydrophilic EO20block, was around 3.5 nm. The vesicular structure ensembled from micelles is due to proceeding to the mixture of cubic and hexagonal phases.

  16. Probing interaction of charged nanoparticles with uncharged micelles

    Science.gov (United States)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2013-02-01

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) studies have been carried out to study interaction of anionic nanoparticles with uncharged (non-ionic) C12E10 micelles. DLS results show increase in the effective size of nanoparticles on addition of C12E10. Contrast variation SANS confirms the micelles decoration of nanoparticles which is believed to be driven by the hydrogen bonding between them. The number of adsorbed micelles per nanoparticle increases with the increase in the nanoparticle size. Surface number density is also found to be increasing with increase in particle size indicating favored adsorption for larger curvature.

  17. Depletion interaction of casein micelles and an exocellular polysaccharide

    Science.gov (United States)

    Tuinier, R.; Ten Grotenhuis, E.; Holt, C.; Timmins, P. A.; de Kruif, C. G.

    1999-07-01

    Casein micelles become mutually attractive when an exocellular polysaccharide produced by Lactococcus lactis subsp. cremoris NIZO B40 (hereafter called EPS) is added to skim milk. The attraction can be explained as a depletion interaction between the casein micelles induced by the nonadsorbing EPS. We used three scattering techniques (small-angle neutron scattering, turbidity measurements, and dynamic light scattering) to measure the attraction. In order to connect the theory of depletion interaction with experiment, we calculated structure factors of hard spheres interacting by a depletion pair potential. Theoretical predictions and all the experiments showed that casein micelles became more attractive upon increasing the EPS concentration.

  18. A Stepwise "Micellization-Crystallization" Route to Oblate Ellipsoidal, Cylindrical, and Bilayer Micelles with Polyethylene Cores in Water

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ligeng; Lodge, Timothy P; Hillmyer, Marc A [UMM

    2012-11-26

    Micellar polymorphism from block copolymers has been well documented, but most attention has focused on noncrystalline hydrophobic systems. We have investigated the micellization in water of model diblock copolymers with semicrystalline polyethylene (PE) as the core-forming component. Poly(N,N-dimethylacrylamide)–polyethylene (AE) diblock copolymers were synthesized by a combination of anionic and RAFT polymerizations. The bulk nanostructures were probed by small-angle X-ray scattering (SAXS) and AE diblock copolymers were found to be moderately segregated at 140 °C. Dispersions of AE amphiphiles in water were prepared by direct dissolution at 120 °C (i.e., above the melting transition of PE) followed by cooling to 25 °C. By manipulating the composition of AE diblock copolymers, discrete structures with oblate ellipsoidal, cylindrical, and bilayer morphologies were produced, as evidenced in cryogenic transmission electron microscopy (cryo-TEM). The self-assembled aggregates were also studied by small-angle neutron scattering (SANS) and dilute solution rheology. The semicrystalline nature of the nanostructures was further revealed by differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). A stepwise “micellization–crystallization” process was proposed as the micelle formation mechanism, as supported by the existence of similar nanostructures at 120 °C using SANS. This strategy holds promise for a general protocol toward the production of giant wormlike micelles and vesicles with semicrystalline polymeric cores.

  19. Kinetic assembly of block copolymers in solution helical cylindrical micelles and patchy nanoparticles

    Science.gov (United States)

    Zhong, Sheng

    There is always an interest to understand how molecules behave under different conditions. One application of this knowledge is to self-assemble molecules into increasingly complex structures in a simple fashion. Self-assembly of amphiphilic block copolymer in solution has produced a large variety of nanostructures through the manipulation in polymer chemistry, assembly environment, and additives. Moreover, some reports suggest the formation of many polymeric assemblies is driven by kinetic process. The goal of this dissertation is to study the influence of kinetics on the assembly of block copolymer. The study shows kinetic control can be a very effective way to make novel polymeric nanostructures. Two examples discussed here are helical cylindrical micelles and patchy nanoparticles. Helical cylindrical micelles are made from the co-assembly of amphiphilic triblock copolymer poly(acrylic acid)-block-poly(methyl acrylate)- block-polystyrene and organoamine molecules in a mixture of tetrahydrofuran (THF) and water (H2O). This system has already shown promise of achieving many assembled structures. The unique aspects about this system are the use of amine molecules to complex with acid groups and the existence of cosolvent system. Application of amine molecules offers a convenient control over assembled morphology and the introduction of PMA-PS selective solvent, THF, promotes the mobility of the polymer chains. In this study, multivalent organoamine molecules, such as diethylenetriamine and triethylenetetramine, are used to interact with block copolymer in THF/water mixture. As expected, the assembled morphologies are dependent on the polymer architecture, selection and quantity of the organoamine molecules, and solution composition. Under the right conditions, unprecedented, multimicrometer-long, supramolecular helical cylindrical micelles are formed. Both single-stranded and double-stranded helices are found in the same system. These helical structures share

  20. Logarithmic Exchange Kinetics in Monodisperse Copolymeric Micelles

    Science.gov (United States)

    García Daza, Fabián A.; Bonet Avalos, Josep; Mackie, Allan D.

    2017-06-01

    Experimental measurements of the relaxation kinetics of copolymeric surfactant exchange for micellar systems unexpectedly show a peculiar logarithmic decay. Several authors use polydispersity as an explanation for this behavior. However, in coarse-grained simulations that preserve microscopic details of the surfactants, we find evidence of the same logarithmic behavior. Since we use a strictly monodisperse distribution of chain lengths such a relaxation process cannot be attributed to polydispersity, but has to be caused by an inherent physical process characteristic of this type of system. This is supported by the fact that the decay is specifically logarithmic and not a power law with an exponent inherited from the particular polydispersity distribution of the sample. We suggest that the degeneracy of the energy states of the hydrophobic block in the core, which is broken on leaving the micelle, can qualitatively explain the broad distribution of energy barriers, which gives rise to the observed nonexponential relaxation.

  1. Multicompartmental Microcapsules from Star Copolymer Micelles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  2. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the FibPep-ION-Micelle

  3. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  4. Photophysical study of a charge transfer oxazole dye in micelles: Role of surfactant headgroups

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Jyotirmay [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Sarkar, Yeasmin; Parui, Partha Pratim [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Chakraborty, Sandipan [Department of Microbiology, University of Calcutta, Kolkata 700019 (India); Biswas, Suman [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Das, Ranjan, E-mail: ranjan.das68@gmail.com [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India)

    2015-07-15

    Photophysics of 5-(4′′-dimethylaminophenyl)-2-(4′-sulfophenyl)oxazole, sodium salt (DMO) which undergoes intramolecular charge transfer in the excited state was studied in micelles. In the cationic and the nonionic micelles, significantly higher fluorescence quantum yield is observed in comparison to the anionic micelles, due to much lower accessibility of DMO to the water molecules in the former micelles than the latter. Time-resolved fluorescence decays were characterized by a fast (τ{sub 1}) and a slow (τ{sub 2}) component of decay in all the micelles. The fast decay component (τ{sub 1}) increases significantly in going from the anionic micelles to the cationic micelles, because of the poorly hydrated headgroup region of the latter micelles compared to the former. Furthermore, much higher value of the slow component of decay (τ{sub 2}) is observed for the cationic and the neutral micelles than the anionic micelles. This is attributed to the increased penetration of water molecules into the micellar core of the anionic micelles compared to the cationic and the neutral micelles. - Highlights: • Photophysics of the fluorophore are remarkably different in the cationic and the anionic micelles. • Differential hydration of the surfactant headgroups gives rise to significantly different fluorescence quantum yield and lifetime in oppositely charged micelles. • Electrostatic interactions fine tune location of the fluorophore in the micelle–water interface of ionic micelles.

  5. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rizzarelli, Paola, E-mail: paola.rizzarelli@cnr.it; Carroccio, Sabrina

    2014-01-15

    Graphical abstract: -- Highlights: •Recent trends in the structural characterization of biodegradable polymers by MALDI and ESI MS are discussed. •MALDI MS as a noteworthy tool to follow the synthetic polymerization route of biodegradable materials is evidenced. •Elucidation of degradation mechanisms by modern MS techniques is examined. •ESI MS and HPLC–ESI MS are highlighted as highly suitable methods for structural and quantitative analysis of water-soluble biodegradation products. •Novel MS methods developed ad hoc and new MALDI matrices for biodegradable polymers are reviewed. -- Abstract: In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization

  6. Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.

    Science.gov (United States)

    Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar

    2014-01-01

    Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers.

  7. A model for simultaneous crystallisation and biodegradation of biodegradable polymers.

    Science.gov (United States)

    Han, Xiaoxiao; Pan, Jingzhe

    2009-01-01

    This paper completes the model of biodegradation for biodegradable polymers that was previously developed by Wang et al. (Wang Y, Pan J, Han X, Sinka, Ding L. A phenomenological model for the degradation of biodegradable polymers. Biomaterials 2008;29:3393-401). Crystallisation during biodegradation was not considered in the previous work which is the topic of the current paper. For many commonly used biodegradable polymers, there is a strong interplay between crystallisation and hydrolysis reaction during biodegradation - the chain cleavage caused by the hydrolysis reaction provides an extra mobility for the polymer chains to crystallise and the resulting crystalline phase becomes more resistant to further hydrolysis reaction. This paper presents a complete theory to describe this interplay. The fundamental equations in the Avrami's theory for crystallisation are modified and coupled to the diffusion-reaction equations that were developed in our previous work. The mathematical equations are then applied to three biodegradable polymers for which long term degradation data are available in the literature. It is shown that the model can capture the behavior of the major biodegradable polymers very well.

  8. Step-Growth Polymerization.

    Science.gov (United States)

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  9. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  10. Structure and reactivity in amphiphile-water micelles

    International Nuclear Information System (INIS)

    Chevalier, Yves

    1985-01-01

    Following a review of the general properties of micelles, this report contains two parts: - A structural study of octylphosphate micelles. Important structural changes have been evidenced by mean of small angle neutron scattering as the electrical charge of the interface is varied. The NMR relaxation study of the conformation of the hydrocarbon chains has shown that the micellar core is disordered in contrast with the interface which is rather structured. The diffusion motions in the interface and the segmental motions of the chains are fast. - Studies on the reactivity in micelles have been carried out. A large micellar effect on the complexation of transition ions by amphiphilic ligands is evidenced. The problem of solute localization in micelles is developed with few examples. (author) [fr

  11. Biodegradable Piezoelectric Force Sensor.

    Science.gov (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  12. New self-assembled nanocrystal micelles for biolabels and biosensors.

    Energy Technology Data Exchange (ETDEWEB)

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate

  13. A neutron scattering study of triblock copolymer micelles

    International Nuclear Information System (INIS)

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  14. A neutron scattering study of triblock copolymer micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  15. PREPARATION AND CHARACTERIZATION OF BIODEGRADABLE ...

    African Journals Online (AJOL)

    Dr Abdusalam

    Keywords: Starch, Acetylation, Biodegradation, Poly(vinyl alcohol), Polymer blend. INTRODUCTION. Non-biodegradable polymers, such as polyethene, polypropane, poly(vinylchloride) etc have excellent mechanical properties such as tensile strength, tensile strain, bursting strength and tear strength (Hay and. Sharma.

  16. Thermodynamic Analysis of Biodegradation Pathways

    Science.gov (United States)

    Finley, Stacey D.; Broadbelt, Linda J.

    2014-01-01

    Microorganisms provide a wealth of biodegradative potential in the reduction and elimination of xenobiotic compounds in the environment. One useful metric to evaluate potential biodegradation pathways is thermodynamic feasibility. However, experimental data for the thermodynamic properties of xenobiotics is scarce. The present work uses a group contribution method to study the thermodynamic properties of the University of Minnesota Biocatalysis/Biodegradation Database. The Gibbs free energies of formation and reaction are estimated for 914 compounds (81%) and 902 reactions (75%), respectively, in the database. The reactions are classified based on the minimum and maximum Gibbs free energy values, which accounts for uncertainty in the free energy estimates and a feasible concentration range relevant to biodegradation. Using the free energy estimates, the cumulative free energy change of 89 biodegradation pathways (51%) in the database could be estimated. A comparison of the likelihood of the biotransformation rules in the Pathway Prediction System and their thermodynamic feasibility was then carried out. This analysis revealed that when evaluating the feasibility of biodegradation pathways, it is important to consider the thermodynamic topology of the reactions in the context of the complete pathway. Group contribution is shown to be a viable tool for estimating, a priori, the thermodynamic feasibility and the relative likelihood of alternative biodegradation reactions. This work offers a useful tool to a broad range of researchers interested in estimating the feasibility of the reactions in existing or novel biodegradation pathways. PMID:19288443

  17. [Preparation of biodegradable porous films for use as wound coverings].

    Science.gov (United States)

    Kil'deeva, N R; Vikhoreva, G A; Gal'braĭkh, L S; Mironov, A V; Bonartseva, G A; Perminov, P A; Romashova, A N

    2006-01-01

    We studied the preparation of polymeric films formed from solutions of poly-3-hydroxybutyrate and poly-epsilon-caprolactone in chloroform and methylene chloride. A morphological study of film chips (electron microscopy) showed that solvent evaporation results in the formation of a heterogeneous structure with interpenetrating pores (1-20 microm). We proposed a new method for introducing the proteolytic enzyme and the aminopolysaccharide chitosan into the composition of polyester films. Composite films possessed necrolytic activity and were characterized by increased hydrophilicity. Properties of enzyme-containing films from a mixture of polymers (proteolytic activity, porous structure, and increased hydrophilicity) account for their use in the preparation of biodegradable wound coverings.

  18. Synthesis and agglomeration of gold nanoparticles in reverse micelles

    Science.gov (United States)

    Herrera, Adriana P.; Resto, Oscar; Briano, Julio G.; Rinaldi, Carlos

    2005-07-01

    Reverse micelles prepared in the system water, sodium bis-(2-ethylhexyl) sulfoccinate (AOT), and isooctane were investigated as a templating system for the production of gold nanoparticles from Au(III) and the reducing agent sulfite. A core-shell Mie model was used to describe the optical properties of gold nanoparticles in the reverse micelles. Dynamic light scattering of gold colloids in aqueous media and in reverse micelle solution indicated agglomeration of micelles containing particles. This was verified theoretically with an analysis of the total interaction energy between pairs of particles as a function of particle size. The analysis indicated that particles larger than about 8 nm in diameter should reversibly flocculate. Transmission electron microscopy measurements of gold nanoparticles produced in our reverse micelles showed diameters of 8-10 nm. Evidence of cluster formation was also observed. Time-correlated UV-vis absorption measurements showed a red shift for the peak wavelength. This was interpreted as the result of multiple scattering and plasmon interaction between particles due to agglomeration of micelles with particles larger than 8 nm.

  19. Atomic Model and Micelle Dynamics of QS-21 Saponin

    Directory of Open Access Journals (Sweden)

    Conrado Pedebos

    2014-03-01

    Full Text Available QS-21 is a saponin extracted from Quillaja saponaria, widely investigated as a vaccine immunoadjuvant. However, QS-21 use is mainly limited by its chemical instability, significant variety in molecular composition and low tolerance dose in mammals. Also, this compound tends to form micelles in a concentration-dependent manner. Here, we aimed to characterize its conformation and the process of micelle formation, both experimentally and computationally. Therefore, molecular dynamics (MD simulations were performed in systems containing different numbers of QS-21 molecules in aqueous solution, in order to evaluate the spontaneous micelle formation. The applied methodology allowed the generation of micelles whose sizes were shown to be in high agreement with small-angle X-ray scattering (SAXS. Furthermore, the ester linkage between fucose and acyl chain was less solvated in the micellar form, suggesting a reduction in hydrolysis. This is the first atomistic interpretation of previous experimental data, the first micellar characterization of saponin micelles by SAXS and first tridimensional model of a micelle constituted of saponins, contributing to the understanding of the molecular basis of these compounds.

  20. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying; Donovan, Alexander J.; Zhang, Pin; Liu, Chang; Shang, Weifeng; Irving, Thomas; Herrera-Alonso, Margarita; Liu, Ying (JHU); (IIT); (UIC)

    2017-08-31

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

  1. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Szymusiak, Magdalena [Department; Kalkowski, Joseph [Department; Luo, Hanying [Department; Donovan, Alexander J. [Department; Zhang, Pin [Department; Liu, Chang [Department; Shang, Weifeng [Department; Irving, Thomas [Department; Herrera-Alonso, Margarita [Department; Liu, Ying [Department; Department

    2017-08-16

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

  2. Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy.

    Science.gov (United States)

    Xiao, Haihua; Li, Wenliang; Qi, Ruogu; Yan, Lesan; Wang, Rui; Liu, Shi; Zheng, Yonghui; Xie, Zhigang; Huang, Yubin; Jing, Xiabin

    2012-11-10

    An oxaliplatin pro-drug (Oxa(IV)-COOH) with an axial carboxyl group was synthesized and conjugated to biodegradable polymers with pendant hydroxyl groups to prepare polymer-Oxa(IV) conjugates. A hydrophobic anthracycline-based drug, daunorubicin (DRB) was conjugated to similar biodegradable polymers with carboxyl groups to synthesize polymer-DRB conjugates. The two drug conjugates have the similar polymer backbone and are amphiphilic; thus, they can co-assemble into composite micelles. In the composite micelles, the polymer-Oxa(IV) conjugates can release clinically widely used water soluble anticancer drug oxaliplatin (Oxa(II)) upon reduction, while polymer-DRB conjugate is thought to release DRB via acid hydrolysis in the cancer cells. In this way, combination of the hydrophilic platinum drug Oxa(II) and hydrophobic drug DRB can be realized by delivering them in one platform. Moreover, the composite micelles showed reduced systematic toxicity and greater synergistic effect than combination of small molecules of the two anticancer drugs both in vitro and in vivo; thus, this polymer based combination therapy can be useful in future clinic application. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Development of partially biodegradable foams from PP/HMSPP blends with natural and synthetic polymers

    International Nuclear Information System (INIS)

    Cardoso, Elizabeth Carvalho Leite

    2014-01-01

    Polymers are used in various application and in different industrial areas providing enormous quantities of wastes in environment. Among diverse components of residues in landfills are polymeric materials, including Polypropylene, which contribute with 20 to 30% of total volume of solid residues. As polymeric materials are immune to microbial degradation, they remain in soil and in landfills as a semi-permanent residue. Environmental concerning in litter reduction is being directed to renewable polymers development for manufacturing of polymeric foams. Foamed polymers are considered future materials, with a wide range of applications; high density structural foams are specially used in civil construction, in replacement of metal, woods and concrete with a final purpose of reducing materials costs. At present development, it was possible the incorporation of PP/HMSPP polymeric matrix blends with sugarcane bagasse, PHB and PLA, in structural foams production. Thermal degradation at 100, 120 and 160 deg C temperatures was not enough to induce biodegradability. Gamma irradiation degradation, at 50, 100, 200 and 500 kGy showed effective for biodegradability induction. Irradiated bagasse blends suffered surface erosion, in favor of water uptake and consequently, a higher biodegradation in bulk structure. (author)

  4. The Impact of Polymeric Nanoencapsulation on the Bioavailability of Lutein

    Science.gov (United States)

    Kamil, Alison

    Lutein, a fat-soluble xanthophyll, contributes partially to the health benefits from consuming plant foods. Like all dietary carotenoids, lutein has a low bioavailability. In addition to increasing the intake of lutein-rich foods to enhance lutein status, delivery of lutein in polymeric nanoparticles (NP) presents a novel approach to enhancing lutein bioavailability. The overall research objective of this project was to investigate, in rats, the impact of nanoencapsulation using poly(lactic-co-glycolic acid) (PLGA) on the pharmacokinetics of lutein. We also used an in vitro cell culture approach utilizing human epithelial colorectal adenocarcinoma (Caco-2) cells grown in both conventional (CONV) and permeable support (PS) systems to investigate the impact of PLGA-NP on the absorption of lutein in intestinal cells. In chapter one, we compared the efficacy of lutein absorption in vitro using Caco-2 cells grown in both CONV and PS systems. We further examined the role of the micelle, the physiological vehicle for lutein within the small intestine, on its intestinal absorption in vitro compared to an organic solvent, ethanol, which is safe and consumed by humans. The finding from this study demonstrated that the CONV system displayed a larger efficacy of lutein uptake by Caco-2 cells. Further, in the PS system, micelle components appeared to facilitate more effective intestinal secretion of lutein. These findings suggest that lutein uptake by Caco-2 cells is subject to the influence of culturing system (CONV vs. PS) and delivery vehicle (ethanol vs. micelle). Chapter two examined the impact of PLGA-NP in rats on lutein pharmacokinetics in plasma and distribution in selected tissues as compared to free lutein. We also investigated the effect of nanoencapsulation on the absorption of lutein in intestinal cells compared to a more physiological vehicle, the micelle, using the PS method. In addition, we explored the need of additional micelles for the ultimate absorption of

  5. Charged polymeric micelles as ion scavengers: experiments and self-consistent-field modelling

    NARCIS (Netherlands)

    Lauw, Y.

    2006-01-01

    This thesis contains a study of micellization and micellar calcium binding efficiency of carboxy-modified Pluronic P85 triblock copolymers. These novel block copolymers are used as new antiscaling agents in a water treatment with a membrane separation process. Pluronic block copolymers are wellknown

  6. A Kinetic Degradation Study of Curcumin in Its Free Form and Loaded in Polymeric Micelles

    NARCIS (Netherlands)

    Naksuriya, Ornchuma; van Steenbergen, Mies J.; Sastre Torano, Javier; Okonogi, Siriporn; Hennink, Wim E.

    Curcumin, a phenolic compound, possesses many pharmacological activities and is under clinical evaluation to treat different diseases. However, conflicting data about its stability have been reported. In this study, the kinetic degradation of curcumin from a natural curcuminoid mixture under various

  7. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy

    NARCIS (Netherlands)

    Talelli, M.; Oliveira, S.; Rijcken, C.J.; Pieters, E.H.; Etrych, T.; Ulbrich, K.; van Nostrum, C.F.; Storm, Gerrit; Hennink, W.E.; Lammers, Twan Gerardus Gertudis Maria

    2013-01-01

    Various different passively and actively targeted nanomedicines have been designed and evaluated over the years, in particular for the treatment of cancer. Reasoning that the potential of ligand-modified nanomedicines can be substantially improved if intrinsically active targeting moieties are used,

  8. Polymeric micelles for drug delivery : from synthesis to in vivo studies

    NARCIS (Netherlands)

    Shi, Yang

    2014-01-01

    Drug delivery systems have been extensively utilized to increase water-solubility of hydrophobic chemotherapeutic drugs and target the drugs to tumors, which enhances the efficacy of chemotherapy and simultaneously decreases non-specific disposition of cytostatic drugs in healthy organ/tissues, and

  9. Surface induced ordering of micelles at the solid-liquid interface

    DEFF Research Database (Denmark)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface....... The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. [S1063-651X...

  10. Polymerization in emulsion microdroplet reactors

    Science.gov (United States)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  11. Basic investigations on LCV micelle gel

    Science.gov (United States)

    Ebenezer, S. B.; Rafic, M. K.; Ravindran, P. B.

    2013-06-01

    The aim of this study was to investigate the feasibility of using Leuco Crystal Violet (LCV) based micelle gel dosimeter as a quality assurance tool in radiotherapy applications. Basic properties such as absorption coefficient and diffusion of LCV gel phantom over time were evaluated. The gel formulation consisted of 25 mM Trichloroacetic acid, 1mM LCV, 4 mM Triton X-100, 4% gelatin by mass and distilled water. The advantages of using this gel are its tissue equivalence, easy and less preparation time, lower diffusion rate and it can be read with an optical scanner. We were able to reproduce some of the results of Babic et al. The peak absorption was found to be at 600 nm and hence a matrix of yellow LEDs was used as light source. The profiles obtained from projection images confirmed the diffusion of LCV gel after 6 hours of irradiation. Hence the LCV gel phantom should be read before 6 hours post irradiation to get accurate dose information as suggested previously.

  12. Self-assembled polymeric vectors mixtures: characterization of the polymorphism and existence of synergistic effects in photodynamic therapy

    Science.gov (United States)

    Till, Ugo; Gibot, Laure; Mingotaud, Christophe; Vicendo, Patricia; Rols, Marie-Pierre; Gaucher, Mireille; Violleau, Frédéric; Mingotaud, Anne-Françoise

    2016-08-01

    The objective of this work was to assess the relation between the purity of polymeric self-assemblies vectors solution and their photodynamic therapeutic efficiency. For this, several amphiphilic block copolymers of poly(ethyleneoxide-b-ε-caprolactone) have been used to form self-assemblies with different morphologies (micelles, worm-like micelles or vesicles). In a first step, controlled mixtures of preformed micelles and vesicles have been characterized both by dynamic light scattering and asymmetrical flow field flow fractionation (AsFlFFF). For this, a custom-made program, STORMS, was developed to analyze DLS data in a thorough manner by providing a large set of fitting parameters. This showed that DLS only sensed the larger vesicles when the micelles/vesicles ratio was 80/20 w/w. On the other hand, AsFlFFF allowed clear detection of the presence of micelles when this same ratio was as low as 10/90. Subsequently, the photodynamic therapy efficiency of various controlled mixtures was assessed using multicellular spheroids when a photosensitizer, pheophorbide a, was encapsulated in the polymer self-assemblies. Some mixtures were shown to be as efficient as monomorphous systems. In some cases, mixtures were found to exhibit a higher PDT efficiency compared to the individual nano-objects, revealing a synergistic effect for the efficient delivery of the photosensitizer. Polymorphous vectors can therefore be superior in therapeutic applications.

  13. Biodegradation of Polypropylene Nonwovens

    Science.gov (United States)

    Keene, Brandi Nechelle

    The primary aim of the current research is to document the biodegradation of polypropylene nonwovens and filament under composting environments. To accelerate the biodegradat ion, pre-treatments and additives were incorporated into polypropylene filaments and nonwovens. The initial phase (Chapter 2) of the project studied the biodegradation of untreated polypropylene with/without pro-oxidants in two types of composting systems. Normal composting, which involved incubation of samples in food waste, had little effect on the mechanical properties of additive-free spunbond nonwovens in to comparison prooxidant containing spunbond nonwovens which were affected significantly. Modified composting which includes the burial of samples with food and compressed air, the polypropylene spunbond nonwovens with/without pro-oxidants displayed an extreme loss in mechanical properties and cracking on the surface cracking. Because the untreated spunbond nonwovens did not completely decompose, the next phase of the project examined the pre-treatment of gamma-irradiation or thermal aging prior to composting. After exposure to gamma-irradiation and thermal aging, polypropylene is subjected to oxidative degradation in the presence of air and during storage after irradiat ion. Similar to photo-oxidation, the mechanism of gamma radiation and thermal oxidative degradation is fundamentally free radical in nature. In Chapter 3, the compostability of thermal aged spunbond polypropylene nonwovens with/without pro-oxidant additives. The FTIR spectrum confirmed oxidat ion of the polypropylene nonwovens with/without additives. Cracking on both the pro-oxidant and control spunbond nonwovens was showed by SEM imaging. Spunbond polypropylene nonwovens with/without pro-oxidants were also preirradiated by gamma rays followed by composting. Nonwovens with/without pro-oxidants were severely degraded by gamma-irradiation after up to 20 kGy exposure as explained in Chapter 4. Furthermore (Chapter 5), gamma

  14. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    OpenAIRE

    Faisal Raza; Hajra Zafar; Ying Zhu; Yuan Ren; Aftab -Ullah; Asif Ullah Khan; Xinyi He; Han Han; Md Aquib; Kofi Oti Boakye-Yiadom; Liang Ge

    2018-01-01

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All...

  15. Filmes Biodegradáveis: Incorporação de Microfibras e Nanofibras de Celulose Obtidas de Fontes Vegetais

    Directory of Open Access Journals (Sweden)

    Margarita María Andrade Mahecha

    2011-04-01

    Full Text Available Different studies have shown that cellulose incorporated into polymeric matrices acts as a reinforcing material that improves the mechanical strength of biodegradable films and, in some cases, the water vapor permeability. The efficacy of this reinforcement is associated with the nature of cellulose, its crystallinity, and the characteristics of the reinforcement/polymeric matrix interface. Studies on cellulose micro and nanofibers as a reinforcing phase in biodegradable films began 15 years ago. Since then there has been an increasing interest in the use of agricultural wastes and in the study of processes for the attainment and incorporation of these materials into polymeric matrices. Thus, this paper presents a literature review on cellulose microfibers and nanofibers as reinforcing materials in biodegradable films based on biopolymers. It addresses topics such as vegetable fibers, due to their lignocellulosic nature; differences between micro and nanofibers; the explored vegetable sources; and the methods developed over the last decade in order to obtain these materials. Finally, a compilation of recent works on biodegradable microcomposites and nanocomposites show promising results in terms of the mechanical and barrier properties of these polymeric structures. The presented information reveals the potential of this area for future research into the development of technology for the production of these materials on an industrial scale and their use as food packaging

  16. Protein separation using affinity-based reversed micelles

    Science.gov (United States)

    Sun; Gu; Tong; Bai; Ichikawa; Furusaki

    1999-05-01

    Reversed micellar two-phase extraction is a developing technique for protein separation. Introduction of an affinity ligand is considered to be an effective approach to increase the selectivity and capacity of reversed micelles. In this article, Cibacron Blue F3G-A (CB) as an affinity ligand was immobilized to reversed micelles composed of soybean lecithin by a two-phase reaction. The affinity partitioning of lysozyme and bovine serum albumin (BSA) to the CB-lecithin micelles was studied. Formation of mixed micelles by additionally introducing a nonionic surfactant, Tween 85, to the CB-lecithin micelles was effective to increase the solubilization of lysozyme due to the increase of W0 (water/surfactant molar ratio)/micellar size. The partitioning isotherms of lysozyme to the CB-lecithin micelles with and without Tween 85 were expressed by the Langmuir equation. The dissociation constants in the Langmuir equation decreased on addition of Tween 85, indicating the increase of the effectiveness of lysozyme binding to the immobilized CB. On addition of 20 g/L Tween 85 to 50 g/L lecithin/hexane micellar phase containing 0.1 mmol/L CB, the extraction capacity for lysozyme could be increased by 42%. Moreover, the CB-lecithin micelles with or without Tween 85 showed significant size exclusion for BSA due to its high molecular weight. Thus, lysozyme and BSA were separated from artificial solutions containing the two proteins. In addition, the affinity-based reversed micellar phase containing Tween 85 was recycled three times for lysozyme purification from crude egg-white solutions. Lysozyme purity increased by 16-18-fold, reaching 60-70% in the recycled use.

  17. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  18. Polymeric coordination compounds

    Indian Academy of Sciences (India)

    Administrator

    Ce(dipic)3Sr(dipicH2)(OH2)3·5H2O (4) (dipicH2 – dipicolinic acid) exhibits 1-D polymeric chain structure, built up of alternating nine coordinate Ce and eight coordinate. Sr polyhedra. The analogous Ce–Ba compound (5) exhibits a polymeric chain built up of nine coordinate Ba units only, arranged in a hexagonal lattice.

  19. Factors affecting toxicity and efficacy of polymeric nanomedicines

    International Nuclear Information System (INIS)

    Igarashi, Eiki

    2008-01-01

    Nanomedicine is the application of nanotechnology to medicine. The purpose of this article is to review common characteristics of polymeric nanomedicines with respect to passive targeting. We consider several biodegradable polymeric nanomedicines that are between 1 and 100 nm in size, and discuss the impact of this technology on efficacy, pharmacokinetics, toxicity and targeting. The degree of toxicity of polymeric nanomedicines is strongly influenced by the biological conditions of the local environment, which influence the rate of degradation or release of polymeric nanomedicines. The dissemination of polymeric nanomedicines in vivo depends on the capillary network, which can provide differential access to normal and tumor cells. The accumulation of nanomedicines in the microlymphatics depends upon retention time in the blood and extracellular compartments, as well as the type of capillary endothelium surrounding specific tissues. Finally, the toxicity or efficacy of intact nanomedicines is also dependent upon tissue type, i.e., non-endocrine or endocrine tissue, spleen, or lymphatics, as well as tumor type

  20. Charge transport by inverse micelles in non-polar media

    Science.gov (United States)

    Strubbe, Filip; Neyts, Kristiaan

    2017-11-01

    Charged inverse micelles play an important role in the electrical charging and the electrodynamics of nonpolar colloidal dispersions relevant for applications such as electronic ink displays and liquid toner printing. This review examines the properties and the behavior of charged inverse micelles in microscale devices in the absence of colloidal particles. It is discussed how charge in nonpolar liquids is stabilized in inverse micelles and how conductivity depends on the inverse micelle size, water content and ionic impurities. Frequently used nonpolar surfactant systems are investigated with emphasis on aerosol-OT (AOT) and poly-isobutylene succinimide (PIBS) in dodecane. Charge generation in the bulk by disproportionation is studied from measurements of conductivity as a function of surfactant concentration and from generation currents in quasi steady-state. When a potential difference is applied, the steady-state situation can show electric field screening or complete charge separation. Different regimes of charge transport are identified when a voltage step is applied. It is shown how the transient and steady-state currents depend on the rate of bulk generation, on insulating layers and on the sticking or non-sticking behavior of charged inverse micelles at interfaces. For the cases of AOT and PIBS in dodecane, the magnitude of the generation rate and the type of interaction at the interface are very different.

  1. Purification and characterization of the colicin A immunity protein in detergent micelles.

    Science.gov (United States)

    Metola, Ane; Bouchet, Ana M; Alonso-Mariño, Marian; Diercks, Tammo; Mäler, Lena; Goñi, Félix M; Viguera, Ana R

    2017-11-01

    The immunity proteins against pore-forming colicins represent a family of integral membrane proteins that reside in the inner membrane of producing cells. Cai, the colicin A immunity protein, was characterized here in detergent micelles by circular dichroism (CD), size exclusion chromatography, chemical cross-linking, nuclear magnetic resonance (NMR) spectroscopy, cysteine accessibility, and colicin A binding in detergent micelles. Bile-salt derivatives induced extensive protein polymerization that precluded further investigation. The physical characterization of detergent-solubilized protein indicates that phosphate-containing detergents are more efficient in extracting, solubilizing and maintaining Cai in a monomeric state. Yet, their capacity to ensure protein activity, reconstitution, helix packing, and high-quality NMR spectra was inferior to that of milder detergents. Solvent ionic strength and composition greatly modified the solubilizing capacity of milder detergents. Most importantly, binding to the colicin A pore-forming domain (pf-ColA) occurred almost exclusively in sugar-derived detergents. The relative performance of the different detergents in each experiment depends on their impact not only on Cai structure, solubility and oligomerization state, but also on other reaction components and technical aspects. Thus, proteoliposomes were best obtained from protein in LDAO micelles, possibly also due to indirect effects on the lipidic bilayer. The compatibility of a detergent with Cai/pf-ColA complex formation is influenced by its effect on the conformational landscape of each protein, where detergent-mediated pf-ColA denaturation could also lead to negative results. The NMR spectra were greatly affected by the solubility, monodispersity, fold and dynamics of the protein-detergent complexes, and none of those tested here provided NMR spectra of sufficient quality to allow for peak assignment. Cai function could be proven in alkyl glycosides and not in

  2. Biomimetic oral mucin from polymer micelle networks

    Science.gov (United States)

    Authimoolam, Sundar Prasanth

    Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated using affinity-based interactions on synthetic and biological surfaces. Unlike conventional polyelectrolyte-based LBL methods, pre-assembled biotin-functionalized filamentous (worm-like) micelles was utilized as the network building block, which from complementary additions of streptavidin generated synthetic networks of desired thickness. The biomimetic nature in those synthetic networks are studied by evaluating its structural and bio-functional properties. Structurally, synthetic networks formed a nanoporous mesh. The networks demonstrated excellent surface hydration property and were able capable of microbial capture. Those functional properties are akin to that of natural mucin networks. Further, the role of synthetic mucin as a drug delivery vehicle, capable of providing localized and tunable release was demonstrated. By incorporating antibacterial curcumin drug loading within synthetic networks, bacterial growth inhibition was also demonstrated. Thus, such bioactive interfaces can serve as a model for independently characterizing mucin network properties and through its role as a drug carrier vehicle it presents exciting future opportunities for localized drug delivery, in regenerative applications and as bio

  3. Preparation and Characterization of PLA-Starch Biodegradable Composites Via Radiation Processing

    International Nuclear Information System (INIS)

    Hemvichian, K.; Suwanmala, P.; Kungsumrith, W.; Pongprayoon, T.

    2011-01-01

    This research project aims to apply the use of radiation processing to prepare biodegradable composites from poly(lactic acid) or polylactide (PLA) and cassava starch. Cassava starch, a natural polymer that is inexpensive and abundant, especially in Thailand, will be used as starting material. Functional group of cassava starch will be modified first in order to render starch more compatible with PLA. The monomer with desired functional groups will be grafted onto the backbone of starch via radiation-induced grafting polymerization. Different parameters will be examined to determine the optimum conditions for the grafting polymerization. The modified starch will subsequently be blended with PLA, with and without clay, to form biodegradable composites. In order to further improve the thermal properties, the blends and their composites will be subjected to radiation to induce crosslinking between the molecules of PLA and starch derivatives. (author)

  4. Biodegradation of gallotannins and ellagitannins.

    Science.gov (United States)

    Li, Mingshu; Kai, Yao; Qiang, He; Dongying, Jia

    2006-01-01

    Nowadays, many researches have been made on gallotannin biodegradation and have gained great success in further utilization. Some of industrial applications of these findings are in the production of tannase, the biotransformation of tannic acid to gallic acid or pyrogallol and detannification of food and fodder. Although ellagitannins have the typical C-C bound which is more difficult to be degraded than gallotannins, concerted efforts are still in progress to improve ellagitannin degradation and utilization. Currently, more attention is mainly focused on intestinal microflora biodegradation of tannins especially ellagitannins which can contribute to the definition of their bioavailability for both human beings and ruminants. Also there have been endeavours to utilize the tannin-degrading activity of different fungi for ellagitannin-rich biomass, which will facilitate application of tannin-degrading enzymes in strategies for improving industrial and livestock production. Due to the complicated structures of complex tannins and condensed tannins, the biodegradation of them is much more difficult and there are fewer researches on them. Therefore, the researches on the mechanisms of gallotannin and ellagitannin biodegradation can result in the overall understanding to the biodegradation of complex tannins and condensed tannins. Biodegradation of tannins is in an incipient stage and further studies have to be carried out to exploit the potential of various tannins for largescale applications in food, fodder, medicine and tannery effluent treatment. ((c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  5. Enhanced cytotoxicity of TATp-bearing paclitaxel-loaded micelles in vitro and in vivo

    OpenAIRE

    Sawant, Rupa R.; Torchilin, Vladimir P.

    2009-01-01

    Cell-penetrating peptide (TATp) was attached to the distal tips of polyethylene glycol (PEG) moieties of polyethyleneglycol-phosphatidylethanolamine (PEG-PE) micelles loaded with paclitaxel (PCT). The TATp-modified micelles demonstrated an increased interaction with cancer cells compared to non-modified micelles resulting in a significant increase of the in vitro cytotoxicity to different cancer cells. TATp-modified PCT-loaded micelles were administered intratumorally in mice and the inductio...

  6. Determination of the aggregation number for micelles by isothermal titration calorimetry

    DEFF Research Database (Denmark)

    Olesen, Niels Erik; Holm, Rene; Westh, Peter

    2014-01-01

    Isothermal titration calorimetry (ITC) has previously been applied to estimate the aggregation number (n), Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of micellization. However, some difficulties of micelle characterization by ITC still remain; most micelles have aggregation numbers...... insight into optimal design of titration protocols for micelle characterization. By applying the new method, the aggregation number of sodium dodecyl sulphate and glycochenodeoxycholate was determined at concentrations around their critical micelle concentration (CMC)...

  7. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  8. Artificial Self-Sufficient P450 in Reversed Micelles

    Directory of Open Access Journals (Sweden)

    Teruyuki Nagamune

    2010-04-01

    Full Text Available Cytochrome P450s are heme-containing monooxygenases that require electron transfer proteins for their catalytic activities. They prefer hydrophobic compounds as substrates and it is, therefore, desirable to perform their reactions in non-aqueous media. Reversed micelles can stably encapsulate proteins in nano-scaled water pools in organic solvents. However, in the reversed micellar system, when multiple proteins are involved in a reaction they can be separated into different micelles and it is then difficult to transfer electrons between proteins. We show here that an artificial self-sufficient cytochrome P450, which is an enzymatically crosslinked fusion protein composed of P450 and electron transfer proteins, showed micelle-size dependent catalytic activity in a reversed micellar system. Furthermore, the presence of thermostable alcohol dehydrogenase promoted the P450-catalyzed reaction due to cofactor regeneration.

  9. Liquid-liquid extraction by reversed micelles in biotechnological processes

    Directory of Open Access Journals (Sweden)

    Kilikian B. V.

    2000-01-01

    Full Text Available In biotechnology there is a need for new purification and concentration processes for biologically active compounds such as proteins, enzymes, nucleic acids, or cells that combine a high selectivity and biocompatibility with an easy scale-up. A liquid-liquid extraction with a reversed micellar phase might serve these purposes owing to its capacity to solubilize specific biomolecules from dilute aqueous solutions such as fermentation and cell culture media. Reversed micelles are aggregates of surfactant molecules containing an inner core of water molecules, dispersed in a continuous organic solvent medium. These reversed micelles are capable of selectively solubilizing polar compounds in an apolar solvent. This review gives an overview of liquid-liquid extraction by reversed micelles for a better understanding of this process.

  10. Light and neutron scattering study of strongly interacting ionic micelles

    International Nuclear Information System (INIS)

    Degiorgio, V.; Corti, M.; Piazza, R.

    1989-01-01

    Dilute solutions of ionic micelles formed by biological glycolipids (gangliosides) have been investigated at various ionic strengths by static and dynamic light scaterring and by small-angle neutron scattering. The size and shape of the micelle is not appreciably affected by the added salt concentration in the range 0-100 mM NaCL. From the measured intensity of scattered light we derive the electric charge Z of the micelle by fitting the data to a theoretical calculation which uses a screened Coulomb potential for the intermicellar interaction, and the hypernetted chain approximation for the calculation of the radial distribution function. The correlation function derived from dynamic light scattering shows the long time contribution typical of concentrated polydisperse systems (author). 15 refs.; 6 figs

  11. From micelle supramolecular assemblies in selective solvents to isoporous membranes

    KAUST Repository

    Nunes, Suzana Pereira

    2011-08-16

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values. © 2011 American Chemical Society.

  12. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    KAUST Repository

    Deng, Lin

    2012-01-01

    Tumor targetability and stimuli responsivity of drug delivery systems (DDS) are key factors in cancer therapy. Implementation of multifunctional DDS can afford targetability and responsivity at the same time. Herein, cholesterol molecules (Ch) were coupled to hyaluronic acid (HA) backbones to afford amphiphilic conjugates that can self-assemble into stable micelles. Doxorubicin (DOX), an anticancer drug, and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), magnetic resonance imaging (MRI) contrast agents, were encapsulated by Ch-HA micelles and were selectively released in the presence of hyaluronidase (Hyals) enzyme. Cytotoxicity and cell uptake studies were done using three cancer cell lines (HeLa, HepG2 and MCF7) and one normal cell line (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  13. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals.

    Science.gov (United States)

    Bhhatarai, Barun; Gramatica, Paola

    2011-10-01

    The majority of perfluorinated chemicals (PFCs) are of increasing risk to biota and environment due to their physicochemical stability, wide transport in the environment and difficulty in biodegradation. It is necessary to identify and prioritize these harmful PFCs and to characterize their physicochemical properties that govern the solubility, distribution and fate of these chemicals in an aquatic ecosystem. Therefore, available experimental data (10-35 compounds) of three important properties: aqueous solubility (AqS), vapor pressure (VP) and critical micelle concentration (CMC) on per- and polyfluorinated compounds were collected for quantitative structure-property relationship (QSPR) modeling. Simple and robust models based on theoretical molecular descriptors were developed and externally validated for predictivity. Model predictions on selected PFCs were compared with available experimental data and other published in silico predictions. The structural applicability domains (AD) of the models were verified on a bigger data set of 221 compounds. The predicted properties of the chemicals that are within the AD, are reliable, and they help to reduce the wide data gap that exists. Moreover, the predictions of AqS, VP, and CMC of most common PFCs were evaluated to understand the aquatic partitioning and to derive a relation with the available experimental data of bioconcentration factor (BCF).

  14. Regeneration of Surgically Excised Segments of Dog Esophagus using Biodegradable PLA Hollow Organ Grafts,

    Science.gov (United States)

    1980-06-01

    7 AG 396 ARMY INST OF DENTAL RESEARCH WASHINGTON DC FIG 6/5 REGENERATION OF SURGICALLY EXCISED SEGMENTS OF DOG ESOPHAGUS US-ETC(W) U15 G’OE UN8 N F...which will yield effective long-term functional results. The current therapy for repair and replacement of the diseased or avulsed esophagus is by the...C biodegradable polymeric implant constructed from the polymers and copolymers of polylactic acid (PLA) and polyglycolic acid (PGA) to replace an

  15. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core.

    Science.gov (United States)

    Deng, Hongzhang; Zhang, Yumin; Wang, Xue; Jianhuazhang; Cao, Yan; Liu, Jinjian; Liu, Jianfeng; Deng, Liandong; Dong, Anjie

    2015-01-01

    The optimal structure design of nanocarriers to inhibit premature release of anticancer drugs from nanocarriers during blood circulation and improve drug release inside tumor cells is still a significant issue for polymer micelles applied to antitumor drug delivery. Herein, in order to balance the contradiction between polymer micellar stability and drug release, dual-sensitive cleavable cross-linkages of benzoic imine conjugated disulfide bonds were introduced into the core of the amphiphilic copolymer micelles to form core-cross-linked micelles. First, biodegradable poly(ethylene glycol)-b-(polycaprolactone-g-poly(methacrylic acid-p-hydroxy benzaldehyde-cystamine)), i.e. mPEG-b-(PCL-g-P(MAA-Hy-Cys)) (PECMHC) copolymers were synthesized and assembled into PECMHC micelles (PECMHC Ms). Then, simply by introducing H2O2 to the PECMHC Ms dispersions to oxidate the thiol groups of cystamine moieties in the core, core-cross-linked PECMHC micelles (cc-PECMHC Ms) ∼100 nm in size were readily obtained in water. In vitro studies of doxorubicin (DOX)-loaded cc-PECMHC Ms show that the cross-linked core impeded the drug release in the physical conditions, owing to the high stability of the micelles against both extensive dilution and salt concentration, while it greatly accelerated DOX release in mildly acidic (pH ∼5.0-6.0) medium with glutathione, owing to the coordination of the pH-sensitive cleaving of benzoic imine bonds and the reduction-sensitive cleaving of disulfide bonds. The in vivo tissue distribution and tumor accumulation of the DOX-loaded cc-PECMHC Ms were monitored via fluorescence images of DOX. DOX-loaded cc-PECMHC Ms exhibited enhanced tumor accumulation because of their high stability in blood circulation and less DOX premature release. Therefore, the cc-PECMHC Ms with dual-sensitive cleavable bonds in the cross-linked core were of excellent biocompatibility, high extracellular stability and had intelligent intracellular drug release properties

  16. Tailor-Made Temperature-Sensitive Micelle for Targeted and On-Demand Release of Anticancer Drugs.

    Science.gov (United States)

    Panja, S; Dey, G; Bharti, R; Kumari, K; Maiti, T K; Mandal, M; Chattopadhyay, S

    2016-05-18

    The design of nanomedicines from the tuned architecture polymer is a leading object of immense research in recent years. Here, smart thermoresponsive micelles were prepared from novel architecture four-arm star block copolymers, namely, pentaerythritol polycaprolactone-b-poly(N-isopropylacrylamide) and pentaerythritol polycaprolactone-b-poly(N-vinylcaprolactam). The polymers were synthesized and tagged with folic acid (FA) to render them as efficient cancer cell targeting cargos. FA-conjugated block copolymers were self-assembled to a nearly spherical (ranging from 15 to 170 nm) polymeric micelle (FA-PM) with a sufficiently lower range of critical micelle concentration (0.59 × 10(-2) to 1.52 × 10(-2) mg/mL) suitable for performing as an efficient drug carrier. The blocks show lower critical solution temperature (LCST) ranging from 30 to 39 °C with high DOX-loading content (24.3%, w/w) as compared to that reported for a linear polymer in the contemporary literature. The temperature-induced reduction in size (57%) of the FA-PM enables a high rate of DOX release (78.57% after 24 h) at a temperature above LCST. The DOX release rate has also been tuned by on-demand administration of temperature. The in vitro biocompatibilities of the blank and DOX-loaded FA-PMs have been studied by the MTT assay. The cellular uptake study proves selective internalization of the FA-PM into cancerous cells (C6 glioma) compared that into normal cells (HaCaT). In vivo administration of the DOX-loaded FA-PMs into the C6 glioma rat tumor model resulted in significant accumulation in tumor sites, which drastically inhibited the tumor volume by ∼83.9% with respect to control without any significant systemic toxicity.

  17. Modern mass spectrometry in the characterization and degradation of biodegradable polymers.

    Science.gov (United States)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-15

    In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid

  18. Proton transfer in ionic and neutral reverse micelles.

    Science.gov (United States)

    Lawler, Christian; Fayer, Michael D

    2015-05-14

    Proton-transfer kinetics in both ionic and neutral reverse micelles were studied by time-correlated single-photon counting investigations of the fluorescent photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS). Orientational dynamics of dissolved probe molecules in the water pools of the reverse micelles were also investigated by time-dependent fluorescence anisotropy measurements of MPTS, the methoxy derivative of HPTS. These experiments were compared to the same experiments in bulk water. It was found that in ionic reverse micelles (surfactant Aerosol OT, AOT), orientational motion (fluorescence anisotropy decay) of MPTS was relatively unhindered, consistent with MPTS being located in the water core of the reverse micelle away from the water-surfactant interface. In nonionic reverse micelles (surfactant Igepal CO-520, Igepal), however, orientational anisotropy displayed a slow multiexponential decay consistent with wobbling-in-a-cone behavior, indicating MPTS is located at the water-surfactant interface. HPTS proton transfer in ionic reverse micelles followed kinetics qualitatively like those in bulk water, albeit slower, with the long-time power law time dependence associated with recombination of the proton with the dissociated photoacid, suggesting a modified diffusion-controlled process. However, the power law exponents in the ionic reverse micelles are smaller (∼ -0.55) than that in bulk water (-1.1). In neutral reverse micelles, proton-transfer kinetics did not show discernible power law behavior and were best represented by a two-component model with one relatively waterlike population and a population with a faster fluorescence lifetime and negligible proton transfer. We explain the Igepal results on the basis of close association between the probe and the neutral water-surfactant interface, with the probe experiencing a distribution of more and less waterlike environments. In addition, the observation in bulk water of a power law t(-1.1) for diffusion

  19. The Critical Micelle Concentration of Asphaltenes as Measured by Calorimetry

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Christensen, S. D.

    2000-01-01

    Micellization of asphaltenes in solution has been investigated using a micro calorimetric titration procedure (Andersen, S. I.; Birdi, K. S. J Colloid Interface Sci. 1991, 142, 497). The method uses the analysis of heat of dissociation and dilution of asphaltene micelles when a pure solvent (or...... solvent mixture) is titrated with a solution of asphaltene in the same solvent. The asphaltene concentration of the injected solution is at a level above the critical micelle concentration (CMC). In the present paper the procedure is applied in investigation of asphaltenes as well as subfractions...

  20. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  1. Progress of biodegradable metals

    Directory of Open Access Journals (Sweden)

    Huafang Li

    2014-10-01

    Full Text Available Biodegradable metals (BMs are metals and alloys expected to corrode gradually in vivo, with an appropriate host response elicited by released corrosion products, then dissolve completely upon fulfilling the mission to assist with tissue healing with no implant residues. In the present review article, three classes of BMs have been systematically reviewed, including Mg-based, Fe-based and Zn-based BMs. Among the three BM systems, Mg-based BMs, which now have several systems reported the successful of clinical trial results, are considered the vanguards and main force. Fe-based BMs, with pure iron and Fe–Mn based alloys as the most promising, are still on the animal test stage. Zn-based BMs, supposed to have the degradation rate between the fast Mg-based BMs and the slow Fe-based BMs, are a rising star with only several reports and need much further research. The future research and development direction for the BMs are proposed, based on the clinical requirements on controllable degradation rate, prolonged mechanical stability and excellent biocompatibility, by optimization of alloy composition design, regulation on microstructure and mechanical properties, and following surface modification.

  2. Treatment of biodegradable material

    Energy Technology Data Exchange (ETDEWEB)

    Pannell, S.D.; Greenshields, R.N.

    1981-05-13

    Biodegradable effluents, e.g. containing carbohydrates and/or proteins, were treated by passing up a tower fermenter tapered at the top and with an aspect ratio of greater than or equal to 3:1. A flocculant microorganism aerobically digested the effluent in the tower and the mixture of treated medium, gas, and surplus microorganism was discharged through an inverted-U-shaped outlet at the top. After separation of the biomass, which could be used as an animal feed, the purified effluent could be discharged. A milk-processing effluent (2.5 g solids/l, of which 65% was sucrose and 35% milk solids) was treated in a fermentation tower (aspect ratio 10:1). Aspergillus niger in the tower readily digested sucrose and at least some lactose as air and NH/sub 4/NO/sub 3/ were added. At least 90% of the casein was trapped by the microorganisms and discharged with them from the tower. The microrganisms were separated with a vibrating sieve giving a final discharged liquid containing 0.2 g solids/l.

  3. Laser transmission welding of poly(ethylene terephthalate) and biodegradable poly(ethylene terephthalate) - Based blends

    Science.gov (United States)

    Gisario, Annamaria; Veniali, Francesco; Barletta, Massimiliano; Tagliaferri, Vincenzo; Vesco, Silvia

    2017-03-01

    Joining of Poly(Ethylene Terephthalate) PET and its biodegradable derivatives is of high relevance to ensure good productive rate, low cost and operational safety for fabrication of medical and electronic devices, sport equipments as well as for manufacturing of food and drug packaging solutions. In the present investigation, granules of PET and PETs modified by organic additives, which promote biodegradation of the polymeric chains, were prepared by extrusion compounding. The achieved granules were subsequently re-extruded to shape thin (330 μm) flat sheets. Substrates cut from these sheets were joined by Laser Transmission Welding (LTW) with a continuous wave High Power Diode Laser (cw-HPDL). First, based on a qualitative evaluation of the welded joints, the most suitable operational windows for PETs laser joining were identified. Second, characterization of the mechanical properties of the welded joints was performed by tensile tests. Accordingly, Young's modulus of PET and biodegradable PET blends was studied by Takayanagi's model and, based on the experimental results, a novel predicting analytical model derived from the mixture rule was developed. Lastly, material degradation of the polymeric joints was evaluated by FT-IR analysis, thus allowing to identify the main routes to thermal degradation of PET and, especially, of biodegradable PET blends during laser processing.

  4. Mucosal delivery of vaccines: role of mucoadhesive/biodegradable polymers.

    Science.gov (United States)

    Garg, Neeraj K; Mangal, Sharad; Khambete, Hemant; Sharma, Pradeep K; Tyagi, Rajeev K

    2010-06-01

    Majority of infectious microorganism make their gateway to the host through mucosal surfaces, such as gastrointestinal tract, nasal and vaginal tract. Mucosal immune response structured as sIgA can effectively prevent the attachment and invasion of the microorganism from mucosal surface and thereby serves as an efficient tool against infectious disease. There has been an increased demand for the development of novel vaccine that leads to the induction of immune response in systemic circulation as well as at mucosal surfaces against infectious disease. Mucosal delivery of vaccine provides basis for induction of both mucosal as well as systemic immune responses against the infectious organisms. However, a variety of factors such as mucociliary clearance, presence of deteriorating enzymes, pH extremes (GIT), low permeation and metabolic degradation limit the mucosal delivery of vaccine. Numerous strategies have been explored in the meadow of mucosal vaccination for the purpose of efficient antigen delivery through mucosal route(s). Polymeric carrier(s) such as nanoparticles and microparticles loaded with the antigen can serve as the basis for creation of important formulations for improved vaccine. Biodegradable and mucoadhesive polymeric carrier(s) seems to be most promising candidate for mucosal vaccine delivery. Several polymers from natural and synthetic origin, such as polylactide-co-glycolide, chitosan, alginate, carbopol, gelatin etc., have been explored for the efficient mucosal vaccine delivery and significant results have been obtained. This review outlines the polymers used in mucosal vaccine delivery with special reference to mucoadhesive/biodegradable polymers. This article also covers the recent patent granted in the field on polymeric carrier mediated mucosal vaccination.

  5. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, Marcela de, E-mail: marcelafarmausp77@gmail.com [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: mpemdel@fcfrp.usp.br [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: amandosi@ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others

    2014-03-15

    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  6. Solubility enhancement and in vitro evaluation of PEG-b-PLA micelles as nanocarrier of semi-synthetic andrographolide analogue for cholangiocarcinoma chemotherapy.

    Science.gov (United States)

    Puntawee, Sujittra; Theerasilp, Man; Reabroi, Somrudee; Saeeng, Rungnapha; Piyachaturawat, Pawinee; Chairoungdua, Arthit; Nasongkla, Norased

    2016-01-01

    Semi-synthetic andrographolide analogue (19-triphenylmethyl ether andrographolide, AG 050) is a C-19 substituted andrographolide which is the major constituent from Andrographis Paniculata Nees (Acanthaceae). The analogue has previously been reported to be highly cytotoxic against several cancer cell lines. Nevertheless, its poor water solubility limits clinical applications of this compound. To improve the aqueous solubility and bioavailability of AG 050 by protonation and encapsulation in poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-b-PLA) polymeric micelles. PEG-b-PLA micelle was employed as a nanocarrier for AG 050. The physicochemical properties and in vitro cytotoxicity against cholangiocarcinoma (CCA) (KKU-M213) cell line were done in this study. Hydrochloride salt of AG 050 (AG 050-P) greatly enhanced the solubility of this compound (15-fold). PEG-b-PLA was able to encapsulate AG 050-P in hydrophobic core with a significant increase in the amount of AG 050-P in aqueous solution (280-fold). Film sonication method provided greater results in drug-loading study as compared to micelles via solvent evaporation. In addition, the encapsulated AG 050-P exhibited sustained release pattern and excellent cytotoxicity activity against KKU-M213 with IC50 of 3.33 µM. Nanoencapsulation of AG 050-P implicated its potential development for clinical use in CCA treatment.

  7. Intracellular "activated" two-photon photodynamic therapy by fluorescent conveyor and photosensitizer co-encapsulating pH-responsive micelles against breast cancer.

    Science.gov (United States)

    Luo, Lei; Zhong, Hong; Liu, Shuang; Deng, Lidong; Luo, Yonghuang; Zhang, Qiong; Zhu, Yingzhong; Tian, Yupeng; Sun, Yuan; Tian, Xiaohe

    2017-01-01

    The application of photodynamic therapy (PDT) for the diagnosis and treatment of cancer is hindered by the intrinsic defects of the currently available photosensitizers (PSs), such as poor water solubility and limited light-penetration depth. In this study, pH-responsive polymeric micelles that co-encapsulate therapeutic PSs and organooxotin two-photon compounds were applied for two-photon PDT (TP-PDT) against breast cancer. The TP-PDT effect of the drug-loaded micelles was "activated" when the micelles turned into aggregates at a triggering pH level. The in vitro therapeutic effect was evaluated on 4T1 murine breast cancer cells by viability assays, real-time morphology collapsing, and reactive oxygen species determination. Time-dependent ex vivo organ distribution and in vivo anticancer efficacy results suggested that the drug carriers could accumulate in tumors and suppress tumor growth by TP-PDT. The delivery system could enhance the solubility and distribution of PSs and, if administered along with a tissue-penetrating prolonged light source, could thus have good potential for cancer therapy.

  8. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  9. Thermal polymerization of Moringa oleifera oil; Termopolimerizacao do oleo de Moringa oleifera

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Tania M.S.; Novack, Katia M.; Leandro, Cristiano, E-mail: tania@iceb.ufop.br [Departamento de Quimica - UFOP, Campus Morro do Cruzeiro, Ouro Preto, MG (Brazil)

    2011-07-01

    It is increasingly clear both for society and the scientific community, that is necessary to find alternatives to reduce the use of polymeric materials because of their damage to the environment. One way to minimize the environmental problems related to the use of polymers is try to make them quickly degradable. In this study it was obtained a material with polymeric appearance derived from heating of the vegetable oil extracted from seeds of Moringa oleifera. The resulting product is an interesting alternative to obtain polymeric materials that may have biodegradable characteristics, coming from a renewable source and low cost. Moringa oil can be used since it has a high content of unsaturated fatty acids, and its main constituent oleic acid. All samples were characterized by FTIR, NMR and GPC. It was obtained a polymeric material, malleable, high viscosity, with some elasticity, low crystallinity and no unpleasant odor. (author)

  10. Polymeric coordination compounds

    Indian Academy of Sciences (India)

    Administrator

    Metal coordination polymers with one- and two-dimensional structures are of current interest due to their possible relevance to material science 1. In continuation of our previous studies 2,3, several new polymeric compounds are reported here. Among the complexes of silver with aminomethyl pyridine (amp) ...

  11. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  12. Amphiphilic block copolymer micelles with hydrophobically modified shells

    Czech Academy of Sciences Publication Activity Database

    Jelínek, K.; Uhlík, F.; Limpouchová, Z.; Matějíček, P.; Humpolíčková, J.; Procházka, K.; Tuzar, Zdeněk; Špírková, Milena; Hof, Martin

    2003-01-01

    Roč. 29, 10-11 (2003), s. 655-660 ISSN 0892-7022 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : micelles * conformation * NRET Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.721, year: 2003

  13. Ultrafast energy transfer in water-AOT reverse micelles

    NARCIS (Netherlands)

    Cringus, Dan; Bakulin, Artem; Lindner, Joerg; Voehringer, Peter; Pshenichnikov, Maxim S.; Wiersma, Douwe A.

    2007-01-01

    A spectroscopic investigation of the vibrational dynamics of water in a geometrically confined environment is presented. Reverse micelles of the ternary microemulsion H2O/AOT/n-octane (AOT = bis-2-ethylhexyl sulfosuccinate or aerosol-OT) with diameters ranging from 1 to 10 nm are used as a model

  14. Coupled Organoclay/Micelle Action for the Adsorption of Diclofenac.

    Science.gov (United States)

    De Oliveira, Tiago; Guégan, Régis

    2016-09-20

    A Na-smectite clay mineral (Na-Mt) was exchanged with various amounts of benzyldimethyltetradecyl ammonium chloride cationic surfactant (BDTAC) up to four times the cation exchange capacity (CEC). The adsorption properties of these organoclays as well as a coupled micelle/organoclay process were evaluated to remove an anionic pharmaceutical product, the diclofenac (DCF), recognized as a recalcitrant compound for conventional water treatments and to be poorly adsorbed onto untreated clay mineral. The DCF affinity appears to depend on the lipophilic character of organoclays in correlation to the density of intercalated BDTA and is particularly enhanced for sorbent systems with free surfactant or micelle in solution. The combination of both organclay and BDTA in excess or micelle as a one pot adsorption system appears to be the most efficient material for the sequestration of DCF and other pharmaceutical products (PPs) with a KF Freundlich constant of 1.7 L g(-1) and no restriction of the adsorbed DCF amount as the linear adsorption isotherm shows. A BDTA hydrophobic core micelle coupled with a positive electric charge forms an organic complex with DCF that is properly intercalated within the interlayer space of BDTA-Mt organoclays as both Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data supported.

  15. Solvent Effects on the Micelle - Influenced Aquation Reactions of ...

    African Journals Online (AJOL)

    The relative rates of the micelle-catalyzed/inhibited aquation reactions of the complexes: Fe(Ph2Phen), Fe(Me2Phen) and Fe(MePhen were investigated in ethylene glycol, water and aqueous acetone. The pseudo first oder rate constant, K vs (Triton X-100) profiles reveal that at all the (TX-100) concentration ranges ...

  16. Extraction of L-Aspartic Acid with Reverse Micelle System

    Directory of Open Access Journals (Sweden)

    Özlem AYDOĞAN

    2009-02-01

    Full Text Available The aim of this study is to investigate the extraction L-aspartic acid which is a hydrophobic amino acid with reverse micelle system. Production of amino acids by fermentation has been more important in recent years. These amino acids are obtained in dilute aqueous solutions and have to be separated from excess substrate, inorganic salts and by-products. Recently, separation of amino acids from fermentation media by reverse micelle extraction has received a great deal of attention. In this study, reverse micelle phase includes aliquat-336 as a surfactant, 1-decanol as a co-surfactant and isooctane as an apolar solvent. Experiments were performed at 150 rpm stirring rate, at 30 oC, for 30 min extraction time with equal volumes of reverse micelle and aqueous phases. Concentration of L-aspartic acid was analyzed by liquid chromatography (HPLC. The extraction yield increased with increasing pH and aliquat-336 concentration and with decreasing initial amino acid concentration. Maximum ekstraction yield (68 % was obtained at pH of 12, surfactant concentration of 200 mM and an initial amino acid concentration of 5 mM.

  17. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the las...

  18. Complex coacervate core micelles with a lysozyme-modified corona

    NARCIS (Netherlands)

    Danial, M.; Klok, H.A.; Norde, W.; Cohen Stuart, M.A.

    2007-01-01

    This paper describes the preparation, characterization, and enzymatic activity of complex coacervate core micelles (C3Ms) composed of poly(acrylic acid) (PAA) and poly(N-methyl-2-vinyl pyridinium iodide)-b-poly(ethylene oxide) (PQ2VP-PEO) to which the antibacterial enzyme lysozyme is end-attached.

  19. Small angle neutron scattering studies of mixed micelles of sodium

    Indian Academy of Sciences (India)

    The aqueous solutions of sodium cumene sulphonate (NaCS) and its mixtures with each of cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) are characterized by small angle neutron scattering (SANS). NaCS when added to CTAB solution leads to the formation of long rod-shaped micelles with ...

  20. Investigating Block-Copolymer Micelle Dynamics for Tunable Cargo Delivery

    Science.gov (United States)

    Li, Xiuli; Kidd, Bryce; Cooksey, Tyler; Robertson, Megan; Madsen, Louis

    Block-copolymer micelles (BCPMs) can carry molecular cargo in a nanoscopic package that is tunable using polymer structure in combination with cargo properties, as well as with external stimuli such as temperature or pH. For example, BCPMs can be used in targeted anticancer drug delivery due to their biocompatibility, in vivo degradability and prolonged circulation time. We are using NMR spectroscopy and diffusometry as well as SANS to investigate BCPMs. Here we study a diblock poly(ethylene oxide)-b-(caprolactone) (PEO-PCL) that forms spherical micelles at 1% (w/v) in the mixed solvent D2O/THF-d8. We quantify the populations and diffusion coefficients of coexisting micelles and free unimers over a range of temperatures and solvent compositions. We use temperature as a stimulus to enhance unimer exchange and hence trigger cargo release, in some cases at a few degrees above body temperature. We present evidence for dominance of the insertion-expulsion mechanism of unimer exchange in these systems, and we map phase diagrams versus temperature and solvent composition. This study sheds light on how intermolecular interactions fundamentally affect cargo release, unimer exchange, and overall micelle tunability.

  1. Complex coacervation core micelles. Colloidal stability and aggregation mechanism

    NARCIS (Netherlands)

    Burgh, van der S.; Keizer, de A.; Cohen Stuart, M.A.

    2004-01-01

    Complex coacervation core micelles were prepared with various polyelectrolytes and oppositely charged diblock copolymers. The diblock copolymers consist of a charged block and a water-soluble neutral block. Our experimental technique was dynamic light scattering in combination with titrations. At

  2. DNA-polymer micelles as nanoparticles with recognition ability.

    Science.gov (United States)

    Talom, Renée Mayap; Fuks, Gad; Kaps, Leonard; Oberdisse, Julian; Cerclier, Christel; Gaillard, Cédric; Mingotaud, Christophe; Gauffre, Fabienne

    2011-11-25

    The Watson-Crick binding of DNA single strands is a powerful tool for the assembly of nanostructures. Our objective is to develop polymer nanoparticles equipped with DNA strands for surface-patterning applications, taking advantage of the DNA technology, in particular, recognition and reversibility. A hybrid DNA copolymer is synthesized through the conjugation of a ssDNA (22-mer) with a poly(ethylene oxide)-poly(caprolactone) diblock copolymer (PEO-b-PCl). It is shown that, in water, the PEO-b-PCl-ssDNA(22) polymer forms micelles with a PCl hydrophobic core and a hydrophilic corona made of PEO and DNA. The micelles are thoroughly characterized using electron microscopy (TEM and cryoTEM) and small-angle neutron scattering. The binding of these DNA micelles to a surface through DNA recognition is monitored using a quartz crystal microbalance and imaged by atomic force microscopy. The micelles can be released from the surface by a competitive displacement event. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Counterion condensation in ionic micelles as studied by a combined ...

    Indian Academy of Sciences (India)

    Abstract. We report a combined use of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) to the study of counterion condensation in ionic micelles. Small-angle neutron and X-ray scattering measurements have been carried out on two surfactants cetyltrimethylammonium bromide (CTABr) and ...

  4. Degradation patterns of tetracycline antibiotics in reverse micelles and water.

    Science.gov (United States)

    Sah, Hongkee

    2006-11-01

    The objective of this study was to determine the chemical stability of tetracycline and oxytetracycline hydro-chlorides in reverse micelles. Their reverse micellar solutions were prepared using cetyltrimethylammonium bromide, water and ethyl formate. The aqueous solutions of the tetracycline antibiotics were also prepared for comparison. The reverse micellar and aqueous solutions were stored at 37 degrees C. Samples were analyzed by high performance liquid chromatography. When evaluation was performed on an aqueous tetracycline HCl solution, its half-life was estimated to be 329 h. Its chemical stability was not improved after being dissolved in the reverse micelles, and a similar half-life of 330 h was observed. However, there were noticeable differences between the two systems in terms of degradation kinetics and degradation byproducts. On the other hand, oxytetracycline HCl was unstable in water so that its half-life was only 34 h. Very interestingly, pronounced improvement in stability was attained with the reverse micellar system: upon dissolving in the reverse micelles, its half-life was increased to 2402 h. There were also marked differences in degradation patterns and mechanisms of oxytetracycline HCl in water and the reverse micelles. Our study indicates that the reverse micellar system has potential applications in solubilizing and stabilizing oxytetracycline HCl, thereby contributing to the development of its dosage forms. Copyright (c) 2006 John Wiley & Sons, Ltd.

  5. Reverse micelles as suitable microreactor for increased biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Anjana [Nanotechnology and Molecular Biology Laboratory, Centre of Biotechnology, University of Allahabad, Allahabad 211002 (India); Pandey, Ashutosh [Centre of Energy Studies, MNNIT, Allahabad 211004 (India)

    2008-01-15

    Reverse micelles have been shown to act as efficient microreactors for enzymic reactions and whole cell entrapment in organic (non-aqueous) media wherein the reactants are protected from denaturation by the surrounding organic solvent. These micelles are thermodynamically stable, micrometer sized water droplets dispersed in an organic phase by a surfactant. It has been observed that when whole cells of photosynthetic bacteria (Rhodopseudomonas sphaeroides or Rhodobacter sphaeroides 2.4.1) are entrapped inside these reverse micelles, the H{sub 2} production enhanced from 25 to 35 folds. That is, 1.71mmol(mgprotein){sup -1}h{sup -1} in case of R. sphaeroides which is 25 fold higher in benzene-sodium lauryl sulfate reverse micelles. Whereas, in case of R. sphaeroides 2.4.1 the H{sub 2} production was increased by 35 fold within AOT-isooctane reverse micelles i.e. 11.5mmol(mgprotein){sup -1}h{sup -1}. The observations indicate that the entrapment of whole cells of microbes within reverse micelles provides a novel and efficient technique to produce hydrogen by the inexhaustible biological route. The two microorganisms R. sphaeroides 2.4.1 (a photosynthetic bacteria) and Citrobacter Y19 (a facultative anaerobic bacteria) together are also entrapped within AOT-isooctane and H{sub 2} production was measured i.e. 69mmol(mgprotein){sup -1}h{sup -1}. The nitrogenase enzyme responsible for hydrogen production by R. sphaeroides/R. sphaeroides 2.4.1 cells is oxygen sensitive, and very well protected within reverse micelles by the use of combined approach of two cells (R. sphaeroides 2.4.1 and Citrobacter Y19). In this case glucose present in the medium of Citrobacter Y19 serves double roles in enhancing the sustained production rate of hydrogen. Firstly, it quenches the free O{sub 2}liberated as a side product of reaction catalyzed by nitrogenase, which is O{sub 2} labile. Secondly, organic acid produced by this reaction is utilized by the Citrobacter Y19 as organic substrate in

  6. Enhanced cytotoxicity of TATp-bearing paclitaxel-loaded micelles in vitro and in vivo.

    Science.gov (United States)

    Sawant, Rupa R; Torchilin, Vladimir P

    2009-06-05

    Cell-penetrating peptide (TATp) was attached to the distal tips of polyethyleneglycol (PEG) moieties of polyethyleneglycol-phosphatidylethanolamine (PEG-PE) micelles loaded with paclitaxel (PCT). The TATp-modified micelles demonstrated an increased interaction with cancer cells compared to non-modified micelles resulting in a significant increase of the in vitro cytotoxicity to different cancer cells. TATp-modified PCT-loaded micelles were administered intratumorally in mice and the induction of apoptosis in tumor cells was studied after 48h with the Terminal Deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling (TUNEL) assay using free PCT and TATp-free PCT-loaded PEG-PE micelles as controls. A significant apoptotic cell death was observed in tumors treated with PCT-loaded micelles modified with TATp, while the treatment with free PCT or with non-modified PCT-loaded micelles resulted in much smaller number of TUNEL-positive cells within tumors.

  7. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation.

    Science.gov (United States)

    Osten, Kimberly M; Mehrkhodavandi, Parisa

    2017-11-21

    Inexorably, the environmental persistence and damage caused by polyolefins have become major drawbacks to their continued long-term use. Global shifts in thinking from fossil-fuel to renewable biobased resources have urged researchers to focus their attention on substituting fossil-fuel based polymers with renewable and biodegradable alternatives on an industrial scale. The recent development of biodegradable polyesters from ring opening polymerization (ROP) of bioderived cyclic ester monomers has emerged as a promising new avenue toward this goal. Ever increasing numbers of metal-based initiators have been reported in the literature for the controlled ROP of cyclic esters, in particular for the polymerization of lactide to produce poly(lactic acid) (PLA). PLA has several material weaknesses, which hinder its use as a replacement for commodity plastics. Despite many advances in developing highly active and controlled catalysts for lactide polymerization, no single catalyst system has emerged to replace industrially used catalysts and provide access to PLA materials with improved properties. We reported the first example of indium(III) for the ring opening polymerization of lactide. Since then, indium(III) has emerged as a useful Lewis acid in initiators for the controlled polymerization of lactide and other cyclic esters. In particular, we have developed a large family of chiral dinuclear indium complexes bearing tridentate diaminophenolate ligands and tetradentate salen and salan ligands. Complexes within our tridentate ligand family are highly active initiators for the moderately isoselective living and immortal polymerization of rac-lactide, as well as other cyclic esters. We have shown that subtle steric effects influence aggregation in these systems, with polymerization typically proceeding through a dinuclear propagating species. In addition, profound effects on polymerization activities have been observed for central tertiary versus secondary amine donors in

  8. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils.

    Science.gov (United States)

    Bueno-Montes, Marisa; Springael, Dirk; Ortega-Calvo, José-Julio

    2011-04-01

    The influence of the nonionic surfactant Brij 35 on biodegradation of slowly desorbing polycyclic aromatic hydrocarbons (PAHs) was determined in contaminated soils. We employed a soil originated from a creosote-polluted site, and a manufactured gas plant soil that had been treated by bioremediation. The two soils differed in their total content in five indicator 3-, 4-, and 5-ring PAHs (2923 mg kg(-1) and 183 mg kg(-1) in the creosote-polluted and bioremediated soils, respectively) but had a similar content (140 mg kg(-1) vs 156 mg kg(-1)) of slowly desorbing PAHs. The PAHs present in the bioremediated soil were highly recalcitrant. The surfactant at a concentration above its critical micelle concentration enhanced the biodegradation of slowly desorbing PAHs in suspensions of both soils, but it was especially efficient with bioremediated soil, causing a 62% loss of the total PAH content. An inhibition of biodegradation was observed with the high-molecular-weight PAHs pyrene and benzo[a]pyrene in the untreated soil, possibly due to competition effects with other solubilized PAHs present at relatively high concentrations. We suggest that nonionic surfactants may improve bioremediation performance with soils that have previously undergone extensive bioremediation to enrich for a slowly desorbing profile.

  9. The effect of gamma-radiation on biodegradability of natural FIBER/PP-HMSPP foams: A study of thermal stability and biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elizabeth C.L.; Scagliusi, Sandra R.; Lugao, Ademar B., E-mail: eclcardo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This research was carried out to evaluate how gamma-radiation affected PP/HMSPP structural foams reinforced with sugarcane bagasse, in terms of thermal properties, biodegradability and infrared spectrum. Polymers are used in various applications and in different industrial areas providing enormous quantities of wastes in environment, contributing with 20 to 30% of total volume of solid residues. Besides, shortage of plastics resins obtained from oil and natural gas is addressing research and development toward alternative materials; environmental concerning in litter reduction is being directed to renewable polymers for manufacturing of polymeric foams. Biodegradable polymers, a new generation of polymers produced from various natural resources, environmentally safe and friendly, can contribute for pollution reduction, at a low cost. High density structural foams are specially used in civil construction, in replacement of metals, woods and concrete, but contribute for environmental pollution, due to components nature. In this study, it was incorporated sugarcane bagasse in PP/HMSPP polymeric matrix blends. Gamma radiation applied at 50, 100, 150, 200 and 500 kGy doses showed effective for biodegradability induction. TGA analyses pointed toward stability around 205 deg C; decomposition of both cellulose and hemicellulose took place at 310 deg C and above, whereas the degradation of reinforced fibers composites took place above 430 deg C. Infrared spectrum of foams were studied using FTIR, showing no sensitivity to the presence of C = C and C =O functional groups. (author)

  10. The effect of gamma-radiation on biodegradability of natural FIBER/PP-HMSPP foams: A study of thermal stability and biodegradability

    International Nuclear Information System (INIS)

    Cardoso, Elizabeth C.L.; Scagliusi, Sandra R.; Lugao, Ademar B.

    2015-01-01

    This research was carried out to evaluate how gamma-radiation affected PP/HMSPP structural foams reinforced with sugarcane bagasse, in terms of thermal properties, biodegradability and infrared spectrum. Polymers are used in various applications and in different industrial areas providing enormous quantities of wastes in environment, contributing with 20 to 30% of total volume of solid residues. Besides, shortage of plastics resins obtained from oil and natural gas is addressing research and development toward alternative materials; environmental concerning in litter reduction is being directed to renewable polymers for manufacturing of polymeric foams. Biodegradable polymers, a new generation of polymers produced from various natural resources, environmentally safe and friendly, can contribute for pollution reduction, at a low cost. High density structural foams are specially used in civil construction, in replacement of metals, woods and concrete, but contribute for environmental pollution, due to components nature. In this study, it was incorporated sugarcane bagasse in PP/HMSPP polymeric matrix blends. Gamma radiation applied at 50, 100, 150, 200 and 500 kGy doses showed effective for biodegradability induction. TGA analyses pointed toward stability around 205 deg C; decomposition of both cellulose and hemicellulose took place at 310 deg C and above, whereas the degradation of reinforced fibers composites took place above 430 deg C. Infrared spectrum of foams were studied using FTIR, showing no sensitivity to the presence of C = C and C =O functional groups. (author)

  11. Micellar emulsions composed of mPEG-PCL/MCT as novel nanocarriers for systemic delivery of genistein: a comparative study with micelles

    Directory of Open Access Journals (Sweden)

    Zhang TP

    2015-10-01

    Full Text Available Tianpeng Zhang,* Huan Wang,* Yanghuan Ye, Xingwang Zhang, Baojian Wu Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Polymeric micelles receive considerable attention as drug delivery vehicles, depending on the versatility in drug solubilization and targeting therapy. However, their use invariably suffers with poor stability both in in vitro and in vivo conditions. Here, we aimed to develop a novel nanocarrier (micellar emulsions, MEs for a systemic delivery of genistein (Gen, a poorly soluble anticancer agent. Gen-loaded MEs (Gen-MEs were prepared from methoxy poly(ethylene glycol-block-(ε-caprolactone and medium-chain triglycerides (MCT by solvent-diffusion technique. Nanocarriers were characterized by dynamic light scattering, transmission electron microscopy, and in vitro release. The resulting Gen-MEs were approximately 46 nm in particle size with a narrow distribution. Gen-MEs produced a different in vitro release profile from the counterpart of Gen-ME. The incorporation of MCT significantly enhanced the stability of nanoparticles against dilution with simulated body fluid. Pharmacokinetic study revealed that MEs could notably extend the mean retention time of Gen, 1.57- and 7.38-fold as long as that of micelles and solution formulation, respectively, following intravenous injection. Furthermore, MEs markedly increased the elimination half-life (t1/2β of Gen, which was 2.63-fold larger than that of Gen solution. Interestingly, Gen distribution in the liver and kidney for MEs group was significantly low relative to the micelle group in the first 2 hours, indicating less perfusion in such two tissues, which well accorded with the elongated mean retention time. Our findings suggested that MEs may be promising carriers as an alternative of micelles to systemically deliver poorly soluble drugs. Keywords: genistein, micellar

  12. Biodegradable Peptide-Silica Nanodonuts.

    Science.gov (United States)

    Maggini, Laura; Travaglini, Leana; Cabrera, Ingrid; Castro-Hartmann, Pablo; De Cola, Luisa

    2016-03-07

    We report hybrid organosilica toroidal particles containing a short peptide sequence as the organic component of the hybrid systems. Once internalised in cancer cells, the presence of the peptide allows for interaction with peptidase enzymes, which attack the nanocarrier effectively triggering its structural breakdown. Moreover, these biodegradable nanovectors are characterised by high cellular uptake and exocytosis, showing great potential as biodegradable drug carriers. To demonstrate this feature, doxorubicin was employed and its delivery in HeLa cells investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Glyco-Nanoparticles Made from Self-Assembly of Maltoheptaose-block-Poly(methyl methacrylate): Micelle, Reverse Micelle, and Encapsulation.

    Science.gov (United States)

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2015-07-13

    The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy.

  14. Extraction protocol and liquid chromatography/tandem mass spectrometry method for determining micelle-entrapped paclitaxel at the cellular and subcellular levels: Application to a cellular uptake and distribution study.

    Science.gov (United States)

    Zheng, Nan; Lian, Bin; Du, Wenwen; Xu, Guobing; Ji, Jiafu

    2018-01-01

    Paclitaxel-loaded polymeric micelles (PTX-PM) are commonly used as tumor-targeted nanocarriers and display outstanding antitumor features in clinic, but its accumulation and distribution in vitro are lack of investigation. It is probably due to the complex micellar system and its low concentration at the cellular or subcellular levels. In this study, we developed an improved extraction method, which was a combination of mechanical disruption and liquid-liquid extraction (LLE), to extract the total PTX from micelles in the cell lysate and subcellular compartments. An ultra-performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS) method was optimized to detect the low concentration of PTX at cellular and subcellular levels simultaneously, using docetaxel as internal standard (IS). The method was proved to release PTX totally from micelles (≥95.93%) with a consistent and reproducible extraction recovery (≥75.04%). Good linearity was obtained at concentrations ranging from 0.2 to 20ng/mL. The relative error (RE%) for accuracy varied from 0.68 to 7.56%, and the intra- and inter-precision (relative standard deviation, RSD%) was less than 8.64% and 13.14%, respectively. This method was fully validated and successfully applied to the cellular uptake and distribution study of PTX-loaded PLGA-PEG micelles in human breast cancer cells (MCF-7). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid)

    Science.gov (United States)

    Hu, Yunzi; Daoud, Walid A.; Cheuk, Kevin Ka Leung; Lin, Carol Sze Ki

    2016-01-01

    Polycondensation and ring-opening polymerization are two important polymer synthesis methods. Poly(lactic acid), the most typical biodegradable polymer, has been researched extensively from 1900s. It is of significant importance to have an up-to-date review on the recent improvement in techniques for biodegradable polymers. This review takes poly(lactic acid) as the example to present newly developed polymer synthesis techniques on polycondensation and ring-opening polymerization reported in the recent decade (2005–2015) on the basis of industrial technique modifications and advanced laboratory research. Different polymerization methods, including various solvents, heating programs, reaction apparatus and catalyst systems, are summarized and compared with the current industrial production situation. Newly developed modification techniques for polymer properties improvement are also discussed based on the case of poly(lactic acid). PMID:28773260

  16. Thermodynamic prediction of active ingredient loading in polymeric microparticles.

    Science.gov (United States)

    Tse, G; Blankschtein, D; Shefer, A; Shefer, S

    1999-06-28

    The growing use of microparticles as a controlled-delivery system for pharmaceutical and non-pharmaceutical active ingredients (AIs) has prompted a costly trial-and-error development of new and effective microparticle systems. In order to facilitate a more rational design and optimization of AI loadings in microparticles, we have developed a molecular-thermodynamic theory to predict the loading of liquid AIs in polymeric microparticles that are manufactured by a solvent evaporation process. This process involves the emulsification of a liquid polymer solution (consisting of polymer and AI dissolved in a volatile solvent) in an aqueous surfactant solution. The theory describes the equilibrium distribution of the AI between the aqueous phase and the dispersed polymeric droplets. The universal functional activity coefficient (UNIFAC) and UNIFAC-Free Volume (FV) group-contribution methods are utilized to model the nonidealities in the water and polymeric droplet phases, respectively. The inputs to the theory are: (i) the chemical structures, densities and total masses of the manufacturing ingredients, (ii) the manufacturing temperature and (iii) the glass transition temperature of the polymer. Since surfactant concentrations exceeding the critical micellar concentration (CMC) are often required in order to stabilize the dispersed polymeric droplets during the emulsion manufacturing process, the theory also accounts for AI solubilization in surfactant micelles present in the manufacturing solution. To test the AI loading predictions, we compare theoretical predictions of AI loadings in poly(lactic acid), poly(methyl methacrylate) and polystyrene microparticles to experimentally measured ones for five model AIs with varying degrees of hydrophobicity (benzyl alcohol, n-octanol, geraniol, farnesol and galaxolide). We also demonstrate how the developed theory can be utilized to screen polymers with respect to their abilities to load a given AI, as well as to provide

  17. Chitosan nanogels by template chemical cross-linking in polyion complex micelle nanoreactors.

    Science.gov (United States)

    Maggi, Flavia; Ciccarelli, Serena; Diociaiuti, Marco; Casciardi, Stefano; Masci, Giancarlo

    2011-10-10

    Chitosan covalent nanogels cross-linked with genipin were prepared by template chemical cross-linking of chitosan in polyion complex micelle (PIC) nanoreactors. By using this method, we were able to prepare chitosan nanogels using only biocompatible materials without organic solvents. PIC were prepared by interaction between chitosan (X(n) = 23, 44, and 130) and block copolymer poly(ethylene oxide)-block-poly[sodium 2-(acrylamido)-2-methylpropanesulfonate] (PEO-b-PAMPS) synthesized by single-electron transfer-living radical polymerization (SET-LRP). PIC with small size (diameter about 50 nm) and low polydispersity were obtained up to 5 mg/mL. After cross-linking of chitosan with genipin, the nanoreactors were dissociated by adding NaCl. The dissociation of the nanoreactors and the formation of the nanogels were confirmed by (1)H NMR, DLS, and TEM. The size of the smallest nanogels was about 50 nm in the swollen state and 20 nm in the dry state. The amount of genipin used during reticulation was an important parameter to modulate the size of the nanogels in solution.

  18. Thiol-ene reaction as tool for crosslinking of polynorbornene micelles in the nanoscale

    Science.gov (United States)

    Rupp, Barbara; Bauer, Thomas; Slugovc, Christian

    2009-08-01

    The thiol-ene reaction is a established photoreaction of multifunctional thiols and enes. Virtually any type of ene will participate in a free radical polymerisation process with a thiol. An advantage over many other photochemical reactions is that the reaction proceeds almost as rapidly in ambient conditions as in inert atmosphere. In this work we introduce the UV-crosslinking of polynorbornenes made by ring opening metathesis polymerization making use of the residual double bond in the polymer backbone. The crosslinking experiments were done in thin films and were followed by FTIR measurements, to proof the accessibility of double-bonds in the polymers for the addition of the thiols. As a result of these pre-experiments we created flexible and light transmitting films. To further increase the scope of this reaction, amphiphilic block copolymers were prepared and used to form block copolymer micelles in a selective solvent, which were subsequently crosslinked with pentaerythritol tetra(3-mercaptopropionate) (PETMP). FT-IR, DLS and SEM-measurements were used to prove the successful crosslinking and thus nanoparticle formation.

  19. ANAEROBIC BIODEGRADATION OF A BIODEGRADABLE MATERIAL UNDER ANAEROBIC - THERMOPHILIC DIGESTION

    Directory of Open Access Journals (Sweden)

    RICARDO CAMACHO-MUÑOZ

    2014-12-01

    Full Text Available This paper dertermined the anaerobic biodegradation of a polymer obtained by extrusion process of native cassava starch, polylactic acid and polycaprolactone. Initially a thermophilic - methanogenic inoculum was prepared from urban solid waste. The gas final methane concentration and medium’s pH reached values of 59,6% and 7,89 respectively. The assay assembly was carried out according ASTM D5511 standard. The biodegradation percent of used materials after 15 day of digestion were: 77,49%, 61,27%, 0,31% for cellulose, sample and polyethylene respectively. Due cellulose showed biodegradation levels higher than 70% it’s deduced that the inoculum conditions were appropriate. A biodegradation level of 61,27%, 59,35% of methane concentration in sample’s evolved gas and a medium’s finale pH of 7,71 in sample’s vessels, reveal the extruded polymer´s capacity to be anaerobically degraded under thermophilic- high solid concentration conditions.

  20. Radiation-induced heterophase polymerizations

    International Nuclear Information System (INIS)

    Carenza, M.; Palma, G.

    1985-01-01

    Investigations were carried out on the morphology of particles produced in the early stages of radiation-induced heterophase polymerization of acrylonitrile in quiescent conditions over a wide temperature range both in bulk and with addition of a solvent or a comonomer. The data were compared with the corresponding data obtained in the polymerization of vinyl chloride, producing an amorphous polymer, taking into account also the kinetic behaviours of the two polymerization systems. The particle morphologies in the two systems were quite similar at low polymerization temperatures but there were considerable differences when higher temperatures were involved. This change was interpreted on the basis of differences in compatability between the liquid phase and the polymer particle phase for the two systems. In order to account for the two different kinetic behaviours, a two-phase polymerization model was formulated and also a polymerization model in which the surface of the polymer particles was the locus of polymerization. (author)

  1. Biodegradable congress 2012; Bioschmierstoff-Kongress 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Within the Guelzower expert discussions at 5th and 6th June, 2012 in Oberhausen (Federal Republic of Germany) the following lectures were held: (1) Promotion of biodegradable lubricants by means of research and development as well as public relations (Steffen Daebeler); (2) Biodegradable lubricants - An overview of the advantages and disadvantages of the engaged product groups (Hubertus Murrenhoff); (3) Standardization of biodegradable lubricants - CEN/DIN standard committees - state of the art (Rolf Luther); (4) Market research for the utilization of biodegradable lubricants and means of proof of sustainability (Norbert Schmitz); (5) Fields of application for high performance lubricants and requirements upon the products (Gunther Kraft); (6) Investigations of biodegradable lubricants in rolling bearings and gears (Christoph Hentschke); (7) Biodegradable lubricants in central lubrication systems Development of gears and bearings of offshore wind power installations (Reiner Wagner); (8) Investigations towards environmental compatibility of biodegradable lubricants used in offshore wind power installations (Tolf Schneider); (9) Development of glycerine based lubricants for the industrial metalworking (Harald Draeger); (10) Investigations and utilization of biodegradable oils as electroinsulation oils in transformers (Stefan Tenbohlen); (11) Operational behaviour of lubricant oils in vegetable oil operation and Biodiesel operation (Horst Hamdorf); (12) Lubrication effect of lubricating oil of the third generation (Stefan Heitzig); (13) Actual market development from the view of a producer of biodegradable lubricants (Frank Lewen); (14) Utilization of biodegradable lubricants in forestry harvesters (Guenther Weise); (15) New biodegradable lubricants based on high oleic sunflower oil (Otto Botz); (16) Integrated fluid concept - optimized technology and service package for users of biodegradable lubricants (Juergen Baer); (17) Utilization of a bio oil sensor to control

  2. Environmentally degradable bio-based polymeric blends and composites.

    Science.gov (United States)

    Chiellini, Emo; Cinelli, Patrizia; Chiellini, Federica; Imam, Syed H

    2004-03-15

    Blends and composites based on environmentally degradable-ecocompatible synthetic and natural polymeric materials and fillers of natural origin have been prepared and processed under different conditions. Poly(vinyl alcohol) (PVA) was used as the synthetic polymer of choice by virtue of its capability to be processed from water solution or suspension as well as from the melt by blow extrusion and injection molding. Starch and gelatin were taken as the polymeric materials from renewable resources. The fillers were all of natural origin, as waste from food and agro-industry consisted of sugar cane bagasse (SCB), wheat flour (WF), orange peels (OR), apple peels (AP), corn fibres (CF), saw dust (SD) and wheat straw (WS). All the natural or hybrid formulations were intended to be utilized for the production of: a) Environmentally degradable mulching films (hydro-biomulching) displaying, in some cases, self-fertilizing characteristics by in situ spraying of water solutions or suspensions; b) Laminates and containers to be used in agriculture and food packaging by compression and injection molding followed by baking. Some typical prototype items have been prepared and characterized in relation to their morphological and mechanical properties and tested with different methodology for their propensity to environmental degradation and biodegradation as ultimate stage of their service life. A relationship between chemical composition and mechanical properties and propensity to biodegradation has been discussed in a few representative cases.

  3. Biodegradable poly(lactic acid)

    Indian Academy of Sciences (India)

    The fabrication of biodegradable poly(lactic acid) (PLA) microspheres containing total alkaloids of Caulis sinomenii was investigated. The formation, diameter, morphology and properties of the microspheres were characterized using Fourier transform infrared spectroscopy (FT–IR), laser particle size analyser and scanning ...

  4. Thermally bisignate supramolecular polymerization

    Science.gov (United States)

    Venkata Rao, Kotagiri; Miyajima, Daigo; Nihonyanagi, Atsuko; Aida, Takuzo

    2017-11-01

    One of the enticing characteristics of supramolecular polymers is their thermodynamic reversibility, which is attractive, in particular, for stimuli-responsive applications. These polymers usually disassemble upon heating, but here we report a supramolecular polymerization that occurs upon heating as well as cooling. This behaviour arises from the use of a metalloporphyrin-based tailored monomer bearing eight amide-containing side chains, which assembles into a highly thermostable one-dimensional polymer through π-stacking and multivalent hydrogen-bonding interactions, and a scavenger, 1-hexanol, in a dodecane-based solvent. At around 50 °C, the scavenger locks the monomer into a non-polymerizable form through competing hydrogen bonding. On cooling, the scavenger preferentially self-aggregates, unlocking the monomer for polymerization. Heating also results in unlocking the monomer for polymerization, by disrupting the dipole and hydrogen-bonding interactions with the scavenger. Analogous to 'upper and lower critical solution temperature phenomena' for covalently bonded polymers, such a thermally bisignate feature may lead to supramolecular polymers with tailored complex thermoresponsive properties.

  5. Novel multi-responsive P2VP-block-PNIPAAm block copolymers via nitroxide-mediated radical polymerization

    Directory of Open Access Journals (Sweden)

    Cathrin Corten

    2010-08-01

    Full Text Available Linear soluble multi-responsive block copolymers are able to form so called schizophrenic micelles in aqueous solution. Here, such polymers are prepared via nitroxide-mediated radical polymerization (NMRP. In a first step nitroxide-terminated poly(2-vinylpyridine (P2VP was prepared with different molecular weights and narrow molecular weight distributions. The best reaction conditions, optimized by kinetic studies, were bulk polymerization at 110 °C. Using P2VP as a macroinitiator, the synthesis of new soluble linear block copolymers of P2VP and poly(N-isopropylacrylamide (PNIPAAm (P2VP-block-PNIPAAm was possible. The nitroxide terminated polymers were characterized by nuclear magnetic resonance (NMR spectroscopy, size exclusion chromatography (SEC and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS. Thermal properties were investigated by the differential scanning calorimetry (DSC. Block copolymers showed pH- and temperature-responsive solubility in aqueous media. By increasing the P2VP content, the phase transition temperature shifted to lower temperatures (e.g. 26 °C for P2VP114-block-PNIPAAm180. Depending on the resulting block length, temperature and pH value of aqueous solution, the block copolymers form so called schizophrenic micelles. The hydrodynamic radius Rh of these micelles associated with pH values and temperature was analyzed by dynamic light scattering (DLS. Such kind of block copolymers has potential for many applications, such as controlled drug delivery systems.

  6. Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid-detergent systems

    NARCIS (Netherlands)

    Stuart, Marc C. A.; Boekema, Egbert J.

    2007-01-01

    The detergent solubilization and reformation of phospholipid vesicles was studied for various detergents. Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition were observed by turbidimetry and cryo-electron microscopy. The first mechanism involves fast solubilization of

  7. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation; Extracao de nanofibras a partir do mesocarpo do dende para incorporacao em polimeros biodegradsveis

    Energy Technology Data Exchange (ETDEWEB)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C., E-mail: ayu.kuana@gmail.com [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil); Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M. [Embrapa Instrumentacao (EMBRAPA/CNPDIA), Sao Carlos, SP (Brazil)

    2015-07-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  8. Additional Equipment for Soil Biodegradation

    Science.gov (United States)

    Vondráčková, Terezie; Kraus, Michal; Šál, Jiří

    2017-12-01

    Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for

  9. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  10. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    Science.gov (United States)

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  11. Post-Polymerization Modifications of Polymeric Monolithic Columns: A Review

    Directory of Open Access Journals (Sweden)

    Sinéad Currivan

    2014-02-01

    Full Text Available The vast cache of methods used in polymeric monolithic column modification is presented herein, with specific attention to post-polymerization modification reactions. The modification of polymeric monolithic columns is defined and can include the modification of pre-existing surface groups, the addition of polymeric chains or indeed the addition of structures such as nano-particles and nano-structures. The use of these modifications can result in the specific patterning of monoliths, useful in microfluidic device design or in the investigation of modification optimization.

  12. Characterization of biodegradable polymers irradiated with swift heavy ions

    International Nuclear Information System (INIS)

    Salguero, N.G.; Grosso, M.F. del; Durán, H.; Peruzzo, P.J.; Amalvy, J.I.

    2012-01-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  13. Characterization of biodegradable polymers irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Salguero, N.G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Duran, H. [CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Gerencia de Desarrollo Tecnologico y Proyectos Especiales, CNEA, Av. Gral. Paz 1499 (B1650KNA) San Mart Latin-Small-Letter-Dotless-I Acute-Accent n, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, H. Yrigoyen 3100, CP 1650, San Martin, UNSAM (Argentina); Peruzzo, P.J. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Amalvy, J.I. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Facultad de Ingenieria, Universidad Nacional de La Plata, Calle 116 y 48 (B1900TAG), La Plata (Argentina); Departamento de Ingenieria Quimica, Facultad Regional La Plata, Universidad Tecnologica Nacional, 60 y 124 (1900), La Plata (Argentina); and others

    2012-02-15

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  14. Characterization of biodegradable polymers irradiated with swift heavy ions

    Science.gov (United States)

    Salguero, N. G.; del Grosso, M. F.; Durán, H.; Peruzzo, P. J.; Amalvy, J. I.; Arbeitman, C. R.; García Bermúdez, G.

    2012-02-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly- L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  15. Nanomedicines for Inflammatory Arthritis: Head-To-Head Comparison of Glucocorticoid-Containing Polymers, Micelles and Liposomes

    Science.gov (United States)

    Crielaard, Bart J.; Dusad, Anand; Lele, Subodh M.; Rijcken, Cristianne J. F.; Metselaar, Josbert M; Kostková, Hana; Etrych, Tomáš; Ulbrich, Karel; Kiessling, Fabian; Mikuls, Ted R.; Hennink, Wim E.; Storm, Gert; Lammers, Twan; Wang, Dong

    2014-01-01

    As an emerging research direction, nanomedicine has been increasingly utilized to treat inflammatory diseases. In this head-to-head comparison study, four established nanomedicine formulations of dexamethasone, including liposomes (L-Dex), core-crosslinked micelles (M-Dex), slow releasing polymeric prodrugs (P-Dex-slow) and fast releasing polymeric prodrugs (P-Dex-fast), were evaluated in an adjuvant-induced arthritis rat model with an equivalent dose treatment design. It was found that after a single i.v. injection, the formulations with the slower drug release kinetics (i.e. M-Dex and P-Dex-slow) maintained longer duration of therapeutic activity than those with relatively faster drug release kinetics, resulting in better joint protection. This finding will be instructional in the future development and optimization of nanomedicines for the clinical management of rheumatoid arthritis. The outcome of this study also illustrates the value of such head-to-head comparison studies in translational nanomedicine research. PMID:24341611

  16. Characterization of nanoparticles based on block copolymer micelles

    Czech Academy of Sciences Publication Activity Database

    Pleštil, Josef; Pospíšil, Herman; Kříž, Jaroslav; Kadlec, Petr; Tuzar, Zdeněk; Cubitt, R.

    2001-01-01

    Roč. 17, č. 21 (2001), s. 6699-6704 ISSN 0743-7463 R&D Projects: GA AV ČR KSK4050111; GA ČR GA203/00/1317; GA ČR GA203/01/0536 Institutional research plan: CEZ:AV0Z4050913 Keywords : block copolymer micelles * nanoparticles * small - angle neutron scattering Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.963, year: 2001

  17. Internal dynamics in SDS micelles: neutron scattering study.

    Science.gov (United States)

    Sharma, V K; Mitra, S; Verma, G; Hassan, P A; Garcia Sakai, V; Mukhopadhyay, R

    2010-12-30

    The molecular dynamics of sodium dodecyl sulfate (SDS) micelle has been investigated using high-resolution incoherent quasielastic neutron scattering technique. Data analysis clearly shows presence of two distinct motions: whole micellar motion or global diffusion and faster internal motion of the SDS monomer. The global diffusion associated with the whole micelle is found to be Fickian in nature, and the corresponding diffusion coefficients are found to be consistent with those obtained from dynamic light scattering measurements. The internal motion is described with a model consistent with the structure of the micelle and which accounts for the flexibility of the chains. The SDS monomer consists of a head group, which lies on the surface of the globular micelle, and a tail that hangs from the head toward the center of the globule. Considering various factors like conformational changes of the SDS chains, bending, stretching of the chemical bonds, etc., the dynamics of the SDS molecules is successfully described by a model in which the hydrogen atoms undergo localized translational motion confined within spherical volumes. This volume increases linearly along the SDS chain such that the hydrogen atoms closer to the head group move within smaller spheres with lower diffusion constant than the hydrogen atoms away from the head group. This model is found to be consistent with the data over the whole temperature and concentration range. Diffusivity and the volume of the spheres are also found to increase with temperature. The effect of lowering the SDS concentration is found to be similar to that of increasing the temperature.

  18. Nanoparticle Contrast Agents for Computed Tomography: A Focus on Micelles

    Science.gov (United States)

    Cormode, David P.; Naha, Pratap C.; Fayad, Zahi A.

    2014-01-01

    Computed tomography (CT) is an X-ray based whole body imaging technique that is widely used in medicine. Clinically approved contrast agents for CT are iodinated small molecules or barium suspensions. Over the past seven years there has been a great increase in the development of nanoparticles as CT contrast agents. Nanoparticles have several advantages over small molecule CT contrast agents, such as long blood-pool residence times, and the potential for cell tracking and targeted imaging applications. Furthermore, there is a need for novel CT contrast agents, due to the growing population of renally impaired patients and patients hypersensitive to iodinated contrast. Micelles and lipoproteins, a micelle-related class of nanoparticle, have notably been adapted as CT contrast agents. In this review we discuss the principles of CT image formation and the generation of CT contrast. We discuss the progress in developing non-targeted, targeted and cell tracking nanoparticle CT contrast agents. We feature agents based on micelles and used in conjunction with spectral CT. The large contrast agent doses needed will necessitate careful toxicology studies prior to clinical translation. However, the field has seen tremendous advances in the past decade and we expect many more advances to come in the next decade. PMID:24470293

  19. Predicting proton titration in cationic micelle and bilayer environments

    Science.gov (United States)

    Morrow, Brian H.; Eike, David M.; Murch, Bruce P.; Koenig, Peter H.; Shen, Jana K.

    2014-08-01

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pKa's in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pKa of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pKa of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  20. Biobased and biodegradable polymer nanocomposites

    Science.gov (United States)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  1. Polymer micelle formulation for the proteasome inhibitor drug carfilzomib: Anticancer efficacy and pharmacokinetic studies in mice.

    Directory of Open Access Journals (Sweden)

    Ji Eun Park

    Full Text Available Carfilzomib (CFZ is a peptide epoxyketone proteasome inhibitor approved for the treatment of multiple myeloma (MM. Despite the remarkable efficacy of CFZ against MM, the clinical trials in patients with solid cancers yielded rather disappointing results with minimal clinical benefits. Rapid degradation of CFZ in vivo and its poor penetration to tumor sites are considered to be major factors limiting its efficacy against solid cancers. We previously reported that polymer micelles (PMs composed of biodegradable block copolymers poly(ethylene glycol (PEG and poly(caprolactone (PCL can improve the metabolic stability of CFZ in vitro. Here, we prepared the CFZ-loaded PM, PEG-PCL-deoxycholic acid (CFZ-PM and assessed its in vivo anticancer efficacy and pharmacokinetic profiles. Despite in vitro metabolic protection of CFZ, CFZ-PM did not display in vivo anticancer efficacy in mice bearing human lung cancer xenograft (H460 superior to that of the clinically used cyclodextrin-based CFZ (CFZ-CD formulation. The plasma pharmacokinetic profiles of CFZ-PM were also comparable to those of CFZ-CD and the residual tumors that persisted in xenograft mice receiving CFZ-PM displayed an incomplete proteasome inhibition. In summary, our results showed that despite its favorable in vitro performances, the current CFZ-PM formulation did not improve in vivo anticancer efficacy and accessibility of active CFZ to solid cancer tissues over CFZ-CD. Careful consideration of the current results and potential confounding factors may provide valuable insights into the future efforts to validate the potential of CFZ-based therapy for solid cancer and to develop effective CFZ delivery strategies that can be used to treat solid cancers.

  2. Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications.

    Science.gov (United States)

    Jin, Haibao; Huang, Wei; Zhu, Xinyuan; Zhou, Yongfeng; Yan, Deyue

    2012-09-21

    Self-assembly of amphiphilic hyperbranched polymers (HBPs) is a newly emerging research area and has attracted increasing attention due to the great advantages in biomedical applications. This tutorial review focuses on the self-assembly of biocompatible or biodegradable amphiphilic HBPs and their cytomimetic applications, and specialities or advantages therein owing to the hyperbranched structure have also been summarized. As shown here, various supramolecular structures including micelles, vesicles, tubes, fibers and films have been prepared through the primary self-assembly processes. The primary self-assemblies can be further assembled into more complex structures through hierachical self-assembly processes. Besides, the hyperbranched polymer vesicles have demonstrated great potential to be used as model membranes to mimic cellular behaviors, such as fusion, fission and cell aggregation. Other biomedical applications of HBPs as well as their self-assemblies are also briefly summarized.

  3. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  4. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  5. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  6. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  7. Inspired by nonenveloped viruses escaping from endo-lysosomes: a pH-sensitive polyurethane micelle for effective intracellular trafficking

    Science.gov (United States)

    Song, Nijia; Zhou, Lijuan; Li, Jiehua; Pan, Zhicheng; He, Xueling; Tan, Hong; Wan, Xinyuan; Li, Jianshu; Ran, Rong; Fu, Qiang

    2016-03-01

    A multifunctional drug delivery system (DDS) for cancer therapy still faces great challenges due to multiple physiological barriers encountered in vivo. To increase the efficacy of current cancer treatment a new anticancer DDS mimicking the response of nonenveloped viruses, triggered by acidic pH to escape endo-lysosomes, is developed. Such a smart DDS is self-assembled from biodegradable pH-sensitive polyurethane containing hydrazone bonds in the backbone, named pHPM. The pHPM exhibits excellent micellization characteristics and high loading capacity for hydrophobic chemotherapeutic drugs. The responses of the pHPM in acidic media, undergoing charge conversion and hydrophobic core exposure, resulting from the detachment of the hydrophilic polyethylene glycol (PEG) shell, are similar to the behavior of a nonenveloped virus when trapped in acidic endo-lysosomes. Moreover, the degradation mechanism was verified by gel permeation chromatography (GPC). The endo-lysosomal membrane rupture induced by these transformed micelles is clearly observed by transmission electron microscopy. Consequently, excellent antitumor activity is confirmed both in vitro and in vivo. The results verify that the pHPM could be a promising new drug delivery tool for the treatment of cancer and other diseases.A multifunctional drug delivery system (DDS) for cancer therapy still faces great challenges due to multiple physiological barriers encountered in vivo. To increase the efficacy of current cancer treatment a new anticancer DDS mimicking the response of nonenveloped viruses, triggered by acidic pH to escape endo-lysosomes, is developed. Such a smart DDS is self-assembled from biodegradable pH-sensitive polyurethane containing hydrazone bonds in the backbone, named pHPM. The pHPM exhibits excellent micellization characteristics and high loading capacity for hydrophobic chemotherapeutic drugs. The responses of the pHPM in acidic media, undergoing charge conversion and hydrophobic core

  8. Biodegradation of lignin by fungi, bacteria and laccases.

    Science.gov (United States)

    Asina, Fnu; Brzonova, Ivana; Voeller, Keith; Kozliak, Evguenii; Kubátová, Alena; Yao, Bin; Ji, Yun

    2016-11-01

    Indulin AT biodegradation by basidiomycetous fungi, actinobacteria and commercial laccases was evaluated using a suite of chemical analysis methods. The extent of microbial degradation was confirmed by novel thermal carbon analysis (TCA), as the treatments altered the carbon desorption and pyrolysis temperature profiles in supernatants. Laccase treatments caused only minor changes, though with increases occurring in the 850°C and char precursor fractions. After fungal treatments, lignin showed a similar change in the TCA profile, along with a gradual decrease of the total carbon, signifying lignin mineralization (combined with polymerization). By contrast, bacteria produced phenolic monomers without their further catabolism. After 54days of cultivation, a 20wt% weight loss was observed only for fungi, Coriolus versicolor, corroborating the near-80% carbon mass balance closure obtained by TCA. Compositional changes in lignin as a result of biodegradation were confirmed by thermal desorption (TD)-pyrolysis-GC-MS validating the carbon fractionation obtained by TCA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Enhancing blood compatibility of biodegradable polymers by introducing sulfobetaine.

    Science.gov (United States)

    Cao, Jun; Chen, Yuan-Wei; Wang, Xin; Luo, Xiang-Lin

    2011-06-15

    Novel biodegradable polycaprolactone containing N,N'-bis (2-hydroxyethyl) methylamine ammonium propane sulfonate (PCL-APS) was synthesized by ring-opening polymerization. The resulting polymers were characterized by nuclear magnetic resonance spectrum (NMR), Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatograph (GPC), differential scanning calorimetry (DSC), and water contact angle (WCA). These measurements showed that the APS unit was introduced into polymers. The hydrolysis of PCL-APS was evaluated by soaking the polymer membranes in a pH = 3.20 acid solution. The rate of weight loss was increased with the content of APS increasing in polymer. The compatibility of polymers were evaluated by platelet adhesion, hemolytic test, and activated partial thromboplastic time (APTT) and prothrombin time (PT) experiments. Results showed that adhered platelets deceased after introducing sulfobetaine as compared to the control PCL, little hemolysis took place on PCL-APS, and APTT of PCL-APS polymers was prolonged than that of control PCL. Therefore, polycaprolactone containing sulfobetaine is a promising biodegradable polymer with good blood compatibility. Copyright © 2011 Wiley Periodicals, Inc.

  10. Imaging the intracellular degradation of biodegradable polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Barthel

    2014-10-01

    Full Text Available In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid (PLLA was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs. The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome, we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy.

  11. Extraction of DNA by the reverse micelle; Gyaku miseru ni yoru DNA no chushutsu

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro [Kyushu University, Fukuoka (Japan). Graduate School; Ono, Tsutomu; Horiuchi, Akihiko; Furusaki, Shintaro

    1999-03-05

    Using the reverse micelle which consisted of the surfactant of the cations, it succeeded in DNA extraction of the salmon spermatozoon. The transfer of DNA formed in the isooctane from water phase to the reverse micelle is greatly dependent on type and ionic strength of the surfactant. By the surfactant of quaternary ammonium salt type with two long-chain alkyl units, the DNA which was charged anionic was efficiently extracted in the reverse micelle. (translated by NEDO)

  12. Hydrogen evolution and consumption in AOT–isooctane reverse micelles by Desulfovibrio gigas hydrogenase

    OpenAIRE

    Moura, José J. G.; Andrade, Susana L. A.

    2002-01-01

    The enzyme hydrogenase isolated from the sulphate reducing anaerobic bacterium Desulfovibrio gigas was encapsulated in reverse micelles of AOT–water–isooctane. The enzyme ability to consume molecular hydrogen was studied as a function of the micelle size (given by Wo = [H2O]/[organic solvent]). A peak of catalytic activity was obtained for Wo = 18, a micelle size theoretically fitting the heterodimeric hydrogenase molecule. At this Wo value, the recorded catalytic activity was slightly ...

  13. Living olefin polymerization processes

    Science.gov (United States)

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  14. Living olefin polymerization processes

    Science.gov (United States)

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  15. Static structure factor of polymerlike micelles: Overall dimension, flexibility, and local properties of lecithin reverse micelles in deuterated isooctane

    DEFF Research Database (Denmark)

    Jerke, G.; Pedersen, J.S.; Egelhaaf, S.U.

    1997-01-01

    We report a systematic investigation of the static structure factor S(q,c) of polymerlike reverse micelles formed by soybean lecithin and trace amounts of water in deuterated isooctane using small-angle neutron scattering and static light scattering. The experimental data for different concentrat......We report a systematic investigation of the static structure factor S(q,c) of polymerlike reverse micelles formed by soybean lecithin and trace amounts of water in deuterated isooctane using small-angle neutron scattering and static light scattering. The experimental data for different...... transformation and square-root deconvolution techniques. We demonstrate that we can determine structural properties such as the micellar cross-section profile and flexibility as well as quantitatively incorporate the influence of micellar growth and excluded-volume effects on S(q,c)....

  16. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng

    2012-06-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC) as a structure directing agent. The mesopores were generated by adding micelle swelling agent, 1,3,5-trimethyl benzene, during the synthesis and removing it afterward, which was demonstrated to greatly increase the HOC removal efficiency. In this material, TPODAC surfactant is directly anchored on the pore surface of mesoporous silica via SiOSi covalent bond after the synthesis due to its reactive Si(OCH 3) 3 head group, and thus makes the synthesized materials can be easily regenerated for reuse. The obtained materials show great potential in water treatment as pollutants sorbents. © 2011 Elsevier Inc. All rights reserved.

  17. Developments of Chiral Metallocenes as Polymerization Catalysts

    Directory of Open Access Journals (Sweden)

    Takeshi Shiono

    2005-07-01

    Full Text Available This review article describes developments in chiral metallocenes as polymerization catalysts focusing on C2 symmetric ansa-zirconocene complexes. Selective synthesis of rac-isomers of ansa-zirconocenes are surveyed. Isospecific polymerizations of propylene catalyzed by chiral zirconocenes are summarized. Advanced series of polymerizations by chiral metallocenes such as asymmetric polymerization and polymerization of polar monomers are also introduced.

  18. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys.

    Science.gov (United States)

    Bowen, Patrick K; Shearier, Emily R; Zhao, Shan; Guillory, Roger J; Zhao, Feng; Goldman, Jeremy; Drelich, Jaroslaw W

    2016-05-01

    Metallic stents are used to promote revascularization and maintain patency of plaqued or damaged arteries following balloon angioplasty. To mitigate the long-term side effects associated with corrosion-resistant stents (i.e., chronic inflammation and late stage thrombosis), a new generation of so-called "bioabsorbable" stents is currently being developed. The bioabsorbable coronary stents will corrode and be absorbed by the artery after completing their task as vascular scaffolding. Research spanning the last two decades has focused on biodegradable polymeric, iron-based, and magnesium-based stent materials. The inherent mechanical and surface properties of metals make them more attractive stent material candidates than their polymeric counterparts. A third class of metallic bioabsorbable materials that are based on zinc has been introduced in the last few years. This new zinc-based class of materials demonstrates the potential for an absorbable metallic stent with the mechanical and biodegradation characteristics required for optimal stent performance. This review compares bioabsorbable materials and summarizes progress towards bioabsorbable stents. It emphasizes the current understanding of physiological and biological benefits of zinc and its biocompatibility. Finally, the review provides an outlook on challenges in designing zinc-based stents of optimal mechanical properties and biodegradation rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structure formation in binary mixtures of surfactants: vesicle opening-up to bicelles and octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    Micelle formation in binary mixtures of surfactants is studied using a coarse-grained molecular simulation. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle, the bicelle, is typically formed. It is found that cup-shaped vesicles and bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and critical micelle concentration. The obtained octopus shape of micelles agree with those observed in the cryo-TEM images reported in [S. Jain and F. S. Bates, Macromol. 37, 1511 (2004).]. Two types of connection structures between the worm-like micelles and the bicelles are revealed.

  20. Structural changes of a sodium dodecyl sulfate (SDS) micelle induced by alcohol molecules.

    Science.gov (United States)

    Méndez-Bermúdez, Jose G; Dominguez, Hector

    2016-01-01

    Coarse-grained dynamical simulations have been performed to investigate the behavior of a surfactant micelle in the presence of six different alcohols: hexanol, octanol, decanol, dodecanol, tetradecanol, and hexadecanol. The self-assembly of sodium dodecyl sulfate (SDS) is modified by the alcohol molecules into cylindrical and bilayer micelles as a function of the alcohol/SDS mass ratio. Therefore, in order to understand, from a molecular point of view, how SDS and alcohol molecules self-organize to form the new micelles, different studies were carried out. Analysis of micelle structures, density profiles, and parameters of order were conducted to characterize the shape and size of those micelles. The density profiles revealed that the alcohol molecules were located at the water-micelle interface next to the SDS molecules at low alcohol/SDS mass ratio. At high alcohol/SDS mass ratios, alcohol molecules moved to the middle of the micelle by increasing their size and by producing a structural change. Moreover, micelle structures and sizes were influenced not only by the alcohol/SDS mass ratio but also by the order of the SDS and alcohol tails. Finally, the size of the micelles and enthalpy calculations were used as order parameters to determine a structural phase diagram of alcohol/SDS mixtures in water. Graphical Abstract Structural transition of SDS/alcohol mixtures.

  1. Kinetic analysis of hydrogen production using anaerobic bacteria in reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohua; Yang, Haijun; Yuan, Zhuliang; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2010-04-15

    The micellar formation and entrapment of bacteria cell in reverse micelles were investigated by ultraviolet spectrum (UV), fluorescence spectrum, and scanning electron microscope (SEM). The hydrogen production in reverse micelles was confirmed. The Gompertz equation was employed to evaluate the hydrogen-producing behavior in reverse micellar systems. Different systems including dioctyl sulfosuccinate sodium salt (AOT)-isooctane, sodium dodecyl sulfate (SDS)-benzene and SDS-carbon tetrachloride (CCl{sub 4}) reverse micelles were analysized. The results revealed that the maximum rate of hydrogen production (R{sub m}) was also suitable to formulate the relationship between hydrogen-producing rate and hydrogen productivity in reverse micelles. (author)

  2. Near infrared imaging-guided photodynamic therapy under an extremely low energy of light by galactose targeted amphiphilic polypeptide micelle encapsulating BODIPY-Br2.

    Science.gov (United States)

    Liu, Le; Ruan, Zheng; Li, Tuanwei; Yuan, Pan; Yan, Lifeng

    2016-10-18

    Near infrared (NIR) imaging-guided photodynamic therapy (PDT) is attractive, especially the utilization of one dye as both a photosensitizer and fluorescent probe, and the as-synthesized BODIPY-Br 2 molecule is a candidate. Here, a galactose targeted amphiphilic copolymer of a polypeptide was synthesized and its micelles work as nanocarriers for BODIPY for targeting the NIR imaging-guided PDT of hepatoma cancer cells. At the same time, BODIPY could light up the cytoplasm for real-time imaging and kill cancer cells when the light was switched on. In vitro tests performed on both HepG2 and HeLa cells confirmed that the as-prepared PMAGP-POEGMA-PLys-B micelles showed efficient cell suppression of the cells with galactose receptors in the presence of light under an extremely low energy density (6.5 J cm -2 ). This protocol highlights the potential of polypeptides as biodegradable carriers for NIR image-guided and confined targeting photodynamic therapy.

  3. Biodegradable Ferulic Acid-containing Poly(anhydride-ester): Degradation Products with Controlled Release and Sustained Antioxidant Activity

    OpenAIRE

    Ouimet, Michelle A.; Griffin, Jeremy; Carbone-Howell, Ashley L.; Wu, Wen-Hsuan; Stebbins, Nicholas D.; Di, Rong; Uhrich, Kathryn E.

    2013-01-01

    Ferulic acid (FA) is an antioxidant and photoprotective agent used in biomedical and cosmetic formulations to prevent skin cancer and senescence. Although FA exhibits numerous health benefits, physicochemical instability leading to decomposition hinders its efficacy. To minimize inherent decomposition, a FA-containing biodegradable polymer was prepared via solution polymerization to chemically incorporate FA into a poly(anhydride-ester). The polymer was characterized using nuclear magnetic re...

  4. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Polymeric Biomaterial and Lipid Based Nanoparticles for Oral Drug Delivery.

    Science.gov (United States)

    Dilnawaz, Fahima

    2017-01-01

    Oral drug delivery is widespread owing to its non-invasive nature which complements high patient compliance. However, the drug administration via oral route is quite challenging due to the presence of the biochemical barriers which hinders the uptake as well as access to blood stream. Apart from that, stability, poor solubility and bioavailability of administered drug via the gastrointestinal (GI) tract are also exigent. Till now various oral formulations were developed which releases the drug in a timely manner but lacks appropriate therapeutic concentration. Recently nanoparticles based drug delivery system has emerged as prominent strategy for optimizing the oral drug delivery and maximizing the treatment efficiency. Besides, different strategic polymeric nanoparticles are engineered for interaction both at extracellular and intracellular levels with gastrointestinal mucosa. The review article focuses on the polymeric and lipid based various nanocarriers that have been widely studied for the enhanced oral drug delivery of different therapeutic molecules and addresses recent progress of biocompatible and biodegradable polymeric nanoparticles approach for its improvement. The progress of numerous oral nanoparticulate drug delivery vehicles will be immensely helpful to improve therapeutic efficacy with reduced adverse side effects. Unlike other forms of administration, it will have better patient compliance and soothing effect. The oral drug delivery will certainly play a pivotal role soon in expanding the clinical repertoire and applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. New hydrophilic polyesters and related polymers as bioerodible polymeric matrices.

    Science.gov (United States)

    Chiellini, E; Solaro, R; Bemporad, L; D'Antone, S; Giannasi, D; Leonardi, G

    1995-01-01

    A survey is reported on our activity performed in the last few years on the preparation of new synthetic and semisynthetic polymeric materials endowed with bioerodible-biodegradable characteristics and designed for applications in the practice of controlled release of active principles of pharmaceutical and agrochemical significance. The presentation of the results will be arranged into the following sections: (1) hydroxyl containing polyesters, that comprise polymerization products based on racemic and optically active glyceric acid, or attained by polyaddition reactions among cyclic anhydrides, including also carbon dioxide, with monoglycidyl ethers of reversibly protected polyols. In this class are also presented the related polyhydroxylated systems obtained by selective grafting functional epoxides on cyclodextrins. (2) Bioerodible carboxyl containing polymeric systems as derived from the alternating copolymerization of maleic anhydride with alkyl vinyl ethers followed by partial esterification of maleic anhydride groups. (3) Linear and cross-linked functional polymers of synthetic and semisynthetic origin with hydrogel forming capability. Typical examples of their applications in the release of drugs and phytodrugs are also presented.

  7. Micelle-like nanoassemblies based on polymer-drug conjugates as an emerging platform for drug delivery.

    Science.gov (United States)

    Liu, Zhihong; Wang, Yutao; Zhang, Na

    2012-07-01

    During the past decades, polymer-drug conjugates are one of the hottest topics in novel drug development fields. Amphiphilic polymer-drug conjugates in aqueous solution could form micelles or micelle-like nanoassemblies. Compared with polymer-drug conjugates and the micelles into which drugs are physically entrapped, micelles or micelle-like nanoassemblies based on polymer-drug conjugates bring several additional advantages, including increased drug-loading capacity, enhanced intracellular uptake, reduced systemic toxicity, and improved therapeutic efficacy. This review focuses on recent progress achieved in the research field of micelles or micelle-like nanoassemblies based on polymer-drug conjugates. Firstly, properties of polymers, drugs, and linkers which could be used to build polymer-drug conjugate micelles or micelle-like nanoassemblies are summarized. Then, the characterization methods are described. Finally, the drug-targeting mechanisms are discussed. Micelles or micelle-like nanoassemblies based on polymer-drug conjugates as an emerging platform have the potential to achieve medical treatments with enhanced therapeutic effect. The application of micelles or micelle-like nanoassemblies based on polymer-drug conjugates may give new life to old active compounds abandoned due to their low solubility problems. For clinical application, there is a need to further optimize the properties of the polymer, drug, and linker.

  8. Blendas PHB/copoliésteres biodegradáveis : biodegradação em solo Biodegradable PHB/copolyester blends : biodegradation in soil

    Directory of Open Access Journals (Sweden)

    Suzan A. Casarin

    2013-01-01

    Full Text Available Este trabalho apresenta os resultados do comportamento de blendas do polímero biodegradável PHB poli(hidroxibutirato com os copoliésteres também biodegradáveis EastarBio® e Ecoflex®, na composição de 75% de PHB e 25% dos copoliésteres, em contato com solo composto simulado. Foi também avaliada a influência da adição de pó de serra ou farinha de madeira, na proporção de 70% da blenda e 30% de pó de serra (p.d.s.. A biodegradação foi avaliada para amostras após 30, 60 e 90 dias em contato com solo, através de análises gravimétricas, morfológicas e mecânicas. A preparação inicial dos grânulos dos compostos poliméricos foi feita por extrusão, utilizando uma extrusora dupla-rosca e a moldagem dos corpos de prova foi realizada através da moldagem por injeção. Os materiais estudados biodegradam nas condições testadas. A blenda PHB/EastarBio® (75/25 + 30% p.d.s. apresentou maior redução de massa, 29% após 90 dias. Notou-se que a biodegradação se inicia pela superfície do material e que 90 dias são insuficientes para observar alterações internas.This paper reports on blends made with the biodegradable polymers poly(hydroxybutyrate (PHB and Eastar Bio® or Ecoflex® copolyesters, in contact with simulated compound soil. The blends had 75% of PHB and 25% of copolyesters. We also analyzed the influence from adding 30% of powder-wood or wood flour (WPC to 70% of the blend. Biodegradation was analyzed for samples after 30, 60 and 90 days in contact with soil, through thermogravimetric, morphological and mechanical analyses. The initial preparation of the granules of polymeric compounds was made by extrusion, using a twin-screw extruder and the molding of the specimens was performed by injection molding. The analysis indicated material biodegradation under the conditions tested. The PHB/Eastar Bio® blend (75/25 + 30% WPC exhibited the highest degradation with 29% of mass loss at the end of 90 days. Biodegradation

  9. Panorama setorial e perspectivas na área de polímeros biodegradáveis Biodegradable polymers: sectorial overview and prospects

    Directory of Open Access Journals (Sweden)

    Daniele M. B. Falcone

    2007-03-01

    Full Text Available Neste trabalho, envolvendo polímeros biodegradáveis, buscou-se obter indicadores por meio da análise de patentes para avaliar as perspectivas e oportunidades de atuação da área de polímeros. Utilizou-se para tal a base de dados Espacenet e o software Vantage Point. São matéria desse estudo os polímeros: poli(hidroxibutirato - PHB, poli(hidroxibutirato-co-hidroxivalerato - PHBV, poli(ácido lático - PLA, poli(épsilon-caprolactona - PCL e os polihidroxialcanoatos (PHAs, tratados mais detalhadamente por serem a classe geral dos poliésteres microbiais. Verificou-se que a área de polímeros biodegradáveis, apesar de recente e em desenvolvimento, apresenta grande potencial mediante o panorama atual de consumo dos materiais poliméricos. Observou-se, de uma forma geral, uma grande diversidade de temas e oportunidades de estudo em compostos, blendas, biodegradação e aplicações.This work on biodegradable polymers involved an analysis of patents to identify indicators for evaluating the prospects and opportunities of action in the field of polymers. We used the Spacenet database and Vantage Point software. The study encompassed the following polymers: polyhydroxybutyrate - PHB, polyhydroxybutyrate-co-hydroxyvalerate - PHBV, polylactic acid - PLA, poly (epsilon-caprolactone - PCL and the polyhydroxyalkanoates (PHAs, dealt in greater detail because they represent the general class of microbial polyesters. We found that, although the field of biodegradable polymers is new and still under development, it holds great potential in view of present widespread use of polymeric materials. Overall we found a great diversity of themes and opportunities for studies on compounds, blends, biodegradation and applications.

  10. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles.

    Science.gov (United States)

    Sahu, Rajnish; Verma, Richa; Dixit, Saurabh; Igietseme, Joseph U; Black, Carolyn M; Duncan, Skyla; Singh, Shree R; Dennis, Vida A

    2018-03-01

    There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. Areas covered: This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. Expert commentary: The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.

  11. Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer.

    Science.gov (United States)

    Xia, Bing; Wang, Bin; Shi, Jisen; Zhang, Yu; Zhang, Qi; Chen, Zhenyu; Li, Jiachen

    2017-03-15

    To develop photothermal and biodegradable nanocarriers for combined chemo-photothermal therapy of cancer, polyaniline/porous silicon hybrid nanocomposites had been successfully fabricated via surface initiated polymerization of aniline onto porous silicon nanoparticles in our experiments. As-prepared polyaniline/porous silicon nanocomposites could be well dispersed in aqueous solution without any extra hydrophilic surface coatings, and showed a robust photothermal effect under near-infrared (NIR) laser irradiation. Especially, after an intravenous injection into mice, these biodegradable porous silicon-based nanocomposites as non-toxic agents could be completely cleared in body. Moreover, these polyaniline/porous silicon nanocomposites as drug carriers also exhibited an efficient loading and dual pH/NIR light-triggered release of doxorubicin hydrochloride (DOX, a model anticancer drug). Most importantly, assisted with NIR laser irradiation, polyaniline/PSiNPs nanocomposites with loading DOX showed a remarkable synergistic anticancer effect combining chemotherapy with photothermal therapy, whether in vitro or in vivo. Therefore, based on biodegradable PSiNPs-based nanocomposites, this combination approach of chemo-photothermal therapy would have enormous potential on clinical cancer treatments in the future. Considering the non-biodegradable nature and potential long-term toxicity concerns of photothermal nanoagents, it is of great interest and importance to develop biodegradable and photothermal nanoparticles with an excellent biocompatibility for their future clinical applications. In our experiments, we fabricated porous silicon-based hybrid nanocomposites via surface initiated polymerization of aniline, which showed an excellent photothermal effect, aqueous dispersibility, biodegradability and biocompatibility. Furthermore, after an efficient loading of DOX molecules, polyaniline/porous silicon nanocomposites exhibited the remarkable synergistic anticancer

  12. Biodegradable polymers as encapsulation materials for cosmetics and personal care markets.

    Science.gov (United States)

    Ammala, Anne

    2013-04-01

    The topical and transdermal delivery of active cosmetic ingredients requires safe and non-toxic means of reaching the target sites without causing any irritation. Preservation of the active ingredients is also essential during formulation, storage and application of the final product. As many biologically active substances are not stable and sensitive to temperature, pH, light and oxidation, they require encapsulation to protect against unwanted degradation and also to target specific and controlled release of the active substance. The use of biodegradable polymers as encapsulation materials offers several advantages over other carrier materials. Encapsulation of active ingredients using biodegradable polymeric carriers can facilitate increased efficacy and bioavailability and they are also removed from the body via normal metabolic pathways. This article reviews current research on biodegradable polymers as carrier or encapsulation materials for cosmetic and personal care applications. Some of the challenges and limitations are also discussed. Examples of biodegradable polymers reviewed include polysaccharides, poly α-esters, polyalkylcyanoacrylates and polyamidoamine dendrimers. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Nanocomposites of Polyacrylic Acid Nanogels and Biodegradable Polyhydroxybutyrate for Bone Regeneration and Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mikael Larsson

    2014-01-01

    Full Text Available Biodegradable cell scaffolds and local drug delivery to stimulate cell response are currently receiving much scientific attention. Here we present a nanocomposite that combines biodegradation with controlled release of lithium, which is known to enhance bone growth. Nanogels of lithium neutralized polyacrylic acid were synthesized by microemulsion-templated polymerization and were incorporated into a biodegradable polyhydroxybutyrate (PHB matrix. Nanogel size was characterized using dynamic light scattering, and the nanocomposites were characterized with regard to structure using scanning electron microscopy, mechanical properties using tensile testing, permeability using tritiated water, and lithium release in PBS using a lithium specific electrode. The nanogels were well dispersed in the composites and the mechanical properties were good, with a decrease in elastic modulus being compensated by increased tolerance to strain in the wet state. Approximately half of the lithium was released over about three hours, with the remaining fraction being trapped in the PHB for subsequent slow release during biodegradation. The prepared nanocomposites seem promising for use as dual functional scaffolds for bone regeneration. Here lithium ions were chosen as model drug, but the nanogels could potentially act as carriers for larger and more complex drugs, possibly while still carrying lithium.

  14. Augmentation of anterior vertebral body screw fixation by an injectable, biodegradable calcium phosphate bone substitute.

    Science.gov (United States)

    Bai, B; Kummer, F J; Spivak, J

    2001-12-15

    A biomechanical study to evaluate the effects of a biodegradable calcium phosphate (Ca-P) bone substitute on the fixation strength and bending rigidity of vertebral body screws. To determine if an injectable, biodegradable Ca-P bone substitute provides significant augmentation of anterior vertebral screw fixation in the osteoporotic spine. Polymethylmethacrylate (PMMA) augmented screws have been used clinically; however, there is concern about thermal damage to the neural elements during polymerization of the PMMA as well as its negative effects on bone remodeling. Injectable, biodegradable Ca-P bone substitutes have shown enhanced fixation of pedicle screws. Sixteen fresh cadaveric thoracolumbar vertebrae were randomly divided into two groups: control (no augmentation) (n = 8) and Ca-P bone substitute augmentation (n = 8) groups. Bone-screw fixation rigidity in bending was determined initially and after 10(5) cycles, followed by pullout testing of the screw to failure to determine pullout strength and stiffness. The bone-screw bending rigidity for the Ca-P bone substitute group was significantly greater than the control group, initially (58%) and after cyclic loading (125%). The pullout strength for Ca-P bone substitute group (1848 +/- 166 N) was significantly greater than the control group (665 +/- 92 N) (P pullout for the Ca-P bone substitute groups (399 +/- 69 N/mm) was significantly higher than the control group (210 +/- 51 N/mm) (P screw fixation with a biodegradable Ca-P bone substitute is a potential alternative to the use of PMMA cement.

  15. "Bottom-Up" Construction of Hyperbranched Poly(prodrug-co-photosensitizer) Amphiphiles Unimolecular Micelles for Chemo-Photodynamic Dual Therapy.

    Science.gov (United States)

    Sun, Pei; Wang, Nan; Jin, Xin; Zhu, Xinyuan

    2017-10-25

    Despite the great advantages of chemo-photodynamic combination therapy, tedious synthesis steps and laborious purification procedures make the fabrication of chemo-photodynamic combined therapeutic platforms rather difficult. In this study, we develop a facile "bottom-up" strategy to fabricate hyperbranched poly(prodrug-co-photosensitizer) amphiphiles, h-P(CPTMA-co-BYMAI)-b-POEGMA (hPCBE), for chemo-photodynamic dual therapy. The easily prepared hPCBE possess a bottom-up-constructed hydrophobic core h-P(CPTMA-co-BYMAI) (hPCB) direct copolymerized from reduction-responsive CPT prodrug monomer (CPTMA) and boron dipyrromethene-based photosensitizer monomer (BYMAI), as well as a biocompatible shell polymerized from hydrophilic monomers. Because of the covalently interconnected core-shell structure, hPCBE exists as unimolecular micelles in aqueous solution and exhibits excellent structural stability under dilution condition. The hPCBE micelles can be effectively internalized by MCF-7 cells and release CPT triggered by the reductive milieu. In addition, photosensitizer moieties embedded in the hPCB core could generate singlet oxygen ( 1 O 2 ) effectively under irradiation, endowing hPCBE with the boosting of chemotherapeutic efficacy. As compared to the single chemotherapy of hyperbranched polyprodrug amphiphiles h-PCPTMA-b-POEGMA (hPCE) and photodynamic therapy of hyperbranched polyphotosensitizer amphiphiles h-PBYMAI-b-POEGMA (hPBE), hPCBE shows higher in vitro cytotoxicity. We expect that our approach will further boost research on the design of multifunctional drug delivery systems via the facile "bottom-up" strategy.

  16. Influence of organophilic ammonium-free nano clay incorporation on the mechanical properties and biodegradability of the Ecoflex; Influencia da adicao de nanoargila organofilica livre de sal de amonio nas propriedades mecanicas e na biodegradacao do Ecoflex

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Reinaldo Y.; Barbosa, Ronilson V. [Empresa IOTO International - Divisao Masterbatches, Campo Magro, PR (Brazil)], e-mail: juliana.kloss@gmail.com; Richart, Fabio S.; Kloss, Juliana R. [Universidade Federal do Parana, Departamento de Quimica - UFPR, Curitiba, PR (Brazil)

    2011-07-01

    The disposable of polymeric materials, petroleum derived, represents a growing global environmental problem, causing environmental pollution to assume alarming proportions. In this context, the interest in the use and production of biodegradable materials that have character and policy has raged in various sectors of society. Besides biodegradation, is also significant investment in research and development in the nanotechnology area. Given these factors, the objective of this work was the incorporation of organophilic nanoclay ammonium-free salt (Novaclay) in the Ecoflex, mechanical properties evaluation and influences this material of the biodegradation, according to ASTM G 160. The products were characterized before and after biodegradation by analysis: visual, weight loss, differential scanning calorimetry, mechanical testing and scanning electron microscopy. The results showed that the pure Ecoflex and Ecoflex/Novaclay nanocomposite were partially biodegraded in the method used and showed morphological and mechanical properties changes. (author)

  17. Polymerization with freezing

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    Irreversible aggregation processes involving reactive and frozen clusters are investigated using the rate equation approach. In aggregation events, two clusters join irreversibly to form a larger cluster; additionally, reactive clusters may spontaneously freeze. Frozen clusters do not participate in merger events. Generally, freezing controls the nature of the aggregation process, as demonstrated by the final distribution of frozen clusters. The cluster mass distribution has a power-law tail, F k ∼k -γ , when the freezing process is sufficiently slow. Different exponents, γ = 1 and 3, are found for the constant and the product aggregation rates, respectively. For the latter case, the standard polymerization model, either no gels, or a single gel, or even multiple gels, may be produced

  18. Collaborative Research: Polymeric Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Temple Univ., Philadelphia, PA (United States). College of Engineering

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamental understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.

  19. Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate.

    Science.gov (United States)

    Kataoka, Ryota; Takagi, Kazuhiro

    2013-04-01

    Endosulfan and endosulfan sulfate are persistent organic pollutants that cause serious environmental problems. Although these compounds are already prohibited in many countries, residues can be detected in soils with a history of endosulfan application. Endosulfan is transformed in the environment into endosulfan sulfate, which is a toxic and persistent metabolite. However, some microorganisms can degrade endosulfan without producing endosulfan sulfate, and some can degrade endosulfan sulfate. Therefore, biodegradation has the potential to clean up soil contaminated with endosulfan. In this review, we provide an overview of aerobic endosulfan degradation by bacteria and fungi, and a summary of recent advances and prospects in this research field.

  20. Graft copolymerization of ethyl acrylate onto tamarind kernel powder, and evaluation of its biodegradability.

    Science.gov (United States)

    del Real, Alicia; Wallander, Daniela; Maciel, Alfredo; Cedillo, Gerardo; Loza, Herminia

    2015-03-06

    In the present study, tamarind kernel powder and ethyl acrylate were reacted by free radical polymerization to synthesize a grafted copolymer soluble in water. The grafted copolymer was analyzed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR); FTIR showed a shift of the vibration of R-CO-OR' from 1258 cm(-1) to 1253 cm(-1). This shift appeared because of the grafting copolymerization. Films were prepared to study the mechanical properties and the biodegradation of this material. The mechanical properties of the grafted copolymer were found to lie between those of the parent polymers, suitable for disposable products. The new grafted copolymer manifested a steady process of biodegradation under incubation with the bacterial strain Alicycliphilus sp. BQ1; this was proved by scanning electron microscopy (SEM) and near infrared spectroscopy (NIR). Copyright © 2014 Elsevier Ltd. All rights reserved.