WorldWideScience

Sample records for biodegradable polymer chitosan

  1. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  2. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  3. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects

    OpenAIRE

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-01-01

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained consi...

  4. Cobalt-chitosan: Magnetic and biodegradable heterogeneous ...

    Indian Academy of Sciences (India)

    A novel and biodegradable cobalt-chitosan as a magnetic heterogeneous catalyst was synthesized and characterized by XPS, FT-IR, EDX and TEM. Catalytic performance of cobalt- chitosan was tested by aerobic oxidation of alkyl arenes and alcohols. The results show that the catalyst exhibits excellent conversion for ...

  5. Cobalt-chitosan: Magnetic and biodegradable heterogeneous ...

    Indian Academy of Sciences (India)

    Abstract. A novel and biodegradable cobalt-chitosan as a magnetic heterogeneous catalyst was synthesized and characterized by XPS, FT-IR, EDX and TEM. Catalytic performance of cobalt- chitosan was tested by aerobic oxidation of alkyl arenes and alcohols. The results show that the catalyst exhibits excellent ...

  6. Cobalt-chitosan: Magnetic and biodegradable heterogeneous ...

    Indian Academy of Sciences (India)

    Cobalt-chitosan: Magnetic and biodegradable catalyst. 1931. Table 3. Effects of the solvent, temperature and base on oxidation of phenylethyl alcohol using cobalt-chitosan.a. Entry. Solvent. Temperature. Base. Yield (%) b. 1. DMF. 100. K2CO3. 60. 2. DMF. 100. KOH. 60. 3. CH3CN. 80. K2CO3. 65. 4. H2O reflux. KOH. 10. 5.

  7. Chitosan-Based Polymer Blends: Current Status and applications

    International Nuclear Information System (INIS)

    Hefian, E.A.E.; Nasef, M.M.

    2014-01-01

    This paper reviews the latest developments in chitosan-based blends and their potential applications in various fields. Various blends together with other derivatives, such as composites and graft copolymers, have been developed to overcome chitosans disadvantages, including poor mechanical properties and to improve its functionality towards specific applications. The progress made in blending chitosan with synthetic and natural polymers is presented. The versatility and unique characteristics, such as hydrophilicity, film-forming ability, biodegradability, biocompatibility, antibacterial activity and non-toxicity of chitosan has contributed to the successful development of various blends for medical, pharmaceutical, agricultural and environmental applications. (author)

  8. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.

    Science.gov (United States)

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-08-07

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.

  9. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects

    Directory of Open Access Journals (Sweden)

    Long Xu

    2015-08-01

    Full Text Available Chitosan is widely used in molecular imprinting technology (MIT as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers’ desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.

  10. Biodegradation, biodistribution and toxicity of chitosan.

    Science.gov (United States)

    Kean, T; Thanou, M

    2010-01-31

    Chitosan is a natural polysaccharide that has attracted significant scientific interest during the last two decades. It is a potentially biologically compatible material that is chemically versatile (-NH2 groups and various M(w)). These two basic properties have been used by drug delivery and tissue engineering scientists to create a plethora of formulations and scaffolds that show promise in healthcare. Despite the high number of published studies, chitosan is not approved by the FDA for any product in drug delivery, and as a consequence very few biotech companies are using this material. This review will aim to provide information on these biological properties that affect chitosan's safe use in drug delivery. The term "Chitosan" represents a large group of structurally different chemical entities that may show different biodistribution, biodegradation and toxicological profiles. Here we aim to review research in this area and critically discuss chitosan's potential to be used as a generally regarded as safe (GRAS) material. 2009 Elsevier B.V. All rights reserved.

  11. Chitosan-gold-Lithium nanocomposites as solid polymer electrolyte.

    Science.gov (United States)

    Begum, S N Suraiya; Pandian, Ramanathaswamy; Aswal, Vinod K; Ramasamy, Radha Perumal

    2014-08-01

    Lithium micro batteries are emerging field of research. For environmental safety biodegradable films are preferred. Recently biodegradable polymers have gained wide application in the field of solid polymer electrolytes. To make biodegradable polymers films plasticizers are usually used. However, use of plasticizers has disadvantages such as inhomogenities in phases and mechanical instability that will affect the performance of Lithium micro batteries. We have in this research used gold nanoparticles that are environmentally friendly, instead of plasticizers. Gold nanoparticles were directly template upon chitosan membranes by reduction process so as to enhance the interactions of Lithium with the polymer. In this article, for the first time the characteristics of Chitosan-gold-Lithium nanocomposite films are investigated. The films were prepared using simple solution casting technique. We have used various characterization tools such as Small Angle Neutron Scattering (SANS), XRD, FTIR, Raman, FESEM, and AFM, Light scattering, Dielectric and electrical conductivity measurements. Our investigations show that incorporation of gold results in enhancement of conductivity in Lithium containing Chitosan films. Also it affects the dielectric characteristics of the films. We conclude through various characterization tools that the enhancement in the conductivity was due to the retardation of crystal growth of lithium salt in the presence of gold nanoparticles. A model is proposed regarding the formation of the new nanocomposite. The conductivity of these biodegradable films is comparable to those of the current inorganic Lithium micro batteries. This new chitosan-Au-Li nanocomposite has potential applications in the field of Lithium micro batteries.

  12. Silica in situ enhanced PVA/chitosan biodegradable films for food packages.

    Science.gov (United States)

    Yu, Zhen; Li, Baoqiang; Chu, Jiayu; Zhang, Peifeng

    2018-03-15

    Non-degradable plastic food packages threaten the security of environment. The cost-effective and biodegradable polymer films with good mechanical properties and low permeability are very important for food packages. Among of biodegradable polymers, PVA/chitosan (CS) biodegradable films have attracted considerable attention because of feasible film forming ability. However, PVA/CS biodegradable films suffered from poor mechanical properties. To improve mechanical properties of PVA/CS biodegradable films, we developed SiO 2 in situ to enhance PVA/CS biodegradable films via hydrolysis of sodium metasilicate in presence of PVA and chitosan solution. The tensile strength of PVA/CS biodegradable films was improved 45% when 0.6 wt.% SiO 2 was incorporated into the films. Weight loss of PVA/CS biodegradable films was 60% after 30 days in the soil. The permeability of oxygen and moisture of PVA/CS biodegradable films was reduced by 25.6% and 10.2%, respectively. SiO 2 in situ enhanced PVA/CS biodegradable films possessed not only excellent mechanical properties, but also barrier of oxygen and water for food packages to extend the perseveration time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biobased and biodegradable polymer nanocomposites

    Science.gov (United States)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  14. CLASSIFICATION OF BIODEGRADABLE POLYMERS

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2015-01-01

    Full Text Available The executed investigations have made it possible to ascertain that a morphological structure of starch granules mainly determine technological peculiarities of starch isolation from raw material, its modification and its later use. Morphological structure of starch granules primarily depends on type of plant starch-containing raw material which has been used for its isolation. Class of raw material exerts a strong impact on the shape and size of the granules. Linear “light” amylose chains and “heavy” amylopectin branch chains form a starch granule ultrastructure. X-ray research has proved that starch granules are characterized by presence of interlacing amorphous and crystalline regions. In this case polymer orientation using stretching of the obtained end product influences on its physical and mechanical  indices which are increasing due to polymer orientation. For the purpose of packaging orientation of polymer films can solve such important problems as significant improvement of operational properties, creation of  thermosetting film materials, improvement of qualitative indices of the recycled film.Results of the conducted research have proved the fact that it is necessary to make changes in technology in order to increase biological degradability of the recycled packaging made from polymers and improve physical and mechanical indices. In this regard film production technology presupposes usage of such substances as stark and others which are characterized by rather large presence of branch chains of molecules and interlacing amorphous and crystalline regions. Such approach makes it possible to obtain after-use package which is strong and quickly degradable by micro-organisms.

  15. Electrospun biodegradable polymers loaded with bactericide agents

    Directory of Open Access Journals (Sweden)

    Ramaz Katsarava

    2016-03-01

    Full Text Available Development of materials with an antimicrobial activity is fundamental for different sectors, including medicine and health care, water and air treatment, and food packaging. Electrospinning is a versatile and economic technique that allows the incorporation of different natural, industrial, and clinical agents into a wide variety of polymers and blends in the form of micro/nanofibers. Furthermore, the technique is versatile since different constructs (e.g. those derived from single electrospinning, co-electrospinning, coaxial electrospinning, and miniemulsion electrospinning can be obtained to influence the ability to load agents with different characteristics and stability and to modify the release behaviour. Furthermore, antimicrobial agents can be loaded during the electrospinning process or by a subsequent coating process. In order to the mitigate burst release effect, it is possible to encapsulate the selected drug into inorganic nanotubes and nanoparticles, as well as in organic cyclodextrine polysaccharides. In the same way, processes that involve covalent linkage of bactericide agents during surface treatment of electrospun samples may also be considered. The present review is focused on more recent works concerning the electrospinning of antimicrobial polymers. These include chitosan and common biodegradable polymers with activity caused by the specific load of agents such as metal and metal oxide particles, quaternary ammonium compounds, hydantoin compounds, antibiotics, common organic bactericides, and bacteriophages.

  16. A model for simultaneous crystallisation and biodegradation of biodegradable polymers.

    Science.gov (United States)

    Han, Xiaoxiao; Pan, Jingzhe

    2009-01-01

    This paper completes the model of biodegradation for biodegradable polymers that was previously developed by Wang et al. (Wang Y, Pan J, Han X, Sinka, Ding L. A phenomenological model for the degradation of biodegradable polymers. Biomaterials 2008;29:3393-401). Crystallisation during biodegradation was not considered in the previous work which is the topic of the current paper. For many commonly used biodegradable polymers, there is a strong interplay between crystallisation and hydrolysis reaction during biodegradation - the chain cleavage caused by the hydrolysis reaction provides an extra mobility for the polymer chains to crystallise and the resulting crystalline phase becomes more resistant to further hydrolysis reaction. This paper presents a complete theory to describe this interplay. The fundamental equations in the Avrami's theory for crystallisation are modified and coupled to the diffusion-reaction equations that were developed in our previous work. The mathematical equations are then applied to three biodegradable polymers for which long term degradation data are available in the literature. It is shown that the model can capture the behavior of the major biodegradable polymers very well.

  17. Engineered biosynthesis of biodegradable polymers.

    Science.gov (United States)

    Jambunathan, Pooja; Zhang, Kechun

    2016-08-01

    Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.

  18. Control of colloidal CaCO3 suspension by using biodegradable polymers during fabrication

    Directory of Open Access Journals (Sweden)

    Nemany Abdelhamid Nemany Hanafy

    2015-03-01

    The aim of this work was to investigate the synthesis process of CaCO3 particles in different experimental conditions: calcium carbonate was produced in presence and in absence of water and with addition of appropriate polymers. In particular, chitosan (CHI and poly acrylic acid (PAA were chosen as biodegradable polymers whereas PSS and PAH were chosen as non-biodegradable polymers. Shape and diameter of particles were investigated by using transmission and scanning electron microscopy, elemental composition was inferred by energy dispersive X-ray analyses whereas their charges were explored by using zeta potential.

  19. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; MA, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  20. Biodegradable polymers derived from amino acids.

    Science.gov (United States)

    Khan, Wahid; Muthupandian, Saravanan; Farah, Shady; Kumar, Neeraj; Domb, Abraham J

    2011-12-08

    In the past three decades, the use of polymeric materials has increased dramatically for biomedical applications. Many α-amino acids derived biodegradable polymers have also been intensely developed with the main goal to obtain bio-mimicking functional biomaterials. Polymers derived from α-amino acids may offer many advantages, as these polymers: (a) can be modified further to introduce new functions such as imaging, molecular targeting and drugs can be conjugated chemically to these polymers, (b) can improve on better biological properties like cell migration, adhesion and biodegradability, (c) can improve on mechanical and thermal properties and (d) their degradation products are expected to be non-toxic and readily metabolized/excreted from the body. This manuscript focuses on biodegradable polymers derived from natural amino acids, their synthesis, biocompatibility and biomedical applications. It is observed that polymers derived from α-amino acids constitute a promising family of biodegradable materials. These provide innovative multifunctional polymers possessing amino acid side groups with biological activity and with innumerous potential applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Biodegradation of Moringa oleifera's polymer blends.

    Science.gov (United States)

    Finzi-Quintão, Cristiane Medina; Novack, Kátia Monteiro; Bernardes-Silva, Ana Cláudia; Silva, Thais D; Moreira, Lucas E S; Braga, Luiza E M

    2017-11-10

    Vegetable oils are used as a base for the synthesis of polymers and monomers with structures similar to that of petroleum, as plasticizers for conventional polymers and biodegrading additives. The Moringa oleifera oil was extracted from seeds and polymerized after being submitted to 16 h of microwave irradiation without catalysers. This polymer was characterized and the efficiency of the oil polymerization was verified by the reduction of double bonds and the increase of molecular weight up to 50,000 g mol -1 . Films produced by a mixture of low-density polyethylene (LDPE) with poly(butylene adipate-co-terephthalate)/poly(lactic acid) (PBAT/PLA) present low tensile resistance and low biodegradation behaviour. In order to improve those properties, the Moringa polymer (PMO) was mixed with LDPE and PBAT/PLA in specific mass concentrations. The films produced with this mixture were characterized and submitted to biodegradation analysis. The PMO behaves as a compatibilizer by improving thermal properties, reducing the crystalline phase and improving the biodegradation behaviour. The biodegradation improved up to five times in comparison to conventional polymers and it restores the mechanical properties.

  2. Formulation of Saudi Propolis into Biodegradable Chitosan Chips for Vital Pulpotomy.

    Science.gov (United States)

    Balata, Gihan F; Abdelhady, Mohamed I S; Mahmoud, Ghada M; Matar, Moustafa A; Abd El-Latif, Amani N

    2018-01-01

    Propolis has been widely used to treat oral cavity disorders, such as endodontal and periodontal diseases and microbial infections. The study aimed at the formulation of commercial Saudi propolis into biodegradable chitosan chips and evaluation of its effectiveness as a pulpotomy agent. The standardization of 80% ethanolic propolis extract was performed regarding its total phenolic content, total flavonoid content, quantitative estimation of main polyphenolic constituents and antioxidant activity. Chitosan chips containing propolis extract were prepared by the solvent/ casting method. The investigated variables were % of chitosan polymer (2, 2.5 and 3%), % of plasticizer (1, 5 and 10%) and incorporation of different concentrations of hydroxypropyl methylcellulose (5, 10 and 20% of polymer weight). The chips were characterized for weight and thickness uniformity, content uniformity, pH, percentage moisture loss, swelling index, tensile strength and in vitro propolis release. The optimal propolis chip formulation was further investigated in dogs regarding the short term response of primary dental pulp to propolis chips compared with the most commonly used formocresol preparation. The prepared films were flexible and demonstrated satisfactory physicochemical characteristics. The optimal formulation showed an initial release of about 41.7% of the loaded propolis followed by a sustained release extended up to 7 days. The kinetics study demonstrated that propolis release was controlled by Fick´s diffusion. The optimal propolis chip formulation resulted in less pulpal inflammation compared to formocresol, and produced hard tissue formation in all specimens. Formulation of commercial Saudi propolis as a biodegradable chitosan chip is an effective alternative to the commercially available chemical agents for the treatment of vital pulpotomy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  4. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  5. Biodegradable Shape Memory Polymers in Medicine.

    Science.gov (United States)

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-11-01

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biodegradable Poly(polyol sebacate) Polymers

    OpenAIRE

    Bruggeman, Joost P.; de Bruin, Berend-Jan; Bettinger, Christopher J.; Langer, Robert

    2008-01-01

    We have developed a family of synthetic biodegradable polymers that are composed of structural units endogenous to the human metabolism, designated poly(polyol sebacates) (PPS) polymers. Material properties of PPS polymers can be tuned by altering the polyol monomer and reacting stiochiometric ratio of sebacic acid. These thermoset networks exhibited tensile Young’s moduli ranging from 0.37 ± 0.08 to 378 ± 33 MPa with maximum elongations at break from 10.90 ± 1.37 to 205.16 ± 55.76%, and glas...

  7. Nanocomposites with biodegradable polymers synthesis properties and future perspectives

    CERN Document Server

    2011-01-01

    Polymers are used in practically every facet of daily life. Most polymers come from fossil fuels and are not biodegradable, causing long-term environmental hazards. Biodegradable polymers provide an alternative class of materials. Composites of such polymers have high potential within a wide spectrum of applications.

  8. Biodegradable Poly(polyol sebacate) Polymers

    Science.gov (United States)

    Bruggeman, Joost P.; de Bruin, Berend-Jan; Bettinger, Christopher J.; Langer, Robert

    2010-01-01

    We have developed a family of synthetic biodegradable polymers that are composed of structural units endogenous to the human metabolism, designated poly(polyol sebacates) (PPS) polymers. Material properties of PPS polymers can be tuned by altering the polyol monomer and reacting stiochiometric ratio of sebacic acid. These thermoset networks exhibited tensile Young’s moduli ranging from 0.37 ± 0.08 to 378 ± 33 MPa with maximum elongations at break from 10.90 ± 1.37 to 205.16 ± 55.76%, and glass-transition temperatures ranged from ~7 to 46 °C. In vitro degradation under physiological conditions was slower than in vivo degradation rates observed for some PPS polymers. PPS polymers demonstrated similar in vitro and in vivo biocompatibility compared to poly(L-lactic-co-glycolic acid) (PLGA). PMID:18824260

  9. Biodegradable polymers in Quebec; Les polymeres biodegradables au Quebec

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Poly-hydroxy-alkanoates (PHA) are natural polymers made from renewable resources and are easily recyclable, hydrolyzable and biodegradable. Thanks to genetic technologies, PHA can be synthesized from plants or bacteria and can be used in various domains ranging from the manufacturing of packing materials to medical applications. Moreover, their properties make them good substitutes of equivalent petroleum-derived compounds. This report makes a status of Quebec's research work on PHAs and presents the three main research centers in which such studies are carried out: the biotechnology research institute, the Mc Gill university and the Polytechnique school of Montreal. (J.S.)

  10. Physical Properties and Antibacterial Efficacy of Biodegradable Chitosan Films

    OpenAIRE

    中島, 照夫

    2009-01-01

    [Synopsis] Chitin, chitosan and quaternary chitosan films were prepared, and the physical properties and the antibacterial activities of chitosan and quaternary chitosan films were evaluated. The tensile strength of chitin films was 30~40% lower than that of chitosan films, but the crystallinity of chitin film was much higher than that of chitosan films. The crystallinity and orientation of crystallites were hardly affected by the four kinds of solvent chosen to cast chitosan films, but a de...

  11. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    Science.gov (United States)

    Hu, Yu-Lan; Qi, Wang; Han, Feng; Shao, Jian-Zhong; Gao, Jian-Qing

    2011-01-01

    Background Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier. Methods Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control. Results Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles. Conclusion Our results add new insights into the potential toxicity of nanoparticles produced by biodegradable materials, and may help us to understand better the nanotoxicity of drug delivery carriers. PMID:22267920

  12. Mucosal delivery of vaccines: role of mucoadhesive/biodegradable polymers.

    Science.gov (United States)

    Garg, Neeraj K; Mangal, Sharad; Khambete, Hemant; Sharma, Pradeep K; Tyagi, Rajeev K

    2010-06-01

    Majority of infectious microorganism make their gateway to the host through mucosal surfaces, such as gastrointestinal tract, nasal and vaginal tract. Mucosal immune response structured as sIgA can effectively prevent the attachment and invasion of the microorganism from mucosal surface and thereby serves as an efficient tool against infectious disease. There has been an increased demand for the development of novel vaccine that leads to the induction of immune response in systemic circulation as well as at mucosal surfaces against infectious disease. Mucosal delivery of vaccine provides basis for induction of both mucosal as well as systemic immune responses against the infectious organisms. However, a variety of factors such as mucociliary clearance, presence of deteriorating enzymes, pH extremes (GIT), low permeation and metabolic degradation limit the mucosal delivery of vaccine. Numerous strategies have been explored in the meadow of mucosal vaccination for the purpose of efficient antigen delivery through mucosal route(s). Polymeric carrier(s) such as nanoparticles and microparticles loaded with the antigen can serve as the basis for creation of important formulations for improved vaccine. Biodegradable and mucoadhesive polymeric carrier(s) seems to be most promising candidate for mucosal vaccine delivery. Several polymers from natural and synthetic origin, such as polylactide-co-glycolide, chitosan, alginate, carbopol, gelatin etc., have been explored for the efficient mucosal vaccine delivery and significant results have been obtained. This review outlines the polymers used in mucosal vaccine delivery with special reference to mucoadhesive/biodegradable polymers. This article also covers the recent patent granted in the field on polymeric carrier mediated mucosal vaccination.

  13. Green Chemistry: Effect of Microwave Irradiationon Synthesis of Chitosan for Biomedical Grade Applications of Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Amri Setyawati

    2016-10-01

    Full Text Available Microwave assisted chitosan synthesis as biodegradable material for biomedical application has been done. The purpose of this research is to synthesis of chitosan with high DD and low molecular weight using microwave energy, the study of reaction conditions include parameters of power and reaction time. Chitosan was prepared by deacetylation of chitin with 60% NaOH solution. Conventional method has been done by reflux for 90minutes, resulting chitosan with DD of 79.5%, 72.6% yields and molecular weight 6051 g/mol. Green chemistry method using microwave radiation at 800 Watts for 5 minutes has produced chitosan with highest DD, yield and molecular weight of 86%, 75% and 3797 g/mole respectively. Synthesis of Chitosan by microwave radiation method can save 10x electrical energy for the reaction, also rapidly and effectively to produce chitosan with low molecular weight compared to conventional methods

  14. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  15. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  16. Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System

    Science.gov (United States)

    Espíndola-González, Adolfo; Martínez-Hernández, Ana Laura; Fernández-Escobar, Francisco; Castaño, Victor Manuel; Brostow, Witold; Datashvili, Tea; Velasco-Santos, Carlos

    2011-01-01

    Chitosan is an amino polysaccharide found in nature, which is biodegradable, nontoxic and biocompatible. It has versatile features and can be used in a variety of applications including films, packaging, and also in medical surgery. Recently a possibility to diversify chitosan properties has emerged by combining it with synthetic materials to produce novel natural-synthetic hybrid polymers. We have studied structural and thermophysical properties of chitosan + starch + poly(ethylene terephthalate) (Ch + S + PET) fibers developed via electrospinning. Properties of these hybrids polymers are compared with extant chitosan containing hybrids synthesized by electrospinning. Molecular interactions and orientation in the fibers are analyzed by infrared and Raman spectroscopies respectively, morphology by scanning electron microscopy and thermophysical properties by thermogravimetric analysis and differential scanning calorimetry. Addition of PET to Ch + S systems results in improved thermal stability at elevated temperatures. PMID:21673930

  17. Development of aliphatic biodegradable photoluminescent polymers.

    Science.gov (United States)

    Yang, Jian; Zhang, Yi; Gautam, Santosh; Liu, Li; Dey, Jagannath; Chen, Wei; Mason, Ralph P; Serrano, Carlos A; Schug, Kevin A; Tang, Liping

    2009-06-23

    None of the current biodegradable polymers can function as both implant materials and fluorescent imaging probes. The objective of this study was to develop aliphatic biodegradable photoluminescent polymers (BPLPs) and their associated cross-linked variants (CBPLPs) for biomedical applications. BPLPs are degradable oligomers synthesized from biocompatible monomers including citric acid, aliphatic diols, and various amino acids via a convenient and cost-effective polycondensation reaction. BPLPs can be further cross-linked into elastomeric cross-linked polymers, CBPLPs. We have shown representatively that BPLP-cysteine (BPLP-Cys) and BPLP-serine (BPLP-Ser) offer advantages over the traditional fluorescent organic dyes and quantum dots because of their preliminarily demonstrated cytocompatibility in vitro, minimal chronic inflammatory responses in vivo, controlled degradability and high quantum yields (up to 62.33%), tunable fluorescence emission (up to 725 nm), and photostability. The tensile strength of CBPLP-Cys film ranged from 3.25 +/- 0.13 MPa to 6.5 +/- 0.8 MPa and the initial Modulus was in a range of 3.34 +/- 0.15 MPa to 7.02 +/- 1.40 MPa. Elastic CBPLP-Cys could be elongated up to 240 +/- 36%. The compressive modulus of BPLP-Cys (0.6) (1:1:0.6 OD:CA:Cys) porous scaffold was 39.60 +/- 5.90 KPa confirming the soft nature of the scaffolds. BPLPs also possess great processability for micro/nano-fabrication. We demonstrate the feasibility of using BPLP-Ser nanoparticles ("biodegradable quantum dots") for in vitro cellular labeling and noninvasive in vivo imaging of tissue engineering scaffolds. The development of BPLPs and CBPLPs represents a new direction in developing fluorescent biomaterials and could impact tissue engineering, drug delivery, bioimaging.

  18. Biodegradable Polymers in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Leon E. Govaert

    2009-07-01

    Full Text Available The use ofdegradable polymers in medicine largely started around the mid 20th century with their initial use as in vivo resorbing sutures. Thorough knowledge on this topic as been gained since then and the potential applications for these polymers were, and still are, rapidly expanding. After improving the properties of lactic acid-based polymers, these were no longer studied only from a scientific point of view, but also for their use in bone surgery in the 1990s. Unfortunately, after implanting these polymers, different foreign body reactions ranging from the presence of white blood cells to sterile sinuses with resorption of the original tissue were observed. This led to the misconception that degradable polymers would, in all cases, lead to inflammation and/or osteolysis at the implantation site. Nowadays, we have accumulated substantial knowledge on the issue of biocompatibility of biodegradable polymers and are able to tailor these polymers for specific applications and thereby strongly reduce the occurrence of adverse tissue reactions. However, the major issue of biofunctionality, when mechanical adaptation is taken into account, has hitherto been largely unrecognized. A thorough understanding of how to improve the biofunctionality, comprising biomechanical stability, but also visualization and sterilization of the material, together with the avoidance of fibrotic tissue formation and foreign body reactions, may greatly enhance the applicability and safety of degradable polymers in a wide area of tissue engineering applications. This review will address our current understanding of these biofunctionality factors, and will subsequently discuss the pitfalls remaining and potential solutions to solve these problems.

  19. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds.

    Science.gov (United States)

    Gossla, Elke; Tonndorf, Robert; Bernhardt, Anne; Kirsten, Martin; Hund, Rolf-Dieter; Aibibu, Dilibar; Cherif, Chokri; Gelinsky, Michael

    2016-10-15

    Electrostatic flocking - a common textile technology which has been applied in industry for decades - is based on the deposition of short polymer fibres in a parallel aligned fashion on flat or curved substrates, covered with a layer of a suitable adhesive. Due to their highly anisotropic properties the resulting velvet-like structures can be utilised as scaffolds for tissue engineering applications in which the space between the fibres can be defined as pores. In the present study we have developed a fully resorbable compression elastic flock scaffold from a single material system based on chitosan. The fibres and the resulting scaffolds were analysed concerning their structural and mechanical properties and the biocompatibility was tested in vitro. The tensile strength and Young's modulus of the chitosan fibres were analysed as a function of the applied sterilisation technique (ethanol, supercritical carbon dioxide, γ-irradiation and autoclaving). All sterilisation methods decreased the Young's modulus (from 14GPa to 6-12GPa). The tensile strength was decreased after all treatments - except after the autoclaving of chitosan fibres submerged in water. Compressive strength of the highly porous flock scaffolds was 18±6kPa with a elastic modulus in the range of 50-100kPa. The flocked scaffolds did not show any cytotoxic effect during indirect or direct culture of human mesenchymal stem cells or the sarcoma osteogenic cell line Saos-2. Furthermore cell adhesion and proliferation of both cell types could be observed. This is the first demonstration of a fully biodegradable scaffold manufactured by electrostatic flocking. Most tissues possess anisotropic fibrous structures. In contrast, most of the commonly used scaffolds have an isotropic morphology. By utilising the textile technology of electrostatic flocking, highly porous and clearly anisotropic scaffolds can be manufactured. Flocking leads to parallel aligned short fibres, glued on the surface of a substrate

  20. Synthetic biodegradable functional polymers for tissue engineering: a brief review.

    Science.gov (United States)

    BaoLin, Guo; Ma, Peter X

    2014-04-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix (ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.

  1. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    Directory of Open Access Journals (Sweden)

    Hu YL

    2011-12-01

    Full Text Available Yu-Lan Hu1, Wang Qi1, Feng Han2, Jian-Zhong Shao3, Jian-Qing Gao11Institute of Pharmaceutics, College of Pharmaceutical Sciences, 2Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, 3College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, People's Republic of ChinaBackground: Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier.Methods: Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control.Results: Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles.Conclusion: Our results add new insights into the potential toxicity of nanoparticles produced by

  2. Critical evaluation of biodegradable polymers used in nanodrugs

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  3. Critical evaluation of biodegradable polymers used in nanodrugs.

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed.

  4. Partial Discharge Degradation of Several Biodegradable Polymers

    Science.gov (United States)

    Fuse, Norikazu; Fujita, Shinjiro; Hirai, Naoshi; Tanaka, Toshikatsu; Kozako, Masahiro; Kohtoh, Masanori; Okabe, Shigemitsu; Ohki, Yoshimichi

    Partial discharge (PD) resistance was examined by applying a constant voltage for four kinds of biodegradable polymers, i.e. poly-L-lactic acid (PLLA), polyethylene terephthalate succinate (PETS), poly ε-caprolactone butylene succinate (PCL-BS), and polybutylene succinate (PBS), and the results were compared with those of low density polyethylene (LDPE) and crosslinked low density polyethylene (XLPE). The PD resistance is determined by the erosion depth and the surface roughness caused by PDs, and is ranked as LDPE ≅ XLPE > PLLA ≅ PETS > PBS > PCL-BS. This means that the sample with a lower permittivity has better PD resistance. Furthermore, observations of the sample surface by a polarization microscope and a laser confocal one reveal that crystalline regions with spherulites are more resistant to PDs than amorphous regions. Therefore, good PD resistance can be achieved by the sample with a high crystallinity and a low permittivity.

  5. Biodegradable and biocompatible polymers for tissue engineering application: a review.

    Science.gov (United States)

    Asghari, Fatemeh; Samiei, Mohammad; Adibkia, Khosro; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-03-01

    Since so many years ago, tissue damages that are caused owing to various reasons attract scientists' attention to find a practical way to treat. In this regard, many studies were conducted. Nano scientists also suggested some ways and the newest one is called tissue engineering. They use biodegradable polymers in order to replace damaged structures in tissues to make it practical. Biodegradable polymers are dominant scaffolding materials in tissue engineering field. In this review, we explained about biodegradable polymers and their application as scaffolds.

  6. Chitosan and Its Derivatives as Highly Efficient Polymer Ligands

    OpenAIRE

    Alexander Pestov; Svetlana Bratskaya

    2016-01-01

    The polyfunctional nature of chitosan enables its application as a polymer ligand not only for the recovery, separation, and concentration of metal ions, but for the fabrication of a wide spectrum of functional materials. Although unmodified chitosan itself is the unique cationic polysaccharide with very good complexing properties toward numerous metal ions, its sorption capacity and selectivity can be sufficiently increased and turned via chemical modification to meet requirements of the spe...

  7. Alternating-current electrophoretic adhesion of biodegradable hydrogel utilizing intermediate polymers.

    Science.gov (United States)

    Asoh, Taka-Aki; Kawai, Wataru; Kikuchi, Akihiko

    2014-11-01

    The adhesion of anionic charged biodegradable hydrogels each other utilizing oppositely charged water-soluble polymers as a binder has been achieved by applying alternating-current (AC) electric fields. The two gelatin based dextran sulfate gels (DS gels) were molecularly sutured together by AC electrophoretic adhesion when cationic charged quaternary ammonium chitosan (TMC) was applied between and held in contact with the two DS gels. The adhesive strength of the gels increased with increasing periodicity when a square wave was applied. Hydrogel constructs composed of DS microgels were prepared simply by AC electrophoretic adhesion utilizing intermediate TMC. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Thiolated Chitosans: Novel Polymers for Mucoadhesive Drug Delivery

    African Journals Online (AJOL)

    acetylglucosamine units. The polymer has valuable properties as a biomaterial because it is considered to be biocompatible, biodegradable and non-toxic. The purpose of this review article is to provide detailed information about thiolated ...

  9. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in

  10. Toward biodegradable nanogel star polymers via organocatalytic ROP.

    Science.gov (United States)

    Appel, Eric A; Lee, Victor Y; Nguyen, Timothy T; McNeil, Melanie; Nederberg, Frederik; Hedrick, James L; Swope, William C; Rice, Jullia E; Miller, Robert D; Sly, Joseph

    2012-06-21

    Organocatalytic ring opening polymerization (OROP) is used to effect the rapid, scalable, room temperature formation of size-controlled, highly uniform, polyvalent, nanogel star polymer nanoparticles of biodegradable composition.

  11. Computational analysis for biodegradation of exogenously depolymerizable polymer

    Science.gov (United States)

    Watanabe, M.; Kawai, F.

    2018-03-01

    This study shows that microbial growth and decay in a biodegradation process of exogenously depolymerizable polymer are controlled by consumption of monomer units. Experimental outcomes for residual polymer were incorporated in inverse analysis for a degradation rate. The Gauss-Newton method was applied to an inverse problem for two parameter values associated with the microbial population. A biodegradation process of polyethylene glycol was analyzed numerically, and numerical outcomes were obtained.

  12. DNA polyplexes formed using PEGylated biodegradable hyperbranched polymers.

    Science.gov (United States)

    Tao, Lei; Chou, William C; Tan, Beng H; Davis, Thomas P

    2010-06-11

    A novel PEGylated biodegradable hyperbranched PEG-b-PDMAEMA has been synthesized. The low toxicity, small molecular weight PDMAEMA chains were crosslinked using a biodegradable disulfide-based dimethacrylate (DSDMA) agent to yield higher molecular weight hyperbranched polymers. PEG chains were linked onto the polymer surface, masking the positive charge (as shown by Zeta potential measurements) and reducing the toxicity of the polymer. The hyperbranched structures were also cleaved under reducing conditions and analyzed, confirming the expected component structures. The hyperbranched polymer was mixed with DNA and efficient binding was shown to occur through electrostatic interactions. The hyperbranched structures could be reduced easily, generating lower toxicity oligomer chains.

  13. Physical characterization of biodegradable films based on chitosan, polyvinyl alcohol and Opuntia mucilage

    Science.gov (United States)

    This study aimed to develop and characterize biodegradable films containing mucilage, chitosan and polyvinyl alcohol (PVA) in different concentrations. The films were prepared by casting on glass plates using glycerol as plasticizer. Mechanical properties, water vapor and oxygen barrier, as well as ...

  14. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  15. An entropy spring model for the Young's modulus change of biodegradable polymers during biodegradation.

    Science.gov (United States)

    Wang, Ying; Han, Xiaoxiao; Pan, Jingzhe; Sinka, Csaba

    2010-01-01

    This paper presents a model for the change in Young's modulus of biodegradable polymers due to hydrolysis cleavage of the polymer chains. The model is based on the entropy spring theory for amorphous polymers. It is assumed that isolated polymer chain cleavage and very short polymer chains do not affect the entropy change in a linear biodegradable polymer during its deformation. It is then possible to relate the Young's modulus to the average molecular weight in a computer simulated hydrolysis process of polymer chain sessions. The experimental data obtained by Tsuji [Tsuji, H., 2002. Autocatalytic hydrolysis of amorphous-made polylactides: Effects of L-lactide content, tacticity, and enantiomeric polymer blending. Polymers 43, 1789-1796] for poly(L-lactic acid) and poly(D-lactic acid) are examined using the model. It is shown that the model can provide a common thread through Tsuji's experimental data. A further numerical case study demonstrates that the Young's modulus obtained using very thin samples, such as those obtained by Tsuji, cannot be directly used to calculate the load carried by a device made of the same polymer but of various thicknesses. This is because the Young's modulus varies significantly in a biodegradable device due to the heterogeneous nature of the hydrolysis reaction. The governing equations for biodegradation and the relation between the Young's modulus and average molecular weight can be combined to calculate the load transfer from a degrading device to a healing bone.

  16. Ethanolic extract of propolis for biodegradable films packaging enhanced with chitosan

    Science.gov (United States)

    Ismail, M. I.; Roslan, A.; Saari, N. S.; Hashim, K. H.; Kalamullah, M. R.

    2017-09-01

    The use of industrial organic waste which are chitosan and propolis as materials for the development of biodegradable and active packaging is economical and environmentally appealing. Processing of propolis-chitosan film can minimize waste, and produce low-cost added value biopolymer packaging films for targeted applications. This aims of this research is to develop and characterize a biodegradable films by incorporating chitosan with propolis extract to enhance the functional properties for potential use as active food packaging. The film's moisture content, solubility and antimicrobial activity increase due to increasing volume of propolis extract which are 0 ml, 1.2 ml and 2.4 ml of propolis extract. Propolis-chitosan film with 2.4 ml of propolis extract is more soluble in water compared to propolis-chitosan film with 0 ml of propolis extract and 1.2 ml of propolis extract. The higher the volume of the propolis extract used, the higher the solubility of film in the water. The moisture content also will increase when higher volume of propolis extract used. Characterization of moisture content, solubility and antimicrobial activities revealed the benefits of adding propolis extract into chitosan films and the potential of using the developed film as active food packaging.

  17. Gene silencing activity of siRNA polyplexes based on biodegradable polymers.

    Science.gov (United States)

    Varkouhi, Amir K; Lammers, Twan; Schiffelers, Raymond M; van Steenbergen, Mies J; Hennink, Wim E; Storm, Gert

    2011-04-01

    Cationic polymers are used as non-viral vectors for nucleic acid delivery. In this study, two biodegradable cationic polymers were evaluated for the purpose of siRNA delivery: pHPMA-MPPM (poly((2-hydroxypropyl) methacrylamide 1-methyl-2-piperidine methanol)) and TMC (O-methyl-free N,N,N-trimethylated chitosan). The silencing activity and the cellular cytotoxicity of polyplexes based on these biodegradable polymers were compared with those based on non-biodegradable pDMAEMA (poly(2-dimethylamino)ethyl methacrylate) and PEI (polyethylenimine) and with the regularly used lipidic transfection agent Lipofectamine. To promote endosomal escape, either the endosomolytic peptide diINF-7 was added to the formulations or photochemical internalization (PCI) was applied. Incubation of H1299 human lung cancer cells expressing firefly luciferase with polyplexes based on pHPMA-MPPM and TMC showed 30-40% silencing efficiency. This silencing activity was equal to or better than that obtained with the standard transfectants. Under all experimental conditions tested, the cytotoxicity of the biodegradable polymers was low. The application of PCI, as well as the addition of the diINF-7 peptide to the formulations increased their silencing activity up to 70-80%. This demonstrates that pHPMA-MPPM- and TMC-based polyplexes benefit substantially from endosomal escape enhancement. Importantly, the polyplexes retained their silencing activity in the presence of serum, and they showed low cytotoxicity. These biodegradable vectors are therefore attractive systems for further in vivo evaluations. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Polyethylene Modification as Biodegradable Composite Polymer for Packing Materials

    International Nuclear Information System (INIS)

    Deswita; Aloma KK; Sudirman; Indra Gunawan

    2008-01-01

    The synthesis of biodegradable polymer using blending method has been done. The aim of this research is to synthesize kinds of biodegradable composite polymer materials which could be applied in many kinds of requirements such as environmental friendly packaging and degradable. In this paper, the synthetic of biodegradable composite polymer was performed by adding biodegradable filler to the synthetic polymer using blending method. In this experiment Low Linier Density Polyethylene (LLDPE), High Density Polyethylene (HDPE) and filler of tapioca were used. The variation of tapioca meal composition were 50 in weight percent, 55 in weight percent, 60 in weight percent, 65 in weight percent, 70 in weight percent and 75 in weight percent. The characterization was done by means of thermal test, microstructure test, biodegradable and mechanical test. The result showed that the mechanical properties of the materials decreased with increasing composition of tapioca but did not show significant change to the polymer composite materials. For burrying time inside the ground of 8 weeks, all specimens based on polymer LLDPE for all composition of tapioca filler were degraded inside the ground, where as for all specimens based on polymer HDPE with all composition of tapioca filler did not show any degradation. (author)

  19. Design, development and optimization of oral colon targeted drug delivery system of azathioprine using biodegradable polymers.

    Science.gov (United States)

    Nath, Bipul; Nath, L K

    2013-01-01

    The present study was aimed at designing a microflora triggered colon targeted drug delivery system (MCDDS) based on swellable polysaccharide, Sterculia gum in combination with biodegradable polymers with a view to specifically deliver azathioprine in the colonic region for the treatment of IBD with reduced systemic toxicity. The microflora degradation properties of Sterculia gum was investigated in rat caecal phosphate buffer medium. The polysaccharide tablet cores were coated to different film thicknesses with blends of Eudragit RLPO and chitosan and overcoated with Eudragit L00 to provide acid and intestinal resistance. Swelling and drug release studies were carried out in simulated gastric fluid, SGF (pH 1.2), simulated intestinal fluid, SIF (pH 6.8) and simulated colonic fluid, SCF (pH 7.4 under anaerobic environment), respectively. Drug release study in SCF revealed that swelling force of the Sterculia gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudargit coating in microflora activated environment. The degradation of chitosan was the rate-limiting factor for drug release in the colon. Drug release from the MCDDS was directly proportional to the concentration of the pore former (chitosan), but inversely related to the Eudragit RLPO coating thickness.

  20. Acceleration of biodegradation by ultraviolet femtosecond laser irradiation to biodegradable polymer

    Science.gov (United States)

    Shibata, Akimichi; Yada, Shuhei; Kondo, Naonari; Terakawa, Mitsuhiro

    2017-02-01

    Biodegradability is a key property of biodegradable polymers for tissue scaffold applications. Among the methods to control biodegradability, laser processing is a simple technique, which enables the alteration of biodegradability even after molding. Since ultrafast laser processing realizes precise processing of biodegradable polymer with less heat affected zone, ultrafast laser processing has the potential to fabricate tissue scaffolds and to control its biodegradability. In this study, we investigate the effect of femtosecond laser wavelength on the biodegradability of PLGA. We evaluated the biodegradability of PLGA irradiated with femtosecond laser pulses at the wavelength of 800, 400, 266 nm by the measurement of the change in mass of PLGA during water immersion. The results of degradation tests indicate that PLGA irradiated with the shorter wavelength show faster water absorption as well as rapid mass decrease. Since the results of X-ray photoelectron spectroscopy analysis indicate that the chemical bonds of PLGA irradiated with the shorter wavelength are dissociated more significantly, the acceleration of the biodegradation could be attributable to the decrease in molecular weight by chemical bond breaking.

  1. Polymer brush-functionalized chitosan hydrogels as antifouling implant coatings

    Czech Academy of Sciences Publication Activity Database

    Buzzacchera, I.; Vorobii, M.; Kostina, N. Yu.; de los Santos Pereira, Andres; Riedel, Tomáš; Bruns, M.; Ogieglo, W.; Möller, M.; Wilson, C. J.; Rodriguez-Emmenegger, C.

    2017-01-01

    Roč. 18, č. 6 (2017), s. 1983-1992 ISSN 1525-7797 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:61389013 Keywords : chitosan * hemocompatible * polymer brushes Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 5.246, year: 2016

  2. Design and Fabrication of Biodegradable Porous Chitosan/Gelatin/Tricalcium Phosphate Hybrid Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Y. Mohammadi

    2007-08-01

    Full Text Available In this study, based on a biomimetic approach, novel 3D biodegradable porous hybrid scaffolds consisting of chitosan, gelatin, and tricalcium phosphate were developed for bone and cartilage tissue engineering. Macroporous chitosan/ gelatin/β-TCP scaffolds were prepared through the process of freeze-gelation/solid-liquid phase separation. The results showed that the prepared scaffolds are highly porous, with porosities larger than 80%, and have interconnected pores. Biocompatibility studies were successfully performed by in vitro and in vivo assays. Moreover, the attachment, migration, and proliferation of chondrocytes on these unique temporary scaffolds were examined to determine their potentials in tissue engineering applications.

  3. Biodegradable polymers for electrospinning: towards biomedical applications.

    Science.gov (United States)

    Kai, Dan; Liow, Sing Shy; Loh, Xian Jun

    2014-12-01

    Electrospinning has received much attention recently due to the growing interest in nano-technologies and the unique material properties. This review focuses on recent progress in applying electrospinning technique in production of biodegradable nanofibers to the emerging field of biomedical. It first introduces the basic theory and parameters of nanofibers fabrication, with focus on factors affecting the morphology and fiber diameter of biodegradable nanofibers. Next, commonly electrospun biodegradable nanofibers are discussed, and the comparison of the degradation rate of nanoscale materials with macroscale materials are highlighted. The article also assesses the recent advancement of biodegradable nanofibers in different biomedical applications, including tissue engineering, drug delivery, biosensor and immunoassay. Future perspectives of biodegradable nanofibers are discussed in the last section, which emphasizes on the innovation and development in electrospinning of hydrogels nanofibers, pore size control and scale-up productions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. X-ray diffraction studies of chitosan acetate-based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Ibrahim, Z.A.; Abdul Kariem Arof

    2002-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. This paper presents the x-ray diffraction patterns of chitosan acetate, plasticised chitosan acetate and plasticised-salted chitosan acetate films. The results show that the chitosan acetate based polymer electrolyte films are not completely amorphous but it is partially crystalline. X-ray diffraction study also confirms the occurrence of the complexation between chitosan and the salt and the interaction between salt and plasticizer. The salt-chitosan interaction is clearly justified by infrared spectroscopy. (Author)

  5. Molecularly Imprinted Polymers Chitosan-Glutaraldehyde for Monosodium Glutamate

    Science.gov (United States)

    Mulyasuryani, Ani; Haryanto, Edi; Sulistyarti, Hermin; Rumhayati, Barlah

    2018-01-01

    Chitosan has been used as a functional monomer in the synthesis of molecularly imprinted polymers (MIP) for monosodium glutamate (MSG). MIP is made from a mixture of 5 g chitosan, 50 mg glutaraldehyde and 2 g MSG, MIP is formed as flakes and beads. MIPs are identified by the FTIR spectrum, SEM image and their adsorption capabilities. MIP flakes and beads have no structural differences if they are based on FTIR or SEM spectra, but MIP adsorption capacity of beads higher than flakes. Adsorption capacity of MIP flakes is 548 mg/g and MIP beads 627 mg/g.

  6. Characterization of chitosan composites with synthetic polymers and inorganic additives.

    Science.gov (United States)

    Lewandowska, Katarzyna

    2015-11-01

    In the present study, the results from thermogravimetric analysis (TGA), contact angle measurements, tensile tests, scanning electron microscopy (SEM) and atomic force microscopy (AFM) of polymer composites containing chitosan (Ch) and montmorillonite (MMT) with and without poly(vinyl alcohol) (PVA) are presented. Measurements of the contact angles for diiodomethane (D) and glycerol (G) on the surfaces of chitosan films, Ch/MMT and Ch/PVA/MMT, were made and surface free energies were calculated. It was found that the wettability of the chitosan/MMT or Ch/PVA/MMT composite films decreased relative to the wettability of chitosan. The microstructure of unmodified polymers and their composites, as observed by SEM and AFM, showed particles that are relatively well dispersed in the polymer matrix. The TGA thermograms and mass loss percentages at different decomposition temperatures showed that the thermal stability of the binary composite slightly decreases upon the addition of PVA. The film mechanical properties such as tensile strength, Young's modulus and tensile strain at break depend on the composition and varied non-uniformly. Both composites possessed a tensile strength and Young's modulus of 27.6-94.3MPa and 1.5-3.5GPa, respectively. The addition of PVA to the composite led to a reduction in tensile strength by approximately 40%. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  8. Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Flávia Debiagi

    2011-10-01

    Full Text Available Biodegradable foams made from cassava starch, polyvinyl alcohol (PVA, sugarcane bagasse fibers and chitosan were obtained by extrusion. The composites were prepared with formulations determined by a constrained ternary mixtures experimental design, using as variables: (X1 starch / PVA (100 - 70%, (X2 chitosan (0 - 2% and (X3 fibers from sugar cane (0 - 28%. The effects of varying proportions of these three components on foam properties were studied, as well the relationship between their properties and foam microstructure. The addition of starch/PVA in high proportions increased the expansion index and mechanical resistance of studied foams. Fibers addition improved the expansion and mechanical properties of the foams. There was a trend of red and yellow colors when the composites were produced with the highest proportions of fibers and chitosan, respectively. All the formulations were resistant to moisture content increase until 75% relative humidity of storage.

  9. Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2

    Directory of Open Access Journals (Sweden)

    Nils Poth

    2015-01-01

    Full Text Available A simple method for the functionalization of a common implant material (Ti6Al4V with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2, using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.

  10. Development and characterization of biodegradable chitosan films containing two essential oils.

    Science.gov (United States)

    Shen, Zhu; Kamdem, Donatien Pascal

    2015-03-01

    Active biodegradable films from chitosan containing 10% to 30% w/w of citronella essential oil (CEO) and cedarwood oil (CWO) were developed by casting and solvent-evaporation method, and their physical, mechanical and thermal properties were investigated. Possible interactions between the chitosan chains and the essential oils were confirmed using Fourier-transform infrared spectroscopy (FTIR). Various amounts of CEO or CWO had significant effects on the films' mechanical properties, with the exception of 10% of CEO, which did not significantly affect the tensile strength of the films. The incorporation of the two tested oils provoked a remarkable reduction in the water-vapor permeability properties, with a decrease of about 63% when 30% CEO was added in chitosan films. Thermogravimetric analysis showed that degradation temperatures of the films containing CEO and CWO improved only slightly in comparison to control films without essential oils. FTIR spectra analysis provided some insights on the possible interactions between chitosan and the two essential oils used. This study suggests that active films can be developed by including CEO and CWO in a chitosan matrix. Such films can provide new formulation options for packaging industries in developing active packaging with potential food-technology applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A review on introduction and applications of starch and its biodegradable polymers

    OpenAIRE

    Shanta Pokhrel

    2015-01-01

    Biodegradable polymers play a very important role in plastic engineering by replacing non biodegradable, non renewable petrol based polymers. Starch is a renewable, biodegradable, low cost natural polymer with high availability. Natural polymers can be blended with synthetic polymers to improve their properties significantly. This article reviews advance in starch and starch based blends and presents their numerous potential applications. Therefore, this review helps to understand the importa...

  12. Biodegradation of Synthetic Polymers by Composting and Fungal Treatment

    Czech Academy of Sciences Publication Activity Database

    Šašek, Václav; Vitásek, J.; Chromcová, D.; Prokopová, I.; Brožek, J.; Náhlík, J.

    2006-01-01

    Roč. 51, č. 5 (2006), s. 425-430 ISSN 0015-5632 R&D Projects: GA ČR GA203/03/0508 Institutional research plan: CEZ:AV0Z50200510 Keywords : biodegradation * composting * synthetic polymers Subject RIV: EE - Microbiology, Virology Impact factor: 0.963, year: 2006

  13. The use of biodegradable polymers for the stabilization of copper ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. The use of biodegradable polymers for the stabilization of copper nanoparticles synthesized by chemical reduction method. ALI OLAD MAHNAZ ... However, agglomerated copper nanoparticles were obtained bythis chemical reduction method. Hence, the ...

  14. Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers.

    Science.gov (United States)

    Guo, Wenbin; Tao, Jian; Yang, Chao; Song, Cunjiang; Geng, Weitao; Li, Qiang; Wang, Yuanyuan; Kong, Meimei; Wang, Shufang

    2012-01-01

    Environmentally Degradable Parameter ((Ed)K) is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs). In this study, a concept (Ed)K was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated (Ed)K was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the (Ed)K values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of (Ed)K for each material. The (Ed)K values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the (Ed)K was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment.

  15. Introduction of Environmentally Degradable Parameters to Evaluate the Biodegradability of Biodegradable Polymers

    Science.gov (United States)

    Yang, Chao; Song, Cunjiang; Geng, Weitao; Li, Qiang; Wang, Yuanyuan; Kong, Meimei; Wang, Shufang

    2012-01-01

    Environmentally Degradable Parameter (Ed K) is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs). In this study, a concept Ed K was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated Ed K was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the Ed K values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of Ed K for each material. The Ed K values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the Ed K was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment. PMID:22675455

  16. Microencapsulation of mildronate in biodegradable and non-biodegradable polymers.

    Science.gov (United States)

    Loca, Dagnija; Sevostjanovs, Eduards; Makrecka, Marina; Zharkova-Malkova, Olga; Berzina-Cimdina, Liga; Tupureina, Velta; Sokolova, Marina

    2014-01-01

    The extremely high hygroscopicity (solubility in water ≥2 g/ml) of the pharmaceutical preparation mildronate defines specific requirements to both packaging material and storage conditions. To overcome the above mentioned inconveniences, microencapsulated form of mildronate was developed using polystyrene (PS) and poly (lactic acid) (PLA) as watertight coating materials. Drug/polymer interaction as well as influence of the microencapsulation process variables on microparticle properties was studied in detail. Water-in-oil-in-water double emulsion technique was adapted and applied for the preparation of PS/mildronate microparticles with total drug load up to 77 %wt and PLA/mildronate microparticles with total drug load up to 80 %wt. The repeatability of the microencapsulation process was ±4% and the encapsulation efficiency of the active ingredient reached 60 %wt. The drug release kinetics from the obtained microparticles was evaluated and it was found that drug release in vivo could be successfully sustained if polystyrene matrix has been used.

  17. Novel biodegradable polymers for local growth factor delivery.

    Science.gov (United States)

    Amsden, Brian

    2015-11-01

    Growth factors represent an important therapeutic protein drug class, and would benefit significantly from formulations that provide sustained, local release to realize their full clinical potential. Biodegradable polymer-based delivery platforms have been examined to achieve this end; however, formulations based on conventional polymers have yet to yield a clinical product. This review examines new polymer biomaterials that have been developed for growth factor delivery. The dosage forms are discussed in terms of their mechanism of release, the stability of the released growth factor, their method of preparation, and their potential for clinical translation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O...... absorbance spectrum of the films is nearly identical with that of the native polymer, the average molecular weight of the films is a little less than half that of the starting material. Potential strategies for defeating this mass change are discussed....

  19. Enhancing blood compatibility of biodegradable polymers by introducing sulfobetaine.

    Science.gov (United States)

    Cao, Jun; Chen, Yuan-Wei; Wang, Xin; Luo, Xiang-Lin

    2011-06-15

    Novel biodegradable polycaprolactone containing N,N'-bis (2-hydroxyethyl) methylamine ammonium propane sulfonate (PCL-APS) was synthesized by ring-opening polymerization. The resulting polymers were characterized by nuclear magnetic resonance spectrum (NMR), Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatograph (GPC), differential scanning calorimetry (DSC), and water contact angle (WCA). These measurements showed that the APS unit was introduced into polymers. The hydrolysis of PCL-APS was evaluated by soaking the polymer membranes in a pH = 3.20 acid solution. The rate of weight loss was increased with the content of APS increasing in polymer. The compatibility of polymers were evaluated by platelet adhesion, hemolytic test, and activated partial thromboplastic time (APTT) and prothrombin time (PT) experiments. Results showed that adhered platelets deceased after introducing sulfobetaine as compared to the control PCL, little hemolysis took place on PCL-APS, and APTT of PCL-APS polymers was prolonged than that of control PCL. Therefore, polycaprolactone containing sulfobetaine is a promising biodegradable polymer with good blood compatibility. Copyright © 2011 Wiley Periodicals, Inc.

  20. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.

    Science.gov (United States)

    Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y

    2011-03-01

    The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Effect of Material Parameters on Mechanical Properties of Biodegradable Polymers/Nanofibrillated Cellulose (NFC) Nano Composites

    Science.gov (United States)

    Yottha Srithep; Ronald Sabo; Craig Clemons; Lih-Sheng Turng; Srikanth Pilla; Jun Peng

    2012-01-01

    Using natural cellulosic fibers as fillers for biodegradable polymers can result in fully biodegradable composites. Biodegradable composites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. The objective of this study was to determine how various additives (i.e.,...

  2. Determination of the Optimum Conditions for Production of Chitosan Nanoparticles

    OpenAIRE

    A. Dustgani; E. Vasheghani-Farahani; M. Imani

    2007-01-01

    Bioedegradable nanoparticles are intensively investigated for their potential applications in drug delivery systems. Being a biocompatible and biodegradable polymer, chitosan holds great promise for use in this area. This investigation was concerned with determination and optimization of the effective parameters involved in the production of chitosan nanoparticles using ionic gelation method. Studied variables were concentration and pH of the chitosan solution, the ratio of chitosan to sodium...

  3. Biodegradable thermogelling polymers: working towards clinical applications.

    Science.gov (United States)

    Dou, Qing Qing; Liow, Sing Shy; Ye, Enyi; Lakshminarayanan, Rajamani; Loh, Xian Jun

    2014-07-01

    As society ages, aging medical problems such as organ damage or failure among senior citizens increases, raising the demand for organ repair technologies. Synthetic materials have been developed and applied in various parts of human body to meet the biomedical needs. Hydrogels, in particular, have found extensive applications as wound healing, drug delivery and controlled release, and scaffold materials in the human body. The development of the next generation of soft hydrogel biomaterials focuses on facile synthetic methods, efficacy of treatment, and tunable multi-functionalities for applications. Supramolecular 3D entities are highly attractive materials for biomedical application. They are assembled by modules via various non-covalent bonds (hydrogen bonds, p-p stacking and/or van der Waals interactions). Biodegradable thermogels are a class of such supramolecular assembled materials. Their use as soft biomaterials and their related applications are described in this Review. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan

    OpenAIRE

    Grégorio Crini; Nadia Morin-Crini; Nicolas Fatin-Rouge; Sébastien Déon; Patrick Fievet

    2017-01-01

    Polymer assisted ultrafiltration (PAUF) is a relatively new process in water and wastewater treatment and the subject of an increasing number of papers in the field of membrane science. Among the commercial polymers used, poly(ethyleneimine) and poly(acrylic acid) are the most popular to complex numerous metal ions. Recently, there is an increasing interest in the use of chitosan, a natural linear polymer, as chelating agent for complexing metals. Chitosan has a high potential in wastewater t...

  5. Protection of marble surfaces by using biodegradable polymers as coating agent

    OpenAIRE

    Ocak, Yılmaz; Sofuoğlu, Aysun; Tıhmınlıoğlu, Funda; Böke, Hasan

    2009-01-01

    Biodegradable polymers have been replaced over the synthetic polymers in many applications due to their good properties such as reversibility and biodegradability. Therefore they allow new treatment on the surface of the material to be protected and they fulfil the principles generally accepted by the International Conservation Community of Historic Monuments and Buildings. In this study, the efficiency of four different biodegradable polymers as protective coatings on marble-SO2 reaction was...

  6. Radiation processing of biodegradable polymer and hydrogel

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2000-01-01

    Poly(ε-caprolactone), PCL, (melting temperature 60degC) was gamma-irradiated in the solid state at 30 to 55degC, the molten state, and the supercooled state(irradiation at 45 to 55degC after melting, 80degC) under vacuum to improve its heat resistance. Irradiation of PCL in the supercooled state led to the highest gel content and this polymer has high heat resistance. On the other hand, relatively smaller doses such as 15 and 30 kGy were effective to improve processability of PCL by formation of branch structure during irradiation. It was found that carboxymethylcellulose with relatively high degree of substitution led crosslinking at high concentration in aqueous solution such as 10% by irradiation. (author)

  7. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  8. The Recent Developments in Biobased Polymers toward General and Engineering Applications : Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed

    NARCIS (Netherlands)

    Nakajima, Hajime; Dijkstra, Peter; Loos, Katja

    2017-01-01

    The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering

  9. The use of biodegradable polymers in design of cellular scaffolds.

    Science.gov (United States)

    Orłowska, Joanna; Kurczewska, Urszula; Derwińska, Katarzyna; Orłowski, Wojciech; Orszulak-Michalak, Daria

    2015-03-05

    The objective of this work was to demonstrate the usage of biodegradable polymers, made of calcium alginate and dibutyrylchitin, in the design of cellular scaffolds having broad application in reconstructive therapy (dentistry, orthopedics). To visualize cells seeded on calcium alginate and dibutyrylchitin polymers DAPI staining of fibroblasts nuclei was used. The cytotoxicity of the materials and microscopic evaluation of the viability of seeded cells was tested with a PKH 67 fluorescent dye. To assess the cellular toxicity the proliferation of fibroblasts adjacent to the tested polymers was examined. The vitability of cells seeded on polymers was also evaluated by measuring the fluorescence intensity of calcein which binds only to live cells. The conducted experiments (DAPI and PKH 67 staining) show that the tested materials have a positive influence on cell adhesion crucial for wound healing - fibroblasts. The self-made dibutyrylchitin dressing do not cause the reduction of viability of cells seeded on them. The in vitro study illustrated the interactions between the tested materials, constructed of calcium alginate or dibutyrylchitin and mouse fibroblasts and proved their usefulness in the design of cellular scaffolds. Examined polymers turned out to be of great interest and promise for cellular scaffolds design.

  10. The use of biodegradable polymers in design of cellular scaffolds

    Directory of Open Access Journals (Sweden)

    Joanna Orłowska

    2015-03-01

    Full Text Available The objective of this work was to demonstrate the usage of biodegradable polymers, made of calcium alginate and dibutyrylchitin, in the design of cellular scaffolds having broad application in reconstructive therapy (dentistry, orthopedics. To visualize cells seeded on calcium alginate and dibutyrylchitin polymers DAPI staining of fibroblasts nuclei was used. The cytotoxicity of the materials and microscopic evaluation of the viability of seeded cells was tested with a PKH 67 fluorescent dye. To assess the cellular toxicity the proliferation of fibroblasts adjacent to the tested polymers was examined. The vitability of cells seeded on polymers was also evaluated by measuring the fluorescence intensity of calcein which binds only to live cells. The conducted experiments (DAPI and PKH 67 staining show that the tested materials have a positive influence on cell adhesion crucial for wound healing – fibroblasts. The self-made dibutyrylchitin dressing do not cause the reduction of viability of cells seeded on them. The in vitro study illustrated the interactions between the tested materials, constructed of calcium alginate or dibutyrylchitin and mouse fibroblasts and proved their usefulness in the design of cellular scaffolds. Examined polymers turned out to be of great interest and promise for cellular scaffolds design.

  11. Characterization of biodegradable polymers irradiated with swift heavy ions

    International Nuclear Information System (INIS)

    Salguero, N.G.; Grosso, M.F. del; Durán, H.; Peruzzo, P.J.; Amalvy, J.I.

    2012-01-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  12. Characterization of biodegradable polymers irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Salguero, N.G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Duran, H. [CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Gerencia de Desarrollo Tecnologico y Proyectos Especiales, CNEA, Av. Gral. Paz 1499 (B1650KNA) San Mart Latin-Small-Letter-Dotless-I Acute-Accent n, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, H. Yrigoyen 3100, CP 1650, San Martin, UNSAM (Argentina); Peruzzo, P.J. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Amalvy, J.I. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Facultad de Ingenieria, Universidad Nacional de La Plata, Calle 116 y 48 (B1900TAG), La Plata (Argentina); Departamento de Ingenieria Quimica, Facultad Regional La Plata, Universidad Tecnologica Nacional, 60 y 124 (1900), La Plata (Argentina); and others

    2012-02-15

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  13. Characterization of biodegradable polymers irradiated with swift heavy ions

    Science.gov (United States)

    Salguero, N. G.; del Grosso, M. F.; Durán, H.; Peruzzo, P. J.; Amalvy, J. I.; Arbeitman, C. R.; García Bermúdez, G.

    2012-02-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly- L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  14. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives

    International Nuclear Information System (INIS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Yoshii, Fumio; Kume, Tamikazu

    2001-01-01

    The effects of high-energy radiation on ethers of cellulose: carboxymethyl-, hydroxypropyl- and hydroxyethylcellulose have been investigated. Polymers were irradiated in solid state and aqueous solution at various concentrations. Degree of substitution (DS), the concentration in the solution and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid and in diluted solution resulted in their degradation. A novel hydrogels of such natural polymers were synthesized, without using any additives, by irradiation at high concentration. It was found that high DS of CMC promoted crosslinking and, for all of the ethers, the gel formation occurred easier for more concentrated solutions. Paste-like form of the initial material, when water plasticised the bulk of polymer mass, along with the high dose rate and preventing oxygen accessibility to the sample during irradiation were favorable for hydrogel preparation. Up to 95% of gel fraction was obtained from 50 and 60% CMC solutions irradiated by gamma rays or by a beam of accelerated electrons (EB). The other polymers were more sensitive to the dose rate and formed gels with higher gel fraction while processed by EB. Moreover, polymers (except CMC) treated by gamma rays were susceptible to degradation after application of a dose over 50-100 kGy. The presence of oxygen in the system during irradiation limited a gel content and was prone to easier degradation of already formed gel. Produced hydrogels swelled markedly by absorption when paced in the solvent. Crosslinked polymers showed susceptibility to degradation by cellulase enzyme and by the action of microorganisms in compost or under natural conditions in soil thus could be included into the group of biodegradable materials. (author)

  15. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wach, Radoslaw A.; Mitomo, Hiroshi [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effects of high-energy radiation on ethers of cellulose: carboxymethyl-, hydroxypropyl- and hydroxyethylcellulose have been investigated. Polymers were irradiated in solid state and aqueous solution at various concentrations. Degree of substitution (DS), the concentration in the solution and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid and in diluted solution resulted in their degradation. A novel hydrogels of such natural polymers were synthesized, without using any additives, by irradiation at high concentration. It was found that high DS of CMC promoted crosslinking and, for all of the ethers, the gel formation occurred easier for more concentrated solutions. Paste-like form of the initial material, when water plasticised the bulk of polymer mass, along with the high dose rate and preventing oxygen accessibility to the sample during irradiation were favorable for hydrogel preparation. Up to 95% of gel fraction was obtained from 50 and 60% CMC solutions irradiated by gamma rays or by a beam of accelerated electrons (EB). The other polymers were more sensitive to the dose rate and formed gels with higher gel fraction while processed by EB. Moreover, polymers (except CMC) treated by gamma rays were susceptible to degradation after application of a dose over 50-100 kGy. The presence of oxygen in the system during irradiation limited a gel content and was prone to easier degradation of already formed gel. Produced hydrogels swelled markedly by absorption when paced in the solvent. Crosslinked polymers showed susceptibility to degradation by cellulase enzyme and by the action of microorganisms in compost or under natural conditions in soil thus could be included into the group of biodegradable materials. (author)

  16. Implantable biodegradable sponges: effect of interpolymer complex formation of chitosan with gelatin on the release behavior of tramadol hydrochloride.

    Science.gov (United States)

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2007-01-01

    The effect of interpolymer complex formation between positively charged chitosan and negatively charged gelatin (Type B) on the release behavior of tramadol hydrochloride from biodegradable chitosan-gelatin sponges was studied. Mixed sponges were prepared by freeze-drying the cross-linked homogenous stable foams produced from chitosan and gelatin solutions where gelatin acts as a foam builder. Generation of stable foams was optimized where concentration, pH of gelatin solution, temperature, speed and duration of whipping process, and, chitosan-gelatin ratio drastically affect the properties and the stability of the produced foams. The prepared sponges were evaluated for their morphology, drug content, and microstructure using scanning electron microscopy, mechanical properties, uptake capacity, drug release profile, and their pharmacodynamic activity in terms of the analgesic effect after implantation in Wistar rats. It was revealed that whipping 7% (w/w) gelatin solution, of pH 5.5, for 15 min at 25 degrees C with a stirring speed of 1000 rpm was the optimum conditions for stable gelatin foam generation. Moreover, homogenous, uniform chitosan-gelatin foam with small air bubbles were produced by mixing 2.5% w/w chitosan solution with 7% w/w gelatin solution in 1:5 ratio. Indeed, polyionic complexation between chitosan and gelatin overcame the drawbacks of chitosan sponge mechanical properties where, pliable, soft, and compressible sponge with high fluid uptake capacity was produced at 25 degrees C and 65% relative humidity without any added plasticizer. Drug release studies showed a successful retardation of the incorporated drug where the t50% values of the dissolution profiles were 0.55, 3.03, and 4.73 hr for cross-linked gelatin, un-cross-linked chitosan-gelatin, and cross-linked chitosan-gelatin sponges, respectively. All the release experiments followed Higuchi's diffusion mechanism over 12 hr. The achieved drug prolongation was a result of a combined effect

  17. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed

    OpenAIRE

    Nakajima, Hajime; Dijkstra, Peter; Loos, Katja

    2017-01-01

    The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering applications. This expansion is driven by the remarkable progress in the processes for refining biomass feedstocks to produce biobased building blocks that allow biobased polymers to have more versati...

  18. Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly(acrylic acid).

    Science.gov (United States)

    Mohamed, Riham R; Elella, Mahmoud H Abu; Sabaa, Magdy W

    2017-05-01

    Physically crosslinked hydrogels resulted from interaction between N,N,N-trimethyl chitosan chloride (N-Quaternized Chitosan) (NQC) and poly(acrylic acid) (PAA) were synthesized in different weight ratios (3:1), (1:1) and (1:3) taking the following codes Q3P1, Q1P1 and Q1P3, respectively. Characterization of the mentioned hydrogels was done using several analysis tools including; FTIR, XRD, SEM, TGA, biodegradation in simulated body fluid (SBF) and cytotoxicity against HepG-2 liver cancer cells. FTIR results proved that the prepared hydrogels were formed via electrostatic and H-bonding interactions, while XRD patterns proved that the prepared hydrogels -irrespective to their ratios- were more crystalline than both matrices NQC and PAA. TGA results, on the other hand, revealed that Q1P3 hydrogel was the most thermally stable compared to the other two hydrogels (Q3P1 and Q1P1). Biodegradation tests in SBF proved that these hydrogels were more biodegradable than the native chitosan. Examination of the prepared hydrogels for their potency in heavy metal ions removal revealed that they adsorbed Fe (III) and Cd (II) ions more than chitosan, while they adsorbed Cr (III), Ni (II) and Cu (II) ions less than chitosan. Moreover, testing the prepared hydrogels as antibacterial agents towards several Gram positive and Gram negative bacteria revealed their higher antibacterial activity as compared with NQC when used alone. Evaluating the cytotoxic effect of these hydrogels on an in vitro human liver cancer cell model (HepG-2) showed their good cytotoxic activity towards HepG-2. Moreover, the inhibition rate increased with increasing the hydrogels concentration in the culture medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Imaging the intracellular degradation of biodegradable polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Barthel

    2014-10-01

    Full Text Available In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid (PLLA was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs. The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome, we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy.

  20. Micro fabrication of biodegradable polymer drug delivery devices

    DEFF Research Database (Denmark)

    Nagstrup, Johan

    . Furthermore, they are often degraded before they can be absorbed. The result is low bioavailability of the drugs. To overcome these challenges, better drug delivery systems need to be developed. Recently, micro systems have emerged as promising candidates to solve the challenges of poor solubility, low......The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium...... permeability and degradation. These systems are for the majority based on traditional materials used in micro technology, such as SU-8, silicon, poly(methyl methacrylate). The next step in developing these new drug delivery systems is to replace classical micro fabrication materials with biodegradable polymers...

  1. Sintered iron biodegradable materials modified by polymer coating

    International Nuclear Information System (INIS)

    Gorejova, R.; Markusova-Buckova, L.; Orinakova, R.

    2017-01-01

    Devices made from biodegradable materials become a promising alternative to a permanent orthopedic implants. Temporary scaffolds made from these materials can provide desirable results in tissue healing and gradually dissolve in vivo by corrosion processes. This work is dedicated to preparation of iron based metallic structures prepared by powder metallurgy which were modified by polyethyleneglycol (PEG) coatings in different concentration. Corrosion behaviour of the prepared samples was observed in the form of static corrosion and dynamic corrosion in Hank's solution. Results show that the rate of degradation of polymer coated samples was greater than rate of degradation of pure iron. The highest rate of degradation was observed in porous structure covered with PEG with a concentration of 10 wt. %. (authors)

  2. Biolimus-eluting biodegradable polymer-coated stent versus durable polymer-coated sirolimus-eluting stent in unselected patients receiving percutaneous coronary intervention (SORT OUT V)

    DEFF Research Database (Denmark)

    Christiansen, Evald Høj; Jensen, Lisette Okkels; Thayssen, Per

    2013-01-01

    Third-generation biodegradable polymer drug-eluting stents might reduce the risk of stent thrombosis compared with first-generation permanent polymer drug-eluting stents. We aimed to further investigate the effects of a biodegradable polymer biolimus-eluting stent compared with a durable polymer...

  3. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan.

    Science.gov (United States)

    Gupta, Umesh; Sharma, Saurabh; Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok K; Singh, Yuvraj; Chourasia, Manish K; Kumar, Vipin

    2017-05-01

    Taxanes have established and proven effectivity against different types of cancers; in particular breast cancers. However, the high hemolytic toxicity and hydrophobic nature of paclitaxel and docetaxel have always posed challenges to achieve safe and effective delivery. Use of bio-degradable materials with an added advantage of nanotechnology could possibly improve the condition so as to achieve better and safe delivery. In the present study paclitaxel loaded chitosan nanoparticles were formulated and optimized using simple w/o nanoemulsion technique. The observed average size, pdi, zeta potential, entrapment efficiency and drug loading for the optimized paclitaxel loaded chitosan nanoparticle formulation (PTX-CS-NP-10) was 226.7±0.70nm, 0.345±0.039, 37.4±0.77mV, 79.24±2.95% and 11.57±0.81%; respectively. Nanoparticles were characterized further for size by Transmission Electron Microscopy (TEM). In vitro release studies exhibited sustained release pattern and more than 60% release was observed within 24h. Enhanced in vitro anticancer activity was observed as a result of MTT assay against triple negative MDA-MB-231 breast cancer cell lines. The observed IC 50 values obtained for PTX-CS-NP-10 was 9.36±1.13μM and was almost 1.6 folds (psafe as observed for haemolytic toxicity which was almost 4 folds less (psafe nanoformulation of paclitaxel was developed, characterized and evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Implantable biodegradable polymers for radiosensitization of human glioma in vivo

    International Nuclear Information System (INIS)

    Williams, Jeffery; Dillehay, Larry E.; Sipos, Eric; Fahlman, Christian; Tabassi, Kevin; Williams, Jerry; Wharam, Moody; Brem, Henry

    1995-01-01

    Purpose: The potential of halogenated pyrimidines to radiosensitize human gliomas remains unrealized. Higher local delivery and lower systemic exposure may improve the therapeutic ratio. Synthetic, implantable, biodegradable polyanhydride polymers allow local, controlled, and sustained release of therapeutic agents. Their role in radiosensitization of tumors remains unexplored, however. Materials and Methods: In vitro: To measure release, increasing (10%, 30%, 50%) proportions of 5-iodo-2'-deoxyuridine (IUdR) in synthetic [(poly(bis(p-carboxyphenoxy)-propane) (PCPP):sebacic acid (SA) (PCPP:SA ratio 20:80)]polymers (ca. 10 mg; 1x1x3 mm) were incubated (1 ml PBS, 37 deg. C) and the supernatants serially assayed using HPLC. To measure modulation of release by a second, inert, co-loaded compound, 5-125-I-2'-deoxyuridine (125-IUdR) and increasing (10%, 30%, or 50%) proportions of D-glucose were combined in polymers, incubated in PBS, and the supernatants assayed. To test radiosensitization, cells (U251 human malignant glioma) were sequentially exposed to increasing (0, 0.1, 1.0, or 10 uM) concentrations of IUdR and increasing (0, 2.5, 5.0, or 10 Gy) doses of acute radiation. In vivo: To measure release, polymers bearing 125-IUdR were surgically placed in U251 xenografts (0.1 - 0.2 cc) growing in flanks of nude mice. The flanks bearing the tumors and polymers were reproducibly positioned over a collimated scintillation detector and counted. To measure radiosensitization, polymers bearing no (blank) or 50% unlabeled IUdR were placed in the tumor or contralateral flank. After three days tumors were acutely irradiated (500 cGy x 2 daily fractions). Results: In vitro: The initial rates of release of IUdR from polymers were high regardless of the percentage loading of IUdR, while the subsequent rates of release were proportionate to the percentage loading. The percentages of loaded IUdR recovered were 21.5, 23.3, and 18.7% in 6 h and 57.0, 73.5, and 92.4% after 11 days for 10

  5. JTEC monograph on biodegradable polymers and plastics in Japan: Research, development, and applications

    Science.gov (United States)

    Lenz, Robert W.

    1995-01-01

    A fact-finding team of American scientists and engineers visited Japan to assess the status of research and development and applications in biodegradable polymers. The visit was sponsored by the National Science Foundation and industry. In Japan, the team met with representatives of 31 universities, government ministries and institutes, companies, and associations. Japan's national program on biodegradable polymers and plastics evaluates new technologies, testing methods, and potential markets for biodegradables. The program is coordinated by the Biodegradable Plastics Society of Japan, which seeks to achieve world leadership in biodegradable polymer technology and identify commercial opportunities for exploiting this technology. The team saw no major new technology breakthroughs. Japanese scientists and engineers are focusing on natural polymers from renewable resources, synthetic polymers, and bacterially-produced polymers such as polyhydroxyalkanoates, poly(amino acids), and polysaccharides. The major polymers receiving attention are the Zeneca PHBV copolymers, Biopol(registered trademark), poly(lactic acid) from several sources, polycaprolactone, and the new synthetic polyester, Bionolle(registered trademark), from Showa High Polymer. In their present state of development, these polymers all have major deficiencies that inhibit their acceptance for large-scale applications.

  6. The SYNERGY biodegradable polymer everolimus eluting coronary stent: Porcine vascular compatibility and polymer safety study.

    Science.gov (United States)

    Wilson, Gregory J; Marks, Angela; Berg, Kimberly J; Eppihimer, Michael; Sushkova, Natalia; Hawley, Steve P; Robertson, Kimberly A; Knapp, David; Pennington, Douglas E; Chen, Yen-Lane; Foss, Aaron; Huibregtse, Barbara; Dawkins, Keith D

    2015-11-15

    SYNERGY is a novel platinum chromium alloy stent that delivers abluminal everolimus from an ultrathin poly-lactide-co-glycide (PLGA) biodegradable polymer. This study evaluated the in vivo degradation of the polymer coating, everolimus release time course, and vascular compatibility of the SYNERGY stent. SYNERGY stents were implanted in arteries of domestic swine. Devices were explanted at predetermined time points (up to 120 days) and the extent of PLGA coating or everolimus remaining on the stents was quantified. Everolimus levels in the arterial tissue were also evaluated. A pathological analysis on coronary arteries of single and overlapping stents was performed at time points between 5 and 270 days. PLGA bioabsorption began immediately after implantation, and drug release was essentially complete by 90 days; PLGA absorption was substantially complete by 120 days (>90% of polymer was absorbed) leaving a bare metal SYNERGY stent. Vascular response was similar among SYNERGY and control stents (bare metal, polymer-only, and 3× polymer-only). Mild increases in para-strut fibrin were seen for SYNERGY at an early time point with no significant differences in all other morphological and morphometric parameters through 270 days or endothelial function (eNOS immunostaining) at 90 or 180 days. Inflammation was predominantly minimal to mild for all device types. In a swine model, everolimus was released by 90 days and PLGA bioabsorption was complete shortly thereafter. The SYNERGY stent and its biodegradable polymer, even at a 3× safety margin, demonstrated vascular compatibility similar to bare metal stent controls. © 2015 Wiley Periodicals, Inc.

  7. Chitosan and its derivatives as promising drug delivery carriers

    CERN Document Server

    Prabaharan, M

    2012-01-01

    Chitosan, a natural based polymer obtained by alkaline deacetylation of chitin, is non-toxic, biocompatible, and biodegradable. These properties make chitosan a good candidate for the development of conventional and novel drug delivery systems. Recently, there has been a growing interest in the chemical modification of chitosan in order to improve its solubility and widen its applications. Chemical modification of chitosan is useful for the association of bioactive molecules to the polymer and controlling the drug release profile. Chemical modification will introduce desired properties and enlarge the field of the potential applications of chitosan with the choice of various types of side chains. In this monograph, recent studies on the various types of chitosan microspheres are discussed from the viewpoint of drug delivery applications. Moreover, different types of chitosan derivatives developed as controlled drug delivery carriers and their preparation methods are discussed in detail. The modifications disc...

  8. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  9. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  10. Boswellia gum resin/chitosan polymer composites: Controlled delivery vehicles for aceclofenac.

    Science.gov (United States)

    Jana, Sougata; Laha, Bibek; Maiti, Sabyasachi

    2015-01-01

    This study was undertaken to evaluate the effect of Boswellia gum resin on the properties of glutaraldehyde (GA) crosslinked chitosan polymer composites and their potential as oral delivery vehicles for a non-steroidal anti-inflammatory drug, aceclofenac. The incorporation of resinous material caused a significant improvement in drug entrapment efficiency (∼40%) of the polymer composites. Fourier transform infrared (FTIR) spectroscopic analysis confirmed the formation of chitosan-gum resin composites and did not show any evidence of drug-polymer chemical interaction. Field emission scanning electron microscopy (FE-SEM) suggested the formation of particulate polymer composites up to chitosan:gum resin mass ratio of 1:3. Only 8-17% drug was released into HCl solution (pH 1.2) in 2h. The drug release rate of polymer composites was faster in phosphate buffer solution (pH 6.8). The composites released ∼60-68% drug load in 7h. In same duration, the drug release rate suddenly boosted up to 92% as the concentration of gum resin in the composites was raised to 80%. The drug release mechanism deviated from non-Fickian to case-II type with increasing resin concentration in the composites. Hence, GA-treated Boswellia resin-chitosan composites could be considered as alternative vehicles for oral delivery of aceclofenac. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Release-Modulated Antioxidant Activity of a Composite Curcumin-Chitosan Polymer.

    Science.gov (United States)

    O'Toole, Martin G; Soucy, Patricia A; Chauhan, Rajat; Raju, Mandapati V Ramakrishnam; Patel, Dhruvina N; Nunn, Betty M; Keynton, Megan A; Ehringer, William D; Nantz, Michael H; Keynton, Robert S; Gobin, Andrea S

    2016-04-11

    Curcumin is known to have immense therapeutic potential but is hindered by poor solubility and rapid degradation in solution. To overcome these shortcomings, curcumin has been conjugated to chitosan through a pendant glutaric anhydride linker using amide bond coupling chemistry. The hybrid polymer has been characterized by UV-visible, fluorescence, and infrared spectroscopies as well as zeta potential measurements and SEM imaging. The conjugation reactivity was confirmed through gel permeation chromatography and quantification of unconjugated curcumin. An analogous reaction of curcumin with glucosamine, a small molecule analogue for chitosan, was performed and the purified product characterized by mass spectrometry, UV-visible, fluorescence, and infrared spectroscopies. Conjugation of curcumin to chitosan has greatly improved curcumin aqueous solubility and stability, with no significant curcumin degradation detected after one month in solution. The absorbance and fluorescence properties of curcumin are minimally perturbed (λmax shifts of 2 and 5 nm, respectively) by the conjugation reaction. This conjugation strategy required use of one out of two curcumin phenols (one of the main antioxidant functional groups) for covalent linkage to chitosan, thus temporarily attenuating its antioxidant capacity. Hydrolysis-based release of curcumin from the polymer, however, is accompanied by full restoration of curcumin's antioxidant potential. Antioxidant assays show that curcumin radical scavenging potential is reduced by 40% after conjugation, but that full antioxidant potential is restored upon hydrolytic release from chitosan. Release studies show that curcumin is released over 19 days from the polymer and maintains a concentration of 0.23 ± 0.12 μM curcumin/mg polymer/mL solution based on 1% curcumin loading on the polymer. Release studies in the presence of carbonic anhydrase, an enzyme with known phenolic esterase activity, show no significant difference from

  12. Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch

    Science.gov (United States)

    Agustin, Y. E.; Padmawijaya, K. S.

    2017-07-01

    Bioplastic is a biopolymer plastic that can be degraded easily by microorganisms so it can be used as alternative replaced commercial plastic. This research aims to study the effects of additive (glycerol and zinc oxide) addition in the characteristic of antimicrobial activity and biodegradability bioplastic from chitosan and Kepok banana peel starch. In this research, bioplastics were synthesized by chitosan as the backbone and antimicrobial, Kepok banana peel starch as filler, glycerol as plasticizer, also ZnO as an amplifier. Bioplastics were characterized their antimicrobial activity using agar diffusion method (zone inhibition assay) and biodegradability test using microbe (EM4). The result showed the optimum composition of bioplastic is kitosan 4 - 30% starch - 5 mL glycerol - 5% ZnO gives the good antimicrobial activity towards gram positive and gram negative bacteria, and this bioplastic will be degraded within an hour and 12 min. Thus, this bioplastics may have potential to be use for food packaging by having biodegradable properties and also inhibit bacterial growth.

  13. Chitosan as a Natural Polymer for Heterogeneous Catalysts Support: A Short Review on Its Applications

    Directory of Open Access Journals (Sweden)

    Mengshan Lee

    2015-11-01

    Full Text Available Chitosan, a bio-based polymer which has similar characteristics to those of cellulose, exhibits cationic behavior in acidic solutions and strong affinity for metals ions. Thus, it has received increased attention for the preparation of heterogeneous catalysts. Recent studies demonstrated that chitosan-based catalysts had high sorption capacities, chelating activities, stability and versatility, which could be potentially applied as green reactants in various scientific and engineering applications. This study intends to review the recent development of chitosan-based catalysts, particularly in the aspects of the main mechanisms for preparing the materials and their applications in environmental green chemistry. Studies on the preparation of catalyst nanoparticles/nanospheres supported on chitosan were also reviewed.

  14. Biodegradation of New Polymer Foundry Binders for the Example of the Composition Polyacrylic Acid/Starch

    Directory of Open Access Journals (Sweden)

    Beata Grabowska

    2011-04-01

    Full Text Available The investigations on the biodegradation process pathway of the new polymer binders for the example of water soluble compositionpolyacrylic acid/starch are presented in the hereby paper. Degradation was carried out in water environment and in a soil. Thedetermination of the total oxidation biodegradation in water environment was performed under laboratory conditions in accordance with the static water test system (Zahn-Wellens method, in which the mixture undergoing biodecomposition contained inorganic nutrient,activated sludge and the polymer composition, as the only carbon and energy source. The biodecomposition progress of the polymercomposition sample in water environment was estimated on the basis of the chemical oxygen demand (COD measurements and thedetermination the biodegradation degree, Rt, during the test. These investigations indicated that the composition polyacrylic acid/starchconstitutes the fully biodegradable material in water environment. The biodegradation degree Rt determined in the last 29th day of the test duration achieved 65%, which means that the investigated polymer composition can be considered to be fully biodegradable.During the 6 months biodegradation process of the cross-linked sample of the polymer composition in a garden soil several analysis ofsurface and structural changes, resulting from the sample decomposition, were performed. Those were: thermal analyses (TG-DSC,structural analyses (Raman spectroscopy and microscopic analyses (optical microscopy, AFM.

  15. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  16. Carbon recovery from wastewater through bioconversion into biodegradable polymers.

    Science.gov (United States)

    Valentino, Francesco; Morgan-Sagastume, Fernando; Campanari, Sabrina; Villano, Marianna; Werker, Alan; Majone, Mauro

    2017-07-25

    Polyhydroxyalkanoates (PHA) are biodegradable polyesters that can be produced in bioprocesses from renewable resources in contrast to fossil-based bio-recalcitrant polymers. Research efforts have been directed towards establishing technical feasibility in the use of mixed microbial cultures (MMC) for PHA production using residuals as feedstock, mainly consisting of industrial process effluent waters and wastewaters. In this context, PHA production can be integrated with waste and wastewater biological treatment, with concurrent benefits of resource recovery and sludge minimization. Over the past 15 years, much of the research on MMC PHA production has been performed at laboratory scale in three process elements as follows: (1) acidogenic fermentation to obtain a volatile fatty acid (VFA)-rich stream, (2) a dedicated biomass production yielding MMCs enriched with PHA-storing potential, and (3) a PHA accumulation step where (1) and (2) outputs are combined in a final biopolymer production bioprocess. This paper reviews the recent developments on MMC PHA production from synthetic and real wastewaters. The goals of the critical review are: a) to highlight the progress of the three-steps in MMC PHA production, and as well to recommend room for improvements, and b) to explore the ideas and developments of integration of PHA production within existing infrastructure of municipal and industrial wastewaters treatment. There has been much technical advancement of ideas and results in the MMC PHA rich biomass production. However, clear demonstration of production and recovery of the polymers within a context of product quality over an extended period of time, within an up-scalable commercially viable context of regional material supply, and with well-defined quality demands for specific intent of material use, is a hill that still needs to be climbed in order to truly spur on innovations for this field of research and development. Copyright © 2016 Elsevier B.V. All rights

  17. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  18. New biocomposites based on bioplastic flax fibers and biodegradable polymers.

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan

    2012-01-01

    A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  19. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rizzarelli, Paola, E-mail: paola.rizzarelli@cnr.it; Carroccio, Sabrina

    2014-01-15

    Graphical abstract: -- Highlights: •Recent trends in the structural characterization of biodegradable polymers by MALDI and ESI MS are discussed. •MALDI MS as a noteworthy tool to follow the synthetic polymerization route of biodegradable materials is evidenced. •Elucidation of degradation mechanisms by modern MS techniques is examined. •ESI MS and HPLC–ESI MS are highlighted as highly suitable methods for structural and quantitative analysis of water-soluble biodegradation products. •Novel MS methods developed ad hoc and new MALDI matrices for biodegradable polymers are reviewed. -- Abstract: In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization

  20. FTIR studies of chitosan acetate based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Arof, A.K.

    2003-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. As such, depending on the degree of deacetylation, the carbonyl, C=O-NHR band can be observed at ∼1670 cm -1 and the amine, NH 2 band at 1590 cm -1 . When lithium triflate is added to chitosan to form a film of chitosan acetate-salt complex, the bands assigned to chitosan in the complex and the spectrum as a whole shift to lower wavenumbers. The carbonyl band is observed to shift to as low as 1645 cm -1 and the amine band to as low as 1560 cm -1 . These indicate chitosan-salt interactions. Also present are the bands due to lithium triflate i.e. ∼761, 1033, 1182 and 1263 cm -1 . When chitosan and ethylene carbonate (EC) are dissolved in acetic acid to form a film of plasticized chitosan acetate, the bands in the infrared spectrum of the films do not show any significant shift indicating that EC does not interact with chitosan. EC-LiCF 3 SO 3 interactions are indicated by the shifting of the C-O bending band from 718 cm -1 in the spectrum of EC to 725 cm -1 in the EC-salt spectrum. The Li + -EC is also evident in the ring breathing region at 893 cm -1 in the pure EC spectrum. This band has shifted to 898 cm -1 in the EC-salt spectrum. C=O stretching in the doublet observed at 1774 and 1803 cm -1 in the spectrum of pure EC has shifted to 1777 and 1808 cm -1 in the EC-salt spectrum

  1. Sulfated chitin and chitosan as novel biomaterials.

    Science.gov (United States)

    Jayakumar, R; Nwe, N; Tokura, S; Tamura, H

    2007-02-20

    Chitin and chitosan are known to be natural polymers and they are non-toxic, biodegradable and biocompatible. Chemical modification of chitin and chitosan with sulfate to generate new bifunctional materials is of interest because the modification would not change the fundamental skeleton of chitin and chitosan, would keep the original physicochemical and biochemical properties and finally would bring new or improved properties. The sulfated chitin and chitosan have a variety of applications, such as, adsorbing metal ions, drug delivery systems, blood compatibility, and antibacterial field. The purpose of this review is to take a closer look about the different synthetic methods and potential applications of sulfated chitin and chitosan. Based on current research and existing products, some new and futuristic approaches in this context area are discussed in detail. From the studies reviewed, we concluded that sulfated chitin and chitosan are promising materials for biomedical applications.

  2. Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Giri

    2012-10-01

    Full Text Available Chitosan, a natural cationic polysaccharide, is prepared industrially by the hydrolysis of the aminoacetyl groups of chitin, a naturally available marine polymer. Chitosan is a non-toxic, biocompatible and biodegradable polymer and has attracted considerable interest in a wide range of biomedical and pharmaceutical applications including drug delivery, cosmetics, and tissue engineering. The primary hydroxyl and amine groups located on the backbone of chitosan are responsible for the reactivity of the polymer and also act as sites for chemical modification. However, chitosan has certain limitations for use in controlled drug delivery and tissue engineering. These limitations can be overcome by chemical modification. Thus, modified chitosan hydrogels have gained importance in current research on drug delivery and tissue engineering systems. This paper reviews the general properties of chitosan, various methods of modification, and applications of modified chitosan hydrogels.

  3. Modern mass spectrometry in the characterization and degradation of biodegradable polymers.

    Science.gov (United States)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-15

    In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid

  4. [Progress and prospect of synthetic biodegradable polymers for bone repair and reconstruction].

    Science.gov (United States)

    Zhao, Zenghui; Jiang, Dianming

    2010-03-01

    To review the latest researches of synthetic biodegradable polymers for bone repair and reconstruction, to predict the progress of bone substitute materials and bone tissue engineering scaffolds in future. The literature concerning synthetic biodegradable polymers as bone substitute materials or bone tissue engineering scaffolds was collected and discussed. Aliphatic polyester, polyanhydride, polyurethane and poly (amino acids) were the most extensively studied synthetic biodegradable polymers as bone substitutes and the scaffolds. Each polymer was of good biological safety and biocompatibility, and the degradation products were nontoxic to human body. The mechanical properties and degradation rate of the polymers could be adjusted by the type or number of the monomers and different synthetic methods. Therefore, the polymers with suitable mechanical strength and degradation rate could be produced according to the different requirements for bone grafting. Preliminary studies in vivo showed their favorable capacity for bone repair. The synthetic biodegradable polymers, especially the copolymers, composite materials and those carrying bone growth factors are expected to be the most promising and ideal biomaterials for bone repair and reconstruction.

  5. Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan

    Directory of Open Access Journals (Sweden)

    Grégorio Crini

    2017-05-01

    Full Text Available Polymer assisted ultrafiltration (PAUF is a relatively new process in water and wastewater treatment and the subject of an increasing number of papers in the field of membrane science. Among the commercial polymers used, poly(ethyleneimine and poly(acrylic acid are the most popular to complex numerous metal ions. Recently, there is an increasing interest in the use of chitosan, a natural linear polymer, as chelating agent for complexing metals. Chitosan has a high potential in wastewater treatment mainly due to its polyelectrolyte properties at acidic pH. The objectives of this review are to present the PAUF process and to highlight the advantages gained from the use of chitosan in the process of complexation–ultrafiltration. For this, a PAUF-based literature survey has been compiled and is discussed. From these data, chitosan, a biopolymer that is non-toxic to humans and the environment, is found to be effective in removing metal ions and exhibits high selectivity. It might be a promising polyelectrolyte for PAUF purposes.

  6. Effects of Ultraviolet Photon Irradiation on the Dielectric Properties of Biodegradable Polymers

    Science.gov (United States)

    Yamaguchi, Yuya; Uchibori, Nao; Ohki, Yoshimichi

    Three kinds of biodegradable polymers, poly-L-lactic acid (PLLA), polybutylene succinate (PBS), and polybutylene succinate adipate (PBSA), and low-density polyethylene (LDPE) as a reference were irradiated for 30 minutes by ultraviolet (UV) photons from a KrCl excimer lamp. It has become clear that the three biodegradable polymers are far more susceptible to UV photons than LDPE since they absorb UV photons very intensely in the vicinity of the irradiated surface. Space charge distribution profiles show that charge carriers are trapped near the irradiated surface. The conduction current increases by the UV-irradiation in all the biodegradable polymers. Instrumental analyses show that the samples were decomposed by photoinduced oxidation. Furthermore, the absorption spectra indicate the appearance of conjugated double bonds. Such structural changes induced seem to be responsible for the higher conductivity and the charge trapping.

  7. Development and characterization of biodegradable polymer blends - PHBV/PCL irradiated with gamma rays

    International Nuclear Information System (INIS)

    Rosario, F.; Casarin, S.A.; Agnelli, J.A.M.; Souza Junior, O.F. de

    2010-01-01

    This paper presents the results of a study that aimed to develop PHBV biodegradable polymer blends, in a major concentration with PCL, irradiate the pure polymers and blends in two doses of gamma radiation and to analyze the changes in chemical and mechanical properties. The blends used in this study were from natural biodegradable copolymer poly (hydroxybutyrate-valerate) (PHBV) and synthetic biodegradable polymer poly (caprolactone) (PCL 2201) with low molar mass (2,000 g/mol). Several samples were prepared in a co-rotating twin-screw extruder and afterwards, the tensile specimens were injected for the irradiation treatment with 50 kGy to 100 kGy doses and for the mechanical tests. The characterization of the samples before and after the irradiation treatments was performed through scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and mechanical tensile tests. (author)

  8. Sago Starch-Mixed Low-Density Polyethylene Biodegradable Polymer: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Md Enamul Hoque

    2013-01-01

    Full Text Available This research focuses on synthesis and characterization of sago starch-mixed LDPE biodegradable polymer. Firstly, the effect of variation of starch content on mechanical property (elongation at break and Young’s modulus and biodegradability of the polymer was studied. The LDPE was combined with 10%, 30%, 50%, and 70% of sago for this study. Then how the cross-linking with trimethylolpropane triacrylate (TMPTA and electron beam (EB irradiation influence the mechanical and thermal properties of the polymer was investigated. In the 2nd study, to avoid overwhelming of data LDPE polymer was incorporated with only 50% of starch. The starch content had direct influence on mechanical property and biodegradability of the polymer. The elongation at break decreased with increase of starch content, while Young’s modulus and mass loss (i.e., degradation were found to increase with increase of starch content. Increase of cross-linker (TMPTA and EB doses also resulted in increased Young’s modulus of the polymer. However, both cross-linking and EB irradiation processes rendered lowering of polymer’s melting temperature. In conclusion, starch content and modification processes play significant roles in controlling mechanical, thermal, and degradation properties of the starch-mixed LDPE synthetic polymer, thus providing the opportunity to modulate the polymer properties for tailored applications.

  9. Preparation and characterization of polymer nanocomposites based on chitosan and clay minerals

    International Nuclear Information System (INIS)

    Fiori, Ana Paula Santos de Melo; Gabiraba, Victor Parizio; Praxedes, Ana Paula Perdigao; Nunes, Marcelo Ramon da Silva; Balliano, Tatiane L.; Silva, Rosanny Christhinny da; Tonholo, Josealdo; Ribeiro, Adriana Santos

    2014-01-01

    In this work nanocomposites based on chitosan and different clays were prepared using polyethyleneglycol (PEG) as plasticizer. The samples obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA/DTG) and by mechanical characterization (tensile test) with the aim of investigating the interactions between chitosan and clay. The nanocomposite films prepared using sodium bentonite (Ben) showed an increase of 81.2% in the maximum tensile stress values and a decrease of 16.0% in the Young’s modulus when compared to the chitosan with PEG (QuiPEG) films, evidencing that the introduction of the clay into the polymer matrix provided a more flexible and resistant film, whose elongation at break was 93.6% higher than for the QuiPEG film. (author)

  10. Integrated transformations of plant biomass to valuable chemicals, biodegradable polymers and nanoporous carbons

    Science.gov (United States)

    Kuznetsov, B. N.; Chesnokov, N. V.; Taraban'ko, V. E.; Kuznetsova, S. A.; Petrov, A. V.

    2013-03-01

    Integrated transformations of wood biomass to valuable chemicals and materials are described. They include the main biomass components separation, the conversion of cellulose to glucose, levulinic acid, biodegradable polymers and lignin - to nanoporous carbons. For wood fractionation on pure cellulose and low molecular mass lignin the methods of catalytic oxidation and exploded autohydrolysis are used. The processes of acid-catalysed hydrolysis of cellulose to glucose and levulinic acid were optimized. New methods of biodegradable polymers synthesis from lactone of levulinic acid and nanoporous carbons from lignin were suggested.

  11. Preparation and protection of silver nanoparticles with chitosan derivative

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Cuc; Cao Van Du; Nguyen Cuu Khoa; Tran Ngoc Quyen

    2013-01-01

    In this paper, nano silver solution is prepared and stabilized by chitosan dihydroxyphenyl acetamide (CDHPA). Chitosan is a natural carbohydrate polymer deriving from chitin that has biodegradable, biocompatible, antibacterial and antifungal properties, so when conjugation of the polymer and silver nanoparticles could be expected to increase bactericidal features of the obtained product. The chemical and physical methods were used to characterize the chitosan derivative such as transmission spectrum (UV-Vis), IR spectrum, nuclear magnetic resonance (1H-NMR). Morphology of the obtained nano silver particles were observed by transmission electron microscopy (TEM). (author)

  12. Preparation and characterisation of biodegradable pollen-chitosan microcapsules and its application in heavy metal removal.

    Science.gov (United States)

    Sargın, İdris; Kaya, Murat; Arslan, Gulsin; Baran, Talat; Ceter, Talip

    2015-02-01

    Biosorbents have been widely used in heavy metal removal. New resources should be exploited to develop more efficient biosorbents. This study reports the preparation of three novel chitosan microcapsules from pollens of three common, wind-pollinated plants (Acer negundo, Cupressus sempervirens and Populus nigra). The microcapsules were characterized (Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis) and used in removal of heavy metal ions: Cd(II), Cr(III), Cu(II), Ni(II) and Zn(II). Their sorption capacities were compared to those of cross-linked chitosan beads without pollen grains. C. sempervirens-chitosan microcapsules exhibited better performance (Cd(II): 65.98; Cu(II): 67.10 and Zn(II): 49.55 mg g(-1)) than the other microcapsules and the cross-linked beads. A. negundo-chitosan microcapsules were more efficient in Cr(III) (70.40 mg g(-1)) removal. P. nigra-chitosan microcapsules were found to be less efficient. Chitosan-pollen microcapsules (except P. nigra-chitosan microcapsules) can be used in heavy metal removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers.

    Science.gov (United States)

    Su, Lee-Chun; Xie, Zhiwei; Zhang, Yi; Nguyen, Kytai Truong; Yang, Jian

    2014-01-01

    Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate) showed ~70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers and biodegradable photoluminescent polymers also exhibited significant bacteria reduction of ~20 and ~50% for Staphylococcus aureus and Escherichia coli , respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that the citrate-based polymers are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  14. Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration.

    Science.gov (United States)

    Chung, Justin J; Fujita, Yuki; Li, Siwei; Stevens, Molly M; Kasuga, Toshihiro; Georgiou, Theoni K; Jones, Julian R

    2017-05-01

    Hybrids that are molecular scale co-networks of organic and inorganic components are promising biomaterials, improving the brittleness of bioactive glass and the strength of polymers. Methacrylate polymers have high potential as the organic source for hybrids since they can be produced, through controlled polymerization, with sophisticated polymer architectures that can bond to silicate networks. Previous studies showed the mechanical properties of hybrids can be modified by polymer architecture and molar mass (MM). However, biodegradability is critical if hybrids are to be used as tissue engineering scaffolds, since the templates must be remodelled by host tissue. Degradation by-products have to either completely biodegrade or be excreted by the kidneys. Enzyme, or bio-degradation is preferred to hydrolysis by water uptake as it is expected to give a more controlled degradation rate. Here, branched and star shaped poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (poly(MMA-co-TMSPMA)) were synthesized with disulphide based dimethacrylate (DSDMA) as a biodegradable branching agent. Biodegradability was confirmed by exposing the copolymers to glutathione, a tripeptide which is known to cleave disulphide bonds. Cleaved parts of the star polymer from the hybrid system were detected after 2weeks of immersion in glutathione solution, and MM was under threshold of kidney filtration. The presence of the branching agent did not reduce the mechanical properties of the hybrids and bone progenitor cells attached on the hybrids in vitro. Incorporation of the DSDMA branching agent has opened more possibilities to design biodegradable methacrylate polymer based hybrids for regenerative medicine. Bioactive glasses can regenerate bone but are brittle. Hybrids can overcome this problem as intimate interactions between glass and polymer creates synergetic properties. Implants have previously been made with synthetic polymers that degrade by water, however, they

  15. Improved Biodegradable Radiation Cured Polymeric Film Prepared from Chitosan-Gelatin Blend

    OpenAIRE

    Nasreen, Zinia; Khan, Mubarak A.; Mustafa, A. I.

    2016-01-01

    The mechanical, thermal, swelling, and release properties of chitosan-gelatin (CG) films have been investigated in order to verify the influence of UV and gamma radiation on the stability of the films. Thin films of chitosan and gelatin (1 : 3, w/w) that were radiated with 100 krad of gamma dose showed the best performance and the TS values reached 25, 45, and 49 MPa, respectively, for chitosan, gelatin, and blend. The corresponding highest TS values were 23, 42, and 45 MPa, respectively, for...

  16. Identification of osteoconductive and biodegradable polymers from a combinatorial polymer library.

    Science.gov (United States)

    Brey, Darren M; Chung, Cindy; Hankenson, Kurt D; Garino, Jonathon P; Burdick, Jason A

    2010-05-01

    Combinatorial polymer syntheses are now being utilized to create libraries of materials with potential utility for a wide variety of biomedical applications. We recently developed a library of photopolymerizable and biodegradable poly(beta-amino ester)s (PBAEs) that possess a range of tunable properties. In this study, the PBAE library was assessed for candidate materials that met design criteria (e.g., physical properties such as degradation and mechanical strength and in vitro cell viability and osteoconductive behavior) for scaffolding in mineralized tissue repair. The most promising candidate, A6, was then processed into three-dimensional porous scaffolds and implanted subcutaneously and only presented a mild inflammatory response. The scaffolds were then implanted intramuscularly and into a critical-sized cranial defect either alone or loaded with bone morphogenetic protein-2 (BMP-2). The samples in both locations displayed mineralized tissue formation in the presence of BMP-2, as evident through radiographs, micro-computed tomography, and histology, whereas samples without BMP-2 showed minimal or no mineralized tissue. These results illustrate a process to identify a candidate scaffolding material from a combinatorial polymer library, and specifically for the identification of an osteoconductive scaffold with osteoinductive properties via the inclusion of a growth factor. Copyright 2009 Wiley Periodicals, Inc.

  17. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  18. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Lee-Chun eSu

    2014-07-01

    Full Text Available Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate (POC showed approximately 70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers (CUPEs and biodegradable photoluminescent polymers (BPLPs also exhibited significant bacteria reduction of ~20% and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that they are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  19. Biodegradable-Polymer-Blend-Based Surgical Sealant with Body-Temperature-Mediated Adhesion.

    Science.gov (United States)

    Behrens, Adam M; Lee, Nora G; Casey, Brendan J; Srinivasan, Priya; Sikorski, Michael J; Daristotle, John L; Sandler, Anthony D; Kofinas, Peter

    2015-12-22

    The development of practical and efficient surgical sealants has the propensity to improve operational outcomes. A biodegradable polymer blend is fabricated as a nonwoven fiber mat in situ. After direct deposition onto the tissue of interest, the material transitions from a fiber mat to a film. This transition promotes polymer-substrate interfacial interactions leading to improved adhesion and surgical sealant performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Experimental assessment of biodegradable polyglycolic and polylactic acid polymers for medical use].

    Science.gov (United States)

    Kulakov, A A; Grigor'ian, A S; Arkhipov, A V

    2013-01-01

    Interrelations of biodegradable poliglicolic and polilactic acid polymers in various proportions implanted in standardized bone defects were evaluated in animal model with 40 Wister line rats. During 10 month follow-up period bone capsule surrounded all implants, but timing of bone formation and bone quality varied significantly being optimal in LactoSorb group. Destructive features of polymers were also seen in implant-bone contact area defined as inflammation, fibrous tissue formation and cell dystrophy.

  1. BRANCHED BIODEGRADABLE POLYMERS, A MACROMONOMER, PROCESSES FOR THE PREPARATION OF SAME, AND THEIR USE

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Feijen, Jan; Dijkstra, Pieter J.

    2009-01-01

    The present invention relates to a process for the preparation of branched biodegradable polymers comprising of the steps of: (a) preparing a macromonomer by ring-opening polymerization of at least one cyclic ester, cyclic carbonate, and/or cyclic carboxyanhydride in the presence of a branching

  2. Biolimus-eluting stents with biodegradable polymer versus bare-metal stents in acute myocardial infarction

    DEFF Research Database (Denmark)

    Räber, Lorenz; Kelbæk, Henning; Taniwaki, Masanori

    2014-01-01

    BACKGROUND: This study sought to determine whether the 1-year differences in major adverse cardiac event between a stent eluting biolimus from a biodegradable polymer and bare-metal stents (BMSs) in the COMFORTABLE trial (Comparison of Biolimus Eluted From an Erodible Stent Coating With Bare Metal...

  3. Ring-Opening Polymerization of Lactide to Form a Biodegradable Polymer

    Science.gov (United States)

    Robert, Jennifer L.; Aubrecht, Katherine B.

    2008-01-01

    In this laboratory activity for introductory organic chemistry, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide (PLA). As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be…

  4. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  5. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation

    International Nuclear Information System (INIS)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C.; Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M.

    2015-01-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  6. BIODEGRADATION OF EFFLUENT CONTAMINATED WITH DIESEL OIL AND GASOLINE USING CHITOSAN AS A NATURAL COAGULANT IN A CONTINUOUS PROCESS

    Directory of Open Access Journals (Sweden)

    T. V. de Oliveira

    Full Text Available Abstract This study evaluated the effects of aeration (constant aeration, intermittent aeration and a lack of aeration and hydraulic retention time (HRT (2, 3 and 4 days on a continuous process with cell recycling, using chitosan as a natural coagulant for the sedimentation of a C1 mixed culture. This culture was used for the biodegradation of hydrocarbons present in the effluent contaminated with diesel oil and gasoline. The responses monitored included the turbidity removal (TR, total petroleum hydrocarbon (TPH removal and volatile suspended solids (VSS. Constant aeration and an HRT of 4 days produced the best results for the continuous process, resulting in the highest TPH removals (94% and 75% reductions in the supernatant and reaction tank, respectively and TR (95%.

  7. Drug-polymer interaction studies of cytarabine loaded chitosan nanoparticles

    International Nuclear Information System (INIS)

    Madni, A.; Kashif, P.M.; Nazir, I.; Rehman, M.

    2017-01-01

    Assessment of possible incompatibilities between drug and excipients is an important parameter of preformulation stage during the pharmaceutical product development of active pharmaceutical ingredient (API). The potential physical and chemical interaction among the components of a delivery system can affect the chemical nature, bioavailability, stability, and subsequently therapeutic efficacy of drugs. In this study, ATR-FTIR spectroscopy was employed to investigate the possible intermolecular interaction of Cytarabine with deacetylated chitosan and tripolyphosphate in the resulting physical blends and crosslinked nanoparticulate system. Two different strategies, physical blending and ionotropic gelation, were adopted to prepare binary or tertiary mixtures and nanoparticulate formulation, respectively. The IR spectra of CB showed characteristic peaks at 3438.27 cm-1 (primary amine), 3264.74 cm-1 (hydroxyl group) and 1654.98 cm-1 (C=O stretch in cyclic ring); CS at 3361.47 cm-1 (N-H stretching), 1646.18 cm-1 (C=O of Amide I), 1582.36 cm-1 (C=O of Amide II), and sTPP at 1135.77 cm-1 (P=O). CS-sTPP chemical interaction was confirmed from the shift in the absorption band of carbonyl groups (amide I, II) to 1634.66 cm-1 and 1541.17 cm-1 in blank chitosan nanoparticles, and 1636.87 cm-1, 1543.33 cm-1 in CSNP1 (2:6:1), and at 1646.15 cm-1 and 1557.04 cm-1 in CSNP2 (1:3:1). The characteristic peaks of CB were also present in chitosan formulation with a slight shift in the amino group at 3429.43 cm-1 and 3423.21 cm-1, in the hydroxyl group at 3274.54 cm-1 and 3270.73 cm-1, CSNP1 and CSNP2, respectively. The findings counseled no significant interaction in IR absorption pattern of cytarabine functional groups after encapsulation in CS-sTPP complex, which projected the potential of chitosan nanoparticulate system to entrap cytarabine. (author)

  8. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  9. Improved Biodegradable Radiation Cured Polymeric Film Prepared from Chitosan-Gelatin Blend

    Directory of Open Access Journals (Sweden)

    Zinia Nasreen

    2016-01-01

    Full Text Available The mechanical, thermal, swelling, and release properties of chitosan-gelatin (CG films have been investigated in order to verify the influence of UV and gamma radiation on the stability of the films. Thin films of chitosan and gelatin (1 : 3, w/w that were radiated with 100 krad of gamma dose showed the best performance and the TS values reached 25, 45, and 49 MPa, respectively, for chitosan, gelatin, and blend. The corresponding highest TS values were 23, 42, and 45 MPa, respectively, for 10 passes of UV radiation. The effect of radiation over gelatin, chitosan, and CG blend caused modification in the arrangement of molecules in the crystal lattice that is significant by XRD analysis. Surfaces of the films were also investigated by scanning electron microscope (SEM. Fourier transform infrared spectroscopy (FTIR studies further revealed structural changes of the films. These changes were attributed to understanding the behavior of the irradiated chitosan, gelatin, and CG blend on application of thermal energy using DSC and TGA studies, water uptake of the films in aqueous medium, and soil degradation properties to observe the best possibility for its application.

  10. Biodegradable polymers as encapsulation materials for cosmetics and personal care markets.

    Science.gov (United States)

    Ammala, Anne

    2013-04-01

    The topical and transdermal delivery of active cosmetic ingredients requires safe and non-toxic means of reaching the target sites without causing any irritation. Preservation of the active ingredients is also essential during formulation, storage and application of the final product. As many biologically active substances are not stable and sensitive to temperature, pH, light and oxidation, they require encapsulation to protect against unwanted degradation and also to target specific and controlled release of the active substance. The use of biodegradable polymers as encapsulation materials offers several advantages over other carrier materials. Encapsulation of active ingredients using biodegradable polymeric carriers can facilitate increased efficacy and bioavailability and they are also removed from the body via normal metabolic pathways. This article reviews current research on biodegradable polymers as carrier or encapsulation materials for cosmetic and personal care applications. Some of the challenges and limitations are also discussed. Examples of biodegradable polymers reviewed include polysaccharides, poly α-esters, polyalkylcyanoacrylates and polyamidoamine dendrimers. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  12. Computed tomography of Lipiodol-loaded biodegradable pasty polymer for implant visualization.

    Science.gov (United States)

    Sosna, Jacob; Havivi, Ehud; Khan, Wahid; Appelbaum, Liat; Nyska, Abraham; Domb, Abraham J

    2014-01-01

    Targeted delivery of drug-loaded implants for regional drug therapy has become an important approach to therapy. Simple and reproducible imaging methodologies to evaluate the implant noninvasively are needed. The goal of this work was to noninvasively evaluate the visibility, shape and degradation of a biodegradable implant containing Lipiodol (an X-ray contrast medium) by computed tomography (CT). For in vitro evaluation, Lipiodol was incorporated in poly(sebacic-co-ricinoleic acid) [P(SA:RA)], a biodegradable injectable pasty polymer, and CT visibility was assessed. For ex vivo evaluation, bovine liver was injected with the polymer-loaded Lipiodol; for in vivo evaluation rats were injected subcutaneously with Lipiodol in polymer and CT was performed. We show that polymer diameter at CT correlates with implant weight and pathological measurements. Polymer formulation containing 5% Lipiodol was visible on CT in vitro. Ex vivo tests showed a round polymer deposit at the injection site compared with free dispersion of Lipiodol alone. Correlation between implant size at CT scan and surgery at 48 h was R(2)  = 0.78. Average CT diameter at 9 days was 14.2 ± 2.8 mm in rats injected with Lipiodol in the polymer formulation, as compared with 7.3 ± 1.1 mm in controls. After 9 days, the implant degraded into several zones containing inflammatory cells seen on CT as areas with increased heterogeneity. In conclusion, Lipiodol incorporated in P(SA:RA) is visible on CT, and polymer degradation can potentially be monitored noninvasively. This method can be widely applied to follow changes in biodegradable implants. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices

    Science.gov (United States)

    Shukur, M. F.; Ithnin, R.; Illias, H. A.; Kadir, M. F. Z.

    2013-08-01

    Plasticized chitosan-poly(ethylene oxide) (PEO) doped with ammonium nitrate (NH4NO3) electrolyte films are prepared by the solution cast technique. From Fourier transform infrared (FTIR) spectroscopy analysis, hydroxyl band of pure chitosan film is shifted from 3354 to 3425 cm-1 when blended with PEO. On addition of 40 wt.% NH4NO3, new peaks at 3207 cm-1 and 3104 cm-1 appear in the hydroxyl band region, indicating the polymer-salt complexation. The carboxamide and amine bands are observed to shift to 1632 and 1527 cm-1, respectively. The interaction of chitosan-PEO-NH4NO3-EC can be observed by the appearance of the doublet Cdbnd O stretching band of EC. The sample with 70 wt.% ethylene carbonate (EC) exhibits the highest room temperature conductivity of (2.06 ± 0.39) × 10-3 S cm-1. This result is further verified by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) studies. Proton battery is fabricated and shows an open circuit potential (OCP) of (1.66 ± 0.02) V and average discharge capacity at (48.0 ± 5.0) mA h. The maximum power density of the fabricated cell is (9.73 ± 0.75) mW cm-2. The polymer electrolyte is also employed as separator in electrical double layer capacitor (EDLC) and is cycled for 140 times at room temperature.

  14. Novel pH-sensitive biodegradable polymeric drug delivery systems based on ketal polymers.

    Science.gov (United States)

    Chen, Daquan; Wang, Hongbo

    2014-01-01

    This article reviews the recent developments on novel pH-sensitive ketal-based biodegradable polymeric drug delivery systems. Due to the degradation of ketal derivatives, neutral alcohols and ketones, ketal derivatives can be used to fabricate pH-degradable polymer with pH-degradable ketal linkages in new drug delivery systems by avoiding inflammatory problems. Due to the novelty of ketal polymers, there were few reports about ketal polymers. The review starts with a brief introduction to the pH-sensitive drug delivery system, followed by the structure, preparation and characterization techniques of ketal polymers. Thereafter, the promising applications in various diseases in relation to micro/nano drug carriers based on ketal polymers are summarized and discussed.

  15. Comparison of Durable-Polymer Zotarolimus-Eluting and Biodegradable-Polymer Biolimus-Eluting Coronary Stents in Patients With Coronary Artery Disease

    DEFF Research Database (Denmark)

    Raungaard, Bent; Christiansen, Evald H; Bøtker, Hans Erik

    2017-01-01

    OBJECTIVES: The authors sought to compare the safety and efficacy of the biocompatible durable-polymer zotarolimus-eluting stent with the biodegradable-polymer biolimus-eluting stent in unselected coronary patients. BACKGROUND: Biodegradable-polymer biolimus-eluting stents are superior to first......:1) to receive either the zotarolimus-eluting (1,502 patients) or the biolimus-eluting (1,497 patients) stent. At 3-year follow-up, MACE occurred in 128 (8.6%) patients assigned to the durable-polymer zotarolimus-eluting stent and in 144 (9.6%) assigned to the biodegradable-polymer biolimus-eluting stent (p = 0...... to the durable-polymer zotarolimus-eluting stent and in 10 (0.7%) assigned to the biodegradable-polymer biolimus-eluting stent (p = 0.33). CONCLUSIONS: At 3-year follow-up, the durable-polymer zotarolimus-eluting stent and the biodegradable-polymer biolimus-eluting stent were similar in clinical outcome...

  16. Study of thermal and mechanical properties of nanocomposites, synthesized from the organoclays and biodegradable polymers

    International Nuclear Information System (INIS)

    Botelho, K.T.; Wiebeck, H.; Valenzuela-Diaz, F.R.

    2011-01-01

    The smectitic clays (MMT-Na + ) have a broad range of industrial applications. The smectitic clays which the exchangeable cation sodium predominates have much more applications in this class of mineral. The sodium smectitic clays are hydrophilic in character with a high water Foster swelling. For uses in organic medium, where a high hydrophobicity and swelling are necessary, we must transform them in the organoclay form. This is accomplished by the cation exchange reaction of the sodium smectitic clay water dispersion with quaternary ammonium salts. In this paper, it was used the smectitic clays (MMT-Na + ) from Argentina with CEC of 120meq/100g and swelling in water close to 20mL. Its modification was made using five quaternary ammonium salts. We characterize both sodium smectitic clay and the organoclay by X-ray diffraction (XRD) providing that occurred a basal expansion at the MMT-Na + for the five quaternary ammonium salts, Foster swelling and Infrared Spectra. After the synthesis, was done extrusion the two biodegradable plastics with the aim to incorporate the organoclay in these polymers. For characterization the biodegradable polymers, the proper choice is the thermal analysis and the mechanical test. Such analysis was effectuated in to pure plastic and the polymers nanocomposite, to proven of the resistance to the high temperature and the increased the mechanical properties of the modificated polymers when compared with the pure biodegradable plastics. (author)

  17. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens.

    Science.gov (United States)

    Eckhard, Lea H; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J; Bachrach, Gilad; Beyth, Nurit

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer.

  18. Critical assessment of chitosan as coagulant to remove cyanobacteria

    NARCIS (Netherlands)

    Lurling, Miguel; Noyma, Natalia Pessoa; Magalhães, de Leonardo; Miranda, Marcela; Mucci, Maíra; Oosterhout, van F.; Huszar, Vera L.M.; Marinho, Marcelo Manzi

    2017-01-01

    Removal of cyanobacteria from the water column using a coagulant and a ballast compound is a promising technique to mitigate nuisance. As coagulant the organic, biodegradable polymer chitosan has been promoted. Results in this study show that elevated pH, as may be common during cyanobacterial

  19. Critical assessment of chitosan as coagulant to remove cyanobacteria

    NARCIS (Netherlands)

    Lürling, Miquel; Noyma, Natalia Pessoa; Magalhães, Leonardo de; Miranda, Marcela; Mucci, Maíra; Oosterhout, Frank van; Huszar, Vera L.M.; Marinho, Marcelo Manzi

    2017-01-01

    Removal of cyanobacteria from the water column using a coagulant and a ballast compound is a promising technique to mitigate nuisance. As coagulant the organic, biodegradable polymer chitosan has been promoted. Results in this study show that elevated pH, as may be common during cyanobacterial

  20. Performance of Biodegradable Polymers used in Mechanically Loaded Implants

    DEFF Research Database (Denmark)

    Andersen, Lonnie Ulrich

    predisposing for early dislocation have not been completely established, making it difficult to take successful preventative measures. The objective of this PhD thesis was to design an implantable, biodegradable device to guard against these dislocations. The hip dislocation preventer should allow for easy...... to be oriented in a 45° angle to the direction of deformation. From the model the initial strain region was predicted to lie between 35-40%, and the tensile force that the fabric can withstand, without going into plastic deformation was between 2000-5000 N. From the analysis and the material tests it was found...

  1. Investigating the crystal growth behavior of biodegradable polymer blend thin films using in situ atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-01-01

    Full Text Available This article reports the crystal growth behavior of biodegradable polylactide (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend thin films using atomic force microscopy (AFM). Currently, polymer thin films have received increased research...

  2. Determination of the Optimum Conditions for Production of Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Dustgani

    2007-12-01

    Full Text Available Bioedegradable nanoparticles are intensively investigated for their potential applications in drug delivery systems. Being a biocompatible and biodegradable polymer, chitosan holds great promise for use in this area. This investigation was concerned with determination and optimization of the effective parameters involved in the production of chitosan nanoparticles using ionic gelation method. Studied variables were concentration and pH of the chitosan solution, the ratio of chitosan to sodium tripolyphosphate therein and the molecular weight of chitosan. For this purpose, Taguchistatistical method was used for design of experiments in three levels. The size of chitosan nanoparticle was determined using laser light scattering. The experimental results showed that concentration of chitosan solution was the most important parameter and chitosan molecular weight the least effective parameter. The optimum conditions for preparation of nanoparticles were found to be 1 mg/mL chitosan solution with pH=5, chitosan to sodium tripolyphosphate ratio of 3 and chitosan molecular weight of 200,000 daltons. The average nanoparticle size at optimum conditions was found to be about 150 nm.

  3. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  4. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    Science.gov (United States)

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  5. Biomedical applications of synthetic, biodegradable polymers for the development of anti-infective strategies.

    Science.gov (United States)

    Bertesteanu, Serban; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Printza, Atnanasia G; Marie-Paule, Thill; Grumezescu, Valentina; Mihaela, Vlad; Lazar, Veronica; Grigore, Raluca

    2014-01-01

    The emergence of antibiotic resistance in microbial strains is representing one of the major threats to public health worldwide, due to the decreased or total cancelling of the available antibiotics effectiveness, correlated with the slow development of novel antibiotics. Due to their excellent biodegradability and biocompatibility, the synthetic polymers could find a lot of biomedical applications, such as the development of biomaterials with optimized properties and of drug delivery systems. This review is focusing on the applications of synthetic, biodegradable polymers for the improvement of antiinfective therapeutic and prophylactic agents (i.e., antimicrobial and anti-inflammatory agents and vaccines) activity, as well as for the design of biomaterials with increased biocompatibility and resistance to microbial colonization.

  6. Tuning particle biodegradation through polymer-peptide blend composition.

    Science.gov (United States)

    Gunawan, Sylvia T; Kempe, Kristian; Such, Georgina K; Cui, Jiwei; Liang, Kang; Richardson, Joseph J; Johnston, Angus P R; Caruso, Frank

    2014-12-08

    We report the preparation of polymer-peptide blend replica particles via the mesoporous silica (MS) templated assembly of poly(ethylene glycol)-block-poly(2-diisopropylaminoethyl methacrylate-co-2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)ethyl methacrylate) (PEG45-b-P(DPA55-co-PgTEGMA4)) and poly(l-histidine) (PHis). PEG45-b-P(DPA55-co-PgTEGMA4) was synthesized by atom transfer radical polymerization (ATRP), and was coinfiltrated with PHis into poly(methacrylic acid) (PMA)-coated MS particles assembled from different peptide-to-polymer ratios (1:1, 1:5, 1:10, or 1:15). Subsequent removal of the sacrificial templates and PMA resulted in monodisperse, colloidally stable, noncovalently cross-linked polymer-peptide blend replica particles that were stabilized by a combination of hydrophobic interactions between the PDPA and the PHis, hydrogen bonding between the PEG and PHis backbone, and π-π stacking of the imidazole rings of PHis side chains at physiological pH (pH ∼ 7.4). The synergistic charge-switchable properties of PDPA and PHis, and the enzymatic degradability of PHis, make these particles responsive to pH and enzymes. In vitro studies, in simulated endosomal conditions and inside cells, demonstrated that particle degradation kinetics could be engineered (from 2 to 8 h inside dendritic cells) based on simple adjustment of the peptide-to-polymer ratio used.

  7. The use of biodegradable polymers for the stabilization of copper ...

    Indian Academy of Sciences (India)

    2017-08-03

    Aug 3, 2017 ... However, agglomerated copper nanoparticles were obtained by this chemical reduction method. Hence, the effects of three polymers of polyvinyl pyrrolidone, polyethylene glycol (PEG) and starch as stabilizers on the size and size distribution of Cu nanoparticles were investigated. According to the results,.

  8. Study of in vitro degradation of biodegradable polymer based thin ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... Science and Biomedical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. Accepted 7 November, 2011 .... polymers approved by the US Food and Drug. Administration (FDA) for certain ... equation is applicable when the extent of reaction is slow or before the specimen ...

  9. A model for hydrolytic degradation and erosion of biodegradable polymers.

    Science.gov (United States)

    Sevim, Kevser; Pan, Jingzhe

    2018-01-15

    For aliphatic polyesters such as PLAs and PGAs, there is a strong interplay between the hydrolytic degradation and erosion - degradation leads to a critically low molecular weight at which erosion starts. This paper considers the underlying physical and chemical processes of hydrolytic degradation and erosion. Several kinetic mechanisms are incorporated into a mathematical model in an attempt to explain different behaviours of mass loss observed in experiments. In the combined model, autocatalytic hydrolysis, oligomer production and their diffusion are considered together with surface and interior erosion using a set of differential equations and Monte Carlo technique. Oligomer and drug diffusion are modelled using Fick's law with the diffusion coefficients dependent on porosity. The porosity is due to the formation of cavities which are a result of polymer erosion. The model can follow mass loss and drug release up to 100%, which cannot be explained using a simple reaction-diffusion. The model is applied to two case studies from the literature to demonstrate its validity. The case studies show that a critical molecular weight for the onset of polymer erosion and an incubation period for the polymer dissolution are two critical factors that need to be considered when predicting mass loss and drug release. In order to design bioresorbable implants, it is important to have a mathematical model to predict polymer degradation and corresponding drug release. However, very different behaviours of polymer degradation have been observed and there is no single model that can capture all these behaviours. For the first time, the model presented in this paper is capable of capture all these observed behaviours by switching on and off different underlying mechanisms. Unlike the existing reaction-diffusion models, the model presented here can follow the degradation and drug release all the way to the full disappearance of an implant. Crown Copyright © 2017. Published by

  10. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2016-01-01

    Full Text Available The use of biodegradable polymers is spreading in agriculture to replace those materials derived from petroleum, thus reducing the environmental concerns. However, to issue a significant assessment, biodegradation rate must be measured in case-specific standardized conditions. In accordance with ISO 14855-1, we designed and used an experimental apparatus to evaluate the biodegradation rate of three biopolymers based on renewable resources, two poly(ε-caprolactone (PCL composites, and a compatibilized polylactic acid and polybutyrate (PLA/PBAT blend. Biodegradation tests were carried out under composting condition using mature olive-mill waste (OMW compost as inoculum. Carbon dioxide emissions were automatically recorded by infrared gas detectors and also trapped in saturated Ba(OH2 solution and evaluated via a standard titration method to check the results. Some of the samples reached more than 80% biodegradation in less than 20 days. Both the experimental apparatus and the OMW compost showed to be suitable for the cases studied.

  11. Efficacy and safety of biodegradable polymer biolimus-eluting stents versus durable polymer drug-eluting stents: a meta-analysis.

    Science.gov (United States)

    Ye, Yicong; Xie, Hongzhi; Zeng, Yong; Zhao, Xiliang; Tian, Zhuang; Zhang, Shuyang

    2013-01-01

    Drug-eluting stents (DES) with biodegradable polymers have been developed to address the risk of thrombosis associated with first-generation DES. We aimed to determine the efficacy and safety of biodegradable polymer biolimus-eluting stents (BES) versus durable polymer DES. Systematic database searches of MEDLINE (1950 to June 2013), EMBASE (1966 to June 2013), the Cochrane Central Register of Controlled Trials (Issue 6 of 12, June 2013), and a review of related literature were conducted. All randomized controlled trials comparing biodegradable polymer BES versus durable polymer DES were included. Eight randomized controlled trials investigating 11,015 patients undergoing percutaneous coronary interventions were included in the meta-analysis. The risk of major adverse cardiac events did not differ significantly between the patients treated with the biodegradable polymer BES and the durable polymer DES (Relative risk [RR], 0.970; 95% CI, 0.848-1.111; p = 0.662). However, biodegradable polymer BES was associated with reduced risk of very late ST compared with the durable polymer DES, while the risk of early or late ST was similar (RR for early or late ST, 1.167; 95% CI 0.755-1.802; p = 0.487; RR 0.273; 95% CI 0.115-0.652; p = 0.003; p for interaction = 0.003). In this meta-analysis of randomized controlled trials, treatments with biodegradable polymer BES did not significantly reduce the risk of major adverse cardiac events, but demonstrated a significantly lower risk of very late ST when compared to durable polymer DES. This conclusion requires confirmation by further studies with long-term follow-up. http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42013004364#.UnM2lfmsj6J.

  12. Efficacy and safety of biodegradable polymer biolimus-eluting stents versus durable polymer drug-eluting stents: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yicong Ye

    Full Text Available BACKGROUNDS: Drug-eluting stents (DES with biodegradable polymers have been developed to address the risk of thrombosis associated with first-generation DES. We aimed to determine the efficacy and safety of biodegradable polymer biolimus-eluting stents (BES versus durable polymer DES. METHODS: Systematic database searches of MEDLINE (1950 to June 2013, EMBASE (1966 to June 2013, the Cochrane Central Register of Controlled Trials (Issue 6 of 12, June 2013, and a review of related literature were conducted. All randomized controlled trials comparing biodegradable polymer BES versus durable polymer DES were included. RESULTS: Eight randomized controlled trials investigating 11,015 patients undergoing percutaneous coronary interventions were included in the meta-analysis. The risk of major adverse cardiac events did not differ significantly between the patients treated with the biodegradable polymer BES and the durable polymer DES (Relative risk [RR], 0.970; 95% CI, 0.848-1.111; p = 0.662. However, biodegradable polymer BES was associated with reduced risk of very late ST compared with the durable polymer DES, while the risk of early or late ST was similar (RR for early or late ST, 1.167; 95% CI 0.755-1.802; p = 0.487; RR 0.273; 95% CI 0.115-0.652; p = 0.003; p for interaction = 0.003. CONCLUSIONS: In this meta-analysis of randomized controlled trials, treatments with biodegradable polymer BES did not significantly reduce the risk of major adverse cardiac events, but demonstrated a significantly lower risk of very late ST when compared to durable polymer DES. This conclusion requires confirmation by further studies with long-term follow-up. PROSPERO REGISTER NUMBER: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42013004364#.UnM2lfmsj6J.

  13. Obtaining and characterization of a biodegradable polymer starting from the tapioca starch

    International Nuclear Information System (INIS)

    Ruiz Aviles, Gladys

    2006-01-01

    This study focuses on the preparation of tapioca starch biodegradable polymer, processed by blends of starch modified with glycerin and water as plasticizers, by using roll mill and a single-screw extruder in the process. During extrusion, there is a series of variables to control namely: the barrel temperature profile, screw torque and screw rotation speed. Tensile test, differential scanning calorimetric (DSC), thermogravimetric analysis (TGA), Fourier transformer infrared spectroscopy (FTIR) and morphology were used in the process

  14. Radiolytic synthesis and characterization of PVA and chitosan based conductive polymer membranes for alkaline fuel cells

    Directory of Open Access Journals (Sweden)

    Stoševski Ivan D.

    2014-01-01

    Full Text Available Poly(vinyl alcohol (PVA and chitosan (CS based polymer membranes for alkaline fuel cells were synthesized by gamma irradiation method. They were swollen with 6 M KOH solution and their ionic conductivity and gas permeance were investigated as a function of temperature. They show high ionic conductivities at room temperature, which wasn't reduced over a period of few months. No gas flow through membranes was detected at any temperature and pressure. These properties show that the membranes could be potentially applied in alkaline fuel cells.

  15. Targeted Gene Delivery to Macrophages by Biodegradable Star-Shaped Polymers.

    Science.gov (United States)

    Zhang, Yajie; Wang, Yafeng; Zhang, Chi; Wang, Jin; Pan, Dejing; Liu, Jianghuai; Feng, Fude

    2016-02-17

    In this report, two biodegradable star-shaped polyasparamide derivatives and four analogues modified with either mannose or folic acid moiety for preferential targeting of a difficult-to-transfect immune cell type, i.e., macrophage, have been synthesized. Each of the prepared star polymers complexes with plasmid DNA to form nanosized particles featuring a core-shell-like morphology. Mannose or folate functionalized star polymers can greatly improve the transfection performance on a macrophage cell line RAW 264.7. As a result, a combination of targeting ligand modification and topological structures of gene carriers is a promising strategy for immune cells-based gene therapy.

  16. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials.

    Science.gov (United States)

    Fukushima, K

    2016-01-01

    Aliphatic polycarbonates have drawn attention as biodegradable polymers that can be applied to a broad range of resorbable medical devices. In particular, poly(trimethylene carbonate) (PTMC), its copolymers, and its derivatives are currently studied due to their unique degradation characteristics that are different from those of aliphatic polyesters. Furthermore, their flexible and hydrophobic nature has driven the application of PTMC-based polymers to soft tissue regeneration and drug delivery. This review presents the diverse applications and functionalization strategies of PTMC-based materials in relation to recent advances in medical technologies and their subsequent needs in clinical settings.

  17. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    Energy Technology Data Exchange (ETDEWEB)

    Zhul' kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L., E-mail: iordan@chph.ras.ru [Russian Academy of Sciences, Semenov Institute of Chemical Physics (Russian Federation)

    2009-05-15

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  18. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    International Nuclear Information System (INIS)

    Zhul'kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L.

    2009-01-01

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  19. A study on thermal properties of biodegradable polymers using photothermal methods

    Science.gov (United States)

    Siqueira, A. P. L.; Poley, L. H.; Sanchez, R.; da Silva, M. G.; Vargas, H.

    2005-06-01

    In this work is reported the use of photothermal techniques applied to the thermal characterization of biodegradable polymers of Polyhydroxyalkanoates (PHAs) family. This is a family of polymer produced by bacteria using renewable resources. It exhibits thermoplastic properties and therefore it can be an alternative product for engineering plastics, being also applied as packages for food industry and fruits. Thermal diffusivities were determined using the open photoacoustic cell (OPC) configuration. Specific heat capacity measurements were performed monitoring temperature of the samples under white light illumination against time. Typical values obtained for the thermal properties are in good agreement with those found in the literature for other polymers. Due to the incorporation of hydroxyvalerate in the monomer structure, the thermal diffusivity and thermal conductivity increase reaching a saturation value, otherwise the specific thermal capacity decreases as the concentration of the hydroxyvalerate (HV) increases. These results can be explained by polymers internal structure and are allowing new applications of these materials.

  20. Development of partially biodegradable foams from PP/HMSPP blends with natural and synthetic polymers

    International Nuclear Information System (INIS)

    Cardoso, Elizabeth Carvalho Leite

    2014-01-01

    Polymers are used in various application and in different industrial areas providing enormous quantities of wastes in environment. Among diverse components of residues in landfills are polymeric materials, including Polypropylene, which contribute with 20 to 30% of total volume of solid residues. As polymeric materials are immune to microbial degradation, they remain in soil and in landfills as a semi-permanent residue. Environmental concerning in litter reduction is being directed to renewable polymers development for manufacturing of polymeric foams. Foamed polymers are considered future materials, with a wide range of applications; high density structural foams are specially used in civil construction, in replacement of metal, woods and concrete with a final purpose of reducing materials costs. At present development, it was possible the incorporation of PP/HMSPP polymeric matrix blends with sugarcane bagasse, PHB and PLA, in structural foams production. Thermal degradation at 100, 120 and 160 deg C temperatures was not enough to induce biodegradability. Gamma irradiation degradation, at 50, 100, 200 and 500 kGy showed effective for biodegradability induction. Irradiated bagasse blends suffered surface erosion, in favor of water uptake and consequently, a higher biodegradation in bulk structure. (author)

  1. Investigation of Structure and Properties of Biodegradable Compositions of Polylactide with Ethyl Cellulose and Chitosan Plasticized by Poly(Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Rogovina Svetlana Zakharovna

    2014-12-01

    Full Text Available Compositions of polylactide (PLA with polysaccharides ethyl cellulose and chitosan are obtained at different initial ratios of components under conditions of shear deformation in a Brabender mixer. It has been shown that the addition of a given amount of low-molecular poly(ethylene glycol (PEG leads to an increase in the elongation of rigid polysaccharide–PLA compositions. The influence of molecular weight and amount of PEG on the thermal behavior of PLA is investigated by DSC method. The biodegradability of films prepared from the blends under investigation is estimated by weight loss after holding in soil and tests on the fungus resistance, and it is shown that the compositions have good biodegradability. The changes in the film morphology after holding in soil revealed by the SEM method additionally confirm that compositions are subjected to biodegradation.

  2. Hemocompatibility of ultrafine systems on the basis of chitosan and its derivatives polymer-colloid complexes

    Directory of Open Access Journals (Sweden)

    M.V. Bazunova

    2015-03-01

    Full Text Available This article presents the results of the development process for the preparation of micro and nano-sized polymer-colloid com-plexes (РСС on the basis of water-soluble natural polymer chitosan (СTZ and the sodium salt of chitosan succinylamid (SСTZ with silver halide sols in aqueous media. Results of research of СTZ, sodium salt of SСTZ solutions and PСС of CTZ and SСTZ with colloidal parti-cles of silver iodide influence on structurally-functional properties of erythrocytes’ membranes on model of acidic hemolisis are presented in the article. Their influence on the nature of erythrocytes distribution by degree of their stability and on kinetic parameters (the beginning, intensity and completion of process of their destruction under the influence of the damaging agent (HCl is shown. The comparative analysis of results convinces that СTZ, SСTZ solutions and disperse systems on the basis of PСС of СTZ and SСTZ with colloidal particles of the silver iodide are capable of modulating variously matrix properties of erythrocytes of blood.

  3. Biodegradable Polymers Influence the Effect of Atorvastatin on Human Coronary Artery Cells.

    Science.gov (United States)

    Strohbach, Anne; Begunk, Robert; Petersen, Svea; Felix, Stephan B; Sternberg, Katrin; Busch, Raila

    2016-01-22

    Drug-eluting stents (DES) have reduced in-stent-restenosis drastically. Yet, the stent surface material directly interacts with cascades of biological processes leading to an activation of cellular defense mechanisms. To prevent adverse clinical implications, to date almost every patient with a coronary artery disease is treated with statins. Besides their clinical benefit, statins exert a number of pleiotropic effects on endothelial cells (ECs). Since maintenance of EC function and reduction of uncontrolled smooth muscle cell (SMC) proliferation represents a challenge for new generation DES, we investigated the effect of atorvastatin (ATOR) on human coronary artery cells grown on biodegradable polymers. Our results show a cell type-dependent effect of ATOR on ECs and SMCs. We observed polymer-dependent changes in IC50 values and an altered ATOR-uptake leading to an attenuation of statin-mediated effects on SMC growth. We conclude that the selected biodegradable polymers negatively influence the anti-proliferative effect of ATOR on SMCs. Hence, the process of developing new polymers for DES coating should involve the characterization of material-related changes in mechanisms of drug actions.

  4. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.

    Science.gov (United States)

    Cha, Kook Jin; Lih, Eugene; Choi, Jiyeon; Joung, Yoon Ki; Ahn, Dong Jun; Han, Dong Keun

    2014-05-01

    Specific biodegradable polymers having shape-memory properties through "polymer-blend" method are investigated and their shape-switching in body temperature (37 °C) is characterized. Poly(L-lactide-co-caprolactone) (PLCL) and poly(L-lactide-co-glycolide) (PLGA) are dissolved in chloroform and the films of several blending ratios of PLCL/PLGA are prepared by solvent casting. The shape-memory properties of films are also examined using dynamic mechanical analysis (DMA). Among the blending ratios, the PLCL50/PLGA50 film shows good performance of shape-fixity and shape-recovery based on glass transition temperature. It displays that the degree of shape recovery is 100% at 37 °C and the shape recovery proceeds within only 15 s. In vitro biocompatibility studies are shown to have good blood compatibility and cytocompatibility for the PLCL50/PLGA50 films. It is expected that this blended biodegradable polymer can be potentially used as a material for blood-contacting medical devices such as a self-expended vascular polymer stents and vascular closure devices in biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Munawar A. Mohammed

    2017-11-01

    Full Text Available The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.

  6. Zotarolimus-eluting durable-polymer-coated stent versus a biolimus-eluting biodegradable-polymer-coated stent in unselected patients undergoing percutaneous coronary intervention (SORT OUT VI)

    DEFF Research Database (Denmark)

    Raungaard, Bent; Jensen, Lisette Okkels; Tilsted, Hans-Henrik

    2015-01-01

    -polymer zotarolimus-eluting stent or the biodegradable-polymer biolimus-eluting stent. The primary endpoint was a composite of safety (cardiac death and myocardial infarction not clearly attributable to a non-target lesion) and efficacy (target-lesion revascularisation) at 12 months, analysed by intention to treat...

  7. Graphene oxide-reinforced biodegradable genipin-cross-linked chitosan fluorescent biocomposite film and its cytocompatibility

    Directory of Open Access Journals (Sweden)

    Li JH

    2013-09-01

    Full Text Available Jianhua Li,1 Na Ren1, Jichuan Qiu,1 Xiaoning Mou,2 Hong Liu1,21Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, People's Republic of China; 2Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of ChinaAbstract: A genipin-cross-linked chitosan/graphene oxide (GCS/GO composite film was prepared using a solution casting method. Fourier transform infrared (FTIR and ultraviolet-visible (UV-Vis spectroscopy of the composite films showed that the interactions between the CS and oxygen-containing groups of GO resulted in good dispersion of the GO sheets in the CS network. The addition of GO decreased the expansion ratio of the composite films in physiological conditions and increased the resistance to degradation by lysozymes in vitro. As well, the tensile strength values of the GCS/GO films were significantly increased with the increasing load of GO. Moreover, the GCS/GO composite film also maintained the intrinsic fluorescence of GCS. The in vitro cell study results revealed that the composite films were suitable for the proliferation and adhesion of mouse preosteoblast (MC3T3-E1 cells. The GCS/GO biocomposite films might have a potential use in tissue engineering, bioimaging, and drug delivery.Keywords: chitosan film degradation, fluorescence, cytocompatibility

  8. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    International Nuclear Information System (INIS)

    Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham ur

    2016-01-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  9. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Farooq, Ariba [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna; Khan, Abdul Samad [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  10. Biodegradable polyester-based shape memory polymers: Concepts of (supramolecular architecturing

    Directory of Open Access Journals (Sweden)

    J. Karger-Kocsis

    2014-06-01

    Full Text Available Shape memory polymers (SMPs are capable of memorizing one or more temporary shapes and recovering to the permanent shape upon an external stimulus that is usually heat. Biodegradable polymers are an emerging family within the SMPs. This minireview delivers an overlook on actual concepts of molecular and supramolecular architectures which are followed to tailor the shape memory (SM properties of biodegradable polyesters. Because the underlying switching mechanisms of SM actions is either related to the glass transition (Tg or melting temperatures (Tm, the related SMPs are classified as Tg- or Tm-activated ones. For fixing of the permanent shape various physical and chemical networks serve, which were also introduced and discussed. Beside of the structure developments in one-way, also those in two-way SM polyesters were considered. Adjustment of the switching temperature to that of the human body, acceleration of the shape recovery, enhancement of the recovery stress, controlled degradation, and recycling aspects were concluded as main targets for the future development of SM systems with biodegradable polyesters.

  11. Liquid marble formation and solvent vapor treatment of the biodegradable polymers polylactic acid and polycaprolactone.

    Science.gov (United States)

    Schmücker, Christoph; Stevens, Geoffrey W; Mumford, Kathryn A

    2018-03-15

    Liquid Marbles were produced by rolling aqueous droplets on a powder bed of biodegradable polymers, namely polylactic acid (PLA), polycaprolactone (PCL) and blends of these. Solvent vapor treatment was subsequently applied with dichloromethane (DCM). This treatment aligned the polymer chains in order to form a smooth polymeric shell with enhanced mechanical and barrier properties. Whilst a wide range of potential applications for Liquid Marbles exists, the aim here is to encapsulate a solution containing a fertilizer, i.e. urea to produce a controlled release fertilizer. The influences of droplet volume, polymer particle size and solvent vapor treatment time on the liquid marble properties were investigated. Crystallinity and thermal properties were analyzed by differential scanning calorimetry (DSC), surface characteristics and shell thickness by scanning electron microscopy (SEM), mechanical strength and elasticity by compression tests and evaporation rates by thermogravimetric analysis (TGA). Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration

    Science.gov (United States)

    Widmer, M. S.; Gupta, P. K.; Lu, L.; Meszlenyi, R. K.; Evans, G. R.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C. W. Jr; Mikos, A. G.; hide

    1998-01-01

    We have fabricated porous, biodegradable tubular conduits for guided tissue regeneration using a combined solvent casting and extrusion technique. The biodegradable polymers used in this study were poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). A polymer/salt composite was first prepared by a solvent casting process. After drying, the composite was extruded to form a tubular construct. The salt particles in the construct were then leached out leaving a conduit with an open-pore structure. PLGA was studied as a model polymer to analyze the effects of salt weight fraction, salt particle size, and processing temperature on porosity and pore size of the extruded conduits. The porosity and pore size were found to increase with increasing salt weight fraction. Increasing the salt particle size increased the pore diameter but did not affect the porosity. High extrusion temperatures decreased the pore diameter without altering the porosity. Greater decrease in molecular weight was observed for conduits manufactured at higher temperatures. The mechanical properties of both PLGA and PLLA conduits were tested after degradation in vitro for up to 8 weeks. The modulus and failure strength of PLLA conduits were approximately 10 times higher than those of PLGA conduits. Failure strain was similar for both conduits. After degradation for 8 weeks, the molecular weights of the PLGA and PLLA conduits decreased to 38% and 43% of the initial values, respectively. However, both conduits maintained their shape and did not collapse. The PLGA also remained amorphous throughout the time course, while the crystallinity of PLLA increased from 5.2% to 11.5%. The potential of seeding the conduits with cells for transplantation or with biodegradable polymer microparticles for drug delivery was also tested with dyed microspheres. These porous tubular structures hold great promise for the regeneration of tissues which require tubular scaffolds such as peripheral nerve

  13. Formation of protein induced micro-pores in Chitosan membranes

    Science.gov (United States)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2017-05-01

    Polymer based nanocomposites are important class of materials and have wide applications. Blending two biopolymers can lead to the development of new materials with tailored properties. Chitosan is a naturally occurring polysaccharide with useful properties such as biodegradability and excellent film forming capacity. Bovine serum albumin (BSA) is a abundantly available globular protein. In our research the interaction of chitosan with BSA and the effect of formation of Au nanoparticles on chitosan-BSA system were investigated. Scanning electron microscope (SEM) of the films showed formation of micron sized pores and these pores were hindered with formation of Au nanoparticles. Small angle neutron scattering (SANS) analysis showed that BSA interacts with chitosan chain and affects the Rg value of chitosan. The formation of micro pores decreases the conductivity values (σ'), while the formation of Au nanoparticles increases σ'.

  14. Biodegradable-Polymer Biolimus-Eluting Stents versus Durable-Polymer Everolimus-Eluting Stents at One-Year Follow-Up: A Registry-Based Cohort Study.

    Science.gov (United States)

    Parsa, Ehsan; Saroukhani, Sepideh; Majlessi, Fereshteh; Poorhosseini, Hamidreza; Lofti-Tokaldany, Masoumeh; Jalali, Arash; Salarifar, Mojtaba; Nematipour, Ebrahim; Alidoosti, Mohammad; Aghajani, Hassan; Amirzadegan, Alireza; Kassaian, Seyed Ebrahim

    2016-04-01

    We compared outcomes of percutaneous coronary intervention patients who received biodegradable-polymer biolimus-eluting stents with those who received durable-polymer everolimus-eluting stents. At Tehran Heart Center, we performed a retrospective analysis of the data from January 2007 through December 2011 on 3,270 consecutive patients with coronary artery disease who underwent percutaneous coronary intervention with the biodegradable-polymer biolimus-eluting stent or the durable-polymer everolimus-eluting stent. We excluded patients with histories of coronary artery bypass grafting or percutaneous coronary intervention, acute ST-segment-elevation myocardial infarction, or the implantation of 2 different stent types. Patients were monitored for 12 months. The primary endpoint was a major adverse cardiac event, defined as a composite of death, nonfatal myocardial infarction, and target-vessel and target-lesion revascularization. Durable-polymer everolimus-eluting stents were implanted in 2,648 (81%) and biodegradable-polymer biolimus-eluting stents in 622 (19%) of the study population. There was no significant difference between the 2 groups (2.7% vs 2.7%; P=0.984) in the incidence of major adverse cardiac events. The cumulative adjusted probability of major adverse cardiac events in the biodegradable-polymer biolimus-eluting stent group did not differ from that of such events in the durable-polymer everolimus-eluting stent group (hazard ratio=0.768; 95% confidence interval, 0.421-1.44; P=0.388). We conclude that in our patients the biodegradable-polymer biolimus-eluting stent was as effective and safe, during the 12-month follow-up period, as was the durable-polymer everolimus-eluting stent.

  15. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  16. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite.

    Science.gov (United States)

    Jia, Wei-Tao; Zhang, Xin; Zhang, Chang-Qing; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E

    2010-03-15

    Local antibiotic delivery system has an advantage over systemic antibiotic for osteomyelitis treatment due to the delivery of high local antibiotic concentration while avoiding potential systemic toxicity. Composite biomaterials with multifunctional roles, consisting of a controlled antibiotic release, a mechanical (load-bearing) function, and the ability to promote bone regeneration, gradually become the most active area of investigation and development of local antibiotic delivery vehicles. In the present study, a composite of borate glass and chitosan (designated BG/C) was developed as teicoplanin delivery vehicle. The in vitro elution kinetics and antibacterial activity of teicoplanin released from BG/C composite as a function of immersion time were determined. Moreover, the pH changes of eluents and the bioactivity of the composite were characterized using scanning electron microscopy coupled with energy-dispersive spectroscopy and X-ray diffraction analysis. 2009 Elsevier B.V. All rights reserved.

  17. Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds

    Directory of Open Access Journals (Sweden)

    Nimet Bölgen

    2016-08-01

    Full Text Available Polymeric scaffolds produced by cryogelation technique have attracted increasing attention for tissue engineering applications. Cryogelation is a technique which enables to produce interconnected porous matrices from the frozen reaction mixtures of polymers or monomeric precursors. Chitosan is a biocompatible, biodegradable, nontoxic, antibacterial, antioxidant and antifungal natural polymer that is obtained by deacetylation of chitin, which is mostly found in the exoskeleton of many crustacean. In this study, chitin was isolated from the exoskeleton of blue crap (Callinectes sapidus using a chemical method. Callinectes sapidus samples were collected from a market, as a waste material after it has been consumed as food. Demineralization, deproteinization and decolorization steps were applied to the samples to obtain chitin. Chitosan was prepared from isolated chitin by deacetylation at high temperatures. The chemical compositon of crab shell, extracted chitin and chitosan were characterized with FTIR analyses. And also to determine the physicochemical and functional properties of the produced chitosan; solubility, water binding and fat binding analysis were performed. Chitosan cryogel scaffolds were prepared by crosslinking reaction at cryogenic conditions at constant amount of chitosan (1%, w/v with different ratios of glutaraldehyde (1, 3, and 6%, v/v as crosslinker. The chemical structure of the scaffolds were examined by FTIR. Also, the water uptake capacity of scaffolds have been determined. Collectively, the results suggested that the characterized chitosan cryogels can be potential scaffolds to be used in tissue engineering applications.

  18. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.

    Science.gov (United States)

    Becker, Johannes; Lu, Lichun; Runge, M Brett; Zeng, Heng; Yaszemski, Michael J; Dadsetan, Mahrokh

    2015-08-01

    In tissue engineering, development of an osteoconductive construct that integrates with host tissue remains a challenge. In this work, the effect of bone-like minerals on maturation of pre-osteoblast cells was investigated using polymer-mineral scaffolds composed of poly(propylene fumarate)-co-poly(caprolactone) (PPF-co-PCL) and nano-sized hydroxyapatite (HA). The HA of varying concentrations was added to an injectable formulation of PPF-co-PCL and the change in thermal and mechanical properties of the scaffolds was evaluated. No change in onset of degradation temperature was observed due to the addition of HA, however compressive and tensile moduli of copolymer changed significantly when HA amounts were increased in composite formulation. The change in mechanical properties of copolymer was found to correlate well to HA concentration in the constructs. Electron microscopy revealed mineral nucleation and a change in surface morphology and the presence of calcium and phosphate on surfaces was confirmed using energy dispersive X-ray analysis. To characterize the effect of mineral on attachment and maturation of pre-osteoblasts, W20-17 cells were seeded on HA/copolymer composites. We demonstrated that cells attached more to the surface of HA containing copolymers and their proliferation rate was significantly increased. Thus, these findings suggest that HA/PPF-co-PCL composite scaffolds are capable of inducing maturation of pre-osteoblasts and have the potential for use as scaffold in bone tissue engineering. © 2014 Wiley Periodicals, Inc.

  19. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Litviakov, N. V., E-mail: nvlitv72@yandex.ru; Tsyganov, M. M., E-mail: TsyganovMM@yandex.ru; Cherdyntseva, N. V., E-mail: nvch@oncology.tomsk.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tverdokhlebov, S. I., E-mail: tverd@tpu.ru; Bolbasov, E. N., E-mail: ebolbasov@gmail.com [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Perelmuter, V. M., E-mail: pvm@ngs.ru; Kulbakin, D. E., E-mail: kulbakin2012@gmail.com [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Zheravin, A. A., E-mail: zheravin2010@yandex.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Academician E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Svetlichnyi, V. A., E-mail: v-svetlichnyi@bk.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  20. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  1. Biodegradable cyclen-based linear and cross-linked polymers as non-viral gene vectors.

    Science.gov (United States)

    Li, Shuo; Wang, Yu; Wang, Shan; Zhang, Ji; Wu, Shi-Fei; Wang, Bo-Lin; Zhu, Wen; Yu, Xiao-Qi

    2012-02-15

    Several 1,4,7,10-tetraazacyclododecane (cyclen)-based linear (3a-c) and cross-linked (8a-d) polymers containing biodegradable ester or disulfide bonds were described. These polymeric compounds were prepared by ring-opening polymerization from various diol glycidyl ethers. The molecular weights of the title polymers were measured by GPC. Agarose gel retardation assays showed that these compounds have good DNA-binding ability and can completely retard plasmid DNA (pDNA) at weight ratio of 20 for linear polymers and 1.2 for cross-linked polymers. The degradation of these polymers was confirmed by GPC. The formed polyplexes have appropriate sizes around 400 nm and zeta-potential values about 15-40 mV. The cytotoxicities of 8 assayed by MTT are much lower than that of 25 KDa PEI. In vitro transfection toward A549 and 293 cells showed that the transfection efficiency (TE) of 8c-DNA polyplex is close to that of 25 kDa PEI at 8c/DNA weight ratio of 4. Structure-activity relationships (SAR) of these linear and cross-linked polymers were discussed in their DNA-binding, cytotoxicity, and transfection studies. In addition, in the presence of serum, the TE of 8/DNA polyplexes could be improved by introducing chloroquine or Ca(2+) to pretreated cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Irradiation gamma on chitosan films

    International Nuclear Information System (INIS)

    Mello, Luana Miranda Lopes de; Souza, Adriana Regia Marques de; Arthur, Valter

    2017-01-01

    Films are preformed structures, independent, that are used to wrap food after processing, increasing their shelf life and enhancing its bright and attractive appearance. They are prepared from biological materials as an alternative to the plastic synthetic containers to improve the quality of the environment. Chitosan is a biodegradable polymer composed of β-(1-4) linked D-glucosamine (deacetylated unit) and N-acetyl-D- glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is a structural component of the exoskeleton of crustaceans. She is able to form films and edible and/or biodegradable coatings. With the objective to evaluate the effect of different doses of gamma radiation (0, 5, 10 and 15 kGy) and chitosan concentrations (1 and 2%) in film properties, it was evaluated its optical, mechanical and morphological properties. The films were produced by casting. Irradiation did not affect the thickness of the films, but influenced its colors, increasing the tone of the film for a stronger yellowish color. This fact can be attributed to the increased concentration of C = O bonds of chitosan due to the breakdown of the chain reaction and the Maillard reaction. Irradiated films showed smoother surface and less rough, due to the degradation of the chitosan molecule and poor mechanical properties, not showing good flexibility and stretching. (author)

  3. Irradiation gamma on chitosan films

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Luana Miranda Lopes de; Souza, Adriana Regia Marques de; Arthur, Valter, E-mail: lumilopes@hotmail.com, E-mail: drilavras@yahoo.com.br, E-mail: arthur@cena.usp.br [Universidade Federal do Tocantins (UFT), Palmas,TO (Brazil). Departmento de Ciencia e Tecnologia de Alimentos; Universidade Federal de Goias (UFGO), Goiania (Brazil). Departmento de Ciencia e Tecnologia de Alimentos; Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2017-11-01

    Films are preformed structures, independent, that are used to wrap food after processing, increasing their shelf life and enhancing its bright and attractive appearance. They are prepared from biological materials as an alternative to the plastic synthetic containers to improve the quality of the environment. Chitosan is a biodegradable polymer composed of β-(1-4) linked D-glucosamine (deacetylated unit) and N-acetyl-D- glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is a structural component of the exoskeleton of crustaceans. She is able to form films and edible and/or biodegradable coatings. With the objective to evaluate the effect of different doses of gamma radiation (0, 5, 10 and 15 kGy) and chitosan concentrations (1 and 2%) in film properties, it was evaluated its optical, mechanical and morphological properties. The films were produced by casting. Irradiation did not affect the thickness of the films, but influenced its colors, increasing the tone of the film for a stronger yellowish color. This fact can be attributed to the increased concentration of C = O bonds of chitosan due to the breakdown of the chain reaction and the Maillard reaction. Irradiated films showed smoother surface and less rough, due to the degradation of the chitosan molecule and poor mechanical properties, not showing good flexibility and stretching. (author)

  4. Investigation of Bauschinger effect in thermo-plastic polymers for biodegradable stents

    Directory of Open Access Journals (Sweden)

    Schümann Kerstin

    2017-09-01

    Full Text Available The Bauschinger effect is a phenomenon metals show as a result of plastic deformation. After a primary plastic deformation the yield strength in the opposite loading direction decreases. The aim of this study is to investigate if there is a phenomenon similar to Bauschinger effect in thermoplastic polymers for stent application that would influence the mechanical properties of these biodegradable implants. Combined uniaxial tensile with subsequent compression tests as well as conventional compression tests without prior tensile loading were performed using biodegradable polymers for stent application (PLLA and a PLLA based blend. Comparing the results of compression tests with prior tensile loading to the compression-only tests a decrease in compressive strength can be observed for both of the tested materials. The conclusion of the performed experiments is that there is a phenomenon similar to Bauschinger effect not only in metallic materials but also in the examined thermoplastic polymers. The observed reduction of compressive strength as a consequence of prior tensile loading can influence the mechanical behaviour, e.g. the radial strength, of polymeric stents after sustaining a complex load history due to crimping and expansion.

  5. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.

    Science.gov (United States)

    Geetha, D; Kavitha, S; Ramesh, P S

    2015-11-01

    In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap. Copyright © 2015. Published by Elsevier Inc.

  6. Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer

    Directory of Open Access Journals (Sweden)

    Tianwen Yuan

    2016-05-01

    Full Text Available Esophageal stent implantation can relieve esophageal stenosis and obstructions in benign esophageal strictures, and magnesium alloy stents are a good candidate because of biodegradation and biological safety. However, biodegradable esophageal stents show a poor corrosion resistance and a quick loss of mechanical support in vivo. In this study, we chose the elastic and biodegradable mixed polymer of Poly(ε-caprolactone (PCL and poly(trimethylene carbonate (PTMC as the coated membrane on magnesium alloy stents for fabricating a fully biodegradable esophageal stent, which showed an ability to delay the degradation time and maintain mechanical performance in the long term. After 48 repeated compressions, the mechanical testing demonstrated that the PCL-PTMC-coated magnesium stents possess good flexibility and elasticity, and could provide enough support against lesion compression when used in vivo. According to the in vitro degradation evaluation, the PCL-PTMC membrane coated on magnesium was a good material combination for biodegradable stents. During the in vivo evaluation, the proliferation of the smooth muscle cells showed no signs of cell toxicity. Histological examination revealed the inflammation scores at four weeks in the magnesium-(PCL-PTMC stent group were similar to those in the control group (p > 0.05. The α-smooth muscle actin layer in the media was thinner in the magnesium-(PCL-PTMC stent group than in the control group (p < 0.05. Both the epithelial and smooth muscle cell layers were significantly thinner in the magnesium-(PCL-PTMC stent group than in the control group. The stent insertion was feasible and provided reliable support for at least four weeks, without causing severe injury or collagen deposition. Thus, this stent provides a new stent for the treatment of benign esophageal stricture and a novel research path in the development of temporary stents in other cases of benign stricture.

  7. Biodegradable polymer DES versus durable polymer everolimus-eluting stents for patients undergoing PCI: a meta-analysis.

    Science.gov (United States)

    Sun, Li-Xia; Zhang, Jing

    2014-06-01

    Everolimus-eluting stents are associated with low risk of stent thrombosis and stent restenosis, and the new generation of stents with biodegradable polymer were designed to reduce that risk. However, the benefits have been variable. Four RCTs with a total of 8282 patients were included. Overall, BP-DES was not inferior to EES with equivalent risk of TVR (relative risk [RR], 1.07; 95% confidence interval [CI], 0.91-1.27; P=0.414; I(2)=0.0%) and ARC definite and/or probable ST (RR, 1.06; 95% CI, 0.66-1.70; P=0.810; I(2)=4.8%). Furthermore, there was no difference in all-cause mortality (RR, 1.06; 95% CI, 0.84-1.33; P=0.651; I(2)=0.0%), myocardial infarction (RR, 1.12; 95% CI, 0.88-1.44; P=0.360; I(2)=0.0%), and MACE (RR, 1.00; 95% CI, 0.87-1.15; P=0.975; I(2)=0.0%) between the two groups. The new generation of biodegradable polymer stents were not inferior to EES for equivalent risk of MACE and ST. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  8. Panorama setorial e perspectivas na área de polímeros biodegradáveis Biodegradable polymers: sectorial overview and prospects

    Directory of Open Access Journals (Sweden)

    Daniele M. B. Falcone

    2007-03-01

    Full Text Available Neste trabalho, envolvendo polímeros biodegradáveis, buscou-se obter indicadores por meio da análise de patentes para avaliar as perspectivas e oportunidades de atuação da área de polímeros. Utilizou-se para tal a base de dados Espacenet e o software Vantage Point. São matéria desse estudo os polímeros: poli(hidroxibutirato - PHB, poli(hidroxibutirato-co-hidroxivalerato - PHBV, poli(ácido lático - PLA, poli(épsilon-caprolactona - PCL e os polihidroxialcanoatos (PHAs, tratados mais detalhadamente por serem a classe geral dos poliésteres microbiais. Verificou-se que a área de polímeros biodegradáveis, apesar de recente e em desenvolvimento, apresenta grande potencial mediante o panorama atual de consumo dos materiais poliméricos. Observou-se, de uma forma geral, uma grande diversidade de temas e oportunidades de estudo em compostos, blendas, biodegradação e aplicações.This work on biodegradable polymers involved an analysis of patents to identify indicators for evaluating the prospects and opportunities of action in the field of polymers. We used the Spacenet database and Vantage Point software. The study encompassed the following polymers: polyhydroxybutyrate - PHB, polyhydroxybutyrate-co-hydroxyvalerate - PHBV, polylactic acid - PLA, poly (epsilon-caprolactone - PCL and the polyhydroxyalkanoates (PHAs, dealt in greater detail because they represent the general class of microbial polyesters. We found that, although the field of biodegradable polymers is new and still under development, it holds great potential in view of present widespread use of polymeric materials. Overall we found a great diversity of themes and opportunities for studies on compounds, blends, biodegradation and applications.

  9. Encapsulation of Mentha Oil in Chitosan Polymer Matrix Alleviates Skin Irritation.

    Science.gov (United States)

    Mishra, Nidhi; Rai, Vineet Kumar; Yadav, Kuldeep Singh; Sinha, Priyam; Kanaujia, Archana; Chanda, Debabrata; Jakhmola, Apurva; Saikia, Dharmendra; Yadav, Narayan Prasad

    2016-04-01

    Mentha spicata L. var. viridis oil (MVO) is a potent antifungal agent, but its application in the topical treatment is limited due to its irritancy and volatility. It was aimed to develop more efficient, chitosan-incrusted MVO microspheres with reduced volatility and lesser irritancy and to dispense it in the form of ointment. Simple coacervation technique was employed to microencapsulate MVO in chitosan matrix. Morphological properties and polymer cross-linking were characterized by scanning electron microscopy and differential scanning calorimetry, respectively. Optimization was carried out on the basis of entrapment efficiency (EE) using response surface methodology. Well-designed microspheres having smooth surface and spherical shape were observed. EE (81.20%) of optimum batch (R21) was found at 1.62% w/v of cross-linker, 5.4:5 of MVO to chitosan ratio and at 1000 rpm. R21 showed 69.38 ± 1.29% in vitro MVO release in 12 h and 96.92% retention of MVO in microspheres even after 8 week. Ointments of PEG 4000 and PEG 400 comprising MVO (F1) and R21 (F2) were developed separately. F2 showed comparatively broader zone of growth inhibition (13.33 ± 1.76-18.67 ± 0.88 mm) and less irritancy (PII 0.5833, irritation barely perceptible) than that of F1. F2 was able to avoid the direct contact of mild irritant MVO with the skin and to reduce its rapid volatility. Controlled release of MVO helped in lengthening the duration of availability of MVO in agar media and hence improved its therapeutic efficacy. In conclusion, a stable and non-irritant formulation with improved therapeutic potential was developed.

  10. Radiolabeling and physicochemical characterization of boron nitride nanotubes functionalized with glycol chitosan polymer

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Daniel Cristian Ferreira; Ferreira, Tiago Hilario; Ferreira, Carolina de Aguiar; Sousa, Edesia Martins Barros de, E-mail: sousaem@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Lab. de Materiais Nanoestruturados para Bioaplicacoes; Cardoso, Valbert Nascimento, E-mail: cardosov@farmacia.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia

    2011-07-01

    In the last years, some nanostructured systems has proposed as new drugs and radioisotopes delivery systems, aiming the diagnosis and treatment of many diseases, including the cancer. Among these systems, the Boron Nitride Nanotubes (BNNTs) showed adequate characteristics to be applied in biomedical area, due to its high stability and considerable biocompatibility. However, due to its hydrophobic characteristics, these applications are limited and its behavior in vivo (guinea pigs) is unexplored yet. Seeking to overcome this problems, in the present work, we functionalized the BNNTs (noncovalent wrapped) with glycol chitosan (GC), a biocompatible and stable polymer, in order to disperse it in water. The results showed that BNNTs were well dispersed in water with mean size and polydispersity index suitable to conduct biodistribution studies in mice. The nanostructures were physicochemical and morphologically characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Raman Spectroscopy. The results revealed that the functionalization process with glycol chitosan was obtained with successfully on BNNTs surface. Furthermore, we developed a radiolabeling protocol with {sup 99m}Tc radioisotope in functionalized BNNTs, aiming in future, to conduct image biodistribution studies in mice. The results revealed that the nanotubes were radiolabeled with radiochemical purity above of 90%, being considered suitable to scintigraphic image acquisition. (author)

  11. Biodegradable Polymer Releasing Antibiotic Developed for Drainage Catheter of Cerebrospinal Fluid: In Vitro Results

    Science.gov (United States)

    Han, Song Yup; Cho, Ki Hong; Cho, Han Jin; An, Jeong Ho; Ra, Young Sin

    2005-01-01

    The authors developed a biodegradable polymer that releases an antibiotic (nalidixic acid) slowly and continuously, for prevention of catheter-induced infection during drainage of cerebrospinal fluid. We investigated the in vitro antibiotic releasing characteristics and bacterial killing effects of the new polymer against E. coli. The novel fluoroquinolone polymer was prepared using diisopropylcarbodiimide, poly (e-caprolactone) diol, and nalidixic acid. FT-IR, mass spectrometry, and elemental analysis proved that the novel antibacterial polymer was prepared successfully without any side products. Negative MS showed that the released drug has a similar molecular weight (M.W.=232, 350) to pure drug (M.W.=232). In high pressure liquid chromatography, the released drug and drug-oligomer showed similar retention times (about 4.5-5 min) in comparison to pure drug (4.5 min). The released nalidixic acid and nalidixic acid derivatives have antibacterial characteristics against E. coli, Staphylococcus aureus, and Salmonella typhi, of more than 3 months duration. This study suggests the possibility of applying this new polymer to manufacture drainage catheters that resist catheter-induced infection, by delivering antibiotics for a longer period of more than 1 month. PMID:15832004

  12. Mechanical, Thermomechanical and Reprocessing Behavior of Green Composites from Biodegradable Polymer and Wood Flour.

    Science.gov (United States)

    Morreale, Marco; Liga, Antonio; Mistretta, Maria Chiara; Ascione, Laura; Mantia, Francesco Paolo La

    2015-11-11

    The rising concerns in terms of environmental protection and the search for more versatile polymer-based materials have led to an increasing interest in the use of polymer composites filled with natural organic fillers (biodegradable and/or coming from renewable resources) as a replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is still of fundamental importance in order to optimize the utilization of available resources, reducing the environmental impact related to the life cycle of polymer-based items. Green composites from biopolymer matrix and wood flour were prepared and the investigation focused on several issues, such as the effect of reprocessing on the matrix properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects on material reprocessability. Tensile, Dynamic-mechanical thermal (DMTA), differential scanning calorimetry (DSC) and creep tests were performed, pointing out that wood flour leads to an improvement of rigidity and creep resistance in comparison to the pristine polymer, without compromising other properties such as the tensile strength. The biopolymer also showed a good resistance to multiple reprocessing; the latter even allowed for improving some properties of the obtained green composites.

  13. Mechanical, Thermomechanical and Reprocessing Behavior of Green Composites from Biodegradable Polymer and Wood Flour

    Directory of Open Access Journals (Sweden)

    Marco Morreale

    2015-11-01

    Full Text Available The rising concerns in terms of environmental protection and the search for more versatile polymer-based materials have led to an increasing interest in the use of polymer composites filled with natural organic fillers (biodegradable and/or coming from renewable resources as a replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is still of fundamental importance in order to optimize the utilization of available resources, reducing the environmental impact related to the life cycle of polymer-based items. Green composites from biopolymer matrix and wood flour were prepared and the investigation focused on several issues, such as the effect of reprocessing on the matrix properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects on material reprocessability. Tensile, Dynamic-mechanical thermal (DMTA, differential scanning calorimetry (DSC and creep tests were performed, pointing out that wood flour leads to an improvement of rigidity and creep resistance in comparison to the pristine polymer, without compromising other properties such as the tensile strength. The biopolymer also showed a good resistance to multiple reprocessing; the latter even allowed for improving some properties of the obtained green composites.

  14. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amides

    Directory of Open Access Journals (Sweden)

    Angélica Díaz

    2014-04-01

    Full Text Available Poly(alkylene dicarboxylates constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amides derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  15. Chitosan Composites for Bone Tissue Engineering—An Overview

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2010-08-01

    Full Text Available Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca10(PO46(OH2] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%, along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial protheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed.

  16. Physicochemical Characterization of Biopolymer Chitosan Extracted from Shrimp Shells

    Directory of Open Access Journals (Sweden)

    Nezamaddin Mengelizadeh

    2015-02-01

    Full Text Available Chitosan is a deacetylated derivative of chitin, which is a naturally abundant mucopolysaccharide, supporting the matter of crustaceans, insects, and fungi. Because of its unique properties, such as non-toxicity, biodegradability, and biocompatibility, chitosan has a wide range of applications in various fields. The objective of the present work is to extract the polymer chitosan from Persian Gulf shrimp shells. In order to determine the physicochemical characteristics of the extracted chitosan, degree of deacetylation, molecular weight, water and fat binding capacities extraction rate, and apparent viscosity were measured using a variety of techniques including viscometry, weight measurement method and Fourier transform infrared spectroscopy (FTIR. The results of the study of the physicochemical properties, molecular weight (6.7×105 Da, degree of deacetylation (57%, ash content as well as yield (0.5% of the prepared chitosan indicated that shrimp processing wastes (shrimp shells are a good source of chitosan. The water binding capacity (521% and fat binding capacity (327% of the prepared chitosan are in good agreement with the other studies. The elemental analysis showed the C, H and N contents of 35.92%, 7.02%, and 8.66%, respectively. In this study, the antimicrobial activity of chitosan was evaluated against Staphylococcus aureus and Escherichia coli. The results indicated the high potential of chitosan as an antibacterial agent. Moreover, the results of the study indicated that shrimp shells are a rich source of chitin as 25.21% of the shell’s dry weight.

  17. Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications.

    Science.gov (United States)

    Jin, Haibao; Huang, Wei; Zhu, Xinyuan; Zhou, Yongfeng; Yan, Deyue

    2012-09-21

    Self-assembly of amphiphilic hyperbranched polymers (HBPs) is a newly emerging research area and has attracted increasing attention due to the great advantages in biomedical applications. This tutorial review focuses on the self-assembly of biocompatible or biodegradable amphiphilic HBPs and their cytomimetic applications, and specialities or advantages therein owing to the hyperbranched structure have also been summarized. As shown here, various supramolecular structures including micelles, vesicles, tubes, fibers and films have been prepared through the primary self-assembly processes. The primary self-assemblies can be further assembled into more complex structures through hierachical self-assembly processes. Besides, the hyperbranched polymer vesicles have demonstrated great potential to be used as model membranes to mimic cellular behaviors, such as fusion, fission and cell aggregation. Other biomedical applications of HBPs as well as their self-assemblies are also briefly summarized.

  18. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.

    Science.gov (United States)

    Nikodinovic-Runic, Jasmina; Guzik, Maciej; Kenny, Shane T; Babu, Ramesh; Werker, Alan; O Connor, Kevin E

    2013-01-01

    Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show

  19. Numerical study on injection parameters optimization of thin wall and biodegradable polymers parts

    Science.gov (United States)

    Santos, C.; Mendes, A.; Carreira, P.; Mateus, A.; Malça, C.

    2017-07-01

    Nowadays, the molds industry searches new markets, with diversified and added value products. The concept associated to the production of thin walled and biodegradable parts mostly manufactured by injection process has assumed a relevant importance due to environmental and economic factors. The growth of a global consciousness about the harmful effects of the conventional polymers in our life quality associated with the legislation imposed, become key factors for the choice of a particular product by the consumer. The target of this work is to provide an integrated solution for the injection of parts with thin walls and manufactured using biodegradable materials. This integrated solution includes the design and manufacture processes of the mold as well as to find the optimum values for the injection parameters in order to become the process effective and competitive. For this, the Moldflow software was used. It was demonstrated that this computational tool provides an effective responsiveness and it can constitute an important tool in supporting the injection molding of thin-walled and biodegradable parts.

  20. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    International Nuclear Information System (INIS)

    Kodama, Yasko; Machado, Luci D.B.; Oishi, Akihiro; Nakayama, Kazuo; Nagasawa, Naotsugu; Tamada, Masao

    2009-01-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  1. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Machado, Luci D.B., E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oishi, Akihiro; Nakayama, Kazuo, E-mail: a.oishi@aist.go.j, E-mail: kazuo-nakayama@jcom.home.ne.j [National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki-ken (Japan). Research Institute for Sustainable Chemical Innovation; Nagasawa, Naotsugu; Tamada, Masao, E-mail: nagasawa.naotsugu@jaea.go.j [Japan Atomic Energy Agency (JAEA), Gunma-ken (Japan). Quantum Beam Science Directorate

    2009-07-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  2. FTIR studies of plasticized poly(vinyl alcohol)-chitosan blend doped with NH 4NO 3 polymer electrolyte membrane

    Science.gov (United States)

    Kadir, M. F. Z.; Aspanut, Z.; Majid, S. R.; Arof, A. K.

    2011-03-01

    Fourier transform infrared (FTIR) spectroscopy studies of poly(vinyl alcohol) (PVA), and chitosan polymer blend doped with ammonium nitrate (NH 4NO 3) salt and plasticized with ethylene carbonate (EC) have been performed with emphasis on the shift of the carboxamide, amine and hydroxyl bands. 1% acetic acid solution was used as the solvent. It is observed from the chitosan film spectrum that evidence of polymer-solvent interaction can be observed from the shifting of the carboxamide band at 1660 cm -1 and the amine band at 1591 cm -1 to 1650 and 1557 cm -1 respectively and the shift of the hydroxyl band from 3377 to 3354 cm -1. The hydroxyl band in the spectrum of PVA powder is observed at 3354 cm -1 and is observed at 3343 cm -1 in the spectrum of the PVA film. On addition of NH 4NO 3 up to 30 wt.%, the carboxamide, amine and hydroxyl bands shifted from 1650, 1557 and 3354 cm -1 to 1642, 1541 and 3348 cm -1 indicating that the chitosan has complexed with the salt. In the PVA-NH 4NO 3 spectrum, the hydroxyl band has shifted from 3343 to 3272 cm -1 on addition of salt from 10 to 30 wt.%. EC acts as a plasticizing agent since there is no shift in the bands as observed in the spectrum of PVA-chitosan-EC films. The mechanism of ion migration is proposed for the plasticized and unplasticized PVA-chitosan-NH 4NO 3 systems. In the spectrum of PVA-chitosan-NH 4NO 3-EC complex, the doublet C dbnd O stretching in EC is observed in the vicinity 1800 and 1700. This indicates that there is some interaction between the salt and EC.

  3. Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres

    Directory of Open Access Journals (Sweden)

    Avik Kumar Saha

    2013-12-01

    Full Text Available The objective of this study was to formulate an oral sustained release delivery system of sodium diclofenac(DS based on sodium alginate (SA as a hydrophilic carrier in combination with chitosan (CH and sodium carboxymethyl cellulose (SCMC as drug release modifiers to overcome the drug-related adverse effects and to improve bioavailability. Microspheres of DS were prepared using an easy method of ionotropic gelation. The prepared beads were evaluated for mean particle size, entrapment efficiency, swelling capacity, erosion and in-vitro drug release. They were also subjected to various studies such as Fourier Transform Infra-Red Spectroscopy (FTIR for drug polymer compatibility, Scanning Electron Microscopy for surface morphology, X-ray Powder Diffraction Analysis (XRD and Differential Scanning Calorimetric Analysis (DSC to determine the physical state of the drug in the beads. The addition of SCMC during the preparation of polymeric beads resulted in lower drug loading and prolonged release of the DS. The release profile of batches F5 and F6 showed a maximum drug release of 96.97 ± 0.356% after 8 h, in which drug polymer ratio was decreased. The microspheres of sodium diclofenac with the polymers were formulated successfully. Analysis of the release profiles showed that the data corresponds to the diffusion-controlled mechanism as suggested by Higuchi.

  4. Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity.

    Science.gov (United States)

    Rudolph, Andreas; Teske, Michael; Illner, Sabine; Kiefel, Volker; Sternberg, Katrin; Grabow, Niels; Wree, Andreas; Hovakimyan, Marina

    2015-01-01

    Drug-eluting stents (DES) based on permanent polymeric coating matrices have been introduced to overcome the in stent restenosis associated with bare metal stents (BMS). A further step was the development of DES with biodegradable polymeric coatings to address the risk of thrombosis associated with first-generation DES. In this study we evaluate the biocompatibility of biodegradable polymer materials for their potential use as coating matrices for DES or as materials for fully bioabsorbable vascular stents. Five different polymers, poly(L-lactide) PLLA, poly(D,L-lactide) PDLLA, poly(L-lactide-co-glycolide) P(LLA-co-GA), poly(D,L-lactide-co-glycolide) P(DLLA-co-GA) and poly(L-lactide-co-ε-caprolactone), P(LLA-co-CL) were examined in vitro without and with surface modification. The surface modification of polymers was performed by means of wet-chemical (NaOH and ethylenediamine (EDA)) and plasma-chemical (O2 and NH3) processes. The biocompatibility studies were performed on three different cell types: immortalized mouse fibroblasts (cell line L929), human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC). The biocompatibility was examined quantitatively using in vitro cytotoxicity assay. Cells were investigated immunocytochemically for expression of specific markers, and morphology was visualized using confocal laser scanning (CLSM) and scanning electron (SEM) microscopy. Additionally, polymer surfaces were examined for their thrombogenicity using an established hemocompatibility test. Both endothelial cell types exhibited poor viability and adhesion on all five unmodified polymer surfaces. The biocompatibility of the polymers could be influenced positively by surface modifications. In particular, a reproducible effect was observed for NH3-plasma treatment, which enhanced the cell viability, adhesion and morphology on all five polymeric surfaces. Surface modification of polymers can provide a useful approach to enhance

  5. Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity

    Science.gov (United States)

    Rudolph, Andreas; Teske, Michael; Illner, Sabine; Kiefel, Volker; Sternberg, Katrin; Grabow, Niels; Wree, Andreas; Hovakimyan, Marina

    2015-01-01

    Purpose Drug-eluting stents (DES) based on permanent polymeric coating matrices have been introduced to overcome the in stent restenosis associated with bare metal stents (BMS). A further step was the development of DES with biodegradable polymeric coatings to address the risk of thrombosis associated with first-generation DES. In this study we evaluate the biocompatibility of biodegradable polymer materials for their potential use as coating matrices for DES or as materials for fully bioabsorbable vascular stents. Materials and Methods Five different polymers, poly(L-lactide) PLLA, poly(D,L-lactide) PDLLA, poly(L-lactide-co-glycolide) P(LLA-co-GA), poly(D,L-lactide-co-glycolide) P(DLLA-co-GA) and poly(L-lactide-co-ε-caprolactone), P(LLA-co-CL) were examined in vitro without and with surface modification. The surface modification of polymers was performed by means of wet-chemical (NaOH and ethylenediamine (EDA)) and plasma-chemical (O2 and NH3) processes. The biocompatibility studies were performed on three different cell types: immortalized mouse fibroblasts (cell line L929), human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC). The biocompatibility was examined quantitatively using in vitro cytotoxicity assay. Cells were investigated immunocytochemically for expression of specific markers, and morphology was visualized using confocal laser scanning (CLSM) and scanning electron (SEM) microscopy. Additionally, polymer surfaces were examined for their thrombogenicity using an established hemocompatibility test. Results Both endothelial cell types exhibited poor viability and adhesion on all five unmodified polymer surfaces. The biocompatibility of the polymers could be influenced positively by surface modifications. In particular, a reproducible effect was observed for NH3-plasma treatment, which enhanced the cell viability, adhesion and morphology on all five polymeric surfaces. Conclusion Surface modification of

  6. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis

    NARCIS (Netherlands)

    Mucci, Maira; Noyma, Natalia Pessoa; de Magalhaes, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iame Alves; Huszar, Vera L. M.; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-01-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show

  7. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis

    NARCIS (Netherlands)

    Nunes Teixeira Mucci, Maira; Noyma, Natalia Pessoa; Magalhães, de Leonardo; Miranda, Marcela; Oosterhout, van Frank; Guedes, Iamê Alves; Huszar, Vera L.M.; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-01-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show

  8. Efficacy of chitosan and other natural polymers in removing COD, TSS, heavy metals and pahs from municipal wastewater at Deer Island, Massachusetts. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Murcott, S.; Harleman, D.R.F.

    1992-10-01

    A series of tests was conducted at the Deer Island Primary Treatment Plant during the spring and summer of 1992 to determine the efficacy of chitosan and other natural polymers as coagulants, coagulant aids and flocculents in wastewater treatment. Prior to this undertaking, as part of the MIT Investigation of Chemically Enhanced Primary Treatment at the MWRA Project, the efficacy of metal salts and synthetic polymers had been studied at Deer Island. Those tests provided the standard against which to measure the viability of natural polymer use in municipal wastewater treatment. The major conclusions of the chitosan and other natural polymers study for Deer Island wastewater are included.

  9. Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter.

    Science.gov (United States)

    Dayyoub, Eyas; Frant, Marion; Pinnapireddy, Shashank Reddy; Liefeith, Klaus; Bakowsky, Udo

    2017-10-05

    Bacterial biofilm and crystalline deposits are the common causes of failure of long-term indwelling urinary catheter. Bacteria colonise the catheter surface causing serious infections in the urinary tract and encrustations that can block the catheter and induce trauma in patients. In this study, the strategy used to resist bacterial adhesion and encrustation represents a combination of the antibacterial effects of norfloxacin and silver nanoparticles and the PLGA-based neutralisation of alkali products of urea hydrolysis gained through the degradation of the polymer in an aqueous milieu. Silver nanoparticles were coated with tetraether lipids (TEL) to avoid aggregation when dispersed in acetone and during the film formation. The polymer films loaded with the two antibacterial agents were applied on Polyurethane (PUR) and Silicon sheets. We demonstrated the antibacterial and anti-adhesion effectiveness of the coatings whereby commercially available biocompatible polymers PUR and Silicon were used as controls. Using artificial urine and an in vitro encrustation model, it was shown that the coatings resist the encrustation for at least 2 weeks. This combination of a biodegradable polymer and wide-range antibacterial agents represents a potentially attractive biocompatible coating for urinary catheters. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, M. [Shenzhen Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Song, Shenhua, E-mail: shsonguk@aliyun.com [Shenzhen Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Gu, Kunming; Tang, Jiaoning [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Zhang, Zhongyi [Advanced Polymer and Composites (APC) Research Group, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, Hampshire (United Kingdom)

    2015-05-15

    Graphical abstract: - Highlights: • The minimum T{sub m} and χ{sub c} values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same.

  11. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    International Nuclear Information System (INIS)

    Ravi, M.; Song, Shenhua; Gu, Kunming; Tang, Jiaoning; Zhang, Zhongyi

    2015-01-01

    Graphical abstract: - Highlights: • The minimum T m and χ c values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same

  12. Final five-year outcomes after implantation of biodegradable polymer-coated biolimus-eluting stents versus durable polymer-coated sirolimus-eluting stents

    DEFF Research Database (Denmark)

    Jakobsen, Lars; Christiansen, Evald H; Maeng, Michael

    2017-01-01

    AIMS: Our aim was to report the long-term safety and efficacy of the biodegradable polymer-coated biolimus- eluting Nobori stent compared to the durable polymer-coated sirolimus-eluting CYPHER stent. METHODS AND RESULTS: SORT OUT V randomised 2,468 patients 1:1 to the Nobori (n=1,229) versus...... also found to be similar in patients treated with the two study stents (Nobori 23/1,229 [1.9%] vs. CYPHER 18/1,239 [1.5%]; OR 1.31, 95% CI: 0.70-2.47; p=0.40), as were the other secondary endpoints. CONCLUSIONS: At five-year follow-up, the Nobori stent with a biodegradable polymer coating provided...... a similar safety and efficacy profile when compared to the durable polymer first-generation CYPHER stent....

  13. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications.

    Science.gov (United States)

    Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham Ur

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of degumming time on silkworm silk fibre for biodegradable polymer composites

    Science.gov (United States)

    Ho, Mei-po; Wang, Hao; Lau, Kin-tak

    2012-02-01

    Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.

  15. Chitosan microspheres loaded with holmium-165 produced by spray dryer for liver cancer therapy: preliminary experiments

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Douglas Massao; Pires, Geovanna; Lira, Raphael A. de; Melo, Vitor H.S.; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de, E-mail: douglas.miyamoto@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia

    2011-07-01

    Chitosan is a biopolymer of 2-deoxy-2-amino-D-glucose that is obtained by deacetylation of chitin. It's biocompatible, biodegradable, non toxic and has antitumor activity. Chitosan has many applications, such as their microparticles that can be used to treat prostate cancer, rheumatoid arthritis, and for liver tumor brachytherapy treatment. Our group is developing different biodegradable polymer-based microspheres loaded with holmium-165 for this purpose. The Chitosan microspheres were produced loaded with holmium (III) chloride, and not loaded with it, by Mini Spray Dryer procedure. The microspheres were evaluated by scanning electron microscopy, energy dispersive spectroscopy (EDS), confocal laser scanning microscopy, thermogravimetric analysis, particle size, and X-ray diffraction. The EDS analysis confirmed the holmium chloride presence into the prepared chitosan microparticles. (author)

  16. Chitosan microspheres loaded with holmium-165 produced by spray dryer for liver cancer therapy: preliminary experiments

    International Nuclear Information System (INIS)

    Miyamoto, Douglas Massao; Pires, Geovanna; Lira, Raphael A. de; Melo, Vitor H.S.; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de; Osso Junior, Joao Alberto

    2011-01-01

    Chitosan is a biopolymer of 2-deoxy-2-amino-D-glucose that is obtained by deacetylation of chitin. It's biocompatible, biodegradable, non toxic and has antitumor activity. Chitosan has many applications, such as their microparticles that can be used to treat prostate cancer, rheumatoid arthritis, and for liver tumor brachytherapy treatment. Our group is developing different biodegradable polymer-based microspheres loaded with holmium-165 for this purpose. The Chitosan microspheres were produced loaded with holmium (III) chloride, and not loaded with it, by Mini Spray Dryer procedure. The microspheres were evaluated by scanning electron microscopy, energy dispersive spectroscopy (EDS), confocal laser scanning microscopy, thermogravimetric analysis, particle size, and X-ray diffraction. The EDS analysis confirmed the holmium chloride presence into the prepared chitosan microparticles. (author)

  17. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  18. Novel application of a Fe-Zn double-metal cyanide catalyst in the synthesis of biodegradable, hyperbranched polymers.

    Science.gov (United States)

    Sebastian, Joby; Srinivas, Darbha

    2011-10-07

    The use of Fe-Zn double-metal cyanide as a solid catalyst for synthesizing biodegradable, hyperbranched polymers from diacids and glycerol has been reported, for the first time, wherein acidity, micro-mesoporosity and hydrophobicity of the catalyst played an important role in controlling gelation. This journal is © The Royal Society of Chemistry 2011

  19. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    OpenAIRE

    Faisal Raza; Hajra Zafar; Ying Zhu; Yuan Ren; Aftab -Ullah; Asif Ullah Khan; Xinyi He; Han Han; Md Aquib; Kofi Oti Boakye-Yiadom; Liang Ge

    2018-01-01

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All...

  20. Rheological and structural studies of carboxymethyl derivatives of chitosan

    Science.gov (United States)

    Winstead, Cherese; Katagumpola, Pushpika

    2014-05-01

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G" dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method.

  1. Rheological and structural studies of carboxymethyl derivatives of chitosan

    International Nuclear Information System (INIS)

    Winstead, Cherese; Katagumpola, Pushpika

    2014-01-01

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G' dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), 1 H Nuclear Magnetic Resonance ( 1 H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method

  2. Emerging Chitosan-Based Films for Food Packaging Applications.

    Science.gov (United States)

    Wang, Hongxia; Qian, Jun; Ding, Fuyuan

    2018-01-17

    Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.

  3. Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface.

    Science.gov (United States)

    Bedair, Tarek M; Cho, Youngjin; Joung, Yoon Ki; Han, Dong Keun

    2014-10-01

    Metal-based drug-eluting stents (DESs) have severe drawbacks such as peeling-off and cracking of the coated polymer. To prevent the fracture of polymer-coated layer and improve the durability of DES, poly(l-lactide) (PLLA) brushes were synthesized onto cobalt-chromium (Co-Cr or CC) surface through atom transfer radical polymerization (ATRP) of 2-hydroxyethylmethacrylate (HEMA) followed by surface-initiated ring opening polymerization (SI-ROP) of l-lactide. The polymer brushes were then characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), water contact angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All of the unmodified and modified Co-Cr surfaces were coated with a matrix of poly(d,l-lactide) (PDLLA) and sirolimus (SRL). The in vitro drug release profile was measured for 70 days. The PLLA-modified Co-Cr showed a biphasic release pattern in the initial burst followed by a slow release. On the other hand, the unmodified Co-Cr showed fast drug release and detachment of the coated polymer layer due to the instability of the polymer layer on Co-Cr surface. In comparison, the PLLA-modified Co-Cr preserved a uniform coating without detachment even after 6 weeks of degradation test. The platelet morphology and low density of platelet adhered on the modified layer and the SRL-in-PDLLA coated Co-Cr surfaces demonstrated that these samples would be blood compatible. Therefore, the introduction of PLLA brush onto Co-Cr surface is proved to dramatically improve the durability of the coating layer, and it is a promising strategy to prevent the coating defects found in DESs. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A life cycle framework to support materials selection for Ecodesign: A case study on biodegradable polymers

    International Nuclear Information System (INIS)

    Ribeiro, I.; Peças, P.; Henriques, E.

    2013-01-01

    Highlights: • Life cycle framework to support material selection in Ecodesign. • Early design stage estimates and sensitivity analyses based on process-based models. • Sensitivity analysis to product geometry, industrial context and EoL scenarios. • Cost and environmental performance comparison – BDP vs. fossil based polymers. • Best alternatives mapping integrating cost and environmental performances. - Abstract: Nowadays society compels designers to develop more sustainable products. Ecodesign directs product design towards the goal of reducing environmental impacts. Within Ecodesign, materials selection plays a major role on product cost and environmental performance throughout its life cycle. This paper proposes a comprehensive life cycle framework to support Ecodesign in material selection. Dealing with new materials and technologies in early design stages, process-based models are used to represent the whole life cycle and supply integrated data to assess material alternatives, considering cost and environmental dimensions. An integrated analysis is then proposed to support decision making by mapping the best alternative materials according to the importance given to upstream and downstream life phases and to the environmental impacts. The proposed framework is applied to compare the life cycle performance of injection moulded samples made of four commercial biodegradable polymers with different contents of Thermo Plasticized Starch and PolyLactic Acid and a common fossil based polymer, Polypropylene. Instead of labelling materials just as “green”, the need to fully capture all impacts in the whole life cycle was shown. The fossil based polymer is the best economic alternative, but polymers with higher content of Thermo Plasticized Starch have a better environmental performance. However, parts geometry and EoL scenarios play a major role on the life cycle performance of candidate materials. The selection decision is then supported by mapping

  5. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications.

    Science.gov (United States)

    Park, Jongsung; Kim, Ji-Kwan; Patil, Swati J; Park, Jun-Kyu; Park, SuA; Lee, Dong-Weon

    2016-06-02

    This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm² and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone) stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  6. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jongsung Park

    2016-06-01

    Full Text Available This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm2 and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  7. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    Science.gov (United States)

    Cardoso, Elisabeth C. L.; Scagliusi, Sandra R.; Lima, Luis F. C. P.; Bueno, Nelson R.; Brant, Antonio J. C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT).

  8. Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy.

    Science.gov (United States)

    Xiao, Haihua; Li, Wenliang; Qi, Ruogu; Yan, Lesan; Wang, Rui; Liu, Shi; Zheng, Yonghui; Xie, Zhigang; Huang, Yubin; Jing, Xiabin

    2012-11-10

    An oxaliplatin pro-drug (Oxa(IV)-COOH) with an axial carboxyl group was synthesized and conjugated to biodegradable polymers with pendant hydroxyl groups to prepare polymer-Oxa(IV) conjugates. A hydrophobic anthracycline-based drug, daunorubicin (DRB) was conjugated to similar biodegradable polymers with carboxyl groups to synthesize polymer-DRB conjugates. The two drug conjugates have the similar polymer backbone and are amphiphilic; thus, they can co-assemble into composite micelles. In the composite micelles, the polymer-Oxa(IV) conjugates can release clinically widely used water soluble anticancer drug oxaliplatin (Oxa(II)) upon reduction, while polymer-DRB conjugate is thought to release DRB via acid hydrolysis in the cancer cells. In this way, combination of the hydrophilic platinum drug Oxa(II) and hydrophobic drug DRB can be realized by delivering them in one platform. Moreover, the composite micelles showed reduced systematic toxicity and greater synergistic effect than combination of small molecules of the two anticancer drugs both in vitro and in vivo; thus, this polymer based combination therapy can be useful in future clinic application. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Implantable biodegradable polymers for IUdR radiosensitization of human glioma in vivo

    International Nuclear Information System (INIS)

    Williams, Jeffery; Dillehay, Larry; Tabassi, Kevin; Sipos, Eric; Brem, Henry

    1996-01-01

    Purpose: Halogenated pyrimidines are potentially useful for the radiosensitization of human malignant glioma. Therefore, we tested a synthetic, implantable biodegradable polymer for the controlled in vitro release of 5-iodo-2'-deoxyuridine (IUdR) and measured the resultant in vivo radiosensitization in nude mice bearing intracranial U251 human malignant glioma xenografts. Materials and Methods: In vitro: To measure release, increasing (10%, 30%, 50%) proportions of IUdR in synthetic [(poly(bis(p-carboxyphenoxy)-propane) (PCPP):sebacic acid (SA) (PCPP:SA ratio 20:80)] polymer discs were incubated in buffered physiologic saline solution. The supernatant fractions were periodically removed, replaced and assayed for IUdR. To test radiosensitization, U251 cells were incubated with or without 10 uM IUdR for 3 days followed by acute irradiation (0, 2.5, 5.0, or 10 Gy). In vivo: Polymer discs with 200 uCi of 125-IUdR were implanted intracranially in nude mice. Activity (cpm) was serially measured at specified times up to 311 hours after implantation via a collimated scintillation detector. To measure radiosensitization in vivo, mice had sequential intracranial inoculation of 2 x 10 5 U251 cells, implantation of polymer discs without (empty control) or with 50% IUdR, and radiation. We tested intensification and timing of radiation vs. timing of IUdR polymer implantation. When measured from the day of cellular inoculation, the days of implantation of empty (control) or 50% IUdR polymers and the subsequent schedules for radiation were: Expt. 1.) day 5 (5 Gy on days 7 and 8), Expt. 2.) days 4 or 7 (5 Gy on days 8 and 10), Expt. 3.) days 4 or 7 (2 Gy BID x 4 on days 7-10) and Expt. 4.) day 5 or 8 (2 Gy BID x 4 on days 8-11). Survival was measured. Results: In vitro: After 4 days the cumulative percentages of IUdR that were released were 43.7 ± 0.1, 70.0 ± 0.2, and 90.2 ± 0.2 (p 10 ) was -2.02 ± 0.02 or -3.68 ± 0.11 (p < 0.001), respectively. In vivo: The externally

  10. Polymer/hemoglobin assemblies: biodegradable oxygen carriers for artificial red blood cells.

    Science.gov (United States)

    Li, Taihang; Jing, Xiabin; Huang, Yubin

    2011-07-07

    In routine clinical procedures, blood transfusion is now suffering from the defects of the blood products, like cross-matching, short storage time and virus infection. Various blood substitutes have been designed by researchers through continual efforts. With recent progress in nanotechnology, new types of artificial red blood cells with cellular structure are available. This article aims to describe some artificial red blood cells which encapsulate or conjugate hemoglobin molecules through various approaches, especially the nanoscale self-assembly technique, to mitigate the adverse effects of free hemoglobin molecules. These types of artificial red blood cell systems, which make use of biodegradable polymers as matrix materials, show advantages over the traditional types. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Poly-γ-Glutamic Acid: Biodegradable Polymer for Potential Protection of Beneficial Viruses

    Directory of Open Access Journals (Sweden)

    Ibrahim R. Khalil

    2016-01-01

    Full Text Available Poly-γ-glutamic acid (γ-PGA is a naturally occurring polymer, which due to its biodegradable, non-toxic and non-immunogenic properties has been used successfully in the food, medical and wastewater industries. A major hurdle in bacteriophage application is the inability of phage to persist for extended periods in the environment due to their susceptibility to environmental factors such as temperature, sunlight, desiccation and irradiation. Thus, the aim of this study was to protect useful phage from the harmful effect of these environmental factors using the γ-PGA biodegradable polymer. In addition, the association between γ-PGA and phage was investigated. Formulated phage (with 1% γ-PGA and non-formulated phage were exposed to 50 °C. A clear difference was noticed as viability of non-formulated phage was reduced to 21% at log10 1.3 PFU/mL, while phage formulated with γ-PGA was 84% at log10 5.2 PFU/mL after 24 h of exposure. In addition, formulated phage remained viable at log10 2.5 PFU/mL even after 24 h of exposure at pH 3 solution. In contrast, non-formulated phages were totally inactivated after the same time of exposure. In addition, non-formulated phages when exposed to UV irradiation died within 10 min. In contrast also phages formulated with 1% γ-PGA had a viability of log10 4.1 PFU/mL at the same exposure time. Microscopy showed a clear interaction between γ-PGA and phages. In conclusion, the results suggest that γ-PGA has an unique protective effect on phage particles.

  12. Injectable and biodegradable temperature-responsive mixed polymer systems providing variable gel-forming pH regions.

    Science.gov (United States)

    Yoshida, Yasuyuki; Kawahara, Keisuke; Mitsumune, Shintaro; Kuzuya, Akinori; Ohya, Yuichi

    Aqueous solutions of biodegradable polymers exhibiting sol-to-gel transitions in response to external stimuli such as temperature and pH are expected to be used as injectable polymers (IPs) for biomedical applications. In this study, we prepared novel biodegradable temperature-responsive IP systems providing variable gel-forming pH regions. We synthesized PCGA-b-PEG-b-PCGA (tri-PCG) and attached carboxylic acid or primary amine groups on both termini, tri-PCG-COOH and tri-PCG-NH 2 , and investigated the temperature-responsive sol-to-gel transition behavior of the mixtures of these two copolymers at various pHs. We found that the gel-forming pH region of the mixed system could be easily controlled by simply changing the mixing ratios of these polymers.

  13. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  14. Synthesis of Biodegradable Polymer Micro- and Nanoparticles for Controlled Drug Delivery by Multiplexed Electrosprays

    Science.gov (United States)

    Almeria, Begona

    The goal of controlled drug delivery is to administer sustained amounts of a therapeutic agent over a prolonged period of time, improving the drug efficacy as compared to conventional, bolus doses that lead to variable concentrations of drug in blood. Although there are several systems capable to provide such a continuous-dose-based treatment, the use of biodegradable polymer micro- and, especially, nanoparticles offers multiple advantages with respect to other platforms. Their small size allows them to pass through physical barriers in the body and reach the site of treatment, allowing for a localized delivery, reducing side effects and toxicity. Polymer nanoparticles have lower clearance by the immune system, and are especially useful in intracellular delivery, delivery to the lymphatic system and the treatment of tumors, where the site of treatment is difficult to reach by larger particles. Conventional methods for biodegradable particle production rely predominately on batch, emulsion preparation methods and suffer from several shortcomings: low encapsulation efficiency (˜10% for hydrophilic drugs), difficulty to generate sufficiently small (dthe micro scale, and poor repeatability. We have developed an alternative process based on electrospray (ES) that offers distinct advantages and overcomes all of these limitations. We demonstrate this process with the Poly(DL-lactic-co-glycolic acid) (PLGA) system encapsulating agents such as Doxorubicin, Rhodamine B and Rhodamine B octadecyl ester prechlorate. We also employ this method for the generation of theranostic systems that combine their therapeutic mission with imaging capabilities to detect the biodistribution of particles inside the body. PLGA microparticles in different sizes, morphologies and compactness are generated using the electrospray-drying route. The size of the synthesized particles is primarily controlled by the delicate tuning of the solution physical properties and the ES operational parameters

  15. Chitosan based edible films and coatings: a review.

    Science.gov (United States)

    Elsabee, Maher Z; Abdou, Entsar S

    2013-05-01

    Chitosan is a biodegradable biocompatible polymer derived from natural renewable resources with numerous applications in various fields, and one of which is the area of edible films and coatings. Chitosan has antibacterial and antifungal properties which qualify it for food protection, however, its weak mechanical properties, gas and water vapor permeability limit its uses. This review discusses the application of chitosan and its blends with other natural polymers such as starch and other ingredients for example essential oils, and clay in the field of edible films for food protection. The mechanical behavior and the gas and water vapor permeability of the films are also discussed. References dealing with the antimicrobial behavior of these films and their impact on food protection are explored. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation.

    Science.gov (United States)

    Zodrow, Katherine R; Schiffman, Jessica D; Elimelech, Menachem

    2012-10-02

    Biofilm-associated infections are one of the leading causes of death in the United States. Although infections may be treated with antibiotics, the overuse of antibiotics has led to the spread of antibiotic resistance. Many natural antimicrobial compounds derived from edible plants are safe for human use and target bacteria nonspecifically. Therefore, they may impair biofilm formation with less evolutionary pressure on pathogens. Here, we explore the use of two natural antimicrobial compounds, cinnamaldehyde (CA, from cinnamon) and carvacrol (CARV, from oregano), for biofilm prevention. We have fabricated and characterized films that incorporate CA and CARV into the biodegradable, FDA-approved polymer poly(lactic-co-glycolic acid), PLGA. The addition of CA and CARV to PLGA films not only adds antimicrobial activity but also changes the surface properties of the films, making them more hydrophilic and therefore more resistant to bacterial attachment. An addition of 0.1% CA to a PLGA film significantly impairs biofilm development by Staphylococcus aureus, and 0.1% CARV in PLGA significantly decreases biofilm formation by both Escherichia coli and S. aureus. Pseudomonas aeruginosa, which is less susceptible to CA and CARV, was not affected by the addition of 0.1% CA or CARV to the PLGA coatings; however, P. aeruginosa biofilm was significantly reduced by 1.0% CA. These results indicate that both CA and CARV could potentially be used in low concentrations as natural additives in polymer coatings for indwelling devices to delay colonization by bacteria.

  17. Biodegradable poly lactone-family polymer and their applications in medical field

    International Nuclear Information System (INIS)

    Wang, S.; Bei, J.

    2005-01-01

    Poly lactone-family polymers such as poly lactide, poly glycolide and polycaprolactone are kind aliphatic polyester. Since they can degrade by hydrolysis reaction under all the ph condition and possess biocompatibility, biodegradability and other good properties, especially they included not peptide bond in their molecules, they are non-antigen and non-immunization, as well as have no-toxicity and no-stimulation. So they are interested biomaterials and very useful in medical field. However the properties of all of the homo-poly lactones can not be changed in a large range, the limited properties result in limited applications of these homo-poly lactones. Based on macromolecular design, a series of copolylactones such as poly(lactide-co-glycolide) (PLGA), poly(glycolide-co-lactide-co-caprolactone) tri- component copolymer (PGLC), tri- and multi-block poly lactide/poly(ethylene oxide) copolymer (TPLE and BPLE), as well as polycaprolactone/poly lactide/poly(ethylene oxide) copolymer (PCEL) et al were synthesized by copolymerization among various lactone monomers or lactone monomers with poly(ethylene glycol). These copolylactones have wide range of degradation life from several months to years and different mechanical properties. After plasma treatment the surface property of the copolylactones were improved further and cell affinity of the copolylactones was improved obviously. The applications of these poly lactone-family polymers in medical field for used as drug carrier in drug delivery system, and as cell scaffold in tissue engineering were discussed

  18. Arginine-based biodegradable ether-ester polymers with low cytotoxicity as potential gene carriers.

    Science.gov (United States)

    Memanishvili, Tamar; Zavradashvili, Nino; Kupatadze, Nino; Tugushi, David; Gverdtsiteli, Marekh; Torchilin, Vladimir P; Wandrey, Christine; Baldi, Lucia; Manoli, Sagar S; Katsarava, Ramaz

    2014-08-11

    The success of gene therapy depends on safe and effective gene carriers. Despite being widely used, synthetic vectors based on poly(ethylenimine) (PEI), poly(l-lysine) (PLL), or poly(l-arginine) (poly-Arg) are not yet fully satisfactory. Thus, both improvement of established carriers and creation of new synthetic vectors are necessary. A series of biodegradable arginine-based ether-ester polycations was developed, which consists of three main classes: amides, urethanes, and ureas. Compared to that of PEI, PLL, and poly-Arg, much lower cytotoxicity was achieved for the new cationic arginine-based ether-ester polymers. Even at polycation concentrations up to 2 mg/mL, no significant negative effect on cell viability was observed upon exposure of several cell lines (murine mammary carcinoma, human cervical adenocarcinoma, murine melanoma, and mouse fibroblast) to the new polymers. Interaction with plasmid DNA yielded compact and stable complexes. The results demonstrate the potential of arginine-based ether-ester polycations as nonviral carriers for gene therapy applications.

  19. Self-Rolled Porous Hollow Tubes Made up of Biodegradable Polymers.

    Science.gov (United States)

    Peng, Ling; Zhu, Jian; Agarwal, Seema

    2017-05-01

    A tubular highly porous scaffold of polylactide (PLA) and poly-ε-caprolactone (PCL) is fabricated by self-rolling of a 2D fibrous bilayer of PLA and PCL in water without use of any classical thermo-/pH-responsive polymers. The self-rolling and diameter of the tube are dependent upon the bilayer thickness and temperature. A 75 µm thick 2D bilayer (PLA = 25 µm; PCL = 50 µm) rolls to a hollow tube of diameter around 0.41 mm with multilayered wall at 40 °C within 5 min. The tubes keep their form and size in water at all temperatures once they are formed. The interesting properties of the hollow tubes, that is, permeation of gases through the walls and flow of water without leakage under tested conditions in combination with good mechanical stability, use of only biodegradable polymers, and easy and reproducible fabrication method, allow them to be promising candidates for future studies as scaffolds for tissue engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    International Nuclear Information System (INIS)

    Tu, K T; Chung, C K

    2016-01-01

    An integrated technology of CO 2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO 2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO 2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO 2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold. (paper)

  1. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  2. Synthesis of Glycyrrhetinic Acid-Modified Chitosan 5-Fluorouracil Nanoparticles and Its Inhibition of Liver Cancer Characteristics in Vitro and in Vivo

    OpenAIRE

    Cheng, Mingrong; Gao, Xiaoyan; Wang, Yong; Chen, Houxiang; He, Bing; Xu, Hongzhi; Li, Yingchun; Han, Jiang; Zhang, Zhiping

    2013-01-01

    Nanoparticle drug delivery (NDDS) is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA), to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by Fourier transformed inf...

  3. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Brant, Antonio J.C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT). - Highlights: • Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. • Landfills will not be enough for an estimated accumulation of 25 million tons per year of plastics. • Incorporation of natural/synthetic polymers in PP/HMSPP to reduce

  4. Selenium-Substituted Hydroxyapatite/Biodegradable Polymer/Pamidronate Combined Scaffold for the Therapy of Bone Tumour

    Directory of Open Access Journals (Sweden)

    Ewa Oledzka

    2015-09-01

    Full Text Available The present study evaluated a new concept of combined scaffolds as a promising bone replacement material for patients with a bone tumour or bone metastasis. The scaffolds were composed of hydroxyapatite doped with selenium ions and a biodegradable polymer (linear or branched, and contained an active substance—bisphosphonate. For this purpose, a series of biodegradable polyesters were synthesized through a ring-opening polymerization of ε-caprolactone or d,l-lactide in the presence of 2-hydroxyethyl methacrylate (HEMA or hyperbranched 2,2-bis(hydroxymethylpropionic acid polyester-16-hydroxyl (bis-MPA initiators, substances often used in the synthesis of medical materials. The polymers were obtained with a high yield and a number-average molecular weight up to 45,300 (g/mol. The combined scaffolds were then manufactured by a direct compression of pre-synthesized hydroxyapatite doped with selenite or selenate ions, obtained polymer and pamidronate as a model drug. It was found that the kinetic release of the drug from the scaffolds tested in vitro under physiological conditions is strongly dependent on the physicochemical properties and average molecular weight of the polymers. Furthermore, there was good correlation with the hydrolytic biodegradation results of the scaffolds fabricated without drug. The preliminary findings suggest that the fabricated combined scaffolds could be effectively used for the sustained delivery of bioactive molecules at bone defect sites.

  5. Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors.

    Science.gov (United States)

    Schusser, Sebastian; Krischer, Maximilian; Bäcker, Matthias; Poghossian, Arshak; Wagner, Patrick; Schöning, Michael J

    2015-07-07

    Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(D,L-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.

  6. Chitosan-assisted buffer layer incorporated with hydroxypropyl methylcellulose-coated silver nanowires for paper-based sensors

    Science.gov (United States)

    Xu, Duohua; Qiu, Jingshen; Wang, Yucheng; Yan, Jiajun; Liu, Gui-Shi; Yang, Bo-Ru

    2017-06-01

    Fabricating flexible sensors on paper is intriguing. Here, we exploited chitosan as a buffer layer to facilitate the fabrication of silver nanowire (AgNW) networks and flexible devices on commercial paper. We found that the AgNW networks exhibited uniform distribution, smooth surface, and strong adhesion. The enhanced adhesion of AgNWs was attributed to the intermolecular hydrogen bonding between chitosan and hydroxypropyl methylcellulose (HPMC), which can be tailored by tuning the pH of the chitosan aqueous solution. This facile fabrication method utilizing biodegradable polymers and cost-effective AgNW ink holds great promise for portable, wearable, and disposable paper-based electronics.

  7. Development of dual-sensitive smart polymers by grafting chitosan with poly (N-isopropylacrylamide: an overview

    Directory of Open Access Journals (Sweden)

    Nívia do Nascimento Marques

    2015-06-01

    Full Text Available AbstractA great deal of research on polymers over the past two decades has been focused on the development of stimuli-responsive polymers to obtain materials able to respond to specific surroundings. In this paper, an overview is presented of the concepts, behavior and applicability of these “smart polymers”. Polymers that are temperature- or pH-sensitive are discussed in detail, including the response mechanisms and types of macromolecules, because they are easy to handle and have a wide range of applications. Finally, the combination of pH and temperature responsive properties by means of graft copolymerization of chitosan with poly (N-isopropylacrylamide (PNIPAM was chosen to represent some synthetic routes and properties of dual-sensitive polymeric systems developed currently.

  8. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds

    Science.gov (United States)

    Ishaug, S. L.; Crane, G. M.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Bone formation was investigated in vitro by culturing stromal osteoblasts in three-dimensional (3-D), biodegradable poly(DL-lactic-co-glycolic acid) foams. Three polymer foam pore sizes, ranging from 150-300, 300-500, and 500-710 microns, and two different cell seeding densities, 6.83 x 10(5) cells/cm2 and 22.1 x 10(5) cells/cm2, were examined over a 56-day culture period. The polymer foams supported the proliferation of seeded osteoblasts as well as their differentiated function, as demonstrated by high alkaline phosphatase activity and deposition of a mineralized matrix by the cells. Cell number, alkaline phosphatase activity, and mineral deposition increased significantly over time for all the polymer foams. Osteoblast foam constructs created by seeding 6.83 x 10(5) cells/cm2 on foams with 300-500 microns pores resulted in a cell density of 4.63 x 10(5) cells/cm2 after 1 day in culture; they had alkaline phosphatase activities of 4.28 x 10(-7) and 2.91 x 10(-6) mumol/cell/min on Days 7 and 28, respectively; and they had a cell density that increased to 18.7 x 10(5) cells/cm2 by Day 56. For the same constructs, the mineralized matrix reached a maximum penetration depth of 240 microns from the top surface of the foam and a value of 0.083 mm for mineralized tissue volume per unit of cross sectional area. Seeding density was an important parameter for the constructs, but pore size over the range tested did not affect cell proliferation or function. This study suggests the feasibility of using poly(alpha-hydroxy ester) foams as scaffolding materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  9. Methacrylated monosaccharides as the modifiers for carbochain polymers: Synthesis, mechanical/thermal properties and biodegradability of hybrids

    Science.gov (United States)

    Yakushev, P.; Bershtein, V.; Bukowska-Śluz, I.; Sobiesiak, M.; Gawdzik, B.

    2016-05-01

    Methacrylated derivatives of glucose (MGLU) and galactose (MGAL) were synthesized by the procedure described by Vogel, and their copolymers with methyl methacrylate (MMA) and MMA/N-vinyl pyrrolidone (MMA/NVP) (1:1) mixture were obtained with the aim to modify some properties of carbochain polymers, in particular to generate their biodegradability. These hybrids of synthetic and natural products, with 10, 20 or 30 wt. % modifiers, were characterized by DMA and TGA methods and in the biodegradation tests. Increasing Tg values by 20-30°C was registered in all cases whereas thermal stability was improved only for PMMA due to modification. On the contrary, only for hybrids based on hygroscopic MMA/NVP copolymer the essential biodegradability could be generated.

  10. High barrier multilayer packaging by the coextrusion method: The effect of nanocomposites and biodegradable polymers on flexible film properties

    Science.gov (United States)

    Thellen, Christopher T.

    The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.

  11. Biodegradable and Multifunctional Polymer Micro-Tubes for Targeting Photothermal Therapy

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2014-07-01

    Full Text Available We describe an innovative form of polymer micro-tubes with diverse functions including biodegradation, magnetic manipulation, and photothermal effect that employs and activates photothermal therapy to target cancer cells. The micro-tube comprised soybean protein isolate, poly-l-glutamic acid, magnetite nanoparticles, plus gold nanoparticles. Through electrostatic force, these components, with opposite charges, formed pairs of layers in the pores of the template, various bilayers of soybean protein isolate and poly-l-glutamic acid served as the biodegradable building wall to each micro-tube. The layers of magnetite nanoparticle functionalized micro-tubes enabled the micro-tube manipulate to target the cancer cells by using an external magnetic field. The photo-thermal effect of the layer of gold nanoparticles on the outer surface of the micro-tubes, when under irradiation and when brought about by the near infrared radiation, elevated each sample’s temperature. In addition, and when under the exposure of the near infrared radiation, the elevated temperature of the suspension of the micro-tubes, likewise with a concentration of 0.2 mg/mL, and similarly with a power of 2 W and as well maintained for 10 min, elevated the temperature of the suspension beyond 42 °C. Such temperatures induced apoptosis of target cancer cells through the effect of photothermal therapy. The findings assert that structured micro-tubes have a promising application as a photothermal agent. From this assertion, the implications are that this multifunctional agent will significantly improve the methodology for cancer diagnosis and therapy.

  12. In vivo study on the biocompatibility of chitosan-hydroxyapatite film depending on degree of deacetylation.

    Science.gov (United States)

    Jeong, Ki-Jae; Song, Younseong; Shin, Hye-Ri; Kim, Ji Eun; Kim, Jeonghyo; Sun, Fangfang; Hwang, Dae-Youn; Lee, Jaebeom

    2017-06-01

    Chitosan, produced from chitin, is one of the polymers with promising applications in various fields. However, despite diverse research studies conducted on its biocompatibility, its uses are still limited. The main reason is the degree of deacetylation (DOD), which represents the proportion of deacetylated units in the polymer and is directly correlated with its biocompatibility property. In this article, the in vivo biocompatibility of three chitosan-hydroxyapatite composite films composed of chitosan with different DOD values was investigated by traditional biological protocols and novel optical spectroscopic analyses. The DOD of the chitosan obtained from three different manufacturers was estimated and calculated by Raman spectroscopy, Fourier transform infrared spectroscopy, and proton nuclear magnetic resonance spectroscopy. The chitosan with the higher DOD induced a higher incidence of inflammation in skin cells. The amino group density, biodegradability, and crystallinity of chitosan are the three possible factors that need to be considered when determining the biocompatibility of the films for in vivo application, as they led to complicated biological results, resulting in either better or worse inflammation even when using chitosan products with the same DOD. This basic study on the relationship between the DOD and inflammation is valuable for the development of further chitosan-based researches. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1637-1645, 2017. © 2017 Wiley Periodicals, Inc.

  13. Functionalized and graft copolymers of chitosan and its pharmaceutical applications.

    Science.gov (United States)

    Bhavsar, Chintan; Momin, Munira; Gharat, Sankalp; Omri, Abdelwahab

    2017-10-01

    Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.

  14. Biodegradable Alginate-Chitosan Hollow Nanospheres for Codelivery of Doxorubicin and Paclitaxel for the Effect of Human Lung Cancer A549 Cells

    Directory of Open Access Journals (Sweden)

    Liu Tao

    2018-01-01

    Full Text Available A biodegradable alginate coated chitosan hollow nanosphere (ACHN was prepared by a hard template method and used for codelivery of doxorubicin (DOX and paclitaxel (PTX to investigate the effect on human lung cancer A549 cells. PTX was loaded into the nanometer hollow structure of ACHN through adsorption method. DOX was coated on surface of ACHN through electrostatic interaction. Drug release studies exhibited a sustained-release effect. According to X-ray diffraction patterns (XRD, differential scanning calorimetry (DSC, and Fourier transform infrared spectroscopy (FT-IR analysis, DOX structure in the loading samples (DOX-PTX-ACHN was of amorphous state while PTX was microcrystalline. Cytotoxicity experiments showed ACHN was nontoxic as carrier material and the combination of DOX and PTX in DOX-PTX-ACHN exhibited a good inhibiting effect on cell proliferation. Cell uptake experiments demonstrated that DOX-PTX-ACHN accumulated in the cytoplasm. Degradation experiments illustrated that ACHN was a biodegradable material. In summary, these results clearly indicate that ACHN can be utilized as a potential biomaterial to transport multiple drugs to be used in combination therapy.

  15. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    Science.gov (United States)

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-11-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate.

  16. Microencapsulation of chemotherapeutics into monodisperse and tunable biodegradable polymers via electrified liquid jets: control of size, shape, and drug release.

    Science.gov (United States)

    Fattahi, Pouria; Borhan, Ali; Abidian, Mohammad Reza

    2013-09-06

    This paper describes microencapsulation of antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine) into biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) using an electrojetting technique. The resulting BCNU-loaded PLGA microcapsules have significantly higher drug encapsulation efficiency, more tunable drug loading capacity, and (3) narrower size distribution than those generated using other encapsulation methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers.

    Science.gov (United States)

    Xie, Zhiwei; Kim, Jimin P; Cai, Qing; Zhang, Yi; Guo, Jinshan; Dhami, Ranjodh S; Li, Li; Kong, Bin; Su, Yixue; Schug, Kevin A; Yang, Jian

    2017-03-01

    Novel citric acid based photoluminescent dyes and biodegradable polymers are synthesized via a facile "one-pot" reaction. A comprehensive understanding of the fluorescence mechanisms of the resulting citric acid-based fluorophores is reported. Two distinct types of fluorophores are identified: a thiozolopyridine family with high quantum yield, long lifetime, and exceptional photostability, and a dioxopyridine family with relatively lower quantum yield, multiple lifetimes, and solvent-dependent band shifting behavior. Applications in molecular labeling and cell imaging were demonstrated. The above discoveries contribute to the field of fluorescence chemistry and have laid a solid foundation for further development of new fluorophores and materials that show promise in a diversity of fluorescence-based applications. Photoluminescent materials are pivotal for fluorescence based imaging, labeling and sensing applications. Understanding their fluorescence mechanism is challenging and imperative. We develop a new class of citric acid-derived fluorescent materials in forms of polymers and small molecular dyes by a one-step solvent free reaction. We discovered two different classes of citric acid-derived fluorophores. A two-ring thiozolopyridine structure demonstrates strong fluorescence and exceptional resistance to photo-bleaching. A one-ring dioxopyridine exhibits relative weak fluorescence but with intriguing excitation and solvent-dependent emission wavelength shifting. Our methodology of synthesizing citric acid-derived fluorophores and the understanding on their luminescence are instrumental to the design and production of a large number of new photoluminescent materials for biological and biomedical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Optimization of biodegradable sponges as controlled release drug matrices. I. Effect of moisture level on chitosan sponge mechanical properties.

    Science.gov (United States)

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2004-04-01

    Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges.

  19. Encapsulation, solid-phases identification and leaching of toxic metals in cement systems modified by natural biodegradable polymers.

    Science.gov (United States)

    Lasheras-Zubiate, M; Navarro-Blasco, I; Fernández, J M; Alvarez, J I

    2012-09-30

    Cement mortars loaded with Cr, Pb and Zn were modified by polymeric admixtures [chitosans with low (LMWCH), medium (MMWCH) and high (HMWCH) molecular weight and hydroxypropylchitosan (HPCH)]. The influence of the simultaneous presence of the heavy metal and the polymeric additive on the fresh properties (consistency, water retention and setting time) and on the compressive strength of the mortars was assessed. Leaching patterns as well as properties of the cement mortars were related to the heavy metals-bearing solid phases. Chitosan admixtures lessened the effect of the addition of Cr and Pb on the setting time. In all instances, chitosans improved the compressive strength of the Zn-bearing mortars yielding values as high as 15 N mm(-2). A newly reported Zn phase, dietrichite (ZnAl(2)(SO(4))(4)·22H(2)O) was identified under the presence of LMWCH: it was responsible for an improvement by 24% in Zn retention. Lead-bearing silicates, such as plumalsite (Pb(4)Al(2)(SiO(3))(7)), were also identified by XRD confirming that Pb was mainly retained as a part of the silicate network after Ca ion exchange. Also, the presence of polymer induced the appearance and stabilization of some Pb(IV) species. Finally, diverse chromate species were identified and related to the larger leaching values of Cr(VI). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release.

    Science.gov (United States)

    Nagahama, Koji; Ueda, Yuichi; Ouchi, Tatsuro; Ohya, Yuichi

    2009-07-13

    Biodegradable shape-memory polymer networks prepared by cross-linking star shape branched oligo(ε-caprolactone) (bOCL) with hexamethylene diisocyanate are introduced. The thermal and mechanical properties of these networks were investigated using differential scanning calorimetry and tensile testing, respectively, and the morphology of the phase structure was characterized by polarized optical microscopy. The shape-memory properties of the networks were quantified using thermomechanical tensile experiments and showed strain fixity rates R(f) higher than 97% and strain recovery rates R(r) as high as 100%. Of note, networks of OCL segments with a lower degree of polymerization (DP; 10) exhibited significantly improved temperature-sensitive shape recovery: 90% of the permanent shape was recovered upon heating to within a 2 °C range (37-39 °C). The networks exhibited complete shape recovery to the permanent shape within 10 s at 42 °C. Theophylline-loaded (10 and 20 wt %) shape-memory materials, prepared by cross-linking bOCL with hexamethylene diisocyanate in the presence of theophylline, are also described as a model for a controlled drug release device. The 10 wt % loaded material was sufficiently soft and flexible for complex shape transformation and also showed high R(f) (98%) and R(r) (99%). Sustained release of loaded theophylline was achieved over 1 month without initial burst-release in a phosphate buffer solution (PBS; pH 7.4) at 37 °C.

  1. Comparison between biodegradable polymers from cassava starch and glycerol as additives to biogas production

    Directory of Open Access Journals (Sweden)

    Paulo André Cremonez

    2016-08-01

    Full Text Available In this study, we compared cassava starch-based biodegradable polymers (PBMs and glycerol (G as additives used to increase biogas production from the co-digestion of swine wastewater (ARS. We chose to work with an inoculum comprising 40% (v/v of the total volume of the reactor; this inoculum was obtained from a Canadian model digester for treating swine waste. In the anaerobic digestion process, batch reactors were used on a laboratory scale with a total volume of approximately 4 L and a working volume of 3.2 L. Three treatments were conducted to compare the efficiency of solid removal, the chemical oxygen demand (COD, and the production of biogas. The first treatment contained only swine waste; the second included the addition of glycerol at 1, 3, and 5% (w/v; and the third treatment included the addition of 1, 3, and 5% (w/v of PBM residue in relation to the swine wastewater. From the results, it can be concluded that higher yields were obtained for the treatment with 3% PBM and 1% glycerol. Most treatments showed high removal rates of total solids and total volatile solids. Reductions lower than 70% were obtained only for treatments with PBM and glycerol at a ratio of 5%.

  2. Biodegradation of naphthalenesulphonate polymers: the potential of a combined application of fungi and bacteria.

    Science.gov (United States)

    Gullotto, Antonella; Lubello, Claudio; Mannucci, Alberto; Gori, Riccardo; Munz, Giulio; Briganti, Fabrizio

    2015-01-01

    The potential of several fungi and their synergy with bacterial biomasses were evaluated as a solution for the removal of 2-naphthalensulphonic acid polymers (2-NSAPs) from petrochemical wastewater, characterized by a chemical oxygen demand (COD) greater than 9000 mg/L. The ability of fungi to grow on 2-NSAP mixtures was preliminarily investigated using a solid medium, and then the action of the selected strains, both in suspended and immobilized form, was evaluated in terms of degradation, depolymerization, sorption and an increase in biodegradability of 2-NSAP. Among the 25 fungi evaluated two, in particular, Bjerkandera adusta and Pleurotus ostreatus, have been found to significantly depolymerize 2-NSAP yielding to the corresponding monomer (2-naphthalenesulphonic acid, 2-NSA), which has been further degraded by a bacterial consortia selected in a wastewater treatment plant (WWTP). The fungal treatment alone was able to reduce the COD value up to 44%, while activated sludge removed only 9% of the initial COD. In addition, the combined treatment (fungi and bacteria) allowed an increase in the COD removal up to 62%.

  3. The effect of additives interaction on the miscibility and crystal structure of two immiscible biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed El-Hadi

    2014-01-01

    Full Text Available Poly lactic acid (PLLA is a promising biopolymer, obtained from polymerization of lactic acid that is derived from renewable resources through fermentation. The characteristic brittleness of PLLA is attributed to slow crystallization rates, which results in the formation of the large spherulites. Its glass temperature is relative high, above room temperature and close to 60 ºC, and therefore its applications are limited. The additives poly((R-3-hydroxybutyrate (PHB, poly(vinyl acetate (PVAc and tributyl citrate (TBC were used as compatibilizers in the biodegradable polymer blend of (PLLA/PPC. Results from DSC and POM analysis indicated that the blends of PLLA and PPC are immiscible. However, the blends with additives are miscible. TBC as plasticizer was added to PLLA to reduce its Tg. PVAc was used as compatibilizer to improve the miscibility between PLLA and PPC. FT-IR showed about 7 cm-1 shift in the C=O peak in miscible blends due to physical interactions. POM experiments together with the results of DSC and WAXD showed that PHB enhances the crystallization behavior of PLLA by acting as bio nuclei and the crystallization process can occur more quickly. Consequently an increase was observed in the peak intensity in WAXD.

  4. Controlled release of copper from an intrauterine device using a biodegradable polymer.

    Science.gov (United States)

    Ramakrishnan, Reshmi; B, Bharaniraja; Aprem, Abi Santhosh

    2015-12-01

    The adverse effects of copper intrauterine devices (IUDs) such as abnormal bleeding, pain and cramps may be due in part to the burst release of copper ions during the first few months of usage. This study focuses on controlling the initial burst release of copper ions. This study evaluated in vitro release rates of copper for a period of 1 year from standard CuT380 IUDs (n=6) and from CuT380 IUDs coated with poly(dl-lactide-co-glycolide) (PLGA) films (n=6). This study characterized the coated device for its morphological changes during degradation of film by scanning electron microscopy (SEM). CuT380 IUDs coated with PLGA film with a thickness of 0.10±0.02 mm showed a reduced initial copper release (40-80 mcg/day) compared with uncoated CuT380 IUDs (150-200 mcg/day). Statistically significant (p<.05) results were obtained at different time intervals during the overall study period of 1 year. SEM images showed degradation of coating. Coating a CuT380 IUD with biodegradable polymer reduced the initial copper release without affecting release at 1 year. Clinical trials are required to determine whether this could reduce side effects such as bleeding and pain associated with copper containing IUDs. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Pulsed laser deposition of polyhydroxybutyrate biodegradable polymer thin films using ArF excimer laser

    Science.gov (United States)

    Kecskemeti, G.; Smausz, T.; Kresz, N.; Tóth, Zs.; Hopp, B.; Chrisey, D.; Berkesi, O.

    2006-11-01

    We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF ( λ = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm -2. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm -2), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence ( λ ˜ 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.

  6. Pulsed laser deposition of polyhydroxybutyrate biodegradable polymer thin films using ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: tomi@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: knr@physx.u-szeged.hu; Toth, Zs. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: ztoth@physx.u-szeged.hu; Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: bhopp@physx.u-szeged.hu; Chrisey, D. [Naval Research Laboratory, Washington, DC 20375 (United States)]. E-mail: chrisey@ccf.nrl.navy.mil; Berkesi, O. [Department of Physical Chemistry, University of Szeged, H-6720 Szeged, Rerrich B. ter 1 (Hungary)]. E-mail: oberkesi@chem.u-szeged.hu

    2006-11-30

    We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF ({lambda} = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm{sup -2}. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm{sup -2}), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence ({lambda} {approx} 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.

  7. Drug release control in delivery system for biodegradable polymer drugs by γ-radiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Azo, Yukio; Kojima, Shigeo

    1997-01-01

    Characterizations of the drug release from microsphere and hydrogel preparation made from biodegradable polymers were investigated aiming at development of a drug delivery system which allows an optimum drug delivery and the identification of the factors which control its delivery. Poly-lactic acid microspheres containing 10% of progesterone were produced from poly DL-lactic acid and exposed to γ-ray at 5-1000 kGy. And its glass transition temperature (Tg) was determined by differential scanning calorimetry. The temperature was gradually lowered with an increase in the dose of radiation. Tg of the microsphere exposed at 1000 kGy was lower by 10degC compared with the untreated one, showing that Tg control is possible without changing the size distribution of microsphere. Then, the amount of progesterone released from microsphere was determined. The release rate of the drug linearly increased with a square root of radiation time. These results indicate that the control of drug release rate is possible through controling the microsphere's Tg by γ-ray radiation. (M.N.)

  8. Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material

    Directory of Open Access Journals (Sweden)

    H. P. S. Abdul Khalil

    2017-04-01

    Full Text Available Seaweed and cellulose are promising natural polymers. This article reviews the basic information and recent developments of both seaweed and cellulose biopolymer materials as well as analyses the feasible formation of seaweed/cellulose composite films. Seaweed and cellulose both exhibit interesting film-forming properties. Nevertheless, seaweed has poor water vapour barrier and mechanical properties, whereas cellulose is neither meltable nor soluble in water or common organic solvents due to its highly crystalline structure. Therefore, modification of these hydrocolloids has been done to exploit their useful properties. Blending of biopolymers is a must recommended approach to improve the desired characteristics. From the review, seaweed is well compatible with cellulose, which possesses excellent mechanical strength and water resistance properties. Moreover, seaweed/cellulose composite films can prolong a product’s shelf life while maintaining its biodegradability. Additionally, the films show potential in contributing to the bioeconomy. In order to widen seaweed and cellulose in biocomposite application across various industries, some of the viewpoints are highlighted to be focused for future developments and applications.

  9. A Comparative Study on Immobilization of Fructosyltransferase in Biodegradable Polymers by Electrospinning.

    Science.gov (United States)

    Gabrielczyk, Jakub; Duensing, Thilo; Buchholz, Stefanie; Schwinges, Alexander; Jördening, Hans-Joachim

    2018-01-24

    Commercial application of biocatalysts depends on the efficiency of the immobilization method and residual enzyme activity. Electrospinning offers a simple and versatile route to immobilize enzymes in submicron-sized fibers and thus improved mass transfer characteristics. Performance of encapsulation of fructosyltransferase from Bacillus subtilis by emulsion, suspension, and coaxial electrospinning was compared. We particularly focused on the effect of hydrophilic properties of a set of biodegradable polymers on support's activity. Bioactivity of electrospun support in aqueous medium increased in order of the matrix hydrophilicity. Additionally, the efficiency of electrospun fibers was compared with Sepabeads®, commercial epoxy-activated resins. In fibers, enzyme loading of 68.1 mg/g and specific enzyme activity of 5.5 U/mg was achieved compared to 49.5 mg/g and 2.2 U/mg on Sepabeads. Fructosyltransferase exhibited high sensitivity towards organic solvents and covalent attachment, respectively. Immobilization of native enzyme in coaxial fibers increased the specific activity to approx. 30 U/mg which corresponds to 24% of that of the free enzyme. Finally, operational stability of fiber supports was examined in a plug-flow reactor and 5% of initial substrate conversion remained after > 2000 cycles. The efficiency of core-shell immobilizates compared to one-dimensional fibers was both in batch and continuous reaction at least 4.4-fold higher.

  10. Photo-cross-linkable and thermo-responsive hydrogels containing chitosan and Pluronic for sustained release of human growth hormone (hGH).

    Science.gov (United States)

    Yoo, Hyuk Sang

    2007-01-01

    A Pluronic/chitosan hydrogel was prepared by employing di-acrylated Pluronic and acrylated chitosan for thermo-responsive and photo-cross-linkable in situ gelation. Mixtures of diacrylated Pluronic and acrylated chitosan were transformed to physical gels at elevated temperatures and the gelation temperature of the hydrogels gradually increased by increasing chitosan content in the hydrogels from 0% to 15%. Photo-cross-linked Pluronic/chitosan hydrogels were prepared by UV irradiation of the physical gels above their gelation temperatures. Hydrogels with a long photo-cross-linking time showed low degradation rates and chitosan contents in the hydrogels also impeded the degradation rates of the hydrogels, which was caused by a high degree of inter-connected polymer networks between acrylated Pluronic and acrylated chitosan. Human growth hormone (hGH), mixed with the mixture of Pluronic and chitosan, was photo-cross-linked to prepare biodegradable hGH hydrogels. The hydrogels containing hGH showed sustained release profiles for those with long photo-cross-linking times and high chitosan contents in the hydrogel. The hydrogels with a long cross-linking time showed impeded release of the protein and high content of chitosan in the hydrogels also decreased burst release of hGH from the hydrogels while hGH was rapidly released out for the hydrogels with low content of chitosan.

  11. Mass spectrometry for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products.

    Science.gov (United States)

    Kowalczuk, Marek; Adamus, Grażyna

    2016-01-01

    Contemporary reports by Polish authors on the application of mass spectrometric methods for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products will be presented. Special emphasis will be given to natural aliphatic (co)polyesters (PHA) and their synthetic analogues, formed through anionic ring-opening polymerization (ROP) of β-substituted β-lactones. Moreover, the application of MS techniques for the evaluation of the structure of biodegradable polymers obtained in ionic and coordination polymerization of cyclic ethers and esters as well as products of step-growth polymerization, in which bifunctional or multifunctional monomers react to form oligomers and eventually long chain polymers, will be discussed. Furthermore, the application of modern MS techniques for the assessment of polymer degradation products, frequently bearing characteristic end groups that can be revealed and differentiated by MS, will be discussed within the context of specific degradation pathways. Finally, recent Polish accomplishments in the area of mass spectrometry will be outlined. © 2015 Wiley Periodicals, Inc.

  12. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    Energy Technology Data Exchange (ETDEWEB)

    Belibel, R.; Avramoglou, T. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Garcia, A. [CNRS UPR 3407, Laboratoire des Sciences des Procédés et des Matériau, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Barbaud, C. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France)

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  13. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    International Nuclear Information System (INIS)

    Belibel, R.; Avramoglou, T.; Garcia, A.; Barbaud, C.; Mora, L.

    2016-01-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  14. The Use of Polymer Chitosan in Intravesical Treatment of Urinary Bladder Cancer and Infections

    Directory of Open Access Journals (Sweden)

    Andreja Erman

    2018-03-01

    Full Text Available The most frequent diseases of the urinary bladder are bacterial infections and bladder cancers. For both diseases, very high recurrence rates are characteristic: 50–80% for bladder cancer and more than 50% for bladder infections, causing loss of millions of dollars per year for medical treatment and sick leave. Despite years of searching for better treatment, the prevalence of bladder infections and bladder cancer remains unchanged and is even increasing in recent years. Very encouraging results in treatment of both diseases recently culminated from studies combining biopolymer chitosan with immunotherapy, and chitosan with antibiotics for treatment of bladder cancer and cystitis, respectably. In both pathways of research, the discoveries involving chitosan reached a successful long-lasting cure. The property of chitosan that boosted the effectivity of illness-specific drugs is its ability to enhance the accessibility of these drugs to the very sources of both pathologies that individual treatments without chitosan failed to achieve. Chitosan can thus be recognised as a very promising co-player in treatment of bladder cancer and bacterial cystitis.

  15. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study.

    Science.gov (United States)

    Oryan, Ahmad; Alidadi, Soodeh; Bigham-Sadegh, Amin; Moshiri, Ali

    2016-10-01

    Gelatin and chitosan are natural polymers that have extensively been used in tissue engineering applications. The present study aimed to evaluate the effectiveness of chitosan and gelatin or combination of the two biopolymers (chitosan-gelatin) as bone scaffold on bone regeneration process in an experimentally induced critical sized radial bone defect model in rats. Fifty radial bone defects were bilaterally created in 25 Wistar rats. The defects were randomly filled with chitosan, gelatin and chitosan-gelatin and autograft or left empty without any treatment (n = 10 in each group). The animals were examined by radiology and clinical evaluation before euthanasia. After 8 weeks, the rats were euthanized and their harvested healing bone samples were evaluated by radiology, CT-scan, biomechanical testing, gross pathology, histopathology, histomorphometry and scanning electron microscopy. Gelatin was biocompatible and biodegradable in vivo and showed superior biodegradation and biocompatibility when compared with chitosan and chitosan-gelatin scaffolds. Implantation of both the gelatin and chitosan-gelatin scaffolds in bone defects significantly increased new bone formation and mechanical properties compared with the untreated defects (P gelatin and chitosan considerably increased structural and functional properties of the healing bones when compared to chitosan scaffold (P gelatin and gelatin-chitosan groups in these regards (P > 0.05). In conclusion, application of the gelatin alone or its combination with chitosan had beneficial effects on bone regeneration and could be considered as good options for bone tissue engineering strategies. However, chitosan alone was not able to promote considerable new bone formation in the experimentally induced critical-size radial bone defects.

  16. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  17. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-01-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites

  18. Incorporação de urucum como aditivo antioxidante em embalagens biodegradáveis a base de quitosana The incorporation of annatto as antioxidant additive based biodegradable packaging chitosan

    Directory of Open Access Journals (Sweden)

    Maria Cecília Castelo Branco de Santana

    2013-03-01

    Full Text Available O objetivo do trabalho foi desenvolver e caracterizar uma embalagem biodegradável, utilizando como matriz polimérica a quitosana, plastificada com glicerol, bem como avaliar o efeito da adição de um aditivo antioxidante natural (urucum nas embalagens na proteção antioxidante. As embalagens foram preparadas por casting contendo 1,5% de quitosana, 0,15% de glicerol e 0,25 a 1,0% de urucum. O azeite de dendê embalado com os filmes contendo o aditivo foi monitorado aos 0, 7, 15, 30 e 45 dias de armazenamento sob condições de oxidação acelerada (63%UR/30°C. O azeite de dendê embalado no filme que continha o maior percentual de urucum (1,0% foi o que menos oxidou ao longo do período estudado. Constatou-se que, à medida que aumentam as perdas de Fenóis Totais nas formulações dos filmes, ocorre uma redução nos aumentos do Índice de Peróxidos do produto embalado, demonstrando assim que, ao invés do produto, os compostos da embalagem é quem estão sofrendo oxidação.The objective was to develop and characterize a biodegradable packaging using chitosan as polymeric matrix, plasticized with glycerol, as well as evaluate the effect of adding a natural antioxidant additives (annatto in antioxidant protection in packaging. The cans were prepared by casting containing 1.5% of chitosan, 0.15% glycerol and 0.25 to 1.0% of coloring. Palm oil packed with the films containing the additive was monitored at 0, 7, 15, 30 and 45 days of storage under accelerated oxidation conditions (63% UR/30°C. Palm oil packed in the film that contained the highest percentage of annatto (1.0% was the least oxidized during the study period. It was found that, as they increase the losses of phenolic compounds in the formulations of the films, there is a reduction in the peroxide increases the packaged product, thus demonstrating that instead of the product, the compounds of the package's who are suffering oxidation.

  19. Implant-associated local drug delivery systems based on biodegradable polymers: customized designs for different medical applications.

    Science.gov (United States)

    Sternberg, Katrin; Petersen, Svea; Grabow, Niels; Senz, Volkmar; Meyer zu Schwabedissen, Henriette; Kroemer, Heyo K; Schmitz, Klaus-Peter

    2013-10-01

    Implants providing controlled, local release of active substances are of interest in different medical applications. Therefore, the focus of the present article is the development of implant-associated diffusion- or chemically controlled local drug delivery (LDD) systems based on biodegradable polymeric drug carriers. In this context, we provide new data and review our own recently published data concerning the drug release behavior of diffusion-controlled LDD systems in relation to the kind of polymer, drug content, coating mass/thickness, and layer composition. We demonstrate that polymers allow a wide range of control over the drug release characteristics. In this regard, we show that the glass transition temperature of a polymer has an impact on its drug release. Additionally, the blending of hydrophobic, semicrystalline polymers with amorphous polymers leads to an increase in the rate of drug release compared with the pure semicrystalline polymer. Moreover, the percentage loading of the embedded drug has a considerable effect on the rate and duration of drug release. Furthermore, we discuss chemically controlled LDD systems designed for the release of biomolecules, such as growth factors, as well as nanoparticle-mediated LDD systems. With our own published data on drug-eluting stents, microstents, and cochlear implants, we highlight exemplary implant-associated LDD systems designed to improve implant performance through the reduction of undesirable effects such as in-stent restenosis and fibrosis.

  20. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    Science.gov (United States)

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Self-assembly of the hydrogel polymer chain consisting of chitosan and chondroitin sulphate in the presence of theophylline

    International Nuclear Information System (INIS)

    Lopes, Lais C.; Piai, Juliana F.; Fajardo, Andre R.; Rubira, Adley F.; Muniz, Edvani C.

    2009-01-01

    In this work, polyelectronic complex (PEC) consisting of two polysaccharides were developed. One is chitosan (QT), cationic polymer, produced by the chitin deacetylation and the other is chondroitin sulphate (CS), anionic polymer, extracted from bovine or porcine aorta. The PECs were prepared in the presence of theophylline (TEO) for evaluating the influence of this drug in the polymer chains reorganization, as well as, studying the mechanical properties and release of SC and TEO in aqueous solutions on different pH conditions. By the obtained results, it was observed that the 84QT/15SC/TEO (% in weight) hydrogel is pH responsive because the CS releasing is more effective at pH 8, while the release of the TEO is higher at pH 2. The hydrogel showed mechanical properties more resistant to pH 2, 8 and 10 and this was attributed to interactions between the polymer chains. Finally, the X-rays profile showed the presence of peaks associated to reorganization of the chains in the hydrogel is at times larger than the hydrogel in the absence of solute. (author)

  2. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Mehjabeen, Afrin [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Ye, Qingsong [Discipline of Dentistry, James Cook University, Townsville 4811, Queensland (Australia); Blawert, Carsten [Magnesium Innovation Centre, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502 (Germany)

    2014-05-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R{sub p}) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i{sub corr}) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i{sub corr} by almost 100%. As expected, the R{sub p} of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R{sub p} of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  3. Biodegradable polymer nanofiber membrane for the repair of cutaneous wounds in dogs - two case reports

    Directory of Open Access Journals (Sweden)

    Lívia Gomes Amaral

    2016-12-01

    Full Text Available The study of wound healing and its treatment is extremely important in veterinary medicine due to the high frequency of wounds and the difficulty in treating wounds by second intention. Thus, the objective of this study was to evaluate the use of a nanofiber membrane made of biodegradable polymers as a method of wound treatment in dogs. This study comprised two dogs with bite wounds. Debridement and cleaning was performed followed by the application of the membrane. In one dog, the wound was in the left proximal calcaneal region with clinical signs of infection, necrotic tissue, and muscle and the gastrocnemius tendon were exposed. The wound displayed rapid formation of granulation tissue which became excessive, so it was necessary to debride several times. However, with the suspension of the use of the membrane, formation of this tissue was not observed, and the wound evolved to epithelialization and fast contraction. In the second dog, there was a deep wound on the medial aspect of the proximal right hind limb, with clinical signs of infection, with muscle exposure. Once the membrane was placed, granulation tissue formed, and the membrane was used until the level of this tissue reached the skin. The wound underwent rapid epithelialization and contraction, without developing exuberant granulation tissue. Efficient wound repair was observed and the dogs exhibited greater comfort during application and use of the membrane. More studies should be conducted in dogs focusing on the application of this membrane until the appearance of healthy granulation tissue, as continued use seems to stimulate the formation of exuberant granulation tissue.

  4. Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy

    Science.gov (United States)

    Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.

    2016-03-01

    In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.

  5. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers

    Science.gov (United States)

    Ishaug-Riley, S. L.; Crane-Kruger, G. M.; Yaszemski, M. J.; Mikos, A. G.

    1998-01-01

    Neonatal rat calvarial osteoblasts were cultured in 90% porous, 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) foam scaffolds for up to 56 days to examine the effects of the cell seeding density, scaffold pore size, and foam thickness on the proliferation and function of the cells in this three-dimensional environment. Osteoblasts were seeded at either 11.1 x 10(5) or 22.1 x 10(5) cells per cm2 onto PLGA scaffolds having pore sizes in the range of 150-300 or 500-710 microm with a thickness of either 1.9 or 3.2 mm. After 1 day in culture, 75.6 and 68.6% of the seeded cells attached and proliferated on the 1.9 mm thick scaffolds of 150-300 microm pore size for the low and high seeding densities, respectively. The number of osteoblasts continued to increase throughout the study and eventually leveled off near 56 days, as indicated by a quantitative DNA assay. Osteoblast/foam constructs with a low cell seeding density achieved comparable DNA content and alkaline phosphatase (ALPase) activity after 14 days, and mineralization results after 56 days to those with a high cell seeding density. A maximum penetration depth of osseous tissue of 220+/-40 microm was reached after 56 days in the osteoblast/foam constructs of 150-300 microm pore size initially seeded with a high cell density. For constructs of 500-710 microm pore size, the penetration depth was 190+/-40 microm under the same conditions. Scaffold pore size and thickness did not significantly affect the proliferation or function of osteoblasts as demonstrated by DNA content, ALPase activity, and mineralized tissue formation. These data show that comparable bone-like tissues can be engineered in vitro over a 56 day period using different rat calvarial osteoblast seeding densities onto biodegradable polymer scaffolds with pore sizes in the range of 150-710 microm. When compared with the results of a previous study where similar polymer scaffolds were seeded and cultured with marrow stromal cells, this study

  6. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    Science.gov (United States)

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057

  7. Poly (1,8 Octanediol-co-Citrate) Hydroxyapatite Composite as Antibacterial Biodegradable Bone Screw

    Science.gov (United States)

    Widiyanti, P.; Sholikhah, I.; Isfandiary, A.; Hasbiyani, NAF; Lazuardi, M. B.; Laksana, R. D.

    2017-05-01

    The high bone fracture rates reaching up to 300-400 cases per month have been treated with surgical procedure of internal fixation. Nevertheless, the commonly used metal screw has shown several weaknesses. Therefore, it is required bone screw of which primary characteristics include being biocompatible, bio-functional, biodegradable, and anticorrosive. The study aimed to synthesize Antibacterial Poly 1,8-Octanediol-co-Citrate (POC) and investigated the effect of chitosan on the antibacterial and compatibility characteristics of POC-HA composite as antibacterial biodegradable bone screw. The characterization were conducted on POC-HA composite to assess its functional cluster, antibacterial activity, cytotoxicity, degradation capacity, and morphology. Pre-polymer POC was composited with 62% nano-HA, followed by post-polymerization treatment. The sample then coated by chitosan with composition variations of 1%, 3%, and 5%. The nano-HA marked with the appearance of phosphate cluster on the wavenumber of 872.17 cm-1 and 559.51 cm-1, while the chitosan marked with C=O stretch cluster of esther at 1729 cm-1 from Fourier Transform Infra-Red (FTIR) measurement. The best result was obtained with 3% chitosan coating. The POC-HA composites showed bacterial inhibiting ability of 16.92 mm with non-toxic characteristics. These results indicated that chitosan coating Poly 1,8-Octanediol-co-Citrate (POC)-Nano Hydroxyapatite composite is a potential candidate for an antibacterial biodegradable bone screw.

  8. Modified hydrotalcite-like compounds as active fillers of biodegradable polymers for drug release and food packaging applications.

    Science.gov (United States)

    Costantino, Umberto; Nocchetti, Morena; Tammaro, Loredana; Vittoria, Vittoria

    2012-11-01

    This review treats the recent patents and related literature, mainly from the Authors laboratories, on biomedical and food packaging applications of nano-composites constituted of biodegradable polymers filled with micro or nano crystals of organically modified Layered Double Hydroxides of Hydrotalcite type. After a brief outline of the chemical and structural aspects of Hydrotalcite-like compounds (HTlc) and of their manipulation via intercalation of functional molecular anions to obtain materials for numerous, sometime unexpected applications, the review approaches the theme in three separated parts. Part 1 deals with the synthetic method used to prepare the pristine Mg-Al and Zn-Al HTlc and with the procedures of their functionalization with anti-inflammatory (diclofenac), antibacterial (chloramphenicol hemisuccinate), antifibrinolytic (tranexamic acid) drugs and with benzoates with antimicrobial activity. Procedures used to form (nano) composites of polycaprolactone, used as an example of biodegradable polymer, and functionalized HTlc are also reported. Part 2 discusses a patent and related papers on the preparation and biomedical use of a controlled delivery system of the above mentioned pharmacologically active substances. After an introduction dealing with the recent progress in the field of local drug delivery systems, the chemical and structural aspects of the patented system constituted of a biodegradable polymer and HTlc loaded with the active substances will be presented together with an extensive discussion of the drug release in physiological medium. Part 3 deals with a recent patent and related papers on chemical, structural and release property of antimicrobial species of polymeric films containing antimicrobial loaded HTlc able to act as active packaging for food products prolonging their shelf life.

  9. The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging.

    Science.gov (United States)

    Shahbazi, Yasser

    2017-06-01

    The aim of this study was to improve different characteristics including antibacterial, antioxidant, physical and mechanical properties of chitosan (Ch) and gelatin (Ge) films by incorporating Ziziphora clinopodioides essential oil (ZEO; 0 and 1% v/w) and ethanolic grape seed extract (GSE; 0 and 1% v/w). The main compounds of the ZEO were carvacrol (65.22%) and thymol (19.51%). According to our findings, addition of aforementioned materials could improve total phenolic content, antibacterial and antioxidant activities, thickness and also water vapor barrier property. ZEO and GSE reduces swelling index, tensile strength, puncture force and puncture deformation of Ch and Ge films. Pure Ch and Ge films had slightly yellow and white appearances, respectively, while films incorporated with GSE in combination with ZEO had grey appearances. This study indicated the some benefits of addition of ZEO and GSE into Ch and Ge films and their potentials for application as biodegradable active packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Biodegradable multiblock polymers based on N-(2-hydroxypropyl)methacrylamide designed as drug carriers for tumor-targeted delivery

    Czech Academy of Sciences Publication Activity Database

    Mužíková, Gabriela; Pola, Robert; Laga, Richard; Pechar, Michal

    2016-01-01

    Roč. 217, č. 15 (2016), s. 1690-1703 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA14-12742S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : biodegradable polymers * click chemistry * drug delivery systems Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.500, year: 2016

  11. Cytocompatibility of novel extracellular matrix protein analogs of biodegradable polyester polymers derived from α-hydroxy amino acids.

    Science.gov (United States)

    Lecht, Shimon; Cohen-Arazi, Naomi; Cohen, Gadi; Ettinger, Keren; Momic, Tatjana; Kolitz, Michal; Naamneh, Majdi; Katzhendler, Jehoshua; Domb, Abraham J; Lazarovici, Philip; Lelkes, Peter I

    2014-01-01

    One of the challenges in regenerative medicine is the development of novel biodegradable materials to build scaffolds that will support multiple cell types for tissue engineering. Here we describe the preparation, characterization, and cytocompatibility of homo- and hetero-polyesters of α-hydroxy amino acid derivatives with or without lactic acid conjugation. The polymers were prepared by a direct condensation method and characterized using gel permeation chromatography, (1)H-nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, optical activity, and solubility. The surface charge of the polymers was evaluated using zeta potential measurements. The polymers were coated onto glass cover slips followed by characterization using nano-surface profiler, thin film reflectometry, and atomic force microscopy (AFM). Their interaction with endothelial and neuronal cells was assessed using adhesion, proliferation, and differentiation assays. Of the characterized polymers, Poly-HOVal-LA, but not Poly-(D)HOPhe, significantly augmented nerve growth factor (NGF)-induced neuronal differentiation of the PC12 pheochromcytoma cells. In contrast, Poly-HOLeu increased by 20% the adhesion of endothelial cells, but did not affect PC12 cell differentiation. NGF-induced Erk1/2 phosphorylation in PC12 cells grown on the different polymers was similar to the effect observed for cells cultured on collagen type I. While no significant association could be established between charge and the differentiative/proliferative properties of the polymers, AFM analysis indicated augmentation of NGF-induced neuronal differentiation on smooth polymer surfaces. We conclude that overall selective cytocompatibility and bioactivity might render α-hydroxy amino acid polymers useful as extracellular matrix-mimicking materials for tissue engineering.

  12. Effective delivery of siRNA into cancer cells and tumors using well-defined biodegradable cationic star polymers.

    Science.gov (United States)

    Boyer, Cyrille; Teo, Joann; Phillips, Phoebe; Erlich, Rafael B; Sagnella, Sharon; Sharbeen, George; Dwarte, Tanya; Duong, Hien T T; Goldstein, David; Davis, Thomas P; Kavallaris, Maria; McCarroll, Joshua

    2013-06-03

    Cancer is one of the most common causes of death worldwide. Two types of cancer that have high mortality rates are pancreatic and lung cancer. Despite improvements in treatment strategies, resistance to chemotherapy and the presence of metastases are common. Therefore, novel therapies which target and silence genes involved in regulating these processes are required. Short-interfering RNA (siRNA) holds great promise as a therapeutic to silence disease-causing genes. However, siRNA requires a delivery vehicle to enter the cell to allow it to silence its target gene. Herein, we report on the design and synthesis of cationic star polymers as novel delivery vehicles for siRNA to silence genes in pancreatic and lung cancer cells. Dimethylaminoethyl methacrylate (DMAEMA) was polymerized via reversible addition-fragmentation transfer polymerization (RAFT) and then chain extended in the presence of both cross-linkers N,N-bis(acryloyl)cistamine and DMAEMA, yielding biodegradable well-defined star polymers. The star polymers were characterized by transmission electron microscopy, dynamic light scattering, ζ potential, and gel permeation chromatography. Importantly, the star polymers were able to self-assemble with siRNA and form small uniform nanoparticle complexes. Moreover, the ratios of star polymer required to complex siRNA were nontoxic in both pancreatic and lung cancer cells. Treatment with star polymer-siRNA complexes resulted in uptake of siRNA into both cell lines and a significant decrease in target gene mRNA and protein levels. In addition, delivery of clinically relevant amounts of siRNA complexed to the star polymer were able to silence target gene expression by 50% in an in vivo tumor setting. Collectively, these results provide the first evidence of well-defined small cationic star polymers to deliver active siRNA to both pancreatic and lung cancer cells and may be a valuable tool to inhibit key genes involved in promoting chemotherapy drug resistance and

  13. Synthesis of biodegradable amphiphilic Y-shaped block co-polymers via ring-opening polymerization for drug delivery.

    Science.gov (United States)

    Jia, Lin; Yan, Lifeng; Li, Yang

    2011-01-01

    A series of novel Y-shaped biodegradable block co-polymers of poly(ε-caprolactone) (PCL) and poly(ethyl ethylene phosphate) (PEEP) (PCL-(PEEP)2) were synthesized via ring-opening polymerization (ROP) of EEP with bis-hydroxy-functional ROP initiator (init-PCL-(OH)2). The init-PCL-(OH)2 was synthesized by ROP of CL using 4-hydroxybutyl acrylate (HBA) as initiator and L-tartaric acid as catalyst in bulk, and subsequently the resulting vinyl-terminated PCL was end-capped by acetyl chloride, followed by Michael addition using excess diethanolamine. The Y-shaped co-polymers and their intermediates were characterized by (1)H-, (13)C-, (31)P-NMR, FT-IR and gel-permeation chromatography. The results indicated that the molecular weight of the Y-shaped co-polymers increased with the increasing of the molar ratios of EEP to init-PCL-(OH)2 in the feed, while the PCL chain length was kept constant. The amphiphilic block co-polymers could self-assemble into micelles in aqueous solution, which was demonstrated by dynamic light scattering, (1)H-NMR and atomic force microscopy. A study of controlled release of indomethacin indicated that the amphiphilic block co-polymers could potentially provide novel vehicles for drug delivery.

  14. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    Science.gov (United States)

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  15. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    Science.gov (United States)

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Transparent conducting polymer electrolyte by addition of lithium to the molecular complex chitosane-poly(aminopropyl siloxane)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S.; Retuert, P.J.; Gonzalez, Guillermo

    2003-06-30

    Transparent lithium-ion conducting films were prepared by adding lithium perchlorate to a mixture of chitosane (CHI) and poly(aminopropylsiloxane) (pAPS) in a molar ratio 0.6:1 by sol-gel methods. The morphological and molecular properties, determined by scanning electron microscopy and FT-IR, respectively, depend on the lithium salt concentration. The same techniques were also used for performing a 'titration' of the capacity of the film for incorporating lithium salt. Results show that about 0.8 mol lithium salt per mol chitosane can be added before the product losses the transparence and molecular compatibility characteristic of the pristine CHI/pAPS polymer complex. When lithium salt addition reaches the tolerance limit, anisotropically oriented patterns are observed in the hybrid films. Both transparence and ionic conductivity of the product appear to be related to the layered nature of formed nanocomposites. The properties of obtained films may be furthermore rationalized considering the chemical functionality and the Lewis donor-acceptor affinity of the components.

  17. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s.

    Science.gov (United States)

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-04-25

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  18. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    Science.gov (United States)

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  19. Chitosan and radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, Andrzej G., E-mail: a.chmielewski@ichtj.waw.p [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2010-03-15

    Chitosan as a raw material with special properties has drawn attention of scientists working in the field of radiation processing and natural polymer products development, and also of specialists working in the field of radiation protection and oncologists. Especially the applications concern reduced molecular weight chitosan which still retain its chemical structure; such form of the compound is fostering biological, physical and chemical reactivity of the product. Chitosan degrades into fragments under gamma-ray or electron beam irradiation. Antibacterial properties of the product are applied in manufacturing hydrogel for wound dressing and additional healing properties can be achieved by incorporating in the hydrogel matrix chitosan bonded silver clusters. Another possible application of chitosan is in reducing radiation damage to the radiation workers or radiation cured patients. In the case of radioisotopes oral or respiratory chitosan-based materials can be applied as chelators. Applications of chitosan in oncology are also reported.

  20. METHOD FOR PROVIDING SHAPED BIODEGRADABLE AND ELASTOMERIC STRUCTURES OF (CO) POLYMERS OF 1,3-TRIMETHYLENE CARBONATE (TMC), SHAPED BIODEGRADABLE AND ELASTOMERIC STRUCTURES, AND THE USE OF THESE STRUCTURES

    NARCIS (Netherlands)

    Grijpma, D.W.; Pêgo, A.P.; Feijen, Jan

    2004-01-01

    The present invention relates to methods for providing shaped biodegradable and elastomeric structures of (co)polymers of 1,3­trimethylene carbonate (TMC) with improved (mechanical) properties which can be used for tissue or tissue component support, generation or regeneration. Such shaped

  1. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function

    Science.gov (United States)

    Lu, L.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    BACKGROUND: Controlled release of transforming growth factor-beta1 (TGF-beta1) to a bone defect may be beneficial for the induction of a bone regeneration cascade. The objectives of this work were to assess the feasibility of using biodegradable polymer microparticles as carriers for controlled TGF-beta1 delivery and the effects of released TGF-beta1 on the proliferation and differentiation of marrow stromal cells in vitro. METHODS: Recombinant human TGF-beta1 was incorporated into microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG). Fluorescein isothiocynate-labeled bovine serum albumin (FITC-BSA) was co-encapsulated as a porogen. The effects of PEG content (0, 1, or 5% by weight [wt%]) and buffer pH (3, 5, or 7.4) on the protein release kinetics and the degradation of PLGA were determined in vitro for as long as 28 days. Rat marrow stromal cells were seeded on a biodegradable poly(propylene fumarate) (PPF) substrate. The dose response and biological activity of released TGF-beta1 was determined after 3 days in culture. The effects of TGF-beta1 released from PLGA/PEG microparticles on marrow stromal cell proliferation and osteoblastic differentiation were assessed during a 21-day period. RESULTS: TGF-beta1 was encapsulated along with FITC-BSA into PLGA/PEG blend microparticles and released in a multiphasic fashion including an initial burst for as long as 28 days in vitro. Increasing the initial PEG content resulted in a decreased cumulative mass of released proteins. Aggregation of FITC-BSA occurred at lower buffer pH, which led to decreased release rates of both proteins. The degradation of PLGA was increased at higher PEG content and significantly accelerated at acidic pH conditions. Rat marrow stromal cells cultured on PPF substrates showed a dose response to TGF-beta1 released from the microparticles similar to that of added TGF-beta1, indicating that the activity of TGF-beta1 was retained during microparticle

  2. Development of a PVAl/chitosan composite membrane compatible with the dermo-epidermic system

    International Nuclear Information System (INIS)

    Almeida, Tiago Luiz de

    2009-03-01

    Due to the frequent incidence of people with skin lesions such as burns and ulcers and the lack of available donors, biomaterials with the capacity to mimic skin must be developed. In order to develop these biomaterials, polymers are used in the attempt to achieve characteristics which are closer to the target organ. In this direction, for several years our group has been developing dermo-epidermic substitutes, specifically biodegradable and biocompatible membranes made up of PVAl and chitosan. PVAl, a synthetic polymer, was used to imitate part of the human dermis and chitosan, a polymer of organic origin, was used in this study to stimulate growth and maintenance of the epidermis. Due to the variations of these commercially obtained polymers, the objective of this study was to characterize their physical and chemical properties, comparing them with the membrane previously obtained by our group with the intention of confirming the hypotheses of interferences put forward in this study. The PVAl membranes in the study (PVAl MP) that obtained characteristics most similar to the standard were those irradiated with 13 and 15 kGy; this last was chosen because it was the minimum dose necessary to achieve sterility. These membranes were also those which had the largest percentage of pores between 70 and 100 μm. For chitosan, the principal characteristics studied were the degree of acetylation (DA) and average molecular weight, both results demonstrated different characteristics than commercially indicated. Various membrane preparation protocols were carried out from the chitosan solution (2%). The membrane composed of the solution of chitosan homogenized with glycerol (20%) and dried at room temperature had the best interaction with keratinocytes. To finalize the study, this chitosan solution was poured over a PVAl membrane, lyophilized and impregnated with chitosan (2%) solution and the compound was kept at room temperature until a chitosan film formed on the upper

  3. Preparation and characterization of polymer nanocomposites based on chitosan and clay minerals; Preparacao e caracterizacao de nanocompositos polimerico baseados em quitosana e argilo minerais

    Energy Technology Data Exchange (ETDEWEB)

    Fiori, Ana Paula Santos de Melo; Gabiraba, Victor Parizio; Praxedes, Ana Paula Perdigao [Instituto Federal de Alagoas (IFAL), Marechal Deodoro, AL (Brazil); Nunes, Marcelo Ramon da Silva; Balliano, Tatiane L.; Silva, Rosanny Christhinny da; Tonholo, Josealdo; Ribeiro, Adriana Santos, E-mail: aribeiro@qui.ufal.br [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil)

    2014-09-15

    In this work nanocomposites based on chitosan and different clays were prepared using polyethyleneglycol (PEG) as plasticizer. The samples obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA/DTG) and by mechanical characterization (tensile test) with the aim of investigating the interactions between chitosan and clay. The nanocomposite films prepared using sodium bentonite (Ben) showed an increase of 81.2% in the maximum tensile stress values and a decrease of 16.0% in the Young’s modulus when compared to the chitosan with PEG (QuiPEG) films, evidencing that the introduction of the clay into the polymer matrix provided a more flexible and resistant film, whose elongation at break was 93.6% higher than for the QuiPEG film. (author)

  4. Low Density Polyethylene (LDPE blends based on Poly(3-Hydroxi-Butyrate (PHB and Guar Gum (GG biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Marisa Cristina Guimarães Rocha

    2015-02-01

    Full Text Available LDPE blends based on PHB and GG biodegradable polymers were prepared by melt mixing in a twin screw extruder. The mechanical properties of the materials were evaluated. Preliminary information about the biodegradation behavior of the specimens was obtained by visual observation of samples removed from the simulated soil in 90 days. The results indicated that LDPE/PHB blends may be used for designing LDPE based materials with increased susceptibility to degradation, if elongation at break and impact properties are not determinant factors of their performance. LDPE based materials on GG present values of flexural and mechanical strength lower than those of LDPE/PHB blends. LDPE/PHB/GG blends exhibit unsatisfactory properties. Apparently, the effect of addition of GG to LDPE on the biodegradation behavior of LDPE/GG blends was less intense than the effect caused by addition of PHB to the blends. Similar observation has occurred with the partial replacement of GG by PHB in the ternary blends.

  5. Endothelial Barrier Protein Expression in Biodegradable Polymer Sirolimus-Eluting Versus Durable Polymer Everolimus-Eluting Metallic Stents.

    Science.gov (United States)

    Mori, Hiroyoshi; Cheng, Qi; Lutter, Christoph; Smith, Samantha; Guo, Liang; Kutyna, Matthew; Torii, Sho; Harari, Emanuel; Acampado, Eduardo; Joner, Michael; Kolodgie, Frank D; Virmani, Renu; Finn, Aloke V

    2017-12-11

    This study sought to investigate endothelial coverage and barrier protein expression following stent implantation. Biodegradable polymer drug-eluting stents (BP-DES) have been purported to have biological advantages in vessel healing versus durable polymer DES (DP-DES), although clinical trial data suggest equipoise. Biodegradable polymer-sirolimus-eluting stents (BP-SES), durable polymer-everolimus-eluting stents (DP-EES), and bare-metal stents (BMS) were compared. In the rabbit model (28, 45, and 120 days), stented arteries underwent light microscopic analysis and immunostaining for the presence of vascular endothelium (VE)-cadherin, an endothelial barrier protein, and were subjected to confocal microscopy and scanning electron microscopy. A cell culture study in stented silicone tubes was performed to assess cell proliferation. Light microscopic assessments were similar between BP-SES and DP-EES. BMS showed nearly complete expression of VE-cadherin at 28 days, whereas both DES showed significantly less with results favoring BP-SES versus DP-EES (39% coverage in BP-SES, 22% in DP-EES, 95% in BMS). Endothelial cell morphologic patterns differed according to stent type with BMS showing a spindle-like shape, DP-EES a cobblestone pattern, and BP-SES a shape in between. VE-cadherin-negative areas showed greater surface monocytes regardless of type of stent. Cell proliferation was suppressed in both DES with numerically less suppression in BP-SES versus DP-EES. This is the first study to examine VE-cadherin expression after DES. All DES demonstrated deficient barrier expression relative to BMS with results favoring BP-SES versus DP-EES. These findings may have important implications for the development of neoatherosclerosis in different stent types. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Biodegradable polymers by reactive blending trans-esterification of thermoplastic starch with poly (vinyl acetate) and poly (vinyl acetate-co-butyl acrylate)

    CSIR Research Space (South Africa)

    Vargha, V

    2005-04-01

    Full Text Available (vinyl alcohol- co-acetate) is expected. The internally plasticized PVAC, i.e. poly(vinyl acetate-co-butyl acrylate), would serve to decrease the glass transition temperature range of the resulting blend. Both polymers are sold as biodegradable by the supplier... stream_source_info vargha_2005.pdf.txt stream_content_type text/plain stream_size 37663 Content-Encoding ISO-8859-1 stream_name vargha_2005.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Biodegradable polymers...

  7. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    Science.gov (United States)

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  8. A Mechanistic Model for Drug Release in PLGA Biodegradable Stent Coatings Coupled with Polymer Degradation and Erosion

    Science.gov (United States)

    Zhu, Xiaoxiang; Braatz, Richard D.

    2015-01-01

    Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization (or molecular weight) is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer molecular weight change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  9. Theoretical study on modeling and prediction of optical rotation for biodegradable polymers containing α-amino acids using QSAR approaches.

    Science.gov (United States)

    Mallakpour, Shadpour; Hatami, Mehdi; Golmohammadi, Hassan

    2011-07-01

    The main purpose of the present study was modeling and prediction of the optical rotation ([M](D)) of some biodegradable polymers containing α-amino acids using quantitative structure-activity relationship (QSAR) approaches. In order to attain this goal, the optical rotation of a collection of 53 polymers was selected as a data set. The data set was randomly divided into three sections, training, test and external validation sets. By using dragon software, various descriptors were calculated for all molecules in the data set. The important descriptors were selected applying genetic algorithm-partial least squares (GA-PLS) method. Then an artificial neural network (ANN) was written with MATLAB 7 and used these descriptors as inputs and its output was optical rotation of desired polymers. Then, the constructed network was used for the prediction of ([M](D)) values of validation set. The squared correlation coefficient R² values of the ANN model for the training, test and validation sets were 0.998, 0.996 and 0.996 respectively. The results showed the ability of developed ANN to predict optical rotation of various polymers.

  10. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials.

    Science.gov (United States)

    Elieh-Ali-Komi, Daniel; Hamblin, Michael R

    2016-03-01

    Chitin is the most abundant aminopolysaccharide polymer occurring in nature, and is the building material that gives strength to the exoskeletons of crustaceans, insects, and the cell walls of fungi. Through enzymatic or chemical deacetylation, chitin can be converted to its most well-known derivative, chitosan. The main natural sources of chitin are shrimp and crab shells, which are an abundant byproduct of the food-processing industry, that provides large quantities of this biopolymer to be used in biomedical applications. In living chitin-synthesizing organisms, the synthesis and degradation of chitin require strict enzymatic control to maintain homeostasis. Chitin synthase, the pivotal enzyme in the chitin synthesis pathway, uses UDP-N-acetylglucosamine (UDPGlcNAc), produce the chitin polymer, whereas, chitinase enzymes degrade chitin. Bacteria are considered as the major mediators of chitin degradation in nature. Chitin and chitosan, owing to their unique biochemical properties such as biocompatibility, biodegradability, non-toxicity, ability to form films, etc, have found many promising biomedical applications. Nanotechnology has also increasingly applied chitin and chitosan-based materials in its most recent achievements. Chitin and chitosan have been widely employed to fabricate polymer scaffolds. Moreover, the use of chitosan to produce designed-nanocarriers and to enable microencapsulation techniques is under increasing investigation for the delivery of drugs, biologics and vaccines. Each application is likely to require uniquely designed chitosan-based nano/micro-particles with specific dimensions and cargo-release characteristics. The ability to reproducibly manufacture chitosan nano/microparticles that can encapsulate protein cargos with high loading efficiencies remains a challenge. Chitosan can be successfully used in solution, as hydrogels and/or nano/microparticles, and (with different degrees of deacetylation) an endless array of derivatives with

  11. Early vascular healing with rapid breakdown biodegradable polymer sirolimus-eluting versus durable polymer everolimus-eluting stents assessed by optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Tomohisa, E-mail: tomohisa@dhm.mhn.de [Deutsches Herzzentrum, Technische Universität, München (Germany); Byrne, Robert A. [Deutsches Herzzentrum, Technische Universität, München (Germany); Schuster, Tibor [Institut für Medizinische Statistik und Epidemiologie, München (Germany); Cuni, Rezarta [Deutsches Herzzentrum, Technische Universität, München (Germany); Kitabata, Hironori [Wakayama Medical University, Wakayama (Japan); Tiroch, Klaus [Deutsches Herzzentrum, Technische Universität, München (Germany); Dirninger, Alfred; Gratze, Franz; Kaspar, Klaus; Zenker, Gerald [Landeskrankenhaus Bruck/Mur (Austria); Joner, Michael; Schömig, Albert; Kastrati, Adnan [Deutsches Herzzentrum, Technische Universität, München (Germany)

    2013-03-15

    Background: Differences in early arterial healing patterns after stent implantation between biodegradable and durable polymer based new generation drug-eluting stents are not well understood. The aim of this study was to compare the healing patterns of a novel rapid breakdown (≤ 8 weeks) biodegradable polymer sirolimus-eluting stent (BP-SES) with a durable polymer everolimus-eluting stent (EES) using intravascular optical coherence tomography (OCT) at 4 months. Methods: A total of 20 patients were randomly assigned to stenting with BP-SES (n = 11) or EES (n = 9). Overall intravascular imaging was available for 15 (75%) patients. The primary endpoint was the difference in rate of uncovered struts between BP-SES and EES. To account for strut-level clustering, the results in both treatment groups were compared using a generalized linear mixed model approach. Results: Regarding the primary endpoint, BP-SES as compared to EES showed similar rates of uncovered struts (37 [6.8%] versus 167 [17.5%], odds ratio (OR) 0.45 (95% CI 0.09-2.24), p = 0.33). There were no malapposed struts in BP-SES group and 14 malapposed struts in EES group (p = 0.97). No difference in percent neointimal volume (14.1 ± 8.2% vs. 11.4 ± 6.4%, p = 0.56) was observed. Conclusions: Although rapid-breakdown BP-SES as compared to EES showed signs of improved early tissue coverage, after adjustment for strut-level clustering these differences were not statistically significant. No differences in ability to suppress neointimal hyperplasia after stent implantation between 2 stents were observed.

  12. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Energy Technology Data Exchange (ETDEWEB)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004, India. (India)

    2016-05-06

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10{sup −4} Scm{sup −1}. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ε’, Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  13. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Science.gov (United States)

    Kumar, Pradeep; Choonara, Yahya E.; du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Pillay, Viness

    2012-01-01

    Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS) mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%), grafting ratio (GR = 263%), intrinsic viscosity (IV = 5.231 dL/g) and viscometric average molecular mass (MW = 1.63 × 106 Da) compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT)—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness, superior

  14. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  15. Encapsulation of a bioactive steroid in a polymer matrix (micro-encapsulation of DI-31 in chitosan by spray drying for various purposes)

    OpenAIRE

    Collado , A ,; Hernández , G.; Morejón , V.; Coll , F.; Peniche , C.

    2017-01-01

    International audience; DI-31 is a synthetic analog of brasinosteroids (ABR), the active ingredient (PA) of Biobras, a plant growth stimulant, which has shown positive impact on Cuban agriculture, especially in rice cultivation. However, it has the drawback of having low solubility in water and being rapidly metabolized by the plants. An alternative to overcome these limitations is its micro-encapsulation in a polymer matrix. Chitosan (CHI) has been investigated as an excellent candidate for ...

  16. Hemostatic efficacy of local chitosan linear polymer granule in an experimental sheep model with severe bleeding of arteria and vena femoralis.

    Science.gov (United States)

    Ersoy, Gürkan; Rodoplu, Ülkümen; Yılmaz, Osman; Gökmen, Necati; Doğan, Alper; Dikme, Özgür; Aydınoğlu, Aslı; Orhon, Okyanus

    2016-05-01

    The aim of the present study was to evaluate the hemostatic effect of chitosan linear polymer in a sheep model with femoral bleeding. Following induction of anesthesia and intubation of sheep, groin injury was induced to initiate hemorrhage. Animals were randomly assigned to study and control groups. In the control group, absorbent pads were packed on the wound, and pressure was supplied by a weight placed over the dressing. In the study group, chitosan linear polymer was poured onto the bleeding site; absorbent pads and pressure were applied in the same manner. At 5-min intervals, bleeding was evaluated. Primary endpoint was time to hemostasis. Bleeding had stopped by the 1st interval in 5 members of the study group, and by the 2nd interval in 1 member. One sheep was excluded. The bleeding stopped after the 1st interval in 1 member of the control group and after the 2nd interval in 4 members. Bleeding stopped in 2 cases following ligation of the bleeding vessel. Hemostasis was achieved earlier in the study group, compared to the control group, and the difference was statistically significant. Hemostasis was achieved earlier following application of chitosan linear polymer.

  17. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Laurencin, Cato T. (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor); Botchwey, Edward (Inventor); Lu, Helen H. (Inventor); Khan, Mohammed Yusuf (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  18. Challenges and opportunities in using Life Cycle Assessment and Cradle to Cradle® for biodegradable bio-based polymers: a review

    DEFF Research Database (Denmark)

    Niero, Monia; Manat, Renil; Møller, Birger Lindberg

    2015-01-01

    Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from establis...

  19. Preparation and in vitro release performance of sustained-release captopril/Chitosan-gelatin net-polymer microspheres

    Science.gov (United States)

    Zhou, Li; Xu, Junming; Song, Yimin; Gao, Yuanyuan; Chen, Xiguang

    2007-07-01

    The captopril/Chitosan-gelatin net-polymer microspheres (CTP/CGNPMs) were prepared using Chitosan (CTS) and gelatin (GT) by the methods of emulsification, cross-linked reagent alone or in combination and microcrystalline cellulose (MCC) added in the process of preparation of microspheres, which aimed to eliminate dose dumping and burst phenomenon of microspheres for the improvement of the therapeutic efficiency and the decrease of the side effects of captopril (CTP). The results indicated that CTP/CGNPMs had a spherical shape, smooth surface and integral structure inside but no adhesive phenomena in the preparation. The size distribution ranged from 220 μm to 280 μm. The CTP release test in vitro demonstrated that CTP/CGNPMs played the role of retarding the release of CTP compared with ordinary CTP tablets. The release behaviors of CGNPMS were influenced by preparation conditions such as experimental material ratio (EMR) and composition of cross linking reagents. Among these factors, the EMR (1/4), CLR (FA+SPP) and 0.75% microcrystalline cellulose (MCC) added to the microspheres constituted the optimal scheme for the preparation of CTP/CGNPMs. The ER, DL and SR of CTP/CGNPMs prepared according to the optimal scheme were 46.23±4.51%, 9.95±0.77% and 261±42%, respectively. The CTP/CGNPMs had the good characteristics of sustained release of drug and the process of emulsification and cross-linking were simple and stable. The CGNPMs are likely to be an ideal sustained release formulation for water-soluble drugs.

  20. Performance and environmental impact of biodegradable polymers as agricultural mulching films.

    Science.gov (United States)

    Touchaleaume, François; Martin-Closas, Lluís; Angellier-Coussy, Hélène; Chevillard, Anne; Cesar, Guy; Gontard, Nathalie; Gastaldi, Emmanuelle

    2016-02-01

    In the aim of resolving environmental key issues such as irreversible soil pollution by non-biodegradable and non-recoverable polyethylene (PE) fragments, a full-scale field experiment was set up to evaluate the suitability of four biodegradable materials based on poly(butylene adipate-co-terephtalate) (PBAT) to be used as sustainable alternatives to PE for mulching application in vineyard. Initial ultimate tensile properties, functional properties during field ageing (water vapour permeability and radiometric properties), biodegradability and agronomical performance of the mulched vines (wood production and fruiting yield) were studied. In spite of their early loss of physical integrity that occurred only five months after vine planting, the four materials satisfied all the requested functional properties and led to agronomic performance as high as polyethylene. In the light of the obtained results, the mulching material lifespan was questioned in the case of long-term perennial crop such as grapevine. Taking into account their mulching efficiency and biodegradability, the four PBAT-based studied materials are proven to constitute suitable alternatives to the excessively resistant PE material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biodegradable interpolyelectrolyte complexes based on methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) and chitosan.

    Science.gov (United States)

    Luo, Kun; Yin, Jingbo; Song, Zhijiang; Cui, Lei; Cao, Bin; Chen, Xuesi

    2008-10-01

    We synthesized methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) (mPEGGA) diblock copolymer by ring-opening polymerization of N-carboxy anhydride of gamma-benzyl-L-glutamate (NCA) using amino-terminated methoxy polyethylene glycol (mPEG) as macroinitiator. Polyelectrolyte complexation between mPEGGA as neutral-block-polyanion and chitosan (CS) as polycation has been scrutinized in aqueous solution as well as in the solid state. Water-soluble polyelectrolyte complexes (PEC) can be formed only under nonstoichiometric condition while phase separation is observed when approaching 1:1 molar mixing ratio in spite of the existence of hydrophilic mPEG block. This is likely due to mismatch in chain length between polyanion block of the copolymer and the polycation or hydrogen bonding between the components. Hydrodynamic size of primary or soluble PEC is determined to be about 200 nm, which is larger than those reported in some literatures. The increase in polyion chain length of the copolymer leads to the increase in the hydrodynamic size of the water-soluble PEC. Formation of spherical micelles by the mPEGGA/CS complex at nonstoichiometirc condition has been confirmed by the scanning electron microscopy observation and transmission electron microscopy observations. The homopolymer CS experiences attractive interaction with both mPEGA and PGA blocks within the copolymer. Competition of hydrogen bonding and electrostatic force in the system or hydrophilic mPEG segments weakens the electrostatic interaction between the oppositely charged polyions. The existence of hydrogen bonding restrains the mobility of mPEG chains of the copolymer and completely prohibits crystallization of mPEG segments. In vitro culture of human fibroblasts indicates that mPEGGA/CS-based materials have potential in biomedical application, especially in tissue engineering.

  2. Sustained clinical safety and efficacy of a biodegradable-polymer coated sirolimus-eluting stent in "real-world" practice: three-year outcomes of the CREATE (Multi-Center Registry of EXCEL Biodegradable Polymer Drug Eluting Stents) study.

    Science.gov (United States)

    Han, Yaling; Jing, Quanmin; Li, Yi; Yang, Lixia; Liu, Huiliang; Shang, Xiaoming; Jiang, Tiemin; Li, Zhanquan; Zhang, Hua; Yan, Gaoliang

    2012-02-01

    The CREATE is a post-marketing surveillance multicenter registry that demonstrated satisfactory angiographic and clinical (at 18 months) outcomes of a biodegradable polymer based sirolimus-eluting stent (EXCEL, JW Medical System, Weihai, China) for the treatment of patients in routine clinical practice. To evaluate the three-year clinical safety and efficacy outcomes in patients enrolled in the CREATE study. A total of 2077 all comers have been enrolled in the CREATE study at 59 centers from four countries. Recommended antiplatelet regimen was clopidogrel and aspirin for six months followed by chronic aspirin therapy. The prespecified primary outcome was the rate of major adverse cardiac events (MACE) at 12, 18, and 36 months. Clinical follow-up was completed in 2025 (97.5%) patients at three years. The average duration of clopidogrel treatment was 199.8 ± 52.7 days and 80.5% of discharged patients discontinued clopidogrel at six months. The cumulative rate of MACE was 4.5% and the rate of stent thrombosis was 1.53% at three years. At six months to three years, prolonged clopidogrel therapy (>6 months) was not beneficial in reducing cumulative hazards of MACE (3.4% vs. 3.1%, log rank P = 0.725) or stent thrombosis (1.5% vs. 0.6%, log rank P = 0.053). This study demonstrates sustained three-year clinical safety and efficacy of biodegradable polymer-based sirolimus-eluting stents when used with six months of dual antiplatelet therapy in a "real-world" setting. Copyright © 2011 Wiley Periodicals, Inc.

  3. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  4. Biodegradation study of enzymatically catalyzed interpenetrating polymer network: Evaluation of agrochemical release and impact on soil fertility

    Directory of Open Access Journals (Sweden)

    Saruchi

    2016-03-01

    Full Text Available A novel interpenetrating polymer network (IPN has been synthesized through enzymatic initiation using lipase as initiator, glutaraldehyde as cross-linker, acrylic acid as primary monomer and acrylamide as secondary monomer. Biodegradability of synthesized interpenetrating polymer network was studied through soil burial and composting methods. Synthesized hydrogel was completely degraded within 70 days using composting method, while it was 86.03% degraded within 77 days using soil burial method. This was confirmed by Fourier transform Infrared spectroscopy (FTIR and Scanning electron microscopy (SEM techniques. Synthesized interpenetrating polymer network hydrogel was used as a device for controlled release of urea and also act as water releasing device. Their impact on soil fertility and plant growth was also studied. The initial diffusion coefficient has a greater value than the later diffusion coefficient indicating a higher fertilizer release rate during the early stage. Fertilizer release kinetic was also studied which showed Non-Fickian diffusion behavior, as the rate of fertilizer release was comparable to the relaxation time of the synthesized matrix. Synthesized IPN enhance the water uptake capacity up to 6.2% and 7.2% in sandy loam and clay soil, respectively.

  5. Effect of chitosan content on morphology and thermal properties of poly (vinyl alcohol) / chitosan blends; Eefeito do teor de quitosana na morfologia e propriedades termicas das blendas de poli (alcool vinilico) / quitosana

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Barbara Fernanda F. dos; Silva, Jessica Raquel M.B. da; Leite, Itamara Farias, E-mail: itamaraf@gmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Tecnologia. Departamento de Engenharia de Materiais

    2015-07-01

    The objective of this work consists in the preparation and characterization of blends consisting of biodegradable polymers, chitosan (CS) and poly (vinyl alcohol) (PVA), to evaluate the effect of different chitosan content in morphology and thermal properties of PVA blends/CS, prepared by the solution method. Therefore, the blends were characterized by Infrared Spectroscopy Fourier Transform (FTIR), X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG). The results showed a good degree of interaction between the polymers of the blend constituents, suggesting certain degree of miscibility in the mixture. It was observed by XRD, that as the chitosan content in the mixture decreases PVA/CS, there is a slight increase in crystallinity. In comparative analysis, is observed that the composition PVA1/CS1 was the composition that showed improvement in thermal stability. (author)

  6. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications

    DEFF Research Database (Denmark)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-01-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof...... of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(l-Lactic Acid) (PLLA) were confined within the 14nm pores of a NP with gyroid morphology...

  7. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films.

    Science.gov (United States)

    Belibel, R; Avramoglou, T; Garcia, A; Barbaud, C; Mora, L

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid-base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie-Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Late clinical outcomes after implantation of drug-eluting stents coated with biodegradable polymers: 3-year follow-up of the PAINT randomised trial.

    Science.gov (United States)

    Lemos, Pedro A; Moulin, Bruno; Perin, Marco A; Oliveira, Ludmilla A R R; Arruda, J Airton; Lima, Valter C; Lima, Antonio A G; Caramori, Paulo R A; Medeiros, Cesar R; Barbosa, Mauricio R; Brito, Fabio S; Ribeiro, Expedito E

    2012-05-15

    The long-term clinical performance of drug-eluting stents (DES) coated with biodegradable polymers is poorly known. A total of 274 coronary patients were randomly allocated to paclitaxel-eluting stents, sirolimus-eluting stents, or bare metal stents (2:2:1 ratio). The two DES used the same biodegradable polymers and were identical except for the drug. At three years, the pooled DES population had similar rates of cardiac death or myocardial infarction (9.0% vs. 7.1; p=0.6), but lower risk of repeat interventions (10.0% vs. 29.9%; pbiodegradable-polymer coated DES releasing either paclitaxel or sirolimus were effective in reducing the 3-year rate of re-interventions.

  9. Synthesis and characterization of polymers based on citric acid and glycerol: Its application in non-biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Jaime Alfredo Mariano-Torres

    2015-01-01

    Full Text Available El notable incremento mundial en el consumo de plásticos y su l argo tiempo de residencia en el ambiente muestran la gran neces idad de productos con caracterís ticas biodegradables. En este proyecto fueron desarrollados polímeros biodegradables a base del ácido cítrico y del glicerol. La síntesis de esto s se lleva a cabo a diferentes condiciones de concentración y a temperatura constante. Se des arrollaron mediante un proceso económicamente viable. Se caracterizaron p or medio de las siguientes técnicas: Numero ácido, espectroscop ia infrarroja FTIR, índice de refracc ión, viscosidad, análisis de impacto, ensayo de tensión, dure za, calorimetría, el % de Humed ad (método de la estufa con recirculación de aire, determinación de densi dad, además de pruebas cualitativas para corroborar su biodegra dabilidad. Los polímeros elaborados fueron mezclados con una formulación de PVC grado médico, obteniendo un polímero hibrido y se pudo observar que modifica sus propiedades mecánicas.

  10. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.

    Science.gov (United States)

    Iwata, Tadahisa

    2015-03-09

    Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biodegradability and mechanical properties of PP/HMSPP and natural polymers bio-composites in function of gamma-irradiation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Parra, Duclerc F.; Lugao, Ademar B.

    2013-01-01

    PP, expressed as C n H 2n , is one of the most widely used linear hydrocarbon polymers; its versatility arises from the fact that it is made from cheap petrochemical feed stocks through efficient catalytic polymerization process and easy processing to various products. Thus, enormous production and utilization of polymers, in general, lead to their accumulation in the environment, since they are not easily degraded by microorganisms, presenting a serious source of pollution affecting both flora and fauna. These polymers are very bio-resistant due to the involvement of only carbon atoms in main chain with no hydrolyzable functional group. Non-degradable plastics accumulate in the environment at a rate of 25 million tons per year. In recent years, as a result of growing environmental awareness, natural polymers have been increasingly used as reinforcing fillers in thermoplastic composite materials. Sugarcane bagasse was used as reinforcing filler, considering that Brazil is the largest world producer of this crop, with a 101 Mt main agro-industrial residue of sugarcane processing from 340 Mt of sugarcane. Bio-composites were compounded on a twin-screw extruder and samples collected directly from the die. This study aims to investigate mechanical properties of PP/HMSPP-sugarcane bagasse 10, 15, 30 and 50% blends gamma-irradiated at 50, 100, 150 and 200 kGy doses. Degradation essays will comprise DSC and TGA tests and biodegradability behavior will be indicated by Laboratory Soil Burial Test. The main objective of this work is to support the application of these composites as environmentally friendly materials, without prejudicing mechanicals properties, in spite of applied gamma-irradiation. (author)

  12. Biodegradability and mechanical properties of PP/HMSPP and natural polymers bio-composites in function of gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Parra, Duclerc F.; Lugao, Ademar B., E-mail: eclcardo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    PP, expressed as C{sub n}H{sub 2n}, is one of the most widely used linear hydrocarbon polymers; its versatility arises from the fact that it is made from cheap petrochemical feed stocks through efficient catalytic polymerization process and easy processing to various products. Thus, enormous production and utilization of polymers, in general, lead to their accumulation in the environment, since they are not easily degraded by microorganisms, presenting a serious source of pollution affecting both flora and fauna. These polymers are very bio-resistant due to the involvement of only carbon atoms in main chain with no hydrolyzable functional group. Non-degradable plastics accumulate in the environment at a rate of 25 million tons per year. In recent years, as a result of growing environmental awareness, natural polymers have been increasingly used as reinforcing fillers in thermoplastic composite materials. Sugarcane bagasse was used as reinforcing filler, considering that Brazil is the largest world producer of this crop, with a 101 Mt main agro-industrial residue of sugarcane processing from 340 Mt of sugarcane. Bio-composites were compounded on a twin-screw extruder and samples collected directly from the die. This study aims to investigate mechanical properties of PP/HMSPP-sugarcane bagasse 10, 15, 30 and 50% blends gamma-irradiated at 50, 100, 150 and 200 kGy doses. Degradation essays will comprise DSC and TGA tests and biodegradability behavior will be indicated by Laboratory Soil Burial Test. The main objective of this work is to support the application of these composites as environmentally friendly materials, without prejudicing mechanicals properties, in spite of applied gamma-irradiation. (author)

  13. Damage-induced hydrolyses modelling of biodegradable polymers for tendons and ligaments repair.

    Science.gov (United States)

    Vieira, André C; Guedes, Rui M; Tita, Volnei

    2015-09-18

    The use of biodegradable synthetic grafts to repair injured ligaments may overcome the disadvantages of other solutions. Apart from biological compatibility, these devices shall also be functionally compatible and temporarily displayed, during the healing process, adequate mechanical support. Laxity of these devices is an important concern. This can cause failure since it may result in joint instability. Laxity results from a progressive accumulation of plastic strain during the cyclic loading. The functional compatibility of a biodegradable synthetic graft and, therefore, the global mechanical properties of the scaffold during degradation, can be optimised using computer-aiding and numerical tools. Therefore, in this work, the ability of numerical tools to predict the mechanical behaviour of the device during its degradation is discussed. Computational approaches based on elastoplastic and viscoplastic constitutive models are also presented. These models enable to simulate the plastic strain accumulation. These computational approaches, where the material model parameters depend on the hydrolytic degradation damage, are calibrated using experimental data measured from biodegradable suture fibres at different degradation steps. Due to durability requirements the selected materials are polydioxone (PDO) and polylactic acid and poly-caprolactone blend (PLA-PCL). Computational approaches investigated are able to predict well the experimental results for both materials, in full strain range until rupture and for different degradation steps. These approaches can be further used in more complex fibrous structures, to predict its global mechanical behaviour during degradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Synthesis of PVA-Chitosan Hydrogels for Wound Dressing Using Gamma Irradiation. Part I: Radiation Degradation of Chitosan in Solid State and in Solution

    International Nuclear Information System (INIS)

    Mahlous, M.; Tahtat, D.; Benamer, S.; Nacer Khodja, A.; Larbi Youcef, S.

    2010-01-01

    Chitosan is a partially deacetylated product of chitin, a very abundant polysaccharide, existing in exoskeleton of crustaceans. It is a polymer consisting of glucosamine and N-acetylglucosamine units linked by β-1-4-glycosidic bonds. Chitosan, like others polysaccharides, such as cellulose derivatives, alginates and carrageenan is widely used in food, medicine and cosmetic fields. Chitosan presents a variety of distinctive properties, such as biocompatibility, biodegradability, nontoxicity and nonantigenicity. Chitosan obtained by the deacetylation of chitin has, generally, a high molecular weight, which limits its solubility in aqueous solvents. The reduction of its molecular weight by degradation is usually used in order to improve its water solubility. Water-soluble chitosan exhibit some specific properties, such as antifungal activity, antimicrobial activity and plant growth promotion. Among the methods that have been tried to produce low molecular weight chitosan, radiation processing is the most promising one, since the process is simple, it is carried out at room temperature and no purification of the product is required after processing

  15. Comparison of 3 biodegradable polymer and durable polymer-based drug-eluting stents in all-comers (BIO-RESORT): Rationale and study design of the randomized TWENTE III multicenter trial

    NARCIS (Netherlands)

    Lam, Ming Kai; Sen, Hanim; Sen, Hanim; Tandjung, K.; Tandjung, K.; van Houwelingen, K. Gert; de Vries, Arie G.; Danse, Peter W.; Schotborgh, Carl E.; Scholte, Martijn; Löwik, Marije M.; Linssen, Gerard C.M.; IJzerman, Maarten Joost; van der Palen, Jacobus Adrianus Maria; Doggen, Catharina Jacoba Maria; von Birgelen, Clemens

    2014-01-01

    Aim To evaluate the safety and efficacy of 2 novel drug-eluting stents (DES) with biodegradable polymer-based coatings versus a durable coating DES. Methods and Results BIO-RESORT is an investigator-initiated, prospective, patient-blinded, randomized multicenter trial in 3540 Dutch all-comers with

  16. [Preparation of biodegradable porous films for use as wound coverings].

    Science.gov (United States)

    Kil'deeva, N R; Vikhoreva, G A; Gal'braĭkh, L S; Mironov, A V; Bonartseva, G A; Perminov, P A; Romashova, A N

    2006-01-01

    We studied the preparation of polymeric films formed from solutions of poly-3-hydroxybutyrate and poly-epsilon-caprolactone in chloroform and methylene chloride. A morphological study of film chips (electron microscopy) showed that solvent evaporation results in the formation of a heterogeneous structure with interpenetrating pores (1-20 microm). We proposed a new method for introducing the proteolytic enzyme and the aminopolysaccharide chitosan into the composition of polyester films. Composite films possessed necrolytic activity and were characterized by increased hydrophilicity. Properties of enzyme-containing films from a mixture of polymers (proteolytic activity, porous structure, and increased hydrophilicity) account for their use in the preparation of biodegradable wound coverings.

  17. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications

    DEFF Research Database (Denmark)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-01-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof...... of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(l-Lactic Acid) (PLLA) were confined within the 14nm pores of a NP with gyroid morphology...... the hydrolysis of PLLA. The obtained release profiles demonstrate that the degradation of PLLA in nanoporous confinement is significantly slower than the degradation of unconfined PLLA. The release of R6G encapsulated in PLLA becomes correspondingly slower, while the initial burst release virtually disappears...

  18. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China)

    2010-07-01

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO{sub 2}) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO{sub 3}H{sub 2} groups on OPTi and the -NH{sub 2} groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm{sup -1} for DMFC application and a reduced methanol permeability of 5 x 10{sup -7} cm{sup 2} s{sup -1} at a 2 M methanol feed. (author)

  19. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Science.gov (United States)

    Wu, Hong; Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO 2) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO 3H 2 groups on OPTi and the -NH 2 groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm -1 for DMFC application and a reduced methanol permeability of 5 × 10 -7 cm 2 s -1 at a 2 M methanol feed.

  20. Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide Interpenetrating Polymer Network Hydrogel

    Directory of Open Access Journals (Sweden)

    Boxiang Wang

    2016-03-01

    Full Text Available To increase the themosensitive behavior and antibacterial activity of cotton fabric, a series of poly (N-isopropylacrylamide/chitosan (PNIPAAm/Cs hydrogels was synthesized by interpenetrating polymer network (IPN technology using a redox initiator. The IPN PNIPAAm/Cs hydrogel was characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The results indicated that the IPN PNIPAAm/Cs hydrogel has a lower critical solution temperature (LCST at 33 °C. The IPN hydrogel was then used to modify cotton fabric using glutaric dialdehyde (GA as a crosslinking agent following a double-dip-double-nip process. The results demonstrated that the modified cotton fabric showed obvious thermosensitive behavior and antibacterial activity. The contact angle of the modified cotton fabric has a sharp rise around 33 °C, and the modified cotton fabric showed an obvious thermosensitive behavior. The bacterial reduction of modified cotton fabric against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli were more than 99%. This study presents a valuable route towards smart textiles and their applications in functional clothing.

  1. Effects of amphiphilic chitosan-g-poly(ε-caprolactone) polymer additives on paclitaxel release from drug eluting implants

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Weibin [Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092 (China); Gu, Chunhua [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Han [Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092 (China); Zhang, Mengru [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-12-01

    Bioresorbable polymer stents have been proposed as promising medical implants to avoid long-term safety concerns and other potential issues caused by traditional materials. As an important member, poly(ε-caprolactone) (PCL) was used as the implant matrix with different drug loadings. To better regulate drug release rate, the hydrophilicity of PCL was adjusted by addition of amphiphilic graft copolymers, chitosan-g-poly(ε-caprolactone) (CP). The in vitro release results indicated that the improvement of bulk hydrophilicity could accelerate drug release better than that of surface coating. The optimum additive amount was 25% with CP9. Further study showed that the effect of aspirin molecules displayed no obvious difference to that of CP macromolecules on drug release rate. Moreover, these release profiles were fitted with mathematical models. The similarities were evaluated with similarity factors. Scanning electron microscopy (SEM) images displayed surface/cross-section morphologies of pure PCL and modified implants before and after release. - Highlights: • The improvement of bulk hydrophilicity better accelerated drug release. • The higher weight ratio of CP implants had, the faster the drug released. • The shorter PCL chain in CP graft coploymers, the faster the drug released. • The optimum additive amount was 25% with CP9. • Drug release profile conformed to controllable Fick diffusional release mechanism.

  2. A randomised comparison of a novel abluminal groove-filled biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: clinical and angiographic follow-up of the TARGET I trial.

    Science.gov (United States)

    Gao, Run-Lin; Xu, Bo; Lansky, Alexandra J; Yang, Yue-Jin; Ma, Chang-Sheng; Han, Ya-Ling; Chen, Shao-Liang; Li, Hui; Zhang, Rui-Yan; Fu, Guo-Sheng; Yuan, Zu-Yi; Jiang, Hong; Huo, Yong; Li, Wei; Zhang, Yao-Jun; Leon, Martin B

    2013-05-20

    The study sought to evaluate the safety and efficacy of FIREHAWK, a novel abluminal groove-filled biodegradable polymer sirolimus-eluting stent (SES) for treating patients with single de novo coronary lesions compared with the durable polymer everolimus-eluting stent (EES) XIENCE V. A total of 458 patients with single de novo native coronary lesions ≤24 mm in length and a coronary artery ≥2.25 to ≤4.0 mm in diameter were enrolled in the TARGET I study, a prospective, randomised, non-inferiority trial. The primary endpoint was in-stent late lumen loss (LLL) at nine-month follow-up. The secondary endpoint, target lesion failure (TLF), was defined as the composite of cardiac death, target vessel myocardial infarction (TVMI), or ischaemia-driven target lesion revascularisation (iTLR). Patients were centrally randomised to treatment with either biodegradable polymer SES (n=227) or durable polymer EES (n=231). The nine-month in-stent LLL of the biodegradable polymer SES was comparable to the EES group (0.13 ± 0.24 mm vs. 0.13 ± 0.18 mm, p=0.94; difference and 95% confidence interval 0.00 [-0.04, 0.04] mm; p for non-inferiority 0.05). No definite/probable stent thrombosis was observed in both of these groups. In the multicentre TARGET I trial, the novel abluminal groove-filled biodegradable polymer SES FIREHAWK was non-inferior to the durable polymer EES XIENCE V with respect to the primary endpoint of in-stent LLL at nine months for treating patients with single de novo coronary lesions. The incidences of clinical endpoints were low in both of the stents at 12-month follow-up. (ClinicalTrials.gov identifier: NCT01196819).

  3. Molecular Design and Evaluation of Biodegradable Polymers Using a Statistical Approach

    Science.gov (United States)

    Lewitus, Dan; Rios, Fabian; Rojas, Ramiro; Kohn, Joachim

    2013-01-01

    The challenging paradigm of bioresorbable polymers, whether in drug delivery or tissue engineering, states that a fine-tuning of the interplay between polymer properties (e.g., thermal, degradation), and the degree of cell/tissue replacement and remodeling is required. In this paper we describe how changes in the molecular architecture of a series of terpolymers allow for the design of polymers with varying glass transition temperatures and degradation rates. The effect of each component in the terpolymers is quantified via design of experiment (DoE) analysis. A linear relationship between terpolymer components and resulting Tg (ranging from 34 to 86 °C) was demonstrated. These findings were further supported with mass-per-flexible-bond (MPFB) analysis. The effect of terpolymer composition on the in vitro degradation of these polymers revealed molecular weight loss ranging from 20 to 60% within the first 24 hours. DoE modeling further illustrated the linear (but reciprocal) relationship between structure elements and degradation for these polymers. Thus, we describe a simple technique to provide insight into the structure property relationship of degradable polymers, specifically applied using a new family of tyrosine-derived polycarbonates, allowing for optimal design of materials for specific applications. PMID:23888354

  4. Molecular design and evaluation of biodegradable polymers using a statistical approach.

    Science.gov (United States)

    Lewitus, Dan Y; Rios, Fabian; Rojas, Ramiro; Kohn, Joachim

    2013-11-01

    The challenging paradigm of bioresorbable polymers, whether in drug delivery or tissue engineering, states that a fine-tuning of the interplay between polymer properties (e.g., thermal, degradation), and the degree of cell/tissue replacement and remodeling is required. In this paper we describe how changes in the molecular architecture of a series of terpolymers allow for the design of polymers with varying glass transition temperatures and degradation rates. The effect of each component in the terpolymers is quantified via design of experiment (DoE) analysis. A linear relationship between terpolymer components and resulting Tg (ranging from 34 to 86 °C) was demonstrated. These findings were further supported with mass-per-flexible-bond analysis. The effect of terpolymer composition on the in vitro degradation of these polymers revealed molecular weight loss ranging from 20 to 60 % within the first 24 h. DoE modeling further illustrated the linear (but reciprocal) relationship between structure elements and degradation for these polymers. Thus, we describe a simple technique to provide insight into the structure property relationship of degradable polymers, specifically applied using a new family of tyrosine-derived polycarbonates, allowing for optimal design of materials for specific applications.

  5. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials.

    Science.gov (United States)

    Regiel-Futyra, Anna; Kus-Liśkiewicz, Małgorzata; Sebastian, Victor; Irusta, Silvia; Arruebo, Manuel; Stochel, Grażyna; Kyzioł, Agnieszka

    2015-01-21

    This work describes the synthesis and characterization of noncytotoxic nanocomposites either colloidal or as films exhibiting high antibacterial activity. The biocompatible and biodegradable polymer chitosan was used as reducing and stabilizing agent for the synthesis of gold nanoparticles embedded in it. Herein, for the first time, three different chitosan grades varying in the average molecular weight and deacetylation degree (DD) were used with an optimized gold precursor concentration. Several factors were analyzed in order to obtain antimicrobial but not cytotoxic nanocomposite materials. Films based on chitosan with medium molecular weight and the highest DD exhibited the highest antibacterial activity against biofilm forming strains of Staphylococcus aureus and Pseudomonas aeruginosa. The resulting nanocomposites did not show any cytotoxicity against mammalian somatic and tumoral cells. They produced a disruptive effect on the bacteria wall while their internalization was hindered on the eukaryotic cells. This selectivity and safety make them potentially applicable as antimicrobial coatings in the biomedical field.

  6. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    International Nuclear Information System (INIS)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su; Cho, Myung-Haing

    2008-01-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI

  7. Chitosan: Gels and Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Julie Nilsen-Nygaard

    2015-03-01

    Full Text Available Chitosan is a unique biopolymer in the respect that it is abundant, cationic, low-toxic, non-immunogenic and biodegradable. The relative occurrence of the two monomeric building units (N-acetyl-glucosamine and d-glucosamine is crucial to whether chitosan is predominantly an ampholyte or predominantly a polyelectrolyte at acidic pH-values. The chemical composition is not only crucial to its surface activity properties, but also to whether and why chitosan can undergo a sol–gel transition. This review gives an overview of chitosan hydrogels and their biomedical applications, e.g., in tissue engineering and drug delivery, as well as the chitosan’s surface activity and its role in emulsion formation, stabilization and destabilization. Previously unpublished original data where chitosan acts as an emulsifier and flocculant are presented and discussed, showing that highly-acetylated chitosans can act both as an emulsifier and as a flocculant.

  8. Photoluminescent and biodegradable polycitrate-polyethylene glycol-polyethyleneimine polymers as highly biocompatible and efficient vectors for bioimaging-guided siRNA and miRNA delivery.

    Science.gov (United States)

    Wang, Min; Guo, Yi; Yu, Meng; Ma, Peter X; Mao, Cong; Lei, Bo

    2017-05-01

    Development of biodegradable and biocompatible non-viral vectors with intrinsical multifunctional properties such as bioimaging ability for highly efficient nucleic acids delivery still remains a challenge. Here, a biodegradable poly (1,8-octanedio-citric acid)-co-polyethylene glycol grafted with polyethyleneimine (PEI) (POCG-PEI) polymers with the photoluminescent capacity were synthesized for nucleic acids delivery (siRNA and miRNA). POCG-PEI polymers can efficiently bind various nucleic acids, protect them against enzymatic degradation and release the genes in the presence of polyanionic heparin. POCG-PEI also showed a significantly low cytotoxicity, enhanced cellular uptake and high transfection efficiency of nucleic acids, as compared to commercial transfection agents, lipofectamine 2000 (Lipo) and polyethylenimine (PEI 25K). POCG-PEI polymers demonstrate an excellent photostability, which allows for imaging the cells and real-time tracking the nucleic acids delivery. The photoluminescent property, low cytotoxicity, biodegradation, good gene binding and protection ability and high genes delivery efficiency make POCG-PEI highly competitive as a non-virus vector for genes delivery and real-time bioimaging applications. Our results may be also an important step for designing biodegradable biomaterials with multifunctional properties towards bioimaging-guided genes therapeutic applications. Here, a biodegradable poly (1,8-octanedio-citric acid)-co-polyethylene glycol grafted with polyethyleneimine (PEI) (POCG-PEI) polymers with controlled photoluminescent capacity were synthesized for nucleic acids delivery (siRNA and miRNA). POCG-PEI polymers can efficiently bind various nucleic acids, protect them against enzymatic degradation and release the genes in the presence of polyanionic heparin. POCG-PEI also showed a significantly low cytotoxicity, enhanced cellular uptake and high transfection efficiency of nucleic acids, as compared to commercial transfection agents

  9. Production and characterization of chitosan obtained from shrimp exoskeleton

    International Nuclear Information System (INIS)

    Almeida, Leticia P.; Aguiar, Nayara V.; Rodrigues, Willias da L.; Silva, Rafael S. da; Moreira, Carly K.P.

    2015-01-01

    Chitosan is a natural polymer, biocompatible, biodegradable and non-toxic. It's derived from the deacetylation of chitin, which constitutes the most part of the exoskeleton of insects, crustaceans and fungal cell wall. After cellulose, chitin is more organic compound found in nature. The Chitin was separated from others components of shrimp waste (Macrobrachium amazonicum) by a chemical process that involves three steps: demineralization, deproteination and depigmentation. The chitosan produced was characterized by potentiometric titration, to find the degree of deacetylation (85,32 %), determining the intrinsic viscosity to define its molecular weight (503.223 g/mol), and X-ray diffraction to determine its crystallinity index (58,4 %). (author)

  10. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications.

    Science.gov (United States)

    Moura, Duarte; Mano, João F; Paiva, Maria C; Alves, Natália M

    2016-01-01

    Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications.

  11. Effect of Chitosan as a Coagulant Aid Combined With Poly Aluminum Chloride Removing of Turbidity From Drinking Water

    Directory of Open Access Journals (Sweden)

    Abdolmotaleb Seid Mohammadi

    2014-12-01

    Full Text Available Chitosan, a biodegradable polymer, is used as an eco-friendly coagulant in a wide variety of applications in water and wastewater treatment. The present study aimed to investigate the effect of chitosan as a coagulant aid combined with poly aluminum chloride (PAC to enhance coagulating efficiency for bentonite suspensions. A conventional jar test apparatus was used for the tests. The effect of various operational parameters, such as initial pH of the solution (5-9.5, dosage of chitosan (0.5-3.5 mg/L, dosage of PAC (5-35 mg/L and initial turbidity (50-200 NTU were investigated. The maximum turbidity removal rates were obtained as pH 8.5 for PAC and pH 7.5 for combined PAC and chitosan (CPC. The coagulating efficiency of bentonite using PAC and CPA was found to decrease with an increase in the pH value of the solutions. The maximum turbidity removal rate was achieved in coagulating by PAC (30 mg/L alone, and PAC (20 mg/L combined with chitosan (2.5 mg/L as coagulant aid with the removal rate of 87% and 96%, respectively. The optimum dosage of chitosan required to obtain the highest removal rate was 2.5 mg/L. Hence, using chitosan as a coagulant aid can not only reduce the required amount of coagulant (35% but can also enhance the removal turbidity efficiency.

  12. Effects of Temperature on Dynamic Properties of a Biodegradable Polymer Made from Corn Starch

    Science.gov (United States)

    Nishida, Masahiro; Ito, Noriomi; Kawase, Hiroyuki; Tanaka, Koichi

    The effect of strain rate on compressive properties of starch-based biodegradable plastics (Nihon Cornstarch Co., CPR-M2) was examined. Dynamic stress-strain curves of starch-based biodegradable plastics were measured over a wide range of strain rates from 10-5 s-1 to 104 s-1, using a quasi-static compression testing machine and a split Hopkinson pressure bar (SHPB) system. The strain rate slightly affected Young's modulus and considerably increased 7% flow stress. Empirical equation for 7% flow stress was derived for the strain rates from 10-5 s-1 to 104 s-1. In addition, the effect of temperature on Young's modulus and flow stress was also examined in a range from 4°C to 63°C. A master curve of 7% flow stress, reduced to 24°C, was made. The values of activation energies related to the α and β relaxation processes were respectively estimated from the master curve of 7% flow stress and from the best fit of equations based on Ree-Eyring theory and Bauwens' treatment. Temperature measurement of specimens was also made using thermocouples during dynamic compression.

  13. Junctions between metals and blends of conducting and biodegradable polymers (PLLA-PPy and PCL-PPy).

    Science.gov (United States)

    Boutry, C M; Müller, M; Hierold, C

    2012-08-01

    The junctions between newly developed biodegradable conducting polymers (polylactide-polypyrrole PLLA-PPy and polycaprolactone-polypyrrole PCL-PPy) and metal electrodes (Au, Au/Cu, Ag, Ag/Cu, Cu, Cr/Au/Cu, Pd/Au/Cu, Pt/Au/Cu) were studied. The objective was to determine the composite/metal combination having the lowest possible contact resistance and ohmic characteristics. In a first step, different surface treatments, adhesion and metal layers were tested in order to evaluate the contact resistance. Then the current-voltage (IV) characteristics were measured and both ohmic and rectifying behaviour were observed depending on the polymer/metal junctions investigated. The surface treatments studied included an argon sputtering step and a grinding of the polymer surface with the objective of improving the contact between the metal electrode and the polymer. It was found that the most favourable conditions resulted from a process flow without argon sputtering, without grinding for PLLA-PPy and with a slight grinding for PCL-PPy. Moreover the most favourable metal electrodes for PLLA-PPy were Pd/Au/Cu, while the best compromise for PCL-PPy was to use Au/Cu. For the rectifying polymer/metal junctions, the standard thermionic emission model modified with a series resistance was successfully applied to the measured current-voltage IV characteristics. The saturation current density J0, series resistance R, ideality diode factor n and barrier height φB were investigated. The Chot functions were computed for each rectifying junction and the corresponding threshold voltages were calculated. Finally the conductivity of both composites was evaluated as a function of temperature in the range of 30 °C to 80 °C. For PLLA-PPy a decrease of the resistivity was observed when the temperature was increasing, while no clearly recognisable pattern was identified for PCL-PPy in this temperature range. The electrical conductivity of the PLLA-PPy samples was found to follow the empirical

  14. A Biodegradable Thermoset Polymer Made by Esterification of Citric Acid and Glycerol

    Science.gov (United States)

    Halpern, Jeffrey M.; Urbanski, Richard; Weinstock, Allison K.; Iwig, David F.; Mathers, Robert T.; von Recum, Horst

    2014-01-01

    A new biomaterial, a degradable thermoset polymer, was made from simple, economical, biocompatable monomers without the need for a catalyst. Glycerol and citric acid, non-toxic and renewable reagents, were crosslinked by a melt polymerization reaction at temperatures from 90-150°C. Consistent with a condensation reaction, water was determined to be the primary byproduct. The amount of crosslinking was controlled by the reaction conditions, including temperature, reaction time, and ratio between glycerol and citric acid. Also, the amount of crosslinking was inversely proportional to the rate of degradation. As a proof-of-principle for drug delivery applications, gentamicin, an antibiotic, was incorporated into the polymer with preliminary evaluations of antimicrobial activity. The polymers incorporating gentamicin had significantly better bacteria clearing of Staphylococcus aureus compared to non-gentamicin gels for up to nine days. PMID:23737239

  15. Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications.

    Science.gov (United States)

    Baranwal, Anupriya; Kumar, Ashutosh; Priyadharshini, A; Oggu, Gopi Suresh; Bhatnagar, Ira; Srivastava, Ananya; Chandra, Pranjal

    2018-04-15

    Biopolymers have been serving the mankind in various ways since long. Over the last few years, these polymers have found great demand in various domains which includes bio medicine, tissue engineering, bio sensor fabrications etc. because of their excellent bio compatibility. In this context, chitosan has found global attention due to its environmentally benign nature, biocompatibility, biodegradability, and ease of availability. In last one decade or so, extensive research in active biomaterials, like chitosan has led to the development of novel delivery systems for drugs, genes, and biomolecules; and regenerative medicine. Additionally, chitosan has also witnessed its usage in functionalization of biocompatible materials, nanoparticle (NP) synthesis, and immobilization of various bio-recognition elements (BREs) to form active bio-surfaces with great ease. Keeping these aspects in mind, we have written a comprehensive review which aims to acquaint its readers with the exceptional properties of chitosan and its usage in the domain of biomedicine, tissue engineering, and biosensor fabrication. Herein, we have briefly explained various aspects of direct utilization of chitosan and then presented vivid strategies towards formulation of chitosan based nanocomposites for biomedicine, tissue engineering, and biosensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Physicochemical and Antibacterial Properties of Synthesized Polyaniline-Chitosan-Nanosilver Hybrid Nanocomposite

    Directory of Open Access Journals (Sweden)

    Reza Abbas Farmand

    2016-09-01

    Full Text Available Chitosan (Chito as a biopolymer with high antibacterial, biocompatibility and biodegradability and polyaniline (PANI as a conductive polymer and silver (Ag nanoparticles to enhance antibacterial property were used to prepare polyanilin-chitosan-silver (PANI-Chito-Ag nanocomposites. The synthesis of PANIChito composite and PANI-Chito-Ag nanocomposite was performed through aniline polymerization in the presence of Chito and Ag. In order to evaluate the physicochemical and antibacterial properties of synthesized composite and nanocomposites, several combinations of components with different weight ratios were used. Antibacterial tests were performed using two different types of bacteria: Escherichia coli (gram-negative bacteria and Staphylococcus aureus (gram-positive bacteria to determine the antibacterial capability of the PANI-Chito-Ag nanocomposite. The obtained results showed that higher Chito and silver contents produced stronger antibacterial property. The biodegradability test results confirmed that,the biodegradability increased as the content of Chito increased. Also, by increasing Streptomyces (gram-positive bacteria concentration in natural soil, the biodegradability rate of nanocomposite was enhanced. The results obtained from thermogravimetric analysis (TGA tests also indicated improvement in thermal stability of PANI-Chito-Ag nanocomposite compared to that of pure Chito. Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX were used to analyze and characterize the composition and structure of PANIChito-Ag triple hybrid nanocomposite. The results confirmed uniform distribution of Ag nanoparticles within the polymer matrix.

  17. Enhancement of the optical properties of a new radiochromic dosimeter based on aliphatic-aromatic biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Schimitberger, Thiago, E-mail: tschimitberger@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear; Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The development of a dosimeter that is of low cost, easy to process without dependence on expensive complex instruments and environment friendly is a challenging in irradiation quality control. Recently, an aliphatic-aromatic biodegradable polymer has been proposed as radiochromic dosimeter. The dosimeter is based on biodegradable poly(butylene adipate-co-terephthalate) copolymers (PBAT). In order to improve the photoluminescence (PL) properties of PBAT, increasing its range of applicability (50 kGy to 1000 kGy), this work investigates the influence of solution concentration in the dose response. Films with thickness of c.a. 80 μm were produce by wirebar coating, a simple deposition method for preparing large areas of organic films at low cost. The irradiation of samples was performed at room temperature using a Co-60 source at dose rate of 20 kGy/h. The films were exposed to doses ranging from 501 kGy to 1000 kGy. A 405 nm LED light source was used to excite the films. The USB2000 spectrometer made by Ocean Optics was used to collect the emission spectra of the luminescent films. The photoluminescent intensity captured by the spectrometer present linear radiation dose dependence. The maximum PL for the film sample made from a 0.05 g.mL{sup -1} solution is 1.5 (a.u.) while it is about 3.5 (a.u.) for a film sample made from a 0.2 mg.mL{sup -1} solution, when irradiated with 1000 kGy. These results indicate that PBAT films have great potential to be used as a high gamma dose radiochromic dosimeter over a wide dose range, expanding its applicability for different radiations process. (author)

  18. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    Science.gov (United States)

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL.

  19. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    International Nuclear Information System (INIS)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-01-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties. - Highlights: ► Chitosan and starch-based biodegradable films were prepared by casting. ► With the increase of chitosan in starch, the strength of the films improved significantly. ► Monomer, 2-Butane diol-diacrylate was grafted with the films by gamma radiation. ► Mechanical properties of synthetic polymeric films improved by gamma radiation. ► The irradiated polymer films showed better water vapor barrier properties.

  20. Polímeros biodegradáveis - uma solução parcial para diminuir a quantidade dos resíduos plásticos Biodegradable polymers - a partial way for decreasing the amount of plastic waste

    Directory of Open Access Journals (Sweden)

    Sandra Mara Martins Franchetti

    2006-07-01

    Full Text Available The large use of plastics has generated a waste deposit problem. Today plastic wastes represent 20% in volume of the total waste in the municipal landfills. To solve the disposal problem of plastics methods have been employed such as incineration, recycling, landfill disposal, biodegradation and the use of biodegradable polymers. Incineration of plastic wastes provokes pollution due to the production of poisonous gases. Recycling is important to reduce final costs of plastic materials, but is not enough in face of the amount of discarded plastic. In landfills plastic wastes remain undegraded for a long time, causing space and pollution problems. Biodegradation is a feasible method to treat some plastics, but intensive research is necessary to find conditions for the action of microorganisms. All of these methods are important and the practical application of each one depends on the type and amount of the plastic wastes and the environmental conditions. Therefore, a great deal of research has focused on developing biodegradable plastics and its application because it is an important way for minimizing the effect of the large volume of plastic waste discarded in the world.

  1. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications.

    Science.gov (United States)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-04-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(L-Lactic Acid) (PLLA) were confined within the 14 nm pores of a NP with gyroid morphology derived from a diblock copolymer precursor. Glass transition, crystallization and melting of free and confined PLLA were monitored by differential scanning calorimetry. Release profiles for R6G were measured in methanol-water solvents at pH 13, which works as an accelerated release test by speeding up the hydrolysis of PLLA. The obtained release profiles demonstrate that the degradation of PLLA in nanoporous confinement is significantly slower than the degradation of unconfined PLLA. The release of R6G encapsulated in PLLA becomes correspondingly slower, while the initial burst release virtually disappears. These findings suggest that the presented proof of principle constitutes a promising basis for the development of novel implantable drug delivery systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications

    NARCIS (Netherlands)

    Vaz, C.M.; Fossen, M.; Tuil, van R.F.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al2O3) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity

  3. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes.

    NARCIS (Netherlands)

    Tienen, T. van; Heijkants, R.G.J.C.; Buma, P.; Groot, J.H. de; Pennings, A.J.; Veth, R.P.H.

    2002-01-01

    Commonly, spontaneous repair of lesions in the avascular zone of the knee meniscus does not occur. By implanting a porous polymer scaffold in a knee meniscus defect, the lesion is connected with the abundantly vascularized knee capsule and healing can be realized. Ingrowth of fibrovascular tissue

  4. Tissue ingrowth polymers and degradation of two biodegradable porous with different porosities and pore sizes

    NARCIS (Netherlands)

    van Tienen, TG; Heijkants, RGJC; Buma, P; de Groot, JH; Pennings, AJ; Veth, RPH

    Commonly, spontaneous repair of lesions in the avascular zone of the knee meniscus does not occur. By implanting a porous polymer scaffold in a knee meniscus defect, the lesion is connected with the abundantly vascularized knee capsule and heating can be realized. Ingrowth of fibrovascular tissue

  5. Chitosan Based Scaffolds and Their Applications in Wound Healing

    OpenAIRE

    Ahmed, Shakeel; Ikram, Saiqa

    2017-01-01

    Over the last decade, much interest has been developed in biopolymer based materials due to their biocompatible, biodegradable, non-toxic and non-allergenic nature. Chitosan is a unique biopolymer that exhibits outstanding properties, besides biocompatibility and biodegradability. Most of these peculiar properties arise from the presence of primary amines along the chitosan backbone. Many works have been done to obtain chitosan based scaffolds, including surface modifications, the fabrication...

  6. A second-generation ionic liquid matrix-assisted laser desorption/ionization matrix for effective mass spectrometric analysis of biodegradable polymers.

    Science.gov (United States)

    Berthod, Alain; Crank, Jeffrey A; Rundlett, Kimber L; Armstrong, Daniel W

    2009-11-01

    A second generation ionic liquid matrix (ILM), N,N-diisopropylethylammonium alpha-cyano-4-hydroxycinnamate (DEA-CHCA), was developed for the characterization of polar biodegradable polymers. It is compared with five solid matrices typically used for the characterization of these polymers and one other new ILM. It is shown that use of the ILM, DEA-CHCA, allows maximum signal with minimum laser intensity which minimizes polymer degradation. In these conditions, the DEA-CHCA ILM is able to assist in the ionization of analytes in an efficient but soft manner. These qualities produce spectra that allow an accurate and sensitive determination of the number average molecular weights, weight average m.w., and polydispersity index of labile polar polymers. With such polymers, many solid matrices produce spectra showing extensive polymer degradation leading to the underestimation of molecular weights. The distribution of intact analyte peaks obtained with the ILM DEA-CHCA allows for identification of the fine structure of complex copolymers. ILMs were much less susceptible to effects of extraction delay times on molecular weight determination than were solid matrices. The liquid nature of the matrix is an important reason for the outstanding results obtained for labile analyte polymers. No comparable results could be obtained with any known solid matrices or other ILMs. In many cases, the manufacturers' listed molecular weights and polydispersity measurements for biodegradable polymers are determined by size-exclusion chromatography and the data obtained by that method may differ considerably from the high-precision matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results presented here. Copyright 2009 John Wiley & Sons, Ltd.

  7. Isocyanate-Functionalized Chitin and Chitosan as Gelling Agents of Castor Oil

    Directory of Open Access Journals (Sweden)

    José M. Franco

    2013-06-01

    Full Text Available The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO–functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI, and the other by using chitin instead of chitosan. These polymers were characterized through 1H-NMR, FTIR and thermogravimetric analysis (TGA. Thermal and rheological behaviours of the oleogels prepared by dispersing these polymers in castor oil were studied by means of TGA and small-amplitude oscillatory shear (SAOS measurements. The evolution and values of the linear viscoelasticity functions with frequency for –NCO–functionalized chitosan- and chitin-based oleogels are quite similar to those found for standard lubricating greases. In relation to long-term stability of these oleogels, no phase separation was observed and the values of viscoelastic functions increase significantly during the first seven days of ageing, and then remain almost constant. TGA analysis showed that the degradation temperature of the resulting oleogels is higher than that found for traditional lubricating greases.

  8. Isocyanate-functionalized chitin and chitosan as gelling agents of castor oil.

    Science.gov (United States)

    Gallego, Rocío; Arteaga, Jesús F; Valencia, Concepción; Franco, José M

    2013-06-03

    The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO-functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI), and the other by using chitin instead of chitosan. These polymers were characterized through 1H-NMR, FTIR and thermogravimetric analysis (TGA). Thermal and rheological behaviours of the oleogels prepared by dispersing these polymers in castor oil were studied by means of TGA and small-amplitude oscillatory shear (SAOS) measurements. The evolution and values of the linear viscoelasticity functions with frequency for -NCO-functionalized chitosan- and chitin-based oleogels are quite similar to those found for standard lubricating greases. In relation to long-term stability of these oleogels, no phase separation was observed and the values of viscoelastic functions increase significantly during the first seven days of ageing, and then remain almost constant. TGA analysis showed that the degradation temperature of the resulting oleogels is higher than that found for traditional lubricating greases.

  9. Development of modified release gliclazide biological macromolecules using natural biodegradable polymers.

    Science.gov (United States)

    Prajapati, Vipulkumar D; Mashru, Krupa H; Solanki, Himanshu K; Jani, Girish K

    2013-04-01

    Modified release biological macromolecules (beads) of gliclazide using sodium alginate combined with either gellan gum or pectin in different ratios were prepared by Ionotropic gelation method. Biological macromolecules were evaluated for different physico-chemical parameters. Increase in polymers proportion showed difficulty in production of biological macromolecules due to high viscosity of dispersion. As the polymer concentration increases, the swelling and entrapment efficiency of drug increased. Compared to all other batches and commercial modified release gliclazide tablet, formulated biological macromolecules of sodium alginate with pectin (2:1 ratio) and with gellan gum (6:0.75 ratio) exhibited spherical shape, biphasic in vitro release profile and initial high drug release followed by moderate release up to 12 h as matrix diffusion kinetics and Higuchi model as well as Korsmeyer model. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. [Biodegradable synthetic polymers for the design of implantable medical devices: the ligamentoplasty case].

    Science.gov (United States)

    Garric, Xavier; Nottelet, Benjamin; Pinese, Coline; Leroy, Adrien; Coudane, Jean

    2017-01-01

    The sector of implantable medical devices is a growing sector of health products especially dynamic in the field of research. To improve the management of patients and to meet clinical requirements, researchers are developing new types of medical devices. They use different families of biomaterials presenting various chemical and physical characteristics in order for providing clinicians with health products optimized for biomedical applications. In this article, we aim to show how, starting from a family of biomaterials (degradable polymers), it is possible to design an implantable medical device for the therapeutic management of the failure of anterior cruciate ligament. The main steps leading to the design of a total ligament reinforcement are detailed. They range from the synthesis and characterization of degradable polymer to the shaping of the knitted implant, through the assessment of the study of the impact of sterilization on mechanical properties and checking cytocompatibility. © 2017 médecine/sciences – Inserm.

  11. Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as Lewis acid.

    Science.gov (United States)

    Deng, Hui; Wei, Zhilai; Wang, XiaoNing

    2017-02-10

    A Ti(IV) functionalized chitosan molecularly imprinted polymer (Ti-CSMIP) was successfully prepared. Ti 4+ as Lewis acidic was used to modify chitosan MIP by producing metal hydroxyl group and protonated surface of adsorbent in aqueous solution to recognize X-3B molecule as a Lewis base. The adsorbent was characterized by FTIR, SEM, XRD, BET, elemental and zeta potential analysis. XRD illustrated Ti-CSMIP exhibited a weak anatase phase when Ti 4+ cross-linked with chitosan. Batch adsorption experiments were performed to evaluate adsorption condition, including sorption isotherm, kinetics and reusability. The maximum adsorption capacity of Ti-CSMIP for X-3B was 161.1mg/g at 293K when solution pH was in the range of 6.0-7.0. Equilibrium data was well analyzed by three-parameter isotherm model, and the kinetics of adsorption followed the pseudo-second kinetics equation. Regeneration experiments indicated a possible application as an effective sorbent for the selective removal of azo anionic dye in aqueous solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Fibrous polymer grafted magnetic chitosan beads with strong poly(cation-exchange) groups for single step purification of lysozyme.

    Science.gov (United States)

    Bayramoglu, Gulay; Tekinay, Turgay; Ozalp, V Cengiz; Arica, M Yakup

    2015-05-15

    Lysozyme is an important polypetide used in medical and food applications. We report a novel magnetic strong cation exchange beads for efficient purification of lysozyme from chicken egg white. Magnetic chitosan (MCHT) beads were synthesized via phase inversion method, and then grafted with poly(glycidyl methacrylate) (p(GMA)) via the surface-initiated atom transfer radical polymerization (SI-ATRP). Epoxy groups of the grafted polymer, were modified into strong cation-exchange groups (i.e., sulfonate groups) in the presence of sodium sulfite. The MCTH and MCTH-g-p(GMA)-SO3H beads were characterized by ATR-FTIR, SEM, and VSM. The sulphonate groups content of the modified MCTH-g-p(GMA)-4 beads was found to be 0.53mmolg(-1) of beads by the potentiometric titration method. The MCTH-g-p(GMA)-SO3H beads were first used as an ion-exchange support for adsorption of lysozyme from aqueous solution. The influence of different experimental parameters such as pH, contact time, and temperature on the adsorption process was evaluated. The maximum adsorption capacity was found to be 208.7mgg(-1) beads. Adsorption of lysozyme on the MCTH-g-p(GMA)-SO3H beads fitted to Langmuir isotherm model and followed the pseudo second-order kinetic. More than 93% of the adsorbed lysozyme was desorbed using Na2CO3 solution (pH 11.0). The purity of the lysozyme was checked by HPLC and SDS gel electrophoresis. In addition, the MCTH-g-p(GMA)-SO3H beads prepared in this work showed promising potential for separation of various anionic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Investigating Effects of Gelatin-Chitosan Film on Culture of Bone Marrow Stromal Cells in Rat

    Directory of Open Access Journals (Sweden)

    A Karami joyani

    2015-02-01

    Conclusion: Results of proliferation,differentiation and apoptosis cultured BMSCs on a gelatin-chitosan film showed that gelatin-chitosan film can be used as a good model of a biodegradable scaffold in tissue engineering and cell therapy.

  14. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.

    Science.gov (United States)

    Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David

    2015-11-01

    Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Encapsulation of testosterone by chitosan nanoparticles.

    Science.gov (United States)

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A propensity score-matched comparison of biodegradable polymer vs second-generation durable polymer drug-eluting stents in a real-world population.

    Science.gov (United States)

    Zhao, Ying Jiao; Teng, Monica; Khoo, Ai Leng; Ananthakrishna, Rajiv; Yeo, Tiong Cheng; Lim, Boon Peng; Loh, Joshua P; Chan, Mark Y

    2018-04-01

    The safety and efficacy of BP-DES compared to second-generation DP-DES remain unclear in the real-world setting. We compared the clinical outcomes of biodegradable polymer drug-eluting stents (BP-DES) with second-generation durable polymer drug-eluting stents (DP-DES) in an all-comer percutaneous coronary intervention (PCI) registry. The study included a cohort of 1065 patients treated with either BP-DES or DP-DES from January 2009 through October 2015. Propensity score matching was performed to account for potential confounders and produced 497 matched pairs of patients. The primary endpoint was target lesion failure (TLF) at one-year follow-up. The rates of TLF were comparable between BP-DES and DP-DES (8.7% vs 9.1%, P = .823) at 1 year. The rates of stent thrombosis at 30 days (0.4% vs 0.4%, P = 1.00) and 1 year (0.8% vs 0.8%, P = 1.00) did not differ between BP-DES and DP-DES. There were no significant differences in other clinical outcomes including target vessel failure (8.9% vs 9.5%, P = .741), in-stent restenosis (1.8% vs 1.0%, P = .282), and cardiac death (6.4% vs 7.4%, P = .533) at 1 year. Multivariate cox regression analysis showed that the risk of TLF at one-year did not differ significantly between BP-DES and DP-DES (hazard ratio 0.94, P = .763). Efficacy and safety of BP-DES were not better than DP-DES at one-year follow-up. © 2018 John Wiley & Sons Ltd.

  17. Biodegradable polymer stents vs second generation drug eluting stents: A meta-analysis and systematic review of randomized controlled trials.

    Science.gov (United States)

    Pandya, Bhavi; Gaddam, Sainath; Raza, Muhammad; Asti, Deepak; Nalluri, Nikhil; Vazzana, Thomas; Kandov, Ruben; Lafferty, James

    2016-02-26

    To evaluate the premise, that biodegradable polymer drug eluting stents (BD-DES) could improve clinical outcomes compared to second generation permanent polymer drug eluting stents (PP-DES), we pooled the data from all the available randomized control trials (RCT) comparing the clinical performance of both these stents. A systematic literature search of PubMed, Cochrane, Google scholar databases, EMBASE, MEDLINE and SCOPUS was performed during time period of January 2001 to April 2015 for RCT and comparing safety and efficacy of BD-DES vs second generation PP-DES. The primary outcomes of interest were definite stent thrombosis, target lesion revascularization, myocardial infarction, cardiac deaths and total deaths during the study period. A total of 11 RCT's with a total of 12644 patients were included in the meta-analysis, with 6598 patients in BD-DES vs 6046 patients in second generation PP-DES. The mean follow up period was 16 mo. Pooled analysis showed non-inferiority of BD-DES, comparing events of stent thrombosis (OR = 1.42, 95%CI: 0.79-2.52, P = 0.24), target lesion revascularization (OR = 0.99, 95%CI: 0.84-1.17, P = 0.92), myocardial infarction (OR = 1.06, 95%CI: 0.86-1.29, P = 0.92), cardiac deaths (OR = 1.07, 95%CI 0.82-1.41, P = 0.94) and total deaths (OR = 0.96, 95%CI: 0.80-1.17, P = 0.71). BD-DES, when compared to second generation PP-DES, showed no significant advantage and the outcomes were comparable between both the groups.

  18. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Faisal Raza

    2018-01-01

    Full Text Available Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today’s world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, “release mechanisms” their physical and chemical characteristics and diverse applications.

  19. Hybrid Titanium/Biodegradable Polymer Implants with an Hierarchical Pore Structure as a Means to Control Selective Cell Movement

    Science.gov (United States)

    Vrana, Nihal Engin; Dupret, Agnès; Coraux, Christelle; Vautier, Dominique; Debry, Christian; Lavalle, Philippe

    2011-01-01

    In order to improve implant success rate, it is important to enhance their responsiveness to the prevailing conditions following implantation. Uncontrolled movement of inflammatory cells and fibroblasts is one of these in vivo problems and the porosity properties of the implant have a strong effect on these. Here, we describe a hybrid system composed of a macroporous titanium structure filled with a microporous biodegradable polymer. This polymer matrix has a distinct porosity gradient to accommodate different cell types (fibroblasts and epithelial cells). The main clinical application of this system will be the prevention of restenosis due to excessive fibroblast migration and proliferation in the case of tracheal implants. Methodology/Principal Findings A microbead-based titanium template was filled with a porous Poly (L-lactic acid) (PLLA) body by freeze-extraction method. A distinct porosity difference was obtained between the inner and outer surfaces of the implant as characterized by image analysis and Mercury porosimetry (9.8±2.2 µm vs. 36.7±11.4 µm, p≤0.05). On top, a thin PLLA film was added to optimize the growth of epithelial cells, which was confirmed by using human respiratory epithelial cells. To check the control of fibroblast movement, PKH26 labeled fibroblasts were seeded onto Titanium and Titanium/PLLA implants. The cell movement was quantified by confocal microscopy: in one week cells moved deeper in Ti samples compared to Ti/PLLA. Conclusions In vitro experiments showed that this new implant is effective for guiding different kind of cells it will contact upon implantation. Overall, this system would enable spatial and temporal control over cell migration by a gradient ranging from macroporosity to nanoporosity within a tracheal implant. Moreover, mechanical properties will be dependent mainly on the titanium frame. This will make it possible to create a polymeric environment which is suitable for cells without the need to meet mechanical

  20. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers.

    Science.gov (United States)

    Raza, Faisal; Zafar, Hajra; Zhu, Ying; Ren, Yuan; -Ullah, Aftab; Khan, Asif Ullah; He, Xinyi; Han, Han; Aquib, Md; Boakye-Yiadom, Kofi Oti; Ge, Liang

    2018-01-18

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today's world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, "release mechanisms" their physical and chemical characteristics and diverse applications.

  1. Non-biodegradable polymer particles for drug delivery: A new technology for "bio-active" restorative materials.

    Science.gov (United States)

    Imazato, Satoshi; Kitagawa, Haruaki; Tsuboi, Ririko; Kitagawa, Ranna; Thongthai, Pasiree; Sasaki, Jun-Ichi

    2017-09-26

    To develop dental restorative materials with "bio-active" functions, addition of the capability to release active agents is an effective approach. However, such functionality needs to be attained without compromising the basic properties of the restorative materials. We have developed novel non-biodegradable polymer particles for drug delivery, aimed for application in dental resins. The particles are made using 2-hydroxyethyl methacrylate (HEMA) and a cross-linking monomer trimethylolpropane trimethacrylate (TMPT), with a hydrophilic nature to adsorb proteins or water-soluble antimicrobials. The polyHEMA/TMPT particles work as a reservoir to release fibroblast growth factor-2 (FGF-2) or cetylpyridinium chloride (CPC) in an effective manner. Application of the polyHEMA/TMPT particles loaded with FGF-2 to adhesives, or those loaded with CPC to resin-based endodontic sealers or denture bases/crowns is a promising approach to increase the success of the treatments by conferring "bio-active" properties to these materials to induce tissue regeneration or to inhibit bacterial infection.

  2. Biodegradable and biocompatible cationic polymer delivering microRNA-221/222 promotes nerve regeneration after sciatic nerve crush.

    Science.gov (United States)

    Song, Jialin; Li, Xueyang; Li, Yingli; Che, Junyi; Li, Xiaoming; Zhao, Xiaotian; Chen, Yinghui; Zheng, Xianyou; Yuan, Weien

    2017-01-01

    MicroRNA (miRNA) has great potential to treat a wide range of illnesses by regulating the expression of eukaryotic genes. Biomaterials with high transfection efficiency and low toxicity are needed to deliver miRNA to target cells. In this study, a biodegradable and biocompatible cationic polymer (PDAPEI) was synthetized from low molecular weight polyethyleneimine (PEI1.8kDa) cross-linked with 2,6-pyridinedicarboxaldehyde. PDAPEI showed a lower cytotoxicity and higher transfection efficiency than PEI25kDa in transfecting miR-221/222 into rat Schwann cells (SCs). The upregulation of miR-221/222 in SCs promoted the expression of nerve growth factor and myelin basic protein in vitro. The mouse sciatic nerve crush injury model was used to evaluate the effectiveness of PDAPEI/miR-221/222 complexes for nerve regeneration in vivo. The results of electrophysiological tests, functional assessments, and histological and immunohistochemistry analyses demonstrated that PDAPEI/miR-221/222 complexes significantly promoted nerve regeneration after sciatic nerve crush, specifically enhancing remyelination. All these results show that the use of PDAPEI to deliver miR-221/222 may provide a safe therapeutic means of treating nerve crush injury and may help to overcome the barrier of biomaterial toxicity and low efficiency often encountered during medical intervention.

  3. Bioresorption mechanisms of chitosan physical hydrogels: A scanning electron microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Malaise, Sébastien, E-mail: sebastien.malaise@gmail.com [Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP-UMR 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex (France); Rami, Lila [Université de Bordeaux, Bordeaux 33000 (France); Inserm U1026, Bioingénierie Tissulaire, Bordeaux 33000 (France); Montembault, Alexandra; Alcouffe, Pierre [Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP-UMR 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex (France); Burdin, Béatrice [Université de Lyon, Université Claude Bernard Lyon 1, Centre Technologique des Microstructure, 69622 Villeurbanne Cedex (France); Bordenave, Laurence [Université de Bordeaux, Bordeaux 33000 (France); Inserm U1026, Bioingénierie Tissulaire, Bordeaux 33000 (France); CHU de Bordeaux, CIC-IT Biomaterials, F-33000 Bordeaux (France); Delmond, Samantha [CHU de Bordeaux, CIC-IT Biomaterials, F-33000 Bordeaux (France); David, Laurent [Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP-UMR 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex (France)

    2014-09-01

    Tissue-engineered biodegradable medical devices are widely studied and systems must present suitable balance between versatility and elaboration simplicity. In this work, we aim at illustrating that such equilibrium can be found by processing chitosan physical hydrogels without external cross-linker. Chitosan concentration, degree of acetylation, solvent composition, and neutralization route were modulated in order to obtain hydrogels exhibiting different physico-chemical properties. The resulting in vivo biological response was investigated by scanning electron microscopy. “Soft” hydrogels were obtained from chitosan of high degree of acetylation (35%) and by the neutralization with gaseous ammonia of a chitosan acetate aqueous solutions presenting low polymer concentration (Cp = 1.6% w/w). “Harder” hydrogels were obtained from chitosan with lower degree of acetylation (5%) and after neutralization in sodium hydroxide bath (1 M) of hydro-alcoholic chitosan solutions (50/50 w/w water/1,2-propanediol) with a polymer concentration of 2.5% w/w. Soft and hard hydrogels exhibited bioresorption times from below 10 days to higher than 60 days, respectively. We also evidenced that cell colonization and neo-vascularization mechanisms depend on the hydrogel-aggregated structure that is controlled by elaboration conditions and possibly in relation with mechanical properties. Specific processing conditions induced micron-range capillary formation, which can be assimilated to colonization channels, also acting on the resorption scenario. - Highlights: • We elaborated physical chitosan hydrogels presenting tuneable biological properties. • Cell colonization mechanism depends on biological and mechanical hydrogel properties. • Increasing the degree of acetylation will reduce the bioresorption time. • Capillaries played a role of cell colonization pathways.

  4. Bioresorption mechanisms of chitosan physical hydrogels: A scanning electron microscopy study

    International Nuclear Information System (INIS)

    Malaise, Sébastien; Rami, Lila; Montembault, Alexandra; Alcouffe, Pierre; Burdin, Béatrice; Bordenave, Laurence; Delmond, Samantha; David, Laurent

    2014-01-01

    Tissue-engineered biodegradable medical devices are widely studied and systems must present suitable balance between versatility and elaboration simplicity. In this work, we aim at illustrating that such equilibrium can be found by processing chitosan physical hydrogels without external cross-linker. Chitosan concentration, degree of acetylation, solvent composition, and neutralization route were modulated in order to obtain hydrogels exhibiting different physico-chemical properties. The resulting in vivo biological response was investigated by scanning electron microscopy. “Soft” hydrogels were obtained from chitosan of high degree of acetylation (35%) and by the neutralization with gaseous ammonia of a chitosan acetate aqueous solutions presenting low polymer concentration (Cp = 1.6% w/w). “Harder” hydrogels were obtained from chitosan with lower degree of acetylation (5%) and after neutralization in sodium hydroxide bath (1 M) of hydro-alcoholic chitosan solutions (50/50 w/w water/1,2-propanediol) with a polymer concentration of 2.5% w/w. Soft and hard hydrogels exhibited bioresorption times from below 10 days to higher than 60 days, respectively. We also evidenced that cell colonization and neo-vascularization mechanisms depend on the hydrogel-aggregated structure that is controlled by elaboration conditions and possibly in relation with mechanical properties. Specific processing conditions induced micron-range capillary formation, which can be assimilated to colonization channels, also acting on the resorption scenario. - Highlights: • We elaborated physical chitosan hydrogels presenting tuneable biological properties. • Cell colonization mechanism depends on biological and mechanical hydrogel properties. • Increasing the degree of acetylation will reduce the bioresorption time. • Capillaries played a role of cell colonization pathways

  5. Meta-Analysis of Randomized Clinical Trials Comparing Biodegradable Polymer Drug-Eluting Stent to Second-Generation Durable Polymer Drug-Eluting Stents.

    Science.gov (United States)

    El-Hayek, Georges; Bangalore, Sripal; Casso Dominguez, Abel; Devireddy, Chandan; Jaber, Wissam; Kumar, Gautam; Mavromatis, Kreton; Tamis-Holland, Jacqueline; Samady, Habib

    2017-03-13

    The authors sought to perform a meta-analysis of randomized clinical trials (RCTs) comparing the safety and efficacy of biodegradable polymer drug-eluting stents (BP-DES) to second-generation durable polymer drug-eluting stents (DP-DES). Prior meta-analyses have established the superiority of BP-DES over bare-metal stents and first-generation DP-DES; however, their advantage compared with second-generation DP-DES remains controversial. The authors searched PubMed and Scopus databases for RCTs comparing BP-DES to the second-generation DP-DES. Outcomes included target vessel revascularization (TVR) as efficacy outcome and cardiac death, myocardial infarction (MI), and definite or probable stent thrombosis (ST) as safety outcomes. In addition, we performed landmark analysis for endpoints beyond 1 year of follow-up and a subgroup analysis based on the stent characteristics. The authors included 16 RCTs comprising 19,886 patients in the meta-analysis. At the longest available follow-up (mean duration 26 months), we observed no significant differences in TVR (p = 0.62), cardiac death (p = 0.46), MI (p = 0.98), or ST (risk ratio: 0.83, 95% confidence interval: 0.64 to 1.09; p = 0.19). Our landmark analysis showed that BP-DES were not associated with a reduction in the risk of very late ST (risk ratio: 0.87, 95% confidence interval: 0.49 to 1.53; p = 0.62). Similar outcomes were seen regardless of the eluting drug (biolimus vs. sirolimus), the stent platform (stainless steel vs. alloy), the kinetics of polymer degradation or drug release (6 months), the strut thickness of the BP-DES (thin 100 μm), or the DAPT duration (≥6 months vs. ≥12 months). BP-DES have similar safety and efficacy profiles to second-generation DP-DES. Published by Elsevier Inc.

  6. Biodegradable Kojic Acid-Based Polymers: Controlled Delivery of Bioactives for Melanogenesis Inhibition.

    Science.gov (United States)

    Faig, Jonathan J; Moretti, Alysha; Joseph, Laurie B; Zhang, Yingyue; Nova, Mary Joy; Smith, Kervin; Uhrich, Kathryn E

    2017-02-13

    Kojic acid (KA) is a naturally occurring fungal metabolite that is utilized as a skin-lightener and antibrowning agent owing to its potent tyrosinase inhibition activity. While efficacious, KA's inclination to undergo pH-mediated, thermal-, and photodegradation reduces its efficacy, necessitating stabilizing vehicles. To minimize degradation, poly(carbonate-esters) and polyesters comprised of KA and natural diacids were prepared via solution polymerization methods. In vitro hydrolytic degradation analyses revealed KA release was drastically influenced by polymer backbone composition (e.g., poly(carbonate-ester) vs polyester), linker molecule (aliphatic vs heteroatom-containing), and release conditions (physiological vs skin). Tyrosinase inhibition assays demonstrated that aliphatic KA dienols, the major degradation product under skin conditions, were more potent then KA itself. All dienols were found to be less toxic than KA at all tested concentrations. Additionally, the most lipophilic dienols were statistically more effective than KA at inhibiting melanin biosynthesis in cells. These KA-based polymer systems deliver KA analogues with improved efficacy and cytocompatible profiles, making them ideal candidates for sustained topical treatments in both medical and personal care products.

  7. Chitosan and β-Cyclodextrin-epichlorohydrin Polymer Composite Film as a Plant Healthcare Material for Carbendazim-Controlled Release to Protect Rape against Sclerotinia sclerotiorum (Lib.) de Bary.

    Science.gov (United States)

    Wang, Delong; Jia, Mingchen; Wang, Lanying; Song, Shuang; Feng, Juntao; Zhang, Xing

    2017-03-26

    The influence of β-cyclodextrin-epichlorohydrin (β-CD-EP) polymers on the improvement of the solubility and antifungal activity of carbendazim has been investigated. Meanwhile, the potential of the chitosan and β-CD-EP composite film used as a plant healthcare material for carbendazim-controlled release to protect rape against Sclerotinia sclerotiorum (Lib.) de Bary has been evaluated. β-CD-EP-1 and 2 (β-CD content, 750 mg/g and 440 mg/g, respectively) were found to significantly improve the solubility of the guest molecule carbendazim (17.9 and 18.5 times, respectively) and the 1:1 stoichiometry of the host-guest was confirmed by the Job's plot. A slight synergism was observed for the β-CD-EP/carbendazim complex against S. sclerotiorum (Lib.) de Bary, indicating an enhancement to the bioavailability of carbendazim. The in vitro release studies revealed that β-CD-EP polymers could efficiently modulate carbendazim release behaviors, such as the release retard and rate. The in vivo efficacy experiments demonstrated that the β-CD-EP/carbendazim and chitosan composite film could significantly prolong the effective duration of carbendazim at a concentration of 100 μg/mL compared with spraying carbendazim at 500 μg/mL. Thereby, a highly useful and strategic concept in plant disease control by a plant healthcare material-the chitosan and polymeric β-CD-EP composite film-is provided, which could also serve as a concept for related plant diseases.

  8. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-08-01

    Full Text Available Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted.

  9. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Science.gov (United States)

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho; Chan, Wai Yee

    2015-01-01

    Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted. PMID:26287217

  10. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles

    International Nuclear Information System (INIS)

    Cha, Kyoung Je; Kim, Taewan; Park, Sung Jea; Kim, Dong Sung

    2014-01-01

    Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications. (paper)

  11. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles

    Science.gov (United States)

    Cha, Kyoung Je; Kim, Taewan; Jea Park, Sung; Kim, Dong Sung

    2014-11-01

    Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications.

  12. Biodegradable polymer Biolimus-eluting stent (Nobori® for the treatment of coronary artery lesions: review of concept and clinical results

    Directory of Open Access Journals (Sweden)

    Schurtz G

    2014-02-01

    Full Text Available Guillaume Schurtz,1,2 Cédric Delhaye,1 Christopher Hurt,1,2 Henri Thieuleux,1,2 Gilles Lemesle1–3 1Centre Hémodynamique et Unité des Soins Intensifs de Cardiologie, Hôpital Cardiologique, Centre Hospitalier Régional et Universitaire de Lille, Lille, France; 2Faculté de Médecine de Lille, Lille, France; 3Unité INSERM UMR744, Institut Pasteur de Lille, Lille, France Abstract: First-generation drug-eluting stents have raised concerns regarding the risk of late and very late stent thrombosis compared with bare metal stents and require prolonged dual antiplatelet therapy. Despite extensive investigations, the physiopathology of these late events remains incompletely understood. Aside from patient- and lesion-related risk factors, stent polymer has been cited as one of the potential causes. In fact, the persistence of durable polymer after complete drug release has been shown to be responsible for local hypersensitivity and inflammatory reactions. Third-generation drug-eluting stents with more biocompatible or biodegradable polymers have subsequently been developed to address this problem. In this article, we evaluate and discuss the concept and clinical results (safety and efficacy of a third-generation drug-eluting stent with biodegradable polymer: the Nobori® stent. Keywords: percutaneous coronary intervention, stent thrombosis, antiplatelet therapy

  13. Comparative study of chitosan and chitosan-gelatin scaffold for tissue engineering

    Science.gov (United States)

    Kumar, Pawan; Dehiya, Brijnandan S.; Sindhu, Anil

    2017-12-01

    A number of orthopedic disorders and bone defect issues are solved by scaffold-based therapy in tissue engineering. The biocompatibility of chitosan (polysaccharide) and its similarity with glycosaminoglycan makes it a bone-grafting material. The current work focus on the synthesis of chitosan and chitosan-gelatin scaffold for hard tissue engineering. The chitosan and chitosan-gelatin scaffold have shown improved specific surface area, density, porosity, mechanical properties, biodegradability and absorption. These scaffolds can lead to the development or artificial fabrication of hard tissue alternates. The porous scaffold samples were prepared by freeze-drying method. The microstructure, mechanical and degradable properties of chitosan and chitosan-gelatin scaffolds were analyzed and results revealed that the scaffolds prepared from chitosan-gelatin can be utilized as a useful matrix for tissue engineering.

  14. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J.

    2017-12-12

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.

  15. Pinosylvin-Based Polymers: Biodegradable Poly(Anhydride-Esters) for Extended Release of Antibacterial Pinosylvin.

    Science.gov (United States)

    Bien-Aime, Stephan; Yu, Weiling; Uhrich, Kathryn E

    2016-07-01

    Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride-ester) (PAE) backbone via melt-condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin-based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo-first order kinetic experiments on model compounds, butyric anhydride and 3-butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin-based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation

    Directory of Open Access Journals (Sweden)

    Basudev Sahana

    2010-08-01

    Full Text Available Basudev Sahana, Kousik Santra, Sumit Basu, Biswajit MukherjeeDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata, IndiaAbstract: The aim of the present study was to develop nanoparticles of tamoxifen citrate, a non-steroidal antiestrogenic drug used for the treatment of breast cancer. Biodegradable poly (D, L- lactide-co-glycolide-85:15 (PLGA was used to develop nanoparticles of tamoxifen citrate by multiple emulsification (w/o/w and solvent evaporation technique. Drug-polymer ratio, polyvinyl alcohol concentrations, and homogenizing speeds were varied at different stages of preparation to optimize the desired size and release profile of drug. The characterization of particle morphology and shape was performed by field emission scanning electron microscope (FE-SEM and particle size distribution patterns were studied by direct light scattering method using zeta sizer. In vitro drug release study showed that release profile of tamoxifen from biodegradable nanoparticles varied due to the change in speed of centrifugation for separation. Drug loading efficiency varied from 18.60% to 71.98%. The FE-SEM study showed that biodegradable nanoparticles were smooth and spherical in shape. The stability studies of tamoxifen citrate in the experimental nanoparticles showed the structural integrity of tamoxifen citrate in PLGA nanoparticles up to 60°C in the tested temperatures. Nanoparticles containing tamoxifen citrate could be useful for the controlled delivery of the drug for a prolonged period.Keywords: biodegradable, nanoparticles, PLGA, stability, tamoxifen citrate

  17. Advances in allogenic bone graft processing and usage: preparation and evaluation of chitosan-demineralized cancellous bone powder composite scaffolds as a bone graft substitute

    International Nuclear Information System (INIS)

    Yongyudh Vajaradul

    2008-01-01

    Full text: Demineralized bone matrix (DBM) is currently used by surgeons. It usually exists as a lyophilized powder which is difficult to handle and operated. In this study, we try to improve these disadvantages by combining DBM with a biomaterial. It focuses on a natural biodegradable polymer, chitosan, to act as a temporary matrix for bone growth that easily prepare in any size and shape by using tissue engineering knowledge to get a proper temporary matrix. Thus, the development of chitosan-demineralized bone powder composite scaffold is an alternative way. Polymeric scaffold has been demonstrated to have great potential for tissue engineering because the scaffold or three dimension (3D) construct provides the necessary support for cells to proliferate, extracellular matrix deposition and vascularization of neo-tissue. Moreover, chitosan, a natural cationic polymer which its structural is similar to extracellular matrix glycosaminoblycans, is biodegradable, biocompatible, non-antigenic and biofunctional. It can enhance osteoblast cells proliferation and mineral matrix deposition in culture. The first study was to fabricate and analyze composite scaffold composed of either chitosan-demineralized cancellous bone powders or chitosan-demineralized cancellous cartilage bone powders in a ratio 50:50 and 70:30 w/w (chitosan : bone powders) based on physical properties composing of average pore diameter, mechanical integrity and swelling property. Secondly, scaffolds were evaluated in term of biological properties composing of their ability to support neo osteogenesis, including assessments of cell attachment and viability, cell morphology, and the biosynthesis of extracellular matrix. Results indicated that chitosan-demineralized cancellous bone powder composite scaffolds possessing an interconnecting, porous structure could be easily created through a simple freezing and lyophilization process. (Author)

  18. PREPARATION AND CHARACTERIZATION OF BIODEGRADABLE ...

    African Journals Online (AJOL)

    Dr Abdusalam

    Keywords: Starch, Acetylation, Biodegradation, Poly(vinyl alcohol), Polymer blend. INTRODUCTION. Non-biodegradable polymers, such as polyethene, polypropane, poly(vinylchloride) etc have excellent mechanical properties such as tensile strength, tensile strain, bursting strength and tear strength (Hay and. Sharma.

  19. Evaluation of biodegradation and biocompatibility of collagen ...

    Indian Academy of Sciences (India)

    ing material in tissue engineering applications owing to its excellent biocompatibility and biodegradability [2]. How- ever, its fast biodegradation and low mechanical strength are the foremost issues that limit the further uses of this material. Another extensively studied material is chitosan, a linear polysaccharide derived by ...

  20. Solid-liquid two-phase partitioning bioreactors (TPPBs) operated with waste polymers. Case study: 2,4-dichlorophenol biodegradation with used automobile tires as the partitioning phase.

    Science.gov (United States)

    Tomei, M Concetta; Annesini, M Cristina; Daugulis, Andrew J

    2012-11-01

    Used automobile tire pieces were tested for their suitability as the sequestering phase in a two-phase partitioning bioreactor to treat 2,4-dichlorophenol (DCP). Abiotic sorption tests and equilibrium partitioning tests confirmed that tire "crumble" possesses very favourable properties for this application with DCP diffusivity (4.8 × 10(-8) cm(2)/s) and partition coefficient (31) values comparable to those of commercially available polymers. Biodegradation tests further validated the effectiveness of using waste tires to detoxify a DCP solution, and allow for enhanced biodegradation compared to conventional single-phase operation. These results establish the potential of using a low-cost waste material to assist in the bioremediation of a toxic aqueous contaminant.

  1. Biodegradable polymer drug-eluting stents versus first-generation durable polymer drug-eluting stents: A systematic review and meta-analysis of 12 randomized controlled trials.

    Science.gov (United States)

    Bundhun, Pravesh Kumar; Pursun, Manish; Huang, Feng

    2017-11-01

    Even if drug-eluting stents (DES) showed beneficial effects in patients with coronary artery diseases (CADs), limitations have been observed with the first-generation durable polymer DES (DP-DES). Recently, biodegradable polymer DES (BP-DES) have been approved to be used as an alternative to DP-DES, with potential benefits. We aimed to systematically compare BP-DES with the first-generation DP-DES using a large number of randomized patients. Electronic databases were searched for randomized controlled trials (RCTs) comparing BP-DES with first-generation DP-DES. The main endpoints were the long-term (≥2 years) adverse clinical outcomes that were reported with these 2 types of DES. We calculated odds ratios (ORs) with 95% confidence intervals (CIs) and the analysis was carried out by RevMan 5.3 software. Twelve trials with a total number of 13,480 patients (7730 and 5750 patients were treated by BP-DES and first-generation DP-DES, respectively) were included. During a long-term follow-up period of ≥2 years, mortality, myocardial infarction (MI), target lesion revascularization (TLR), and major adverse cardiac events (MACEs) were not significantly different between these 2 groups with OR: 0.84, 95% CI: 0.66-1.07; P = .16, I = 0%, OR: 1.01, 95% CI: 0.45-2.27; P = .98, I = 0%, OR: 0.91, 95% CI: 0.75-1.11; P = .37, I = 0% and OR: 0.86, 95% CI: 0.44-1.67; P = .65, I = 0%, respectively. Long-term total stent thrombosis (ST), definite ST, and probable ST were also not significantly different between BP-DES and the first-generation DP-DES with OR: 0.77, 95% CI: 0.50-1.18; P = .22, I = 0%, OR: 0.71, 95% CI: 0.43-1.18; P = .19, I = 0% and OR: 1.31, 95% CI: 0.56-3.08; P = .53, I = 6%, respectively. Long-term mortality, MI, TLR, MACEs, and ST were not significantly different between BP-DES and the first-generation DP-DES. However, the follow-up period was restricted to only 3 years in this analysis. Copyright © 2017

  2. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass.

    Science.gov (United States)

    Pourhaghgouy, Masoud; Zamanian, Ali; Shahrezaee, Mostafa; Masouleh, Milad Pourbaghi

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO2.28CaO.8P2O5) prepared by sol-gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. Copyright © 2015. Published by Elsevier B.V.

  3. Radiation processing of chitosan derivative and its characteristics

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by a carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial agent and it overcome the problem of bad smell using acetic acid. (Author)

  4. Synthesis, characterization and radiation processing of carboxymethyl-chitosan

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial and anti-fungal agent, and it overcome the problem of bad smell using organic acid. (Author)

  5. Measurement of mass stopping power of chitosan polymer loaded with TiO2 for relativistic electron interaction

    Science.gov (United States)

    Babu, S. Ramesh; Badiger, N. M.; Karidurgannavar, M. Y.; Varghese, Jolly. G.

    2018-04-01

    The Mass Stopping Power (MSP) of relativistic electrons in chitosan loaded with TiO2 of different proportions has been measured by recording the spectrum of internal conversion electrons. The internal conversion electrons of energies 614 keV from Cs137, 942 keV and 1016 keV from Bi207 source are allowed to pass through chitosan-TiO2 alloy and transmitted electrons are detected with a Si (Li) detector coupled to an 8 K multichannel analyzer. By knowing the energies of incident electrons and transmitted electrons, the energy loss and the MSP are determined. Thus measured MSP values of the alloys are compared with the values calculated using Braggs additivity rule. The disagreement between theory and experiment is found to increases with increasing TiO2 concentration in chitosan, indicating the influence of chemical environment in the properties of such polymeric membrane.

  6. Development of a PVAl/chitosan composite membrane compatible with the dermo-epidermic system; Desenvolvimento de membrana composta de PVAl e quitosana compativel com o sistema dermo-epidermico

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Tiago Luiz de

    2009-03-15

    Due to the frequent incidence of people with skin lesions such as burns and ulcers and the lack of available donors, biomaterials with the capacity to mimic skin must be developed. In order to develop these biomaterials, polymers are used in the attempt to achieve characteristics which are closer to the target organ. In this direction, for several years our group has been developing dermo-epidermic substitutes, specifically biodegradable and biocompatible membranes made up of PVAl and chitosan. PVAl, a synthetic polymer, was used to imitate part of the human dermis and chitosan, a polymer of organic origin, was used in this study to stimulate growth and maintenance of the epidermis. Due to the variations of these commercially obtained polymers, the objective of this study was to characterize their physical and chemical properties, comparing them with the membrane previously obtained by our group with the intention of confirming the hypotheses of interferences put forward in this study. The PVAl membranes in the study (PVAl MP) that obtained characteristics most similar to the standard were those irradiated with 13 and 15 kGy; this last was chosen because it was the minimum dose necessary to achieve sterility. These membranes were also those which had the largest percentage of pores between 70 and 100 {mu}m. For chitosan, the principal characteristics studied were the degree of acetylation (DA) and average molecular weight, both results demonstrated different characteristics than commercially indicated. Various membrane preparation protocols were carried out from the chitosan solution (2%). The membrane composed of the solution of chitosan homogenized with glycerol (20%) and dried at room temperature had the best interaction with keratinocytes. To finalize the study, this chitosan solution was poured over a PVAl membrane, lyophilized and impregnated with chitosan (2%) solution and the compound was kept at room temperature until a chitosan film formed on the upper

  7. Self-assembly of biodegradable copolyester and reactive HPMA-based polymers into nanoparticles as an alternative stealth drug delivery system

    Czech Academy of Sciences Publication Activity Database

    Jäger, Eliezer; Jäger, Alessandro; Etrych, Tomáš; Giacomelli, F. C.; Chytil, Petr; Jigounov, Alexander; Putaux, J.-L.; Říhová, Blanka; Ulbrich, Karel; Štěpánek, Petr

    2012-01-01

    Roč. 8, č. 37 (2012), s. 9563-9575 ISSN 1744-683X R&D Projects: GA AV ČR IAAX00500803; GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : biodegradable nanoparticles * light scattering from polymer nanoparticles * doxorubicin drug release Subject RIV: CF - Physical ; Theoretical Chemistry; EC - Immunology (MBU-M) Impact factor: 3.909, year: 2012

  8. Synthesis, characterization and biocompatibility of novel biodegradable cross-linked co-polymers based on poly(propylene oxide) diglycidylether and polyethylenimine.

    Science.gov (United States)

    Ding, Yunsheng; Wang, Jing; Wong, Cynthia S; Halley, Peter J; Guo, Qipeng

    2011-01-01

    Novel biodegradable cross-linked co-polymers were prepared from poly(propylene glycol) diglycidylether (PPGDGE) and poly(ethylene imine) (PEI). PPGDGE and PEI were mixed at ambient temperature with varying PEI concentrations of 10, 15, 18.5, 25, 30, 40 and 50 wt%; the homogenous PPGDGE/PEI mixtures obtained were cured at elevated temperatures, resulting in formation of PPG-PEI cross-linked co-polymers via ring-opening reaction of PPGDGE with PEI. The physicochemical and biological properties of these co-polymers were dependent on the PEI content and the extent of curing reaction. The glass transition temperature of PPG-PEI cross-linked co-polymers varied in the range from -14 to +42°C, while the co-polymers displayed composition-dependent mechanical behavior, from brittle to ductile with increasing PEI content from 18.5 wt% to 40 wt%. Chinese hamster ovary (CHO) cells were cultured on the PPG-PEI co-polymers; the MTT assay was used to measure cell viability and determine the cytotoxicity. The cell viability rate, relative to tissue-culture polystyrene (TCPS), increased from 49% to 125% with increasing PEI content from 18.5 wt% to 40 wt%. Although epoxy monomers usually exhibit cytotoxicity, the epoxy groups were exhausted via curing reaction in the fully cross-linked co-polymers. The PEI-cured PPG epoxy resin, i.e., PPG-PEI cross-linked co-polymers obtained in this study, showed excellent biocompatibility.

  9. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela. Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  10. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Pourhaghgouy, Masoud, E-mail: m.pourhaghgouy@merc.ac.ir [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of); Zamanian, Ali, E-mail: a-zamanian@merc.ac.ir [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of); Shahrezaee, Mostafa, E-mail: moshahrezaee@yahoo.com [Department of Orthopedic Surgery, AJA University of Medical Sciences, Tehran (Iran, Islamic Republic of); Masouleh, Milad Pourbaghi, E-mail: miladpourbaghi@gmail.com [Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center, Karaj, P.O. Box: 13145-1659 (Iran, Islamic Republic of)

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO{sub 2}.28CaO.8P{sub 2}O{sub 5}) prepared by sol–gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. - Highlights: • Particle size of synthesized bioactive glass was approximately less than 20 nm. • Increase in BGNP content did not change the pore channels size. • Addition of 10 wt.% of BGNP led to absence of the pores located on chitosan walls. • Mechanical properties of chitosan scaffold significantly improved by addition of BGNPs. • Chi-BGNPs30 scaffold indicated acceptable absorption capacity and bioactivity behavior.

  11. Chitosan Derivatives as Important Biorefinery Intermediates. Quaternary Tetraalkylammonium Chitosan Derivatives Utilized in Anion Exchange Chromatography for Perchlorate Removal

    Directory of Open Access Journals (Sweden)

    Shakeela Sayed

    2015-04-01

    Full Text Available There has recently been great interest in the valorization of biomass waste in the context of the biorefinery. The biopolymer chitosan, derived from chitin, is present in large quantities of crustacean waste. This biomass can be converted into value-added products with applications in energy, fuel, chemicals and materials manufacturing. The many reported applications of this polymer can be attributed to its unique properties, such as biocompatibility, chemical versatility, biodegradability and low toxicity. Cost effective water filters which decontaminate water by removal of specific impurities and microbes are in great demand. To address this need, the development of ion exchange resins using environmentally friendly, renewable materials such as biopolymers as solid supports was evaluated. The identification and remediation of perchlorate contaminated water using an easy, inexpensive method has come under the spotlight recently. Similarly, the use of a low cost perchlorate selective solid phase extraction (SPE cartridge that can be rapidly employed in the field is desirable. Chitosan based SPE coupled with colorimetric analytical methods showed promise as a renewable anion exchange support for perchlorate analysis or removal. The polymers displayed perchlorate retention comparable to the commercial standard whereby the quaternized iron loaded polymer TMC-Fe(III displayed the best activity.

  12. Chitosan derivatives as important biorefinery intermediates. Quaternary tetraalkylammonium chitosan derivatives utilized in anion exchange chromatography for perchlorate removal.

    Science.gov (United States)

    Sayed, Shakeela; Jardine, Anwar

    2015-04-23

    There has recently been great interest in the valorization of biomass waste in the context of the biorefinery. The biopolymer chitosan, derived from chitin, is present in large quantities of crustacean waste. This biomass can be converted into value-added products with applications in energy, fuel, chemicals and materials manufacturing. The many reported applications of this polymer can be attributed to its unique properties, such as biocompatibility, chemical versatility, biodegradability and low toxicity. Cost effective water filters which decontaminate water by removal of specific impurities and microbes are in great demand. To address this need, the development of ion exchange resins using environmentally friendly, renewable materials such as biopolymers as solid supports was evaluated. The identification and remediation of perchlorate contaminated water using an easy, inexpensive method has come under the spotlight recently. Similarly, the use of a low cost perchlorate selective solid phase extraction (SPE) cartridge that can be rapidly employed in the field is desirable. Chitosan based SPE coupled with colorimetric analytical methods showed promise as a renewable anion exchange support for perchlorate analysis or removal. The polymers displayed perchlorate retention comparable to the commercial standard whereby the quaternized iron loaded polymer TMC-Fe(III) displayed the best activity.

  13. Biodegradable large compound vesicles with controlled size prepared via the self-assembly of branched polymers in nanodroplet templates.

    Science.gov (United States)

    Wang, Long-Hai; Xu, Xiao-Man; Hong, Chun-Yan; Wu, De-Cheng; Yu, Zhi-Qiang; You, Ye-Zi

    2014-09-04

    Generally, it is very difficult to control the size of large compound vesicles. Here, we introduce a novel method for the preparation of biodegradable large compound vesicles with controlled size and narrow size distribution by using aqueous nanodroplets as templates.

  14. The Study of Starch Seeds Durian (Durio zibethinus Effect as the Filler Material on Tensile Strength and Biodegradation of Polymers Polystyrene (PS

    Directory of Open Access Journals (Sweden)

    Rifka Sudi

    2013-11-01

    Full Text Available The study of starch seeds durian (Durio zibethinus effect as the filler material on tensile strength and biodegradation of polymers polystyrene (PS  has been done. In this study, the sample was made with 5 variations of Polystyrene:Starch:glycerol as follows:(95:0:5; 90:5:5; 85:10:5; 80:15:5 and 75:20:5 %. The samples were made using the hotpress machine and the ASTM D368 standard. The mechanical properties (tensile strength were tested using a tensile tester. The testing for functional groups were using FT-IR. The surface morphology was obtained by AFM and biodegradation through burial the samples for 40 days (time of observation 1, 2, 3, 4 and 5 weeks. As the results showed that the tensile strength values are influenced by variations in the composition of composite materials. The optimum tensile strength values were obtained on samples of PS-2 (90% of PS: 5% of Starch: 5% of glycerol with a tensile strength value of 0.55 kgf / mm². Based on the analysis of functional groups, it was found that there is no chemical reaction, which is characterized by the emergence of new functional groups on the composite sample. The surface morphology observation showed that the variation does not affect the relative composition of the surface morphology of the samples. Biodegradation test results showed that the samples of PS-4 and PS-5 began degraded after burial for 4 weeks.

  15. Biodegradable and biocompatible cationic polymer delivering microRNA-221/222 promotes nerve regeneration after sciatic nerve crush

    Directory of Open Access Journals (Sweden)

    Song J

    2017-06-01

    Full Text Available Jialin Song,1,2 Xueyang Li,3 Yingli Li,4,5 Junyi Che,6 Xiaoming Li,6 Xiaotian Zhao,6 Yinghui Chen,7,* Xianyou Zheng,1,* Weien Yuan6,* 1Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 2Department of Orthopedics, Shanghai University of Medicine and Health, Shanghai, Sixth People’s Hospital East Campus, Shanghai, 3Department of Plastic and Reconstructive Surgery, Xuzhou Medical College Affiliated Hospital, Xuzhou, Jiangsu, 4Department of Plastic Surgery, The General Hospital of Jinan Military Command, Jinan, Shandong, 5Department of Plastic Surgery, Chang Hai Hospital, Second Military Medical University, 6School of Pharmacy, Shanghai Jiao Tong University, 7Department of Neurology, Jinshan Hospital, Fudan University, JinShan District, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: MicroRNA (miRNA has great potential to treat a wide range of illnesses by regulating the expression of eukaryotic genes. Biomaterials with high transfection efficiency and low toxicity are needed to deliver miRNA to target cells. In this study, a biodegradable and biocompatible cationic polymer (PDAPEI was synthetized from low molecular weight polyethyleneimine (PEI1.8kDa cross-linked with 2,6-pyridinedicarboxaldehyde. PDAPEI showed a lower cytotoxicity and higher transfection efficiency than PEI25kDa in transfecting miR-221/222 into rat Schwann cells (SCs. The upregulation of miR-221/222 in SCs promoted the expression of nerve growth factor and myelin basic protein in vitro. The mouse sciatic nerve crush injury model was used to evaluate the effectiveness of PDAPEI/miR-221/222 complexes for nerve regeneration in vivo. The results of electrophysiological tests, functional assessments, and histological and immunohistochemistry analyses demonstrated that PDAPEI/miR-221/222 complexes significantly promoted nerve regeneration after sciatic nerve crush, specifically enhancing

  16. Herstellung von Chitosan und einige Anwendungen

    Science.gov (United States)

    Struszczyk, Marcin Henryk

    2001-05-01

    can ideally be prepared using krill chitin. Insect chitosan is prepared under milder condition as compared with the crustacean chitosan, showed similar Mv and DD. Moreover, the consumption of time, energy and sodium hydroxide is much lower than for crustacean chitosan used. The properties of chitin (type of source, crystallinity, DD, Mv, swelling properties, particle size) affect the deacetylated polymer parameters. 2. Fermentation of chitosan using fungus Aspergillus fumigatus resulted in a composition of oligosaccharides with controlled molecular weight and yield at least 25 wt%. The product of fermentation effectively inhibited the viral and/or bacterial infection of the plant. This method can be an excellent, inexpensive system for preparation of bioactive agent. The preliminary purified fermentation mixture due to its antiviral and antibacterial behaviour is capable to be used as a natural, plant protection agent. The controlled degradation of chitosan connected with the production of various oligosaccharides having specified molecular weight allows obtaining the product with optimum bioactivity for suitable applications. 3. The films formed form microcrystalline chitosan (MCChB) gel-like dispersion demonstrate the better mechanical properties and higher swelling behaviour than typical films prepared using acidic solution of chitosan. The introduction of proteins significantly changes the mechanical strength and swelling behaviour. Addition of proteins causes the increase in their biodecomposition. The blended films containing proteins could be the base for formation of the resistant materials showed excellent elongation at break. 4. The application of MCChB in a paper formation as a modificator of the fibre-water interactions allows producing the paper sheets indicating the high increase in the mechanical properties and significant decrease in swelling properties. The introduction of MCChB with proteins causes a slight decrease in paper mechanical strength, if

  17. Development of novel encapsulated formulations using albumin-chitosan as a polymer matrix for ocular drug delivery

    Science.gov (United States)

    Addo, Richard Tettey

    Designing formulations for ophthalmic drug delivery is one of the most challenging endeavors facing the pharmaceutical scientist due to the unique anatomy, physiology, and biochemistry of the eye. Current treatment protocols for administration of drugs in eye diseases are primarily solution formulations, gels or ointments. However, these modes of delivery have several drawbacks such as short duration of exposure, need for repeated administrations and non-specific toxicity. We hypothesize that development of ocular drugs in microparticles will overcome the deficiencies of the current modalities of treatment. We based the hypothesis on the preliminary studies conducted with encapsulated tetracaine, an anesthetic used for surgical purposes and atropine, a medication used for several ophthalmic indications including mydriatic and cycloplegic effects. However, atropine is well absorbed into the systemic circulation and has been reported to exert severe systemic side effects after ocular administration (Hoefnagel D. 1961, Morton H. G. 1939 and Lang J. C. 1995) and may lead to serious side effects including death in extreme cases with pediatric use. Based on these observations, the focus of this dissertation is to formulate microparticulate drug carrier for treatment of various conditions of the eye. Purpose: To prepare, characterize, study the in vitro and in vivo interaction of albumin-chitosan microparticles (BSA-CSN MS), a novel particulate drug carrier for ocular drug delivery. Method: Microparticle formulations were prepared by method of spray drying. The percentage drug loading and efficiency were assessed using USP (I) dissolution apparatus. Using Malvern Zeta-Sizer, we determined size and surface charge of the fabrication. Surface morphology of the microparticles was examined using Scanning Electron Microscopy. Microparticles were characterized in terms of thermal properties using Differential Scanning Calorimetry. Human corneal epithelial cells (HCET-1) were

  18. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Science.gov (United States)

    Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  19. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Lydia S. Abebe

    2016-02-01

    Full Text Available The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI between 4.7 (±1.56 and 7.5 (±0.02 log10 for Escherichia coli, and between 2.8 (±0.10 and 4.5 (±1.04 log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO. According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  20. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment.

    Science.gov (United States)

    Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D

    2016-02-27

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  1. Chitosan: A potential biopolymer for wound management.

    Science.gov (United States)

    Bano, Ijaz; Arshad, Muhammad; Yasin, Tariq; Ghauri, Muhammad Afzal; Younus, Muhammad

    2017-09-01

    It has been seen that slow healing and non-healing wounds conditions are treatable but still challenging to humans. Wound dressing usually seeks for biocompatible and biodegradable recipe. Natural polysaccharides like chitosan have been examined for its antimicrobial and healing properties on the basis of its variation in molecular weight and degree of deacetylation. Chitosan adopts some vital characteristics for treatment of various kinds of wounds which include its bonding nature, antifungal, bactericidal and permeability to oxygen. Chitosan therefore has been modified into various forms for the treatment of wounds and burns. The purpose of this review article is to understand the exploitation of chitosan and its derivatives as wound dressings. This article will also provide a concise insight on the properties of chitosan necessary for skin healing and regeneration, particularly highlighting the emerging role of chitosan films as next generation skin substitutes for the treatment of full thickness wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dynamic Parameters in Preparing Chitosan Nanoparticles with Incorporation Method Using Novel Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    S.Mojtaba Taghizadeh

    2013-01-01

    Full Text Available Polymeric nanoparticles with biodegradable and biocompatible polymers are good candidates in peptide drugs delivery systems. In this study, we success- fully prepared chitosan nanoparticles including salicylic acid as a model drugby emulsion cross-linking "in oil" method. The various dynamic parameters are considered, including the speed of stirrer, the duration of injecting the aqueous phase into oil phase and the condition of precipitation of particles. It is found that the optimum conditions are achieved at 2000 rpm when the aqueous phase is added within 30 min into the oil phase. According to optimum conditions the nanoparticles of chitosan (the peak of size distribution in 100 nm were prepared and the drug content and the release behavior were estimated. The results demonstrate, that the drug content ofnanoparticles is 35% (w/w. The release behavior of nanoparticles during first 4 hour conform best to Higuchi model and thereafter up to maximum 48 h the amount of drug released is negligible.

  3. Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films.

    Science.gov (United States)

    Aguirre-Loredo, Rocío Yaneli; Rodríguez-Hernández, Adriana Inés; Morales-Sánchez, Eduardo; Gómez-Aldapa, Carlos Alberto; Velazquez, Gonzalo

    2016-04-01

    Water molecules modify the properties of biodegradable films obtained from hydrophilic materials. Most studies dealing with thermal, mechanical and barrier properties of hydrophilic films are carried out under one relative humidity (RH) condition. The objective of this work was to evaluate the effect of the moisture content on the thermal, mechanical and barrier properties of chitosan films under several RH conditions. Microclimates, obtained with saturated salt solutions were used for conditioning samples and the properties of the films were evaluated under each RH condition. Chitosan films absorbed up to 40% of moisture at the higher RH studied. The percentage of elongation and the water vapour permeability increased while tensile strength, Young's modulus and glass transition temperature decreased, when the moisture content increased. The results suggest that the water molecules plasticized the polymer matrix, changing the properties when the films were in contact with high RH environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Veleirinho, Beatriz [QOPNA Research Unit, Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Berti, Fernanda V. [Integrated Technologies Laboratory, Chemical and Food Engineering Department, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Maraschin, Marcelo [Department of Plant Science, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Ribeiro-do-Valle, Rosa M. [Department of Pharmacology, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Lopes-da-Silva, Jose A., E-mail: jals@ua.pt [QOPNA Research Unit, Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal)

    2013-01-01

    Microporous, non-woven fibrous scaffolds made of poly(ethylene terephthalate) and chitosan were produced by electrospinning. Fiber morphology, diameter, pore size, and wettability were manipulated by varying the chemical composition of the electrospinning solution, i.e. chitosan concentration and molecular weight, and by post-electrospinning treatment with glutaraldehyde. In vitro studies were conducted using a fibroblast cell line toward a comprehensive understanding of how scaffolds characteristics can modulate the cell behavior, i.e. viability, adhesion, proliferation, extracellular matrix secretion, and three-dimensional colonization. Substantial differences were found as a result of scaffold morphological changes. Higher levels of adhesion, spreading, and superficial proliferation were achieved for scaffolds with smaller fiber and pore diameters while cell penetration and internal colonization were enhanced for scaffolds with larger pores. Additionally, the available area for cell adhesion, which is related to fiber and pore size, was a crucial factor for the viability of L929 cells. This paper provides significant insights for the development and optimization of electrospun scaffolds toward an improved biological performance. Highlights: Black-Right-Pointing-Pointer Hybrid PET/chitosan mats were produced by electrospinning. Black-Right-Pointing-Pointer Scaffold architecture was manipulated by changing composition of the spun solution. Black-Right-Pointing-Pointer The scaffolds showed in vitro biocompatibility to L929 cells. Black-Right-Pointing-Pointer Smaller fiber diameters and pore areas allowed for higher levels of cell adhesion and proliferation. Black-Right-Pointing-Pointer A 3D cell colonization was achieved for scaffolds with higher fiber diameters.

  5. Heavy Metal Removal by Chitosan and Chitosan Composite

    International Nuclear Information System (INIS)

    Abdel-Mohdy, F.A.; El-Sawy, S.; Ibrahim, M.S.

    2005-01-01

    Radiation grafting of diethyl aminoethyl methacrylate (DEAEMA) on chitosan to impart ion exchange properties and to be used for the separation of metal ions from waste water, was carried out. The effect of experimental conditions such as monomer concentration and the radiation dose on grafting were studied. On using chitosan, grafted chitosan and some chitosan composites in metal ion removal they show high up-take capacity for Cu 2+ and lower uptake capacities for the other divalent metal ions used (Zn and Co). Competitive study, performed with solutions containing mixture of metal salts, showed high selectivity for Cu 2+ than the other metal ion. Limited grafting of DEAEMA polymer -containing specific functional groups-onto the chitosan backbone improves the sorption performance

  6. Prazosin-Conjugated Matrices Based on Biodegradable Polymers and α-Amino Acids--Synthesis, Characterization, and in Vitro Release Study.

    Science.gov (United States)

    Oledzka, Ewa; Sawicka, Anna; Sobczak, Marcin; Nalecz-Jawecki, Grzegorz; Skrzypczak, Agata; Kolodziejski, Waclaw

    2015-08-12

    Novel and promising macromolecular conjugates of the α1-adrenergic blocker prazosin were directly synthesized by covalent incorporation of the drug to matrices composed of biodegradable polymers and α-amino acids for the development of a polymeric implantable drug delivery carrier. The cyto- and genotoxicity of the synthesized matrices were evaluated using a bacterial luminescence test, protozoan assay, and Salmonella typhimurium TA1535. A new urethane bond was formed between the hydroxyl end-groups of the synthesized polymer matrices and an amine group of prazosin, using 1,1'-carbonyldiimidazole (CDI) as a coupling agent. The structure of the polymeric conjugates was characterized by various spectroscopy techniques. A study of hydrogen nuclear magnetic resonance ((1)H-NMR) and differential scanning calorimetry (DSC) thermodiagrams indicated that the presence of prazosin pendant groups in the macromolecule structures increased the polymer's rigidity alongside increasing glass transition temperature. It has been found that the kinetic release of prazosin from the obtained macromolecular conjugates, tested in vitro under different conditions, is strongly dependent on the physicochemical properties of polymeric matrices. Furthermore, the presence of a urethane bond in the macromolecular conjugates allowed for obtaining a relatively controlled release profile of the drug. The obtained results confirm that the pharmacokinetics of prazosin might be improved through the synthesis of polymeric conjugates containing biomedical polymers and α-amino acids in the macromolecule.

  7. Magnetic chitosan for removal of uranium (VI)

    International Nuclear Information System (INIS)

    Stopa, Luiz Claudio Barbosa

    2007-01-01

    The chitosan, an aminopolysaccharide formed for repeated units of D-glucosamine, is a deacetylation product of chitin. It presents favorable ionic properties acting as chelant, being considered a removing ionic of contaminants from water effluents. It has ample bioactivity, that is, is biocompatible, biodegradable, bioadhesive and biosorbent. The chitosan interacts for crosslinked by means of its active groups with other substances, can still coat superparamagnetic materials as magnetite nanoparticles producing one conjugated polymer-magnetite. Superparamagnetic materials are susceptible for the magnetic field, thus these particles can be attracted and grouped by a magnetic field and as they do not hold back the magnetization, they can be disagrouped and reused in processes for removal of contaminants from industrial effluents and waste water. The present work consisted of preparing coated magnetic magnetite particles with chitosan (PMQ). The PMQ powder has showed a magnetic response of intense attraction in the presence of a magnetic field without however becoming magnetic, a typical behavior of superparamagnetic material. It was characterized by Fourier transform infrared spectrometry and measurements of magnetization. Its performance of Uranium (VI) adsorption as uranyl species, U0 2 2+ , was evaluated with regard to the influence of adsorbent dose, speed of agitation, pH, the contact time and had studied the isotherms of adsorption as well as the behavior of desorption using ions of carbonate and oxalate. The optimal pH to the best removal occurred in pH 5 and that the increase of the dose increases the removal, becoming constant above of 20 g.L -1 . In the kinetic study the equilibrium was achieved after 20 minutes. The results of equilibrium isotherm agreed well with the Langmuir model, being the maximum adsorption capacity equal 41.7 mg.g -1 . In the desorption studies were verified 94% of U0 2 2+ recovered with carbonate ion and 49.9% with oxalate ion

  8. Synthesize and Characterization of Hydroxypropyl-N-octanealkyl Chitosan Ramification

    Science.gov (United States)

    Tan, Fu-neng

    2018-03-01

    A new type of amphiphilic ramification, hydroxypropyl-N-octanealkyl chitosan was prepared from chitosan via hydrophilic group and hydrophobic group were introduced. We could protect the amino group of chitosan via the reaction of chitosan and benzaldehyde could get Schiff base structure. Structures of the products were characterized with FT-IR, elemental analysis, themogrammetry (TG) analysis and X-ray diffraction. The degree of substitution of hydrophobic group was studied by elemental analysis. The result showed this chitosan ramification was soluble, biocompatible, biodegradable and nontoxic.

  9. Chitosan-crosslinked gels prepared by a simultaneously occurring reaction of radiation-induced polymerization and self-bridging of acrylic acid in aqueous solutions

    International Nuclear Information System (INIS)

    Elhag Ali, Amr; Hegazy, Elsayed Ahmed; Hendri, John; Katakai, Ryoichi; Maekawa, Yasunari; Kume, Tamikazu; Yoshida, Masaru

    2001-01-01

    Chitosan is one of the most interesting natural polymers, in addition to its biodegradability it shows wide biological properties such as antifibrolastic and antimicrobial activities, which verify its biomedical application. Novel Acrylic acid/Chitosan hydrogel was prepared by means of γ-irradiation as a clean source for initiation, and crosslinking. The nature of the AAc/CS gel and the effect of the presence of chitosan on the behavior of AAc were characterized. The effect of pH on the degree of swelling of different gels and time course swelling studies show the effect of presence of chitosan and its molecular weight on the swelling of the gels. DSC and TGA were used to study the effect of the presence of chitosan on the thermal behavior of PAAc. It was found that chitosan change thermal behavior of AAc. These results support our assumption for the formation of crosslinking between PAAc and CS chains via polyelectrolyte complex formation, attributed to the high affinity between CS and AAc, accompanied by homopolymerization and self-bridging. This crosslinking increase with CS molecular weight increasing and affect the thermal behavior of PAAc. (author)

  10. Electrospun chitosan/PEDOT nanofibers.

    Science.gov (United States)

    Kiristi, Melek; Oksuz, Aysegul Uygun; Oksuz, Lutfi; Ulusoy, Seyhan

    2013-10-01

    Plasma-modified chitosan and poly(3,4-ethylenedioxythiophene) were blended to obtain conducting nanofibers with polyvinyl alcohol as a supporting polymer at various volumetric ratios by electrospinning method. Chemical compositions and molecular interactions among nanofiber blend components were determined using Fourier transform infrared spectroscopy (FTIR). The conducting blends containing plasma-modified chitosan resulted in a superior antibacterial activity and thinner fiber formation than those containing chitosan without plasma-modification. The obtained nanofiber diameters of plasma-modified chitosan were in the range of 170 to 200 nm and those obtained from unmodified chitosan were in the range of 190 to 246 nm. The electrical and electrochemical properties of nanofibers were also investigated by four-point probe conductivity and cyclic voltammetry measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior.

    Science.gov (United States)

    Veleirinho, Beatriz; Berti, Fernanda V; Dias, Paulo F; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa M; Lopes-da-Silva, José A

    2013-01-01

    Microporous, non-woven fibrous scaffolds made of poly(ethylene terephthalate) and chitosan were produced by electrospinning. Fiber morphology, diameter, pore size, and wettability were manipulated by varying the chemical composition of the electrospinning solution, i.e. chitosan concentration and molecular weight, and by post-electrospinning treatment with glutaraldehyde. In vitro studies were conducted using a fibroblast cell line toward a comprehensive understanding of how scaffolds characteristics can modulate the cell behavior, i.e. viability, adhesion, proliferation, extracellular matrix secretion, and three-dimensional colonization. Substantial differences were found as a result of scaffold morphological changes. Higher levels of adhesion, spreading, and superficial proliferation were achieved for scaffolds with smaller fiber and pore diameters while cell penetration and internal colonization were enhanced for scaffolds with larger pores. Additionally, the available area for cell adhesion, which is related to fiber and pore size, was a crucial factor for the viability of L929 cells. This paper provides significant insights for the development and optimization of electrospun scaffolds toward an improved biological performance. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review.

    Science.gov (United States)

    George, Meera; Abraham, T Emilia

    2006-08-10

    The protein pharmaceutical market is rapidly growing, since it is gaining support from the recombinant DNA technology. To deliver these drugs via the oral route, the most preferred route, is the toughest challenge. In the design of oral delivery of peptide or protein drugs, pH sensitive hydrogels like alginate and chitosan have attracted increasing attention, since most of the synthetic polymers are immunogenic and the incorporation of proteins in to these polymers require harsh environment which may denature and inactivate the desired protein. Alginate is a water-soluble linear polysaccharide composed of alternating blocks of 1-4 linked alpha-L-guluronic and beta-D-mannuronic acid residues where as chitosan is a co polymer of D-glucosamine and N-acetyl glucosamine. The incorporation of protein into these two matrices can be done under relatively mild environment and hence the chances of protein denaturation are minimal. The limitations of these polymers, like drug leaching during preparation can be overcome by different techniques which increase their encapsulation efficiency. Alginate, being an anionic polymer with carboxyl end groups, is a good mucoadhesive agent. The pore size of alginate gel microbeads has been shown to be between 5 and 200 nm and coated beads and microspheres are found to be better oral delivery vehicles. Cross-linked alginate has more capacity to retain the entrapped drugs and mixing of alginate with other polymers such as neutral gums, pectin, chitosan, and eudragit have been found to solve the problem of drug leaching. Chitosan has only limited ability for controlling the release of encapsulated compound due to its hydrophilic nature and easy solubility in acidic medium. By simple covalent modifications of the polymer, its physicochemical properties can be changed and can be made suitable for the peroral drug delivery purpose. Ionic interactions between positively charged amino groups in chitosan and the negatively charged mucus gel layer

  13. Immobilization of chitosan gel with cross-linking reagent on PNIPAAm gel/PP nonwoven composites surface

    International Nuclear Information System (INIS)

    Chen, K.-S.; Ku, Y.-A.; Lee, C.-H.; Lin, H.-R.; Lin, F.-H.; Chen, T.-M.

    2005-01-01

    This study was to immobilize chitosan (CS), which is a biodegradable and antibacterial polymer, on poly(N-isopropylacrylamide) (PNIPAAm) gel/polypropylene (PP) nonwoven composites surface for wound dressing applications. PP nonwoven has been extensively used due to its porosity, allowing ventilation, high surface area and excellent mechanical properties. However, the hydrophobic surface of PP nonwoven limits its applications; in this study, we used the plasma-activation treatment and subsequently UV-light graft polymerization of NIPAAm gel to improve its hydrophilicity. Chitosan was immobilized onto PNIPAAm gel/PP nonwoven composites surface using the cross-linking agent, glutaraldehyde (GA). This complex was characterized by scanning electron microscopy (SEM). The results indicated that the wettability of the composite was improved after plasma treatment and photo-induced graft polymerization and chitosan was successfully immobilized onto the surface of PNIPAAm gel/PP nonwoven composites through cross-linking process. Finally, the preliminary result shows that chitosan hydrogels displayed antibacterial ability to Escherichia coli and Staphylococcus aureus. The (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) method indicated that the porous chitosan sponge exhibited good biocompatibility to fibroblast cells

  14. Transporting antitumor drug tamoxifen and its metabolites, 4-hydroxytamoxifen and endoxifen by chitosan nanoparticles.

    Directory of Open Access Journals (Sweden)

    Daniel Agudelo

    Full Text Available Synthetic and natural polymers are often used as drug delivery systems in vitro and in vivo. Biodegradable chitosan of different sizes were used to encapsulate antitumor drug tamoxifen (Tam and its metabolites 4-hydroxytamoxifen (4-Hydroxytam and endoxifen (Endox. The interactions of tamoxifen and its metabolites with chitosan 15, 100 and 200 KD were investigated in aqueous solution, using FTIR, fluorescence spectroscopic methods and molecular modeling. The structural analysis showed that tamoxifen and its metabolites bind chitosan via both hydrophilic and hydrophobic contacts with overall binding constants of K(tam-ch-15 = 8.7 ( ± 0.5 × 10(3 M(-1, K(tam-ch-100 = 5.9 (± 0.4 × 10(5 M(-1, K(tam-ch-200 = 2.4 (± 0.4 × 10(5 M(-1 and K(hydroxytam-ch-15 = 2.6(± 0.3 × 10(4 M(-1, K(hydroxytam - ch-100 = 5.2 ( ± 0.7 × 10(6 M(-1 and K(hydroxytam-ch-200 = 5.1 (± 0.5 × 10(5 M(-1, K(endox-ch-15 = 4.1 (± 0.4 × 10(3 M(-1, K(endox-ch-100 = 1.2 (± 0.3 × 10(6 M(-1 and K(endox-ch-200 = 4.7 (± 0.5 × 10(5 M(-1 with the number of drug molecules bound per chitosan (n 2.8 to 0.5. The order of binding is ch-100>200>15 KD with stronger complexes formed with 4-hydroxytamoxifen than tamoxifen and endoxifen. The molecular modeling showed the participation of polymer charged NH2 residues with drug OH and NH2 groups in the drug-polymer adducts. The free binding energies of -3.46 kcal/mol for tamoxifen, -3.54 kcal/mol for 4-hydroxytamoxifen and -3.47 kcal/mol for endoxifen were estimated for these drug-polymer complexes. The results show chitosan 100 KD is stronger carrier for drug delivery than chitosan-15 and chitosan-200 KD.

  15. Nanoparticles of Chitosan Loaded Ciprofloxacin: Fabrication and Antimicrobial Activity

    OpenAIRE

    Sobhani, Zahra; Mohammadi Samani, Soliman; Montaseri, Hashem; Khezri, Elham

    2017-01-01

    Purpose: Chitosan is a natural mucoadhesive polymer with antibacterial activity. In the present study, chitosan (CS) nanoparticles were investigated as a vehicle for delivery of antibiotic, ciprofloxacin hydrochloride. Methods: Ionotropic gelation method was used for preparation chitosan nanoparticles. The effects of various factors including concentration of CS, concentration of tripolyphosphate (TPP), and homogenization rate on the size of nanoparticles were studied. Th...

  16. Energy and electron transfers in photosensitive chitosan.

    Science.gov (United States)

    Wu, Shuizhu; Zeng, Fang; Zhu, Hongping; Tong, Zhen

    2005-02-23

    Novel photosensitive chitosan was synthesized. The modified chitosan contains photoactive anthracene chromophore moieties. Because of the presence of anthracene chromophores, the polymer absorbs light in the UV-vis spectral region. Electronically excited polymeric chromophores could participate in energy and electron transfer processes to the suitable acceptor molecules. The photosensitive chitosan developed herein could could act as an efficient photosensitizer and lead to the application of the environmentally friendly photocatalytic system for an efficient degradation of a wide range of pollutants.

  17. An overview of natural polymers for oral insulin delivery.

    Science.gov (United States)

    Sonia, T A; Sharma, Chandra P

    2012-07-01

    Current therapy for diabetes mellitus through oral anti-diabetic drugs and subcutaneous administration of insulin suffers from serious disadvantages, such as patient noncompliance and occasional hypoglycemia. Moreover, these approaches doesn't mimic the normal physiological pattern of insulin release. Oral route would be the most convenient and preferred route if it is available. Polymeric nano and/or microparticles, either natural or synthetic have been used as matrices for oral insulin delivery. Natural polymers are of particular interest due to their nontoxic, biocompatible, biodegradable and hydrophilic nature. Among the natural polymers used for oral insulin delivery, chitosan (CS) is widely explored owing to its ease of chemical modification and favorable biological properties. In addition, many advantages such as safety, biodegradability, widespread availability and low cost justify the continuing development of promising insulin delivery system based on CS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Biodegradable polymer nanocomposites based on natural nanotubes: effect of magnetically modified halloysite on the behaviour of polycaprolactone

    Czech Academy of Sciences Publication Activity Database

    Khunová, V.; Šafařík, Ivo; Škrátek, M.; Kelnar, Ivan; Tomanová, K.

    2016-01-01

    Roč. 51, č. 3 (2016), s. 435-444 ISSN 0009-8558 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:60077344 ; RVO:61389013 Keywords : magnetically modified HNTs * biodegradable poly mer nanocomposites * poly caprolactone Subject RIV: CD - Macromolecular Chemistry; JI - Composite Materials (UMCH-V) Impact factor: 1.052, year: 2016

  19. Antimicrobial Films Based on Chitosan and Methylcellulose Containing Natamycin for Active Packaging Applications

    Directory of Open Access Journals (Sweden)

    Serena Santonicola

    2017-10-01

    Full Text Available Biodegradable polymers are gaining interest as antimicrobial carriers in active packaging. In the present study, two active films based on chitosan (1.5% w/v and methylcellulose (3% w/v enriched with natamycin were prepared by casting. The antimicrobial’s release behavior was evaluated by immersion of the films in 95% ethanol (v/v at different temperatures. The natamycin content in the food simulant was determined by reversed-high performance liquid chromatography with diode-array detection (HPLC-DAD. The apparent diffusion (DP and partition (KP/S coefficients were calculated using a mathematical model based on Fick’s Second Law. Results showed that the release of natamycin from chitosan based film (DP = 3.61 × 10−13 cm2/s was slower, when compared with methylcellulose film (DP = 3.20 × 10−8 cm2/s at the same temperature (p < 0.05. To evaluate the antimicrobial efficiency of active films, cheese samples were completely covered with the films, stored at 20 °C for 7 days, and then analyzed for moulds and yeasts. Microbiological analyses showed a significant reduction in yeasts and moulds (7.91 log CFU/g in samples treated with chitosan active films (p < 0.05. The good compatibility of natamycin with chitosan, the low Dp, and antimicrobial properties suggested that the film could be favorably used in antimicrobial packagings.

  20. Synthesis and Characterization Pectin-Carboxymethyl Chitosan crosslinked PEGDE as biosorbent of Pb(II) ion

    Science.gov (United States)

    Hastuti, Budi; Siswanta, Dwi; Mudasir; Triyono

    2018-01-01

    Pectin and chitosan are biodegradable polymers, potentially applied as a heavy metal adsorbents. Unfortunately both biosorbents pectin and chitosan have a weakness in acidic media. For this purpose required modified pectin and chitosan. The modified adsorben is intended to obtain a stable adsorbent and resistance under acid. The research was done by experimental method in laboratory. The stages of this research are the synthesis of carboxymethyl chitosan (CMC), synthesis of Pec-CMC-PEGDE film adsorbent, stabily test under acid, the characterization of active group using FTIR, stability characterization of Pec-CMC-PEGDE powder adsorbent using XRD, termo stability using DTA-TGA. The results of the research have shown that: pectin and CMC can be cross-linked using PEGDE crosslinking agent, the film adsorbent was stable under HCl 1 M, the film adsorbent have active group comprise of carboxylate and amine groups. The result of characterization using XRD, shows that the adsorbent is semi-crystalline. Base on termo stability, the film adsorbent Pec-CMC-PEGDE stable up to 600°C. The film can be applied as an adsobent of Pb (II) ion remediation. The optimum pH of pec-CMC-PEGDE in adsorbed of Pb(II) was reached at pH 5 with 99.99% absorbent adsorbed and of and adsorption capacity was 46.11 mg/g.

  1. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibilities for better utilization in various areas. This article reviews the preparations and properties of the nanofibers which were electrospun from pure chitosan, blends of chitosan and synthetic polymers, blends of chitosan and protein, chitosan derivatives, as well as blends of chitosan and inorganic nanoparticles, respectively. The applications of the nanofibers containing chitosan such as enzyme immobilization, filtration, wound dressing, tissue engineering, drug delivery and catalysis are also summarized in detail.

  2. Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposite for root-end dental application.

    Science.gov (United States)

    Panahi, Fatemeh; Rabiee, Sayed Mahmood; Shidpour, Reza

    2017-11-01

    In recent years, cement composites based on calcium silicate have been more generally considered for medical applications. Calcium silicate Cement are among the categories that are used in dental root canal treatment. The aim of this study is to make new calcium silicate cement with dicalcium phosphate and chitosan additives to preserve and strengthen desirable properties of this type of cements. In this study, composite dental cement based on calcium silicate was prepared. Then effect of adding biodegradable and biocompatible polymer such as chitosan on setting properties and its structure were studied. In this study, a combination of calcium silicate, dicalcium phosphate (DCP) and bismuth oxide (Bi 2 O 3 ) as powder phase and 2% solution of the chitosan dissolved in 1% acetic acid solution as liquid phase, was used. As well as control sample was obtained by mixing the powder with distilled water as the liquid phase. Based on the obtained results, setting time of composite cement was changed from 51 to 67 minutes by adding chitosan polymer. Presence of chitosan also reduced the compressive strength a little. The bioactivity of the cement were studied in a solution of simulated body fluid (SBF) for 14 days. The samples were analyzed by SEM to identify the microstructure and by XRD to determine crystal structure. The composition of cement before incubation in SBF was included early phases (phase calcium silicate and calcium phosphate) that after 14 days of immersion in SBF, they were converted to layer-shaped hydroxy apatite and the presence of chitosan had not any influence on the final phase of hydroxy apatite. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Polymer hydrogels as optimized delivery systems

    International Nuclear Information System (INIS)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B.

    2013-01-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  4. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  5. Antioxidant and antimicrobial proprieties of chitin and chitosan extracted from Parapenaeus Longirostris shrimp shell waste.

    Science.gov (United States)

    Hafsa, J; Smach, M A; Charfeddine, B; Limem, K; Majdoub, H; Rouatbi, S

    2016-01-01

    Chitosan, the linear polymer, is produced by alkali deacetylation of chitin (CHI). Recently chitin and chitosan were attracted marked interest due to their biocompatibility, biodegradability and non-toxicity. In this study, chitin was extracted from shrimp shell (Parapenaeus longirostris) and chitosan was deacetylated by classical and ultrasound-assisted method. The identification of functional groups and the determination of degree of deacetylation of chitin (CHI), classical deacetylated chitosan (CDC) and ultrasound-assisted deacetylated chitosan (UDC) were carried through Fourier Transform-Infrared Spectroscopy. Their antimicrobial and antioxidant activity were also investigated. The degree of deacetylation of CHI, CDC and UDC is 33.64%, 73.68% and 83.55%, respectively. Results showed that CHI, CDC and UDC exhibited a good antimicrobial activity against (S. aureus, E. coli, P. aeruginosa, K. pneumonia) and (C. albicans and C. parapsilosis). The scavenging ability of CHI, CDC and UDC on 1,1-diphenyl-2-picrylhydrazyl radicals is ranging from 4.71% to 21.25%, 11.45% to 32.78% and 18.27% to 44.17%, respectively, at the concentrations of 0.25 to 1mg/mL. The inhibition of lipid peroxidation with thiobarbituric acid-reacting substances is ranging from 11.7% to 51.63%, 17.24% to 63.52% and 29.31% to 77.39%, respectively, at varying concentrations of 0.25 to 1mg/mL. The effectiveness of CHI, CDC and UDC is correlated with their degree of deacetylation. The results indicate the possibility of exploiting chitin and chitosan as antimicrobial agent. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  6. Properties of melt processed chitosan and aliphatic polyester blends

    Energy Technology Data Exchange (ETDEWEB)

    Correlo, V.M. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal); Boesel, L.F. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal); Bhattacharya, M. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal)]. E-mail: bhatt002@umn.edu; Mano, J.F. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal); Neves, N.M. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal); Reis, R.L. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga 4710-057 (Portugal)

    2005-08-25

    Chitosan was melt blended with poly-{epsilon}-caprolactone (PCL), poly(butylene succinate) (PBS), poly(lactic acid) (PLA), poly(butylene terephthalate adipate) (PBTA), and poly(butylene succinate adipate) (PBSA). For the chitosan/PBS blend, the amount of chitosan was varied from 25% to 70% by weight. The remaining polyesters had 50% of chitosan by weight. Addition of chitosan to PBS or PBSA tends to depress the melting temperature of the polyester. The crystallinity of the polyesters (PCL, PBS, PBSA) containing 50% chitosan decreased. Adding chitosan to the blends decreased the tensile strength but increased the tensile modulus. Chitosan displayed intermediate adhesion to the polyester matrix. Microscopic results indicate that the skin layer is polyester rich, while the core is a blend of chitosan and polyester. Fractured surface of chitosan blended with a high T {sub g} polymer, such as PLA, displayed a brittle fracture. Blends of chitosan with PCL, PBTA, or PBSA display fibrous appearances at the fractured surface due to the stretching of the polymer threads. Increasing the amount of chitosan in the blends also reduced the ductility of the fractured surface. The chitosan phase agglomerated into spherical domains or were clustered into sheaths. Pull-out of chitosan particles is evident in tensile-fractured surfaces for blends of chitosan with ductile polymers but absent in the blends with PLA. PBS displays a less lamellar orientation when compared to PCL or PBSA. The orientation of the polyesters (PCL, PBSA) does not seem to be affected by the addition of chitosan. The two main diffraction peaks observed using WAXS are unaffected by the addition of chitosan.

  7. Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection

    OpenAIRE

    Aras Rafiee; Mohammad Hossein Alimohammadian; TaranehGazori; Farhad Riazi-rad; Seyed Mohammad Reza Fatemi; Amirabbas Parizadeh; Ismaeil Haririan; Mohammad Havaskary

    2014-01-01

    Objective: To to compare the chitosan/alginate, chitosan and alginate nanoparticles as plasmid vectors, to determine the morphological characteristics, size and physicochemical properties of nanoparticle-pEGFP complexes and to evaluate the potential of these nanoparticles in transfection of pEGFP plasmid in to a cultured the human embryonic kidney cell line (HEK 293 cells). Methods: Nanoparticles comprising chitosan, alginate and both chitosan-alginate polymers were formed t...

  8. 2-year outcome after biodegradable polymer sirolimus- and biolimus- eluting coronary stents.From the randomized SORT OUT VII trial

    DEFF Research Database (Denmark)

    Jensen, Lisette Okkels; Maeng, Michael; Raungaard, Bent

    2018-01-01

    AIMS: The SORT OUT VII trial compared the thin-strut cobalt-chromium sirolimus-eluting Orsiro stent with a slow polymer degradation and the thicker-strut stainless steel biolimus-eluting Nobori stent with a moderate-term polymer degradation in an all-comer patient population. METHODS AND RESULTS...

  9. Biodegradable polymer drug-eluting stents versus second-generation drug-eluting stents for patients with coronary artery disease: an update meta-analysis.

    Science.gov (United States)

    Wang, Yanyu; Dong, Pingshuan; Li, Ling; Li, Xiaoling; Wang, Hongyun; Yang, Xuming; Wang, Shaoxin; Li, Zhuanzhen; Shang, Xiyan

    2014-08-01

    Permanent polymer drug-eluting stents (DES) are associated with a higher risk of late and very late stent thrombosis (ST); biodegradable polymer drug-eluting stents (BP-DES) were designed to reduce these risks. However, their benefits are not completely clear. We undertook a meta-analysis of randomized studies identified in systematic searches of MEDLINE, EMBASE, and the Cochrane Database. Eligible studies were those that compared BP-DES with second-generation permanent polymer DES in patients undergoing percutaneous coronary intervention. Five studies (8,740 patients) with a mean follow-up of 19.2 months were included. Overall, BP-DES were associated with a broadly equivalent risk of definite and probable ST (odds ratio [OR], 1.07; 95 % confidence interval [CI], 0.67 to 1.71; P = 0.76; I (2) = 5.0 %), target vessel revascularization (OR, 1.04; 95 % CI, 0.87 to 1.24; P = 0.68; I (2) = 38.0 %), all-cause mortality (OR, 1.10; 95 % CI, 0.87 to 1.41; P = 0.42; I (2) = 0.0 %), and major adverse cardiac events (OR, 1.03; 95 % CI, 0.88 to 1.20; P = 0.74; I (2) = 0.0 %) when compared with second-generation DES. However, BP-DES significantly decreased in-stent late luminal loss (standard mean difference [SMD], -0.01; 95 % CI, -0.12 to 0.11; P = 0.93; I (2) = 0.0 %) and in-segment late luminal loss (SMD, -0.06; 95 % CI, -0.17 to 0.05; P = 0.27; I (2) = 0.0 %) compared with second-generation DES. Compared with second-generation permanent polymer DES, biodegradable stents appear to have equivalent short- to medium-term clinical benefits, and it remains unclear whether they reduce the incidence of very late ST.

  10. Chitosan dan Aplikasi Klinisnya Sebagai Biomaterial

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past few years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochodral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial.

  11. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  12. Effect of chitosan coatings on postharvest green asparagus quality.

    Science.gov (United States)

    Qiu, Miao; Jiang, Hengjun; Ren, Gerui; Huang, Jianying; Wang, Xiangyang

    2013-02-15

    Fresh postharvest green asparagus rapidly deteriorate due to its high respiration rate. The main benefits of edible active coatings are their edible characteristics, biodegradability and increase in food safety. In this study, the quality of the edible coatings based on 0.50%, 0.25% high-molecular weight chitosan (H-chitosan), and 0.50%, 0.25% low-molecular weight chitosan (L-chitosan) on postharvest green asparagus was investigated. On the basis of the results obtained, 0.25% H-chitosan and 0.50% L-chitosan treatments ensured lower color variation, less weight loss and less ascorbic acid, decrease presenting better quality of asparagus than other concentrations of chitosan treatments and the control during the cold storage, and prolonging a shelf life of postharvest green asparagus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content.

    Science.gov (United States)

    Azeredo, Henriette M C; Mattoso, Luiz Henrique C; Avena-Bustillos, Roberto J; Filho, Gino Ceotto; Munford, Maximiliano L; Wood, Delilah; McHugh, Tara H

    2010-01-01

    Chitosan is a biopolymer obtained by N-deacetylation of chitin, produced from shellfish waste, which may be employed to elaborate edible films or coatings to enhance shelf life of food products. This study was conducted to evaluate the effect of different concentrations of nanofiller (cellulose nanofibers, CNF) and plasticizer (glycerol) on tensile properties (tensile strength-TS, elongation at break-EB, and Young's modulus-YM), water vapor permeability (WVP), and glass transition temperature (T(g)) of chitosan edible films, and to establish a formulation to optimize their properties. The experiment was conducted according to a central composite design, with 2 variables: CNF (0 to 20 g/100 g) and glycerol (0 to 30 g/100 g) concentrations in the film (on a dry basis), which was produced by the so-called casting technique. Most responses (except by EB) were favored by high CNF concentrations and low glycerol contents. The optimization was based on maximizing TS, YM, and T(g), and decreasing WVP, while maintaining a minimum acceptable EB of 10%. The optimum conditions were defined as: glycerol concentration, 18 g/100 g; and CNF concentration, 15 g/100 g. AFM imaging of films suggested good dispersion of the CNF and good CNF-matrix interactions, which explains the good performance of the nanocomposite films. Chitosan is a biodegradable polymer which may be used to elaborate edible films or coatings to enhance shelf life of foods. This study demonstrates how cellulose nanofibers (CNF) can improve the mechanical and water vapor barrier properties of chitosan films. A nanocomposite film with 15% CNF and plasticized with 18% glycerol was comparable to some synthetic polymers in terms of strength and stiffness, but with poorer elongation and water vapor barrier, indicating that they can be used for applications that do not require high flexibility and/or water vapor barrier. The more important advantage of such films when compared to synthetic polymer films is their

  14. Development of Curcumin loaded chitosan polymer based nanoemulsion gel: In vitro, ex vivo evaluation and in vivo wound healing studies.

    Science.gov (United States)

    Thomas, Lydia; Zakir, Foziyah; Mirza, Mohd Aamir; Anwer, Md Khalid; Ahmad, Farhan Jalees; Iqbal, Zeenat

    2017-08-01

    In the present study, various nanoemulsions were prepared using Labrafac PG+Triacetin as oil, Tween 80 as a surfactant and polyethylene glycol (PEG 400) as a co-surfactant. The developed nanoemulsions (NE1-NE5) were evaluated for physicochemical characterizations and ex-vivo for skin permeation and deposition studies. The highest skin deposition was observed for NE2 with 46.07% deposition amongst all developed nanoemulsions (NE1-NE5). Optimized nanoemulsion (NE2) had vesicle size of 84.032±0.023nm, viscosity 78.23±22.2 cps, refractive index 1.404. Nanoemulsion gel were developed by incorporation of optimized nanoemulsion (NE2) into 1-3% chitosan and characterized by physical evaluation and rheological studies. Chitosan gel (2%) was found to be suitable for gelation of nanoemulsion based on its consistency, feel and ease of spreadability. The flux of nanoemulsion gel was found 68.88μg/cm 2 /h as compared to NE2 (76.05μg/cm 2 /h) is significantly lower suggesting limited skin permeation of curcumin form gel. However, the retained amount of curcumin on skin by gel formulation (980.75±88μg) is significantly higher than NE2 (771.25±67μg). Enhanced skin permeation of NE2 (46.07%) was observed when compared to nanoemulsion gel (31.25%) and plain gel (11.47%). The outcome of this study evidently points out the potential of curcumin entrapped nanoemulsion gel in wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  16. Mucoadhesion vs mucus permeability of thiolated chitosan polymers and their resulting nanoparticles using a quartz crystal microbalance with dissipation (QCM-D).

    Science.gov (United States)

    Oh, Sejin; Borrós, Salvador

    2016-11-01

    The aim of this present study was to evaluate the combination properties between mucoadhesion/mucus permeability of thiolated chitosans (TC) and their resulting nanoparticles using a quartz crystal microbalance with dissipation (QCM-D). The QCM-D experiments were conducted at pH 4 or 6.8 to assess the interaction between thiolated polymers, with low (TCL), medium (TCM) and high (TCH) contents of free thiol groups, and native porcine gastric mucin (NPGM). TCL was chosen for further carriers as it showed higher permeability into the NPGM layer compared to TCM and TCH. In this study, we describe a formulation of a novel carrier comprised by positively charged TCL, negatively charged DNA and degradable oligopeptide-modified poly(β-amino ester)s (PBAEs), which were employed in order to approach for tuning particle size and surface charge of complexes. TCL/PBAE complexes with or without DNA were characterized using dynamic light scattering. Mechanism of adsorption or permeation of the TCL/PBAE/DNA complexes into the NPGM barrier was investigated with QCM-D, which is a highly sensitive technique for studying nanomechanical (viscoelastic) changes of the substrates. This work might provide that the QCM-D technique would be a promising method to monitor the dynamic behaviour between complexes and NPGM. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Comparison of Vascular Responses Following New-Generation Biodegradable and Durable Polymer-Based Drug-Eluting Stent Implantation in an Atherosclerotic Rabbit Iliac Artery Model.

    Science.gov (United States)

    Nakazawa, Gaku; Torii, Sho; Ijichi, Takeshi; Nagamatsu, Hirofumi; Ohno, Yohei; Kurata, Fumi; Yoshikawa, Ayako; Nakano, Masataka; Shinozaki, Norihiko; Yoshimachi, Fuminobu; Ikari, Yuji

    2016-10-19

    Incomplete endothelialization is the primary substrate of late stent thrombosis; however, recent reports have revealed that abnormal vascular responses are also responsible for the occurrence of late stent failure. The aim of the current study was to assess vascular response following deployment of biodegradable