WorldWideScience

Sample records for biodegradable polymer chitosan

  1. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  2. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  3. Chitosan-Based Polymer Blends: Current Status and applications

    International Nuclear Information System (INIS)

    Hefian, E.A.E.; Nasef, M.M.

    2014-01-01

    This paper reviews the latest developments in chitosan-based blends and their potential applications in various fields. Various blends together with other derivatives, such as composites and graft copolymers, have been developed to overcome chitosans disadvantages, including poor mechanical properties and to improve its functionality towards specific applications. The progress made in blending chitosan with synthetic and natural polymers is presented. The versatility and unique characteristics, such as hydrophilicity, film-forming ability, biodegradability, biocompatibility, antibacterial activity and non-toxicity of chitosan has contributed to the successful development of various blends for medical, pharmaceutical, agricultural and environmental applications. (author)

  4. Microwave-enhanced synthesis of biodegradable multifunctional chitosan hydrogels for wastewater treatment

    Directory of Open Access Journals (Sweden)

    M. Piatkowski

    2017-10-01

    Full Text Available Chitosan, a derivative of chitin, is a biodegradable polymer known of its favorable properties, applicable in medicine and industry. Commonly obtained chitosan hydrogels are of various swelling capacity, and may bind only anions losing their susceptibility to biodegradation. Hydrogels are mostly obtained using toxic crosslinkers, which pollute environment due to waste generation during their synthesis. In the present article a novel, waste-free method for obtaining chitosan hydrogels under microwave irradiation, is described. Their chemical and morphological structure, swelling properties, sorption capability of a model dye and cadmium ions are described, and kinetic studies, were carried out. Biodegradability of the obtained hydrogels was investigated with the Sturm Test method. As a result, multifunctional chitosan hydrogels with both negative and positive surface charges and increased ability of anions and cations binding, were obtained. Materials were fully biodegradable, capable to absorb high amounts of water, as well as to remove various water contaminants.

  5. Chitosan-gold-Lithium nanocomposites as solid polymer electrolyte.

    Science.gov (United States)

    Begum, S N Suraiya; Pandian, Ramanathaswamy; Aswal, Vinod K; Ramasamy, Radha Perumal

    2014-08-01

    Lithium micro batteries are emerging field of research. For environmental safety biodegradable films are preferred. Recently biodegradable polymers have gained wide application in the field of solid polymer electrolytes. To make biodegradable polymers films plasticizers are usually used. However, use of plasticizers has disadvantages such as inhomogenities in phases and mechanical instability that will affect the performance of Lithium micro batteries. We have in this research used gold nanoparticles that are environmentally friendly, instead of plasticizers. Gold nanoparticles were directly template upon chitosan membranes by reduction process so as to enhance the interactions of Lithium with the polymer. In this article, for the first time the characteristics of Chitosan-gold-Lithium nanocomposite films are investigated. The films were prepared using simple solution casting technique. We have used various characterization tools such as Small Angle Neutron Scattering (SANS), XRD, FTIR, Raman, FESEM, and AFM, Light scattering, Dielectric and electrical conductivity measurements. Our investigations show that incorporation of gold results in enhancement of conductivity in Lithium containing Chitosan films. Also it affects the dielectric characteristics of the films. We conclude through various characterization tools that the enhancement in the conductivity was due to the retardation of crystal growth of lithium salt in the presence of gold nanoparticles. A model is proposed regarding the formation of the new nanocomposite. The conductivity of these biodegradable films is comparable to those of the current inorganic Lithium micro batteries. This new chitosan-Au-Li nanocomposite has potential applications in the field of Lithium micro batteries.

  6. Synthesis of biodegradable plastic from tapioca with N-Isopropylacrylamid and chitosan using glycerol as plasticizer

    Science.gov (United States)

    Syaubari; Safwani, S.; Riza, M.

    2018-04-01

    One of natural polymers that can be used as raw material in the manufacture of biodegradable plastic is tapioca and chitosan. The addition of other compounds such as glycerol as plasticizer is to improve the characteristics of the plastic that already produced. N- Isopropylacrylamid (NIPAm) is an organic compound that can be synthesized into a polymer or polymer grafting which also biodegradable too. This research aims tostudy the synthesis of biodegradable plastics from tapioca with the addition of chitosan, NIPAm, poly(NIPAm) and analyze the characteristics of biodegradable plastics that already produced. This research was done in three stages, there are (1) polymerization NIPAm, (2) the grafting of chitosan-poly NIPAm and (3) the synthesis of biodegradable plastics from starch mixture with variation of addition chitosan, NIPAm, poly(NIPAm), chitosan-graft-poly(NIPAm) and also variations of glycerol as plasticizer. The results of this research is a thin sheet of plastic which is will get analyzed for the characteristics of functional groups, mechanical, morphological and its biodegradability. FTIR spectra showed the grafting process with the new group formation of CO single-bond at 850 cm-1. Plastic with the addition of NIPAm and 1 ml glycerol has the highest tensile strength value about 31.1 MPa. Plastic with poly(NIPAm) and 4 ml glycerol produces the highest elongation value about 153.72%. Plastic with Chitosan-graft-poly(NIPAm) with 1 ml glycerol has the longest biodegradation because of the small mass-loss for six weeks which is about 6.6%.

  7. Chitosan as a bioactive polymer: Processing, properties and applications.

    Science.gov (United States)

    Muxika, A; Etxabide, A; Uranga, J; Guerrero, P; de la Caba, K

    2017-12-01

    Chitin is one of the most abundant natural polysaccharides in the world and it is mainly used for the production of chitosan by a deacetylation process. Chitosan is a bioactive polymer with a wide variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. This review summarizes the most common chitosan processing methods and highlights some applications of chitosan in various industrial and biomedical fields. Finally, environmental concerns of chitosan-based films, considering the stages from raw materials extraction up to the end of life after disposal, are also discussed with the aim of finding more eco-friendly alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Silica in situ enhanced PVA/chitosan biodegradable films for food packages.

    Science.gov (United States)

    Yu, Zhen; Li, Baoqiang; Chu, Jiayu; Zhang, Peifeng

    2018-03-15

    Non-degradable plastic food packages threaten the security of environment. The cost-effective and biodegradable polymer films with good mechanical properties and low permeability are very important for food packages. Among of biodegradable polymers, PVA/chitosan (CS) biodegradable films have attracted considerable attention because of feasible film forming ability. However, PVA/CS biodegradable films suffered from poor mechanical properties. To improve mechanical properties of PVA/CS biodegradable films, we developed SiO 2 in situ to enhance PVA/CS biodegradable films via hydrolysis of sodium metasilicate in presence of PVA and chitosan solution. The tensile strength of PVA/CS biodegradable films was improved 45% when 0.6 wt.% SiO 2 was incorporated into the films. Weight loss of PVA/CS biodegradable films was 60% after 30 days in the soil. The permeability of oxygen and moisture of PVA/CS biodegradable films was reduced by 25.6% and 10.2%, respectively. SiO 2 in situ enhanced PVA/CS biodegradable films possessed not only excellent mechanical properties, but also barrier of oxygen and water for food packages to extend the perseveration time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nanocomposites Based on Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2018-05-01

    Full Text Available In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018 are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes. Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  10. CLASSIFICATION OF BIODEGRADABLE POLYMERS

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2015-01-01

    Full Text Available The executed investigations have made it possible to ascertain that a morphological structure of starch granules mainly determine technological peculiarities of starch isolation from raw material, its modification and its later use. Morphological structure of starch granules primarily depends on type of plant starch-containing raw material which has been used for its isolation. Class of raw material exerts a strong impact on the shape and size of the granules. Linear “light” amylose chains and “heavy” amylopectin branch chains form a starch granule ultrastructure. X-ray research has proved that starch granules are characterized by presence of interlacing amorphous and crystalline regions. In this case polymer orientation using stretching of the obtained end product influences on its physical and mechanical  indices which are increasing due to polymer orientation. For the purpose of packaging orientation of polymer films can solve such important problems as significant improvement of operational properties, creation of  thermosetting film materials, improvement of qualitative indices of the recycled film.Results of the conducted research have proved the fact that it is necessary to make changes in technology in order to increase biological degradability of the recycled packaging made from polymers and improve physical and mechanical indices. In this regard film production technology presupposes usage of such substances as stark and others which are characterized by rather large presence of branch chains of molecules and interlacing amorphous and crystalline regions. Such approach makes it possible to obtain after-use package which is strong and quickly degradable by micro-organisms.

  11. Electrospun biodegradable polymers loaded with bactericide agents

    Directory of Open Access Journals (Sweden)

    Ramaz Katsarava

    2016-03-01

    Full Text Available Development of materials with an antimicrobial activity is fundamental for different sectors, including medicine and health care, water and air treatment, and food packaging. Electrospinning is a versatile and economic technique that allows the incorporation of different natural, industrial, and clinical agents into a wide variety of polymers and blends in the form of micro/nanofibers. Furthermore, the technique is versatile since different constructs (e.g. those derived from single electrospinning, co-electrospinning, coaxial electrospinning, and miniemulsion electrospinning can be obtained to influence the ability to load agents with different characteristics and stability and to modify the release behaviour. Furthermore, antimicrobial agents can be loaded during the electrospinning process or by a subsequent coating process. In order to the mitigate burst release effect, it is possible to encapsulate the selected drug into inorganic nanotubes and nanoparticles, as well as in organic cyclodextrine polysaccharides. In the same way, processes that involve covalent linkage of bactericide agents during surface treatment of electrospun samples may also be considered. The present review is focused on more recent works concerning the electrospinning of antimicrobial polymers. These include chitosan and common biodegradable polymers with activity caused by the specific load of agents such as metal and metal oxide particles, quaternary ammonium compounds, hydantoin compounds, antibiotics, common organic bactericides, and bacteriophages.

  12. Thiolated polymers--thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates.

    Science.gov (United States)

    Kast, C E; Bernkop-Schnürch, A

    2001-09-01

    The aim of this study was to improve mucoadhesive properties of chitosan by the covalent attachment of thiol moieties to this cationic polymer. Mediated by a carbodiimide, thioglycolic acid (TGA) was covalently attached to chitosan. This was achieved by the formation of amide bonds between the primary amino groups of the polymer and the carboxylic acid group of TGA. Dependent on the pH-value and the weight ratio of polymer to TGA during the coupling reaction the resulting thiolated polymers, the so-called thiomers, displayed 6.58, 9.88, 27.44, and 38.23 micromole thiol groups per gram polymer. Tensile studies carried out with these chitosan-TGA conjugates on freshly excised porcine intestinal mucosa demonstrated a 6.3-, 8.6-, 8.9-, and 10.3-fold increase in the total work of adhesion (TWA) compared to the unmodified polymer, respectively. In contrast, the combination of chitosan and free unconjugated TGA showed almost no mucoadhesion. These data were in good correlation with further results obtained by another mucoadhesion test demonstrating a prolonged residence time of thiolated chitosan on porcine mucosa. The swelling behavior of all conjugates was thereby exactly in the same range as for an unmodified polymer pretreated in the same way. Furthermore, it could be shown that chitosan-TGA conjugates are still biodegradable by the glycosidase lysozyme. According to these results. chitosan-TGA conjugates represent a promising tool for the development of mucoadhesive drug delivery systems.

  13. Engineered biosynthesis of biodegradable polymers.

    Science.gov (United States)

    Jambunathan, Pooja; Zhang, Kechun

    2016-08-01

    Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.

  14. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  15. Control of colloidal CaCO3 suspension by using biodegradable polymers during fabrication

    Directory of Open Access Journals (Sweden)

    Nemany Abdelhamid Nemany Hanafy

    2015-03-01

    The aim of this work was to investigate the synthesis process of CaCO3 particles in different experimental conditions: calcium carbonate was produced in presence and in absence of water and with addition of appropriate polymers. In particular, chitosan (CHI and poly acrylic acid (PAA were chosen as biodegradable polymers whereas PSS and PAH were chosen as non-biodegradable polymers. Shape and diameter of particles were investigated by using transmission and scanning electron microscopy, elemental composition was inferred by energy dispersive X-ray analyses whereas their charges were explored by using zeta potential.

  16. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; MA, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  17. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  18. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  19. Biodegradable Shape Memory Polymers in Medicine.

    Science.gov (United States)

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-11-01

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  1. Physical Properties and Antibacterial Efficacy of Biodegradable Chitosan Films

    OpenAIRE

    中島, 照夫

    2009-01-01

    [Synopsis] Chitin, chitosan and quaternary chitosan films were prepared, and the physical properties and the antibacterial activities of chitosan and quaternary chitosan films were evaluated. The tensile strength of chitin films was 30~40% lower than that of chitosan films, but the crystallinity of chitin film was much higher than that of chitosan films. The crystallinity and orientation of crystallites were hardly affected by the four kinds of solvent chosen to cast chitosan films, but a de...

  2. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    Science.gov (United States)

    Hu, Yu-Lan; Qi, Wang; Han, Feng; Shao, Jian-Zhong; Gao, Jian-Qing

    2011-01-01

    Background Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier. Methods Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control. Results Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles. Conclusion Our results add new insights into the potential toxicity of nanoparticles produced by biodegradable materials, and may help us to understand better the nanotoxicity of drug delivery carriers. PMID:22267920

  3. Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System

    Science.gov (United States)

    Espíndola-González, Adolfo; Martínez-Hernández, Ana Laura; Fernández-Escobar, Francisco; Castaño, Victor Manuel; Brostow, Witold; Datashvili, Tea; Velasco-Santos, Carlos

    2011-01-01

    Chitosan is an amino polysaccharide found in nature, which is biodegradable, nontoxic and biocompatible. It has versatile features and can be used in a variety of applications including films, packaging, and also in medical surgery. Recently a possibility to diversify chitosan properties has emerged by combining it with synthetic materials to produce novel natural-synthetic hybrid polymers. We have studied structural and thermophysical properties of chitosan + starch + poly(ethylene terephthalate) (Ch + S + PET) fibers developed via electrospinning. Properties of these hybrids polymers are compared with extant chitosan containing hybrids synthesized by electrospinning. Molecular interactions and orientation in the fibers are analyzed by infrared and Raman spectroscopies respectively, morphology by scanning electron microscopy and thermophysical properties by thermogravimetric analysis and differential scanning calorimetry. Addition of PET to Ch + S systems results in improved thermal stability at elevated temperatures. PMID:21673930

  4. Green Chemistry: Effect of Microwave Irradiationon Synthesis of Chitosan for Biomedical Grade Applications of Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Amri Setyawati

    2016-10-01

    Full Text Available Microwave assisted chitosan synthesis as biodegradable material for biomedical application has been done. The purpose of this research is to synthesis of chitosan with high DD and low molecular weight using microwave energy, the study of reaction conditions include parameters of power and reaction time. Chitosan was prepared by deacetylation of chitin with 60% NaOH solution. Conventional method has been done by reflux for 90minutes, resulting chitosan with DD of 79.5%, 72.6% yields and molecular weight 6051 g/mol. Green chemistry method using microwave radiation at 800 Watts for 5 minutes has produced chitosan with highest DD, yield and molecular weight of 86%, 75% and 3797 g/mole respectively. Synthesis of Chitosan by microwave radiation method can save 10x electrical energy for the reaction, also rapidly and effectively to produce chitosan with low molecular weight compared to conventional methods

  5. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  6. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  7. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds.

    Science.gov (United States)

    Gossla, Elke; Tonndorf, Robert; Bernhardt, Anne; Kirsten, Martin; Hund, Rolf-Dieter; Aibibu, Dilibar; Cherif, Chokri; Gelinsky, Michael

    2016-10-15

    Electrostatic flocking - a common textile technology which has been applied in industry for decades - is based on the deposition of short polymer fibres in a parallel aligned fashion on flat or curved substrates, covered with a layer of a suitable adhesive. Due to their highly anisotropic properties the resulting velvet-like structures can be utilised as scaffolds for tissue engineering applications in which the space between the fibres can be defined as pores. In the present study we have developed a fully resorbable compression elastic flock scaffold from a single material system based on chitosan. The fibres and the resulting scaffolds were analysed concerning their structural and mechanical properties and the biocompatibility was tested in vitro. The tensile strength and Young's modulus of the chitosan fibres were analysed as a function of the applied sterilisation technique (ethanol, supercritical carbon dioxide, γ-irradiation and autoclaving). All sterilisation methods decreased the Young's modulus (from 14GPa to 6-12GPa). The tensile strength was decreased after all treatments - except after the autoclaving of chitosan fibres submerged in water. Compressive strength of the highly porous flock scaffolds was 18±6kPa with a elastic modulus in the range of 50-100kPa. The flocked scaffolds did not show any cytotoxic effect during indirect or direct culture of human mesenchymal stem cells or the sarcoma osteogenic cell line Saos-2. Furthermore cell adhesion and proliferation of both cell types could be observed. This is the first demonstration of a fully biodegradable scaffold manufactured by electrostatic flocking. Most tissues possess anisotropic fibrous structures. In contrast, most of the commonly used scaffolds have an isotropic morphology. By utilising the textile technology of electrostatic flocking, highly porous and clearly anisotropic scaffolds can be manufactured. Flocking leads to parallel aligned short fibres, glued on the surface of a substrate

  8. Biodegradable plastics derived from micro-fibrillated cellulose fiber and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, M.; Hosokawa, J.; Yoshihara, K.; Kubo, T.; Kabeya, H.; Endo, T. [Shikoku National Industrial Research Inst., Kagawa (Japan)

    1995-12-25

    We have been carrying out studies to develop biodegradable plastics from natural polysaccharides. We have found that a combination of micro-fibrillated cellulose fiber and chitosan produces a useful material that can be used to form biodegradable film and moldings. Cellulose-chitosan composite film demonstrate higher strength than general purpose plastic films, and wet strength peaks when chitosan content is 10-20%. The relatively small amount of chitosan needed is economically convenient because chitosan is more expensive than cellulose. This film biodegrade well in soil, completely dissolving and disappearing in two months. Biodegradability is influenced by the temperature used in thermal treatment the film, the quantity of acid groups in the cellulose, and other factors. These characteristics will be used to control decomposition. Since cellulose-chitosan-plastics are not thermoplastics, we have been working on joint research with companies to produce films, nonwoven fabrics and foams. We discuss here the properties and application of these composite moldings. 4 refs., 3 figs., 3 tabs.

  9. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    Directory of Open Access Journals (Sweden)

    Hu YL

    2011-12-01

    Full Text Available Yu-Lan Hu1, Wang Qi1, Feng Han2, Jian-Zhong Shao3, Jian-Qing Gao11Institute of Pharmaceutics, College of Pharmaceutical Sciences, 2Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, 3College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, People's Republic of ChinaBackground: Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier.Methods: Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control.Results: Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles.Conclusion: Our results add new insights into the potential toxicity of nanoparticles produced by

  10. Critical evaluation of biodegradable polymers used in nanodrugs

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  11. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers.

    Science.gov (United States)

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Zhang, Quanyu; Luo, Zhuojing

    2010-04-01

    Electrical stimulation (ES) can dramatically enhance neurite outgrowth through conductive polymers and accelerate peripheral nerve regeneration in animal models of nerve injury. Therefore, conductive tissue engineering graft in combination with ES is a potential treatment for neural injuries. Conductive tissue engineering graft can be obtained by seeding Schwann cells on conductive scaffold. However, when ES is applied through the conductive scaffold, the impact of ES on Schwann cells has never been investigated. In this study, a biodegradable conductive composite made of conductive polypyrrole (PPy, 2.5%) and biodegradable chitosan (97.5%) was prepared in order to electrically stimulate Schwann cells. The tolerance of Schwann cells to ES was examined by a cell apoptosis assay. The growth of the cells was characterized using DAPI staining and a MTT assay. mRNA and protein levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in Schwann cells were assayed by RT-PCR and Western blotting, and the amount of NGF and BDNF secreted was determined by an ELISA assay. The results showed that the PPy/chitosan membranes supported cell adhesion, spreading, and proliferation with or without ES. Interestingly, ES applied through the PPy/chitosan composite dramatically enhanced the expression and secretion of NGF and BDNF when compared with control cells without ES. These findings highlight for the first time the possibility of enhancing nerve regeneration in conductive scaffolds through ES-increased neurotrophin secretion.

  12. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in

  13. Ethanolic extract of propolis for biodegradable films packaging enhanced with chitosan

    Science.gov (United States)

    Ismail, M. I.; Roslan, A.; Saari, N. S.; Hashim, K. H.; Kalamullah, M. R.

    2017-09-01

    The use of industrial organic waste which are chitosan and propolis as materials for the development of biodegradable and active packaging is economical and environmentally appealing. Processing of propolis-chitosan film can minimize waste, and produce low-cost added value biopolymer packaging films for targeted applications. This aims of this research is to develop and characterize a biodegradable films by incorporating chitosan with propolis extract to enhance the functional properties for potential use as active food packaging. The film's moisture content, solubility and antimicrobial activity increase due to increasing volume of propolis extract which are 0 ml, 1.2 ml and 2.4 ml of propolis extract. Propolis-chitosan film with 2.4 ml of propolis extract is more soluble in water compared to propolis-chitosan film with 0 ml of propolis extract and 1.2 ml of propolis extract. The higher the volume of the propolis extract used, the higher the solubility of film in the water. The moisture content also will increase when higher volume of propolis extract used. Characterization of moisture content, solubility and antimicrobial activities revealed the benefits of adding propolis extract into chitosan films and the potential of using the developed film as active food packaging.

  14. Computational analysis for biodegradation of exogenously depolymerizable polymer

    Science.gov (United States)

    Watanabe, M.; Kawai, F.

    2018-03-01

    This study shows that microbial growth and decay in a biodegradation process of exogenously depolymerizable polymer are controlled by consumption of monomer units. Experimental outcomes for residual polymer were incorporated in inverse analysis for a degradation rate. The Gauss-Newton method was applied to an inverse problem for two parameter values associated with the microbial population. A biodegradation process of polyethylene glycol was analyzed numerically, and numerical outcomes were obtained.

  15. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  16. Polymer brush-functionalized chitosan hydrogels as antifouling implant coatings

    Czech Academy of Sciences Publication Activity Database

    Buzzacchera, I.; Vorobii, M.; Kostina, N. Yu.; de los Santos Pereira, Andres; Riedel, Tomáš; Bruns, M.; Ogieglo, W.; Möller, M.; Wilson, C. J.; Rodriguez-Emmenegger, C.

    2017-01-01

    Roč. 18, č. 6 (2017), s. 1983-1992 ISSN 1525-7797 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:61389013 Keywords : chitosan * hemocompatible * polymer brushes Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 5.246, year: 2016

  17. X-ray diffraction studies of chitosan acetate-based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Ibrahim, Z.A.; Abdul Kariem Arof

    2002-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. This paper presents the x-ray diffraction patterns of chitosan acetate, plasticised chitosan acetate and plasticised-salted chitosan acetate films. The results show that the chitosan acetate based polymer electrolyte films are not completely amorphous but it is partially crystalline. X-ray diffraction study also confirms the occurrence of the complexation between chitosan and the salt and the interaction between salt and plasticizer. The salt-chitosan interaction is clearly justified by infrared spectroscopy. (Author)

  18. Molecularly Imprinted Polymers Chitosan-Glutaraldehyde for Monosodium Glutamate

    Science.gov (United States)

    Mulyasuryani, Ani; Haryanto, Edi; Sulistyarti, Hermin; Rumhayati, Barlah

    2018-01-01

    Chitosan has been used as a functional monomer in the synthesis of molecularly imprinted polymers (MIP) for monosodium glutamate (MSG). MIP is made from a mixture of 5 g chitosan, 50 mg glutaraldehyde and 2 g MSG, MIP is formed as flakes and beads. MIPs are identified by the FTIR spectrum, SEM image and their adsorption capabilities. MIP flakes and beads have no structural differences if they are based on FTIR or SEM spectra, but MIP adsorption capacity of beads higher than flakes. Adsorption capacity of MIP flakes is 548 mg/g and MIP beads 627 mg/g.

  19. Design and Fabrication of Biodegradable Porous Chitosan/Gelatin/Tricalcium Phosphate Hybrid Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Y. Mohammadi

    2007-08-01

    Full Text Available In this study, based on a biomimetic approach, novel 3D biodegradable porous hybrid scaffolds consisting of chitosan, gelatin, and tricalcium phosphate were developed for bone and cartilage tissue engineering. Macroporous chitosan/ gelatin/β-TCP scaffolds were prepared through the process of freeze-gelation/solid-liquid phase separation. The results showed that the prepared scaffolds are highly porous, with porosities larger than 80%, and have interconnected pores. Biocompatibility studies were successfully performed by in vitro and in vivo assays. Moreover, the attachment, migration, and proliferation of chondrocytes on these unique temporary scaffolds were examined to determine their potentials in tissue engineering applications.

  20. Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells

    International Nuclear Information System (INIS)

    Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Yahya, R.; Taha, R.M.; Arof, A.K.

    2010-01-01

    The membranes 55 wt.% chitosan-45 wt.% NH4I, 33 wt.% chitosan-27 wt.% NH4I-40 wt.% EC, and 27.5 wt.% chitosan-22.5 wt.%?NH4I-50 wt.% buthyl-methyl-imidazolium-iodide (BMII) exhibit conductivity of 3.73 x 10-7, 7.34x10-6, and 3.43x10-5 S cm -1 , respectively, at room temperature. These membranes have been used in the fabrication of solid-state solar cells with configuration ITO/TiO 2 /polymer electrolyte membrane/ITO. It is observed that the short-circuit current density increases with conductivity of the electrolyte. The use of anthocyanin pigment obtained by solvent extraction from black rice and betalain from the callus of Celosia plumosa also helps to increase the short-circuit current.

  1. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings.

    Science.gov (United States)

    Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J; Rodriguez-Emmenegger, Cesar

    2017-06-12

    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.

  2. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  3. Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Flávia Debiagi

    2011-10-01

    Full Text Available Biodegradable foams made from cassava starch, polyvinyl alcohol (PVA, sugarcane bagasse fibers and chitosan were obtained by extrusion. The composites were prepared with formulations determined by a constrained ternary mixtures experimental design, using as variables: (X1 starch / PVA (100 - 70%, (X2 chitosan (0 - 2% and (X3 fibers from sugar cane (0 - 28%. The effects of varying proportions of these three components on foam properties were studied, as well the relationship between their properties and foam microstructure. The addition of starch/PVA in high proportions increased the expansion index and mechanical resistance of studied foams. Fibers addition improved the expansion and mechanical properties of the foams. There was a trend of red and yellow colors when the composites were produced with the highest proportions of fibers and chitosan, respectively. All the formulations were resistant to moisture content increase until 75% relative humidity of storage.

  4. Biodegradation of Synthetic Polymers by Composting and Fungal Treatment

    Czech Academy of Sciences Publication Activity Database

    Šašek, Václav; Vitásek, J.; Chromcová, D.; Prokopová, I.; Brožek, J.; Náhlík, J.

    2006-01-01

    Roč. 51, č. 5 (2006), s. 425-430 ISSN 0015-5632 R&D Projects: GA ČR GA203/03/0508 Institutional research plan: CEZ:AV0Z50200510 Keywords : biodegradation * composting * synthetic polymers Subject RIV: EE - Microbiology, Virology Impact factor: 0.963, year: 2006

  5. Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan

    Directory of Open Access Journals (Sweden)

    Thawien Bourtoom

    2008-04-01

    Full Text Available The properties of biodegradable blend film from rice starch-chitosan with different plasticizers were determined. Three plasticizers comprising sorbitol (SOR, glycerol (GLY and polyethylene glycol (PEG were studied over a range of concentration from 20 to 60%. Increasing concentration of these plasticizers resulted in decreased tensile strength (TS concomitant with an increase in elongation at break (E, water vapor permeability (WVP and film solubility (FS. SOR plasticized films were the most brittle, with the highest tensile strength (TS, 26.06 MPa. However, its effect on WVP was low (5.45 g.mm/m2.day.kPa. In contrast, GLY and PEG plasticized films had a flexible structure contradictory to a low TS (14.31MPa and 16.14MPa, respectively providing a high WVP (14.52 g.mm/m2.day.kPa and 14.69 g.mm/m2.day.kPa, respectively. SOR plasticized films, demonstrated little higher FS compared to PEG and GLY plasticized films but not significant different (p<0.05. The color of biodegradable blend film from rice starch-chitosan was more affected by the concentration of the plasticizer used than by its type. Nine moisture sorption models were applied to experimental data. Moisture content of the film increased at elevated water activity. The time to reach equilibrium moisture content (EMC was about 20-24 days at lower humidity and 13-16 days at higher humidities. The EMC of glycerol and sorbitol rice starchchitosan biodegradable blend films showed a logarithmic increase at above 0.59 aw and reached the highest moisture content of 51.46% and 42.97 % at 0.95 aw, whereas PEG rice starch-chitosan biodegradable blend films did not show much increase in moisture content.

  6. Biodegradability and Biocompatibility Study of Poly(Chitosan-g-lactic Acid Scaffolds

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2012-03-01

    Full Text Available A biodegradable, biocompatible poly(chitosan-g-lactic acid (PCLA scaffold was prepared and evaluated in vitro and in vivo. The PCLA scaffold was obtained by grafting lactic acid (LA onto the amino groups on chitosan (CS without a catalyst. The PCLA scaffolds were characterized by Fourier Transform infrared spectroscopy (FT-IR and scanning electron microscopy (SEM. The biodegradabilty was determined by mass loss in vitro, and degradation in vivo as a function of feed ratio of LA/CS. Bone marrow mesenchymal stem cell (BMSC culture experiments and histological examination were performed to evaluate the PCLA scaffolds’ biocompatibility. The results indicated that PCLA was promising for tissue engineering application.

  7. Effect of Material Parameters on Mechanical Properties of Biodegradable Polymers/Nanofibrillated Cellulose (NFC) Nano Composites

    Science.gov (United States)

    Yottha Srithep; Ronald Sabo; Craig Clemons; Lih-Sheng Turng; Srikanth Pilla; Jun Peng

    2012-01-01

    Using natural cellulosic fibers as fillers for biodegradable polymers can result in fully biodegradable composites. Biodegradable composites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. The objective of this study was to determine how various additives (i.e.,...

  8. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.

    Science.gov (United States)

    Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y

    2011-03-01

    The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Physical, mechanical, and biodegradable properties of meranti wood polymer composites

    International Nuclear Information System (INIS)

    Enamul Hoque, M.; Aminudin, M.A.M.; Jawaid, M.; Islam, M.S.; Saba, N.; Paridah, M.T.

    2014-01-01

    Highlights: • In-situ polymerization and solution casting method used to manufacture WPC. • In-situ WPC exhibited better properties compared to pure wood, 5% WPC and 20% WPC. • Lowest water absorption and least biodegradability shown by In-situ wood. - Abstract: In-situ polymerization and solution casting techniques are two effective methods to manufacture wood polymer composites (WPCs). In this study, wood polymer composites (WPCs) were manufactured from meranti sapwood by solution casting and in-situ polymerization process using methyl methacrylate (MMA) and epoxy matrix respectively. Physical, mechanical, and morphological characterizations of fabricated WPCs were then carried out to analyse their properties. Morphological properties of composites samples were analyzed through scanning electron microscopy (SEM). The result reveals that in-situ wood composite exhibited better properties compared to pure wood, 5% WPC and 20% WPC. Moreover, in-situ WPC had lowest water absorption and least biodegraded. Conversely, pure wood shown moderate mechanical strength, high biodegradation and water absorption rate. In term of biodegradation, earth-medium brought more severe effect than water in deteriorating the properties of the specimens

  10. Role of different biodegradable polymers on the permeability of ciprofloxacin

    OpenAIRE

    Chakraborti, Chandra Kanti; Sahoo, Subhashree; Behera, Pradipta Kumar

    2014-01-01

    Since permeability across biological membranes is a key factor in the absorption and distribution of drugs, drug permeation characteristics of three oral suspensions of ciprofloxacin were designed and compared. The three suspensions of ciprofloxacin were prepared by taking biodegradable polymers such as carbopol 934, carbopol 940, and hydroxypropyl methylcellulose (HPMC). The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and...

  11. Micro fabrication of biodegradable polymer drug delivery devices

    DEFF Research Database (Denmark)

    Nagstrup, Johan

    The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium. Furtherm......The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium...... permeability and degradation. These systems are for the majority based on traditional materials used in micro technology, such as SU-8, silicon, poly(methyl methacrylate). The next step in developing these new drug delivery systems is to replace classical micro fabrication materials with biodegradable polymers....... In order to successfully do this, methods for fabricating micro structures in biodegradable polymers need to be developed. The goal of this project has been to develop methods for micro fabrication in biodegradable polymers and to use these methods to produce micro systems for oral drug delivery. This has...

  12. Biodegradable, pH-sensitive chitosan beads obtained under microwave radiation for advanced cell culture.

    Science.gov (United States)

    Piątkowski, Marek; Janus, Łukasz; Radwan-Pragłowska, Julia; Bogdał, Dariusz; Matysek, Dalibor

    2018-04-01

    A new type of promising chitosan beads with advanced properties were obtained under microwave radiation according to Green Chemistry principles. Biomaterials were prepared using chitosan as raw material and glutamic acid/1,5-pentanodiol mixture as crosslinking agents. Additionally beads were modified with Tilia platyphyllos extract to enhance their antioxidant properties. Beads were investigated over their chemical structure by FT-IR analysis. Also their morphology has been investigated by SEM method. Additionally swelling capacity of the obtained hydrogels was determined. Lack of cytotoxicity has been confirmed by MTT assay. Proliferation studies were carried out on L929 mouse fibroblasts. Advanced properties of the obtained beads were investigated by studying pH sensitivity and antioxidant properties by DPPH method. Also susceptibility to degradation and biodegradation by Sturm Test method was evaluated. Results shows that proposed chitosan beads and their eco-friendly synthesis method can be applied in cell therapy and tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  14. Radiation processing of biodegradable polymer and hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Poly({epsilon}-caprolactone), PCL, (melting temperature 60degC) was gamma-irradiated in the solid state at 30 to 55degC, the molten state, and the supercooled state(irradiation at 45 to 55degC after melting, 80degC) under vacuum to improve its heat resistance. Irradiation of PCL in the supercooled state led to the highest gel content and this polymer has high heat resistance. On the other hand, relatively smaller doses such as 15 and 30 kGy were effective to improve processability of PCL by formation of branch structure during irradiation. It was found that carboxymethylcellulose with relatively high degree of substitution led crosslinking at high concentration in aqueous solution such as 10% by irradiation. (author)

  15. Radiation processing of biodegradable polymer and hydrogel

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2000-01-01

    Poly(ε-caprolactone), PCL, (melting temperature 60degC) was gamma-irradiated in the solid state at 30 to 55degC, the molten state, and the supercooled state(irradiation at 45 to 55degC after melting, 80degC) under vacuum to improve its heat resistance. Irradiation of PCL in the supercooled state led to the highest gel content and this polymer has high heat resistance. On the other hand, relatively smaller doses such as 15 and 30 kGy were effective to improve processability of PCL by formation of branch structure during irradiation. It was found that carboxymethylcellulose with relatively high degree of substitution led crosslinking at high concentration in aqueous solution such as 10% by irradiation. (author)

  16. Multifunctional adhesive polymers: Preactivated thiolated chitosan-EDTA conjugates.

    Science.gov (United States)

    Netsomboon, Kesinee; Suchaoin, Wongsakorn; Laffleur, Flavia; Prüfert, Felix; Bernkop-Schnürch, Andreas

    2017-02-01

    The aim of this study was to synthesis preactivated thiolated chitosan-EDTA (Ch-EDTA-cys-2MNA) conjugates exhibiting in particular high mucoadhesive, cohesive and chelating properties. Thiol groups were coupled with chitosan by carbodiimide reaction and further preactivated by attachment with 2-mercaptonicotinic acid (2MNA) via disulfide bond formation. Determinations of primary amino and sulfhydryl groups were performed by TNBS and Ellman's tests, respectively. Cytotoxicity was screened by resazurin assay in Caco-2 cells. Mucoadhesive properties and bivalent cation binding capacity with Mg 2+ and Ca 2+ in comparison to chitosan-EDTA (Ch-EDTA) and thiolated Ch-EDTA (Ch-EDTA-cys) were evaluated. Determination of 2MNA and total sulfhydryl groups indicated that 80% of thiol groups were preactivated. The results from cytotoxicity studies demonstrated that Ch-EDTA-cys and Ch-EDTA-cys-2MNA were not toxic to the cells at the polymer test concentration of 0.25% (w/v) while cell viability decreased by increasing the concentration of Ch-EDTA. Although EDTA molecule was modified by thiolation and preactivation, approximately 50% of chelating properties of the conjugates were maintained compared to Ch-EDTA. Ch-EDTA-cys-2MNA adhered on freshly excised porcine intestinal mucosa up to 6h while Ch-EDTA adhered for just 1h. According to the combination of mucoadhesive and chelating properties of the conjugates synthesized in this study, Ch-EDTA-cys-2MNA might be useful for various mucosal drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biodegraded polymers as materials for sowing of grain crops seeds

    Directory of Open Access Journals (Sweden)

    L. S. Shibryaeva

    2015-01-01

    Full Text Available Increase of efficiency of grain production, solution of problems of food security demand search and development of innovative technologies at all stages. One of ways of environmentally friendly production is sowing of seeds on an excipient located in the soil, for example, nonwoven fabric made of eco- decomposable decomposed biodegraded polymer. Biodegraded polymeric materials influence on sowing properties of grain crops seeds and provide realization of their potential productivity. The authors used an electroforming method with chloroform and a dichloroethane application to receive nonwoven fabric from poly-3-hydroxybutyrate (PHB and its compositions together with synthetic nitrile rubber (PHB-SNR. Polymeric material influences on energy of germination and viability of wheat seeds. Germination index is calculated, heat physical parameters are determined for the polymeric excipient. The major factor influencing seeds germination is a structure of nonwoven fabric. Water diffusion, its supply to seeds and their viability depend on morphological features of polymeric material. Polymer excipient structure influence on speed of development of root system on which, in turn, intensity of destruction of polymer depends. The best indicators of energy of germination and viability of seeds correspond to the greatest value of decrease of melting heat of PHB in mix PHB-SNR. In addition, among the studied samples of PHB-SNR the material received from blend of solvents is most effective. The cause is in feature of its structure favorable for a seed germination.

  18. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran; El Sayed, Tamer S.

    2012-01-01

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer

  19. Products Based on Bio-Resourced Materials for Agriculture. Radiation Processed Biodegradable Polymers, Plant Growth Promoters and Superabsorbent Polymers. Chapter 9

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, K. A.; Bhardwaj, Y. K.; Chaudhari, C. V.; Varshney, L. [Radiation Technology Development Division, Bhabha Atomic Research Centre (India)

    2014-07-15

    Radiation-processed natural polymers and their derivatives, namely starch, alginate, chitosan and carboxymethyl cellulose (CMC) were explored for different agricultural applications such as biodegradable mulch films, super adsorbent polymers (SAPs), and plant growth promoters (PGPs). It was observed that gamma radiation-processed starch can lead to a better processability of starch/synthetic polymer alloys, and can offer tuneable biodegradability (as low as one month) with acceptable physico-mechanical properties. Acrylic acid/CMC-based SAP was prepared using {sup 60}Co gamma radiation, for soil conditioning. The equilibrium degree of swelling (EDS) of the acrylic acid/CMC SAP was found to be 460 g/g. The field trial of the SAP was conducted on sorghum. It was found that, with the use of 20 kg/ha of SAP, the crop yield can be increased by almost 18.5% whereas the increase in plant height was 8.5%. A new super adsorbent polymer with a much higher water uptake capacity was also developed by adding a small fraction of carrageenan to neutralized acrylic acid (AA). This SAP had EDS of 800 g/g, with the addition of only 1% carrageenan. Experiments to check the soil conditioning efficacy of AA/carrageenan SAP are in progress. Oligomers of chitosan and alginates were prepared by gamma irradiation and were tried as plant growth promoters in wheat (Triticum aestivum), mung bean (Vigna radiata), linseed (Linum usitatissimum), mentha (Mentha arvensis), and lemon grass. The results suggest that these oligomers have a significant impact on the grain and oil yield. Large scale field trials on Mentha arvensis in collaboration with an industry are in progress, and efforts are going on to formulate a policy framework for the use of oligosaccharides as plant growth promoters. (author)

  20. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  1. The Recent Developments in Biobased Polymers toward General and Engineering Applications : Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed

    NARCIS (Netherlands)

    Nakajima, Hajime; Dijkstra, Peter; Loos, Katja

    2017-01-01

    The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering

  2. Characterization of biodegradable polymers irradiated with swift heavy ions

    International Nuclear Information System (INIS)

    Salguero, N.G.; Grosso, M.F. del; Durán, H.; Peruzzo, P.J.; Amalvy, J.I.

    2012-01-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  3. Characterization of biodegradable polymers irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Salguero, N.G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Duran, H. [CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Gerencia de Desarrollo Tecnologico y Proyectos Especiales, CNEA, Av. Gral. Paz 1499 (B1650KNA) San Mart Latin-Small-Letter-Dotless-I Acute-Accent n, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, H. Yrigoyen 3100, CP 1650, San Martin, UNSAM (Argentina); Peruzzo, P.J. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Amalvy, J.I. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Facultad de Ingenieria, Universidad Nacional de La Plata, Calle 116 y 48 (B1900TAG), La Plata (Argentina); Departamento de Ingenieria Quimica, Facultad Regional La Plata, Universidad Tecnologica Nacional, 60 y 124 (1900), La Plata (Argentina); and others

    2012-02-15

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  4. Enhanced electrokinetic properties and antimicrobial activities of biodegradable chitosan/organo-bentonite composites.

    Science.gov (United States)

    Cabuk, Mehmet; Alan, Yusuf; Unal, H Ibrahim

    2017-04-01

    In this study, chitosan (CS), Na + -bentonite (Na + -BNT) and chitosan/organo-bentonite (CS/O-BNT) biodegradable composites having three different compositions were investigated. Electrokinetic measurements were examined in aqueous medium by taking the effects pH, electrolytes (NaCl and BaCl 2 ), surfactants (CTAB and SDS), and temperature into account. It was noticed that the initial ζ-potential of Na + -BNT shifted from negative (ζ=-35mV) to positive region (ζ=+13mV) with increasing polycationic CS content in the composite structure as aimed. Divalent 2:1 electrolyte (BaCl 2 ) caused to shift the ζ-potentials of all the dispersions to more positive regions. While the most negative effect on ζ-potential of the composites was reached with SDS, which reduced the value of ζ-potential to -39mV for CS(1)/O-BNT composite, the most positive effect was monitored with CTAB (ζ=+40mV) for CS(3)/O-BNT composite. Further, the composites were tested against various bacterial (Gram-positive and Gram-negative) and fungal microorganisms at various concentrations and results obtained were compared with the reference antibiotics and fungicide. According to inhibition zone values accomplished, antibacterial and antifungal activities of the CS/O-BNT composites are increased with increasing CS content as proportional with their positive ζ-potential values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wach, Radoslaw A.; Mitomo, Hiroshi [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effects of high-energy radiation on ethers of cellulose: carboxymethyl-, hydroxypropyl- and hydroxyethylcellulose have been investigated. Polymers were irradiated in solid state and aqueous solution at various concentrations. Degree of substitution (DS), the concentration in the solution and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid and in diluted solution resulted in their degradation. A novel hydrogels of such natural polymers were synthesized, without using any additives, by irradiation at high concentration. It was found that high DS of CMC promoted crosslinking and, for all of the ethers, the gel formation occurred easier for more concentrated solutions. Paste-like form of the initial material, when water plasticised the bulk of polymer mass, along with the high dose rate and preventing oxygen accessibility to the sample during irradiation were favorable for hydrogel preparation. Up to 95% of gel fraction was obtained from 50 and 60% CMC solutions irradiated by gamma rays or by a beam of accelerated electrons (EB). The other polymers were more sensitive to the dose rate and formed gels with higher gel fraction while processed by EB. Moreover, polymers (except CMC) treated by gamma rays were susceptible to degradation after application of a dose over 50-100 kGy. The presence of oxygen in the system during irradiation limited a gel content and was prone to easier degradation of already formed gel. Produced hydrogels swelled markedly by absorption when paced in the solvent. Crosslinked polymers showed susceptibility to degradation by cellulase enzyme and by the action of microorganisms in compost or under natural conditions in soil thus could be included into the group of biodegradable materials. (author)

  6. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives

    International Nuclear Information System (INIS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Yoshii, Fumio; Kume, Tamikazu

    2001-01-01

    The effects of high-energy radiation on ethers of cellulose: carboxymethyl-, hydroxypropyl- and hydroxyethylcellulose have been investigated. Polymers were irradiated in solid state and aqueous solution at various concentrations. Degree of substitution (DS), the concentration in the solution and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid and in diluted solution resulted in their degradation. A novel hydrogels of such natural polymers were synthesized, without using any additives, by irradiation at high concentration. It was found that high DS of CMC promoted crosslinking and, for all of the ethers, the gel formation occurred easier for more concentrated solutions. Paste-like form of the initial material, when water plasticised the bulk of polymer mass, along with the high dose rate and preventing oxygen accessibility to the sample during irradiation were favorable for hydrogel preparation. Up to 95% of gel fraction was obtained from 50 and 60% CMC solutions irradiated by gamma rays or by a beam of accelerated electrons (EB). The other polymers were more sensitive to the dose rate and formed gels with higher gel fraction while processed by EB. Moreover, polymers (except CMC) treated by gamma rays were susceptible to degradation after application of a dose over 50-100 kGy. The presence of oxygen in the system during irradiation limited a gel content and was prone to easier degradation of already formed gel. Produced hydrogels swelled markedly by absorption when paced in the solvent. Crosslinked polymers showed susceptibility to degradation by cellulase enzyme and by the action of microorganisms in compost or under natural conditions in soil thus could be included into the group of biodegradable materials. (author)

  7. Implantable biodegradable sponges: effect of interpolymer complex formation of chitosan with gelatin on the release behavior of tramadol hydrochloride.

    Science.gov (United States)

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2007-01-01

    The effect of interpolymer complex formation between positively charged chitosan and negatively charged gelatin (Type B) on the release behavior of tramadol hydrochloride from biodegradable chitosan-gelatin sponges was studied. Mixed sponges were prepared by freeze-drying the cross-linked homogenous stable foams produced from chitosan and gelatin solutions where gelatin acts as a foam builder. Generation of stable foams was optimized where concentration, pH of gelatin solution, temperature, speed and duration of whipping process, and, chitosan-gelatin ratio drastically affect the properties and the stability of the produced foams. The prepared sponges were evaluated for their morphology, drug content, and microstructure using scanning electron microscopy, mechanical properties, uptake capacity, drug release profile, and their pharmacodynamic activity in terms of the analgesic effect after implantation in Wistar rats. It was revealed that whipping 7% (w/w) gelatin solution, of pH 5.5, for 15 min at 25 degrees C with a stirring speed of 1000 rpm was the optimum conditions for stable gelatin foam generation. Moreover, homogenous, uniform chitosan-gelatin foam with small air bubbles were produced by mixing 2.5% w/w chitosan solution with 7% w/w gelatin solution in 1:5 ratio. Indeed, polyionic complexation between chitosan and gelatin overcame the drawbacks of chitosan sponge mechanical properties where, pliable, soft, and compressible sponge with high fluid uptake capacity was produced at 25 degrees C and 65% relative humidity without any added plasticizer. Drug release studies showed a successful retardation of the incorporated drug where the t50% values of the dissolution profiles were 0.55, 3.03, and 4.73 hr for cross-linked gelatin, un-cross-linked chitosan-gelatin, and cross-linked chitosan-gelatin sponges, respectively. All the release experiments followed Higuchi's diffusion mechanism over 12 hr. The achieved drug prolongation was a result of a combined effect

  8. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate.

    Science.gov (United States)

    Guzik, Maciej W; Kenny, Shane T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh P; Nikodinovic-Runic, Jasmina; Murray, Michael; O'Connor, Kevin E

    2014-05-01

    A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.

  9. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sabaa, Magdy W.; Abdallah, Heba M.; Mohamed, Nadia A.; Mohamed, Riham R., E-mail: rihamrashad@hotmal.com

    2015-11-01

    Crosslinked poly(vinyl alcohol) (PVA)/carboxymethyl chitosan (CMCh) nanocomposites were synthesized using terephthaloyl diisothiocyanate crosslinker, in the presence of montmorillonite (MMT), in different ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PVA hydrogels increased the swellability. Metal ion adsorption has also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non crosslinked CMCh. Antimicrobial activity was examined against Gram positive bacteria, against Gram negative bacteria, and also against fungi. Results indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation study was carried out in Simulated Body Fluid (SBF) for different time periods in order to find out degradation index (Di). Results showed that weight loss of most of the nanocomposites increased as a function of incubation time. - Highlights: • CMCh/PVA nanocomposites have been evaluated for activity against bacteria and fungi. • TEM showed that these hydrogels have size 3–19 nm. • Nanocomposites increased metal ion uptake and showed selectivity for cadmium ions. • Biodegradation increased as a function of incubation time in SBF solution. • Biodegradation increased with increase in CMCh and clay in nanocomposites.

  10. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed

    OpenAIRE

    Nakajima, Hajime; Dijkstra, Peter; Loos, Katja

    2017-01-01

    The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering applications. This expansion is driven by the remarkable progress in the processes for refining biomass feedstocks to produce biobased building blocks that allow biobased polymers to have more versati...

  11. Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly(acrylic acid).

    Science.gov (United States)

    Mohamed, Riham R; Elella, Mahmoud H Abu; Sabaa, Magdy W

    2017-05-01

    Physically crosslinked hydrogels resulted from interaction between N,N,N-trimethyl chitosan chloride (N-Quaternized Chitosan) (NQC) and poly(acrylic acid) (PAA) were synthesized in different weight ratios (3:1), (1:1) and (1:3) taking the following codes Q3P1, Q1P1 and Q1P3, respectively. Characterization of the mentioned hydrogels was done using several analysis tools including; FTIR, XRD, SEM, TGA, biodegradation in simulated body fluid (SBF) and cytotoxicity against HepG-2 liver cancer cells. FTIR results proved that the prepared hydrogels were formed via electrostatic and H-bonding interactions, while XRD patterns proved that the prepared hydrogels -irrespective to their ratios- were more crystalline than both matrices NQC and PAA. TGA results, on the other hand, revealed that Q1P3 hydrogel was the most thermally stable compared to the other two hydrogels (Q3P1 and Q1P1). Biodegradation tests in SBF proved that these hydrogels were more biodegradable than the native chitosan. Examination of the prepared hydrogels for their potency in heavy metal ions removal revealed that they adsorbed Fe (III) and Cd (II) ions more than chitosan, while they adsorbed Cr (III), Ni (II) and Cu (II) ions less than chitosan. Moreover, testing the prepared hydrogels as antibacterial agents towards several Gram positive and Gram negative bacteria revealed their higher antibacterial activity as compared with NQC when used alone. Evaluating the cytotoxic effect of these hydrogels on an in vitro human liver cancer cell model (HepG-2) showed their good cytotoxic activity towards HepG-2. Moreover, the inhibition rate increased with increasing the hydrogels concentration in the culture medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of pH on chitosan hydrogel polymer network structure.

    Science.gov (United States)

    Xu, Hongcheng; Matysiak, Silvina

    2017-06-29

    Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.

  13. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2014-11-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  14. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2015-07-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  15. Imaging the intracellular degradation of biodegradable polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Barthel

    2014-10-01

    Full Text Available In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid (PLLA was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs. The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome, we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy.

  16. Biodegradable 3D printed polymer microneedles for transdermal drug delivery.

    Science.gov (United States)

    Luzuriaga, Michael A; Berry, Danielle R; Reagan, John C; Smaldone, Ronald A; Gassensmith, Jeremiah J

    2018-04-17

    Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1-55 μm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.

  17. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kusumastuti, Ella, E-mail: ella.kusuma@gmail.com; Siniwi, Widasari Trisna, E-mail: wsiniwi@gmail.com; Mahatmanti, F. Widhi; Jumaeri [Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Semarang D6 Building 2" n" d floor, Sekaran Unnes Campus, Gunungpati, Semarang (Indonesia); Atmaja, Lukman; Widiastuti, Nurul [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tenth November Institute of Technology Keputih ITS Campus, Sukolilo, Surabaya (Indonesia)

    2016-04-19

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10{sup −7} cm{sup 2}/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm{sup −3}. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm{sup −-1}.

  18. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan.

    Science.gov (United States)

    Gupta, Umesh; Sharma, Saurabh; Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok K; Singh, Yuvraj; Chourasia, Manish K; Kumar, Vipin

    2017-05-01

    Taxanes have established and proven effectivity against different types of cancers; in particular breast cancers. However, the high hemolytic toxicity and hydrophobic nature of paclitaxel and docetaxel have always posed challenges to achieve safe and effective delivery. Use of bio-degradable materials with an added advantage of nanotechnology could possibly improve the condition so as to achieve better and safe delivery. In the present study paclitaxel loaded chitosan nanoparticles were formulated and optimized using simple w/o nanoemulsion technique. The observed average size, pdi, zeta potential, entrapment efficiency and drug loading for the optimized paclitaxel loaded chitosan nanoparticle formulation (PTX-CS-NP-10) was 226.7±0.70nm, 0.345±0.039, 37.4±0.77mV, 79.24±2.95% and 11.57±0.81%; respectively. Nanoparticles were characterized further for size by Transmission Electron Microscopy (TEM). In vitro release studies exhibited sustained release pattern and more than 60% release was observed within 24h. Enhanced in vitro anticancer activity was observed as a result of MTT assay against triple negative MDA-MB-231 breast cancer cell lines. The observed IC 50 values obtained for PTX-CS-NP-10 was 9.36±1.13μM and was almost 1.6 folds (psafe as observed for haemolytic toxicity which was almost 4 folds less (psafe nanoformulation of paclitaxel was developed, characterized and evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Biolimus-eluting biodegradable polymer-coated stent versus durable polymer-coated sirolimus-eluting stent in unselected patients receiving percutaneous coronary intervention (SORT OUT V)

    DEFF Research Database (Denmark)

    Christiansen, Evald Høj; Jensen, Lisette Okkels; Thayssen, Per

    2013-01-01

    Third-generation biodegradable polymer drug-eluting stents might reduce the risk of stent thrombosis compared with first-generation permanent polymer drug-eluting stents. We aimed to further investigate the effects of a biodegradable polymer biolimus-eluting stent compared with a durable polymer......-coated sirolimus-eluting stent in a population-based setting....

  20. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  1. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    International Nuclear Information System (INIS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting

    2014-01-01

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric

  2. The SYNERGY biodegradable polymer everolimus eluting coronary stent: Porcine vascular compatibility and polymer safety study.

    Science.gov (United States)

    Wilson, Gregory J; Marks, Angela; Berg, Kimberly J; Eppihimer, Michael; Sushkova, Natalia; Hawley, Steve P; Robertson, Kimberly A; Knapp, David; Pennington, Douglas E; Chen, Yen-Lane; Foss, Aaron; Huibregtse, Barbara; Dawkins, Keith D

    2015-11-15

    SYNERGY is a novel platinum chromium alloy stent that delivers abluminal everolimus from an ultrathin poly-lactide-co-glycide (PLGA) biodegradable polymer. This study evaluated the in vivo degradation of the polymer coating, everolimus release time course, and vascular compatibility of the SYNERGY stent. SYNERGY stents were implanted in arteries of domestic swine. Devices were explanted at predetermined time points (up to 120 days) and the extent of PLGA coating or everolimus remaining on the stents was quantified. Everolimus levels in the arterial tissue were also evaluated. A pathological analysis on coronary arteries of single and overlapping stents was performed at time points between 5 and 270 days. PLGA bioabsorption began immediately after implantation, and drug release was essentially complete by 90 days; PLGA absorption was substantially complete by 120 days (>90% of polymer was absorbed) leaving a bare metal SYNERGY stent. Vascular response was similar among SYNERGY and control stents (bare metal, polymer-only, and 3× polymer-only). Mild increases in para-strut fibrin were seen for SYNERGY at an early time point with no significant differences in all other morphological and morphometric parameters through 270 days or endothelial function (eNOS immunostaining) at 90 or 180 days. Inflammation was predominantly minimal to mild for all device types. In a swine model, everolimus was released by 90 days and PLGA bioabsorption was complete shortly thereafter. The SYNERGY stent and its biodegradable polymer, even at a 3× safety margin, demonstrated vascular compatibility similar to bare metal stent controls. © 2015 Wiley Periodicals, Inc.

  3. Science and sustainability? Biodegradable polymers from canola and flaxseed oils

    Energy Technology Data Exchange (ETDEWEB)

    Narins, S.S. [Alberta Univ., Edmonton, AB (Canada). Alberta Bioplastics Network

    2002-07-01

    Little progress has been made in value-added development to crops. The development of biodegradable plastics was spurred by environmental concerns and the use of renewable resources. There is a worldwide market for such products, which complements the strategy of the petrochemical industry. Greater sustainability achieved by partnering with the value-added agricultural industry. The drivers impacting the future polymer industry are: environmental and health concerns, consumer attitudes, cost of cheap feedstocks, carbon credits, greenhouse gases reduction, and criteria air contaminant reduction. Two niche markets are food packaging and biomedical products. The opportunity exists for the development of poly lactic acid (PLA) using canola as a primary feedstock in Alberta as there is a well established petrochemical industry, a vegetable oil infrastructure, and a desire to match petrochemical with bio-renewable. The benefits are higher value processing and a new source of monomers from renewable biomass. The main objective is the development of bio-polymer industry in Alberta based on canola and flaxseed oils. Food and agricultural materials have a similar structure and identical instrumentation to study structure and functionality. The author displayed pictures of the major instrumentation required to conduct this type of research. The rheological properties of polymers include flow, mechanical strength, and thermal properties. The author, along with colleagues, has developed a unique approach. The team members were identified, as well as an overview of the expertise required to perform this research. The author is about to file three related patents. This process is not energy intensive and does not use solvent. The author is about to move into scale-up phase of the reactions which produce the monomers. tabs., figs.

  4. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  5. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  6. Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch

    Science.gov (United States)

    Agustin, Y. E.; Padmawijaya, K. S.

    2017-07-01

    Bioplastic is a biopolymer plastic that can be degraded easily by microorganisms so it can be used as alternative replaced commercial plastic. This research aims to study the effects of additive (glycerol and zinc oxide) addition in the characteristic of antimicrobial activity and biodegradability bioplastic from chitosan and Kepok banana peel starch. In this research, bioplastics were synthesized by chitosan as the backbone and antimicrobial, Kepok banana peel starch as filler, glycerol as plasticizer, also ZnO as an amplifier. Bioplastics were characterized their antimicrobial activity using agar diffusion method (zone inhibition assay) and biodegradability test using microbe (EM4). The result showed the optimum composition of bioplastic is kitosan 4 - 30% starch - 5 mL glycerol - 5% ZnO gives the good antimicrobial activity towards gram positive and gram negative bacteria, and this bioplastic will be degraded within an hour and 12 min. Thus, this bioplastics may have potential to be use for food packaging by having biodegradable properties and also inhibit bacterial growth.

  7. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  8. FTIR studies of chitosan acetate based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Arof, A.K.

    2003-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. As such, depending on the degree of deacetylation, the carbonyl, C=O-NHR band can be observed at ∼1670 cm -1 and the amine, NH 2 band at 1590 cm -1 . When lithium triflate is added to chitosan to form a film of chitosan acetate-salt complex, the bands assigned to chitosan in the complex and the spectrum as a whole shift to lower wavenumbers. The carbonyl band is observed to shift to as low as 1645 cm -1 and the amine band to as low as 1560 cm -1 . These indicate chitosan-salt interactions. Also present are the bands due to lithium triflate i.e. ∼761, 1033, 1182 and 1263 cm -1 . When chitosan and ethylene carbonate (EC) are dissolved in acetic acid to form a film of plasticized chitosan acetate, the bands in the infrared spectrum of the films do not show any significant shift indicating that EC does not interact with chitosan. EC-LiCF 3 SO 3 interactions are indicated by the shifting of the C-O bending band from 718 cm -1 in the spectrum of EC to 725 cm -1 in the EC-salt spectrum. The Li + -EC is also evident in the ring breathing region at 893 cm -1 in the pure EC spectrum. This band has shifted to 898 cm -1 in the EC-salt spectrum. C=O stretching in the doublet observed at 1774 and 1803 cm -1 in the spectrum of pure EC has shifted to 1777 and 1808 cm -1 in the EC-salt spectrum

  9. Biodegradation of New Polymer Foundry Binders for the Example of the Composition Polyacrylic Acid/Starch

    Directory of Open Access Journals (Sweden)

    Beata Grabowska

    2011-04-01

    Full Text Available The investigations on the biodegradation process pathway of the new polymer binders for the example of water soluble compositionpolyacrylic acid/starch are presented in the hereby paper. Degradation was carried out in water environment and in a soil. Thedetermination of the total oxidation biodegradation in water environment was performed under laboratory conditions in accordance with the static water test system (Zahn-Wellens method, in which the mixture undergoing biodecomposition contained inorganic nutrient,activated sludge and the polymer composition, as the only carbon and energy source. The biodecomposition progress of the polymercomposition sample in water environment was estimated on the basis of the chemical oxygen demand (COD measurements and thedetermination the biodegradation degree, Rt, during the test. These investigations indicated that the composition polyacrylic acid/starchconstitutes the fully biodegradable material in water environment. The biodegradation degree Rt determined in the last 29th day of the test duration achieved 65%, which means that the investigated polymer composition can be considered to be fully biodegradable.During the 6 months biodegradation process of the cross-linked sample of the polymer composition in a garden soil several analysis ofsurface and structural changes, resulting from the sample decomposition, were performed. Those were: thermal analyses (TG-DSC,structural analyses (Raman spectroscopy and microscopic analyses (optical microscopy, AFM.

  10. Role of different biodegradable polymers on the permeability of ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Chandra Kanti Chakraborti

    2014-01-01

    Full Text Available Since permeability across biological membranes is a key factor in the absorption and distribution of drugs, drug permeation characteristics of three oral suspensions of ciprofloxacin were designed and compared. The three suspensions of ciprofloxacin were prepared by taking biodegradable polymers such as carbopol 934, carbopol 940, and hydroxypropyl methylcellulose (HPMC. The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and excised goat gastrointestinal membranes in acidic as well as alkaline pH. To know the permeability of drug from control/formulations through different membranes in acidic/alkaline pH, cumulative percentage drug permeation, apparent permeability (Papp, flux, and enhancement ratio (ER were calculated. Considering Papp and flux values of all formulations, it is evident that formulation containing HPMC was the most beneficial for improving permeation and diffusivity of ciprofloxacin even after 16 h. Hence, this preparation may be considered as the most suitable formulation to obtain prolonged release action of the drug. The ER values of all formulations, through excised goat intestinal mucosal membrane in alkaline pH, were higher than those formulations through goat stomach mucosal membrane in acidic pH. Enhancement ratio values of those formulations indicate that the permeability of the drug was more enhanced by the polymers in the intestinal part, leading to more bioavailability and prolonged action in that portion of the gastrointestinal tract. It may also be concluded from our results that HPMC containing formulation was the best suspension, which may show effective controlled release action. Even carbopol containing formulations might also produce controlled release action.

  11. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  12. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Science.gov (United States)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  13. NATURAL POLYMERS: CELLULOSE, CHITIN, CHITOSAN, GELATIN, STARCH, CARRAGEENAN, XYLAN AND DEXTRAN

    Directory of Open Access Journals (Sweden)

    Fatma Zohra Benabid

    2016-12-01

    Full Text Available Biopolymers have been investigated for drug fields. They are widely being studied because of their non-toxic and biocompatible in nature. Biopolymers are used in industries as diverse as paper, plastics, food, textiles, pharmaceuticals, and cosmetics.This review covers different natural polymers, recent techniques applied in their processing and characterization. Advanced applications of natural polymers, including chitin, chitosan, alginate, etc., are discussed.

  14. New biocomposites based on bioplastic flax fibers and biodegradable polymers.

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan

    2012-01-01

    A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  15. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    International Nuclear Information System (INIS)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-01

    Graphical abstract: -- Highlights: •Recent trends in the structural characterization of biodegradable polymers by MALDI and ESI MS are discussed. •MALDI MS as a noteworthy tool to follow the synthetic polymerization route of biodegradable materials is evidenced. •Elucidation of degradation mechanisms by modern MS techniques is examined. •ESI MS and HPLC–ESI MS are highlighted as highly suitable methods for structural and quantitative analysis of water-soluble biodegradation products. •Novel MS methods developed ad hoc and new MALDI matrices for biodegradable polymers are reviewed. -- Abstract: In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization

  16. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rizzarelli, Paola, E-mail: paola.rizzarelli@cnr.it; Carroccio, Sabrina

    2014-01-15

    Graphical abstract: -- Highlights: •Recent trends in the structural characterization of biodegradable polymers by MALDI and ESI MS are discussed. •MALDI MS as a noteworthy tool to follow the synthetic polymerization route of biodegradable materials is evidenced. •Elucidation of degradation mechanisms by modern MS techniques is examined. •ESI MS and HPLC–ESI MS are highlighted as highly suitable methods for structural and quantitative analysis of water-soluble biodegradation products. •Novel MS methods developed ad hoc and new MALDI matrices for biodegradable polymers are reviewed. -- Abstract: In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization

  17. Poly(ethylene glycol) and cyclodextrin-grafted chitosan: from methodologies to preparation and potential biotechnological applications

    Science.gov (United States)

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-11-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  18. Lactic Acid Polymers as Biodegradable Carriers of Fluoroquinolones: An In Vitro Study

    OpenAIRE

    Kanellakopoulou, Kyriaki; Kolia, Maria; Anastassiadis, Antonios; Korakis, Themistoklis; Giamarellos-Bourboulis, Evangelos J.; Andreopoulos, Andreas; Dounis, Eleftherios; Giamarellou, Helen

    1999-01-01

    A biodegradable polymer of dl-dilactide that facilitates release of ciprofloxacin or pefloxacin at levels exceeding MICs for the causative microorganisms of chronic osteomyelitis is described. Duration and peak of release were found to depend on the molecular weight of the polymer. Its characteristics make it promising for treating chronic bone infections.

  19. Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan

    Directory of Open Access Journals (Sweden)

    Grégorio Crini

    2017-05-01

    Full Text Available Polymer assisted ultrafiltration (PAUF is a relatively new process in water and wastewater treatment and the subject of an increasing number of papers in the field of membrane science. Among the commercial polymers used, poly(ethyleneimine and poly(acrylic acid are the most popular to complex numerous metal ions. Recently, there is an increasing interest in the use of chitosan, a natural linear polymer, as chelating agent for complexing metals. Chitosan has a high potential in wastewater treatment mainly due to its polyelectrolyte properties at acidic pH. The objectives of this review are to present the PAUF process and to highlight the advantages gained from the use of chitosan in the process of complexation–ultrafiltration. For this, a PAUF-based literature survey has been compiled and is discussed. From these data, chitosan, a biopolymer that is non-toxic to humans and the environment, is found to be effective in removing metal ions and exhibits high selectivity. It might be a promising polyelectrolyte for PAUF purposes.

  20. Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions.

    Science.gov (United States)

    Phan, Duc C; Goodwin, David G; Frank, Benjamin P; Bouwer, Edward J; Fairbrother, D Howard

    2018-10-15

    The properties and commercial viability of biodegradable polymers can be significantly enhanced by the incorporation of carbon nanotubes (CNTs). The environmental impact and persistence of these carbon nanotube/polymer nanocomposites (CNT/PNCs) after disposal will be strongly influenced by their microbial interactions, including their biodegradation rates. At the end of consumer use, CNT/PNCs will encounter diverse communities of microorganisms in landfills, surface waters, and wastewater treatment plants. To explore CNT/PNC biodegradation under realistic environmental conditions, the effect of multi-wall CNT (MWCNT) incorporation on the biodegradation of polyhydroxyalkanoates (PHA) was investigated using a mixed culture of microorganisms from wastewater. Relative to unfilled PHA (0% w/w), the MWCNT loading (0.5-10% w/w) had no statistically significant effect on the rate of PHA matrix biodegradation. Independent of the MWCNT loading, the extent of CNT/PNC mass remaining closely corresponded to the initial mass of CNTs in the matrix suggesting a lack of CNT release. CNT/PNC biodegradation was complete in approximately 20 days and resulted in the formation of a compressed CNT mat that retained the shape of the initial CNT/PNC. This study suggests that although CNTs have been shown to be cytotoxic towards a range of different microorganisms, this does not necessarily impact the biodegradation of the surrounding polymer matrix in mixed culture, particularly in situations where the polymer type and/or microbial population favor rapid polymer biodegradation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Modern mass spectrometry in the characterization and degradation of biodegradable polymers.

    Science.gov (United States)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-15

    In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid

  2. Biodegradable toughened nanohybrid shape memory polymer for smart biomedical applications.

    Science.gov (United States)

    Biswas, Arpan; Singh, Akhand Pratap; Rana, Dipak; Aswal, Vinod K; Maiti, Pralay

    2018-05-17

    A polyurethane nanohybrid has been prepared through the in situ polymerization of an aliphatic diisocyanate, ester polyol and a chain extender in the presence of two-dimensional platelets. Polymerization within the platelet galleries helps to intercalate, generate diverse nanostructure and improve the nano to macro scale self-assembly, which leads to a significant enhancement in the toughness and thermal stability of the nanohybrid in comparison to pure polyurethane. The extensive interactions, the reason for property enhancement, between nanoplatelets and polymer chains are revealed through spectroscopic measurements and thermal studies. The nanohybrid exhibits significant improvement in the shape memory phenomena (91% recovery) at the physiological temperature, which makes it suitable for many biomedical applications. The structural alteration, studied through temperature dependent small angle neutron scattering and X-ray diffraction, along with unique crystallization behavior have extensively revealed the special shape memory behavior of this nanohybrid and facilitated the understanding of the molecular flipping in the presence of nanoplatelets. Cell line studies and subsequent imaging testify that this nanohybrid is a superior biomaterial that is suitable for use in the biomedical arena. In vivo studies on albino rats exhibit the potential of the shape memory effect of the nanohybrid as a self-tightening suture in keyhole surgery by appropriately closing the lips of the wound through the recovery of the programmed shape at physiological temperature with faster healing of the wound and without the formation of any scar. Further, the improved biodegradable nature along with the rapid self-expanding ability of the nanohybrid at 37 °C make it appropriate for many biomedical applications including a self-expanding stent for occlusion recovery due to its tough and flexible nature.

  3. Biodegradable Polymers Induce CD54 on THP-1 Cells in Skin Sensitization Test.

    Science.gov (United States)

    Jung, Yeon Suk; Kato, Reiko; Tsuchiya, Toshie

    2011-01-01

    Currently, nonanimal methods of skin sensitization testing for various chemicals, biodegradable polymers, and biomaterials are being developed in the hope of eliminating the use of animals. The human cell line activation test (h-CLAT) is a skin sensitization assessment that mimics the functions of dendritic cells (DCs). DCs are specialized antigen-presenting cells, and they interact with T cells and B cells to initiate immune responses. Phenotypic changes in DCs, such as the production of CD86 and CD54 and internalization of MHC class II molecules, have become focal points of the skin sensitization test. In this study, we used h-CLAT to assess the effects of biodegradable polymers. The results showed that several biodegradable polymers increased the expression of CD54, and the relative skin sensitizing abilities of biodegradable polymers were PLLG (75 : 25) < PLLC (40 : 60) < PLGA (50 : 50) < PCG (50 : 50). These results may contribute to the creation of new guidelines for the use of biodegradable polymers in scaffolds or allergenic hazards.

  4. Biodegradable Polymers Induce CD54 on THP-1 Cells in Skin Sensitization Test

    Directory of Open Access Journals (Sweden)

    Yeon Suk Jung

    2011-01-01

    Full Text Available Currently, nonanimal methods of skin sensitization testing for various chemicals, biodegradable polymers, and biomaterials are being developed in the hope of eliminating the use of animals. The human cell line activation test (h-CLAT is a skin sensitization assessment that mimics the functions of dendritic cells (DCs. DCs are specialized antigen-presenting cells, and they interact with T cells and B cells to initiate immune responses. Phenotypic changes in DCs, such as the production of CD86 and CD54 and internalization of MHC class II molecules, have become focal points of the skin sensitization test. In this study, we used h-CLAT to assess the effects of biodegradable polymers. The results showed that several biodegradable polymers increased the expression of CD54, and the relative skin sensitizing abilities of biodegradable polymers were PLLG (75 : 25 < PLLC (40 : 60 < PLGA (50 : 50 < PCG (50 : 50. These results may contribute to the creation of new guidelines for the use of biodegradable polymers in scaffolds or allergenic hazards.

  5. Preparation and characterization of polymer nanocomposites based on chitosan and clay minerals

    International Nuclear Information System (INIS)

    Fiori, Ana Paula Santos de Melo; Gabiraba, Victor Parizio; Praxedes, Ana Paula Perdigao; Nunes, Marcelo Ramon da Silva; Balliano, Tatiane L.; Silva, Rosanny Christhinny da; Tonholo, Josealdo; Ribeiro, Adriana Santos

    2014-01-01

    In this work nanocomposites based on chitosan and different clays were prepared using polyethyleneglycol (PEG) as plasticizer. The samples obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA/DTG) and by mechanical characterization (tensile test) with the aim of investigating the interactions between chitosan and clay. The nanocomposite films prepared using sodium bentonite (Ben) showed an increase of 81.2% in the maximum tensile stress values and a decrease of 16.0% in the Young’s modulus when compared to the chitosan with PEG (QuiPEG) films, evidencing that the introduction of the clay into the polymer matrix provided a more flexible and resistant film, whose elongation at break was 93.6% higher than for the QuiPEG film. (author)

  6. Preparation and protection of silver nanoparticles with chitosan derivative

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Cuc; Cao Van Du; Nguyen Cuu Khoa; Tran Ngoc Quyen

    2013-01-01

    In this paper, nano silver solution is prepared and stabilized by chitosan dihydroxyphenyl acetamide (CDHPA). Chitosan is a natural carbohydrate polymer deriving from chitin that has biodegradable, biocompatible, antibacterial and antifungal properties, so when conjugation of the polymer and silver nanoparticles could be expected to increase bactericidal features of the obtained product. The chemical and physical methods were used to characterize the chitosan derivative such as transmission spectrum (UV-Vis), IR spectrum, nuclear magnetic resonance (1H-NMR). Morphology of the obtained nano silver particles were observed by transmission electron microscopy (TEM). (author)

  7. Development and characterization of biodegradable polymer blends - PHBV/PCL irradiated with gamma rays

    International Nuclear Information System (INIS)

    Rosario, F.; Casarin, S.A.; Agnelli, J.A.M.; Souza Junior, O.F. de

    2010-01-01

    This paper presents the results of a study that aimed to develop PHBV biodegradable polymer blends, in a major concentration with PCL, irradiate the pure polymers and blends in two doses of gamma radiation and to analyze the changes in chemical and mechanical properties. The blends used in this study were from natural biodegradable copolymer poly (hydroxybutyrate-valerate) (PHBV) and synthetic biodegradable polymer poly (caprolactone) (PCL 2201) with low molar mass (2,000 g/mol). Several samples were prepared in a co-rotating twin-screw extruder and afterwards, the tensile specimens were injected for the irradiation treatment with 50 kGy to 100 kGy doses and for the mechanical tests. The characterization of the samples before and after the irradiation treatments was performed through scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and mechanical tensile tests. (author)

  8. Sago Starch-Mixed Low-Density Polyethylene Biodegradable Polymer: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Md Enamul Hoque

    2013-01-01

    Full Text Available This research focuses on synthesis and characterization of sago starch-mixed LDPE biodegradable polymer. Firstly, the effect of variation of starch content on mechanical property (elongation at break and Young’s modulus and biodegradability of the polymer was studied. The LDPE was combined with 10%, 30%, 50%, and 70% of sago for this study. Then how the cross-linking with trimethylolpropane triacrylate (TMPTA and electron beam (EB irradiation influence the mechanical and thermal properties of the polymer was investigated. In the 2nd study, to avoid overwhelming of data LDPE polymer was incorporated with only 50% of starch. The starch content had direct influence on mechanical property and biodegradability of the polymer. The elongation at break decreased with increase of starch content, while Young’s modulus and mass loss (i.e., degradation were found to increase with increase of starch content. Increase of cross-linker (TMPTA and EB doses also resulted in increased Young’s modulus of the polymer. However, both cross-linking and EB irradiation processes rendered lowering of polymer’s melting temperature. In conclusion, starch content and modification processes play significant roles in controlling mechanical, thermal, and degradation properties of the starch-mixed LDPE synthetic polymer, thus providing the opportunity to modulate the polymer properties for tailored applications.

  9. Preparation and characterisation of biodegradable pollen-chitosan microcapsules and its application in heavy metal removal.

    Science.gov (United States)

    Sargın, İdris; Kaya, Murat; Arslan, Gulsin; Baran, Talat; Ceter, Talip

    2015-02-01

    Biosorbents have been widely used in heavy metal removal. New resources should be exploited to develop more efficient biosorbents. This study reports the preparation of three novel chitosan microcapsules from pollens of three common, wind-pollinated plants (Acer negundo, Cupressus sempervirens and Populus nigra). The microcapsules were characterized (Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis) and used in removal of heavy metal ions: Cd(II), Cr(III), Cu(II), Ni(II) and Zn(II). Their sorption capacities were compared to those of cross-linked chitosan beads without pollen grains. C. sempervirens-chitosan microcapsules exhibited better performance (Cd(II): 65.98; Cu(II): 67.10 and Zn(II): 49.55 mg g(-1)) than the other microcapsules and the cross-linked beads. A. negundo-chitosan microcapsules were more efficient in Cr(III) (70.40 mg g(-1)) removal. P. nigra-chitosan microcapsules were found to be less efficient. Chitosan-pollen microcapsules (except P. nigra-chitosan microcapsules) can be used in heavy metal removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  11. Drug-polymer interaction studies of cytarabine loaded chitosan nanoparticles

    International Nuclear Information System (INIS)

    Madni, A.; Kashif, P.M.; Nazir, I.; Rehman, M.

    2017-01-01

    Assessment of possible incompatibilities between drug and excipients is an important parameter of preformulation stage during the pharmaceutical product development of active pharmaceutical ingredient (API). The potential physical and chemical interaction among the components of a delivery system can affect the chemical nature, bioavailability, stability, and subsequently therapeutic efficacy of drugs. In this study, ATR-FTIR spectroscopy was employed to investigate the possible intermolecular interaction of Cytarabine with deacetylated chitosan and tripolyphosphate in the resulting physical blends and crosslinked nanoparticulate system. Two different strategies, physical blending and ionotropic gelation, were adopted to prepare binary or tertiary mixtures and nanoparticulate formulation, respectively. The IR spectra of CB showed characteristic peaks at 3438.27 cm-1 (primary amine), 3264.74 cm-1 (hydroxyl group) and 1654.98 cm-1 (C=O stretch in cyclic ring); CS at 3361.47 cm-1 (N-H stretching), 1646.18 cm-1 (C=O of Amide I), 1582.36 cm-1 (C=O of Amide II), and sTPP at 1135.77 cm-1 (P=O). CS-sTPP chemical interaction was confirmed from the shift in the absorption band of carbonyl groups (amide I, II) to 1634.66 cm-1 and 1541.17 cm-1 in blank chitosan nanoparticles, and 1636.87 cm-1, 1543.33 cm-1 in CSNP1 (2:6:1), and at 1646.15 cm-1 and 1557.04 cm-1 in CSNP2 (1:3:1). The characteristic peaks of CB were also present in chitosan formulation with a slight shift in the amino group at 3429.43 cm-1 and 3423.21 cm-1, in the hydroxyl group at 3274.54 cm-1 and 3270.73 cm-1, CSNP1 and CSNP2, respectively. The findings counseled no significant interaction in IR absorption pattern of cytarabine functional groups after encapsulation in CS-sTPP complex, which projected the potential of chitosan nanoparticulate system to entrap cytarabine. (author)

  12. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  13. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Lee-Chun eSu

    2014-07-01

    Full Text Available Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate (POC showed approximately 70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers (CUPEs and biodegradable photoluminescent polymers (BPLPs also exhibited significant bacteria reduction of ~20% and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that they are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  14. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    Science.gov (United States)

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  15. BIODEGRADATION OF EFFLUENT CONTAMINATED WITH DIESEL OIL AND GASOLINE USING CHITOSAN AS A NATURAL COAGULANT IN A CONTINUOUS PROCESS

    Directory of Open Access Journals (Sweden)

    T. V. de Oliveira

    Full Text Available Abstract This study evaluated the effects of aeration (constant aeration, intermittent aeration and a lack of aeration and hydraulic retention time (HRT (2, 3 and 4 days on a continuous process with cell recycling, using chitosan as a natural coagulant for the sedimentation of a C1 mixed culture. This culture was used for the biodegradation of hydrocarbons present in the effluent contaminated with diesel oil and gasoline. The responses monitored included the turbidity removal (TR, total petroleum hydrocarbon (TPH removal and volatile suspended solids (VSS. Constant aeration and an HRT of 4 days produced the best results for the continuous process, resulting in the highest TPH removals (94% and 75% reductions in the supernatant and reaction tank, respectively and TR (95%.

  16. Unprecedented access to functional biodegradable polymers and coatings

    NARCIS (Netherlands)

    Lee, Jung Seok; Wang, Rong; Chen, Wei; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2011-01-01

    The ever-growing biomedical technology such as tissue engineering, regenerative medicine, and controlled drug release intimately relies on the development of advanced functional biomaterials. Here, we report on versatile and robust synthesis of novel vinyl sulfone (VS)-functionalized biodegradable

  17. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation

    International Nuclear Information System (INIS)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C.; Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M.

    2015-01-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  18. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  19. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522

    DEFF Research Database (Denmark)

    Rose, Fabrice; Erbo Wern, Jeanette; Gavins, Francesca

    2018-01-01

    with the cationic surfactant dimethyldioctadecylammonium bromide and the immunopotentiator trehalose-6,6'-dibehenate. Here we show that immunization with these lipid-polymer hybrid nanoparticles (LPNs) coated with the mucoadhesive polymer chitosan enhances mucosal immune responses. Glycol chitosan (GC......-specific IgG/IgA antibodies, together with CTH522-specific interferon γ-producing Th1 cells. This study demonstrates that mucosal administration of chitosan-coated LPNs represents a promising strategy to modulate the magnitude of mucosal vaccine responses....

  20. Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices

    Science.gov (United States)

    Shukur, M. F.; Ithnin, R.; Illias, H. A.; Kadir, M. F. Z.

    2013-08-01

    Plasticized chitosan-poly(ethylene oxide) (PEO) doped with ammonium nitrate (NH4NO3) electrolyte films are prepared by the solution cast technique. From Fourier transform infrared (FTIR) spectroscopy analysis, hydroxyl band of pure chitosan film is shifted from 3354 to 3425 cm-1 when blended with PEO. On addition of 40 wt.% NH4NO3, new peaks at 3207 cm-1 and 3104 cm-1 appear in the hydroxyl band region, indicating the polymer-salt complexation. The carboxamide and amine bands are observed to shift to 1632 and 1527 cm-1, respectively. The interaction of chitosan-PEO-NH4NO3-EC can be observed by the appearance of the doublet Cdbnd O stretching band of EC. The sample with 70 wt.% ethylene carbonate (EC) exhibits the highest room temperature conductivity of (2.06 ± 0.39) × 10-3 S cm-1. This result is further verified by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) studies. Proton battery is fabricated and shows an open circuit potential (OCP) of (1.66 ± 0.02) V and average discharge capacity at (48.0 ± 5.0) mA h. The maximum power density of the fabricated cell is (9.73 ± 0.75) mW cm-2. The polymer electrolyte is also employed as separator in electrical double layer capacitor (EDLC) and is cycled for 140 times at room temperature.

  1. 3D printing biodegradable scaffolds with chitosan materials for tissue engineering

    Science.gov (United States)

    Bardakova, K. N.; Demina, T. S.; Grebenik, E. A.; Minaev, N. V.; Akopova, T. A.; Bagratashvili, V. N.; Timashev, P. S.

    2018-04-01

    Chitosan-g-oligo (L,L-lactide) copolymer was synthesized through a solvent-free reaction in an extruder. Three-dimensional scaffolds based on photosensitive composition contained the synthetized copolymer were formed by two-photon polymerization. The optimum ratio of components, methods of preparation of photopolymerizable mixtures, parameters of the laser structuring and procedure of washing from unbound crosslinkers have been optimized. Chitosan scaffolds were non-cytotoxic and might therefore be a suitable candidate for treating spinal cord injuries and other neuronal degenerative diseases.

  2. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    Science.gov (United States)

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  3. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  4. Critical assessment of chitosan as coagulant to remove cyanobacteria

    NARCIS (Netherlands)

    Lürling, Miquel; Noyma, Natalia Pessoa; Magalhães, Leonardo de; Miranda, Marcela; Mucci, Maíra; Oosterhout, Frank van; Huszar, Vera L.M.; Marinho, Marcelo Manzi

    2017-01-01

    Removal of cyanobacteria from the water column using a coagulant and a ballast compound is a promising technique to mitigate nuisance. As coagulant the organic, biodegradable polymer chitosan has been promoted. Results in this study show that elevated pH, as may be common during cyanobacterial

  5. Critical assessment of chitosan as coagulant to remove cyanobacteria

    NARCIS (Netherlands)

    Lurling, Miguel; Noyma, Natalia Pessoa; Magalhães, de Leonardo; Miranda, Marcela; Mucci, Maíra; Oosterhout, van F.; Huszar, Vera L.M.; Marinho, Marcelo Manzi

    2017-01-01

    Removal of cyanobacteria from the water column using a coagulant and a ballast compound is a promising technique to mitigate nuisance. As coagulant the organic, biodegradable polymer chitosan has been promoted. Results in this study show that elevated pH, as may be common during cyanobacterial

  6. Determination of the Optimum Conditions for Production of Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Dustgani

    2007-12-01

    Full Text Available Bioedegradable nanoparticles are intensively investigated for their potential applications in drug delivery systems. Being a biocompatible and biodegradable polymer, chitosan holds great promise for use in this area. This investigation was concerned with determination and optimization of the effective parameters involved in the production of chitosan nanoparticles using ionic gelation method. Studied variables were concentration and pH of the chitosan solution, the ratio of chitosan to sodium tripolyphosphate therein and the molecular weight of chitosan. For this purpose, Taguchistatistical method was used for design of experiments in three levels. The size of chitosan nanoparticle was determined using laser light scattering. The experimental results showed that concentration of chitosan solution was the most important parameter and chitosan molecular weight the least effective parameter. The optimum conditions for preparation of nanoparticles were found to be 1 mg/mL chitosan solution with pH=5, chitosan to sodium tripolyphosphate ratio of 3 and chitosan molecular weight of 200,000 daltons. The average nanoparticle size at optimum conditions was found to be about 150 nm.

  7. Chitosan in Mucoadhesive Drug Delivery: Focus on Local Vaginal Therapy

    Directory of Open Access Journals (Sweden)

    Toril Andersen

    2015-01-01

    Full Text Available Mucoadhesive drug therapy destined for localized drug treatment is gaining increasing importance in today’s drug development. Chitosan, due to its known biodegradability, bioadhesiveness and excellent safety profile offers means to improve mucosal drug therapy. We have used chitosan as mucoadhesive polymer to develop liposomes able to ensure prolonged residence time at vaginal site. Two types of mucoadhesive liposomes, namely the chitosan-coated liposomes and chitosan-containing liposomes, where chitosan is both embedded and surface-available, were made of soy phosphatidylcholine with entrapped fluorescence markers of two molecular weights, FITC-dextran 4000 and 20,000, respectively. Both liposomal types were characterized for their size distribution, zeta potential, entrapment efficiency and the in vitro release profile, and compared to plain liposomes. The proof of chitosan being both surface-available as well as embedded into the liposomes in the chitosan-containing liposomes was found. The capability of the surface-available chitosan to interact with the model porcine mucin was confirmed for both chitosan-containing and chitosan-coated liposomes implying potential mucoadhesive behavior. Chitosan-containing liposomes were shown to be superior in respect to the simplicity of preparation, FITC-dextran load, mucoadhesiveness and in vitro release and are expected to ensure prolonged residence time on the vaginal mucosa providing localized sustained release of entrapped model substances.

  8. Radiation sterilization of enzyme hybrids with biodegradable polymers

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Oka, Masahito; Hayashi, Toshio

    2002-01-01

    Ionizing radiations, which have already been utilized for the sterilization of medical supplies as well as gas fumigation, should be the final candidate to decontaminate 'hybrid' biomaterials containing bio-active materials including enzymes because irradiation induces neither heat nor substances affecting the quality of the materials and our health. In order to check the feasibility of 60 Co-gamma rays on these materials, we selected commercial proteases including papain and bromelain hybridized with commercial activated chitosan beads and demonstrated that these enzyme-hybrids suspended in water showed the significant radiation durability of more than twice as much as free enzyme solution at 25-kGy irradiation. Enhanced thermal and storage stability of the enzyme hybrids were not affected by the same dose level of irradiation, either, indicating that commercial irradiation sterilization method is applicable to enzyme hybrids without modification

  9. Investigating the crystal growth behavior of biodegradable polymer blend thin films using in situ atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-01-01

    Full Text Available This article reports the crystal growth behavior of biodegradable polylactide (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend thin films using atomic force microscopy (AFM). Currently, polymer thin films have received increased research...

  10. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single-site stereoselective polymerisation initiators

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Dijkstra, Pieter J.; Feijen, Jan

    2004-01-01

    Polylactides and their copolymers are key biodegradable polymers used widely in biomedical, pharmaceutical and ecological applications. The development of synthetic pathways and catalyst/initiator systems to produce pre-designed polylactides, as well as the fundamental understanding of the

  11. Trimethyl and carboxymethyl chitosan carriers for bio-active polymer-inorganic nanocomposites.

    Science.gov (United States)

    Geisberger, Georg; Gyenge, Emina Besic; Maake, Caroline; Patzke, Greta R

    2013-01-02

    The carrier properties of carboxymethyl chitosan (CMC) and trimethyl chitosan (TMC) in combination with polyoxometalates (POMs) as inorganic drug prototypes are compared with respect to the influence of polymer matrix charge and structure on the emerging composites. A direct crosslinking approach with TMC and K(6)H(2)[CoW(11)TiO(40)]·13H(2)O ({CoW(11)TiO(40)}) as a representative anticancer POM affords nanocomposites with a size range of 50-90nm. The obtained POM-chitosan composites are characterized with a wide range of analytical methods, and POM encapsulation into positively charged TMC brings forward different nanocomposite morphologies and properties than CMC as a carrier material. Furthermore, uptake of fluorescein isothiocyanate (FITC) labeled POM-CMC and POM-TMC by HeLa cells was monitored, and the influence of chlorpromazine (CP) as inhibitor of the clathrin mediated pathway revealed different cellular uptake behavior of composites and pristine carriers. TMC/{CoW(11)TiO(40)} nanocomposites are taken up by HeLa cells after short incubation times around 30 min at low concentrations. The anticancer activity of pristine {CoW(11)TiO(40)} and its TMC-nanocomposites was investigated in vitro with MTT assays and compared to a reference POM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Structure and properties of microcrystalline chitosan

    International Nuclear Information System (INIS)

    Pighinelli, Luciano; Guimaraes, Fernando Machado; Paz, Luan Rios; Zanin, Gabrielle Brehm; Kmiec, Marzena; Tedesco, Felipe Melleu; Reis, Victoria Oliva dos; Silva, Matheus Machado; Becker, Cristiane Miotto; Zehetmeyer, Gislene; Rasia, Gisele

    2016-01-01

    Full text: The microcrystalline chitosan is a modified form of chitosan; it has been elaborated from obtaining method of chitosan salts. It is characterized by special properties of the initial chitosan such as biocompatibility, bioactivity, non-toxic, biodegradability [1]. The objective of this study is to develop a different method to obtain the microcrystalline chitosan and the following characterization of the initial chitosan and MCCh. The material was characterized by FTIR, scanning of electron microscopy, SEM, nuclear magnetic resonance, NMR, and x-ray diffraction. The results indicate that the process to obtain MCCh, did not change the structure of the initial chitosan. The MCCh shows the same functional groups of the initial chitosan. The NMR results shows the acetylated and deacetylated groups. The morphology shows a homogeneous structure of surface. The X-ray diffraction shows the reduction of the crystallinity in the MCCh, indicating a bigger amorphous structure of the MCCh. The chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because of ensure efficiency in healing process. This polysaccharide has a great potential to develop a new generation of biomaterials that can be used in regenerative medicine and tissue engineering [2]. References: [1]. LI, Q. et al. Applications and properties of chitosan. In: GOOSEN, M. F. A. (Ed.). Applications of chitin and chitosan. Basel: Technomic, 1997. p. 3-29; [2]. Luciano Pighinelli, Magdalena Kucharska, Dariuz Wawro. Preparation of Microcrystalline chitosan: (MCCh0/tricalcium phosphate complex with Hydroxyapatite in sponge and fibre from for hard tissue regeneration. (author)

  13. Structure and properties of microcrystalline chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Luciano; Guimaraes, Fernando Machado; Paz, Luan Rios; Zanin, Gabrielle Brehm; Kmiec, Marzena; Tedesco, Felipe Melleu; Reis, Victoria Oliva dos; Silva, Matheus Machado, E-mail: lpighinelli@hotmail.com [Universidade Luterana, Sao Paulo, SP (Brazil); Becker, Cristiane Miotto; Zehetmeyer, Gislene; Rasia, Gisele [Centro Universitario SENAI CIMATEC, Salvador, BA (Brazil). Instituto de Engenharia de Materiais Polimericos

    2016-07-01

    Full text: The microcrystalline chitosan is a modified form of chitosan; it has been elaborated from obtaining method of chitosan salts. It is characterized by special properties of the initial chitosan such as biocompatibility, bioactivity, non-toxic, biodegradability [1]. The objective of this study is to develop a different method to obtain the microcrystalline chitosan and the following characterization of the initial chitosan and MCCh. The material was characterized by FTIR, scanning of electron microscopy, SEM, nuclear magnetic resonance, NMR, and x-ray diffraction. The results indicate that the process to obtain MCCh, did not change the structure of the initial chitosan. The MCCh shows the same functional groups of the initial chitosan. The NMR results shows the acetylated and deacetylated groups. The morphology shows a homogeneous structure of surface. The X-ray diffraction shows the reduction of the crystallinity in the MCCh, indicating a bigger amorphous structure of the MCCh. The chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because of ensure efficiency in healing process. This polysaccharide has a great potential to develop a new generation of biomaterials that can be used in regenerative medicine and tissue engineering [2]. References: [1]. LI, Q. et al. Applications and properties of chitosan. In: GOOSEN, M. F. A. (Ed.). Applications of chitin and chitosan. Basel: Technomic, 1997. p. 3-29; [2]. Luciano Pighinelli, Magdalena Kucharska, Dariuz Wawro. Preparation of Microcrystalline chitosan: (MCCh0/tricalcium phosphate complex with Hydroxyapatite in sponge and fibre from for hard tissue regeneration. (author)

  14. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  15. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    Science.gov (United States)

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  16. Study of in vitro degradation of biodegradable polymer based thin ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... Science and Biomedical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. Accepted 7 November, 2011 .... polymers approved by the US Food and Drug. Administration (FDA) for certain ... equation is applicable when the extent of reaction is slow or before the specimen ...

  17. Study of in vitro degradation of biodegradable polymer based thin ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... treatment of bone fracture costs over Ł 900 million annually in the ... implantation when the cells start to migrate deep into the scaffold (Ma .... DISCUSSION. Figure 8 is ... polymer-based materials proceeds via a surface erosion mechanism. ... materials and the critical thickness above which the degradation ...

  18. A model for hydrolytic degradation and erosion of biodegradable polymers.

    Science.gov (United States)

    Sevim, Kevser; Pan, Jingzhe

    2018-01-15

    For aliphatic polyesters such as PLAs and PGAs, there is a strong interplay between the hydrolytic degradation and erosion - degradation leads to a critically low molecular weight at which erosion starts. This paper considers the underlying physical and chemical processes of hydrolytic degradation and erosion. Several kinetic mechanisms are incorporated into a mathematical model in an attempt to explain different behaviours of mass loss observed in experiments. In the combined model, autocatalytic hydrolysis, oligomer production and their diffusion are considered together with surface and interior erosion using a set of differential equations and Monte Carlo technique. Oligomer and drug diffusion are modelled using Fick's law with the diffusion coefficients dependent on porosity. The porosity is due to the formation of cavities which are a result of polymer erosion. The model can follow mass loss and drug release up to 100%, which cannot be explained using a simple reaction-diffusion. The model is applied to two case studies from the literature to demonstrate its validity. The case studies show that a critical molecular weight for the onset of polymer erosion and an incubation period for the polymer dissolution are two critical factors that need to be considered when predicting mass loss and drug release. In order to design bioresorbable implants, it is important to have a mathematical model to predict polymer degradation and corresponding drug release. However, very different behaviours of polymer degradation have been observed and there is no single model that can capture all these behaviours. For the first time, the model presented in this paper is capable of capture all these observed behaviours by switching on and off different underlying mechanisms. Unlike the existing reaction-diffusion models, the model presented here can follow the degradation and drug release all the way to the full disappearance of an implant. Crown Copyright © 2017. Published by

  19. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2016-01-01

    Full Text Available The use of biodegradable polymers is spreading in agriculture to replace those materials derived from petroleum, thus reducing the environmental concerns. However, to issue a significant assessment, biodegradation rate must be measured in case-specific standardized conditions. In accordance with ISO 14855-1, we designed and used an experimental apparatus to evaluate the biodegradation rate of three biopolymers based on renewable resources, two poly(ε-caprolactone (PCL composites, and a compatibilized polylactic acid and polybutyrate (PLA/PBAT blend. Biodegradation tests were carried out under composting condition using mature olive-mill waste (OMW compost as inoculum. Carbon dioxide emissions were automatically recorded by infrared gas detectors and also trapped in saturated Ba(OH2 solution and evaluated via a standard titration method to check the results. Some of the samples reached more than 80% biodegradation in less than 20 days. Both the experimental apparatus and the OMW compost showed to be suitable for the cases studied.

  20. Obtaining and characterization of a biodegradable polymer starting from the tapioca starch

    International Nuclear Information System (INIS)

    Ruiz Aviles, Gladys

    2006-01-01

    This study focuses on the preparation of tapioca starch biodegradable polymer, processed by blends of starch modified with glycerin and water as plasticizers, by using roll mill and a single-screw extruder in the process. During extrusion, there is a series of variables to control namely: the barrel temperature profile, screw torque and screw rotation speed. Tensile test, differential scanning calorimetric (DSC), thermogravimetric analysis (TGA), Fourier transformer infrared spectroscopy (FTIR) and morphology were used in the process

  1. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    Energy Technology Data Exchange (ETDEWEB)

    Zhul' kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L., E-mail: iordan@chph.ras.ru [Russian Academy of Sciences, Semenov Institute of Chemical Physics (Russian Federation)

    2009-05-15

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  2. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    International Nuclear Information System (INIS)

    Zhul'kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L.

    2009-01-01

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  3. A study on thermal properties of biodegradable polymers using photothermal methods

    Science.gov (United States)

    Siqueira, A. P. L.; Poley, L. H.; Sanchez, R.; da Silva, M. G.; Vargas, H.

    2005-06-01

    In this work is reported the use of photothermal techniques applied to the thermal characterization of biodegradable polymers of Polyhydroxyalkanoates (PHAs) family. This is a family of polymer produced by bacteria using renewable resources. It exhibits thermoplastic properties and therefore it can be an alternative product for engineering plastics, being also applied as packages for food industry and fruits. Thermal diffusivities were determined using the open photoacoustic cell (OPC) configuration. Specific heat capacity measurements were performed monitoring temperature of the samples under white light illumination against time. Typical values obtained for the thermal properties are in good agreement with those found in the literature for other polymers. Due to the incorporation of hydroxyvalerate in the monomer structure, the thermal diffusivity and thermal conductivity increase reaching a saturation value, otherwise the specific thermal capacity decreases as the concentration of the hydroxyvalerate (HV) increases. These results can be explained by polymers internal structure and are allowing new applications of these materials.

  4. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Science.gov (United States)

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  5. Development of partially biodegradable foams from PP/HMSPP blends with natural and synthetic polymers

    International Nuclear Information System (INIS)

    Cardoso, Elizabeth Carvalho Leite

    2014-01-01

    Polymers are used in various application and in different industrial areas providing enormous quantities of wastes in environment. Among diverse components of residues in landfills are polymeric materials, including Polypropylene, which contribute with 20 to 30% of total volume of solid residues. As polymeric materials are immune to microbial degradation, they remain in soil and in landfills as a semi-permanent residue. Environmental concerning in litter reduction is being directed to renewable polymers development for manufacturing of polymeric foams. Foamed polymers are considered future materials, with a wide range of applications; high density structural foams are specially used in civil construction, in replacement of metal, woods and concrete with a final purpose of reducing materials costs. At present development, it was possible the incorporation of PP/HMSPP polymeric matrix blends with sugarcane bagasse, PHB and PLA, in structural foams production. Thermal degradation at 100, 120 and 160 deg C temperatures was not enough to induce biodegradability. Gamma irradiation degradation, at 50, 100, 200 and 500 kGy showed effective for biodegradability induction. Irradiated bagasse blends suffered surface erosion, in favor of water uptake and consequently, a higher biodegradation in bulk structure. (author)

  6. Mucoadhesive properties and interaction with P-glycoprotein (P-gp) of thiolated-chitosans and -glycol chitosans and corresponding parent polymers: a comparative study.

    Science.gov (United States)

    Trapani, Adriana; Palazzo, Claudio; Contino, Marialessandra; Perrone, Maria Grazia; Cioffi, Nicola; Ditaranto, Nicoletta; Colabufo, Nicola Antonio; Conese, Massimo; Trapani, Giuseppe; Puglisi, Giovanni

    2014-03-10

    The aim of the present work was to compare the mucoadhesive and efflux pump P-glycoprotein (P-gp) interacting properties of chitosan (CS)- and glycolchitosan (GCS)-based thiomers and corresponding unmodified parent polymers. For this purpose, the glycol chitosan-N-acetyl-cysteine (GCS-NAC) and glycol chitosan-glutathione (GCS-GSH) thiomers were prepared under simple and mild conditions. Their mucoadhesive characteristics were studied by turbidimetric and zeta potential measurements. The P-gp interacting properties were evaluated measuring the effects of thiolated- and unmodified-polymers on the bidirectional transport (BA/AB) of rhodamine-123 across Caco-2 cells as well as in the calcein-AM and ATPase activity assays. Although all the thiomers and unmodified polymers showed optimal-excellent mucoadhesive properties, the best mucoadhesive performances have been obtained by CS and CS-based thiomers. Moreover, it was found that the pretreatment of Caco-2 cell monolayer with GCS-NAC or GCS restores Rho-123 cell entrance by inhibiting P-gp activity. Hence, GCS-NAC and GCS may constitute new biomaterials useful for improving the bioavailability of P-gp substrates.

  7. Hemocompatibility of ultrafine systems on the basis of chitosan and its derivatives polymer-colloid complexes

    Directory of Open Access Journals (Sweden)

    M.V. Bazunova

    2015-03-01

    Full Text Available This article presents the results of the development process for the preparation of micro and nano-sized polymer-colloid com-plexes (РСС on the basis of water-soluble natural polymer chitosan (СTZ and the sodium salt of chitosan succinylamid (SСTZ with silver halide sols in aqueous media. Results of research of СTZ, sodium salt of SСTZ solutions and PСС of CTZ and SСTZ with colloidal parti-cles of silver iodide influence on structurally-functional properties of erythrocytes’ membranes on model of acidic hemolisis are presented in the article. Their influence on the nature of erythrocytes distribution by degree of their stability and on kinetic parameters (the beginning, intensity and completion of process of their destruction under the influence of the damaging agent (HCl is shown. The comparative analysis of results convinces that СTZ, SСTZ solutions and disperse systems on the basis of PСС of СTZ and SСTZ with colloidal particles of the silver iodide are capable of modulating variously matrix properties of erythrocytes of blood.

  8. Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Kovář, Lubomír; Strohalm, Jiří; Chytil, Petr; Říhová, Blanka; Ulbrich, Karel

    2011-01-01

    Roč. 154, č. 3 (2011), s. 241-248 ISSN 0168-3659 R&D Projects: GA AV ČR IAA400500806; GA AV ČR IAAX00500803; GA ČR GAP301/11/0325 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : star polymer * HPMA copolymers * drug release Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.732, year: 2011

  9. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Munawar A. Mohammed

    2017-11-01

    Full Text Available The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.

  10. Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Roozbahani

    2013-01-01

    Full Text Available Recently, nanofibrous scaffolds have been used in the field of biomedical engineering as wound dressings, tissue engineering scaffolds, and drug delivery applications. The electrospun nanofibrous scaffolds can be used as carriers for several types of drugs, genes, and growth factors. PCL is one of the most commonly applied synthetic polymers for medical use because of its biocompatibility and slow biodegradability. PCL is hydrophobic and has no cell recognition sites on its structure. Electrospinning of chitosan and PCL blend was investigated in formic acid/acetic acid as the solvent with different PCL/chitosan ratios. High viscosity of chitosan solutions makes difficulties in the electrospinning process. Strong hydrogen bonds in a 3D network in acidic condition prevent the movement of polymeric chains exposed to the electrical field. Consequently, the amount of chitosan in PCL/chitosan blend was limited and more challenging when the concentration of PCL increases. The treatment of chitosan in alkali condition under high temperature reduced its molecular weight. Longer treatment time further decreased the molecular weight of chitosan and hence its viscosity. Electrospinning of PCL/chitosan blend was possible at higher chitosan ratio, and SEM images showed a decrease in fiber diameter and narrower distribution with increase in the chitosan ratio.

  11. Biodegradation kinetics of thin-stillage treatment by Aspergillus awamori and characterization of recovered chitosan.

    Science.gov (United States)

    Ray, S Ghosh; Ghangrekar, M M

    2016-02-01

    An attempt has been made to provide solution for distillery wastewater using fungal pretreatment followed by an anaerobic process to achieve higher organic matter removal, which is a challenge at present with currently adopted technologies. Submerged growth kinetics of distillery wastewater supernatant by Aspergillus awamori was also evaluated. The proposed kinetic models using a logistic equation for fungal growth and the Leudeking-Piret equation for product formation were validated experimentally, and substrate consumption equation was derived using estimated kinetic coefficients. Up to 59.6 % chemical oxygen demand (COD) and 70 % total organic carbon (TOC) removals were observed in 96 h of fungal incubation. Maximum specific growth rate of fungi, coefficient of biomass yield on substrate and growth-associated product formation coefficient were estimated to be 0.07 ± 0.01 h(-1), 0.614 kg biomass/kg utilized COD and 0.215 kg CO2/kg utilized TOC, respectively. The chitosan recovery of 0.072-0.078 kg/kg of dry mycelium was obtained using dilute sulphuric acid extraction, showing high purity and characteristic chitosan properties according to FTIR and XRD analyses. After anaerobic treatment of the fungal pretreated effluent with COD concentration of 7.920 ± 0.120 kg COD/m(3) (organic loading rate of 3.28 kg COD/m(3) day), overall COD reduction of 91.07 % was achieved from distillery wastewater.

  12. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation.

    Science.gov (United States)

    Gómez-Estaca, J; López de Lacey, A; López-Caballero, M E; Gómez-Guillén, M C; Montero, P

    2010-10-01

    Essential oils of clove (Syzygium aromaticum L.), fennel (Foeniculum vulgare Miller), cypress (Cupressus sempervirens L.), lavender (Lavandula angustifolia), thyme (Thymus vulgaris L.), herb-of-the-cross (Verbena officinalis L.), pine (Pinus sylvestris) and rosemary (Rosmarinus officinalis) were tested for their antimicrobial activity on 18 genera of bacteria, which included some important food pathogen and spoilage bacteria. Clove essential oil showed the highest inhibitory effect, followed by rosemary and lavender. In an attempt to evaluate the usefulness of these essential oils as food preservatives, they were also tested on an extract made of fish, where clove and thyme essential oils were the most effective. Then, gelatin-chitosan-based edible films incorporated with clove essential oil were elaborated and their antimicrobial activity tested against six selected microorganisms: Pseudomonas fluorescens, Shewanella putrefaciens, Photobacterium phosphoreum, Listeria innocua, Escherichia coli and Lactobacillus acidophilus. The clove-containing films inhibited all these microorganisms irrespectively of the film matrix or type of microorganism. In a further experiment, when the complex gelatin-chitosan film incorporating clove essential oil was applied to fish during chilled storage, the growth of microorganisms was drastically reduced in gram-negative bacteria, especially enterobacteria, while lactic acid bacteria remained practically constant for much of the storage period. The effect on the microorganisms during this period was in accordance with biochemical indexes of quality, indicating the viability of these films for fish preservation. 2010 Elsevier Ltd. All rights reserved.

  13. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  14. Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds

    Directory of Open Access Journals (Sweden)

    Nimet Bölgen

    2016-08-01

    Full Text Available Polymeric scaffolds produced by cryogelation technique have attracted increasing attention for tissue engineering applications. Cryogelation is a technique which enables to produce interconnected porous matrices from the frozen reaction mixtures of polymers or monomeric precursors. Chitosan is a biocompatible, biodegradable, nontoxic, antibacterial, antioxidant and antifungal natural polymer that is obtained by deacetylation of chitin, which is mostly found in the exoskeleton of many crustacean. In this study, chitin was isolated from the exoskeleton of blue crap (Callinectes sapidus using a chemical method. Callinectes sapidus samples were collected from a market, as a waste material after it has been consumed as food. Demineralization, deproteinization and decolorization steps were applied to the samples to obtain chitin. Chitosan was prepared from isolated chitin by deacetylation at high temperatures. The chemical compositon of crab shell, extracted chitin and chitosan were characterized with FTIR analyses. And also to determine the physicochemical and functional properties of the produced chitosan; solubility, water binding and fat binding analysis were performed. Chitosan cryogel scaffolds were prepared by crosslinking reaction at cryogenic conditions at constant amount of chitosan (1%, w/v with different ratios of glutaraldehyde (1, 3, and 6%, v/v as crosslinker. The chemical structure of the scaffolds were examined by FTIR. Also, the water uptake capacity of scaffolds have been determined. Collectively, the results suggested that the characterized chitosan cryogels can be potential scaffolds to be used in tissue engineering applications.

  15. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  16. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Farooq, Ariba [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna; Khan, Abdul Samad [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  17. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    International Nuclear Information System (INIS)

    Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham ur

    2016-01-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  18. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Putri, Zufira; Arcana, I Made

    2014-01-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO 2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO 2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO 2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  19. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  20. Synthesis of biodegradable polymer/glass fiber composite by EB irradiation and its biodegradability

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Doam Thi The

    2006-01-01

    A composite was synthesized by irradiation of poly (butylene succinate), PBS and glass fiber (GF) in the presence of a polyfunctional monomer, trimethallyl isocyanurate (TMAIC), which accelerates gel formation of the matrix (PBS). The highest gel fraction was achieved at 1% concentration of TMAIC at the dose level of 200 kGy. Mechanical properties of the composites were highly dependent on the gel fraction of the polymer and volume fraction of glass fiber reinforcement in the composite. Optimal conditions to synthesize a PBS/GF composite reaching maximum value of bending strength were 1% TMAIC, 67% fiber volume fraction, and radiation dose of 200 kGy. These synthesized PBS/GF composites can be degraded by enzymes produced by the microorganism population in soil. (author)

  1. Irradiation gamma on chitosan films

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Luana Miranda Lopes de; Souza, Adriana Regia Marques de; Arthur, Valter, E-mail: lumilopes@hotmail.com, E-mail: drilavras@yahoo.com.br, E-mail: arthur@cena.usp.br [Universidade Federal do Tocantins (UFT), Palmas,TO (Brazil). Departmento de Ciencia e Tecnologia de Alimentos; Universidade Federal de Goias (UFGO), Goiania (Brazil). Departmento de Ciencia e Tecnologia de Alimentos; Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2017-11-01

    Films are preformed structures, independent, that are used to wrap food after processing, increasing their shelf life and enhancing its bright and attractive appearance. They are prepared from biological materials as an alternative to the plastic synthetic containers to improve the quality of the environment. Chitosan is a biodegradable polymer composed of β-(1-4) linked D-glucosamine (deacetylated unit) and N-acetyl-D- glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is a structural component of the exoskeleton of crustaceans. She is able to form films and edible and/or biodegradable coatings. With the objective to evaluate the effect of different doses of gamma radiation (0, 5, 10 and 15 kGy) and chitosan concentrations (1 and 2%) in film properties, it was evaluated its optical, mechanical and morphological properties. The films were produced by casting. Irradiation did not affect the thickness of the films, but influenced its colors, increasing the tone of the film for a stronger yellowish color. This fact can be attributed to the increased concentration of C = O bonds of chitosan due to the breakdown of the chain reaction and the Maillard reaction. Irradiated films showed smoother surface and less rough, due to the degradation of the chitosan molecule and poor mechanical properties, not showing good flexibility and stretching. (author)

  2. Irradiation gamma on chitosan films

    International Nuclear Information System (INIS)

    Mello, Luana Miranda Lopes de; Souza, Adriana Regia Marques de; Arthur, Valter

    2017-01-01

    Films are preformed structures, independent, that are used to wrap food after processing, increasing their shelf life and enhancing its bright and attractive appearance. They are prepared from biological materials as an alternative to the plastic synthetic containers to improve the quality of the environment. Chitosan is a biodegradable polymer composed of β-(1-4) linked D-glucosamine (deacetylated unit) and N-acetyl-D- glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is a structural component of the exoskeleton of crustaceans. She is able to form films and edible and/or biodegradable coatings. With the objective to evaluate the effect of different doses of gamma radiation (0, 5, 10 and 15 kGy) and chitosan concentrations (1 and 2%) in film properties, it was evaluated its optical, mechanical and morphological properties. The films were produced by casting. Irradiation did not affect the thickness of the films, but influenced its colors, increasing the tone of the film for a stronger yellowish color. This fact can be attributed to the increased concentration of C = O bonds of chitosan due to the breakdown of the chain reaction and the Maillard reaction. Irradiated films showed smoother surface and less rough, due to the degradation of the chitosan molecule and poor mechanical properties, not showing good flexibility and stretching. (author)

  3. Biodegradable-Polymer Biolimus-Eluting Stents versus Durable-Polymer Everolimus-Eluting Stents at One-Year Follow-Up: A Registry-Based Cohort Study.

    Science.gov (United States)

    Parsa, Ehsan; Saroukhani, Sepideh; Majlessi, Fereshteh; Poorhosseini, Hamidreza; Lofti-Tokaldany, Masoumeh; Jalali, Arash; Salarifar, Mojtaba; Nematipour, Ebrahim; Alidoosti, Mohammad; Aghajani, Hassan; Amirzadegan, Alireza; Kassaian, Seyed Ebrahim

    2016-04-01

    We compared outcomes of percutaneous coronary intervention patients who received biodegradable-polymer biolimus-eluting stents with those who received durable-polymer everolimus-eluting stents. At Tehran Heart Center, we performed a retrospective analysis of the data from January 2007 through December 2011 on 3,270 consecutive patients with coronary artery disease who underwent percutaneous coronary intervention with the biodegradable-polymer biolimus-eluting stent or the durable-polymer everolimus-eluting stent. We excluded patients with histories of coronary artery bypass grafting or percutaneous coronary intervention, acute ST-segment-elevation myocardial infarction, or the implantation of 2 different stent types. Patients were monitored for 12 months. The primary endpoint was a major adverse cardiac event, defined as a composite of death, nonfatal myocardial infarction, and target-vessel and target-lesion revascularization. Durable-polymer everolimus-eluting stents were implanted in 2,648 (81%) and biodegradable-polymer biolimus-eluting stents in 622 (19%) of the study population. There was no significant difference between the 2 groups (2.7% vs 2.7%; P=0.984) in the incidence of major adverse cardiac events. The cumulative adjusted probability of major adverse cardiac events in the biodegradable-polymer biolimus-eluting stent group did not differ from that of such events in the durable-polymer everolimus-eluting stent group (hazard ratio=0.768; 95% confidence interval, 0.421-1.44; P=0.388). We conclude that in our patients the biodegradable-polymer biolimus-eluting stent was as effective and safe, during the 12-month follow-up period, as was the durable-polymer everolimus-eluting stent.

  4. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  5. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.

    Science.gov (United States)

    Becker, Johannes; Lu, Lichun; Runge, M Brett; Zeng, Heng; Yaszemski, Michael J; Dadsetan, Mahrokh

    2015-08-01

    In tissue engineering, development of an osteoconductive construct that integrates with host tissue remains a challenge. In this work, the effect of bone-like minerals on maturation of pre-osteoblast cells was investigated using polymer-mineral scaffolds composed of poly(propylene fumarate)-co-poly(caprolactone) (PPF-co-PCL) and nano-sized hydroxyapatite (HA). The HA of varying concentrations was added to an injectable formulation of PPF-co-PCL and the change in thermal and mechanical properties of the scaffolds was evaluated. No change in onset of degradation temperature was observed due to the addition of HA, however compressive and tensile moduli of copolymer changed significantly when HA amounts were increased in composite formulation. The change in mechanical properties of copolymer was found to correlate well to HA concentration in the constructs. Electron microscopy revealed mineral nucleation and a change in surface morphology and the presence of calcium and phosphate on surfaces was confirmed using energy dispersive X-ray analysis. To characterize the effect of mineral on attachment and maturation of pre-osteoblasts, W20-17 cells were seeded on HA/copolymer composites. We demonstrated that cells attached more to the surface of HA containing copolymers and their proliferation rate was significantly increased. Thus, these findings suggest that HA/PPF-co-PCL composite scaffolds are capable of inducing maturation of pre-osteoblasts and have the potential for use as scaffold in bone tissue engineering. © 2014 Wiley Periodicals, Inc.

  6. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    International Nuclear Information System (INIS)

    Litviakov, N. V.; Tsyganov, M. M.; Cherdyntseva, N. V.; Tverdokhlebov, S. I.; Bolbasov, E. N.; Perelmuter, V. M.; Kulbakin, D. E.; Zheravin, A. A.; Svetlichnyi, V. A.

    2016-01-01

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  7. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Litviakov, N. V., E-mail: nvlitv72@yandex.ru; Tsyganov, M. M., E-mail: TsyganovMM@yandex.ru; Cherdyntseva, N. V., E-mail: nvch@oncology.tomsk.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tverdokhlebov, S. I., E-mail: tverd@tpu.ru; Bolbasov, E. N., E-mail: ebolbasov@gmail.com [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Perelmuter, V. M., E-mail: pvm@ngs.ru; Kulbakin, D. E., E-mail: kulbakin2012@gmail.com [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Zheravin, A. A., E-mail: zheravin2010@yandex.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Academician E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Svetlichnyi, V. A., E-mail: v-svetlichnyi@bk.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  8. Radiolabeling and physicochemical characterization of boron nitride nanotubes functionalized with glycol chitosan polymer

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Daniel Cristian Ferreira; Ferreira, Tiago Hilario; Ferreira, Carolina de Aguiar; Sousa, Edesia Martins Barros de, E-mail: sousaem@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Lab. de Materiais Nanoestruturados para Bioaplicacoes; Cardoso, Valbert Nascimento, E-mail: cardosov@farmacia.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia

    2011-07-01

    In the last years, some nanostructured systems has proposed as new drugs and radioisotopes delivery systems, aiming the diagnosis and treatment of many diseases, including the cancer. Among these systems, the Boron Nitride Nanotubes (BNNTs) showed adequate characteristics to be applied in biomedical area, due to its high stability and considerable biocompatibility. However, due to its hydrophobic characteristics, these applications are limited and its behavior in vivo (guinea pigs) is unexplored yet. Seeking to overcome this problems, in the present work, we functionalized the BNNTs (noncovalent wrapped) with glycol chitosan (GC), a biocompatible and stable polymer, in order to disperse it in water. The results showed that BNNTs were well dispersed in water with mean size and polydispersity index suitable to conduct biodistribution studies in mice. The nanostructures were physicochemical and morphologically characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Raman Spectroscopy. The results revealed that the functionalization process with glycol chitosan was obtained with successfully on BNNTs surface. Furthermore, we developed a radiolabeling protocol with {sup 99m}Tc radioisotope in functionalized BNNTs, aiming in future, to conduct image biodistribution studies in mice. The results revealed that the nanotubes were radiolabeled with radiochemical purity above of 90%, being considered suitable to scintigraphic image acquisition. (author)

  9. Radiolabeling and physicochemical characterization of boron nitride nanotubes functionalized with glycol chitosan polymer

    International Nuclear Information System (INIS)

    Soares, Daniel Cristian Ferreira; Ferreira, Tiago Hilario; Ferreira, Carolina de Aguiar; Sousa, Edesia Martins Barros de; Cardoso, Valbert Nascimento

    2011-01-01

    In the last years, some nanostructured systems has proposed as new drugs and radioisotopes delivery systems, aiming the diagnosis and treatment of many diseases, including the cancer. Among these systems, the Boron Nitride Nanotubes (BNNTs) showed adequate characteristics to be applied in biomedical area, due to its high stability and considerable biocompatibility. However, due to its hydrophobic characteristics, these applications are limited and its behavior in vivo (guinea pigs) is unexplored yet. Seeking to overcome this problems, in the present work, we functionalized the BNNTs (noncovalent wrapped) with glycol chitosan (GC), a biocompatible and stable polymer, in order to disperse it in water. The results showed that BNNTs were well dispersed in water with mean size and polydispersity index suitable to conduct biodistribution studies in mice. The nanostructures were physicochemical and morphologically characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Raman Spectroscopy. The results revealed that the functionalization process with glycol chitosan was obtained with successfully on BNNTs surface. Furthermore, we developed a radiolabeling protocol with 99m Tc radioisotope in functionalized BNNTs, aiming in future, to conduct image biodistribution studies in mice. The results revealed that the nanotubes were radiolabeled with radiochemical purity above of 90%, being considered suitable to scintigraphic image acquisition. (author)

  10. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    Science.gov (United States)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  11. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.

    Science.gov (United States)

    Geetha, D; Kavitha, S; Ramesh, P S

    2015-11-01

    In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap. Copyright © 2015. Published by Elsevier Inc.

  12. Investigation of Bauschinger effect in thermo-plastic polymers for biodegradable stents

    Directory of Open Access Journals (Sweden)

    Schümann Kerstin

    2017-09-01

    Full Text Available The Bauschinger effect is a phenomenon metals show as a result of plastic deformation. After a primary plastic deformation the yield strength in the opposite loading direction decreases. The aim of this study is to investigate if there is a phenomenon similar to Bauschinger effect in thermoplastic polymers for stent application that would influence the mechanical properties of these biodegradable implants. Combined uniaxial tensile with subsequent compression tests as well as conventional compression tests without prior tensile loading were performed using biodegradable polymers for stent application (PLLA and a PLLA based blend. Comparing the results of compression tests with prior tensile loading to the compression-only tests a decrease in compressive strength can be observed for both of the tested materials. The conclusion of the performed experiments is that there is a phenomenon similar to Bauschinger effect not only in metallic materials but also in the examined thermoplastic polymers. The observed reduction of compressive strength as a consequence of prior tensile loading can influence the mechanical behaviour, e.g. the radial strength, of polymeric stents after sustaining a complex load history due to crimping and expansion.

  13. Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer

    Directory of Open Access Journals (Sweden)

    Tianwen Yuan

    2016-05-01

    Full Text Available Esophageal stent implantation can relieve esophageal stenosis and obstructions in benign esophageal strictures, and magnesium alloy stents are a good candidate because of biodegradation and biological safety. However, biodegradable esophageal stents show a poor corrosion resistance and a quick loss of mechanical support in vivo. In this study, we chose the elastic and biodegradable mixed polymer of Poly(ε-caprolactone (PCL and poly(trimethylene carbonate (PTMC as the coated membrane on magnesium alloy stents for fabricating a fully biodegradable esophageal stent, which showed an ability to delay the degradation time and maintain mechanical performance in the long term. After 48 repeated compressions, the mechanical testing demonstrated that the PCL-PTMC-coated magnesium stents possess good flexibility and elasticity, and could provide enough support against lesion compression when used in vivo. According to the in vitro degradation evaluation, the PCL-PTMC membrane coated on magnesium was a good material combination for biodegradable stents. During the in vivo evaluation, the proliferation of the smooth muscle cells showed no signs of cell toxicity. Histological examination revealed the inflammation scores at four weeks in the magnesium-(PCL-PTMC stent group were similar to those in the control group (p > 0.05. The α-smooth muscle actin layer in the media was thinner in the magnesium-(PCL-PTMC stent group than in the control group (p < 0.05. Both the epithelial and smooth muscle cell layers were significantly thinner in the magnesium-(PCL-PTMC stent group than in the control group. The stent insertion was feasible and provided reliable support for at least four weeks, without causing severe injury or collagen deposition. Thus, this stent provides a new stent for the treatment of benign esophageal stricture and a novel research path in the development of temporary stents in other cases of benign stricture.

  14. Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes

    International Nuclear Information System (INIS)

    Winie, Tan; Ramesh, S.; Arof, A.K.

    2009-01-01

    Polymer electrolytes composed of hexanoyl chitosan as the host polymer, lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) as the salt, diethyl carbonate (DEC)/ethylene carbonate (EC) as the plasticizers were prepared and characterized by X-ray diffraction and impedance spectroscopy. The X-ray diffraction results reveal the variation in conductivity from structural aspect. This is reflected in terms of amorphous content. Sample with higher amorphous content exhibits higher conductivity. In order to further understand the source of the conductivity variation with varying plasticizers compositions as well as temperatures, the ionic charge carrier concentration and their mobility in polymer electrolyte were determined. The Rice and Roth model was proposed to be used to estimate the ionic charge carrier concentration, n. Knowing n and combining the result with dc conductivity, the mobility of the ionic charge carrier can be calculated. It is found that the conductivity change with DEC/EC composition is due mainly to the change in ionic charge carrier concentration while the conductivity change with temperature is due primarily to the change in mobility.

  15. Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Winie, Tan, E-mail: tanwinie@salam.uitm.edu.m [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Ramesh, S. [Faculty of Engineering and Science, University Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia); Arof, A.K. [Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2009-11-15

    Polymer electrolytes composed of hexanoyl chitosan as the host polymer, lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}) as the salt, diethyl carbonate (DEC)/ethylene carbonate (EC) as the plasticizers were prepared and characterized by X-ray diffraction and impedance spectroscopy. The X-ray diffraction results reveal the variation in conductivity from structural aspect. This is reflected in terms of amorphous content. Sample with higher amorphous content exhibits higher conductivity. In order to further understand the source of the conductivity variation with varying plasticizers compositions as well as temperatures, the ionic charge carrier concentration and their mobility in polymer electrolyte were determined. The Rice and Roth model was proposed to be used to estimate the ionic charge carrier concentration, n. Knowing n and combining the result with dc conductivity, the mobility of the ionic charge carrier can be calculated. It is found that the conductivity change with DEC/EC composition is due mainly to the change in ionic charge carrier concentration while the conductivity change with temperature is due primarily to the change in mobility.

  16. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine [Present address: Universite de Montpellier II, CNRS-UMR 5539, cc107, Place Eugene Bataillon, 34 095 Montpellier Cedex 5 (France)

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media)

  17. Physicochemical Characterization of Biopolymer Chitosan Extracted from Shrimp Shells

    Directory of Open Access Journals (Sweden)

    Nezamaddin Mengelizadeh

    2015-02-01

    Full Text Available Chitosan is a deacetylated derivative of chitin, which is a naturally abundant mucopolysaccharide, supporting the matter of crustaceans, insects, and fungi. Because of its unique properties, such as non-toxicity, biodegradability, and biocompatibility, chitosan has a wide range of applications in various fields. The objective of the present work is to extract the polymer chitosan from Persian Gulf shrimp shells. In order to determine the physicochemical characteristics of the extracted chitosan, degree of deacetylation, molecular weight, water and fat binding capacities extraction rate, and apparent viscosity were measured using a variety of techniques including viscometry, weight measurement method and Fourier transform infrared spectroscopy (FTIR. The results of the study of the physicochemical properties, molecular weight (6.7×105 Da, degree of deacetylation (57%, ash content as well as yield (0.5% of the prepared chitosan indicated that shrimp processing wastes (shrimp shells are a good source of chitosan. The water binding capacity (521% and fat binding capacity (327% of the prepared chitosan are in good agreement with the other studies. The elemental analysis showed the C, H and N contents of 35.92%, 7.02%, and 8.66%, respectively. In this study, the antimicrobial activity of chitosan was evaluated against Staphylococcus aureus and Escherichia coli. The results indicated the high potential of chitosan as an antibacterial agent. Moreover, the results of the study indicated that shrimp shells are a rich source of chitin as 25.21% of the shell’s dry weight.

  18. Optical absorption studies on biodegradable PVA/PVP blend polymer electrolyte system

    Science.gov (United States)

    Basha, S. K. Shahenoor; Reddy, K. Veera Bhadra; Rao, M. C.

    2018-05-01

    Biodegradable blend polymer electrolytes of PVA/PVP with different wt% ratios of MgCl2.6H2O have been prepared using solution cast technique. Optical absorption studies were carried-out on to the prepared films at room temperature using JASCO V-670 Spectrophotometer in the wavelength region 200-600 nm. Due to the clusters between the vibrations of molecules a broad peak is obtained due to п-п* transition in the wavelength region 310-340 nm.

  19. FTIR studies of plasticized poly(vinyl alcohol)-chitosan blend doped with NH 4NO 3 polymer electrolyte membrane

    Science.gov (United States)

    Kadir, M. F. Z.; Aspanut, Z.; Majid, S. R.; Arof, A. K.

    2011-03-01

    Fourier transform infrared (FTIR) spectroscopy studies of poly(vinyl alcohol) (PVA), and chitosan polymer blend doped with ammonium nitrate (NH 4NO 3) salt and plasticized with ethylene carbonate (EC) have been performed with emphasis on the shift of the carboxamide, amine and hydroxyl bands. 1% acetic acid solution was used as the solvent. It is observed from the chitosan film spectrum that evidence of polymer-solvent interaction can be observed from the shifting of the carboxamide band at 1660 cm -1 and the amine band at 1591 cm -1 to 1650 and 1557 cm -1 respectively and the shift of the hydroxyl band from 3377 to 3354 cm -1. The hydroxyl band in the spectrum of PVA powder is observed at 3354 cm -1 and is observed at 3343 cm -1 in the spectrum of the PVA film. On addition of NH 4NO 3 up to 30 wt.%, the carboxamide, amine and hydroxyl bands shifted from 1650, 1557 and 3354 cm -1 to 1642, 1541 and 3348 cm -1 indicating that the chitosan has complexed with the salt. In the PVA-NH 4NO 3 spectrum, the hydroxyl band has shifted from 3343 to 3272 cm -1 on addition of salt from 10 to 30 wt.%. EC acts as a plasticizing agent since there is no shift in the bands as observed in the spectrum of PVA-chitosan-EC films. The mechanism of ion migration is proposed for the plasticized and unplasticized PVA-chitosan-NH 4NO 3 systems. In the spectrum of PVA-chitosan-NH 4NO 3-EC complex, the doublet C dbnd O stretching in EC is observed in the vicinity 1800 and 1700. This indicates that there is some interaction between the salt and EC.

  20. Comparison of Durable-Polymer Zotarolimus-Eluting and Biodegradable-Polymer Biolimus-Eluting Coronary Stents in Patients With Coronary Artery Disease

    DEFF Research Database (Denmark)

    Raungaard, Bent; Christiansen, Evald H; Bøtker, Hans Erik

    2017-01-01

    artery disease or acute coronary syndromes and at least 1 coronary artery lesion requiring treatment with a drug-eluting stent. Endpoints included major adverse cardiac events (MACE), a composite of safety (cardiac death and myocardial infarction not clearly attributable to a non-target lesion......OBJECTIVES: The authors sought to compare the safety and efficacy of the biocompatible durable-polymer zotarolimus-eluting stent with the biodegradable-polymer biolimus-eluting stent in unselected coronary patients. BACKGROUND: Biodegradable-polymer biolimus-eluting stents are superior to first......-generation durable-polymer drug-eluting stents in long-term randomized all-comer trials. Long-term data comparing them to second-generation durable-polymer drug-eluting stents are lacking. METHODS: The study was a randomized, multicenter, all-comer, noninferiority trial in patients with chronic stable coronary...

  1. Zotarolimus-eluting durable-polymer-coated stent versus a biolimus-eluting biodegradable-polymer-coated stent in unselected patients undergoing percutaneous coronary intervention (SORT OUT VI)

    DEFF Research Database (Denmark)

    Raungaard, Bent; Jensen, Lisette Okkels; Tilsted, Hans-Henrik

    2015-01-01

    BACKGROUND: New-generation drug-eluting coronary stents have reduced the risk of coronary events, especially in patients with complex disease or lesions. To what extent different stent platforms, polymers, and antiproliferative drugs affect outcomes, however, is unclear. We investigated the safety...... and efficacy of a third-generation stent by comparing a highly biocompatible durable-polymer-coated zotarolimus-eluting stent with a biodegradable-polymer-coated biolimus-eluting stent. METHODS: This open-label, randomised, multicentre, non-inferiority trial was done at three sites across western Denmark. All......-polymer zotarolimus-eluting stent or the biodegradable-polymer biolimus-eluting stent. The primary endpoint was a composite of safety (cardiac death and myocardial infarction not clearly attributable to a non-target lesion) and efficacy (target-lesion revascularisation) at 12 months, analysed by intention to treat...

  2. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review.

    Science.gov (United States)

    Ahmad, Mudasir; Manzoor, Kaiser; Ikram, Saiqa

    2017-12-01

    The polyfunctional chitosan can act as the biological macromolecule ligand not only for the adsorption and the recovery of metal ions from an aqueous media, but also for the fabrication of novel adsorbents which shows selectivity and better adsorption properties. The unmodified chitosan itself, a single cationic polysaccharide, has hydroxyl and amine groups carrying complex properties with the metal ions. In addition, the selectivity of metal ions, the adsorption efficiency and adsorption capacity of the adsorbent can be modified chemically. This review covers the synthetic strategies of chitosan towards the synthesis of hetero-chitosan based adsorbents via chemical modifications in past two decades. It also includes how chemical modification influences the metal adsorption with N, O, S and P containing chitosan derivatives. Hope this review article provides an opportunity for researchers in the future to explore the potential of chitosan as an adsorbent for removal of metal ions from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis

    NARCIS (Netherlands)

    Nunes Teixeira Mucci, Maira; Noyma, Natalia Pessoa; Magalhães, de Leonardo; Miranda, Marcela; Oosterhout, van Frank; Guedes, Iamê Alves; Huszar, Vera L.M.; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-01-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show

  4. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis

    NARCIS (Netherlands)

    Mucci, Maira; Noyma, Natalia Pessoa; de Magalhaes, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iame Alves; Huszar, Vera L. M.; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-01-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show

  5. Study of biodegradation of partially hydrolyzed polyacrylamide in an oil reservoir after polymer flooding

    International Nuclear Information System (INIS)

    Bao, M.; Chen, Q.; Li, Y.; Jiang, G.

    2009-01-01

    Studies have demonstrated that the amide group of polyacrylamides can provide a nitrogen source for microorganisms. However, the carbon backbone of the polymers cannot be cleaved by microbial activity. This study examined the biodegradability of partially hydrolyzed polyacrylamide (HPAM) in an aerobic environment both before and after bacterial biodegradation. Results of the infrared spectrum study indicated that the amide group of HPAM in the products was converted to a carboxyl group. High performance liquid chromatography analyses did not demonstrate the presence of acrylamide monomers. A scanning electron microscopy (SEM) study showed that the surfaces of HPAM particles had been altered by the biodegradation process. Results of the study indicated that the HPAM carbon backbone was metabolized by the bacteria during the course of its growth. It was hypothesized that the HPAM was initially utilized by the bacteria as a nitrogen source by the hydrolysis of the HPAM amide groups using an amidase enzyme. Oxidation of the carbon backbone chain then occurred by monooxygenase catalysis. It was concluded that the HPAM carbon backbone then served as a source for further bacterial growth and metabolism. 13 refs., 5 figs

  6. Numerical study on injection parameters optimization of thin wall and biodegradable polymers parts

    Science.gov (United States)

    Santos, C.; Mendes, A.; Carreira, P.; Mateus, A.; Malça, C.

    2017-07-01

    Nowadays, the molds industry searches new markets, with diversified and added value products. The concept associated to the production of thin walled and biodegradable parts mostly manufactured by injection process has assumed a relevant importance due to environmental and economic factors. The growth of a global consciousness about the harmful effects of the conventional polymers in our life quality associated with the legislation imposed, become key factors for the choice of a particular product by the consumer. The target of this work is to provide an integrated solution for the injection of parts with thin walls and manufactured using biodegradable materials. This integrated solution includes the design and manufacture processes of the mold as well as to find the optimum values for the injection parameters in order to become the process effective and competitive. For this, the Moldflow software was used. It was demonstrated that this computational tool provides an effective responsiveness and it can constitute an important tool in supporting the injection molding of thin-walled and biodegradable parts.

  7. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Machado, Luci D.B., E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oishi, Akihiro; Nakayama, Kazuo, E-mail: a.oishi@aist.go.j, E-mail: kazuo-nakayama@jcom.home.ne.j [National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki-ken (Japan). Research Institute for Sustainable Chemical Innovation; Nagasawa, Naotsugu; Tamada, Masao, E-mail: nagasawa.naotsugu@jaea.go.j [Japan Atomic Energy Agency (JAEA), Gunma-ken (Japan). Quantum Beam Science Directorate

    2009-07-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  8. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    International Nuclear Information System (INIS)

    Kodama, Yasko; Machado, Luci D.B.; Oishi, Akihiro; Nakayama, Kazuo; Nagasawa, Naotsugu; Tamada, Masao

    2009-01-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  9. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.

    Science.gov (United States)

    Beardslee, Luke A; Stolwijk, Judith; Khaladj, Dimitrius A; Trebak, Mohamed; Halman, Justin; Torrejon, Karen Y; Niamsiri, Nuttawee; Bergkvist, Magnus

    2016-08-01

    A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016. © 2015 Wiley Periodicals, Inc.

  10. Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres

    Directory of Open Access Journals (Sweden)

    Avik Kumar Saha

    2013-12-01

    Full Text Available The objective of this study was to formulate an oral sustained release delivery system of sodium diclofenac(DS based on sodium alginate (SA as a hydrophilic carrier in combination with chitosan (CH and sodium carboxymethyl cellulose (SCMC as drug release modifiers to overcome the drug-related adverse effects and to improve bioavailability. Microspheres of DS were prepared using an easy method of ionotropic gelation. The prepared beads were evaluated for mean particle size, entrapment efficiency, swelling capacity, erosion and in-vitro drug release. They were also subjected to various studies such as Fourier Transform Infra-Red Spectroscopy (FTIR for drug polymer compatibility, Scanning Electron Microscopy for surface morphology, X-ray Powder Diffraction Analysis (XRD and Differential Scanning Calorimetric Analysis (DSC to determine the physical state of the drug in the beads. The addition of SCMC during the preparation of polymeric beads resulted in lower drug loading and prolonged release of the DS. The release profile of batches F5 and F6 showed a maximum drug release of 96.97 ± 0.356% after 8 h, in which drug polymer ratio was decreased. The microspheres of sodium diclofenac with the polymers were formulated successfully. Analysis of the release profiles showed that the data corresponds to the diffusion-controlled mechanism as suggested by Higuchi.

  11. Encapsulation, solid-phases identification and leaching of toxic metals in cement systems modified by natural biodegradable polymers

    International Nuclear Information System (INIS)

    Lasheras-Zubiate, M.; Navarro-Blasco, I.; Fernández, J.M.; Álvarez, J.I.

    2012-01-01

    Highlights: ► Speciation of Zn, Pb and Cr has been studied in chitosan-modified cement mortars. ► Metal retention mechanisms have been clarified by newly identified crystalline forms. ► Native chitosan induced and stabilized newly characterized Pb (IV) species. ► Dietrichite is responsible for the Zn immobilization in the polymer-modified mortar. ► Leaching of Zn decreased by 24% in the presence of low molecular weight chitosan. - Abstract: Cement mortars loaded with Cr, Pb and Zn were modified by polymeric admixtures [chitosans with low (LMWCH), medium (MMWCH) and high (HMWCH) molecular weight and hydroxypropylchitosan (HPCH)]. The influence of the simultaneous presence of the heavy metal and the polymeric additive on the fresh properties (consistency, water retention and setting time) and on the compressive strength of the mortars was assessed. Leaching patterns as well as properties of the cement mortars were related to the heavy metals-bearing solid phases. Chitosan admixtures lessened the effect of the addition of Cr and Pb on the setting time. In all instances, chitosans improved the compressive strength of the Zn-bearing mortars yielding values as high as 15 N mm −2 . A newly reported Zn phase, dietrichite (ZnAl 2 (SO 4 ) 4 ·22H 2 O) was identified under the presence of LMWCH: it was responsible for an improvement by 24% in Zn retention. Lead-bearing silicates, such as plumalsite (Pb 4 Al 2 (SiO 3 ) 7 ), were also identified by XRD confirming that Pb was mainly retained as a part of the silicate network after Ca ion exchange. Also, the presence of polymer induced the appearance and stabilization of some Pb(IV) species. Finally, diverse chromate species were identified and related to the larger leaching values of Cr(VI).

  12. Optical and thermal properties in ultrafast laser surface nanostructuring on biodegradable polymer

    Science.gov (United States)

    Yada, Shuhei; Terakawa, Mitsuhiro

    2015-03-01

    We investigate the effect of optical and thermal properties in laser-induced periodic surface structures (LIPSS) formation on a poly-L-lactic acid (PLLA), a biodegradable polymer. Surface properties of biomaterials are known to be one of the key factors in tissue engineering. Methods to process biomaterial surfaces have been studied widely to enhance cell adhesive and anisotropic properties. LIPSS formation has advantages in a dry processing which is able to process complex-shaped surfaces without using a toxic chemical component. LIPSS, however, was difficult to be formed on PLLA due to its thermal and optical properties compared to other polymers. To obtain new perspectives in effect of these properties above, LIPSS formation dependences on wavelength, pulse duration and repetition rate have been studied. At 800 nm of incident wavelength, high-spatial frequency LIPSS (HSFL) was formed after applying 10000 femtosecond pulses at 1.0 J/cm2 in laser fluence. At 400 nm of the wavelength, HSFL was formed at fluences higher than 0.20 J/cm2 with more than 3000 pulses. Since LIPSS was less formed with lower repetition rate, certain heat accumulation may be required for LIPSS formation. With the pulse duration of 2.0 ps, higher laser fluence as well as number of pulses compared to the case of 120 fs was necessary. This indicates that multiphoton absorption process is essential for LIPSS formation. Study on biodegradation modification was also performed.

  13. Chitosan microspheres loaded with holmium-165 produced by spray dryer for liver cancer therapy: preliminary experiments

    International Nuclear Information System (INIS)

    Miyamoto, Douglas Massao; Pires, Geovanna; Lira, Raphael A. de; Melo, Vitor H.S.; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de; Osso Junior, Joao Alberto

    2011-01-01

    Chitosan is a biopolymer of 2-deoxy-2-amino-D-glucose that is obtained by deacetylation of chitin. It's biocompatible, biodegradable, non toxic and has antitumor activity. Chitosan has many applications, such as their microparticles that can be used to treat prostate cancer, rheumatoid arthritis, and for liver tumor brachytherapy treatment. Our group is developing different biodegradable polymer-based microspheres loaded with holmium-165 for this purpose. The Chitosan microspheres were produced loaded with holmium (III) chloride, and not loaded with it, by Mini Spray Dryer procedure. The microspheres were evaluated by scanning electron microscopy, energy dispersive spectroscopy (EDS), confocal laser scanning microscopy, thermogravimetric analysis, particle size, and X-ray diffraction. The EDS analysis confirmed the holmium chloride presence into the prepared chitosan microparticles. (author)

  14. Chitosan microspheres loaded with holmium-165 produced by spray dryer for liver cancer therapy: preliminary experiments

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Douglas Massao; Pires, Geovanna; Lira, Raphael A. de; Melo, Vitor H.S.; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de, E-mail: douglas.miyamoto@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia

    2011-07-01

    Chitosan is a biopolymer of 2-deoxy-2-amino-D-glucose that is obtained by deacetylation of chitin. It's biocompatible, biodegradable, non toxic and has antitumor activity. Chitosan has many applications, such as their microparticles that can be used to treat prostate cancer, rheumatoid arthritis, and for liver tumor brachytherapy treatment. Our group is developing different biodegradable polymer-based microspheres loaded with holmium-165 for this purpose. The Chitosan microspheres were produced loaded with holmium (III) chloride, and not loaded with it, by Mini Spray Dryer procedure. The microspheres were evaluated by scanning electron microscopy, energy dispersive spectroscopy (EDS), confocal laser scanning microscopy, thermogravimetric analysis, particle size, and X-ray diffraction. The EDS analysis confirmed the holmium chloride presence into the prepared chitosan microparticles. (author)

  15. Rheological and structural studies of carboxymethyl derivatives of chitosan

    Science.gov (United States)

    Winstead, Cherese; Katagumpola, Pushpika

    2014-05-01

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G" dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method.

  16. Rheological and structural studies of carboxymethyl derivatives of chitosan

    International Nuclear Information System (INIS)

    Winstead, Cherese; Katagumpola, Pushpika

    2014-01-01

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G' dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), 1 H Nuclear Magnetic Resonance ( 1 H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method

  17. Emerging Chitosan-Based Films for Food Packaging Applications.

    Science.gov (United States)

    Wang, Hongxia; Qian, Jun; Ding, Fuyuan

    2018-01-17

    Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.

  18. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field

    International Nuclear Information System (INIS)

    Bao Mutai; Chen Qingguo; Li Yiming; Jiang Guancheng

    2010-01-01

    Partially hydrolyzed polyacrylamide (HPAM) in production water after polymer flooding in oil filed causes environmental problems, such as increases the difficulty in oil-water separation, degrades naturally to produce toxic acrylamide and endanger local ecosystem. Biodegradation of HPAM may be an efficient way to solve these problems. The biodegradability of HPAM in an aerobic environment was studied. Two HPAM-degrading bacterial strains, named PM-2 and PM-3, were isolated from the produced water of polymer flooding. They were subsequently identified as Bacillus cereus and Bacillus sp., respectively. The utilization of HPAM by the two strains was explored. The amide group of HPAM could serve as a nitrogen source for the two microorganisms, the carbon backbone of these polymers could be partly utilized by microorganisms. The HPAM samples before and after bacterial biodegradation were analyzed by the infrared spectrum, high performance liquid chromatography and scanning electronic microscope. The results indicated that the amide group of HPAM in the biodegradation products had been converted to a carboxyl group, and no acrylamide monomer was found. The HPAM carbon backbone was metabolized by the bacteria during the course of its growth. Further more, the hypothesis about the biodegradation of HPAM in aerobic bacterial culture is proposed.

  19. Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles.

    Science.gov (United States)

    Müller, Christin; Townsend, Kathy; Matschullat, Jörg

    2012-02-01

    The persistence of marine debris such as discarded polymer bags has become globally an increasing hazard to marine life. To date, over 177 marine species have been recorded to ingest man-made polymers that cause life-threatening complications such as gut impaction and perforation. This study set out to test the decay characteristics of three common types of shopping bag polymers in sea turtle gastrointestinal fluids (GIF): standard and degradable plastic, and biodegradable. Fluids were obtained from the stomachs, small intestines and large intestines of a freshly dead Green turtle (Chelonia mydas) and a Loggerhead turtle (Caretta caretta). Controls were carried out with salt and freshwater. The degradation rate was measured over 49 days, based on mass loss. Degradation rates of the standard and the degradable plastic bags after 49 days across all treatments and controls were negligible. The biodegradable bags showed mass losses between 3 and 9%. This was a much slower rate than reported by the manufacturers in an industrial composting situation (100% in 49 days). The GIF of the herbivorous Green turtle showed an increased capacity to break down the biodegradable polymer relative to the carnivorous Loggerhead, but at a much lower rate than digestion of natural vegetative matter. While the breakdown rate of biodegradable polymers in the intestinal fluids of sea turtles is greater than standard and degradable plastics, it is proposed that this is not rapid enough to prevent morbidity. Further study is recommended to investigate the speed at which biodegradable polymers decompose outside of industrial composting situations, and their durability in marine and freshwater systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  1. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Dahlan, K.Z. [Malaysian Institute for Nuclear and Technology Research (MINT), Bangi, Kajang (Malaysia); Wongsuban, B.; Idris, S.; Muhammad, K. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Department of Food Science, Serdang (Malaysia)

    2001-03-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  2. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    OpenAIRE

    Faisal Raza; Hajra Zafar; Ying Zhu; Yuan Ren; Aftab -Ullah; Asif Ullah Khan; Xinyi He; Han Han; Md Aquib; Kofi Oti Boakye-Yiadom; Liang Ge

    2018-01-01

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All...

  3. Biodegradable polymer nanocomposites based on natural nanotubes: effect of magnetically modified halloysite on the behaviour of polycaprolactone

    Czech Academy of Sciences Publication Activity Database

    Khunová, V.; Šafařík, Ivo; Škrátek, M.; Kelnar, Ivan; Tomanová, K.

    2016-01-01

    Roč. 51, č. 3 (2016), s. 435-444 ISSN 0009-8558 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:60077344 ; RVO:61389013 Keywords : magnetically modified HNTs * biodegradable polymer nanocomposites * polycaprolactone Subject RIV: CD - Macromolecular Chemistry ; JI - Composite Materials (UMCH-V) Impact factor: 1.052, year: 2016

  4. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering.

    Science.gov (United States)

    El-Amin, S F; Lu, H H; Khan, Y; Burems, J; Mitchell, J; Tuan, R S; Laurencin, C T

    2003-03-01

    The nature of the extracellular matrix (ECM) is crucial in regulating cell functions via cell-matrix interactions, cytoskeletal organization, and integrin-mediated signaling. In bone, the ECM is composed of proteins such as collagen (CO), fibronectin (FN), laminin (LM), vitronectin (VN), osteopontin (OP) and osteonectin (ON). For bone tissue engineering, the ECM should also be considered in terms of its function in mediating cell adhesion to biomaterials. This study examined ECM production, cytoskeletal organization, and adhesion of primary human osteoblastic cells on biodegradable matrices applicable for tissue engineering, namely polylactic-co-glycolic acid 50:50 (PLAGA) and polylactic acid (PLA). We hypothesized that the osteocompatible, biodegradable polymer surfaces promote the production of bone-specific ECM proteins in a manner dependent on polymer composition. We first examined whether the PLAGA and PLA matrices could support human osteoblastic cell growth by measuring cell adhesion at 3, 6 and 12h post-plating. Adhesion on PLAGA was consistently higher than on PLA throughout the duration of the experiment, and comparable to tissue culture polystyrene (TCPS). ECM components, including CO, FN, LM, ON, OP and VN, produced on the surface of the polymers were quantified by ELISA and localized by immunofluorescence staining. All of these proteins were present at significantly higher levels on PLAGA compared to PLA or TCPS surfaces. On PLAGA, OP and ON were the most abundant ECM components, followed by CO, FN, VN and LN. Immunofluorescence revealed an extracellular distribution for CO and FN, whereas OP and ON were found both intracellularly as well as extracellularly on the polymer. In addition, the actin cytoskeletal network was more extensive in osteoblasts cultured on PLAGA than on PLA or TCPS. In summary, we found that osteoblasts plated on PLAGA adhered better to the substrate, produced higher levels of ECM molecules, and showed greater cytoskeletal

  5. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar, Y.N. [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Selvakumar, M., E-mail: chemselva78@gmail.com [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Bhat, D. Krishna [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore (India)

    2014-02-15

    Highlights: • A new finding of tubular array of 10–20 μm in length and 1–2 μm in thickness of gel polymer electrolyte (GPE) having 2.2 × 10{sup −3} S cm{sup −1} conductivity is reported. • Thermal and electrochemical characterizations of GPEs show good interaction among the polymer, plasticizer and salt. • GPE based supercapacitor demonstrates high capacitance of 186 F g{sup −1}. • Low temperature studies did not influence much on capacitance values obtained from AC impedance studies. • Charge–discharge exhibits high capacity with excellent cyclic stability and energy density. -- Abstract: A supercapacitor based on a biodegradable gel polymer electrolyte (GPE) has been fabricated using guar gum (GG) as the polymer matrix, LiClO{sub 4} as the doping salt and glycerol as the plasticizer. The scanning electron microscopy (SEM) images of the gel polymer showed an unusual tubular array type surface morphology. FTIR, DSC and TGA results of the GPE indicated good interaction between the components used. Highest ionic conductivity and lowest activation energy values were 2.2 × 10{sup −3} S cm{sup −1} and 0.18 eV, respectively. Dielectric studies revealed ionic behavior and good capacitance with varying frequency of the GPE system. The fabricated supercapacitor showed a maximum specific capacitance value of 186 F g{sup −1} using cyclic voltammetry. Variation of temperature from 273 K to 293 K did not significantly influence the capacitance values obtained from AC impedance studies. Galvanostatic charge–discharge study of supercapacitor indicated that the device has good stability, high energy density and power density.

  6. A life cycle framework to support materials selection for Ecodesign: A case study on biodegradable polymers

    International Nuclear Information System (INIS)

    Ribeiro, I.; Peças, P.; Henriques, E.

    2013-01-01

    Highlights: • Life cycle framework to support material selection in Ecodesign. • Early design stage estimates and sensitivity analyses based on process-based models. • Sensitivity analysis to product geometry, industrial context and EoL scenarios. • Cost and environmental performance comparison – BDP vs. fossil based polymers. • Best alternatives mapping integrating cost and environmental performances. - Abstract: Nowadays society compels designers to develop more sustainable products. Ecodesign directs product design towards the goal of reducing environmental impacts. Within Ecodesign, materials selection plays a major role on product cost and environmental performance throughout its life cycle. This paper proposes a comprehensive life cycle framework to support Ecodesign in material selection. Dealing with new materials and technologies in early design stages, process-based models are used to represent the whole life cycle and supply integrated data to assess material alternatives, considering cost and environmental dimensions. An integrated analysis is then proposed to support decision making by mapping the best alternative materials according to the importance given to upstream and downstream life phases and to the environmental impacts. The proposed framework is applied to compare the life cycle performance of injection moulded samples made of four commercial biodegradable polymers with different contents of Thermo Plasticized Starch and PolyLactic Acid and a common fossil based polymer, Polypropylene. Instead of labelling materials just as “green”, the need to fully capture all impacts in the whole life cycle was shown. The fossil based polymer is the best economic alternative, but polymers with higher content of Thermo Plasticized Starch have a better environmental performance. However, parts geometry and EoL scenarios play a major role on the life cycle performance of candidate materials. The selection decision is then supported by mapping

  7. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications.

    Science.gov (United States)

    Park, Jongsung; Kim, Ji-Kwan; Patil, Swati J; Park, Jun-Kyu; Park, SuA; Lee, Dong-Weon

    2016-06-02

    This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm² and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone) stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  8. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jongsung Park

    2016-06-01

    Full Text Available This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm2 and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  9. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    Science.gov (United States)

    Cardoso, Elisabeth C. L.; Scagliusi, Sandra R.; Lima, Luis F. C. P.; Bueno, Nelson R.; Brant, Antonio J. C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT).

  10. Production and characterization of chitosan obtained from shrimp exoskeleton

    International Nuclear Information System (INIS)

    Almeida, Leticia P.; Aguiar, Nayara V.; Rodrigues, Willias da L.; Silva, Rafael S. da; Moreira, Carly K.P.

    2015-01-01

    Chitosan is a natural polymer, biocompatible, biodegradable and non-toxic. It's derived from the deacetylation of chitin, which constitutes the most part of the exoskeleton of insects, crustaceans and fungal cell wall. After cellulose, chitin is more organic compound found in nature. The Chitin was separated from others components of shrimp waste (Macrobrachium amazonicum) by a chemical process that involves three steps: demineralization, deproteination and depigmentation. The chitosan produced was characterized by potentiometric titration, to find the degree of deacetylation (85,32 %), determining the intrinsic viscosity to define its molecular weight (503.223 g/mol), and X-ray diffraction to determine its crystallinity index (58,4 %). (author)

  11. Rheological study of chitosan and its blends: An overview

    Directory of Open Access Journals (Sweden)

    Esam A. El-hefian

    2010-06-01

    Full Text Available Chitosan, a modified natural carbohydrate polymer derived from carapaces of crabs and shrimps, has received a great deal of attention for its applications in diverse fields owing to its biodegradability, biocompatibility, non-toxicity and anti-bacterial property. The wide-ranging applications involve a broad spectrum of characterisation techniques and rheology represents one technique of growing importance in this field. This paper is an attempt to review the latest development in the rheology of chitosan, either on its own or associated with other materials, including the parameters that strongly influence its rheological behaviour such as concentration, pH and temperature.

  12. Poly-γ-Glutamic Acid: Biodegradable Polymer for Potential Protection of Beneficial Viruses

    Directory of Open Access Journals (Sweden)

    Ibrahim R. Khalil

    2016-01-01

    Full Text Available Poly-γ-glutamic acid (γ-PGA is a naturally occurring polymer, which due to its biodegradable, non-toxic and non-immunogenic properties has been used successfully in the food, medical and wastewater industries. A major hurdle in bacteriophage application is the inability of phage to persist for extended periods in the environment due to their susceptibility to environmental factors such as temperature, sunlight, desiccation and irradiation. Thus, the aim of this study was to protect useful phage from the harmful effect of these environmental factors using the γ-PGA biodegradable polymer. In addition, the association between γ-PGA and phage was investigated. Formulated phage (with 1% γ-PGA and non-formulated phage were exposed to 50 °C. A clear difference was noticed as viability of non-formulated phage was reduced to 21% at log10 1.3 PFU/mL, while phage formulated with γ-PGA was 84% at log10 5.2 PFU/mL after 24 h of exposure. In addition, formulated phage remained viable at log10 2.5 PFU/mL even after 24 h of exposure at pH 3 solution. In contrast, non-formulated phages were totally inactivated after the same time of exposure. In addition, non-formulated phages when exposed to UV irradiation died within 10 min. In contrast also phages formulated with 1% γ-PGA had a viability of log10 4.1 PFU/mL at the same exposure time. Microscopy showed a clear interaction between γ-PGA and phages. In conclusion, the results suggest that γ-PGA has an unique protective effect on phage particles.

  13. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  14. Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion.

    Science.gov (United States)

    Ou, Hongxiang; Chen, Qunhui; Pan, Jianming; Zhang, Yunlei; Huang, Yong; Qi, Xueyong

    2015-05-30

    Magnetic imprinted polymers (MIPs) were synthesized by Pickering emulsion polymerization and used to adsorb erythromycin (ERY) from aqueous solution. The oil-in-water Pickering emulsion was stabilized by chitosan nanoparticles with hydrophobic Fe3O4 nanoparticles as magnetic carrier. The imprinting system was fabricated by radical polymerization with functional and crosslinked monomer in the oil phase. Batches of static and dynamic adsorption experiments were conducted to analyze the adsorption performance on ERY. Isotherm data of MIPs well fitted the Freundlich model (from 15 °C to 35 °C), which indicated heterogeneous adsorption for ERY. The ERY adsorption capacity of MIPs was about 52.32 μmol/g at 15 °C. The adsorption kinetics was well described by the pseudo-first-order model, which suggested that physical interactions were primarily responsible for ERY adsorption. The Thomas model used in the fixed-bed adsorption design provided a better fit to the experimental data. Meanwhile, ERY exhibited higher affinity during adsorption on the MIPs compared with the adsorption capacity of azithromycin and chloramphenicol. The MIPs also exhibited excellent regeneration capacity with only about 5.04% adsorption efficiency loss in at least three repeated adsorption-desorption cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Varaprasad, Kokkarachedu, E-mail: varmaindian@gmail.com [Centro de Investigación de Polímeros Avanzados (CIPA), Avenida Collao 1202, Edificio de Laboratorios, Concepción (Chile); Pariguana, Manuel [Centro de Investigación de Polímeros Avanzados (CIPA), Avenida Collao 1202, Edificio de Laboratorios, Concepción (Chile); Centro de Innovación Tecnológica Agroindustrial CITE Agroindustrial, Panamericana Sur Km, 293.3, Ica (Peru); Raghavendra, Gownolla Malegowd [Department of Packaging, Yonsei University, Wonju, Gangwon-do 220 710 (Korea, Republic of); Jayaramudu, Tippabattini [Center for Nano Cellulose Future Composites, Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Ku, Incheon 402–751 (Korea, Republic of); Sadiku, Emmanuel Rotimi [Department of Polymer Technology, Tshwane University of Technology, CSIR-Campus, Pretoria 0040 (South Africa)

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. - Graphical abstract: Biodegradable metal-oxide/polymer nanocomposites films prepared by using poly-ε-caprolactone with disposed PET oil bottles terephthalic acid monomer. The development of biodegradable film provides a new material with desirable mechanical, physical and chemical properties and can be utilized for industrial applications. - Highlights: • Terephthalic acid obtained from disposed PET oil bottles via precipitation technique. • New nano metal-oxides were developed by double precipitation technique. • Nano metal-oxide polymer films were synthesized by solvent evaporation method. • Nano metal-oxide polymer films exhibit superior mechanical characteristics.

  16. Synthesis of Glycyrrhetinic Acid-Modified Chitosan 5-Fluorouracil Nanoparticles and Its Inhibition of Liver Cancer Characteristics in Vitro and in Vivo

    OpenAIRE

    Cheng, Mingrong; Gao, Xiaoyan; Wang, Yong; Chen, Houxiang; He, Bing; Xu, Hongzhi; Li, Yingchun; Han, Jiang; Zhang, Zhiping

    2013-01-01

    Nanoparticle drug delivery (NDDS) is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA), to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by Fourier transformed inf...

  17. Development of dual-sensitive smart polymers by grafting chitosan with poly (N-isopropylacrylamide: an overview

    Directory of Open Access Journals (Sweden)

    Nívia do Nascimento Marques

    2015-06-01

    Full Text Available AbstractA great deal of research on polymers over the past two decades has been focused on the development of stimuli-responsive polymers to obtain materials able to respond to specific surroundings. In this paper, an overview is presented of the concepts, behavior and applicability of these “smart polymers”. Polymers that are temperature- or pH-sensitive are discussed in detail, including the response mechanisms and types of macromolecules, because they are easy to handle and have a wide range of applications. Finally, the combination of pH and temperature responsive properties by means of graft copolymerization of chitosan with poly (N-isopropylacrylamide (PNIPAM was chosen to represent some synthetic routes and properties of dual-sensitive polymeric systems developed currently.

  18. Review of radiation processing of natural polymer

    International Nuclear Information System (INIS)

    Khairul Zaman

    2007-01-01

    In recent years, natural polymers are being investigated with renewed interest because of their abundant quantity and unique characteristics such as inherent biocompatibility, biodegradability and renewable. It is also known as green polymer. Natural polymers such as carrageen, alginate, chitin/chitosan and starch are traditionally used in food-based industry. But now, the applications of natural polymers are being sought in knowledge-driven areas such as healthcare, agro-technology and industry. Radiation degraded alginates, carrangeenan and chitosan as plant growth promoter and protector have been developed. Radiation degraded chitosan, carraneenan and starch have also been used together with synthetic polymers for hydrogel production to be used for wound dressing, skin moisturization and for biodegradable packaging films and foams. Radiation crosslinking of natural polymer derivatives such as carboxymethyl chitosan, carboxymethyl starch have been successfully developed in Japan and used for various applications such as removal of pollutants, removal of waters from liverstock excrete as well as for bedsores protection mat. (author)

  19. Formation of biodegradated polymers as components of future composite materials on the basis of shape memory alloy of medical appointment

    Science.gov (United States)

    Nasakina, E. O.; Baikin, A. S.; Sergiyenko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Yakubov, A. D.; Izvin, A. V.; Sudarchikova, M. A.; Sevost’yanov, M. A.; Kolmakov, A. G.

    2018-04-01

    The processes of formation of polymer polylactide or polyglycylidactide films for the subsequent creation of a layered composite with a biodegradable layer on the basis of a nickel-free shape memory alloy TiNbTaZr are studied. The structure of the samples was determined using an SEM. The correspondence of morphology of surfaces of and the substrate itself is noted. High adhesion of the polymer to the future basis of the developed composite material is supposed. The formed films is homogeneous and amorphous throughout the polymer volume. By varying the volume of solutions, it is possible to obtain films of a given thickness for any type of polymer, its molecular weight, and the solution concentration of the polymer in chloroform. Poly (glycolide-lactide) should be more plastic than polylactide.

  20. Biodegradable poly lactone-family polymer and their applications in medical field

    International Nuclear Information System (INIS)

    Wang, S.; Bei, J.

    2005-01-01

    Poly lactone-family polymers such as poly lactide, poly glycolide and polycaprolactone are kind aliphatic polyester. Since they can degrade by hydrolysis reaction under all the ph condition and possess biocompatibility, biodegradability and other good properties, especially they included not peptide bond in their molecules, they are non-antigen and non-immunization, as well as have no-toxicity and no-stimulation. So they are interested biomaterials and very useful in medical field. However the properties of all of the homo-poly lactones can not be changed in a large range, the limited properties result in limited applications of these homo-poly lactones. Based on macromolecular design, a series of copolylactones such as poly(lactide-co-glycolide) (PLGA), poly(glycolide-co-lactide-co-caprolactone) tri- component copolymer (PGLC), tri- and multi-block poly lactide/poly(ethylene oxide) copolymer (TPLE and BPLE), as well as polycaprolactone/poly lactide/poly(ethylene oxide) copolymer (PCEL) et al were synthesized by copolymerization among various lactone monomers or lactone monomers with poly(ethylene glycol). These copolylactones have wide range of degradation life from several months to years and different mechanical properties. After plasma treatment the surface property of the copolylactones were improved further and cell affinity of the copolylactones was improved obviously. The applications of these poly lactone-family polymers in medical field for used as drug carrier in drug delivery system, and as cell scaffold in tissue engineering were discussed

  1. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    International Nuclear Information System (INIS)

    Tu, K T; Chung, C K

    2016-01-01

    An integrated technology of CO 2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO 2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO 2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO 2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold. (paper)

  2. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  3. A new nano-TiO2 immobilized biodegradable polymer with self-cleaning properties.

    Science.gov (United States)

    Sökmen, Münevver; Tatlıdil, Ilknur; Breen, Chris; Clegg, Francis; Buruk, Celal Kurtuluş; Sivlim, Tuğba; Akkan, Senay

    2011-03-15

    This study concentrated on the direct immobilization of anatase nano titanium dioxide particles (TiO(2), 10nm particle size) into or onto a biodegradable polymer, polycaprolactone, by solvent-cast processes. The self-cleaning, namely photocatalytic properties of the produced materials were tested by photocatalytic removal of methylene blue as model compound and antimicrobial properties were investigated using Candida albicans as model microorganism. Produced TiO(2) immobilized polymer successfully removed methylene blue (MB, 1 × 10(-5)M) from aqueous solution without additional pH arrangement employing a UV-A light (365 nm) source. Almost 83.2% of dye was removed or decomposed by 5 wt% TiO(2) immobilized into PCL (0.08 g) and removal percentage reached to 94.2% with 5 wt% TiO(2) immobilized onto PCL after a 150 min exposure period. Although removal percentage decrease with increased ionic strength and usage of a visible light source, produced materials were still effective. TiO(2) immobilized onto PCL (5 wt%) was quite effective killing almost 54% of C. albicans (2 × 10(6)CFU/mL) after only 60 min exposure with a near visible light source. Control experiments employing PCL alone in the presence and absence of light were ineffective under the same condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Brant, Antonio J.C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT). - Highlights: • Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. • Landfills will not be enough for an estimated accumulation of 25 million tons per year of plastics. • Incorporation of natural/synthetic polymers in PP/HMSPP to reduce

  5. Synthesis and characterization of Chitosan-CuO-MgO polymer nanocomposites

    Science.gov (United States)

    Praffulla, S. R.; Bubbly, S. G.

    2018-05-01

    In the present work, we have synthesized Chitosan-CuO-MgO nanocomposites by incorporating CuO and MgO nanoparticles in chitosan matrix. Copper oxide and magnesium oxide nanoparticles synthesized by precipitation method were characterized by X-ray diffraction and the diffraction patterns confirmed the monoclinic and cubic crystalline structures of CuO and MgO nanoparticles respectively. Chitosan-CuO-MgO composite films were prepared using solution- cast method with different concentrations of CuO and MgO nanoparticles (15 - 50 wt % with respect to chitosan) and characterized by XRD, FTIR and UV-Vis spectroscopy. The X-ray diffraction pattern shows that the crystallinity of the chitosan composite increases with increase in nanoparticle concentration. FTIR spectra confirm the chemical interaction between chitosan and metal oxide nanoparticles (CuO and MgO). UV absorbance of chitosan nanocomposites were up to 17% better than pure chitosan, thus confirming its UV shielding properties. The mechanical and electrical properties of the prepared composites are in progress.

  6. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    Science.gov (United States)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique

  7. In vivo study on the biocompatibility of chitosan-hydroxyapatite film depending on degree of deacetylation.

    Science.gov (United States)

    Jeong, Ki-Jae; Song, Younseong; Shin, Hye-Ri; Kim, Ji Eun; Kim, Jeonghyo; Sun, Fangfang; Hwang, Dae-Youn; Lee, Jaebeom

    2017-06-01

    Chitosan, produced from chitin, is one of the polymers with promising applications in various fields. However, despite diverse research studies conducted on its biocompatibility, its uses are still limited. The main reason is the degree of deacetylation (DOD), which represents the proportion of deacetylated units in the polymer and is directly correlated with its biocompatibility property. In this article, the in vivo biocompatibility of three chitosan-hydroxyapatite composite films composed of chitosan with different DOD values was investigated by traditional biological protocols and novel optical spectroscopic analyses. The DOD of the chitosan obtained from three different manufacturers was estimated and calculated by Raman spectroscopy, Fourier transform infrared spectroscopy, and proton nuclear magnetic resonance spectroscopy. The chitosan with the higher DOD induced a higher incidence of inflammation in skin cells. The amino group density, biodegradability, and crystallinity of chitosan are the three possible factors that need to be considered when determining the biocompatibility of the films for in vivo application, as they led to complicated biological results, resulting in either better or worse inflammation even when using chitosan products with the same DOD. This basic study on the relationship between the DOD and inflammation is valuable for the development of further chitosan-based researches. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1637-1645, 2017. © 2017 Wiley Periodicals, Inc.

  8. Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors.

    Science.gov (United States)

    Schusser, Sebastian; Krischer, Maximilian; Bäcker, Matthias; Poghossian, Arshak; Wagner, Patrick; Schöning, Michael J

    2015-07-07

    Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(D,L-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.

  9. Functionalized and graft copolymers of chitosan and its pharmaceutical applications.

    Science.gov (United States)

    Bhavsar, Chintan; Momin, Munira; Gharat, Sankalp; Omri, Abdelwahab

    2017-10-01

    Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.

  10. Biodegradable shape-memory block co-polymers for fast self-expandable stents.

    Science.gov (United States)

    Xue, Liang; Dai, Shiyao; Li, Zhi

    2010-11-01

    Block co-polymers PCTBVs (M(n) of 36,300-65,300 g/mol, T(m) of 39-40 and 142 degrees C) containing hyperbranched three-arm poly(epsilon-caprolactone) (PCL) as switching segment and microbial polyester PHBV as crystallizable hard segment were designed as biodegradable shape-memory polymer (SMP) for fast self-expandable stent and synthesized in 96% yield by the reaction of three-arm PCL-triol (M(n) of 4200 g/mol, T(m) of 47 degrees C) with methylene diphenyl 4,4'-diisocyanate isocynate (MDI) to form the hyperbrached MDI-linked PCL (PTCM; M(n) of 25,400 g/mol and a T(m) of 38 degrees C), followed by further polymerization with PHBV-diol (M(n) of 2200 g/mol, T(m) of 137 and 148 degrees C). The polymers were characterized by (1)H NMR, GPC, DSC, tensile test, and cyclic thermomechanical tensile test. PCTBVs showed desired thermal properties, mechanical properties, and ductile nature. PCTBV containing 25 wt% PHBV (PCTBV-25) demonstrated excellent shape-memory property at 40 degrees C, with R(f) of 94%, R(r) of 98%, and shape recovery within 25s. PCTBV-25 was also shown as a safe material with good biocompatibility by cytotoxicity tests and cell growth experiments. The stent made from PCTBV-25 film showed nearly complete self-expansion at 37 degrees C within only 25 s, which is much better and faster than the best known self-expandable stents. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Mucoadhesive Polymer Hyaluronan as Biodegradable Cationic/Zwitterionic-Drug Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2015-01-01

    Full Text Available Mucoadhesive polymers in pharmaceutical formulations release drugs in mucosal areas. They interact and fix to mucus via molecular interpenetration, etc., which increase drug bioavailability. Polymers physicochemical properties affect formulation mucoadhesion, rheological behaviour and drug absorption. Hyaluronan (HA is selected as a mucoadhesive and biodegradable polymer. Geometric, topological and fractal analyses are carried out with program TOPO. Reference calculations are performed with algorithm GEPOL. Procedure TOPO underestimates molecular volume by 0.7%. Error results 5% in surface area and derived topological indices. Solvent-accessible surface is undercalculated by 3%: from hexamer HA to HA·3Ca and hydrate, the hydrophobic term rises by 42% and decays by 26%, and hydrophilic part drops by 14% and rises by 58% in agreement with the number of H-bonds. Accessibility rises by 9% and decays by 8%. Fractal dimension is underevaluated by 1% and for HA it results 1.566; on going to HA·3Ca and hydrate it rises by 2% and 1%. External-atoms dimension increases by 11%: for HA it results 1.725. When going to HA·3Ca and hydrate, it augments by 4% and 0.3%. On going from HA to HA·3Ca and hydrate, nonburied minus molecular dimension enlarges by 20% and decays by 9%. The hydrate globularity is lower than for water, Ca2+ and averages of O-atoms in HA. Ca2+ rugosity is smaller than for hydrate, averages of O-atoms in HA and water. Ca2+ and water accessibilities are greater than for hydrate. As cations exchange in HA·3Ca requires Ca2+ alteration, rises of drug zwitterionic character and acidic pH increase absorption.

  12. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging.

    Science.gov (United States)

    Jin, T; Zhang, H

    2008-04-01

    Biodegradable polylactic acid (PLA) polymer was evaluated for its application as a material for antimicrobial food packaging. PLA films were incorporated with nisin to for control of foodborne pathogens. Antimicrobial activity of PLA/nisin films against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Enteritidis were evaluated in culture media and liquid foods (orange juice and liquid egg white). Scanned electron micrograph and confocal laser microscopy revealed that nisin particles were evenly distributed in PLA polymer matrix on the surface and inside of the PLA/nisin films. PLA/nisin significantly inhibited growth of L. monocytogenes in culture medium and liquid egg white. The greatest inhibition occurred at 24 h when the cell counts of L. monocytogenes in the PLA/nisin samples were 4.5 log CFU/mL less than the controls. PLA/nisin reduced the cell population of E. coli O157:H7 in orange juice from 7.5 to 3.5 log at 72 h whereas the control remained at about 6 log CFU/mL. PLA/nisin treatment resulted in a 2 log reduction of S. Enteritidis in liquid egg white at 24 degrees C. After 21 d at 4 degrees C the S. Enteritidis population from PLA/nisin treated liquid egg white (3.5 log CFU/mL) was significantly less than the control (6.8 log CFU/mL). E. coli O157:H7 in orange juice was more sensitive to PLA/nisin treatments than in culture medium. The results of this research demonstrated the retention of nisin activity when incorporated into the PLA polymer and its antimicrobial effectiveness against foodborne pathogens. The combination of a biopolymer and natural bacteriocin has potential for use in antimicrobial food packaging.

  13. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    Science.gov (United States)

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-11-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate.

  14. Biodegradable Alginate-Chitosan Hollow Nanospheres for Codelivery of Doxorubicin and Paclitaxel for the Effect of Human Lung Cancer A549 Cells

    Directory of Open Access Journals (Sweden)

    Liu Tao

    2018-01-01

    Full Text Available A biodegradable alginate coated chitosan hollow nanosphere (ACHN was prepared by a hard template method and used for codelivery of doxorubicin (DOX and paclitaxel (PTX to investigate the effect on human lung cancer A549 cells. PTX was loaded into the nanometer hollow structure of ACHN through adsorption method. DOX was coated on surface of ACHN through electrostatic interaction. Drug release studies exhibited a sustained-release effect. According to X-ray diffraction patterns (XRD, differential scanning calorimetry (DSC, and Fourier transform infrared spectroscopy (FT-IR analysis, DOX structure in the loading samples (DOX-PTX-ACHN was of amorphous state while PTX was microcrystalline. Cytotoxicity experiments showed ACHN was nontoxic as carrier material and the combination of DOX and PTX in DOX-PTX-ACHN exhibited a good inhibiting effect on cell proliferation. Cell uptake experiments demonstrated that DOX-PTX-ACHN accumulated in the cytoplasm. Degradation experiments illustrated that ACHN was a biodegradable material. In summary, these results clearly indicate that ACHN can be utilized as a potential biomaterial to transport multiple drugs to be used in combination therapy.

  15. Microencapsulation of chemotherapeutics into monodisperse and tunable biodegradable polymers via electrified liquid jets: control of size, shape, and drug release.

    Science.gov (United States)

    Fattahi, Pouria; Borhan, Ali; Abidian, Mohammad Reza

    2013-09-06

    This paper describes microencapsulation of antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine) into biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) using an electrojetting technique. The resulting BCNU-loaded PLGA microcapsules have significantly higher drug encapsulation efficiency, more tunable drug loading capacity, and (3) narrower size distribution than those generated using other encapsulation methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optimization of biodegradable sponges as controlled release drug matrices. I. Effect of moisture level on chitosan sponge mechanical properties.

    Science.gov (United States)

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2004-04-01

    Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges.

  17. Tissue soldering with biodegradable polymer films: in-vitro investigation of hydration effects on weld strength

    Science.gov (United States)

    Sorg, Brian S.; Welch, Ashley J.

    2001-05-01

    Previous work demonstrated increased breaking strengths of tissue repaired with liquid albumin solder reinforced with a biodegradable polymer film compared to unreinforced control specimens. It was hypothesized that the breaking strength increase was due to reinforcement of the liquid solder cohesive strength. Immersion in a moist environment can decrease the adhesion of solder to tissue and negate any strength benefits gained from reinforcement. The purpose of this study was to determine if hydrated specimens repaired with reinforced solder would still be stronger than unreinforced controls. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with 806-nm diode laser light. A poly(DL-lactic- co-glycolic acid) film was used to reinforce the solder (the controls had no reinforcement). The repaired tissues were immersed in phosphate buffered saline for time periods of 1 and 2 days. The breaking strengths of all of the hydrated specimens decreased compared to the acute breaking strengths. However, the reinforced specimens still had larger breaking strengths than the unreinforced controls. These results indicate that reinforcement of a liquid albumin solder may have the potential to improve the breaking strength in a clinical setting.

  18. The effect of additives interaction on the miscibility and crystal structure of two immiscible biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed El-Hadi

    2014-01-01

    Full Text Available Poly lactic acid (PLLA is a promising biopolymer, obtained from polymerization of lactic acid that is derived from renewable resources through fermentation. The characteristic brittleness of PLLA is attributed to slow crystallization rates, which results in the formation of the large spherulites. Its glass temperature is relative high, above room temperature and close to 60 ºC, and therefore its applications are limited. The additives poly((R-3-hydroxybutyrate (PHB, poly(vinyl acetate (PVAc and tributyl citrate (TBC were used as compatibilizers in the biodegradable polymer blend of (PLLA/PPC. Results from DSC and POM analysis indicated that the blends of PLLA and PPC are immiscible. However, the blends with additives are miscible. TBC as plasticizer was added to PLLA to reduce its Tg. PVAc was used as compatibilizer to improve the miscibility between PLLA and PPC. FT-IR showed about 7 cm-1 shift in the C=O peak in miscible blends due to physical interactions. POM experiments together with the results of DSC and WAXD showed that PHB enhances the crystallization behavior of PLLA by acting as bio nuclei and the crystallization process can occur more quickly. Consequently an increase was observed in the peak intensity in WAXD.

  19. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Science.gov (United States)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-05-01

    An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO-PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (Rp) of the PEO-PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (icorr) of the pure Mg was reduced by 65% with the PEO coating, the PEO-PLLA coating reduced the icorr by almost 100%. As expected, the Rp of the PEO-PLLA Mg decreased with increase in exposure time. However, it was noted that the Rp of the PEO-PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  20. Biodegradation of naphthalenesulphonate polymers: the potential of a combined application of fungi and bacteria.

    Science.gov (United States)

    Gullotto, Antonella; Lubello, Claudio; Mannucci, Alberto; Gori, Riccardo; Munz, Giulio; Briganti, Fabrizio

    2015-01-01

    The potential of several fungi and their synergy with bacterial biomasses were evaluated as a solution for the removal of 2-naphthalensulphonic acid polymers (2-NSAPs) from petrochemical wastewater, characterized by a chemical oxygen demand (COD) greater than 9000 mg/L. The ability of fungi to grow on 2-NSAP mixtures was preliminarily investigated using a solid medium, and then the action of the selected strains, both in suspended and immobilized form, was evaluated in terms of degradation, depolymerization, sorption and an increase in biodegradability of 2-NSAP. Among the 25 fungi evaluated two, in particular, Bjerkandera adusta and Pleurotus ostreatus, have been found to significantly depolymerize 2-NSAP yielding to the corresponding monomer (2-naphthalenesulphonic acid, 2-NSA), which has been further degraded by a bacterial consortia selected in a wastewater treatment plant (WWTP). The fungal treatment alone was able to reduce the COD value up to 44%, while activated sludge removed only 9% of the initial COD. In addition, the combined treatment (fungi and bacteria) allowed an increase in the COD removal up to 62%.

  1. Drug release control in delivery system for biodegradable polymer drugs by γ-radiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Azo, Yukio; Kojima, Shigeo

    1997-01-01

    Characterizations of the drug release from microsphere and hydrogel preparation made from biodegradable polymers were investigated aiming at development of a drug delivery system which allows an optimum drug delivery and the identification of the factors which control its delivery. Poly-lactic acid microspheres containing 10% of progesterone were produced from poly DL-lactic acid and exposed to γ-ray at 5-1000 kGy. And its glass transition temperature (Tg) was determined by differential scanning calorimetry. The temperature was gradually lowered with an increase in the dose of radiation. Tg of the microsphere exposed at 1000 kGy was lower by 10degC compared with the untreated one, showing that Tg control is possible without changing the size distribution of microsphere. Then, the amount of progesterone released from microsphere was determined. The release rate of the drug linearly increased with a square root of radiation time. These results indicate that the control of drug release rate is possible through controling the microsphere's Tg by γ-ray radiation. (M.N.)

  2. Cost-effectiveness analysis of biodegradable polymer versus durable polymer drug-eluting stents incorporating real-world evidence.

    Science.gov (United States)

    Teng, Monica; Zhao, Ying Jiao; Khoo, Ai Leng; Ananthakrishna, Rajiv; Yeo, Tiong Cheng; Lim, Boon Peng; Chan, Mark Y; Loh, Joshua P

    2018-06-05

    Compared with second-generation durable polymer drug-eluting stents (DP-DES), the cost-effectiveness of biodegradable polymer drug-eluting stents (BP-DES) remains unclear in the real-world setting. We assessed the cost-effectiveness of BP-DES in patients with coronary artery disease undergoing percutaneous coronary intervention (PCI). We developed a decision-analytic model to compare the cost-effectiveness of BP-DES to DP-DES over one year and five years from healthcare payer perspective. Relative treatment effects during the first year post-PCI were obtained from a real-world population analysis while clinical event risks in the subsequent four years were derived from a meta-analysis of published studies. At one year, based on the clinical data analysis of 497 propensity-score matched pairs of patients, BP-DES were associated with an incremental cost-effectiveness ratio (ICER) of USD20,503 per quality-adjusted life-year (QALY) gained. At five years, BP-DES yielded an ICER of USD4,062 per QALY gained. At the willingness-to-pay threshold of USD50,400 (one gross domestic product per capita in Singapore in 2015), BP-DES were cost-effective. Sensitivity analysis showed that the cost of stents had a significant impact on the cost-effectiveness of BP-DES. Threshold analysis demonstrated that if the cost difference between BP-DES and DP-DES exceeded USD493, BP-DES would not be cost-effective in patients with one-year of follow-up. BP-DES were cost-effective compared with DP-DES in patients with coronary artery disease at one year and five years after PCI. It is worth noting that the cost of stents had a significant impact on the findings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Mass spectrometry for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products.

    Science.gov (United States)

    Kowalczuk, Marek; Adamus, Grażyna

    2016-01-01

    Contemporary reports by Polish authors on the application of mass spectrometric methods for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products will be presented. Special emphasis will be given to natural aliphatic (co)polyesters (PHA) and their synthetic analogues, formed through anionic ring-opening polymerization (ROP) of β-substituted β-lactones. Moreover, the application of MS techniques for the evaluation of the structure of biodegradable polymers obtained in ionic and coordination polymerization of cyclic ethers and esters as well as products of step-growth polymerization, in which bifunctional or multifunctional monomers react to form oligomers and eventually long chain polymers, will be discussed. Furthermore, the application of modern MS techniques for the assessment of polymer degradation products, frequently bearing characteristic end groups that can be revealed and differentiated by MS, will be discussed within the context of specific degradation pathways. Finally, recent Polish accomplishments in the area of mass spectrometry will be outlined. © 2015 Wiley Periodicals, Inc.

  4. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    Energy Technology Data Exchange (ETDEWEB)

    Belibel, R.; Avramoglou, T. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Garcia, A. [CNRS UPR 3407, Laboratoire des Sciences des Procédés et des Matériau, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Barbaud, C. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France)

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  5. Self-assembly of the hydrogel polymer chain consisting of chitosan and chondroitin sulphate in the presence of theophylline

    International Nuclear Information System (INIS)

    Lopes, Lais C.; Piai, Juliana F.; Fajardo, Andre R.; Rubira, Adley F.; Muniz, Edvani C.

    2009-01-01

    In this work, polyelectronic complex (PEC) consisting of two polysaccharides were developed. One is chitosan (QT), cationic polymer, produced by the chitin deacetylation and the other is chondroitin sulphate (CS), anionic polymer, extracted from bovine or porcine aorta. The PECs were prepared in the presence of theophylline (TEO) for evaluating the influence of this drug in the polymer chains reorganization, as well as, studying the mechanical properties and release of SC and TEO in aqueous solutions on different pH conditions. By the obtained results, it was observed that the 84QT/15SC/TEO (% in weight) hydrogel is pH responsive because the CS releasing is more effective at pH 8, while the release of the TEO is higher at pH 2. The hydrogel showed mechanical properties more resistant to pH 2, 8 and 10 and this was attributed to interactions between the polymer chains. Finally, the X-rays profile showed the presence of peaks associated to reorganization of the chains in the hydrogel is at times larger than the hydrogel in the absence of solute. (author)

  6. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  7. Effect of thiolated polymers to textural and mucoadhesive properties of vaginal gel formulations prepared with polycarbophil and chitosan.

    Science.gov (United States)

    Cevher, Erdal; Sensoy, Demet; Taha, Mohamed A M; Araman, Ahmet

    2008-01-01

    The aim of this study was to design and evaluate of mucoadhesive gel formulations for the vaginal application of clomiphene citrate (CLM) for local treatment of human papilloma virus (HPV) infections. Chitosan (CHI) and polycarbophil (PC) were covalently modified using the thioglycolic acid and L-cysteine, respectively. The formation of thiol conjugates of chitosan (CHI-TG) and polycarbophil (PC-CYS) were confirmed by FT-IR analysis and PC-CYS and CHI-TG were found to have 148.42 +/- 4.16 and 41.17 +/- 2.34 micromol of thiol groups per gram of polymer, respectively. One percent CLM gels were prepared by combination of various concentrations of PC and CHI with thiolated conjugates of these polymers. Hardness, compressibility, elasticity, adhesiveness and cohesiveness of the gels were measured by Texture profile analysis and the vaginal mucoadhesion was investigated by mucoadhesion test. The increasing in the amount of the thiol conjugates was found to enhance the elasticity, cohesiveness, adhesiveness and mucoadhesion of the gel formulations but not their hardness and compressibility when compared to gels prepared using their respective parent formulations. Slower release rate of CLM from gels was achieved when the polymer concentrations were increased in the gel formulations. PC and its thiol conjugate were found to prolong the release of CLM longer than 70 h unlike gel formulations prepared using CHI and its thiol conjugate which were able to release CLM up to 12 h. Stability of CLM was preserved during the 3 month stability analysis under controlled room temperature and accelerated conditions.

  8. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  9. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    Science.gov (United States)

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057

  10. Biodegradable Polymer Biolimus-Eluting Stents Versus Durable Polymer Everolimus-Eluting Stents in Patients With Coronary Artery Disease: Final 5-Year Report From the COMPARE II Trial (Abluminal Biodegradable Polymer Biolimus-Eluting Stent Versus Durable Polymer Everolimus-Eluting Stent).

    Science.gov (United States)

    Vlachojannis, Georgios J; Smits, Pieter C; Hofma, Sjoerd H; Togni, Mario; Vázquez, Nicolás; Valdés, Mariano; Voudris, Vassilis; Slagboom, Ton; Goy, Jean-Jaques; den Heijer, Peter; van der Ent, Martin

    2017-06-26

    This analysis investigates the 5-year outcomes of the biodegradable polymer biolimus-eluting stent (BP-BES) and durable polymer everolimus-eluting stent (DP-EES) in an all-comers population undergoing percutaneous coronary intervention. Recent 1- and 3-year results from randomized trials have indicated similar safety and efficacy outcomes of BP-BES and DP-EES. Whether benefits of the biodegradable polymer device arise over longer follow-up is unknown. Moreover, in-depth, prospective, long-term follow-up data on metallic drug-eluting stents with durable or biodegradable polymers are scarce. The COMPARE II trial (Abluminal Biodegradable Polymer Biolimus-Eluting Stent Versus Durable Polymer Everolimus-Eluting Stent) was a prospective, randomized, multicenter, all-comers trial in which 2,707 patients were randomly allocated (2:1) to BP-BES or DP-EES. The pre-specified endpoint at 5 years was major adverse cardiac events, a composite of cardiac death, nonfatal myocardial infarction, or target vessel revascularization. Five-year follow-up was available in 2,657 patients (98%). At 5 years, major adverse cardiac events occurred in 310 patients (17.3%) in the BP-BES group and 142 patients (15.6%) in the DP-EES group (p = 0.26). The rate of the combined safety endpoint all-cause death or myocardial infarction was 15.0% in the BP-BES group versus 14.8% in the DP-EES group (p = 0.90), whereas the efficacy measure target vessel revascularization was 10.6% versus 9.0% (p = 0.18), respectively. Interestingly, definite stent thrombosis rates did not differ between groups (1.5% for BP-BES vs. 0.9% for DP-EES; p = 0.17). The 5-year analysis comparing biodegradable polymer-coated BES and the durable polymer-coated EES confirms the initial early- and mid-term results regarding similar safety and efficacy outcomes in this all-comers percutaneous coronary intervention population. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights

  11. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    Science.gov (United States)

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Chitosan for gene delivery and orthopedic tissue engineering applications.

    Science.gov (United States)

    Raftery, Rosanne; O'Brien, Fergal J; Cryan, Sally-Ann

    2013-05-15

    Gene therapy involves the introduction of foreign genetic material into cells in order exert a therapeutic effect. The application of gene therapy to the field of orthopaedic tissue engineering is extremely promising as the controlled release of therapeutic proteins such as bone morphogenetic proteins have been shown to stimulate bone repair. However, there are a number of drawbacks associated with viral and synthetic non-viral gene delivery approaches. One natural polymer which has generated interest as a gene delivery vector is chitosan. Chitosan is biodegradable, biocompatible and non-toxic. Much of the appeal of chitosan is due to the presence of primary amine groups in its repeating units which become protonated in acidic conditions. This property makes it a promising candidate for non-viral gene delivery. Chitosan-based vectors have been shown to transfect a number of cell types including human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). Aside from its use in gene delivery, chitosan possesses a range of properties that show promise in tissue engineering applications; it is biodegradable, biocompatible, has anti-bacterial activity, and, its cationic nature allows for electrostatic interaction with glycosaminoglycans and other proteoglycans. It can be used to make nano- and microparticles, sponges, gels, membranes and porous scaffolds. Chitosan has also been shown to enhance mineral deposition during osteogenic differentiation of MSCs in vitro. The purpose of this review is to critically discuss the use of chitosan as a gene delivery vector with emphasis on its application in orthopedic tissue engineering.

  13. Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects.

    Science.gov (United States)

    Sorg, B S; Welch, A J

    2001-01-01

    Previous research introduced the concept of using biodegradable polymer film reinforcement of a liquid albumin solder for improvement of the tensile strength of repaired incisions in vitro. In this study, the effect of creating small pores in the PLGA films on the weld breaking strength is studied. Additionally, the effect of hydration on the strength of the reinforced welds is investigated. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with an 806-nm CW diode laser. A poly(DL-lactic-co-glycolic acid) (PLGA) film was used to reinforce the solder (the controls had solder but no reinforcement). Breaking strengths were measured acutely and after hydration in saline for 1 and 2 days. The data were analyzed by ANOVA (P < 0.05) and multiple comparisons of means were performed using the Newman-Keuls test. The creation of pores in the PLGA films qualitatively improved the film flexibility without having an apparent adverse effect on the breaking strength, while the actual technique of applying the film and solder had more of an effect. The acute maximum average breaking strengths of some of the film reinforced specimens (114.7 g-134.4 g) were significantly higher (P < 0.05) than the acute maximum average breaking strength of the unreinforced control specimens (68.3 g). Film reinforced specimens were shown to have a statistically significantly higher breaking strength than unreinforced controls after 1- and 2-day hydration. Reinforcement of liquid albumin solders in laser-assisted incision repair appears to have advantages over conventional methods that do not reinforce the cohesive strength of the solder in terms of acute breaking strength and after immersion in moist environments for short periods of time. Using a film with the solder applied to one surface only may be advantageous over other techniques.

  14. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    International Nuclear Information System (INIS)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-01-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R p ) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i corr ) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i corr by almost 100%. As expected, the R p of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R p of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack

  15. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Mehjabeen, Afrin [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Ye, Qingsong [Discipline of Dentistry, James Cook University, Townsville 4811, Queensland (Australia); Blawert, Carsten [Magnesium Innovation Centre, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502 (Germany)

    2014-05-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R{sub p}) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i{sub corr}) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i{sub corr} by almost 100%. As expected, the R{sub p} of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R{sub p} of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  16. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Gaser N.; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs, E-mail: szabolcs.beke@iit.it

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser.

  17. Biodegradable polymer nanofiber membrane for the repair of cutaneous wounds in dogs - two case reports

    Directory of Open Access Journals (Sweden)

    Lívia Gomes Amaral

    2016-12-01

    Full Text Available The study of wound healing and its treatment is extremely important in veterinary medicine due to the high frequency of wounds and the difficulty in treating wounds by second intention. Thus, the objective of this study was to evaluate the use of a nanofiber membrane made of biodegradable polymers as a method of wound treatment in dogs. This study comprised two dogs with bite wounds. Debridement and cleaning was performed followed by the application of the membrane. In one dog, the wound was in the left proximal calcaneal region with clinical signs of infection, necrotic tissue, and muscle and the gastrocnemius tendon were exposed. The wound displayed rapid formation of granulation tissue which became excessive, so it was necessary to debride several times. However, with the suspension of the use of the membrane, formation of this tissue was not observed, and the wound evolved to epithelialization and fast contraction. In the second dog, there was a deep wound on the medial aspect of the proximal right hind limb, with clinical signs of infection, with muscle exposure. Once the membrane was placed, granulation tissue formed, and the membrane was used until the level of this tissue reached the skin. The wound underwent rapid epithelialization and contraction, without developing exuberant granulation tissue. Efficient wound repair was observed and the dogs exhibited greater comfort during application and use of the membrane. More studies should be conducted in dogs focusing on the application of this membrane until the appearance of healthy granulation tissue, as continued use seems to stimulate the formation of exuberant granulation tissue.

  18. Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy

    Science.gov (United States)

    Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.

    2016-03-01

    In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.

  19. Transparent conducting polymer electrolyte by addition of lithium to the molecular complex chitosane-poly(aminopropyl siloxane)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S.; Retuert, P.J.; Gonzalez, Guillermo

    2003-06-30

    Transparent lithium-ion conducting films were prepared by adding lithium perchlorate to a mixture of chitosane (CHI) and poly(aminopropylsiloxane) (pAPS) in a molar ratio 0.6:1 by sol-gel methods. The morphological and molecular properties, determined by scanning electron microscopy and FT-IR, respectively, depend on the lithium salt concentration. The same techniques were also used for performing a 'titration' of the capacity of the film for incorporating lithium salt. Results show that about 0.8 mol lithium salt per mol chitosane can be added before the product losses the transparence and molecular compatibility characteristic of the pristine CHI/pAPS polymer complex. When lithium salt addition reaches the tolerance limit, anisotropically oriented patterns are observed in the hybrid films. Both transparence and ionic conductivity of the product appear to be related to the layered nature of formed nanocomposites. The properties of obtained films may be furthermore rationalized considering the chemical functionality and the Lewis donor-acceptor affinity of the components.

  20. Modified hydrotalcite-like compounds as active fillers of biodegradable polymers for drug release and food packaging applications.

    Science.gov (United States)

    Costantino, Umberto; Nocchetti, Morena; Tammaro, Loredana; Vittoria, Vittoria

    2012-11-01

    This review treats the recent patents and related literature, mainly from the Authors laboratories, on biomedical and food packaging applications of nano-composites constituted of biodegradable polymers filled with micro or nano crystals of organically modified Layered Double Hydroxides of Hydrotalcite type. After a brief outline of the chemical and structural aspects of Hydrotalcite-like compounds (HTlc) and of their manipulation via intercalation of functional molecular anions to obtain materials for numerous, sometime unexpected applications, the review approaches the theme in three separated parts. Part 1 deals with the synthetic method used to prepare the pristine Mg-Al and Zn-Al HTlc and with the procedures of their functionalization with anti-inflammatory (diclofenac), antibacterial (chloramphenicol hemisuccinate), antifibrinolytic (tranexamic acid) drugs and with benzoates with antimicrobial activity. Procedures used to form (nano) composites of polycaprolactone, used as an example of biodegradable polymer, and functionalized HTlc are also reported. Part 2 discusses a patent and related papers on the preparation and biomedical use of a controlled delivery system of the above mentioned pharmacologically active substances. After an introduction dealing with the recent progress in the field of local drug delivery systems, the chemical and structural aspects of the patented system constituted of a biodegradable polymer and HTlc loaded with the active substances will be presented together with an extensive discussion of the drug release in physiological medium. Part 3 deals with a recent patent and related papers on chemical, structural and release property of antimicrobial species of polymeric films containing antimicrobial loaded HTlc able to act as active packaging for food products prolonging their shelf life.

  1. Development of a PVAl/chitosan composite membrane compatible with the dermo-epidermic system

    International Nuclear Information System (INIS)

    Almeida, Tiago Luiz de

    2009-03-01

    Due to the frequent incidence of people with skin lesions such as burns and ulcers and the lack of available donors, biomaterials with the capacity to mimic skin must be developed. In order to develop these biomaterials, polymers are used in the attempt to achieve characteristics which are closer to the target organ. In this direction, for several years our group has been developing dermo-epidermic substitutes, specifically biodegradable and biocompatible membranes made up of PVAl and chitosan. PVAl, a synthetic polymer, was used to imitate part of the human dermis and chitosan, a polymer of organic origin, was used in this study to stimulate growth and maintenance of the epidermis. Due to the variations of these commercially obtained polymers, the objective of this study was to characterize their physical and chemical properties, comparing them with the membrane previously obtained by our group with the intention of confirming the hypotheses of interferences put forward in this study. The PVAl membranes in the study (PVAl MP) that obtained characteristics most similar to the standard were those irradiated with 13 and 15 kGy; this last was chosen because it was the minimum dose necessary to achieve sterility. These membranes were also those which had the largest percentage of pores between 70 and 100 μm. For chitosan, the principal characteristics studied were the degree of acetylation (DA) and average molecular weight, both results demonstrated different characteristics than commercially indicated. Various membrane preparation protocols were carried out from the chitosan solution (2%). The membrane composed of the solution of chitosan homogenized with glycerol (20%) and dried at room temperature had the best interaction with keratinocytes. To finalize the study, this chitosan solution was poured over a PVAl membrane, lyophilized and impregnated with chitosan (2%) solution and the compound was kept at room temperature until a chitosan film formed on the upper

  2. Modification of fluorescence and optical properties of Rhodamine B dye doped PVA/Chitosan polymer blend films

    Science.gov (United States)

    Padmakumari, R.; Ravindrachary, V.; Mahantesha, B. K.; Sagar, Rohan N.; Sahanakumari, R.; Bhajantri, R. F.

    2018-05-01

    Pure and Rhodamine B doped Poly (vinyl alcohol)/Chitosan composite films are prepared using solution casting method. Fourier transforms infrared spectra (FTIR), Ultraviolet-Visible (UV-Vis), fluorescence studies were used to characterize the prepared polymer films. The FT-IR results show that the appearance of new peaks along with shift in peak positions indicates the interaction of Rhodamine B with PVA-CS blend. Optical absorption edge, band gap and activation energy were determined from UV-Visible studies. The optical absorption edge increases, band gap decreases and activation energy increases with dopant concentration respectively. The corresponding emission spectra were studied using fluorescence spectroscopy. From the fluorescence study the quenching phenomena are observed in emission wavelength range of 607nm-613nm upon excitation with absorption maxima 443nm.

  3. Preparation and characterization of polymer nanocomposites based on chitosan and clay minerals; Preparacao e caracterizacao de nanocompositos polimerico baseados em quitosana e argilo minerais

    Energy Technology Data Exchange (ETDEWEB)

    Fiori, Ana Paula Santos de Melo; Gabiraba, Victor Parizio; Praxedes, Ana Paula Perdigao [Instituto Federal de Alagoas (IFAL), Marechal Deodoro, AL (Brazil); Nunes, Marcelo Ramon da Silva; Balliano, Tatiane L.; Silva, Rosanny Christhinny da; Tonholo, Josealdo; Ribeiro, Adriana Santos, E-mail: aribeiro@qui.ufal.br [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil)

    2014-09-15

    In this work nanocomposites based on chitosan and different clays were prepared using polyethyleneglycol (PEG) as plasticizer. The samples obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA/DTG) and by mechanical characterization (tensile test) with the aim of investigating the interactions between chitosan and clay. The nanocomposite films prepared using sodium bentonite (Ben) showed an increase of 81.2% in the maximum tensile stress values and a decrease of 16.0% in the Young’s modulus when compared to the chitosan with PEG (QuiPEG) films, evidencing that the introduction of the clay into the polymer matrix provided a more flexible and resistant film, whose elongation at break was 93.6% higher than for the QuiPEG film. (author)

  4. Biodegradable multiblock polymers based on N-(2-hydroxypropyl)methacrylamide designed as drug carriers for tumor-targeted delivery

    Czech Academy of Sciences Publication Activity Database

    Mužíková, Gabriela; Pola, Robert; Laga, Richard; Pechar, Michal

    2016-01-01

    Roč. 217, č. 15 (2016), s. 1690-1703 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA14-12742S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : biodegradable polymers * click chemistry * drug delivery systems Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.500, year: 2016

  5. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    Science.gov (United States)

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    Science.gov (United States)

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  7. Development of Dorzolamide Loaded 6-O-Carboxymethyl Chitosan Nanoparticles for Open Angle Glaucoma

    OpenAIRE

    Shinde, Ujwala; Ahmed, Mohammed Hadi; Singh, Kavita

    2013-01-01

    Chitosan (CS) is a biodegradable, biocompatible, and mucoadhesive natural polymer soluble in acidic pH only and can be irritating to the eye. Objective of the study was to synthesize water soluble 6-O-carboxymethyl (OCM-CS) derivative of CS, and to develop CS and OCM-CS nanoparticles (NPs) loaded with dorzolamide hydrochloride (DRZ). CS was reacted with monochloroacetic acid (MCA) ...

  8. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    Science.gov (United States)

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  9. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s.

    Science.gov (United States)

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-04-25

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  10. METHOD FOR PROVIDING SHAPED BIODEGRADABLE AND ELASTOMERIC STRUCTURES OF (CO) POLYMERS OF 1,3-TRIMETHYLENE CARBONATE (TMC), SHAPED BIODEGRADABLE AND ELASTOMERIC STRUCTURES, AND THE USE OF THESE STRUCTURES

    NARCIS (Netherlands)

    Grijpma, D.W.; Pêgo, A.P.; Feijen, Jan

    2004-01-01

    The present invention relates to methods for providing shaped biodegradable and elastomeric structures of (co)polymers of 1,3­trimethylene carbonate (TMC) with improved (mechanical) properties which can be used for tissue or tissue component support, generation or regeneration. Such shaped

  11. Low Density Polyethylene (LDPE blends based on Poly(3-Hydroxi-Butyrate (PHB and Guar Gum (GG biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Marisa Cristina Guimarães Rocha

    2015-02-01

    Full Text Available LDPE blends based on PHB and GG biodegradable polymers were prepared by melt mixing in a twin screw extruder. The mechanical properties of the materials were evaluated. Preliminary information about the biodegradation behavior of the specimens was obtained by visual observation of samples removed from the simulated soil in 90 days. The results indicated that LDPE/PHB blends may be used for designing LDPE based materials with increased susceptibility to degradation, if elongation at break and impact properties are not determinant factors of their performance. LDPE based materials on GG present values of flexural and mechanical strength lower than those of LDPE/PHB blends. LDPE/PHB/GG blends exhibit unsatisfactory properties. Apparently, the effect of addition of GG to LDPE on the biodegradation behavior of LDPE/GG blends was less intense than the effect caused by addition of PHB to the blends. Similar observation has occurred with the partial replacement of GG by PHB in the ternary blends.

  12. A Mechanistic Model for Drug Release in PLGA Biodegradable Stent Coatings Coupled with Polymer Degradation and Erosion

    Science.gov (United States)

    Zhu, Xiaoxiang; Braatz, Richard D.

    2015-01-01

    Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization (or molecular weight) is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer molecular weight change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  13. Biodegradable Nanoparticles Made of Amino-Acid-Based Ester Polymers: Preparation, Characterization, and In Vitro Biocompatibility Study

    Directory of Open Access Journals (Sweden)

    Temur Kantaria

    2016-12-01

    Full Text Available A systematic study of fabricating nanoparticles (NPs by cost-effective polymer deposition/solvent displacement (nanoprecipitation method has been carried out. Five amino acid based biodegradable (AABB ester polymers (four neutral and one cationic, four organic solvents miscible with water, and eight surfactants were tested for the fabrication of the goal NPs. Depending on the nature of the AABB polymers, organic solvents and surfactants, as well as on the fabrication conditions, the size (Mean Particle Diameter of the NPs could be tuned within 42 ÷ 398 nm, the zeta-potential within 12.5 ÷ +28 mV. The stability (resuspendability of the NPs upon storage (at room temperature and refrigerated was tested as well. In Vitro biocompatibility study of the NPs was performed with four different stable cell lines: A549, HeLa (human; RAW264.7, Hepa 1-6 (murine. Comparing the NPs parameters, their stability upon storage, and the data of biological examinations the best were found: As the AABB polymer, a poly(ester amide composed of l-leucine, 1,6-hexanediol and sebacic acid–8L6, as a solvent (organic phase—DMSO, and as a surfactant, Tween 20.

  14. Encapsulation of a bioactive steroid in a polymer matrix (micro-encapsulation of DI-31 in chitosan by spray drying for various purposes)

    OpenAIRE

    Collado , A ,; Hernández , G.; Morejón , V.; Coll , F.; Peniche , C.

    2017-01-01

    International audience; DI-31 is a synthetic analog of brasinosteroids (ABR), the active ingredient (PA) of Biobras, a plant growth stimulant, which has shown positive impact on Cuban agriculture, especially in rice cultivation. However, it has the drawback of having low solubility in water and being rapidly metabolized by the plants. An alternative to overcome these limitations is its micro-encapsulation in a polymer matrix. Chitosan (CHI) has been investigated as an excellent candidate for ...

  15. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  16. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    Science.gov (United States)

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.

  17. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Energy Technology Data Exchange (ETDEWEB)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004, India. (India)

    2016-05-06

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10{sup −4} Scm{sup −1}. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ε’, Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  18. Effects of gamma irradiation on the molecular structure and mechanical properties of biodegradable polymer poly(hydroxybutyrate)

    International Nuclear Information System (INIS)

    Oliveira, Leticia M. de; Araujo, Elmo S.

    2005-01-01

    The effects of gamma irradiation ( 60 Co) on the properties of the Brazilian biodegradable polymer, Poly(hydroxybutyrate), PHB, i.e. chemical, mechanical and structural properties were investigated. PHB is a natural polyester biosynthesized by different bacteria as a form to store carbon and energy. This new biopolymer shows a great potential in the medical and pharmaceutical applications due to the biocompatibility and biodegradation capacity, since it is reabsorbed by organism without liberation of toxic substances. As it.s well known, gamma irradiation have been considered the more functional sterilization mechanism applied to medical devices. This way, it is necessary to know the effects caused by energy transfer to the polymer system. The viscosity-average molar mass (Mv) of the irradiated PHB, measured using an Ostwald-type capillary viscometer, significantly decreased. The irradiated samples (test specimens) showed a molecular degradation degree, G (scissions/100 eV) value, in the sterilization dose range (0-25 kGy) about 11.4, and 20.9 to doses above 35 kGy. Other results also indicate that the gamma irradiation significantly affected the mechanical properties of PHB. Tensile strength, impact strength and elongation at break decreased dramatically, indicating increasing on the brittleness, because significant chain scissions take place in the amorphous region of irradiated PHB. On the other hand, Young modulus does not significantly change on irradiated polymer. 13 C NMR spectra of irradiated PHB at dose of 200 kGy did not show arising of new structural groups. (author)

  19. Biodegradable Polydepsipeptides

    Directory of Open Access Journals (Sweden)

    Jintang Guo

    2009-02-01

    Full Text Available This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.

  20. Effect of chitosan content on morphology and thermal properties of poly (vinyl alcohol) / chitosan blends; Eefeito do teor de quitosana na morfologia e propriedades termicas das blendas de poli (alcool vinilico) / quitosana

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Barbara Fernanda F. dos; Silva, Jessica Raquel M.B. da; Leite, Itamara Farias, E-mail: itamaraf@gmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Tecnologia. Departamento de Engenharia de Materiais

    2015-07-01

    The objective of this work consists in the preparation and characterization of blends consisting of biodegradable polymers, chitosan (CS) and poly (vinyl alcohol) (PVA), to evaluate the effect of different chitosan content in morphology and thermal properties of PVA blends/CS, prepared by the solution method. Therefore, the blends were characterized by Infrared Spectroscopy Fourier Transform (FTIR), X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG). The results showed a good degree of interaction between the polymers of the blend constituents, suggesting certain degree of miscibility in the mixture. It was observed by XRD, that as the chitosan content in the mixture decreases PVA/CS, there is a slight increase in crystallinity. In comparative analysis, is observed that the composition PVA1/CS1 was the composition that showed improvement in thermal stability. (author)

  1. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Khan, Mohammed Yusuf (Inventor); Laurencin, Cato T. (Inventor); Lu, Helen H. (Inventor); Botchwey, Edward (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  2. Reduced loss of NH 3 by coating urea with biodegradable polymers ...

    African Journals Online (AJOL)

    In agricultural lands, the loss of NH3 from surface-applied urea and micronutrient deficiencies are the two most common problems, which can be solved by using coated urea with micronutrients and biodegradable natural materials. These coatings can improve the nutrient status in the soil and simultaneously reduce ...

  3. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    Science.gov (United States)

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  4. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  5. Biodegradation study of enzymatically catalyzed interpenetrating polymer network: Evaluation of agrochemical release and impact on soil fertility

    Directory of Open Access Journals (Sweden)

    Saruchi

    2016-03-01

    Full Text Available A novel interpenetrating polymer network (IPN has been synthesized through enzymatic initiation using lipase as initiator, glutaraldehyde as cross-linker, acrylic acid as primary monomer and acrylamide as secondary monomer. Biodegradability of synthesized interpenetrating polymer network was studied through soil burial and composting methods. Synthesized hydrogel was completely degraded within 70 days using composting method, while it was 86.03% degraded within 77 days using soil burial method. This was confirmed by Fourier transform Infrared spectroscopy (FTIR and Scanning electron microscopy (SEM techniques. Synthesized interpenetrating polymer network hydrogel was used as a device for controlled release of urea and also act as water releasing device. Their impact on soil fertility and plant growth was also studied. The initial diffusion coefficient has a greater value than the later diffusion coefficient indicating a higher fertilizer release rate during the early stage. Fertilizer release kinetic was also studied which showed Non-Fickian diffusion behavior, as the rate of fertilizer release was comparable to the relaxation time of the synthesized matrix. Synthesized IPN enhance the water uptake capacity up to 6.2% and 7.2% in sandy loam and clay soil, respectively.

  6. Structure and properties of solid polymer electrolyte based on chitosan and ZrO{sub 2} nanoparticle for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sudaryanto,, E-mail: dryanto@batan.go.id; Yulianti, Evi, E-mail: yulianti@batan.go.id [Center for Sains and Technology Advanced Materials – BATAN Kawasan Puspiptek Serpong, Tangerang Selatan, BantenV 15314 (Indonesia); Patimatuzzohrah, E-mail: pzohrah@yahoo.com [Department Of Physics, Mataram University, Jl. Majapahit 62, Mataram, NTB 83125 (Indonesia)

    2016-02-08

    In order to develop all solid lithium ion battery, study on the structure and properties of solid polymer electrolytes (SPE) based on chitosan has been done. The SPE were prepared by adding Zirconia (ZrO{sub 2}) nanoparticle and LiClO{sub 4} as lithium salt into the chitosan solution followed by casting method. Effect of the ZrO{sub 2} and salt concentration to the structure and properties of SPE were elaborated using several methods. The structure of the SPE cast film, were characterized mainly by using X-ray diffractometer (XRD). While the electrical properties of SPE were studied by electrochemical impedance spectrometer (EIS) and ion transference number measurement. XRD profiles show that the addition of ZrO{sub 2} and LiClO{sub 4} disrupts the crystality of chitosan. The decrease in sample crytalinity with the nanoparticle and salt addition may increase the molecular mobility result in the increasing sample conductivity and cathionic transference number as determined by EIS and ion transference number measurement, respectively. The highest ionic conductivity (3.58×10{sup −4} S cm{sup −1}) was obtained when 4 wt% of ZrO{sub 2} nanoparticle and 40 wt% of LiClO{sub 4} salt were added to the chitosan. The ion transference number with that composition was 0.55. It is high enough to be used as SPE for lithium ion battery.

  7. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  8. Synthesis of PVA-Chitosan Hydrogels for Wound Dressing Using Gamma Irradiation. Part I: Radiation Degradation of Chitosan in Solid State and in Solution

    International Nuclear Information System (INIS)

    Mahlous, M.; Tahtat, D.; Benamer, S.; Nacer Khodja, A.; Larbi Youcef, S.

    2010-01-01

    Chitosan is a partially deacetylated product of chitin, a very abundant polysaccharide, existing in exoskeleton of crustaceans. It is a polymer consisting of glucosamine and N-acetylglucosamine units linked by β-1-4-glycosidic bonds. Chitosan, like others polysaccharides, such as cellulose derivatives, alginates and carrageenan is widely used in food, medicine and cosmetic fields. Chitosan presents a variety of distinctive properties, such as biocompatibility, biodegradability, nontoxicity and nonantigenicity. Chitosan obtained by the deacetylation of chitin has, generally, a high molecular weight, which limits its solubility in aqueous solvents. The reduction of its molecular weight by degradation is usually used in order to improve its water solubility. Water-soluble chitosan exhibit some specific properties, such as antifungal activity, antimicrobial activity and plant growth promotion. Among the methods that have been tried to produce low molecular weight chitosan, radiation processing is the most promising one, since the process is simple, it is carried out at room temperature and no purification of the product is required after processing

  9. A poly(glycerol sebacate) based photo/thermo dual curable biodegradable and biocompatible polymer for biomedical applications.

    Science.gov (United States)

    Wang, Min; Lei, Dong; Liu, Zenghe; Chen, Shuo; Sun, Lijie; Lv, Ziying; Huang, Peng; Jiang, Zhongxing; You, Zhengwei

    2017-10-01

    Due to its biomimetic mechanical properties to soft tissues, excellent biocompatibility and biodegradability, poly (glycerol sebacate) (PGS) has emerged as a representative bioelastomer and been widely used in biomedical engineering. However, the typical curing of PGS needs high temperature (>120 °C), high vacuum (>1 Torr), and long duration (>12 h), which limit its further applications. Accordingly, we designed, synthesized and characterized a photo/thermo dual curable polymer based on PGS. Treatment of PGS with 2-isocyanatoethyl methacrylate without additional reagents readily produced a methacrylated PGS (PGS-IM). Photo-curing of PGS-IM for 10 min at room temperature using salt leaching method efficiently produced porous scaffolds with a thickness up to 1 mm. PGS-IM was adapt to thermo-curing as well. The combination of photo and thermo curing provided a further way to modulate the properties of resultant porous scaffolds. Interestingly, photo-cured scaffolds exhibited hierarchical porous structures carrying extensive micropores with a diameter from several to hundreds micrometers. All the scaffolds showed good elasticity and biodegradability. In addition, PGS-IM exhibited good compatibility with L929 fibroblast cells. We expect this new PGS based biomaterial will have a wide range of biomedical applications.

  10. Biodegradation Study of Nanocomposites of Phenol Novolac Epoxy/Unsaturated Polyester Resin/Egg Shell Nanoparticles Using Natural Polymers

    Directory of Open Access Journals (Sweden)

    S. M. Mousavi

    2015-01-01

    Full Text Available Nanocomposite materials refer to those materials whose reinforcing phase has dimensions on a scale from one to one hundred nanometers. In this study, the nanocomposite biodegradation of the phenol Novolac epoxy and the unsaturated polyester resins was investigated using the egg shell nanoparticle as bioceramic as well as starch and glycerin as natural polymers to modify their properties. The phenol Novolac epoxy resin has a good compatibility with the unsaturated polyester resin. The prepared samples with different composition of materials for specified time were buried under soil and their biodegradation was studied using FTIR and SEM. The FTIR results before and after degradation showed that the presence of the hydroxyl group increased the samples degradation. Also adding the egg shell nanoparticle to samples had a positive effect on its degradation. The SEM results with and without the egg shell nanoparticle also showed that use of the egg shell nanoparticle increases the samples degradation. Additionally, increasing the amount of starch, and glycerol and the presence of egg shell nanoparticles can increase water adsorption.

  11. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications

    DEFF Research Database (Denmark)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-01-01

    of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(l-Lactic Acid) (PLLA) were confined within the 14nm pores of a NP with gyroid morphology...

  12. Effects of amphiphilic chitosan-g-poly(ε-caprolactone) polymer additives on paclitaxel release from drug eluting implants

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Weibin [Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092 (China); Gu, Chunhua [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Han [Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092 (China); Zhang, Mengru [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-12-01

    Bioresorbable polymer stents have been proposed as promising medical implants to avoid long-term safety concerns and other potential issues caused by traditional materials. As an important member, poly(ε-caprolactone) (PCL) was used as the implant matrix with different drug loadings. To better regulate drug release rate, the hydrophilicity of PCL was adjusted by addition of amphiphilic graft copolymers, chitosan-g-poly(ε-caprolactone) (CP). The in vitro release results indicated that the improvement of bulk hydrophilicity could accelerate drug release better than that of surface coating. The optimum additive amount was 25% with CP9. Further study showed that the effect of aspirin molecules displayed no obvious difference to that of CP macromolecules on drug release rate. Moreover, these release profiles were fitted with mathematical models. The similarities were evaluated with similarity factors. Scanning electron microscopy (SEM) images displayed surface/cross-section morphologies of pure PCL and modified implants before and after release. - Highlights: • The improvement of bulk hydrophilicity better accelerated drug release. • The higher weight ratio of CP implants had, the faster the drug released. • The shorter PCL chain in CP graft coploymers, the faster the drug released. • The optimum additive amount was 25% with CP9. • Drug release profile conformed to controllable Fick diffusional release mechanism.

  13. Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide Interpenetrating Polymer Network Hydrogel

    Directory of Open Access Journals (Sweden)

    Boxiang Wang

    2016-03-01

    Full Text Available To increase the themosensitive behavior and antibacterial activity of cotton fabric, a series of poly (N-isopropylacrylamide/chitosan (PNIPAAm/Cs hydrogels was synthesized by interpenetrating polymer network (IPN technology using a redox initiator. The IPN PNIPAAm/Cs hydrogel was characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The results indicated that the IPN PNIPAAm/Cs hydrogel has a lower critical solution temperature (LCST at 33 °C. The IPN hydrogel was then used to modify cotton fabric using glutaric dialdehyde (GA as a crosslinking agent following a double-dip-double-nip process. The results demonstrated that the modified cotton fabric showed obvious thermosensitive behavior and antibacterial activity. The contact angle of the modified cotton fabric has a sharp rise around 33 °C, and the modified cotton fabric showed an obvious thermosensitive behavior. The bacterial reduction of modified cotton fabric against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli were more than 99%. This study presents a valuable route towards smart textiles and their applications in functional clothing.

  14. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China)

    2010-07-01

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO{sub 2}) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO{sub 3}H{sub 2} groups on OPTi and the -NH{sub 2} groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm{sup -1} for DMFC application and a reduced methanol permeability of 5 x 10{sup -7} cm{sup 2} s{sup -1} at a 2 M methanol feed. (author)

  15. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Science.gov (United States)

    Wu, Hong; Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO 2) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO 3H 2 groups on OPTi and the -NH 2 groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm -1 for DMFC application and a reduced methanol permeability of 5 × 10 -7 cm 2 s -1 at a 2 M methanol feed.

  16. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.

    Science.gov (United States)

    Iwata, Tadahisa

    2015-03-09

    Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biodegradability and mechanical properties of PP/HMSPP and natural polymers bio-composites in function of gamma-irradiation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Parra, Duclerc F.; Lugao, Ademar B.

    2013-01-01

    PP, expressed as C n H 2n , is one of the most widely used linear hydrocarbon polymers; its versatility arises from the fact that it is made from cheap petrochemical feed stocks through efficient catalytic polymerization process and easy processing to various products. Thus, enormous production and utilization of polymers, in general, lead to their accumulation in the environment, since they are not easily degraded by microorganisms, presenting a serious source of pollution affecting both flora and fauna. These polymers are very bio-resistant due to the involvement of only carbon atoms in main chain with no hydrolyzable functional group. Non-degradable plastics accumulate in the environment at a rate of 25 million tons per year. In recent years, as a result of growing environmental awareness, natural polymers have been increasingly used as reinforcing fillers in thermoplastic composite materials. Sugarcane bagasse was used as reinforcing filler, considering that Brazil is the largest world producer of this crop, with a 101 Mt main agro-industrial residue of sugarcane processing from 340 Mt of sugarcane. Bio-composites were compounded on a twin-screw extruder and samples collected directly from the die. This study aims to investigate mechanical properties of PP/HMSPP-sugarcane bagasse 10, 15, 30 and 50% blends gamma-irradiated at 50, 100, 150 and 200 kGy doses. Degradation essays will comprise DSC and TGA tests and biodegradability behavior will be indicated by Laboratory Soil Burial Test. The main objective of this work is to support the application of these composites as environmentally friendly materials, without prejudicing mechanicals properties, in spite of applied gamma-irradiation. (author)

  18. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su [Department of Agricultural Bioechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742 (Korea, Republic of)], E-mail: chocs@plaza.snu.ac.kr

    2008-06-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI.

  19. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    International Nuclear Information System (INIS)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su; Cho, Myung-Haing

    2008-01-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI

  20. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Liping [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan); Yamamoto, Akiko, E-mail: yamamoto.akiko@nims.go.jp [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan)

    2012-06-15

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly ({epsilon}-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg{sup 2+} are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg{sup 2+} (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  1. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    International Nuclear Information System (INIS)

    Xu Liping; Yamamoto, Akiko

    2012-01-01

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly (ε-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg 2+ are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg 2+ (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  2. Effect of Chitosan as a Coagulant Aid Combined With Poly Aluminum Chloride Removing of Turbidity From Drinking Water

    Directory of Open Access Journals (Sweden)

    Abdolmotaleb Seid Mohammadi

    2014-12-01

    Full Text Available Chitosan, a biodegradable polymer, is used as an eco-friendly coagulant in a wide variety of applications in water and wastewater treatment. The present study aimed to investigate the effect of chitosan as a coagulant aid combined with poly aluminum chloride (PAC to enhance coagulating efficiency for bentonite suspensions. A conventional jar test apparatus was used for the tests. The effect of various operational parameters, such as initial pH of the solution (5-9.5, dosage of chitosan (0.5-3.5 mg/L, dosage of PAC (5-35 mg/L and initial turbidity (50-200 NTU were investigated. The maximum turbidity removal rates were obtained as pH 8.5 for PAC and pH 7.5 for combined PAC and chitosan (CPC. The coagulating efficiency of bentonite using PAC and CPA was found to decrease with an increase in the pH value of the solutions. The maximum turbidity removal rate was achieved in coagulating by PAC (30 mg/L alone, and PAC (20 mg/L combined with chitosan (2.5 mg/L as coagulant aid with the removal rate of 87% and 96%, respectively. The optimum dosage of chitosan required to obtain the highest removal rate was 2.5 mg/L. Hence, using chitosan as a coagulant aid can not only reduce the required amount of coagulant (35% but can also enhance the removal turbidity efficiency.

  3. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis.

    Science.gov (United States)

    Mucci, Maíra; Noyma, Natalia Pessoa; de Magalhães, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iamê Alves; Huszar, Vera L M; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-07-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show that chitosan may rapidly compromise membrane integrity and kill certain cyanobacteria leading to release of cell contents in the water. A strain of Cylindrospermopsis raciborskii and one strain of Planktothrix agardhii were most sensitive. A 1.3 h exposure to a low dose of 0.5 mg l -1 chitosan already almost completely killed these cultures resulting in release of cell contents. After 24 h, reductions in PSII efficiencies of all cyanobacteria tested were observed. EC50 values varied from around 0.5 mg l -1 chitosan for the two sensitive strains, via about 5 mg l -1 chitosan for an Aphanizomenon flos-aquae strain, a toxic P. agardhii strain and two Anabaena cylindrica cultures, to more than 8 mg l -1 chitosan for a Microcystis aeruginosa strain and another A. flos-aquae strain. Differences in sensitivity to chitosan might be related to polymeric substances that surround cyanobacteria. Rapid lysis of toxic strains is likely and when chitosan flocking and sinking of cyanobacteria is considered in lake restoration, flocculation efficacy studies should be complemented with investigation on the effects of chitosan on the cyanobacteria assemblage being targeted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications.

    Science.gov (United States)

    Baranwal, Anupriya; Kumar, Ashutosh; Priyadharshini, A; Oggu, Gopi Suresh; Bhatnagar, Ira; Srivastava, Ananya; Chandra, Pranjal

    2018-04-15

    Biopolymers have been serving the mankind in various ways since long. Over the last few years, these polymers have found great demand in various domains which includes bio medicine, tissue engineering, bio sensor fabrications etc. because of their excellent bio compatibility. In this context, chitosan has found global attention due to its environmentally benign nature, biocompatibility, biodegradability, and ease of availability. In last one decade or so, extensive research in active biomaterials, like chitosan has led to the development of novel delivery systems for drugs, genes, and biomolecules; and regenerative medicine. Additionally, chitosan has also witnessed its usage in functionalization of biocompatible materials, nanoparticle (NP) synthesis, and immobilization of various bio-recognition elements (BREs) to form active bio-surfaces with great ease. Keeping these aspects in mind, we have written a comprehensive review which aims to acquaint its readers with the exceptional properties of chitosan and its usage in the domain of biomedicine, tissue engineering, and biosensor fabrication. Herein, we have briefly explained various aspects of direct utilization of chitosan and then presented vivid strategies towards formulation of chitosan based nanocomposites for biomedicine, tissue engineering, and biosensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    International Nuclear Information System (INIS)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-01-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties. - Highlights: ► Chitosan and starch-based biodegradable films were prepared by casting. ► With the increase of chitosan in starch, the strength of the films improved significantly. ► Monomer, 2-Butane diol-diacrylate was grafted with the films by gamma radiation. ► Mechanical properties of synthetic polymeric films improved by gamma radiation. ► The irradiated polymer films showed better water vapor barrier properties.

  6. A Biodegradable Thermoset Polymer Made by Esterification of Citric Acid and Glycerol

    Science.gov (United States)

    Halpern, Jeffrey M.; Urbanski, Richard; Weinstock, Allison K.; Iwig, David F.; Mathers, Robert T.; von Recum, Horst

    2014-01-01

    A new biomaterial, a degradable thermoset polymer, was made from simple, economical, biocompatable monomers without the need for a catalyst. Glycerol and citric acid, non-toxic and renewable reagents, were crosslinked by a melt polymerization reaction at temperatures from 90-150°C. Consistent with a condensation reaction, water was determined to be the primary byproduct. The amount of crosslinking was controlled by the reaction conditions, including temperature, reaction time, and ratio between glycerol and citric acid. Also, the amount of crosslinking was inversely proportional to the rate of degradation. As a proof-of-principle for drug delivery applications, gentamicin, an antibiotic, was incorporated into the polymer with preliminary evaluations of antimicrobial activity. The polymers incorporating gentamicin had significantly better bacteria clearing of Staphylococcus aureus compared to non-gentamicin gels for up to nine days. PMID:23737239

  7. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    Science.gov (United States)

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL.

  8. Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: assessment on carrot, cheese, and salami.

    Science.gov (United States)

    Moreira, Maria del Rosario; Pereda, Mariana; Marcovich, Norma E; Roura, Sara I

    2011-01-01

    Antimicrobial packaging is one of the most promising active packaging systems for controlling spoilage and pathogenic microorganisms. In this work, the intrinsic antimicrobial properties of chitosan (CH) were combined with the excellent thermoplastic and film-forming properties of sodium caseinate (SC) to prepare SC/CH film-forming solutions and films. The antimicrobial effectiveness of SC, CH, and SC/CH coatings on the native microfloras of cheese, salami, and carrots was evaluated. In vitro assays through the test tube assay indicated that the most significant antimicrobial effect was achieved by CH and SC/CH solutions on carrot and cheese native microfloras. SC film-forming solutions did not exert antimicrobial activity on any of the native microflora studied. SC, CH, and SC/CH films stored in controlled environments showed that the retention of the antimicrobial action was observed until 5-d storage, at 65% relative humidity in both temperatures (10 °C and 20 °C). In vivo assays were also performed with SC, CH, and SC/CH applied as coatings or wrappers on the 3 food substrates. CH and SC/CH applied at both immersion and wrapper exerted a significant bactericidal action on mesophilic, psychrotrophic, and yeasts and molds counts, showing the 3 microbial populations analyzed a significant reduction (2.0 to 4.5 log CFU/g). An improvement of the bactericidal properties of the CH/SC blend respect to those of the neat CH film is reported. The ionic interaction between both macromolecules enhances its antimicrobial properties. Practical Application: The continuous consumer interest in high quality and food safety, combined with environmental concerns has stimulated the development and study of biodegradable coatings that avoid the use of synthetic materials. Among them, edible coatings, obtained from generally recognized as safe (GRAS) materials, have the potential to reduce weight loss, respiration rate, and improve food appearance and integrity. They can be used in

  9. Polímeros biodegradáveis - uma solução parcial para diminuir a quantidade dos resíduos plásticos Biodegradable polymers - a partial way for decreasing the amount of plastic waste

    Directory of Open Access Journals (Sweden)

    Sandra Mara Martins Franchetti

    2006-07-01

    Full Text Available The large use of plastics has generated a waste deposit problem. Today plastic wastes represent 20% in volume of the total waste in the municipal landfills. To solve the disposal problem of plastics methods have been employed such as incineration, recycling, landfill disposal, biodegradation and the use of biodegradable polymers. Incineration of plastic wastes provokes pollution due to the production of poisonous gases. Recycling is important to reduce final costs of plastic materials, but is not enough in face of the amount of discarded plastic. In landfills plastic wastes remain undegraded for a long time, causing space and pollution problems. Biodegradation is a feasible method to treat some plastics, but intensive research is necessary to find conditions for the action of microorganisms. All of these methods are important and the practical application of each one depends on the type and amount of the plastic wastes and the environmental conditions. Therefore, a great deal of research has focused on developing biodegradable plastics and its application because it is an important way for minimizing the effect of the large volume of plastic waste discarded in the world.

  10. Encapsulation of testosterone by chitosan nanoparticles.

    Science.gov (United States)

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as Lewis acid.

    Science.gov (United States)

    Deng, Hui; Wei, Zhilai; Wang, XiaoNing

    2017-02-10

    A Ti(IV) functionalized chitosan molecularly imprinted polymer (Ti-CSMIP) was successfully prepared. Ti 4+ as Lewis acidic was used to modify chitosan MIP by producing metal hydroxyl group and protonated surface of adsorbent in aqueous solution to recognize X-3B molecule as a Lewis base. The adsorbent was characterized by FTIR, SEM, XRD, BET, elemental and zeta potential analysis. XRD illustrated Ti-CSMIP exhibited a weak anatase phase when Ti 4+ cross-linked with chitosan. Batch adsorption experiments were performed to evaluate adsorption condition, including sorption isotherm, kinetics and reusability. The maximum adsorption capacity of Ti-CSMIP for X-3B was 161.1mg/g at 293K when solution pH was in the range of 6.0-7.0. Equilibrium data was well analyzed by three-parameter isotherm model, and the kinetics of adsorption followed the pseudo-second kinetics equation. Regeneration experiments indicated a possible application as an effective sorbent for the selective removal of azo anionic dye in aqueous solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Tissue ingrowth polymers and degradation of two biodegradable porous with different porosities and pore sizes

    NARCIS (Netherlands)

    van Tienen, TG; Heijkants, RGJC; Buma, P; de Groot, JH; Pennings, AJ; Veth, RPH

    Commonly, spontaneous repair of lesions in the avascular zone of the knee meniscus does not occur. By implanting a porous polymer scaffold in a knee meniscus defect, the lesion is connected with the abundantly vascularized knee capsule and heating can be realized. Ingrowth of fibrovascular tissue

  13. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications

    NARCIS (Netherlands)

    Vaz, C.M.; Fossen, M.; Tuil, van R.F.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al2O3) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity

  14. Fibrous polymer grafted magnetic chitosan beads with strong poly(cation-exchange) groups for single step purification of lysozyme.

    Science.gov (United States)

    Bayramoglu, Gulay; Tekinay, Turgay; Ozalp, V Cengiz; Arica, M Yakup

    2015-05-15

    Lysozyme is an important polypetide used in medical and food applications. We report a novel magnetic strong cation exchange beads for efficient purification of lysozyme from chicken egg white. Magnetic chitosan (MCHT) beads were synthesized via phase inversion method, and then grafted with poly(glycidyl methacrylate) (p(GMA)) via the surface-initiated atom transfer radical polymerization (SI-ATRP). Epoxy groups of the grafted polymer, were modified into strong cation-exchange groups (i.e., sulfonate groups) in the presence of sodium sulfite. The MCTH and MCTH-g-p(GMA)-SO3H beads were characterized by ATR-FTIR, SEM, and VSM. The sulphonate groups content of the modified MCTH-g-p(GMA)-4 beads was found to be 0.53mmolg(-1) of beads by the potentiometric titration method. The MCTH-g-p(GMA)-SO3H beads were first used as an ion-exchange support for adsorption of lysozyme from aqueous solution. The influence of different experimental parameters such as pH, contact time, and temperature on the adsorption process was evaluated. The maximum adsorption capacity was found to be 208.7mgg(-1) beads. Adsorption of lysozyme on the MCTH-g-p(GMA)-SO3H beads fitted to Langmuir isotherm model and followed the pseudo second-order kinetic. More than 93% of the adsorbed lysozyme was desorbed using Na2CO3 solution (pH 11.0). The purity of the lysozyme was checked by HPLC and SDS gel electrophoresis. In addition, the MCTH-g-p(GMA)-SO3H beads prepared in this work showed promising potential for separation of various anionic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Isocyanate-functionalized chitin and chitosan as gelling agents of castor oil.

    Science.gov (United States)

    Gallego, Rocío; Arteaga, Jesús F; Valencia, Concepción; Franco, José M

    2013-06-03

    The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO-functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI), and the other by using chitin instead of chitosan. These polymers were characterized through 1H-NMR, FTIR and thermogravimetric analysis (TGA). Thermal and rheological behaviours of the oleogels prepared by dispersing these polymers in castor oil were studied by means of TGA and small-amplitude oscillatory shear (SAOS) measurements. The evolution and values of the linear viscoelasticity functions with frequency for -NCO-functionalized chitosan- and chitin-based oleogels are quite similar to those found for standard lubricating greases. In relation to long-term stability of these oleogels, no phase separation was observed and the values of viscoelastic functions increase significantly during the first seven days of ageing, and then remain almost constant. TGA analysis showed that the degradation temperature of the resulting oleogels is higher than that found for traditional lubricating greases.

  16. Investigating Effects of Gelatin-Chitosan Film on Culture of Bone Marrow Stromal Cells in Rat

    Directory of Open Access Journals (Sweden)

    A Karami joyani

    2015-02-01

    Conclusion: Results of proliferation,differentiation and apoptosis cultured BMSCs on a gelatin-chitosan film showed that gelatin-chitosan film can be used as a good model of a biodegradable scaffold in tissue engineering and cell therapy.

  17. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres.

    Science.gov (United States)

    Saranya, T S; Rajan, V K; Biswas, Raja; Jayakumar, R; Sathianarayanan, S

    2018-04-15

    Curcumin is a diaryl heptanoid of curcuminoids class obtained from Curcuma longa. It possesses various biological activities like anti-inflammatory, hypoglycemic, antioxidant, wound-healing, and antimicrobial activities. Chitosan is a biocompatible, biodegradable and non-toxic natural polymer which enhances the adhesive property of the skin. Chemical conjugation will leads to sustained release action and to enhance the bioavailability. This study aims to synthesis and characterize biocompatible curcumin conjugated chitosan microspheres for bio-medical applications. The Schiff base reaction was carried out for the preparation of curcumin conjugated chitosan by microwave method and it was characterised using FTIR and NMR. Curcumin conjugated chitosan microspheres (CCCMs) were prepared by wet milling solvent evaporation method. SEM analysis showed these CCCMs were 2-5μm spherical particles. The antibacterial activities of the prepared CCCMs were studied against Staphylococcus aureus and Escherichia coli, the zone of inhibition was 28mm and 23mm respectively. Antioxidant activity of the prepared CCCMs was also studied by DPPH and H 2 O 2 method it showed IC 50 esteem value of 216μg/ml and 228μg/ml, and anti-inflammatory activity results showed that CCCMs having IC 50 value of 45μg/ml. The results conclude that the CCCMs having a good antibacterial, antioxidant and anti-inflammatory activities. This, the prepared CCCMs have potential application in preventing skin infections. Copyright © 2017. Published by Elsevier B.V.

  18. PolyMorphine: an innovative biodegradable polymer drug for extended pain relief

    OpenAIRE

    Rosario-Meléndez, Roselin; Harris, Carolyn L.; Delgado-Rivera, Roberto; Yu, Lei; Uhrich, Kathryn E.

    2012-01-01

    Morphine, a potent narcotic analgesic used for the treatment of acute and chronic pain, was chemically incorporated into a poly(anhydride-ester) backbone. The polymer termed “PolyMorphine”, was designed to degrade hydrolytically releasing morphine in a controlled manner to ultimately provide analgesia for an extended time period. PolyMorphine was synthesized via melt-condensation polymerization and its structure was characterized using proton and carbon nuclear magnetic resonance spectroscopi...

  19. Bioresorption mechanisms of chitosan physical hydrogels: A scanning electron microscopy study

    International Nuclear Information System (INIS)

    Malaise, Sébastien; Rami, Lila; Montembault, Alexandra; Alcouffe, Pierre; Burdin, Béatrice; Bordenave, Laurence; Delmond, Samantha; David, Laurent

    2014-01-01

    Tissue-engineered biodegradable medical devices are widely studied and systems must present suitable balance between versatility and elaboration simplicity. In this work, we aim at illustrating that such equilibrium can be found by processing chitosan physical hydrogels without external cross-linker. Chitosan concentration, degree of acetylation, solvent composition, and neutralization route were modulated in order to obtain hydrogels exhibiting different physico-chemical properties. The resulting in vivo biological response was investigated by scanning electron microscopy. “Soft” hydrogels were obtained from chitosan of high degree of acetylation (35%) and by the neutralization with gaseous ammonia of a chitosan acetate aqueous solutions presenting low polymer concentration (Cp = 1.6% w/w). “Harder” hydrogels were obtained from chitosan with lower degree of acetylation (5%) and after neutralization in sodium hydroxide bath (1 M) of hydro-alcoholic chitosan solutions (50/50 w/w water/1,2-propanediol) with a polymer concentration of 2.5% w/w. Soft and hard hydrogels exhibited bioresorption times from below 10 days to higher than 60 days, respectively. We also evidenced that cell colonization and neo-vascularization mechanisms depend on the hydrogel-aggregated structure that is controlled by elaboration conditions and possibly in relation with mechanical properties. Specific processing conditions induced micron-range capillary formation, which can be assimilated to colonization channels, also acting on the resorption scenario. - Highlights: • We elaborated physical chitosan hydrogels presenting tuneable biological properties. • Cell colonization mechanism depends on biological and mechanical hydrogel properties. • Increasing the degree of acetylation will reduce the bioresorption time. • Capillaries played a role of cell colonization pathways

  20. Bioresorption mechanisms of chitosan physical hydrogels: A scanning electron microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Malaise, Sébastien, E-mail: sebastien.malaise@gmail.com [Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP-UMR 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex (France); Rami, Lila [Université de Bordeaux, Bordeaux 33000 (France); Inserm U1026, Bioingénierie Tissulaire, Bordeaux 33000 (France); Montembault, Alexandra; Alcouffe, Pierre [Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP-UMR 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex (France); Burdin, Béatrice [Université de Lyon, Université Claude Bernard Lyon 1, Centre Technologique des Microstructure, 69622 Villeurbanne Cedex (France); Bordenave, Laurence [Université de Bordeaux, Bordeaux 33000 (France); Inserm U1026, Bioingénierie Tissulaire, Bordeaux 33000 (France); CHU de Bordeaux, CIC-IT Biomaterials, F-33000 Bordeaux (France); Delmond, Samantha [CHU de Bordeaux, CIC-IT Biomaterials, F-33000 Bordeaux (France); David, Laurent [Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP-UMR 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex (France)

    2014-09-01

    Tissue-engineered biodegradable medical devices are widely studied and systems must present suitable balance between versatility and elaboration simplicity. In this work, we aim at illustrating that such equilibrium can be found by processing chitosan physical hydrogels without external cross-linker. Chitosan concentration, degree of acetylation, solvent composition, and neutralization route were modulated in order to obtain hydrogels exhibiting different physico-chemical properties. The resulting in vivo biological response was investigated by scanning electron microscopy. “Soft” hydrogels were obtained from chitosan of high degree of acetylation (35%) and by the neutralization with gaseous ammonia of a chitosan acetate aqueous solutions presenting low polymer concentration (Cp = 1.6% w/w). “Harder” hydrogels were obtained from chitosan with lower degree of acetylation (5%) and after neutralization in sodium hydroxide bath (1 M) of hydro-alcoholic chitosan solutions (50/50 w/w water/1,2-propanediol) with a polymer concentration of 2.5% w/w. Soft and hard hydrogels exhibited bioresorption times from below 10 days to higher than 60 days, respectively. We also evidenced that cell colonization and neo-vascularization mechanisms depend on the hydrogel-aggregated structure that is controlled by elaboration conditions and possibly in relation with mechanical properties. Specific processing conditions induced micron-range capillary formation, which can be assimilated to colonization channels, also acting on the resorption scenario. - Highlights: • We elaborated physical chitosan hydrogels presenting tuneable biological properties. • Cell colonization mechanism depends on biological and mechanical hydrogel properties. • Increasing the degree of acetylation will reduce the bioresorption time. • Capillaries played a role of cell colonization pathways.

  1. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Faisal Raza

    2018-01-01

    Full Text Available Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today’s world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, “release mechanisms” their physical and chemical characteristics and diverse applications.

  2. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers.

    Science.gov (United States)

    Raza, Faisal; Zafar, Hajra; Zhu, Ying; Ren, Yuan; -Ullah, Aftab; Khan, Asif Ullah; He, Xinyi; Han, Han; Aquib, Md; Boakye-Yiadom, Kofi Oti; Ge, Liang

    2018-01-18

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today's world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, "release mechanisms" their physical and chemical characteristics and diverse applications.

  3. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-08-01

    Full Text Available Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted.

  4. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Science.gov (United States)

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho; Chan, Wai Yee

    2015-01-01

    Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted. PMID:26287217

  5. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes

    International Nuclear Information System (INIS)

    Costanzo, Guadalupe Díaz; Ledesma, Silvia; Ribba, Laura; Goyanes, Silvia

    2014-01-01

    A new biodegradable photoresponsive material was developed using poly(lactic acid) (PLA) as the matrix material and Disperse Orange 3 (DO3) as photoisomerizable azo-dye. It was observed that the addition of multi-walled carbon nanotubes (MWCNTs) leads to a new phenomenon consisting of an enhancement of the optical anisotropy in a wide range of temperatures. In particular, the optical anisotropy increases 100% at room temperature. Moreover, the material containing MWCNTs shows a faster optical response that is evidenced as an increase in the growth rate of optical anisotropy. Spectroscopic data is provided to study the interaction among DO3, MWCNTs and PLA. The enhancement of optical anisotropy obtained with the addition of MWCNTs was related to the glass transition temperature (T g ) of each material. Maximum optical anisotropy was obtained 15 °C below the T g for both materials. Results are interpreted in terms of the interactions among DO3, MWCNTs and PLA and the packing density of the dye into the polymer chains. (paper)

  6. Stable Biodegradable Polymers for Delivery of Both Polar and Non-Polar Drugs. Phase I

    Science.gov (United States)

    1996-10-01

    containing hydromorphone hydrochloride (HMh). In two, containing HMh at 25 and 50% (w/w), the lactide to glycolide ratio of the polymer was 85:15...semisynthetic opioid analgesic which meets these criteria. It is sold as the hydrochloride under the trade name Dilaudid. A dose of 1.5 mg can achieve a 50...Numorphan) 1.0-1.1 Slightly shorter Levorphanol tartrate (Levo-Dromoran) 2.0-2.3 Same Butorphanol tartrate (Stadol) 1.5-2.5 Same Methadone HC1 (Dolophine

  7. Meta-Analysis of Randomized Clinical Trials Comparing Biodegradable Polymer Drug-Eluting Stent to Second-Generation Durable Polymer Drug-Eluting Stents.

    Science.gov (United States)

    El-Hayek, Georges; Bangalore, Sripal; Casso Dominguez, Abel; Devireddy, Chandan; Jaber, Wissam; Kumar, Gautam; Mavromatis, Kreton; Tamis-Holland, Jacqueline; Samady, Habib

    2017-03-13

    The authors sought to perform a meta-analysis of randomized clinical trials (RCTs) comparing the safety and efficacy of biodegradable polymer drug-eluting stents (BP-DES) to second-generation durable polymer drug-eluting stents (DP-DES). Prior meta-analyses have established the superiority of BP-DES over bare-metal stents and first-generation DP-DES; however, their advantage compared with second-generation DP-DES remains controversial. The authors searched PubMed and Scopus databases for RCTs comparing BP-DES to the second-generation DP-DES. Outcomes included target vessel revascularization (TVR) as efficacy outcome and cardiac death, myocardial infarction (MI), and definite or probable stent thrombosis (ST) as safety outcomes. In addition, we performed landmark analysis for endpoints beyond 1 year of follow-up and a subgroup analysis based on the stent characteristics. The authors included 16 RCTs comprising 19,886 patients in the meta-analysis. At the longest available follow-up (mean duration 26 months), we observed no significant differences in TVR (p = 0.62), cardiac death (p = 0.46), MI (p = 0.98), or ST (risk ratio: 0.83, 95% confidence interval: 0.64 to 1.09; p = 0.19). Our landmark analysis showed that BP-DES were not associated with a reduction in the risk of very late ST (risk ratio: 0.87, 95% confidence interval: 0.49 to 1.53; p = 0.62). Similar outcomes were seen regardless of the eluting drug (biolimus vs. sirolimus), the stent platform (stainless steel vs. alloy), the kinetics of polymer degradation or drug release (6 months), the strut thickness of the BP-DES (thin 100 μm), or the DAPT duration (≥6 months vs. ≥12 months). BP-DES have similar safety and efficacy profiles to second-generation DP-DES. Published by Elsevier Inc.

  8. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Koneracka, M; Zavisova, V; Tomasovicova, N; Kopcansky, P; Timko, M; JurIkova, A; Csach, K; Kavecansky, V; Lancz, G [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Muckova, M [Hameln rds a.s., Horna 36, Modra (Slovakia)], E-mail: konerack@saske.sk

    2008-05-21

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  9. PolyMorphine: an innovative biodegradable polymer drug for extended pain relief.

    Science.gov (United States)

    Rosario-Meléndez, Roselin; Harris, Carolyn L; Delgado-Rivera, Roberto; Yu, Lei; Uhrich, Kathryn E

    2012-09-28

    Morphine, a potent narcotic analgesic used for the treatment of acute and chronic pain, was chemically incorporated into a poly(anhydride-ester) backbone. The polymer termed "PolyMorphine", was designed to degrade hydrolytically releasing morphine in a controlled manner to ultimately provide analgesia for an extended time period. PolyMorphine was synthesized via melt-condensation polymerization and its structure was characterized using proton and carbon nuclear magnetic resonance spectroscopies, and infrared spectroscopy. The weight-average molecular weight and the thermal properties were determined. The hydrolytic degradation pathway of the polymer was determined by in vitro studies, showing that free morphine is released. In vitro cytocompatibility studies demonstrated that PolyMorphine is non-cytotoxic towards fibroblasts. In vivo studies using mice showed that PolyMorphine provides analgesia for 3 days, 20 times the analgesic window of free morphine. The animals retained full responsiveness to morphine after being subjected to an acute morphine challenge. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles

    International Nuclear Information System (INIS)

    Cha, Kyoung Je; Kim, Taewan; Park, Sung Jea; Kim, Dong Sung

    2014-01-01

    Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications. (paper)

  11. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles

    Science.gov (United States)

    Cha, Kyoung Je; Kim, Taewan; Jea Park, Sung; Kim, Dong Sung

    2014-11-01

    Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications.

  12. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    Science.gov (United States)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve

  13. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms.

    Science.gov (United States)

    Kulkarni, Bhagyashree; Surnar, Bapurao; Jayakannan, Manickam

    2016-03-14

    Multipurpose polymer nanoscaffolds for cellular imaging and delivery of anticancer drug are urgently required for the cancer therapy. The present investigation reports a new polymer drug delivery concept based on biodegradable polycaprolactone (PCL) and highly luminescent π-conjugated fluorophore as dual functional nanocarrier for cellular imaging and delivery vehicles for anticancer drug to cancer cells. To accomplish this goal, a new substituted caprolactone monomer was designed, and it was subjected to ring opening polymerization using a blue luminescent bishydroxyloligo-phenylenevinylene (OPV) fluorophore as an initiator. A series of A-B-A triblock copolymer building blocks with a fixed OPV π-core and variable chain biodegradable PCL arm length were tailor-made. These triblocks self-assembled in organic solvents to produce well-defined helical nanofibers, whereas in water they produced spherical nanoparticles (size ∼150 nm) with blue luminescence. The hydrophobic pocket of the polymer nanoparticle was found to be an efficient host for loading water insoluble anticancer drug such as doxorubicin (DOX). The photophysical studies revealed that there was no cross-talking between the OPV and DOX chromophores, and their optical purity was retained in the nanoparticle assembly for cellular imaging. In vitro studies revealed that the biodegradable PCL arm was susceptible to enzymatic cleavage at the intracellular lysosomal esterase under physiological conditions to release the loaded drugs. The nascent nanoparticles were found to be nontoxic to cancer cells, whereas the DOX-loaded nanoparticles accomplished more than 80% killing in HeLa cells. Confocal microscopic analysis confirmed the cell penetrating ability of the blue luminescent polymer nanoparticles and their accumulation preferably in the cytoplasm. The DOX loaded red luminescent polymer nanoparticles were also taken up by the cells, and the drug was found to be accumulated at the perinuclear environment

  14. Graft copolymerization of N-maleoyl-N-phthaloyl-chitosan (MAPHCS) and acrylic acid via γ-ray irradiation

    International Nuclear Information System (INIS)

    Mu Qing; Fang Yue'e

    2006-01-01

    Chitosan is a well-known abundant natural polymer with good biodegradability, biocompatibility and bioactivity. But its insolubility in common organic solvents of chitosan have hindered its utilization and basic research. N-maleoyl-N-phthaloyl-chitosan (MAPHCS), soluble in DMF or DMSO, was synthesized and characterized by Fourier transform infrared spectra analysis (FT-IR) and 1 H-NMR. The graft copolymerization of acrylic acid onto chitosan was carried out with N-maleoyl-N-phthaloyl-chitosan as intermediate in homogeneous system and initiated by γ-irradiation. The double bond of MAPHCS may be the grafting site because the grafting field was much higher than that of the graft copolymerization of acrylic acid and phthaloylchitosan via γ-ray irradiation. The chemical structure of the graft copolymer was characterized by FT-IR and 1 H-NMR. As indicated in FTIR spectra, the evidence of the stronger absorbance at 2800-3000 cm -1 for C-H and at 1720 cm -1 for carboxyl group implied significantly the successful introduction of the poly (acrylic acid) on the chitosan chain. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were also used to characterize the copolymer. Effects of synthesis variables on the graft copolymerization were studied in light of the grafting percentage. The grafting percentage increased with the dose at lower doses, and then decreased. The maximum grafting percentage was up to 132%. (authors)

  15. Biodegradable micromechanical sensors

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Greve, Anders; Schmid, Silvan

    of mechanical and thermal properties of polymers. For example, measurements of the resonance frequency of cantilevers were used to characterize thin polymer coatings in various environmental conditions [2]. Also, the influence of humidity on the Young’s modulus of SU-8 was evaluated [3]. However, introduction...... (NIL). Second, we used spray-coating to deposit thin biodegradable films on microcantilevers. Both approaches allowed the determination of the Young’s modulus of the biopolymer. Furthermore, biodegradation by enzymes was investigated....

  16. Advances in allogenic bone graft processing and usage: preparation and evaluation of chitosan-demineralized cancellous bone powder composite scaffolds as a bone graft substitute

    International Nuclear Information System (INIS)

    Yongyudh Vajaradul

    2008-01-01

    Full text: Demineralized bone matrix (DBM) is currently used by surgeons. It usually exists as a lyophilized powder which is difficult to handle and operated. In this study, we try to improve these disadvantages by combining DBM with a biomaterial. It focuses on a natural biodegradable polymer, chitosan, to act as a temporary matrix for bone growth that easily prepare in any size and shape by using tissue engineering knowledge to get a proper temporary matrix. Thus, the development of chitosan-demineralized bone powder composite scaffold is an alternative way. Polymeric scaffold has been demonstrated to have great potential for tissue engineering because the scaffold or three dimension (3D) construct provides the necessary support for cells to proliferate, extracellular matrix deposition and vascularization of neo-tissue. Moreover, chitosan, a natural cationic polymer which its structural is similar to extracellular matrix glycosaminoblycans, is biodegradable, biocompatible, non-antigenic and biofunctional. It can enhance osteoblast cells proliferation and mineral matrix deposition in culture. The first study was to fabricate and analyze composite scaffold composed of either chitosan-demineralized cancellous bone powders or chitosan-demineralized cancellous cartilage bone powders in a ratio 50:50 and 70:30 w/w (chitosan : bone powders) based on physical properties composing of average pore diameter, mechanical integrity and swelling property. Secondly, scaffolds were evaluated in term of biological properties composing of their ability to support neo osteogenesis, including assessments of cell attachment and viability, cell morphology, and the biosynthesis of extracellular matrix. Results indicated that chitosan-demineralized cancellous bone powder composite scaffolds possessing an interconnecting, porous structure could be easily created through a simple freezing and lyophilization process. (Author)

  17. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    Science.gov (United States)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J.

    2017-12-12

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.

  18. Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation

    Directory of Open Access Journals (Sweden)

    Basudev Sahana

    2010-08-01

    Full Text Available Basudev Sahana, Kousik Santra, Sumit Basu, Biswajit MukherjeeDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata, IndiaAbstract: The aim of the present study was to develop nanoparticles of tamoxifen citrate, a non-steroidal antiestrogenic drug used for the treatment of breast cancer. Biodegradable poly (D, L- lactide-co-glycolide-85:15 (PLGA was used to develop nanoparticles of tamoxifen citrate by multiple emulsification (w/o/w and solvent evaporation technique. Drug-polymer ratio, polyvinyl alcohol concentrations, and homogenizing speeds were varied at different stages of preparation to optimize the desired size and release profile of drug. The characterization of particle morphology and shape was performed by field emission scanning electron microscope (FE-SEM and particle size distribution patterns were studied by direct light scattering method using zeta sizer. In vitro drug release study showed that release profile of tamoxifen from biodegradable nanoparticles varied due to the change in speed of centrifugation for separation. Drug loading efficiency varied from 18.60% to 71.98%. The FE-SEM study showed that biodegradable nanoparticles were smooth and spherical in shape. The stability studies of tamoxifen citrate in the experimental nanoparticles showed the structural integrity of tamoxifen citrate in PLGA nanoparticles up to 60°C in the tested temperatures. Nanoparticles containing tamoxifen citrate could be useful for the controlled delivery of the drug for a prolonged period.Keywords: biodegradable, nanoparticles, PLGA, stability, tamoxifen citrate

  19. Radiation processing of chitosan derivative and its characteristics

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by a carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial agent and it overcome the problem of bad smell using acetic acid. (Author)

  20. Synthesis, characterization and radiation processing of carboxymethyl-chitosan

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial and anti-fungal agent, and it overcome the problem of bad smell using organic acid. (Author)

  1. Preparation and Adsorption Ability of Polysulfone Microcapsules Containing Modified Chitosan Gel

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; LUO Guangsheng; YANG Weiwei; WANG Yujun

    2005-01-01

    Chemically modified chitosan beads containing polyethyleneimine (PEI) were prepared to improve the metal ion adsorption capacity of the chitosan beads and their mechanical stability and to limit their biodegradability. The modified beads were encapsulated with the polymer material polysulfone by a novel surface coating method named the emulsion phase inversion method. The adsorption properties of the modified beads and the microstructures of the polysulfone coating layer were then analyzed. The experimental results showed that the PEI was successfully linked onto the chitosan beads. The density of the -NH2 groups in the modified beads was significantly increased, while the water content was reduced. The coating layer thickness was about 200 (m. The modified chitosan gel beads had excellent Cu(II) adsorption capacity, with a maximum Cu(II) adsorption capacity 1.34 times higher than that of the unmodified beads. The results show that even with the polysulfone coating the adsorption kinetics of the modified beads is still better than those of the unmodified beads. The modifications improve the mass transfer performance of the chitosan beads as well as the bead stability.

  2. Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites

    International Nuclear Information System (INIS)

    Mohamed, Khaled R.; Mostafa, Amani A.

    2008-01-01

    Biocomposites consisting of hydroxyapatite (HA) and natural polymers such as collagen, chitosan, chitin,and gelatin have been extensively investigated. However, studies on the combination of HA and titania with chitosan and gelatin have not been conducted yet. Novel biodegradable hydroxyapatite-titania/chitosan-gelatin polymeric composites were fabricated. In this work, our results are concerning with the preparation and characterization of HA powder and HA filler containing titania powder (10 and 30%) with a chitosan and gelatin copolymer matrix. The present research focuses on characterizing the structure of this novel class of biocomposites. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier Transformed Infrared Spectroscopy (FT-IR), Scanning electron microscopy (SEM-EDAX) were employed to assess the produced composites. The mechanical properties in terms of compressive strength and hardness test were also investigated. The in vitro study in simulated body fluid (SBF) was performed to assess the bioactivity of composites. The results proved that apatite resembling natural bone are formed faster and greater in the case the composite of HA containing 10% titania into chitosan-gelatin polymeric matrix when they are soaked in a simulated body fluid (SBF) than the composite containing 30% titania. The biocomposites containing HA with 10% titania are expected to be attractive for bioapplications as bone substitutes and scaffolds for tissue engineering in future

  3. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass.

    Science.gov (United States)

    Pourhaghgouy, Masoud; Zamanian, Ali; Shahrezaee, Mostafa; Masouleh, Milad Pourbaghi

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO2.28CaO.8P2O5) prepared by sol-gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. Copyright © 2015. Published by Elsevier B.V.

  4. Fabrication and In Vitro Evaluation of Nanosized Hydroxyapatite/Chitosan-Based Tissue Engineering Scaffolds

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2014-01-01

    Full Text Available Composite scaffolds based on biodegradable natural polymer and osteoconductive hydroxyapatite (HA nanoparticles can be promising for a variety of tissue engineering (TE applications. This study addressed the fabrication of three-dimensional (3D porous composite scaffolds composed of HA and chitosan fabricated via thermally induced phase separation and freeze-drying technique. The scaffolds produced were subsequently characterized in terms of microstructure, porosity, and mechanical property. In vitro degradation and in vitro biological evaluation were also investigated. The scaffolds were highly porous and had interconnected pore structures. The pore sizes ranged from several microns to a few hundred microns. The incorporated HA nanoparticles were well mixed and physically coexisted with chitosan in composite scaffold structures. The addition of 10% (w/w HA nanoparticles to chitosan enhanced the compressive mechanical properties of composite scaffold compared to pure chitosan scaffold. In vitro degradation results in phosphate buffered saline (PBS showed slower uptake properties of composite scaffolds. Moreover, the scaffolds showed positive response to mouse fibroblast L929 cells attachment. Overall, the findings suggest that HA/chitosan composite scaffolds could be suitable for TE applications.

  5. Glycol chitosan

    DEFF Research Database (Denmark)

    Danielsen, E Thomas; Danielsen, E Michael

    2017-01-01

    Chitosan is a polycationic polysaccharide consisting of β-(1-4)-linked glucosamine units and due to its mucoadhesive properties, chemical derivatives of chitosan are potential candidates as enhancers for transmucosal drug delivery. Recently, glycol chitosan (GC), a soluble derivative of chitosan...

  6. Measurement of mass stopping power of chitosan polymer loaded with TiO2 for relativistic electron interaction

    Science.gov (United States)

    Babu, S. Ramesh; Badiger, N. M.; Karidurgannavar, M. Y.; Varghese, Jolly. G.

    2018-04-01

    The Mass Stopping Power (MSP) of relativistic electrons in chitosan loaded with TiO2 of different proportions has been measured by recording the spectrum of internal conversion electrons. The internal conversion electrons of energies 614 keV from Cs137, 942 keV and 1016 keV from Bi207 source are allowed to pass through chitosan-TiO2 alloy and transmitted electrons are detected with a Si (Li) detector coupled to an 8 K multichannel analyzer. By knowing the energies of incident electrons and transmitted electrons, the energy loss and the MSP are determined. Thus measured MSP values of the alloys are compared with the values calculated using Braggs additivity rule. The disagreement between theory and experiment is found to increases with increasing TiO2 concentration in chitosan, indicating the influence of chemical environment in the properties of such polymeric membrane.

  7. Synthesis of fish scales gelatin-chitosan crosslinked films by gamma irradiation techniques

    International Nuclear Information System (INIS)

    Erizal; Perkasa, D.P.; Abbas, B.; Sulistioso, G.S.

    2013-01-01

    Gelatin is an important component of fish scales. Nowadays, attention has increased concerning the application of gelatin.The aim of this research was to improve the mechanical properties of gelatin produced from fish scales, which concurrently could increase the usefulness of fish scales. Gelatin (G) is prone to degrade or dissolve in water at room temperature, therefore to enhance its lifetime, it has to be modified with other compound such as chitosan. Chitosan (Cs) is a biodegradable polymer, which has biocompatibility and antibacterial properties. In this study, gelatin solution was mixed with chitosan solution in various ratios (G/Cs: 100/0, 75/25, 50/50, 25/75, 0/100), casted at room temperature to make composite films, then tested for the effectiveness of various gamma irradiation doses (10-40 kGy) for crosslinking of the two polymers. Chemical changes of the films were measured by FT-IR, gel fractions were determined by gravimetry, and mechanical properties were determined by tensile strength and elongation at break using universal testing machine. At optimum conditions ( 30 kGy and 75% Cs), the gel fraction, tensile strength, and elongation at break were higher leading to a stronger composite films as compared to the gelatin film. FTIR spectral analysis showed that gelatin and chitosan formed a crosslinked network. It was concluded that G-Cs films prepared by gamma irradiation have improved their mechanical properties than the gelatin itself. (author)

  8. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  9. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  10. Satisfactory arterial repair 1 year after ultrathin strut biodegradable polymer sirolimus-eluting stent implantation: an angioscopic observation.

    Science.gov (United States)

    Ishihara, Takayuki; Awata, Masaki; Iida, Osamu; Fujita, Masashi; Masuda, Masaharu; Okamoto, Shin; Nanto, Kiyonori; Kanda, Takashi; Tsujimura, Takuya; Uematsu, Masaaki; Mano, Toshiaki

    2018-01-15

    The ultrathin strut biodegradable polymer sirolimus-eluting stent (Orsiro, O-SES) exhibits satisfactory clinical outcomes. However, no report to date has documented the intravascular status of artery repair after O-SES implantation. We examined 5 O-SES placed in 4 patients (age 65 ± 12 years, male 75%) presenting with stable angina pectoris due to de novo lesions in native coronary arteries. Coronary angioscopy was performed immediately after percutaneous coronary intervention and 1 year later. Angioscopic images were analyzed to determine the following: (1) dominant grade of neointimal coverage (NIC) over the stent; (2) maximum yellow plaque grade; and (3) existence of thrombus. Yellow plaque grade was evaluated both immediately after stent implantation and at the time of follow-up observation. The other parameters were evaluated at the time of follow-up examination. NIC was graded as: grade 0, stent struts exposed; grade 1, struts bulging into the lumen, although covered; grade 2, struts embedded in the neointima, but translucent; grade 3, struts fully embedded and invisible. Yellow plaque severity was graded as: grade 0, white; grade 1, light yellow; grade 2, yellow; and grade 3, intensive yellow. Angioscopic findings at 1 year demonstrated the following: dominant NIC grade 1, grade 2, and grade 3 in 1, 2, and 2 stents, respectively; all stents were covered to some extent; focal thrombus adhesion was observed in only 1 stent. Yellow plaque grade did not change from immediately after stent implantation to follow-up. O-SES demonstrated satisfactory arterial repair 1 year after implantation.

  11. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents for primary percutaneous coronary revascularisation of acute myocardial infarction.

    Science.gov (United States)

    Pilgrim, Thomas; Piccolo, Raffaele; Heg, Dik; Roffi, Marco; Tüller, David; Vuilliomenet, André; Muller, Olivier; Cook, Stéphane; Weilenmann, Daniel; Kaiser, Christoph; Jamshidi, Peiman; Khattab, Ahmed A; Taniwaki, Masanori; Rigamonti, Fabio; Nietlispach, Fabian; Blöchlinger, Stefan; Wenaweser, Peter; Jüni, Peter; Windecker, Stephan

    2016-12-10

    Our aim was to compare the safety and efficacy of a novel, ultrathin strut, biodegradable polymer sirolimus-eluting stent (BP-SES) with a thin strut, durable polymer everolimus-eluting stent (DP-EES) in a pre-specified subgroup of patients with acute ST-segment elevation myocardial infarction (STEMI) enrolled in the BIOSCIENCE trial. The BIOSCIENCE trial is an investigator-initiated, single-blind, multicentre, randomised non-inferiority trial (NCT01443104). Randomisation was stratified according to the presence or absence of STEMI. The primary endpoint, target lesion failure (TLF), is a composite of cardiac death, target vessel myocardial infarction, and clinically indicated target lesion revascularisation within 12 months. Between February 2012 and May 2013, 407 STEMI patients were randomly assigned to treatment with BP-SES or DP-EES. At one year, TLF occurred in seven (3.4%) patients treated with BP-SES and 17 (8.8%) patients treated with DP-EES (RR 0.38, 95% CI: 0.16-0.91, p=0.024). Rates of cardiac death were 1.5% in the BP-SES group and 4.7% in the DP-EES group (RR 0.31, 95% CI: 0.08-1.14, p=0.062); rates of target vessel myocardial infarction were 0.5% and 2.6% (RR 0.18, 95% CI: 0.02-1.57, p=0.082), respectively, and rates of clinically indicated target lesion revascularisation were 1.5% in the BP-SES group versus 2.1% in the DP-EES group (RR 0.69, 95% CI: 0.16-3.10, p=0.631). There was no difference in the risk of definite stent thrombosis. In this pre-specified subgroup analysis, BP-SES was associated with a lower rate of target lesion failure at one year compared to DP-EES in STEMI patients. These findings require confirmation in a dedicated STEMI trial.

  12. Isolation and characterization of chitin and chitosan from marine origin.

    Science.gov (United States)

    Nwe, Nitar; Furuike, Tetsuya; Tamura, Hiroshi

    2014-01-01

    Nowadays, chitin and chitosan are produced from the shells of crabs and shrimps, and bone plate of squid in laboratory to industrial scale. Production of chitosan involved deproteinization, demineralization, and deacetylation. The characteristics of chitin and chitosan mainly depend on production processes and conditions. The characteristics of these biopolymers such as appearance of polymer, turbidity of polymer solution, degree of deacetylation, and molecular weight are of major importance on applications of these polymers. This chapter addresses the production processes and conditions to produce chitin, chitosan, and chito-oligosaccharide and methods for characterization of chitin, chitosan, and chito-oligosaccharide. © 2014 Elsevier Inc. All rights reserved.

  13. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  14. Development and evaluation of novel biodegradable chitosan based metformin intrapocket dental film for the management of periodontitis and alveolar bone loss in a rat model.

    Science.gov (United States)

    Khajuria, Deepak Kumar; Patil, Omprakash Nandikamba; Karasik, David; Razdan, Rema

    2018-01-01

    The aim of this study was to develop a chitosan-metformin based intrapocket dental film (CMIDF) for applications in the treatment of periodontitis and alveolar bone loss in an rat model of periodontitis. CMIDF inserts were fabricated by the solvent casting technique. The fabricated inserts were evaluated for physical characteristics such as folding endurance, surface pH, mucoadhesive strength, metformin content uniformity, and release. X-ray diffraction analysis indicates no crystallinity of metformin in presence of chitosan which confirmed successful entrapment of metformin into the CMIDF. Fourier-transform infrared spectroscopy revealed stability of CMIDF and compatibility between metformin and chitosan. Periodontitis was induced by a combination of Porphyromonas gingivalis- lipopolysaccharide injections in combinations with ligatures around the mandibular first molar. We divided rats into 5 groups (8 rats/group): healthy, untreated periodontitis; periodontitis plus CMIDF-A (1.99±0.09mg metformin; total mass-4.01±0.05mg), periodontitis plus CMIDF-B (2.07±0.06mg metformin; total mass-7.56±0.09mg), and periodontitis plus chitosan film (7.61±0.08mg). After four weeks, mandibles were extracted to evaluate alveolar bone loss by micro-computerized tomography and histological techniques. Alveolar bone was intact in the healthy group. Local administration of CMIDF resulted in significant improvements in the alveolar bone properties when compared to the untreated periodontitis group. The study reported here demonstrates that novel CMIDF showed good antibacterial activity and effectively reduced alveolar bone destruction in a rat model of experimental periodontitis. Novel CMIDF showed good antibacterial activity and improved alveolar bone properties in a rat model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior

    International Nuclear Information System (INIS)

    Veleirinho, Beatriz; Berti, Fernanda V.; Dias, Paulo F.; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa M.; Lopes-da-Silva, José A.

    2013-01-01

    Microporous, non-woven fibrous scaffolds made of poly(ethylene terephthalate) and chitosan were produced by electrospinning. Fiber morphology, diameter, pore size, and wettability were manipulated by varying the chemical composition of the electrospinning solution, i.e. chitosan concentration and molecular weight, and by post-electrospinning treatment with glutaraldehyde. In vitro studies were conducted using a fibroblast cell line toward a comprehensive understanding of how scaffolds characteristics can modulate the cell behavior, i.e. viability, adhesion, proliferation, extracellular matrix secretion, and three-dimensional colonization. Substantial differences were found as a result of scaffold morphological changes. Higher levels of adhesion, spreading, and superficial proliferation were achieved for scaffolds with smaller fiber and pore diameters while cell penetration and internal colonization were enhanced for scaffolds with larger pores. Additionally, the available area for cell adhesion, which is related to fiber and pore size, was a crucial factor for the viability of L929 cells. This paper provides significant insights for the development and optimization of electrospun scaffolds toward an improved biological performance. Highlights: ► Hybrid PET/chitosan mats were produced by electrospinning. ► Scaffold architecture was manipulated by changing composition of the spun solution. ► The scaffolds showed in vitro biocompatibility to L929 cells. ► Smaller fiber diameters and pore areas allowed for higher levels of cell adhesion and proliferation. ► A 3D cell colonization was achieved for scaffolds with higher fiber diameters.

  16. Self-assembly of biodegradable copolyester and reactive HPMA-based polymers into nanoparticles as an alternative stealth drug delivery system

    Czech Academy of Sciences Publication Activity Database

    Jäger, Eliezer; Jäger, Alessandro; Etrych, Tomáš; Giacomelli, F. C.; Chytil, Petr; Jigounov, Alexander; Putaux, J.-L.; Říhová, Blanka; Ulbrich, Karel; Štěpánek, Petr

    2012-01-01

    Roč. 8, č. 37 (2012), s. 9563-9575 ISSN 1744-683X R&D Projects: GA AV ČR IAAX00500803; GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : biodegradable nanoparticles * light scattering from polymer nanoparticles * doxorubicin drug release Subject RIV: CF - Physical ; Theoretical Chemistry; EC - Immunology (MBU-M) Impact factor: 3.909, year: 2012

  17. Design and application of chitosan microspheres as oral and nasal vaccine carriers: an updated review

    Directory of Open Access Journals (Sweden)

    Islam MA

    2012-12-01

    Full Text Available Mohammad Ariful Islam,1–3,* Jannatul Firdous,1–3,* Yun-Jaie Choi,1 Cheol-Heui Yun,1–4 Chong-Su Cho1,21Department of Agricultural Biotechnology, 2Research Institute for Agriculture and Life Sciences, 3Center for Food and Bioconvergence, 4World Class University Biomodulation Program, Seoul National University, Seoul, South Korea*These authors contributed equally to this workAbstract: Chitosan, a natural biodegradable polymer, is of great interest in biomedical research due to its excellent properties including bioavailability, nontoxicity, high charge density, and mucoadhesivity, which creates immense potential for various pharmaceutical applications. It has gelling properties when it interacts with counterions such as sulfates or polyphosphates and when it crosslinks with glutaraldehyde. This characteristic facilitates its usefulness in the coating or entrapment of biochemicals, drugs, antigenic molecules as a vaccine candidate, and microorganisms. Therefore, chitosan together with the advance of nanotechnology can be effectively applied as a carrier system for vaccine delivery. In fact, chitosan microspheres have been studied as a promising carrier system for mucosal vaccination, especially via the oral and nasal route to induce enhanced immune responses. Moreover, the thiolated form of chitosan is of considerable interest due to its improved mucoadhesivity, permeability, stability, and controlled/extended release profile. This review describes the various methods used to design and synthesize chitosan microspheres and recent updates on their potential applications for oral and nasal delivery of vaccines. The potential use of thiolated chitosan microspheres as next-generation mucosal vaccine carriers is also discussed.Keywords: chitosan microspheres, oral, nasal, vaccine delivery, mucosal and systemic immune responses

  18. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mantripragada, Venkata P. [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614-5807 (United States)

    2014-09-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p < 0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. - Highlights: • Coacervation chitosan microparticles were biocompatible and biodegradable. • IGF-1 encapsulation efficiency increased with coacervation chitosan microparticles. • Coacervation chitosan microparticles support osteoblast attachment and differentiation. • Coacervation chitosan microparticles support osteoblast mineralization.

  19. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions

    International Nuclear Information System (INIS)

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p < 0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. - Highlights: • Coacervation chitosan microparticles were biocompatible and biodegradable. • IGF-1 encapsulation efficiency increased with coacervation chitosan microparticles. • Coacervation chitosan microparticles support osteoblast attachment and differentiation. • Coacervation chitosan microparticles support osteoblast mineralization

  20. Different strategies to obtain antimicrobial biodegradable films for food applications, using starch and/or chitosan with or without essential oils

    OpenAIRE

    VALENCIA SULLCA, CRISTINA ENCARNACIÓN

    2017-01-01

    El desarrollo de materiales de envase biodegradables activos es uno de los retos de la sociedad para resolver los problemas medioambientales asociados a los residuos plásticos y mejorar la conservación de los alimentos, alargando su vida útil. En la presente Tesis Doctoral, se han analizado diferentes estrategias para la obtención y caracterización de películas biodegradables a base de hidrocoloides (almidón de yuca (A) y quitosano (Q)) con características antimicrobianas. Se obtuvieron pelíc...

  1. Applicability and limits of Sturm modified method for evaluation of polymer biodegradability. Applicabilita' e limiti del metodo di Sturm modificato per valutare biodegradabilita' di polimeri plastici

    Energy Technology Data Exchange (ETDEWEB)

    Musmeci, L.; Volterra, L.; Gucci, P.M.B.; Semproni, M.; Coccia, A.M. (Istituto Superiore di Sanita, Rome (Italy))

    1993-01-01

    The admission of 'biodegradable' plastics on the market has determined the development of analytical methods for measuring and controlling their biodegradation. The Modified Sturm Test was selected as a method. This paper presents the results of two experiments in which different and acclimatized/acclimatization microorganisms were used as inocula. The pre-acclimatization was performed on polyethylene alone or with starch additions, respectively. Starch addition in the acclimatization phase induces the selection of a population able to speed up the starch mineralization but not equally able to further biodegrade plastic polymers.

  2. Development of novel encapsulated formulations using albumin-chitosan as a polymer matrix for ocular drug delivery

    Science.gov (United States)

    Addo, Richard Tettey

    Designing formulations for ophthalmic drug delivery is one of the most challenging endeavors facing the pharmaceutical scientist due to the unique anatomy, physiology, and biochemistry of the eye. Current treatment protocols for administration of drugs in eye diseases are primarily solution formulations, gels or ointments. However, these modes of delivery have several drawbacks such as short duration of exposure, need for repeated administrations and non-specific toxicity. We hypothesize that development of ocular drugs in microparticles will overcome the deficiencies of the current modalities of treatment. We based the hypothesis on the preliminary studies conducted with encapsulated tetracaine, an anesthetic used for surgical purposes and atropine, a medication used for several ophthalmic indications including mydriatic and cycloplegic effects. However, atropine is well absorbed into the systemic circulation and has been reported to exert severe systemic side effects after ocular administration (Hoefnagel D. 1961, Morton H. G. 1939 and Lang J. C. 1995) and may lead to serious side effects including death in extreme cases with pediatric use. Based on these observations, the focus of this dissertation is to formulate microparticulate drug carrier for treatment of various conditions of the eye. Purpose: To prepare, characterize, study the in vitro and in vivo interaction of albumin-chitosan microparticles (BSA-CSN MS), a novel particulate drug carrier for ocular drug delivery. Method: Microparticle formulations were prepared by method of spray drying. The percentage drug loading and efficiency were assessed using USP (I) dissolution apparatus. Using Malvern Zeta-Sizer, we determined size and surface charge of the fabrication. Surface morphology of the microparticles was examined using Scanning Electron Microscopy. Microparticles were characterized in terms of thermal properties using Differential Scanning Calorimetry. Human corneal epithelial cells (HCET-1) were

  3. Chitosan: A potential biopolymer for wound management.

    Science.gov (United States)

    Bano, Ijaz; Arshad, Muhammad; Yasin, Tariq; Ghauri, Muhammad Afzal; Younus, Muhammad

    2017-09-01

    It has been seen that slow healing and non-healing wounds conditions are treatable but still challenging to humans. Wound dressing usually seeks for biocompatible and biodegradable recipe. Natural polysaccharides like chitosan have been examined for its antimicrobial and healing properties on the basis of its variation in molecular weight and degree of deacetylation. Chitosan adopts some vital characteristics for treatment of various kinds of wounds which include its bonding nature, antifungal, bactericidal and permeability to oxygen. Chitosan therefore has been modified into various forms for the treatment of wounds and burns. The purpose of this review article is to understand the exploitation of chitosan and its derivatives as wound dressings. This article will also provide a concise insight on the properties of chitosan necessary for skin healing and regeneration, particularly highlighting the emerging role of chitosan films as next generation skin substitutes for the treatment of full thickness wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment.

    Science.gov (United States)

    Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D

    2016-02-27

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  5. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Science.gov (United States)

    Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  6. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Lydia S. Abebe

    2016-02-01

    Full Text Available The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI between 4.7 (±1.56 and 7.5 (±0.02 log10 for Escherichia coli, and between 2.8 (±0.10 and 4.5 (±1.04 log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO. According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  7. The Effect of Polymer Molecular Weight on Citrate Crosslinked ...

    African Journals Online (AJOL)

    Erah

    Purpose: To develop citrate crosslinked chitosan films using chitosan of different molecular weights. (MW) in .... left to stand until trapped air bubbles ... blotted out carefully with filter paper from the .... potential as biodegradable stent coatings. J.

  8. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522.

    Science.gov (United States)

    Rose, Fabrice; Wern, Jeanette Erbo; Gavins, Francesca; Andersen, Peter; Follmann, Frank; Foged, Camilla

    2018-02-10

    Induction of mucosal immunity with vaccines is attractive for the immunological protection against pathogen entry directly at the site of infection. An example is infection with Chlamydia trachomatis (Ct), which is the most common sexually transmitted infection in the world, and there is an unmet medical need for an effective vaccine. A vaccine against Ct should elicit protective humoral and cell-mediated immune (CMI) responses in the genital tract mucosa. We previously designed an antibody- and CMI-inducing adjuvant based on poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles modified with the cationic surfactant dimethyldioctadecylammonium bromide and the immunopotentiator trehalose-6,6'-dibehenate. Here we show that immunization with these lipid-polymer hybrid nanoparticles (LPNs) coated with the mucoadhesive polymer chitosan enhances mucosal immune responses. Glycol chitosan (GC)-modified LPNs were engineered using an oil-in-water single emulsion solvent evaporation method. The nanoparticle design was optimized in a highly systematic way by using a quality-by-design approach to define the optimal operating space and to gain maximal mechanistic information about the GC coating of the LPNs. Cryo-transmission electron microscopy revealed a PLGA core coated with one or several concentric lipid bilayers. The GC coating of the surface was identified as a saturable, GC concentration-dependent increase in particle size and a reduction of the zeta-potential, and the coating layer could be compressed upon addition of salt. Increased antigen-specific mucosal immune responses were induced in the lungs and the genital tract with the optimized GC-coated LPN adjuvant upon nasal immunization of mice with the recombinant Ct fusion antigen CTH522. The mucosal responses were characterized by CTH522-specific IgG/IgA antibodies, together with CTH522-specific interferon γ-producing Th1 cells. This study demonstrates that mucosal administration of CTH522 adjuvanted with chitosan

  9. Heavy Metal Removal by Chitosan and Chitosan Composite

    International Nuclear Information System (INIS)

    Abdel-Mohdy, F.A.; El-Sawy, S.; Ibrahim, M.S.

    2005-01-01

    Radiation grafting of diethyl aminoethyl methacrylate (DEAEMA) on chitosan to impart ion exchange properties and to be used for the separation of metal ions from waste water, was carried out. The effect of experimental conditions such as monomer concentration and the radiation dose on grafting were studied. On using chitosan, grafted chitosan and some chitosan composites in metal ion removal they show high up-take capacity for Cu 2+ and lower uptake capacities for the other divalent metal ions used (Zn and Co). Competitive study, performed with solutions containing mixture of metal salts, showed high selectivity for Cu 2+ than the other metal ion. Limited grafting of DEAEMA polymer -containing specific functional groups-onto the chitosan backbone improves the sorption performance

  10. Magnetic chitosan for removal of uranium (VI)

    International Nuclear Information System (INIS)

    Stopa, Luiz Claudio Barbosa

    2007-01-01

    The chitosan, an aminopolysaccharide formed for repeated units of D-glucosamine, is a deacetylation product of chitin. It presents favorable ionic properties acting as chelant, being considered a removing ionic of contaminants from water effluents. It has ample bioactivity, that is, is biocompatible, biodegradable, bioadhesive and biosorbent. The chitosan interacts for crosslinked by means of its active groups with other substances, can still coat superparamagnetic materials as magnetite nanoparticles producing one conjugated polymer-magnetite. Superparamagnetic materials are susceptible for the magnetic field, thus these particles can be attracted and grouped by a magnetic field and as they do not hold back the magnetization, they can be disagrouped and reused in processes for removal of contaminants from industrial effluents and waste water. The present work consisted of preparing coated magnetic magnetite particles with chitosan (PMQ). The PMQ powder has showed a magnetic response of intense attraction in the presence of a magnetic field without however becoming magnetic, a typical behavior of superparamagnetic material. It was characterized by Fourier transform infrared spectrometry and measurements of magnetization. Its performance of Uranium (VI) adsorption as uranyl species, U0 2 2+ , was evaluated with regard to the influence of adsorbent dose, speed of agitation, pH, the contact time and had studied the isotherms of adsorption as well as the behavior of desorption using ions of carbonate and oxalate. The optimal pH to the best removal occurred in pH 5 and that the increase of the dose increases the removal, becoming constant above of 20 g.L -1 . In the kinetic study the equilibrium was achieved after 20 minutes. The results of equilibrium isotherm agreed well with the Langmuir model, being the maximum adsorption capacity equal 41.7 mg.g -1 . In the desorption studies were verified 94% of U0 2 2+ recovered with carbonate ion and 49.9% with oxalate ion

  11. Synthesize and Characterization of Hydroxypropyl-N-octanealkyl Chitosan Ramification

    Science.gov (United States)

    Tan, Fu-neng

    2018-03-01

    A new type of amphiphilic ramification, hydroxypropyl-N-octanealkyl chitosan was prepared from chitosan via hydrophilic group and hydrophobic group were introduced. We could protect the amino group of chitosan via the reaction of chitosan and benzaldehyde could get Schiff base structure. Structures of the products were characterized with FT-IR, elemental analysis, themogrammetry (TG) analysis and X-ray diffraction. The degree of substitution of hydrophobic group was studied by elemental analysis. The result showed this chitosan ramification was soluble, biocompatible, biodegradable and nontoxic.

  12. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Veleirinho, Beatriz [QOPNA Research Unit, Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Berti, Fernanda V. [Integrated Technologies Laboratory, Chemical and Food Engineering Department, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Maraschin, Marcelo [Department of Plant Science, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Ribeiro-do-Valle, Rosa M. [Department of Pharmacology, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Lopes-da-Silva, Jose A., E-mail: jals@ua.pt [QOPNA Research Unit, Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal)

    2013-01-01

    Microporous, non-woven fibrous scaffolds made of poly(ethylene terephthalate) and chitosan were produced by electrospinning. Fiber morphology, diameter, pore size, and wettability were manipulated by varying the chemical composition of the electrospinning solution, i.e. chitosan concentration and molecular weight, and by post-electrospinning treatment with glutaraldehyde. In vitro studies were conducted using a fibroblast cell line toward a comprehensive understanding of how scaffolds characteristics can modulate the cell behavior, i.e. viability, adhesion, proliferation, extracellular matrix secretion, and three-dimensional colonization. Substantial differences were found as a result of scaffold morphological changes. Higher levels of adhesion, spreading, and superficial proliferation were achieved for scaffolds with smaller fiber and pore diameters while cell penetration and internal colonization were enhanced for scaffolds with larger pores. Additionally, the available area for cell adhesion, which is related to fiber and pore size, was a crucial factor for the viability of L929 cells. This paper provides significant insights for the development and optimization of electrospun scaffolds toward an improved biological performance. Highlights: Black-Right-Pointing-Pointer Hybrid PET/chitosan mats were produced by electrospinning. Black-Right-Pointing-Pointer Scaffold architecture was manipulated by changing composition of the spun solution. Black-Right-Pointing-Pointer The scaffolds showed in vitro biocompatibility to L929 cells. Black-Right-Pointing-Pointer Smaller fiber diameters and pore areas allowed for higher levels of cell adhesion and proliferation. Black-Right-Pointing-Pointer A 3D cell colonization was achieved for scaffolds with higher fiber diameters.

  13. Chitosan-crosslinked gels prepared by a simultaneously occurring reaction of radiation-induced polymerization and self-bridging of acrylic acid in aqueous solutions

    International Nuclear Information System (INIS)

    Elhag Ali, Amr; Hegazy, Elsayed Ahmed; Hendri, John; Katakai, Ryoichi; Maekawa, Yasunari; Kume, Tamikazu; Yoshida, Masaru

    2001-01-01

    Chitosan is one of the most interesting natural polymers, in addition to its biodegradability it shows wide biological properties such as antifibrolastic and antimicrobial activities, which verify its biomedical application. Novel Acrylic acid/Chitosan hydrogel was prepared by means of γ-irradiation as a clean source for initiation, and crosslinking. The nature of the AAc/CS gel and the effect of the presence of chitosan on the behavior of AAc were characterized. The effect of pH on the degree of swelling of different gels and time course swelling studies show the effect of presence of chitosan and its molecular weight on the swelling of the gels. DSC and TGA were used to study the effect of the presence of chitosan on the thermal behavior of PAAc. It was found that chitosan change thermal behavior of AAc. These results support our assumption for the formation of crosslinking between PAAc and CS chains via polyelectrolyte complex formation, attributed to the high affinity between CS and AAc, accompanied by homopolymerization and self-bridging. This crosslinking increase with CS molecular weight increasing and affect the thermal behavior of PAAc. (author)

  14. Challenges and opportunities in using Life Cycle Assessment and Cradle to Cradle® for biodegradable bio-based polymers: a review

    DEFF Research Database (Denmark)

    Niero, Monia; Manat, Renil; Møller, Birger Lindberg

    2015-01-01

    Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from establis......Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from...... establishedtechnologies and the identification of the best option for the end of use stage, e.g. for use as packaging. Weconsider the case of a natural fiber-based composite material obtained from barley straw and present someinsights from both LCA and C2C perspectives in the identification of the best option for its end...

  15. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review.

    Science.gov (United States)

    George, Meera; Abraham, T Emilia

    2006-08-10

    The protein pharmaceutical market is rapidly growing, since it is gaining support from the recombinant DNA technology. To deliver these drugs via the oral route, the most preferred route, is the toughest challenge. In the design of oral delivery of peptide or protein drugs, pH sensitive hydrogels like alginate and chitosan have attracted increasing attention, since most of the synthetic polymers are immunogenic and the incorporation of proteins in to these polymers require harsh environment which may denature and inactivate the desired protein. Alginate is a water-soluble linear polysaccharide composed of alternating blocks of 1-4 linked alpha-L-guluronic and beta-D-mannuronic acid residues where as chitosan is a co polymer of D-glucosamine and N-acetyl glucosamine. The incorporation of protein into these two matrices can be done under relatively mild environment and hence the chances of protein denaturation are minimal. The limitations of these polymers, like drug leaching during preparation can be overcome by different techniques which increase their encapsulation efficiency. Alginate, being an anionic polymer with carboxyl end groups, is a good mucoadhesive agent. The pore size of alginate gel microbeads has been shown to be between 5 and 200 nm and coated beads and microspheres are found to be better oral delivery vehicles. Cross-linked alginate has more capacity to retain the entrapped drugs and mixing of alginate with other polymers such as neutral gums, pectin, chitosan, and eudragit have been found to solve the problem of drug leaching. Chitosan has only limited ability for controlling the release of encapsulated compound due to its hydrophilic nature and easy solubility in acidic medium. By simple covalent modifications of the polymer, its physicochemical properties can be changed and can be made suitable for the peroral drug delivery purpose. Ionic interactions between positively charged amino groups in chitosan and the negatively charged mucus gel layer

  16. FY 2000 report on the results of the regional consortium R and D project - Regional consortium field. Second year report. Development of the technology to combine plastic and metal using biodegradable natural polymer; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium bun'ya. Seibunkaisei tennen plastic to kinzoku no fukugoka gijutsu no kaihatsu (dai 2 nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development was proceeded with of the electromagnetic wave shielding technology composed of plastic body, chitosan containing biodegradable coating and electroless metal plating layer. Key technologies are for formation of biodegradable electroless plating use coating using chitosan as chemical adsorption carrier of Pd and for separation of the body and the metal thin film by the environment-harmony method for recovery of the material. Studies were made in the following 5 fields: 1) method to produce low molecular chitin and chitosan; 2) application of biodegradable materials to electromagnetic wave shielding; 3) evaluation of physical properties and function of a new electromagnetic wave shielding system; 4) R and D of the degradation method of the new electromagnetic wave shielding system; 5) comprehensive investigational study. In FY 2000, in 1), conditions for production of chitosan degrading enzymes were determined, and also the scale of bio-reactor was increased up to 20L. Further, chitosan was so re-synthesized that it disperses to the electroless plating use primer. (NEDO)

  17. An overview of natural polymers for oral insulin delivery.

    Science.gov (United States)

    Sonia, T A; Sharma, Chandra P

    2012-07-01

    Current therapy for diabetes mellitus through oral anti-diabetic drugs and subcutaneous administration of insulin suffers from serious disadvantages, such as patient noncompliance and occasional hypoglycemia. Moreover, these approaches doesn't mimic the normal physiological pattern of insulin release. Oral route would be the most convenient and preferred route if it is available. Polymeric nano and/or microparticles, either natural or synthetic have been used as matrices for oral insulin delivery. Natural polymers are of particular interest due to their nontoxic, biocompatible, biodegradable and hydrophilic nature. Among the natural polymers used for oral insulin delivery, chitosan (CS) is widely explored owing to its ease of chemical modification and favorable biological properties. In addition, many advantages such as safety, biodegradability, widespread availability and low cost justify the continuing development of promising insulin delivery system based on CS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Receptor-mediated gene delivery using chemically modified chitosan

    International Nuclear Information System (INIS)

    Kim, T H; Jiang, H L; Nah, J W; Cho, M H; Akaike, T; Cho, C S

    2007-01-01

    Chitosan has been investigated as a non-viral vector because it has several advantages such as biocompatibility, biodegradability and low toxicity with high cationic potential. However, the low specificity and low transfection efficiency of chitosan need to be solved prior to clinical application. In this paper, we focused on the galactose or mannose ligand modification of chitosan for enhancement of cell specificity and transfection efficiency via receptor-mediated endocytosis in vitro and in vivo

  19. Antimicrobial Films Based on Chitosan and Methylcellulose Containing Natamycin for Active Packaging Applications

    Directory of Open Access Journals (Sweden)

    Serena Santonicola

    2017-10-01

    Full Text Available Biodegradable polymers are gaining interest as antimicrobial carriers in active packaging. In the present study, two active films based on chitosan (1.5% w/v and methylcellulose (3% w/v enriched with natamycin were prepared by casting. The antimicrobial’s release behavior was evaluated by immersion of the films in 95% ethanol (v/v at different temperatures. The natamycin content in the food simulant was determined by reversed-high performance liquid chromatography with diode-array detection (HPLC-DAD. The apparent diffusion (DP and partition (KP/S coefficients were calculated using a mathematical model based on Fick’s Second Law. Results showed that the release of natamycin from chitosan based film (DP = 3.61 × 10−13 cm2/s was slower, when compared with methylcellulose film (DP = 3.20 × 10−8 cm2/s at the same temperature (p < 0.05. To evaluate the antimicrobial efficiency of active films, cheese samples were completely covered with the films, stored at 20 °C for 7 days, and then analyzed for moulds and yeasts. Microbiological analyses showed a significant reduction in yeasts and moulds (7.91 log CFU/g in samples treated with chitosan active films (p < 0.05. The good compatibility of natamycin with chitosan, the low Dp, and antimicrobial properties suggested that the film could be favorably used in antimicrobial packagings.

  20. Radiation synthesis of gelatin/CM-chitosan/{beta}-tricalcium phosphate composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Ying [College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Xu Ling, E-mail: lingxu@pku.edu.cn [College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang Xiangmei; Zhao Yinghui [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei Shicheng, E-mail: sc-wei@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Zhai Maolin [Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2012-05-01

    A series of biodegradable composite scaffolds was fabricated from an aqueous solution of gelatin, carboxymethyl chitosan (CM-chitosan) and {beta}-tricalcium phosphate ({beta}-TCP) by radiation-induced crosslinking at ambient temperature. Ultrasonic treatment on the polymer solutions significantly influenced the distribution of {beta}-TCP particles. An ultrasonic time of 20 min, followed by 30 kGy irradiation induced a crosslinked scaffold with homogeneous distribution of {beta}-TCP particles, interconnected porous structure, sound swelling capacity and mechanical strength. Fourier Transform Infrared Spectroscopy and X-ray Diffraction analysis indicated that {beta}-TCP successfully incorporated with the network of gelatin and CM-chitosan. In vivo implantation of the scaffold into the mandible of beagle dog revealed that the scaffolds had excellent biocompatibility and the presence of {beta}-TCP can accelerate bone regeneration. The comprehensive results of this study paved way for the application of gelatin/CM-chitosan/{beta}-TCP composite scaffolds as candidate of bone tissue engineering material. - Highlights: Black-Right-Pointing-Pointer Radiation induced a crosslinked scaffold with interconnected porous structure. Black-Right-Pointing-Pointer Ultrasonic time of 20 min led to homogenerously distribution of {beta}-TCP. Black-Right-Pointing-Pointer Increasing amount of {beta}-TCP would restrict the swelling properties. Black-Right-Pointing-Pointer Proper fraction of {beta}-TCP will promote the mechanical properties of the scaffolds. Black-Right-Pointing-Pointer Hybrid of {beta}-TCP promoted the bone regeneration of the mandibles of beagle dogs.

  1. Synthesis and Characterization Pectin-Carboxymethyl Chitosan crosslinked PEGDE as biosorbent of Pb(II) ion

    Science.gov (United States)

    Hastuti, Budi; Siswanta, Dwi; Mudasir; Triyono

    2018-01-01

    Pectin and chitosan are biodegradable polymers, potentially applied as a heavy metal adsorbents. Unfortunately both biosorbents pectin and chitosan have a weakness in acidic media. For this purpose required modified pectin and chitosan. The modified adsorben is intended to obtain a stable adsorbent and resistance under acid. The research was done by experimental method in laboratory. The stages of this research are the synthesis of carboxymethyl chitosan (CMC), synthesis of Pec-CMC-PEGDE film adsorbent, stabily test under acid, the characterization of active group using FTIR, stability characterization of Pec-CMC-PEGDE powder adsorbent using XRD, termo stability using DTA-TGA. The results of the research have shown that: pectin and CMC can be cross-linked using PEGDE crosslinking agent, the film adsorbent was stable under HCl 1 M, the film adsorbent have active group comprise of carboxylate and amine groups. The result of characterization using XRD, shows that the adsorbent is semi-crystalline. Base on termo stability, the film adsorbent Pec-CMC-PEGDE stable up to 600°C. The film can be applied as an adsobent of Pb (II) ion remediation. The optimum pH of pec-CMC-PEGDE in adsorbed of Pb(II) was reached at pH 5 with 99.99% absorbent adsorbed and of and adsorption capacity was 46.11 mg/g.

  2. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibilities for better utilization in various areas. This article reviews the preparations and properties of the nanofibers which were electrospun from pure chitosan, blends of chitosan and synthetic polymers, blends of chitosan and protein, chitosan derivatives, as well as blends of chitosan and inorganic nanoparticles, respectively. The applications of the nanofibers containing chitosan such as enzyme immobilization, filtration, wound dressing, tissue engineering, drug delivery and catalysis are also summarized in detail.

  3. Photoluminescence of Co: ZnNiO and Zr: ZnNiO nanocomposites capped with biodegradable polymer poly (2-ethyl-2-oxazoline)

    Science.gov (United States)

    John, Sam; George, James Baben; Joseph, Abraham

    2018-05-01

    The optical properties of the semiconducting nanomaterials has a wide variety of applications in the biological and industrial fields, which include the synthesis of UV laser, light emitting diodes, solar cells, gas sensors, piezoelectric transducers etc. Among the various types of optical properties, luminescence especially photoluminescence (PL) of metal oxides are more prominently studied. This is because PL spectrum is an effective way to investigate the electronic structure, optical and photochemical properties of semiconductor materials which deciphers information such as surface oxygen vacancies, defects, efficiency of charge carrier trapping, immigration, transfer etc. To overcome the drawbacks in luminescence studies of metal oxide nanomaterials, polymer technology has also been incorporated. The scientists found that the doping of some elements into the polymer capped ZnO nanocomposites enhanced the luminescence properties of the compound. In the current study, we are investigating the photoluminescence properties of ZnO nanocomposites capped with a biodegradable polymer poly (2-ethyl 2-oxazoline) and doped with the elements Cobalt and Zirconium. We obtained many strong fluorescence peaks in the visible and UV regions in the PL spectrum and UV absorption spectroscopy.

  4. Influence of biodegradable polymer coatings on corrosion, cytocompatibility and cell functionality of Mg-2.0Zn-0.98Mn magnesium alloy.

    Science.gov (United States)

    Witecka, Agnieszka; Yamamoto, Akiko; Idaszek, Joanna; Chlanda, Adrian; Święszkowski, Wojciech

    2016-08-01

    Four kinds of biodegradable polymers were employed to prepare bioresorbable coatings on Mg-2.0Zn-0.98Mn (ZM21) alloy to understand the relationship between polymer characteristics, protective effects on substrate corrosion, cytocompatibility and cell functionality. Poly-l-lactide (PLLA), poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) or poly(lactic-co-glycolic) acid (PLGA) was spin-coated on ZM21, obtaining a smooth, non-porous coating less than 0.5μm in thickness. Polymer coating characterization, a degradation study, and biocompatibility evaluations were performed. After 4 w of immersion into cell culture medium, degradation of PLGA and PLLA coatings were confirmed by ATR-FTIR observation. The coatings of PLLA, PHB and PHBV, which have lower water permeability and slower degradation than PLGA, provide better suppression of initial ZM21 degradation and faster promotion of human osteosarcoma cell growth and differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  6. Polymer hydrogels as optimized delivery systems

    International Nuclear Information System (INIS)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B.

    2013-01-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  7. Chitosan dan Aplikasi Klinisnya Sebagai Biomaterial

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past few years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochodral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial.

  8. Biodegradable films and spray coatings as eco-friendly alternative to petro-chemical derived mulching films

    Directory of Open Access Journals (Sweden)

    G. Vox

    2013-09-01

    Full Text Available The use of plastic mulching films in horticulture causes the serious drawback of huge amount of wastes to be disposed of at the end of their lifetime. Several pre-competitive research products based on raw materials coming from renewable sources were recently developed to be used as biodegradable materials for soil mulching. Biodegradable materials are designed in order both to retain their mechanical and physical properties during their using time and to degrade at the end of their lifetime. These materials can be integrated directly in the soil in order to biodegrade because the bacterial flora transforms them in carbon dioxide or methane, water and biomass. The innovative materials can be obtained using natural polymers, such as starch, cellulose, chitosan, alginate and glucomannan. Biodegradable extruded mulching films were performed by means of thermo-plasticizing process. Spray mulch coatings were realized directly in field, by spraying water solutions based on natural polysaccharides, thus covering the cultivated soil with a protective thin geo-membrane. In this paper an overview on the formulation development, processing understanding, field performance, mechanical and radiometric properties of these innovative materials for soil mulching is presented. In field the biodegradable mulching films showed suitable mechanical properties if compared to the low density polyethylene films. The radiometric properties and their effect on the temperature condition and on weed control in the mulched soil were evaluated too. At the end of their lifetime the biodegradable materials were shattered and buried into the soil together with plants.

  9. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  10. development and evaluation of lyophilized thiolated-chitosan wafers

    African Journals Online (AJOL)

    User

    THIOLATED-CHITOSAN WAFERS FOR BUCCAL DELIVERY. OF PROTEIN ... of the thiolated polymer incorporating per polymer weight, 10 % each of glycerol as plasticizer, D-mannitol as ..... delivery systems: in vitro stability, in vivo fate, and ...

  11. Effect of chitosan coatings on postharvest green asparagus quality.

    Science.gov (United States)

    Qiu, Miao; Jiang, Hengjun; Ren, Gerui; Huang, Jianying; Wang, Xiangyang

    2013-02-15

    Fresh postharvest green asparagus rapidly deteriorate due to its high respiration rate. The main benefits of edible active coatings are their edible characteristics, biodegradability and increase in food safety. In this study, the quality of the edible coatings based on 0.50%, 0.25% high-molecular weight chitosan (H-chitosan), and 0.50%, 0.25% low-molecular weight chitosan (L-chitosan) on postharvest green asparagus was investigated. On the basis of the results obtained, 0.25% H-chitosan and 0.50% L-chitosan treatments ensured lower color variation, less weight loss and less ascorbic acid, decrease presenting better quality of asparagus than other concentrations of chitosan treatments and the control during the cold storage, and prolonging a shelf life of postharvest green asparagus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance.

    Science.gov (United States)

    Liu, Yutao; Pan, Jie; Feng, Si-Shen

    2010-08-16

    This work developed a system of nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of anticancer drugs with paclitaxel as a model drug, in which the emphasis was given to the effects of the surfactant type and the optimization of the emulsifier amount used in the single emulsion solvent evaporation/extraction process for the nanoparticle preparation on the particle size, characters and in vitro performance. The drug loaded nanoparticles were characterized by laser light scattering (LLS) for size and size distribution, field-emission scanning electron microscopy (FESEM) for surface morphology, X-ray photoelectron spectroscopy (XPS) for surface chemistry, zetasizer for surface charge, and high performance liquid chromatography (HPLC) for drug encapsulation efficiency and in vitro drug release kinetics. MCF-7 breast cancer cells were employed to evaluate the cellular uptake and cytotoxicity. It was found that phospholipids of short chains such as 1,2-dilauroylphosphatidylocholine (DLPC) have great advantages over the traditional emulsifier poly(vinyl alcohol) (PVA), which is used most often in the literature, in preparation of nanoparticles of biodegradable polymers such as poly(D,L-lactide-co-glycolide) (PLGA) for desired particle size, character and in vitro cellular uptake and cytotoxicity. After incubation with MCF-7 cells at 0.250 mg/ml NP concentration, the coumarin-6 loaded PLGA NPs of DLPC shell showed more effective cellular uptake versus those of PVA shell. The analysis of IC(50), i.e. the drug concentration at which 50% of the cells are killed, demonstrated that our DLPC shell PLGA core NP formulation of paclitaxel could be 5.88-, 5.72-, 7.27-fold effective than the commercial formulation Taxol after 24, 48, 72h treatment, respectively. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Chitosan-sodium lauryl sulfate nanoparticles as a carrier system for the in vivo delivery of oral insulin.

    Science.gov (United States)

    Elsayed, Amani; Al-Remawi, Mayyas; Qinna, Nidal; Farouk, Asim; Al-Sou'od, Khaldoun A; Badwan, Adnan A

    2011-09-01

    The present work explores the possibility of formulating an oral insulin delivery system using nanoparticulate complexes made from the interaction between biodegradable, natural polymer called chitosan and anionic surfactant called sodium lauryl sulfate (SLS). The interaction between chitosan and SLS was confirmed by Fourier transform infrared spectroscopy. The nanoparticles were prepared by simple gelation method under aqueous-based conditions. The nanoparticles were stable in simulated gastric fluids and could protect the encapsulated insulin from the GIT enzymes. Additionally, the in vivo results clearly indicated that the insulin-loaded nanoparticles could effectively reduce the blood glucose level in a diabetic rat model. However, additional formulation modifications are required to improve insulin oral bioavailability.

  14. Development of Curcumin loaded chitosan polymer based nanoemulsion gel: In vitro, ex vivo evaluation and in vivo wound healing studies.

    Science.gov (United States)

    Thomas, Lydia; Zakir, Foziyah; Mirza, Mohd Aamir; Anwer, Md Khalid; Ahmad, Farhan Jalees; Iqbal, Zeenat

    2017-08-01

    In the present study, various nanoemulsions were prepared using Labrafac PG+Triacetin as oil, Tween 80 as a surfactant and polyethylene glycol (PEG 400) as a co-surfactant. The developed nanoemulsions (NE1-NE5) were evaluated for physicochemical characterizations and ex-vivo for skin permeation and deposition studies. The highest skin deposition was observed for NE2 with 46.07% deposition amongst all developed nanoemulsions (NE1-NE5). Optimized nanoemulsion (NE2) had vesicle size of 84.032±0.023nm, viscosity 78.23±22.2 cps, refractive index 1.404. Nanoemulsion gel were developed by incorporation of optimized nanoemulsion (NE2) into 1-3% chitosan and characterized by physical evaluation and rheological studies. Chitosan gel (2%) was found to be suitable for gelation of nanoemulsion based on its consistency, feel and ease of spreadability. The flux of nanoemulsion gel was found 68.88μg/cm 2 /h as compared to NE2 (76.05μg/cm 2 /h) is significantly lower suggesting limited skin permeation of curcumin form gel. However, the retained amount of curcumin on skin by gel formulation (980.75±88μg) is significantly higher than NE2 (771.25±67μg). Enhanced skin permeation of NE2 (46.07%) was observed when compared to nanoemulsion gel (31.25%) and plain gel (11.47%). The outcome of this study evidently points out the potential of curcumin entrapped nanoemulsion gel in wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis of biodegradable styrene copolymers

    OpenAIRE

    Gevers, Dries; Kobben, Stephan; Junkers, Tanja; Copinet, Alain; Buntinx, Mieke; Peeters, Roos

    2017-01-01

    Polystyrene (PS), a versatile polymer with many applications (e.g. packaging) representing about 10% of the total annual polymer consumption, shows practically no biodegradability. In this study a styrene (ST) based copolymer is synthesized and examined regarding its ability to degrade in a composting test. As second monomer, to introduce biodegradable ester groups, 5,6-benzo-2-metylene-dioxepane (BMDO) has been used in radical copolymerization reactions performed in inert and stirred 10 m...

  16. Mucoadhesion vs mucus permeability of thiolated chitosan polymers and their resulting nanoparticles using a quartz crystal microbalance with dissipation (QCM-D).

    Science.gov (United States)

    Oh, Sejin; Borrós, Salvador

    2016-11-01

    The aim of this present study was to evaluate the combination properties between mucoadhesion/mucus permeability of thiolated chitosans (TC) and their resulting nanoparticles using a quartz crystal microbalance with dissipation (QCM-D). The QCM-D experiments were conducted at pH 4 or 6.8 to assess the interaction between thiolated polymers, with low (TCL), medium (TCM) and high (TCH) contents of free thiol groups, and native porcine gastric mucin (NPGM). TCL was chosen for further carriers as it showed higher permeability into the NPGM layer compared to TCM and TCH. In this study, we describe a formulation of a novel carrier comprised by positively charged TCL, negatively charged DNA and degradable oligopeptide-modified poly(β-amino ester)s (PBAEs), which were employed in order to approach for tuning particle size and surface charge of complexes. TCL/PBAE complexes with or without DNA were characterized using dynamic light scattering. Mechanism of adsorption or permeation of the TCL/PBAE/DNA complexes into the NPGM barrier was investigated with QCM-D, which is a highly sensitive technique for studying nanomechanical (viscoelastic) changes of the substrates. This work might provide that the QCM-D technique would be a promising method to monitor the dynamic behaviour between complexes and NPGM. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biomechanical and histologic evaluation of tissue engineered ligaments using chitosan and hyaluronan hybrid polymer fibers: a rabbit medial collateral ligament reconstruction model.

    Science.gov (United States)

    Irie, Toru; Majima, Tokifumi; Sawaguchi, Naohiro; Funakoshi, Tadanao; Nishimura, Shin-Ichiro; Minami, Akio

    2011-05-01

    In this study, we used a rabbit medial collateral ligament reconstruction model to evaluate a novel chitosan-based hyaluronan hybrid polymer fiber scaffold for ligament tissue engineering and to examine whether mechanical forces exerted in an in vivo model increased extracellular matrix production by seeded fibroblasts. Scaffolds were used 2 weeks after incubation with fibroblasts obtained from the same rabbit in a cell-seeded scaffold (CSS) group and without cells in a noncell-seeded scaffold (NCSS) group. At 3, 6, and 12 weeks after surgery, the failure loads of the engineered ligaments in the CSS groups were significantly greater than those in the NCSS groups. At 6 weeks after surgery, the reconstructed tissue of the CSS group was positive for type I collagen, whereas that in the NCSS group was negative for type I collagen. At 12 weeks after surgery, the reconstructed tissue stained positive for type I collagen in the CSS group, but negative in the NCSS group. Our results indicate that the scaffold material enhanced the production of type I collagen and led to improved mechanical strength in the engineered ligament in vivo. Copyright © 2011 Wiley Periodicals, Inc.

  18. Selective Removal of the Genotoxic Compound 2-Aminopyridine in Water using Molecularly Imprinted Polymers Based on Magnetic Chitosan and β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-08-01

    Full Text Available To develop efficient materials with enhanced adsorption and selectivity for genotoxic 2-aminopyridine in water, based on magnetic chitosan (CTs and β-cyclodextrin (β-CD, the magnetic molecularly imprinted polymers (MMIPs of Fe3O4-CTs@MIP and Fe3O4-MAH-β-CD@MIP were synthesized by a molecular imprinting technique using 2-aminopyridine as a template. The selective adsorption experiments for 2-aminopyridine were performed by four analogues including pyridine, aniline, 2-amino-5-chloropyridine and phenylenediamine. Results showed the target 2-aminopyridine could be selectively adsorbed and quickly separated by the synthesized MMIPs in the presence of the above structural analogues. The coexisting ions including Na+, K+, Mg2+, Ca2+, Cl− and SO42− showed little effect on the adsorption of 2-aminopyridine. The maximum adsorption capacity of 2-aminopyridine on Fe3O4-CTs@MIP and Fe3O4-MAH-β-CD@MIP was 39.2 mg·g−1 and 46.5 mg·g−1, respectively, which is much higher than values in previous reports. The comparison result with commercial activated carbon showed the obtained MMIPs had higher adsorption ability and selectivity for 2-aminopyridine. In addition, the synthesized MMIPs exhibited excellent performance of regeneration, which was used at least five times with little adsorption capacity loss. Therefore, the synthesized MMIPs are potential effective materials in applications for selective removal and analysis of the genotoxic compound aminopyridine from environmental water.

  19. Effect of Chitosan Properties on Immunoreactivity

    Science.gov (United States)

    Ravindranathan, Sruthi; Koppolu, Bhanu prasanth; Smith, Sean G.; Zaharoff, David A.

    2016-01-01

    Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA), viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs). Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells) and the amount of tumor necrosis factor-α (TNF-α) released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application. PMID:27187416

  20. Biodegradable chitosan and polylactic acid-based intraocular micro-implant for sustained release of methotrexate into vitreous: analysis of pharmacokinetics and toxicity in rabbit eyes.

    Science.gov (United States)

    Manna, Soumyarwit; Banerjee, Rupak K; Augsburger, James J; Al-Rjoub, Marwan F; Donnell, Anna; Correa, Zelia M

    2015-08-01

    The purpose of this study was to evaluate the pharmacokinetics and toxicity of a chitosan (CS) and polylactic acid (PLA) based methotrexate (MTX) intravitreal micro-implant in an animal model using rabbit eyes. CS- and PLA-based micro-implants containing 400 μg of MTX were fabricated using lyophilization and dip-coating techniques. The micro-implants were surgically implanted in the vitreous of eight New Zealand rabbits employing minimally invasive technique. The PLA-coated CS-MTX micro-implant was inserted in the right eye and the placebo micro-implant in the left eye of each rabbit. Two rabbits were euthanized at each pre-determined time point post-implantation (days 5, 12, 19, and 33) for pharmacokinetics and histopathology evaluation. A therapeutic concentration of MTX (0.1-1.0 μM) in the vitreous was detected in the rabbit eyes studied for 33 days. The MTX release from the coated micro-implants followed a first order kinetics (R (2) ~ 0.88), implying that MTX release depends on the concentration of MTX in the micro-implant. Histopathological analysis of the enucleated eyes failed to show any signs of infection or tissue toxicity in any of the specimens. The PLA-coated CS-MTX micro-implants were able to deliver therapeutic release of MTX for a period of more than 1 month without detectable toxicity in a rabbit model. The micro-implants can be further investigated as a prospective alternative to current treatment protocols of repeated intravitreal MTX injections in intraocular disorders such as primary intraocular lymphoma, and selected cases of non-microbial intraocular inflammation.

  1. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response

    International Nuclear Information System (INIS)

    Thuaksuban, Nuttawut; Nuntanaranont, Thongchai; Suttapreyasri, Srisurang; Pattanachot, Wachirapan; Cheung, Lim Kwong

    2011-01-01

    Fabrication of polycaprolactone (PCL)-chitosan (CS) three-dimensional (3D) scaffolds using the novel technique of melt stretching and multilayer deposition was introduced. In brief, firstly, the PCL-CS monofilaments containing 0% (pure PCL), 10%, 20% and 30% CS by weight were fabricated by melting and stretching processes. Secondly, the desired multilayer (3D) scaffolds were fabricated by arranging and depositing the filaments. Physical properties of the filaments and the scaffolds were evaluated. MC3T3-E1 cell lines were seeded on the scaffolds to assess their proliferation. A typical micro-groove pattern was found on the surfaces of pure PCL filaments due to stretching. The filaments of PCL-30%CS had the highest tendency of fracture during stretching and could not be used to form the scaffold. Increasing CS proportions tended to reduce the micro-groove pattern, surface roughness, tensile strength and elasticity of the filaments, whilst compressive strength of the PCL-CS scaffolds was not affected. The average pore size and porosity of the scaffolds were 536.90 ± 17.91 μm and 45.99 ± 2.8% respectively. Over 60 days, degradation of the scaffolds gradually increased (p > 0.05). The more CS containing scaffolds were found to increase in water uptake, but decrease in degradation rate. During the culture period, the growth of the cells in PCL-CS groups was significantly higher than in the pure PCL group (p < 0.05). On culture-day 21, the growth in the PCL-20%CS group was significantly higher than the other groups (p < 0.05). In conclusion, the PCL-20%CS scaffolds obtained the optimum results in terms of physical properties and cellular response.

  2. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response

    Energy Technology Data Exchange (ETDEWEB)

    Thuaksuban, Nuttawut; Nuntanaranont, Thongchai; Suttapreyasri, Srisurang [Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Kanjanavanij Road, Hatyai, Songkhla, 90112 (Thailand); Pattanachot, Wachirapan [Polymer Science Program, Faculty of Science, Prince of Songkla University, Kanjanavanij Road, Hatyai, Songkhla, 90112 (Thailand); Cheung, Lim Kwong, E-mail: nuttawut.t@psu.ac.t [Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, Hong Kong (China)

    2011-02-15

    Fabrication of polycaprolactone (PCL)-chitosan (CS) three-dimensional (3D) scaffolds using the novel technique of melt stretching and multilayer deposition was introduced. In brief, firstly, the PCL-CS monofilaments containing 0% (pure PCL), 10%, 20% and 30% CS by weight were fabricated by melting and stretching processes. Secondly, the desired multilayer (3D) scaffolds were fabricated by arranging and depositing the filaments. Physical properties of the filaments and the scaffolds were evaluated. MC3T3-E1 cell lines were seeded on the scaffolds to assess their proliferation. A typical micro-groove pattern was found on the surfaces of pure PCL filaments due to stretching. The filaments of PCL-30%CS had the highest tendency of fracture during stretching and could not be used to form the scaffold. Increasing CS proportions tended to reduce the micro-groove pattern, surface roughness, tensile strength and elasticity of the filaments, whilst compressive strength of the PCL-CS scaffolds was not affected. The average pore size and porosity of the scaffolds were 536.90 {+-} 17.91 {mu}m and 45.99 {+-} 2.8% respectively. Over 60 days, degradation of the scaffolds gradually increased (p > 0.05). The more CS containing scaffolds were found to increase in water uptake, but decrease in degradation rate. During the culture period, the growth of the cells in PCL-CS groups was significantly higher than in the pure PCL group (p < 0.05). On culture-day 21, the growth in the PCL-20%CS group was significantly higher than the other groups (p < 0.05). In conclusion, the PCL-20%CS scaffolds obtained the optimum results in terms of physical properties and cellular response.

  3. Degradation of chitosan-based materials after different sterilization treatments

    International Nuclear Information System (INIS)

    San Juan, A; Montembault, A; Royaud, I; David, L; Gillet, D; Say, J P; Rouif, S; Bouet, T

    2012-01-01

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  4. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  5. The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production.

    Science.gov (United States)

    Johnston, Brian; Jiang, Guozhan; Hill, David; Adamus, Grazyna; Kwiecień, Iwona; Zięba, Magdalena; Sikorska, Wanda; Green, Matthew; Kowalczuk, Marek; Radecka, Iza

    2017-08-28

    There is an increasing demand for bio-based polymers that are developed from recycled materials. The production of biodegradable polymers can include bio-technological (utilizing microorganisms or enzymes) or chemical synthesis procedures. This report demonstrates the corroboration of the molecular structure of polyhydroxyalkanoates (PHAs) obtained by the conversion of waste polyethylene (PE) via non-oxygenated PE wax (N-PEW) as an additional carbon source for a bacterial species. The N-PEW, obtained from a PE pyrolysis reaction, has been found to be a beneficial carbon source for PHA production with Cupriavidus necator H16. The production of the N-PEW is an alternative to oxidized polyethylene wax (O-PEW) (that has been used as a carbon source previously) as it is less time consuming to manufacture and offers fewer industrial applications. A range of molecular structural analytical techniques were performed on the PHAs obtained; which included nuclear magnetic resonance (NMR) and electrospray ionisation tandem mass spectrometry (ESI-MS/MS). Our study showed that the PHA formed from N-PEW contained 3-hydroxybutyrate (HB) with 11 mol% of 3-hydroxyvalerate (HV) units.

  6. Preclinical investigation for developing injectable fiducial markers using a mixture of BaSO{sub 4} and biodegradable polymer for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang Hee [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Gil, Moon Soo; Lee, Doo Sung [Sungkyunkwan University School of Chemical Engineering, Suwon 440-746 (Korea, Republic of); Han, Youngyih, E-mail: youngyih@skku.edu, E-mail: Hee.ro.Park@samsung.com; Park, Hee Chul, E-mail: youngyih@skku.edu, E-mail: Hee.ro.Park@samsung.com; Yu, Jeong Il; Noh, Jae Myoung; Cho, Jun Sang; Ahn, Sung Hwan; Choi, Doo Ho [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Sohn, Jason W. [Department of Radiation Oncology, Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 (United States); Kim, Hye Yeong; Shin, Eun Hyuk [Department of Radiation Oncology, Samsung Medical Center, Seoul 135-710 (Korea, Republic of)

    2015-05-15

    Purpose: The aim of this study is to investigate the use of mixture of BaSO{sub 4} and biodegradable polymer as an injectable nonmetallic fiducial marker to reduce artifacts in x-ray images, decrease the absorbed dose distortion in proton therapy, and replace permanent metal markers. Methods: Two samples were made with 90 wt. % polymer phosphate buffer saline (PBS) and 10 wt. % BaSO{sub 4} (B1) or 20 wt. % BaSO{sub 4} (B2). Two animal models (mice and rats) were used. To test the injectability and in vivo gelation, a volume of 200 μl at a pH 5.8 were injected into the Sprague-Dawley rats. After sacrificing the rats over time, the authors checked the gel morphology. Detectability of the markers in the x-ray images was tested for two sizes (diameters of 1 and 2 mm) for B1 and B2. Four samples were injected into BALB/C mice. The polymer mixed with BaSO{sub 4} transform from SOL at 20 °C with a pH of 6.0 to GEL in the living body at 37 °C with a pH of 7.4, so the size of the fiducial marker could be controlled by adjusting the injected volume. The detectability of the BaSO{sub 4} marker was measured in x-ray images of cone beam CT (CBCT), on-board imager [anterior–posterior (AP), lateral], and fluoroscopy (AP, lateral) using a Novalis-TX (Varian Medical Systems, Palo Alto, CA) repeatedly over 4 months. The volume, HU, and artifacts for the markers were measured in the CBCT images. Artifacts were compared to those of gold marker by analyzing the HU distribution. The dose distortion in proton therapy was computed by using a Monte Carlo (MC) code. A cylindrical shaped marker (diameter: 1 or 2 mm, length: 3 mm) made of gold, stainless-steel [304], titanium, and 20 wt. % BaSO{sub 4} was positioned at the center of the spread-out Bragg peak (SOBP) in parallel or perpendicular to the beam entrance. The dose distortion was measured on the depth dose profile across the markers. Results: Transformation to GEL and the biodegradation were verified. All BaSO{sub 4} markers

  7. Novel low temperature processing techniques for apatite ceramics and chitosan polymer composite bulk materials and its mechanical properties

    Science.gov (United States)

    Onoki, Takamasa; Nakahira, Atsushi; Tago, Tomoyuki; Hasegawa, Yoshiyuki; Kuno, Tomoaki

    2012-12-01

    A co-precipitation method was used for processing chitosan (CHI)/calcium hydrogen phosphate dehydrate (DCPD) hybrid material. CHI solution was mixed into 1.0-M calcium nitrate solution. CHI/DCPD hybrid material was prepared by the above explained addition of CHI and Ca ion source to 1.0-M diammonium hydrogen phosphate solution. It was observed by transmission electron microscopy that CHI and DCPD were mixed within submicron meter scale. CHI/HA bulk materials derived from the CHI/DCPD hybrid materials were obtained by using a hydrothermal hot-pressing (HHP) method. A pressure of 40 MPa was initially applied to the sample. An HHP autoclave was heated up to 150 °C for 2 h. Modified 3-point bending tests were conducted to obtain an easy estimate of the fracture toughness for the CHI/HA bulk materials made with the HHP method. The critical stress intensity factor Kc of the fabricated CHI/HA bulk materials was enhanced from 0.30 to 0.40 MPam1/2 by the hybridization of CHI into DCPD.

  8. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films.

    Science.gov (United States)

    Ren, Lili; Yan, Xiaoxia; Zhou, Jiang; Tong, Jin; Su, Xingguang

    2017-12-01

    The active packaging films based on corn starch and chitosan were prepared through mixing the starch solution and the chitosan solution (1:1) by casting. The aim of this work was to characterize and analyze the effects of the chitosan concentrations (0, 21, 41, 61 and 81wt% of starch) on physicochemical, mechanical and water vapor barrier properties as well as morphological characteristics of the corn starch/chitosan (CS/CH) films. Starch molecules and chitosan could interact through hydrogen bonding as confirmed from the shift of the main peaks to higher wavenumbers in FTIR and the reduction of crystallinity in XRD. Results showed that the incorporation of chitosan resulted in an increase in film solubility, total color differences, tensile strength and elongation at break and a decrease in Young's modulus and water vapor permeability (WVP). Elongation at break of the CS/CH films increased with increasing of chitosan concentration, and reached a maximum at 41 wt%, then declined at higher chitosan concentration. The WVP of CS/CH films increased with an increase of chitosan concentration and the same tendency observed for the moisture content. The results suggest that this biodegradable CS/CH films could potentially be used as active packaging films for food and pharmaceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Antibacterial Efficiency of Hydroxyapatite Biomaterials with Biodegradable Polylactic Acid and Polycaprolactone Polymers Saturated with Antibiotics / Bionoārdāmu Polimēru Saturošu Un Ar Antibiotiskajām Vielām Piesūcinātu Biomateriālu Antibakteriālās Efektivitātes Noteikšana

    Directory of Open Access Journals (Sweden)

    Kroiča Juta

    2016-08-01

    Full Text Available Infections continue to spread in all fields of medicine, and especially in the field of implant biomaterial surgery, and not only during the surgery, but also after surgery. Reducing the adhesion of bacteria could decrease the possibility of biomaterial-associated infections. Bacterial adhesion could be reduced by local antibiotic release from the biomaterial. In this in vitro study, hydroxyapatite biomaterials with antibiotics and biodegradable polymers were tested for their ability to reduce bacteria adhesion and biofilm development. This study examined the antibacterial efficiency of hydroxyapatite biomaterials with antibiotics and biodegradable polymers against Staphylococcus epidermidis and Pseudomonas aeruginosa. The study found that hydroxyapatite biomaterials with antibiotics and biodegradable polymers show longer antibacterial properties than hydroxyapatite biomaterials with antibiotics against both bacterial cultures. Therefore, the results of this study demonstrated that biomaterials that are coated with biodegradable polymers release antibiotics from biomaterial samples for a longer period of time and may be useful for reducing bacterial adhesion on orthopedic implants.

  10. Effect of sodium tripolyphosphate concentration and simulated gastrointestinal fluids on release profile of paracetamol from chitosan microsphere

    Science.gov (United States)

    Mulia, Kamarza; Andrie; Krisanti, Elsa A.

    2018-03-01

    The problem to overcome in oral drug administration is the significant pH changes present in the human digestive system. In this study, ionotropic gelation method employing 2-8% (w/v) tripolyphosphate solutions were used to crosslink chitosan microspheres for a controlled release of paracetamol as a model drug. The release profiles of paracetamol from chitosan microspheres were determined using simulated gastrointestinal fluids having pH values of 1.2, 6.8, and 7.4. The results showed that the paracetamol loading and the encapsulation efficiency values increased with increasing concentration of tripolyphosphate solutions used in the preparation step. Paracetamol released at pH 1.2 and 6.8 buffer solutions was significantly higher than that at pH 7.4; also, more paracetamol was released in the presence of α-amylase and β-glucosidase enzymes. The release profiles showed zero-order release behaviour up to 8 hours where the highest drug release was 39% of the paracetamol loaded in the chitosan microspheres, indicating a strong crosslinking between chitosan and TPP anions. The relatively low accumulated drug release could be compensated by employing suitable enzymes, lower TPP solution concentration, and addition of other biodegradable polymer to reduce the TPP crosslink.

  11. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.

    Science.gov (United States)

    Kumbhar, Sneha G; Pawar, S H

    2016-01-01

    Chitosan and alginate are two natural and accessible polymers that are known to be biocompatible, biodegradable and possesses good antimicrobial activity. When combined, they exhibit desirable characteristics and can be created into a scaffold for cell culture. In this study interaction of chitosan-alginate scaffolds with mesenchymal stem cells are studied. Mesenchymal stem cells were derived from human umbilical cord tissues, characterized by flow cytometry and other growth parameters studied as well. Proliferation and viability of cultured cells were studied by MTT Assay and Trypan Blue dye exclusion assay. Besides chitosan-alginate scaffold was prepared by freeze-drying method and characterized by FTIR, SEM and Rheological properties. The obtained 3D porous structure allowed very efficient seeding of hUMSCs that are able to inhabit the whole volume of the scaffold, showing good adhesion and proliferation. These materials showed desirable rheological properties for facile injection as tissue scaffolds. The results of this study demonstrated that chitosan-alginate scaffold may be promising biomaterial in the field of tissue engineering, which is currently under a great deal of examination for the development and/or restoration of tissue and organs. It combines the stem cell therapy and biomaterials.

  12. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline.

    Science.gov (United States)

    Lee, Dong-Won; Shirley, Shawna A; Lockey, Richard F; Mohapatra, Shyam S

    2006-08-24

    Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs) can enhance theophylline's capacity to alleviate allergic asthma. A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA) and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL) fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in treating asthma may be enhanced through the use of this novel drug delivery

  13. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline

    Directory of Open Access Journals (Sweden)

    Mohapatra Shyam S

    2006-08-01

    Full Text Available Abstract Background Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. Objectives We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs can enhance theophylline's capacity to alleviate allergic asthma. Methods A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Results Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Conclusion Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in

  14. Evaluation of the effects of biodegradable nanoparticles on a vaccine delivery system using AFM, SEM, and TEM.

    Science.gov (United States)

    Kim, Bum-Gil; Kang, Ik-Joong

    2008-09-01

    Hepatitis B is a deadly disease, and is carried by 30% of the world's population. Antibodies are produced through a series of three manual vaccinations during infancy and childhood. However, the current needle vaccination not only induces pain in patients, but also can be inconvenient to administer. This is particularly true for the case of newborn babies. Intranasal vaccination is emerging as an alternative parenteral drug delivery method that facilitates drug delivery without causing pain. Chitosan, which is obtained through the deacetylation of chitin from crustacea, is a cationic polymer that is biodegradable, avirulent, and highly absorptive. In this study, ionic gelation between chitosan and TPP was conducted to synthesize chitosan nanoparticles with sizes of 200-400 nm and a surface potential of 55-60 mV, and which can be used as Hepatitis B vaccine carriers. Then, Hepatitis B antigen protein was impregnated to manufacture chitosan-recombinant gene vaccine protein (RGVP) nanoparticles. AFM, SEM, TEM, and STEM were used to analyze the manufactured nanoparticles, whose function as drug carriers and whose usefulness for intranasal vaccination were confirmed through in vivo tests with SD rats.

  15. Gender difference on five-year outcomes of EXCEL biodegradable polymer-coated sirolimus-eluting stents implantation: results from the CREATE study.

    Science.gov (United States)

    Zhang, Lei; Qiao, Bing; Han, Ya-Ling; Li, Yi; Xu, Kai; Zhang, Quan-Yu; Yang, Li-Xia; Liu, Hui-Liang; Xu, Bo; Gao, Run-Lin

    2013-03-01

    The gender difference on long-term outcome in unselected patients after percutaneous coronary intervention (PCI) has not yet been fully investigated. This study aimed to evaluate the gender difference on five-year outcomes following EXCEL biodegradable polymer-coated sirolimus-eluting stenting in patients with coronary disease. A total of 2077 "all comers", consisting of 1528 (73.6%) men and 549 (26.4%) women, who were exclusively treated with EXCEL coronary stents were enrolled in the prospective CREATE study at 59 centers from four countries. After propensity score matching, the baseline characteristics of the two groups were well matched. Recommended antiplatelet regimen was clopidogrel and aspirin for six months followed by chronic aspirin therapy. The primary outcome that was the rate of major adverse cardiac events (MACE), defined as a composite of cardiac mortality, non-fatal myocardial infarction (MI) and target lesion revascularization (TLR), and stent thrombosis (ST) at five years were compared between the two gender groups. In the two groups, women had higher proportions of clinical risk factors, such as being elderly, diabetes mellitus, hypertension and hyperlipidemia, compared to men. Besides, the mean target vessel number per patient was higher and the mean reference vessel diameter smaller for women. Men had higher risks of cardiac death (3.7% vs. 1.6%, P = 0.021) and MACE (8.4% vs. 4.7%, P = 0.004) at five years compared with women. However, the cumulative hazards of non-fatal MI and TLR were similar between men and women. The incidence of Academic Research Consortium (ARC) definite or probable stent thrombosis was similar between the two groups (1.3% vs. 1.0%, P = 0.639). Prolonged clopidogrel therapy (>6 months) did not reduce the cumulative hazards of ST from six months to five years in both men (χ(2) = 0.098, log rank P = 0.754) and women (χ(2) = 2.043, log rank P = 0.153) patients. Women had a lower MACE and cardiac death rate than men after

  16. Intravascular imaging comparison of two metallic limus-eluting stents abluminally coated with biodegradable polymers: IVUS and OCT results of the DESTINY trial.

    Science.gov (United States)

    Costa, J Ribamar; Chamié, Daniel; Abizaid, Alexandre A C; Ribeiro, Expedito; Meireles, George C; Prudente, Maurício; Campos, Carlos A; Castro, Juliana P; Costa, Ricardo; Lemos, Pedro A

    2017-02-01

    We sought to compare, by means of IVUS and OCT imaging, the performance of a novel sirolimus-eluting drug-eluting stent (DES) with biodegradable polymer (Inspiron™) to the Biomatrix™ DES. From the DESTINY trial, a total of 70 randomized patients (2:1) were enrolled in the IVUS substudy (Inspiron™, n = 46; Biomatrix™: n = 20) while 25 patients were evaluated with OCT (Inspiron™, n = 19; Biomatrix™: n = 06) at 9-month follow-up. The main endpoints were % of neointimal tissue obstruction (IVUS) and neointimal stut coverage (OCT) at 9 months. Patients treated with both DES had very little NIH formation at 9 months either by IVUS (% of NIH obstruction of 4.9 ± 4.1 % with Inspiron™ vs. 2.7 ± 2.9 % with Biomatrix™, p = 0.03) or by OCT (neointimal thickness of 144.2 ± 72.5 µm Inspiron™ vs. 115.0 ± 53.9 µm with Biomatrix™, p = 0.45). Regarding OCT strut-level assessment, again both devices showed excellent 9-month performance, with high rates of strut coverage (99.49 ± 1.01 % with Inspiron™ vs. 97.62 ± 2.21 % with Biomatrix™, p < 0.001) and very rare malapposition (0.29 ± 1.06 % with Inspiron™ vs. 0.53 ± 0.82 % with Biomatrix™, p = 0.44). Patients with any uncovered struts were more frequently identified in the Biomatrix™ group (9.78 ± 7.13 vs. 2.29 ± 3.91 %, p < 0.001). In the present study, midterm IVUS and OCT evaluations showed that both new generation DES with biodegradable polymer were effective in terms of suppressing excessive neointimal response, with very high rates of apposed and covered struts, suggesting a consistent and benign healing pattern.

  17. Development of partially biodegradable foams from PP/HMSPP blends with natural and synthetic polymers; Desenvolvimento de espumas parcialmente biodegradaveis a partir de blendas de PP/HMSPP com polimeros naturais e sinteticos

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elizabeth Carvalho Leite

    2014-07-01

    Polymers are used in various application and in different industrial areas providing enormous quantities of wastes in environment. Among diverse components of residues in landfills are polymeric materials, including Polypropylene, which contribute with 20 to 30% of total volume of solid residues. As polymeric materials are immune to microbial degradation, they remain in soil and in landfills as a semi-permanent residue. Environmental concerning in litter reduction is being directed to renewable polymers development for manufacturing of polymeric foams. Foamed polymers are considered future materials, with a wide range of applications; high density structural foams are specially used in civil construction, in replacement of metal, woods and concrete with a final purpose of reducing materials costs. At present development, it was possible the incorporation of PP/HMSPP polymeric matrix blends with sugarcane bagasse, PHB and PLA, in structural foams production. Thermal degradation at 100, 120 and 160 deg C temperatures was not enough to induce biodegradability. Gamma irradiation degradation, at 50, 100, 200 and 500 kGy showed effective for biodegradability induction. Irradiated bagasse blends suffered surface erosion, in favor of water uptake and consequently, a higher biodegradation in bulk structure. (author)

  18. Evaluation of released malathion and spinosad from chitosan/alginate/gelatin capsules against Culex pipiens larvae

    Directory of Open Access Journals (Sweden)

    Badawy MEI

    2016-09-01

    Full Text Available Mohamed EI Badawy,1 Nehad EM Taktak,2 Osama M Awad,2 Souraya A Elfiki,2 Nadia E Abou El-Ela2 1Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 2Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt Abstract: Efficacy of spinosad and malathion loaded in eco-friendly biodegradable formulations was evaluated for controlling Culex pipiens larvae. Malathion (organophosphorus larvicide and spinosad (naturally derived insecticide were loaded on chitosan/alginate/gelatin capsules. Capsules were characterized by size measurement, scanning electron microscopy, Fourier transform infrared spectroscopy, and water uptake. In vitro release kinetics of the larvicides was studied in the running and stagnant water. Biochemical studies on the larvae treated with technical and formulated insecticides were also demonstrated. The results indicated that the released spinosad was active for a long time up to 48 and 211 days in the running and stagnant water, respectively. However, the capsules loaded with malathion showed larvicidal activity for 20 and 27 days in the running and stagnant water, respectively. Technical and formulated malathion and spinosad had an inhibition effect on acetylcholinesterase, carboxylesterase, and glutathione S-transferase. The results proved that the prepared capsules consisting of biodegradable polymers containing larvicides could be effective as controlled-release formulation against C. pipiens larvae for a long period. Keywords: chitosan capsules, larvicide, controlled-release formulation, swelling, mosquitocidal activity, Culex pipiens, biochemical study

  19. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    Directory of Open Access Journals (Sweden)

    Ana V Oliveira

    2013-01-01

    Full Text Available Objective: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. Materials and Methods: Chitosan and thiolated chitosan nanoparticles (NPs were prepared in order to obtain a NH3 + :PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. Results: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. Conclusion: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery.

  20. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    International Nuclear Information System (INIS)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang

    2017-01-01

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  1. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sizhao, E-mail: bule-soul@hotmail.com; Feng, Jian, E-mail: fengj@nudt.edu.cn; Feng, Junzong; Jiang, Yonggang

    2017-02-28

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  2. High-molecular-weight polymers containing biodegradable disulfide bonds: synthesis and in vitro verification of intracellular degradation

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Kovář, Lubomír; Šubr, Vladimír; Braunová, Alena; Pechar, Michal; Chytil, Petr; Říhová, Blanka; Ulbrich, Karel

    2010-01-01

    Roč. 25, č. 1 (2010), s. 5-26 ISSN 0883-9115 R&D Projects: GA AV ČR IAA400500806; GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : water-soluble polymers * reductive degradation * HPMA copolymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.610, year: 2010

  3. Characterization and electromechanical performance of cellulose–chitosan blend electro-active paper

    International Nuclear Information System (INIS)

    Cai Zhijiang; Kim, Jaehwan

    2008-01-01

    Cellulose-based electro-active paper (EAPap) has been reported as a smart material that has merits in terms of light weight, dry condition, biodegradability, sustainability, large displacement output and low actuation voltage. However, its actuator performance is very sensitive to humidity and degrades with time. To solve these drawbacks, we introduce an EAPap actuator made with cellulose and chitosan blend films. Cellulose–chitosan blend films were prepared by dissolving the polymers in trifluoroacetic acid as a co-solvent followed by spin-coating onto glass substrates. A bending EAPap actuator is made by depositing thin gold electrodes on both sides of the cellulose–chitosan films. Characteristics of these blend films are performed by FT-IR, XRD, TGA, SEM and a pull test. The electromechanical performance of the EAPap actuator is evaluated in terms of free bending displacement with respect to the actuation frequency, voltage, time variation and humidity levels. Results show that this chitosan–cellulose-based EAPap actuator is less sensitive to humidity: it shows a large bending displacement (about 4.1 mm) and long lifetime (more than 9 h) at room humidity conditions. It indicates that this chitosan–cellulose EAPap is promising for many biomimetic applications in the foreseeable future

  4. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation.

    Science.gov (United States)

    Wadhwa, Sheetu; Paliwal, Rishi; Paliwal, Shivani R; Vyas, S P

    2010-05-01

    In clinical practices, solution of dorzolamide hydrochloride (DH) and timolol maléate (TM) is recommended for the treatment of glaucoma. However, low drug-contact time and poor ocular bioavailability of drugs due to drainage of solution, tear turnover and its dilution or lacrimation limits its uses. In addition, systemic absorption of TM may induce undesirable cardiovascular side effects. Chitosan (CS) is a polycationic biodegradable polymer which provides sustained and local delivery of drugs to the ocular sites. Hyaluronic acid (HA) also provides synergistic effect for mucoadhesion in association with chitosan. In the present study, hyaluronic acid modified chitosan nanoparticles (CS-HA-NPs) loaded with TM and DH were developed and characterized. The CS-HA-NPs were evaluated for size, shape, zeta potential, entrapment efficiency, and mucoadhesive strength. The in vitro release study was also performed in PBS pH 7.4. The ocular irritation potential of CS-HA-NPs was estimated using draize test on albino rabbits. A significant reduction in IOP level was obtained using CS-HA-NPs as compared to plain solution of drug and a comparable higher reduction in IOP level was observed as to CS-NPs. These results suggest that HA potentialy enhance the mucoadhesiveness and efficiency of CS-NPs and may be promising carrier for ocular drug delivery.

  5. Production and characterization of chitosan obtained from shrimp exoskeleton; Producao e caracterizacao de quitosana obtida a partir do exoesqueleto do camarao

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Leticia P.; Aguiar, Nayara V.; Rodrigues, Willias da L.; Silva, Rafael S. da; Moreira, Carly K.P., E-mail: leticiaalmeida_26@hotmail.com [Universidade do Estado do Amapa (UEAP), Macapa, AP (Brazil)

    2015-07-01

    Chitosan is a natural polymer, biocompatible, biodegradable and non-toxic. It's derived from the deacetylation of chitin, which constitutes the most part of the exoskeleton of insects, crustaceans and fungal cell wall. After cellulose, chitin is more organic compound found in nature. The Chitin was separated from others components of shrimp waste (Macrobrachium amazonicum) by a chemical process that involves three steps: demineralization, deproteination and depigmentation. The chitosan produced was characterized by potentiometric titration, to find the degree of deacetylation (85,32 %), determining the intrinsic viscosity to define its molecular weight (503.223 g/mol), and X-ray diffraction to determine its crystallinity index (58,4 %). (author)

  6. Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device.

    Science.gov (United States)

    Abelha, T F; Phillips, T W; Bannock, J H; Nightingale, A M; Dreiss, C A; Kemal, E; Urbano, L; deMello, J C; Green, M; Dailey, L A

    2017-02-02

    This study compares the performance of a microfluidic technique and a conventional bulk method to manufacture conjugated polymer nanoparticles (CPNs) embedded within a biodegradable poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG 5K -PLGA 55K ) matrix. The influence of PEG 5K -PLGA 55K and conjugated polymers cyano-substituted poly(p-phenylene vinylene) (CN-PPV) and poly(9,9-dioctylfluorene-2,1,3-benzothiadiazole) (F8BT) on the physicochemical properties of the CPNs was also evaluated. Both techniques enabled CPN production with high end product yields (∼70-95%). However, while the bulk technique (solvent displacement) under optimal conditions generated small nanoparticles (∼70-100 nm) with similar optical properties (quantum yields ∼35%), the microfluidic approach produced larger CPNs (140-260 nm) with significantly superior quantum yields (49-55%) and tailored emission spectra. CPNs containing CN-PPV showed smaller size distributions and tuneable emission spectra compared to F8BT systems prepared under the same conditions. The presence of PEG 5K -PLGA 55K did not affect the size or optical properties of the CPNs and provided a neutral net electric charge as is often required for biomedical applications. The microfluidics flow-based device was successfully used for the continuous preparation of CPNs over a 24 hour period. On the basis of the results presented here, it can be concluded that the microfluidic device used in this study can be used to optimize the production of bright CPNs with tailored properties with good reproducibility.

  7. Fabrication of Novel Porous Chitosan Matrices as Scaffolds for Bone Tissue Engineering

    National Research Council Canada - National Science Library

    Jiang, Tao; Pilane, Cyril M; Laurencin, Cato T

    2005-01-01

    .... Chitosan, a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton, is a potential candidate for bone tissue engineering due to its excellent osteocompatibility...

  8. Humidity detection using chitosan film based sensor

    Science.gov (United States)

    Nasution, T. I.; Nainggolan, I.; Dalimunthe, D.; Balyan, M.; Cuana, R.; Khanifah, S.

    2018-02-01

    A humidity sensor made of the natural polymer chitosan has been successfully fabricated in the film form by a solution casting method. Humidity testing was performed by placing a chitosan film sensor in a cooling machine room, model KT-2000 Ahu. The testing results showed that the output voltage values of chitosan film sensor increased with the increase in humidity percentage. For the increase in humidity percentage from 30 to 90% showed that the output voltage of chitosan film sensor increased from 32.19 to 138.75 mV. It was also found that the sensor evidenced good repeatability and stability during the testing. Therefore, chitosan has a great potential to be used as new sensing material for the humidity detection of which was cheaper and environmentally friendly.

  9. Synthesis and characterisation of PEG modified chitosan nanocapsules loaded with thymoquinone.

    Science.gov (United States)

    Vignesh Kumar, Suresh Kumar; Renuka Devi, Ponnuswamy; Harish, Saru; Hemananthan, Eswaran

    2017-02-01

    Thymoquinone (TQ), a major bioactive compound of Nigella sativa seeds has several therapeutic properties. The main drawback in bringing TQ to therapeutic application is that it has poor stability and bioavailability. Hence a suitable carrier is essential for TQ delivery. Recent studies indicate biodegradable polymers are potentially good carriers of bioactive compounds. In this study, polyethylene glycol (PEG) modified chitosan (Cs) nanocapsules were developed as a carrier for TQ. Aqueous soluble low molecular weight Cs and PEG was selected among different biodegradable polymers based on their biocompatibility and efficacy as a carrier. Optimisation of synthesis of nanocapsules was done based on particle size, PDI, encapsulation efficiency and process yield. A positive zeta potential value of +48 mV, indicating good stability was observed. Scanning electron microscope and atomic-force microscopy analysis revealed spherical shaped and smooth surfaced nanocapsules with size between 100 to 300 nm. The molecular dispersion of the TQ in Cs PEG nanocapsules was studied using X-ray powder diffraction. The Fourier transform infrared spectrum of optimised nanocapsule exhibited functional groups of both polymer and drug, confirming the presence of Cs, PEG and TQ. In vitro drug release studies showed that PEG modified Cs nanocapsules loaded with TQ had a slow and sustained release.

  10. Solid phase extraction of lead, cadmium and zinc on biodegradable polyhydroxybutyrate diethanol amine (PHB-DEA) polymer and their determination in water and food samples.

    Science.gov (United States)

    Tuzen, Mustafa; Sahiner, Samet; Hazer, Baki

    2016-11-01

    A new biodegradable polyhydroxybutyrate diethanol amine (PHB-DEA) polymer was used as adsorbent for the sensitive and selective separation, preconcentration and determination of Pb(II), Cd(II) and Zn(II) by using atomic absorption spectrometry. Diethyl dithiocarbamate was used as chelating reagent. Analytical parameters such as pH, eluent type and its volume, flow rates of sample solution, ligand amount, sample volume were optimized. Effects of some cations, anions and transition metal ions were also investigated. Enrichment factor and relative standard deviation were found to be 100 and 3%, respectively. The limits of detection based on three times standard deviation of blanks (N=21) were found 1.05μgL(-1) for Pb(II), 0.42μgL(-1) for Cd(II) and 0.13μgL(-1) for Zn(II). Limits of quantification (10s, N=21) were found 3.47μgL(-1) for Pb(II), 1.39μgL(-1) for Cd(II) and 0.43μgL(-1) for Zn(II). Accuracy evaluation of the method was confirmed with analyses of certified reference materials (NIST SRM 1515 Apple leaves, IAEA 336 Lichen, GBW 07605 Tea). Optimized method was applied to tap water and food samples after microwave digestion method. Cadmium and lead values in some samples were found higher than legal limits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development of a Sustainable Release System for a Ranibizumab Biosimilar Using Poly(lactic-co-glycolic acid) Biodegradable Polymer-Based Microparticles as a Platform.

    Science.gov (United States)

    Tanetsugu, Yusuke; Tagami, Tatsuaki; Terukina, Takayuki; Ogawa, Takaya; Ohta, Masato; Ozeki, Tetsuya

    2017-01-01

    Ranibizumab is a humanized monoclonal antibody fragment against vascular endothelial growth factor (VEGF)-A and is widely used to treat age-related macular degeneration (AMD) caused by angiogenesis. Ranibizumab has a short half-life in the eye due to its low molecular weight and susceptibility to proteolysis. Monthly intravitreal injection of a large amount of ranibizumab formulation is a burden for both patients and medical staff. We therefore sought to develop a sustainable release system for treating the eye with ranibizumab using a drug carrier. A ranibizumab biosimilar (RB) was incorporated into microparticles of poly(lactic-co-glycolic acid) (PLGA) biodegradable polymer. Ranibizumab was sustainably released from PLGA microparticles (80+% after 3 weeks). Assay of tube formation by endothelial cells indicated that RB released from PLGA microparticles inhibited VEGF-induced tube formation and this tendency was confirmed by a cell proliferation assay. These results indicate that RB-loaded PLGA microparticles are useful for sustainable RB release and suggest the utility of intraocular sustainable release systems for delivering RB site-specifically to AMD patients.

  12. Delivery of S1P receptor-targeted drugs via biodegradable polymer scaffolds enhances bone regeneration in a critical size cranial defect.

    Science.gov (United States)

    Das, Anusuya; Tanner, Shaun; Barker, Daniel A; Green, David; Botchwey, Edward A

    2014-04-01

    Biodegradable polymer scaffolds can be used to deliver soluble factors to enhance osseous remodeling in bone defects. To this end, we designed a poly(lactic-co-glycolic acid) (PLAGA) microsphere scaffold to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors. The microsphere scaffolds were created from fast degrading 50:50 PLAGA and/or from slow-degrading 85:15 PLAGA. Temporal and spatial regulation of bone remodeling depended on the use of appropriate scaffolds for drug delivery. The release profiles from the scaffolds were used to design an optimal delivery system to treat critical size cranial defects in a rodent model. The ability of local FTY720 delivery to maximize bone regeneration was evaluated with micro-computed tomography (microCT) and histology. Following 4 weeks of defect healing, FTY720 delivery from 85:15 PLAGA scaffolds resulted in a significant increase in bone volumes in the defect region compared to the controls. A 85:15 microsphere scaffolds maintain their structural integrity over a longer period of time, and cause an initial burst release of FTY720 due to surface localization of the drug. This encourages cellular in-growth and an increase in new bone formation. Copyright © 2013 Wiley Periodicals, Inc.

  13. Delivery of S1P Receptor-Targeted Drugs via Biodegradable Polymer Scaffolds Enhances Bone Regeneration in a Critical Size Cranial Defect*

    Science.gov (United States)

    Das, Anusuya; Tanner, Shaun; Barker, Daniel A.; Green, David; Botchwey, Edward A.

    2014-01-01

    Biodegradable polymer scaffolds can be used to deliver soluble factors to enhance osseous remodeling in bone defects. To this end, we designed a poly(lactic-co-glycolic acid) (PLAGA) microsphere scaffold to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors. The microsphere scaffolds were created from fast degrading 50:50 PLAGA and/or from slow-degrading 85:15 PLAGA. Temporal and spatial regulation of bone remodeling depended on the use of appropriate scaffolds for drug delivery. The release profiles from the scaffolds were used to design an optimal delivery system to treat critical size cranial defects in a rodent model. The ability of local FTY720 delivery to maximize bone regeneration was evaluated with microcomputed tomography (microCT) and histology. Following 4 weeks of defect healing, FTY720 delivery from 85:15 PLAGA scaffolds resulted in a significant increase in bone volumes in the defect region compared to the controls. 85:15 microsphere scaffolds maintain their structural integrity over a longer period of time, and cause an initial burst release of FTY720 due to surface localization of the drug. This encourages cellular in-growth and an increase in new bone formation. PMID:23640833

  14. Favorable Outcomes after Implantation of Biodegradable Polymer Coated Sirolimus-Eluting Stents in Diabetic Population: Results from INDOLIMUS-G Diabetic Registry

    Directory of Open Access Journals (Sweden)

    Anurag Polavarapu

    2015-01-01

    Full Text Available Objective. The main aim is to evaluate safety, efficacy, and clinical performance of the Indolimus (Sahajanand Medical Technologies Pvt. Ltd., Surat, India sirolimus-eluting stent in high-risk diabetic population with complex lesions. Methods. It was a multicentre, retrospective, non-randomized, single-arm study, which enrolled 372 diabetic patients treated with Indolimus. The primary endpoint of the study was major adverse cardiac events (MACE, which is a composite of cardiac death, target lesion revascularization (TLR, target vessel revascularization (TVR, myocardial infarction (MI, and stent thrombosis (ST. The clinical follow-ups were scheduled at 30 days, 6 months, and 9 months. Results. The mean age of the enrolled patients was 53.4 ± 10.2 years. A total of 437 lesions were intervened successfully with 483 stents (1.1 ± 0.3 per lesion. There were 256 (68.8% male patients. Hypertension and totally occluded lesions were found in 202 (54.3% and 45 (10.3% patients, respectively. The incidence of MACE at 30 days, 6 months and 9 months was 0 (0%, 6 (1.6%, and 8 (2.2%, respectively. The event-free survival at 9-month follow-up by Kaplan Meier method was found to be 97.8%. Conclusion. The use of biodegradable polymer coated sirolimus-eluting stent is associated with favorable outcomes. The results demonstrated in our study depict its safety and efficacy in diabetic population.

  15. Thiolated chitosans: useful excipients for oral drug delivery.

    Science.gov (United States)

    Werle, Martin; Bernkop-Schnürch, Andreas

    2008-03-01

    To improve the bioavailability of orally administered drugs, formulations based on polymers are of great interest for pharmaceutical technologists. Thiolated chitosans are multifunctional polymers that exhibit improved mucoadhesive, cohesive and permeation-enhancing as well as efflux-pump-inhibitory properties. They can be synthesized by derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions. Various data gained in-vitro as well as in-vivo studies clearly demonstrate the potential of thiolated chitosans for oral drug delivery. Within the current review, the synthesis and characterization of thiolated chitosans so far developed is summarized. Features of thiolated chitosans important for oral drug delivery are discussed as well. Moreover, different formulation approaches, such as matrix tablets and micro-/nanoparticles, as well as the applicability of thiolated chitosans for the oral delivery of various substance classes including peptides and efflux pump substrates, are highlighted.

  16. Rheological study of chitosan in solution

    International Nuclear Information System (INIS)

    Silva, Italo Guimaraes Medeiros da; Alves, Keila dos Santos; Balaban, Rosangela de Carvalho

    2009-01-01

    Chitosan is an abundant biopolymer with remarkable physicochemical and biological properties, usually employed in a wide range of applications. It acts as a cationic polyelectrolyte in aqueous acid solutions, leading to unique characteristics. In this work, chitosan was characterized by 1 H NMR and its rheological behavior were studied as function of chitosan sample, shear rate, polymer concentration, ionic strength, time and temperature. In order to calculate rheological parameters and to understand the macromolecular dynamic in solution, the Otswald-de Waele model was fitted. (author)

  17. Functionalization of chitosan by click chemistry

    Science.gov (United States)

    Cheaburu-Yilmaz, Catalina Natalia; Karavana, Sinem Yaprak; Yilmaz, Onur

    2017-12-01

    Chitosan modification represents a challenge nowadays. The variety of compounds which can be obtained with various architectures and different functionalities made it attractive to be used in fields like pharmacy and material science. Presents study deals with the chemical modification of chitosan by using click chemistry technique. The study adopted the approach of clicking azidated chitosan with a synthesized alkyne terminated polymer i.e. poly N isopropylacrylamide with thermoresponsive properties. Structures were confirmed by the FT-IR and HNMR spectra. Thermal characterization was performed showing different thermal behaviour with the chemical modification. The final synthesized graft copolymer can play important role within pharmaceutical formulations carrying drugs for topical or oral treatments.

  18. Barrier, structural and mechanical properties of bovine gelatin-chitosan blend films related to biopolymer interactions.

    Science.gov (United States)

    Benbettaïeb, Nasreddine; Kurek, Mia; Bornaz, Salwa; Debeaufort, Frédéric

    2014-09-01

    The increased use of synthetic packaging films has led to a high ecological problem due to their total non-biodegradability. Thus, there is a vital need to develop renewable and environmentally friendly bio-based polymeric materials. Films and coatings made from polysaccharide polymers, particularly chitosans and gelatins have good gas barrier properties and are envisaged more and more for applications in the biomedical and food fields, as well as for packaging. In this study a casting method was used to develop an edible plasticised film from chitosan and gelatin. Aiming to develop a blend film with enhanced properties, the effects of mixing chitosan (CS) and gelatin (G) in different proportions (CS:G, 75:25, 50:50, 25:75, w/w) on functional and physico-chemical properties have been studied. Mean film thickness increased linearly (R2 =0.999) with surface density of the film forming solution. An enhancement of mechanical properties by increasing the tensile strength (38.7±11 MPa for pure chitosan and 76.8±9 MPa for pure gelatin film) was also observed in blends, due to gelatin content.When the gelatin content in blend filmswas increased an improvement of both water vapour barrier properties [(4±0.3)×10(-10) g m(-1) s(-1) Pa(-1) for pure chitosan and (2.5±0.14)×10(-10) g m(-1) s(-1) Pa(-1) for pure gelatin, at 70% RH gradient] and oxygen barrier properties ((822.62±90.24)×10(-12) g m(-1) s(-1) Pa(-1) for blend film chitosan:gelatin (25:75 w/w) and (296.67±18.76)×10(-12) g m(-1) s(-1) Pa(-1) for pure gelatin was observed. Fourier transform infrared spectra of blend films showed a shift in the peak positions related to the amide groups (amide-I and amide-III) indicating interactions between biopolymers. Addition of gelatin in chitosan induced greater functional properties (mechanical, barrier) due to chemical interactions, suggesting an inter-penetrated network. © 2014 Society of Chemical Industry.

  19. CHITOSAN: ANTIBACTERIAL ACTIVITY AND PERSPECTIVES OF THE BIOMEDICAL APPLICATION

    Directory of Open Access Journals (Sweden)

    Sukhodub L.B.

    2014-10-01

    Full Text Available In the last decades, serious attention is attracted by the use of natural antimicrobial drugs instead of the usual ones because of pathogens resistance to antibiotics. Chitosan (CS is widely used as an antimicrobial agent owing to its high biodegradability, nontoxicity and antimicrobial properties. CS is a cationic polysaccharide obtained by partial deacetylation of chitin, the major component of crustacean shells. In last time cultivation of fungi provides an alternative source of the CS obtaining: Chitin makes up 45 % of the A. niger and M. rouxii cell wall content and up to 20 % of the P. notatum cell wall content In contrast to other polymers, chitosan is a hydrophilic polymer with positive charge and has three types of functional groups: amino group at position C-2 in each deacetylated structural unit, as well as primary and secondary hydroxyl groups at C-6 and C-3 positions respectively. This causes its ability to form new hydrofilic medicals on the basis of known drugs, as well as the formation of drug release systems. CS is unique adsorbent and it is possible to combine it with another drugs. The natural ability of CS for gelation is used in the preparation of the hemostatic agent "Celox", that is effective for preventing fatalities when arterial bleeding occurs on the battlefield. The clotting of "Celox" occurs much faster than other hemostatic agents. Antimicrobial activity of chitosan against many Gram-positive and Gram-negative bacteria, filamentous fungi and yeasts has been widely demonstrated in the scientific literature.There are some reported mechanisms for antibacterial activity: positively charged due to NH3+ groups Chitosan interact with negatively charged functional groups at the cell surface and compromise the cell wall or outer membrane. In the case of Gram-positive bacteria, lipoteichoic acid could provide a molecular linkage for chitosan at the cell surface, allowing it to disturb membrane functions. Lipopolysaccharides

  20. Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Ligia L. Fernandes

    2011-01-01

    Full Text Available In this work, chitosan and collagen-chitosan porous scaffolds were produced by the freeze drying method and characterized as potential skin substitutes. Their beneficial effects on soft tissues justify the choice of both collagen and chitosan. Samples were characterized using scanning electron microscope, Fourier Transform InfraRed Spectroscopy (FTIR and thermogravimetry (TG. The in vitro cytocompatibility of chitosan and collagen-chitosan scaffolds was evaluated with three different assays. Phenol and titanium powder were used as positive and negative controls, respectively. Scanning electron microscopy revealed the highly interconnected porous structure of the scaffolds. The addition of collagen to chitosan increased both pore diameter and porosity of the scaffolds. Results of FTIR and TG analysis indicate that the two polymers interact yielding a miscible blend with intermediate thermal degradation properties. The reduction of XTT ((2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide and the uptake of Neutral Red (NR were not affected by the blend or by the chitosan scaffold extracts, but the blend and the titanium powder presented greater incorporation of Crystal Violet (CV than phenol and chitosan alone. In conclusion, collagen-chitosan scaffolds produced by freeze-drying methods were cytocompatible and presented mixed properties of each component with intermediate thermal degradation properties.

  1. Chitosan nanoparticles as drug delivery carriers for biomedical engineering

    International Nuclear Information System (INIS)

    Shi, L.E.S.; Chen, M.; XINF, L.Y.; Guo, X.F.; Zhao, L.M.

    2011-01-01

    Chitosan is a rather abundant material, which has been widely used in food industrial and bioengineering aspects, including in encapsulating active food ingredients, in enzyme immobilization, and as a carrier for drug delivery, due to its significant biological and chemical properties such as biodegradable, biocompatible, bioactive and polycationic. This review discussed preparation and applications of chitosan nanoparticles in the biomedical engineering field, namely as a drug delivery carrier for biopharmaceuticals. (author)

  2. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine

    Science.gov (United States)

    Rodríguez-Vázquez, Martin; Vega-Ruiz, Brenda; Ramos-Zúñiga, Rodrigo; Saldaña-Koppel, Daniel Alexander; Quiñones-Olvera, Luis Fernando

    2015-01-01

    Tissue engineering is an important therapeutic strategy to be used in regenerative medicine in the present and in the future. Functional biomaterials research is focused on the development and improvement of scaffolding, which can be used to repair or regenerate an organ or tissue. Scaffolds are one of the crucial factors for tissue engineering. Scaffolds consisting of natural polymers have recently been developed more quickly and have gained more popularity. These include chitosan, a copolymer derived from the alkaline deacetylation of chitin. Expectations for use of these scaffolds are increasing as the knowledge regarding their chemical and biological properties expands, and new biomedical applications are investigated. Due to their different biological properties such as being biocompatible, biodegradable, and bioactive, they have given the pattern for use in tissue engineering for repair and/or regeneration of different tissues including skin, bone, cartilage, nerves, liver, and muscle. In this review, we focus on the intrinsic properties offered by chitosan and its use in tissue engineering, considering it as a promising alternative for regenerative medicine as a bioactive polymer. PMID:26504833

  3. Self-assembly of the hydrogel polymer chain consisting of chitosan and chondroitin sulphate in the presence of theophylline;Propriedades de higrogeis constituidos de quitosana e sulfato decondroitina na presenca de teofilina intumescidos em diferentes pHs

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Lais C.; Piai, Juliana F.; Fajardo, Andre R.; Rubira, Adley F.; Muniz, Edvani C., E-mail: ecmuniz@uem.b [Universidade Estadual de Maringa (GMPC/UEM), PR (Brazil). Grupo de Materiais Polimericos e Compositos

    2009-07-01

    In this work, polyelectronic complex (PEC) consisting of two polysaccharides were developed. One is chitosan (QT), cationic polymer, produced by the chitin deacetylation and the other is chondroitin sulphate (CS), anionic polymer, extracted from bovine or porcine aorta. The PECs were prepared in the presence of theophylline (TEO) for evaluating the influence of this drug in the polymer chains reorganization, as well as, studying the mechanical properties and release of SC and TEO in aqueous solutions on different pH conditions. By the obtained results, it was observed that the 84QT/15SC/TEO (% in weight) hydrogel is pH responsive because the CS releasing is more effective at pH 8, while the release of the TEO is higher at pH 2. The hydrogel showed mechanical properties more resistant to pH 2, 8 and 10 and this was attributed to interactions between the polymer chains. Finally, the X-rays profile showed the presence of peaks associated to reorganization of the chains in the hydrogel is at times larger than the hydrogel in the absence of solute. (author)

  4. First-in-man randomised comparison of the BuMA Supreme biodegradable polymer sirolimus-eluting stent versus a durable polymer zotarolimus-eluting coronary stent: the PIONEER trial.

    Science.gov (United States)

    von Birgelen, Clemens; Asano, Taku; Amoroso, Giovanni; Aminian, Adel; Brugaletta, Salvatore; Vrolix, Mathias; Hernandez-Antolín, Rosana; van de Harst, Pim; Iñiguez, Andres; Janssens, Luc; Smits, Pieter C; Wykrzykowska, Joanna J; Ribeiro, Vasco Gama; Pereira, Hélder; da Silva, Pedro Canas; Piek, Jan J; Onuma, Yoshinobu; Serruys, Patrick W; Sabaté, Manel

    2018-04-20

    A second iteration of a sirolimus-eluting stent (SES) that has a biodegradable PLGA polymer coating with an electrografting base layer on a thin-strut (80 µm) cobalt-chromium platform (BuMA Supreme; SINOMED, Tianjin, China) has been developed. This first-in-man trial aimed to assess the efficacy and safety of the novel device. This randomised, multicentre, single-blinded, non-inferiority trial compared the BuMA Supreme SES versus a contemporary durable polymer zotarolimus-eluting stent (ZES) in terms of angiographic in-stent late lumen loss (LLL) at nine-month follow-up as the primary endpoint. A total of 170 patients were randomly allocated to treatment with either SES (n=83) or ZES (n=87). At nine-month angiographic follow-up, in-stent LLL was 0.29±0.33 mm in the SES group and 0.14±0.37 mm in the ZES group (pnon-inferiority=0.45). The in-stent percent diameter stenosis and the binary restenosis rate of the two treatment arms were similar (19.2±12.0% vs. 16.1±12.6%, p=0.09, and 3.3% vs. 4.4%, p=1.00, respectively). At 12-month clinical follow-up, there was no difference between treatment arms with regard to the device-oriented composite clinical endpoint (4.9% vs. 5.7%; p=0.72). The PIONEER trial did not meet its primary endpoint in terms of in-stent LLL at nine-month follow-up. However, this result did not translate into any increase in restenosis rate or impairment in 12-month clinical outcomes.

  5. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  6. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    Science.gov (United States)

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc.

  7. Drug-eluting stents with biodegradable polymer for the treatment of patients with diabetes mellitus: clinical outcome at 2 years in a large population of patients

    Directory of Open Access Journals (Sweden)

    Wiemer M

    2015-02-01

    Full Text Available Marcus Wiemer,1 Gian Battista Danzi,2 Nick West,3 Vassilios Voudris,4 René Koning,5 Stefan Hoffmann,6 Mario Lombardi,7 Josepa Mauri,8 Rade Babic,9 Fraser Witherow10On behalf of the NOBORI 2 Investigators 1Department of Cardiology, Heart and Diabetes Center North Rhine–Westphalia, Ruhr University Bochum, Bad Oeynhausen, Germany; 2Ospedale Maggiore Policlinico, Milan, Italy; 3Papworth Hospital, Cambridge, UK; 4Onassis Cardiac Surgery Center, Athens, Greece; 5Clinique Saint Hilaire, Rouen, France; 6Vivantes Netzwerk für Gesundheit GmbH, Berlin, Germany; 7Azienda Ospedaliera Villa Sofia, Palermo, Italy; 8Hospital Universitari Germans Trias i Pujol, Badalona, Spain; 9Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia; 10Dorset County Hospital, Dorchester, UK Objective: This study investigates the safety and efficacy of a third-generation drug-eluting stent (DES with biodegradable polymer in the complex patient population of diabetes mellitus (DM. Clinical trial registration: ISRCTN81649913. Background: Percutaneous coronary interventions in patients with DM are associated with a higher incidence of death, restenosis, and stent thrombosis as compared to non-diabetic patients. The use of a DES has been shown to improve outcomes in diabetic patients. Methods: Out of 3,067 patients, enrolled in 126 centers worldwide in the NOBORI 2 registry, 888 patients suffered from DM, 213 of them (14% being insulin-dependent DM (IDDM. Two years’ follow-up has been completed in this study. Results: At 1- and 2-year follow-up, 97% and 95% of the patients, respectively, were available. The reported target lesion failure (TLF rates at 1- and 2-year follow-up were 6.0% and 7.2% in the DM group, respectively, and 3.0% and 4.2% in the non-DM group, respectively (P<0.001 for both years. Inside the DM group, the TLF rates of 9.9% and 11.7% at the 1- and 2-year follow-ups, respectively, in patients with IDDM were significantly higher than the TLF rates of 4

  8. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    International Nuclear Information System (INIS)

    Navaratnam, S.; Ramesh, K.; Ramesh, S.; Sanusi, A.; Basirun, W.J.; Arof, A.K.

    2015-01-01

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH 3 COO) and lithium triflate (LiCF 3 SO 3 ) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF 3 SO 3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH 3 COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF 3 SO 3 dissociated more readily than LiCH 3 COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF 3 SO 3 -30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH 3 COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  9. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

    Science.gov (United States)

    Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T

    2003-03-01

    In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing

  10. Chitosan Stabilized Gold-Folate-Poly(lactide-co-glycolide) Nanoplexes Facilitate Efficient Gene Delivery in Hepatic and Breast Cancer Cells.

    Science.gov (United States)

    Akinyelu, Jude; Singh, Moganavelli

    2018-07-01

    The biodegradable polymer, poly(lactide-co-glycolide) is a popular polymer of choice in many nanotherapeutic studies. Herein, we report on the synthesis and evaluation of four chitosan stabilized poly(lactide-co-glycolide) nanoparticles with and without coating with gold, and the targeting ligand, folic acid, as potential non-viral gene delivery vectors. The poly(lactide-co-glycolide) nanoparticles were synthesized via nanoprecipitation/solvent evaporation method in conjunction with the surface functionalizing folic acid and chitosan. The physiochemical properties (morphology, particle size, zeta potential, folic acid/chitosan presence, DNA binding), and biological properties (nuclease protection, in vitro cytotoxicity and transfection potential in human kidney, hepatocellular carcinoma and breast adenocarcinoma cells), of all four gene bound nanoparticles were evaluated. Gel retardation assays confirmed that all the nanoparticles were able to successfully bind the reporter plasmid, pCMV-luc DNA at varying weight ratios. The gold-folate-poly(lactide-co-glycolide) nanoplexes with the highest binding efficiency (w/w ratio 4:1), best protected the plasmid DNA as evidenced from the nuclease protection assays. Furthermore, these nanoplexes presented as spherical particles with an average particle size of 199.4 nm and zeta potential of 35.7 mV. Folic acid and chitosan functionalization of the nanoparticles was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy. All nanoplexes maintained over 90% cell viability in all cell lines investigated. Interestingly, the gold-folate-poly(lactide-co-glycolide) nanoplexes showed a greater transgene activity in the hepatic and breast cancer cells compared to the other nanocomplexes in the same cell lines. The favorable size, colloidal stability, low cytotoxicity, significant transgene expression, and nuclease protection ability in vitro, all provide support for the use of gold

  11. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo, E-mail: ykodama@ipen.b, E-mail: marcelo.bardi@usp.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rosa, Derval dos Santos, E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2011-07-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  12. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    International Nuclear Information System (INIS)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo; Rosa, Derval dos Santos

    2011-01-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  13. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    International Nuclear Information System (INIS)

    Jalvandi, Javid; White, Max; Gao, Yuan; Truong, Yen Bach; Padhye, Rajiv; Kyratzis, Ilias Louis

    2017-01-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and 1 H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  14. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Jalvandi, Javid, E-mail: Javid.jlv@gmail.com [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); White, Max, E-mail: tamrak@bigpond.com [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Gao, Yuan, E-mail: Yuan.Gao@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Truong, Yen Bach, E-mail: Yen.truong@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Padhye, Rajiv, E-mail: rajiv.padhye@rmit.edu.au [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Kyratzis, Ilias Louis, E-mail: Louis.kyratzis@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia)

    2017-04-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and {sup 1}H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  15. Polymers in cell encapsulation from an enveloped cell perspective

    NARCIS (Netherlands)

    de Vos, Paul; Lazarjani, Hamideh Aghajani; Poncelet, Denis; Faas, Marijke M.

    2014-01-01

    In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone),

  16. Effect of chitosan coating on the characteristics of DPPC liposomes

    Directory of Open Access Journals (Sweden)

    Mohsen M. Mady

    2010-07-01

    Full Text Available Because it is both biocompatible and biodegradable, chitosan has been used to provide a protective capsule in new drug formulations. The present work reports on investigations into some of the physicochemical properties of chitosan-coated liposomes, including drug release rate, transmission electron microscopy (TEM, zeta potential and turbidity measurement. It was found that chitosan increases liposome stability during drug release. The coating of DPPC liposomes with a chitosan layer was confirmed by electron microscopy and the zeta potential of liposomes. The coating of liposomes by chitosan resulted in a marginal increase in the size of the liposomes, adding a layer of (92 ± 27.1 nm. The liposomal zeta potential was found to be increasingly positive as chitosan concentration increased from 0.1% to 0.3% (w/v, before stabilising at a relatively constant value. Turbidity studies revealed that the coating of DPPC liposomes with chitosan did not significantly modify the main phase transition temperature of DPPC at examined chitosan concentrations. The appropriate combination of liposomal and chitosan characteristics may produce liposomes with specific, prolonged and controlled release.

  17. Scaffold of chitosan-sodium alginate and hydroxyapatite with application potential for bone regeneration

    International Nuclear Information System (INIS)

    Rebelo, Marcia de A.; Alves, Thais F.R.; Lopes, Francielly C.C.N; Oliveira Junior, Jose Martins de; Pontes, Katiusca S.; Fogaca, Bruna A.C.; Chaud, Marco V.

    2015-01-01

    Scaffold for organic tissue regeneration are architectural, three-dimensional, porous, biocompatible and biodegradable devices. The first challenges to be met in the development of these devices to mimic the biomechanical properties of the target tissue. The aim of this study was to develop and to characterize scaffolds composed of chitosan (Ch), sodium alginate (SA), hydroxyapatite (HA). The scaffolds were obtained by lyophilization. HA has been incorporated into the polymer dispersion in Ch-AS concentration of 20 and 60%. The mechanical properties of the scaffold were determined by tensile and compression tests. Swelling capacity was assessed in the presence of simulated saliva, purified water, HCl 0.01M, NaOH 0.01M. The calcium content was quantified using fluorescence X-rays. Analysis of the results indicates that the Qt-AS-HA-60% scaffold obtained by lyophilization meets promising properties for bone tissue regeneration. (author)

  18. A Series of Radiation Processed Nanostructural Chitosan Derivatives for Biomedicine, Agriculture, and Bioplastics

    International Nuclear Information System (INIS)

    Pasanphan, W.; Rattanawongwiboon, T.; Huajaikaew, E.; Kongkaoroptham, P.; Guven, O.; Suwanmala, P.; Hemvichian, K.

    2014-01-01

    The work includes a series of biopolymeric chitosan (CS) nanostructures prepared by irradiation techniques. The radiation processed nanostructural CS were designed, synthesized, and characterized to address a progress in radiation technology for developing value-added natural products for advanced biomedical, agricultural and bioplastic applications. The idea to create CS nanoparticles (CSNPs) using radiation was initiated from simple radiation- induced non-chemical modification to advance radiation-induced functionalization of CSNPs. The already-existing CS nanostructures are water-soluble CSNPs as a green antioxidant and reducing agent, amphiphilic core-shell CS nanocarrier as anticancer delivery system, CS nanogel for fungicide and fertilizer controlled-release, and CS nanofiller for biodegradable PLA blends. Irradiation techniques, chemical structures, nanostructural morphologies including performance of nanostructural CS derivatives in appropriate utilizations were demonstrated. The developing idea would be an alternative approach for nanoscaled-controlled synthesis of the natural polymers.

  19. Cobalt-chitosan: Magnetic and biodegradable heterogeneous ...

    Indian Academy of Sciences (India)

    for selective aerobic oxidation of alkyl arenes and alcohols. AHMAD SHAABANI∗ ... of waste are important.2 Numerous homogeneous cat- alysts are widely used for aerobic oxidation, ... much attention has been focused on immobilization of.

  20. Design of polymer-biopolymer-hydroxyapatite biomaterials for bone tissue engineering: Through molecular control of interfaces

    Science.gov (United States)

    Verma, Devendra

    In this dissertation, novel biomaterials are designed for bone biomaterials and bone tissue engineering applications. Novel biomaterials of hydroxyapatite with synthetic and natural polymers have been fabricated using a combination of processing routes. Initially, we investigated hydroxyapatite-polycaprolactone-polyacrylic acid composites and observed that minimal interfacial interactions between polymer and mineral led to inadequate improvement in the mechanical properties. Bioactivity experiments on these composites showed that the presence of functional groups, such as carboxylate groups, influence bioactivity of the composites. We have developed and investigated composites of hydroxyapatite with chitosan and polygalacturonic acid (PgA). Chitosan and PgA are biocompatible, biodegradable, and also electrostatically complementary to each other. This strategy led to significant improvement in mechanical properties of new composites. The nanostructure analysis using atomic force microscopy revealed a multilevel organization in these composites. Enhancement in mechanical response was attributed to stronger interfaces due to strong electrostatic interaction between oppositely charged chitosan and PgA. Further analysis using the Rietveld method showed that biopolymers have marked impact on hydroxyapatite crystal growth and also on its crystal structure. Significant changes were observed in the lattice parameters of hydroxyapatite synthesized by following biomineralization method (organics mediated mineralization). For scaffold preparation, chitosan and PgA were mixed first, and then, nano-hydroxyapatite was added. Oppositely charged polyelectrolytes, such as chitosan and PgA, spontaneously form complex upon mixing. The poly-electrolyte complex exists as nano-sized particles. Chitosan/PgA scaffolds with and without hydroxyapatite were prepared by the freeze drying method. By controlling the rate of cooling and concentration, we have produced both fibrous and sheet

  1. Theoretical studies of ionic conductivity of crosslinked chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Ernesto Lopez [Programa de Ingenieria Molecular y Nuevos Materiales, Universidad Autonoma de la Ciudad de Mexico, Fray Servando Teresa de Mier 92, 1er. Piso, Col Centro, Mexico D.F. CP 06080 (Mexico); Oviedo-Roa, R.; Contreras-Perez, Gustavo; Martinez-Magadan, Jose Manuel [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, CP 07730 Mexico D.F. (Mexico); Castillo-Alvarado, F.L. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 de la UPALM, Colonia Lindavista, Mexico D.F. CP 07738 (Mexico)

    2010-11-15

    Ionic conductivity of crosslinked chitosan membranes was studied using techniques of molecular modeling and simulation. The COMPASS force field was used. The simulation allows the description of the mechanism of ionic conductivity along the polymer matrix. The theoretical results obtained are compared with experimental results for chitosan membranes. The analysis suggests that the conduction mechanism is portrayed by the overlapping large Polaron tunneling model. In addition, when the chitosan membrane was crosslinked with an appropriate degree of crosslinking its ionic conductivity, at room temperature, was increased by about one order of magnitude. The chitosan membranes can be used as electrolytes in solid state batteries, electric double layer capacitors and fuel cells. (author)

  2. Advances in preparation and characterization of chitosan nanoparticles for therapeutics.

    Science.gov (United States)

    Chandra Hembram, Krushna; Prabha, Shashi; Chandra, Ramesh; Ahmed, Bahar; Nimesh, Surendra

    2016-01-01

    Polymers have been largely explored for the preparation of nanoparticles due to ease of preparation and modification, large gene/drug loading capacity, and biocompatibility. Various methods have been adapted for the preparation and characterization of chitosan nanoparticles. Focus on the different methods of preparation and characterization of chitosan nanoparticles. Detailed literature survey has been done for the studies reporting various methods of preparation and characterization of chitosan nanoparticles. Published database suggests of several methods which have been developed for the preparation and characterization of chitosan nanoparticles as per the application.

  3. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    Science.gov (United States)

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of ble