WorldWideScience

Sample records for biodegradable nanocomposite based

  1. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils

    OpenAIRE

    B. Deepa; Eldho Abraham; Pothan, Laly A; Nereida Cordeiro; Marisa Faria; Sabu Thomas

    2016-01-01

    Biodegradable nanocomposite films were prepared by incorporation of cellulose nanofibrils (CNF) into alginate biopolymer using the solution casting method. The effects of CNF content (2.5, 5, 7.5, 10 and 15 wt %) on mechanical, biodegradability and swelling behavior of the nanocomposite films were determined. The results showed that the tensile modulus value of the nanocomposite films increased from 308 to 1403 MPa with increasing CNF content from 0% to 10%; however, it decreased with further...

  2. Assessment of polymer-based nanocomposites biodegradability

    OpenAIRE

    Machado, A.V.; Araújo, Andreia Isabel Silva; Oliveira, Manuel

    2015-01-01

    The management of solid waste is a growing concern in many countries. Municipal solid waste is a major component of the total solid waste generated by society, and the composting of municipal solid waste has gained some attention even though a composting treatment for it is not yet widespread. It may not be realistic to replace large portions of these plastics with biodegradable materials, and it may be more important to separate plastics unsuitable for the composting process at the generatin...

  3. Biobased and biodegradable polymer nanocomposites

    Science.gov (United States)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  4. Engineering Flame Retardant Biodegradable Nanocomposites

    Science.gov (United States)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  5. Preparation and properties of biodegradable polymer-layered silicate nanocomposite electrolytes for zinc based batteries

    International Nuclear Information System (INIS)

    Highlights: • Organically modified MMT is used as nanofiller to enhance the properties of the polymer PCL-zinc triflate salt complex. • The nanocomposite showed enhancement in conductivity, excellent electrochemical and thermal stability. • Cyclic voltammetry revealed feasibility of intercalation/deintercalation of Zn2+ ions with MnO2 cathode. • Best conducting electrolyte showed remarkable degradability in soil compost over a period of 90 days. - Abstract: Polymer-layered silicate nanocomposite electrolytes (PLSNEs) were prepared by utilizing a biodegradable polymer namely poly(ϵ-caprolactone) as host polymer and zinc triflate as dopant salt with the incorporation of varying concentrations of octadecylamine modified montmorillonite nanoclay and further characterized using various experimental techniques. A maximum conductivity of 9.5 × 10−5 S cm−1 was achieved for a 15 wt% loading of the nanoclay. X-ray diffraction and differential scanning calorimetric studies revealed the change occurring in the crystalline behavior of the electrolyte as a result of incorporation of the nanoclay. An appreciably good thermal and electrochemical stability was also observed thus suggesting applicability of the prepared electrolyte in commericial systems and therefore the feasibility of reduction and oxidation processes of MnO2 cathode with the prepared electrolyte system has also been evaluated by means of cyclic voltammetry. The best conducting sample of the polymer electrolyte showed a remarkable degradability over a degradation period of 90 days in soil compost

  6. Porous biodegradable polyurethane nanocomposites: preparation, characterization, and biocompatibility tests

    OpenAIRE

    Regina Coeli Moreira Dias; Alfredo de Miranda Góes; Rogéria Serakides; Eliane Ayres; Rodrigo Lambert Oréfice

    2010-01-01

    A porous biodegradable polyurethane nanocomposite based on poly(caprolactone) (PCL) and nanocomponents derived from montmorillonite (Cloisite®30B) was synthesized and tested to produce information regarding its potential use as a scaffold for tissue engineering. Structural and morphological characteristics of this nanocomposite were studied by infrared spectroscopy (FTIR), X-ray diffraction (XRD), small angle X-ray scattering (SAXS) and scanning electron microscopy (SEM). The reaction between...

  7. Preparation and Characteristics of Biodegradable Polyurethane/Clay Nanocomposite Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Woo [Kyonggi University, Suwon (Korea, Republic of)

    2013-06-15

    Biodegradable polyurethane (PU)/clay nanocomposite films were prepared via extrusion compounding process followed by casting film process. Organically modified montmorillonite (denoted as C30B) with a large amount of hydroxyl groups on its surface was used for the formation of strong bonding with PU resin. From both XRD analysis and TEM observations, the intercalated and exfoliated structure, and dispersion state of silicate platelets in the compounded nanocomposite films were confirmed. In addition, the rheological and tensile properties, optical transparency, oxygen permeability of the prepared nanocomposites were investigated as a function of added nanoclay content, and moreover based on these results, the correlation between the morphology and the resulting properties of the nanocomposites could be presented. The inclusion of nanoclays at appropriate content resulted in remarkable improvement in the nanocomposite performance including tensile modulus, elongation, transparency, and oxygen barrier property, however at excess amount of nanoclays, reduction or very slight increase was observed due to poor dispersion. The biodegradability of the prepared nanocomposite film was evaluated by examining the deterioration in the barrier and tensile properties during degradation period under compost.

  8. Characterization of the new biodegradable WPI/clay nanocomposite films based on kefiran exopolysaccharide.

    Science.gov (United States)

    Zolfi, Mohsen; Khodaiyan, Faramarz; Mousavi, Mohammad; Hashemi, Maryam

    2015-06-01

    Physico-mechanical, thermal and structural characteristics of nanocomposite film composed of kefiran-whey protein isolate (WPI)-montmorillonite (MMT; 1, 3 and 5 % w/w) were studied. Incorporation of MMT significantly affected the mechanical attributes of the kefiran-WPI films. The tensile strength and Young's modulus increased and the percentage of elongation at break decreased as the MMT content increased. Moisture content, moisture absorption and water solubility decreased as the MMT concentration increased. Differential scanning calorimetry indicated that the glass transition temperature for kefiran-WPI film was -12.5 °C and was noticeably affected by an increase in MMT. X-ray diffraction analysis showed formation of an exfoliated structure with the addition of small amounts of MMT to the kefiran-WPI matrix. Intercalation and some exfoliation occurred up to 5 % (wt) increase in MMT. Scanning electron microscopy demonstrated ideal dispersion for MMT nanoparticles into the structure of the bio-nanocomposite films. PMID:26028730

  9. Porous biodegradable polyurethane nanocomposites: preparation, characterization, and biocompatibility tests

    Directory of Open Access Journals (Sweden)

    Regina Coeli Moreira Dias

    2010-06-01

    Full Text Available A porous biodegradable polyurethane nanocomposite based on poly(caprolactone (PCL and nanocomponents derived from montmorillonite (Cloisite®30B was synthesized and tested to produce information regarding its potential use as a scaffold for tissue engineering. Structural and morphological characteristics of this nanocomposite were studied by infrared spectroscopy (FTIR, X-ray diffraction (XRD, small angle X-ray scattering (SAXS and scanning electron microscopy (SEM. The reaction between polyurethane oligomers with isocyanate endcapped chains and water led to the evolution of CO2, which was responsible for building interconnected pores with sizes ranging from 184 to 387 μm. An in vitro cell-nanocomposite interaction study was carried out using neonatal rat calvarial osteoblasts. The ability of cells to proliferate and produce an extracellular matrix in contact with the synthesized material was assessed by an MTT assay, a collagen synthesis analysis, and the expression of alkaline phosphatase. In vivo experiments were performed by subcutaneously implanting samples in the dorsum of rats. The implants were removed after 14, 21, and 29 days, and were analyzed by SEM and optical microscopy after tissue processing. Histology crosssections and SEM analyses showed that the cells were able to penetrate into the material and to attach to many location throughout the pore structure. In vitro and in vivo tests demonstrated the feasibility for polyurethane nanocomposites to be used as artificial extracellular matrices onto which cells can attach, grow, and form new tissues.

  10. Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties

    OpenAIRE

    Alexandra Muñoz-Bonilla; Cerrada, María L.; Marta Fernández-García; Anna Kubacka; Manuel Ferrer; Marcos Fernández-García

    2013-01-01

    Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size) in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM), wide/small angle X-ray diffraction (WAXS/SAXS, respectively) and differential scanning ca...

  11. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation

    OpenAIRE

    Mehdi Mehdikhani-Nahrkhalaji; Mohammad Hossein Fathi; Vajihesadat Mortazavi; Sayed Behrouz Mousavi; Ali Akhavan; Abbas Haghighat; Batool Hashemi-Beni; Sayed Mohammad Razavi; Fatemeh Mashhadiabbas

    2015-01-01

    Background: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. Materials and Methods: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by ...

  12. Chitin-based Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    D.K.Polyakov; S.N.Chvalun

    2007-01-01

    1 Results The one of the promising development of biodegradable nanocomposites is using native polysaccharides which have pronounced fibril structure to provide not only excellent mechanical properties and biodegradability of produced material but also control the barrier properties, for example increasing selectivity of pervaporation membrane. Chitin is the most popular biopolymer in the nature after cellulose. It is the 2-acetoamido-derivative of cellulose and serves as the fibrous component of the sk...

  13. STUDY ON BIODEGRADABILITY OF POLY (3-HYDROXYBUTYRATE-co-3-HYDROXYVALERATE)/ORGANOPHILIC MONTMORILLONITE NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    WANG Shufang; SONG Cunjiang; CHEN Guangxin; LIU Jing; YANG Chao; ZHANG Xihui; GUO Tianying; ZHANG Banghua

    2004-01-01

    Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/Organophilic montmorillonite (PHBV/OMMT) nanocomposites were prepared and the biodegradability of the PHBV/OMMT nanocomposites was studied by a cultivation degrading method in soil suspension. The relationship between structure and biodegradability of PHBV/OMMT nanocomposites was investigated. The results showed that the biodegradability of PHBV/OMMT nanocomposites decreased with increasing amount of OMMT and it was related to the number of PHBV degrading microorganisms in degradation environment, the anti-microbial property of OMMT and the degree of crystallinity of the nanocomposites.

  14. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    OpenAIRE

    Ganji, Yasaman; Li, Qian; Quabius, Elgar Susanne; Böttner, Martina; Selhuber-Unkel, Christine; Kasra, Mehran

    2016-01-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporat- ed into biodegradable castor oil-based poly...

  15. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn\\'t significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  16. Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues da Silva, Gisele [Federal University of Sao Joao Del Rei, School of Pharmacy, Divinopolis, Minas Gerais (Brazil); Silva-Cunha, Armando da [Federal University of Minas Gerais, School of Pharmacy, Belo Horizonte, Minas Gerais (Brazil); Behar-Cohen, Francine [INSERM, Physiopathology of ocular diseases: Therapeutic innovations, Institut des Cordeliers, Paris (France); Laboratoire d' Innovations Therapeutiques, Fondation Rothschild, Paris (France); Universite Rene Descartes, Hotel Dieu University Hospital, Paris (France); Ayres, Eliane [Federal University of Minas Gerais, Department of Metallurgical and Materials Engineering, Belo Horizonte, Minas Gerais (Brazil); Orefice, Rodrigo L., E-mail: rorefice@demet.ufmg.br [Federal University of Minas Gerais, Department of Metallurgical and Materials Engineering, Belo Horizonte, Minas Gerais (Brazil)

    2011-03-12

    The treatment of posterior segment ocular diseases, such as uveitis, by using eye drops and oral drugs is usually not effective due to the body's natural barriers to drug penetration. In this study, ocular implants to treat uveitis were synthesized by incorporating dexamethasone acetate, an important type of corticoid used in the treatment of some uveitis, into a biodegradable polyurethane containi clay nanoparticles. Biodegradable polyurethane nanocomposites having poly(caprolactone) oligomers as soft segments were obtained by delaminating clay particles within a polyurethane aqueous dispersion. The drug was incorporated into the polymer by dispersing it in the waterborne polyurethane followed by a drying step. Nanoparticles derived from clay were demonstrated to be able to tailor the mechanical properties of polyurethanes to achieve values that can match the properties of ocular soft tissues. Infrared spectra (FTIR) showed that the presence of clay particles was able to change the microphase separation process typical of polyurethanes. X-ray diffraction and small angle x-ray scattering (SAXS) results were explored to show that the incorporation of both dexamethasone acetate and nanocomponents derived from clay led to a less defined two-phase polyurethane. The presence of clay nanoparticles increased the rate of drug release measured in vitro. Human retinal pigment epithelial cells (ARPE-19) were cultured in contact with polyurethanes and polyurethane nanocomposites, and the viability of them (evaluated by using MTT assay after 7 days) showed that no toxic components were released from polyurethanes containing no drugs during the test.

  17. Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route

    International Nuclear Information System (INIS)

    The treatment of posterior segment ocular diseases, such as uveitis, by using eye drops and oral drugs is usually not effective due to the body's natural barriers to drug penetration. In this study, ocular implants to treat uveitis were synthesized by incorporating dexamethasone acetate, an important type of corticoid used in the treatment of some uveitis, into a biodegradable polyurethane containi clay nanoparticles. Biodegradable polyurethane nanocomposites having poly(caprolactone) oligomers as soft segments were obtained by delaminating clay particles within a polyurethane aqueous dispersion. The drug was incorporated into the polymer by dispersing it in the waterborne polyurethane followed by a drying step. Nanoparticles derived from clay were demonstrated to be able to tailor the mechanical properties of polyurethanes to achieve values that can match the properties of ocular soft tissues. Infrared spectra (FTIR) showed that the presence of clay particles was able to change the microphase separation process typical of polyurethanes. X-ray diffraction and small angle x-ray scattering (SAXS) results were explored to show that the incorporation of both dexamethasone acetate and nanocomponents derived from clay led to a less defined two-phase polyurethane. The presence of clay nanoparticles increased the rate of drug release measured in vitro. Human retinal pigment epithelial cells (ARPE-19) were cultured in contact with polyurethanes and polyurethane nanocomposites, and the viability of them (evaluated by using MTT assay after 7 days) showed that no toxic components were released from polyurethanes containing no drugs during the test.

  18. Biodegradable nanocomposites from toughened polyhydroxybutyrate and titanate-modified montmorillonite clay

    Science.gov (United States)

    Montmorillonite clay treated with neopentyl (diallyl)oxy tri( dioctyl) pyrophosphato-titanate was used as a reinforcement for toughened bacterial bioplastic, Polyhydroxybutyrate (PHB) in order to develop novel biodegradable nanocomposites. The modified clay, PHB, toughening partner and specific comp...

  19. Effect of interface on mechanical properties and biodegradation of PCL HAp supramolecular nano-composites.

    Science.gov (United States)

    Shokrollahi, Parvin; Mehmanchi, Mohammad; Atai, Mohammad; Omidian, Hossein; Shokrolahi, Fateme

    2014-01-01

    This research explores the correlation between the structural properties of supramolecular biocomposites and their mechanical strength. Hybrid biocomposites composed of surface-modified hydroxyapatite nano-particles and supramolecular polycaprolactone (SP PCL), were prepared at different compositions, and their mechanical, thermal and viscoelastic properties as well as biodegradability, biocompatibility and cytotoxicity were evaluated in vitro. The results were compared with those for SP PCL/naked hydroxyapatite nano-composites. We show that surface modification of hydroxyapatite nanoparticles resulted in outstanding improvement of tensile strength and modulus up to 3.6 and 2.2-fold, respectively. At above 10 wt% HAp and 20 wt% HApUPy, heterogeneous nano-composites with inferior mechanical properties were obtained. Based on rheological (in steady shear mode) and small/wide angle X-ray scattering measurements, unusual improved mechanical properties were ascribed to the formation of supramolecular clusters around nanoparticles. In-vitro degradation of the supramolecular nano-composites was also studied to investigate the overall product biodegradation as well as toxicity of the degradation product(s). PMID:24030697

  20. Temperature-sensitivity and cell biocompatibility of freeze-dried nanocomposite hydrogels incorporated with biodegradable PHBV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingsong, E-mail: zqs8011@163.com; Chen, Li, E-mail: chenlis@tjpu.edu.cn; Dong, Youyu; Lu, Si

    2013-04-01

    The structure, morphology, thermal behaviors and cytotoxicity of novel hydrogels, composed of poly(N-isopropylacrylamide)(PNIPAM) and biodegradable polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) under nanoclay hectorite “Laponite XLG” severed as physical cross-linker, were characterized by X-ray diffraction, scanning electron microscopy, gravimetric method, differential scanning calorimetry, and cell culture experiments. It was found that, due to the introduction of hydrophobic PHBV, the homogeneity of interior pore in the pure PNIPAM nanocomposite hydrogel was disrupted, the transparency and swelling degree gradually decreased. Although the weight ratio between PHBV and NIPAM increased from 5 to 40 wt.%, the volume phase transition temperature (VPTTs) of hydrogel were not altered compared with the pure PNIPAM nanocomposite hydrogel. No matter what PHBV content, the PHBV/PNIPAM/Hectorite hydrogels always exhibit good stimuli-responsibility. In addition, human hepatoma cells(HepG2) adhesion and spreading on the surface of PHBV-based hydrogels was greatly improved than that of pure PNIPAM nanocomposite hydrogel at 37 °C due to the introduction of PHBV. Highlights: ► Thermo-responsive and cell biocompatible hydrogels incorporated PHBV was synthesized. ► The introduction of PHBV decreases the transparency of nanocomposite hydrogel. ► The introduction of PHBV has a little shift on VPTTs of nanocomposite hydrogel. ► The HepG2 cells could adhere and spread on the surface of PHBV-based hydrogels. ► Cell sheet could be detached simultaneously from the surface of hydrogels.

  1. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sabaa, Magdy W.; Abdallah, Heba M.; Mohamed, Nadia A.; Mohamed, Riham R., E-mail: rihamrashad@hotmal.com

    2015-11-01

    Crosslinked poly(vinyl alcohol) (PVA)/carboxymethyl chitosan (CMCh) nanocomposites were synthesized using terephthaloyl diisothiocyanate crosslinker, in the presence of montmorillonite (MMT), in different ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PVA hydrogels increased the swellability. Metal ion adsorption has also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non crosslinked CMCh. Antimicrobial activity was examined against Gram positive bacteria, against Gram negative bacteria, and also against fungi. Results indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation study was carried out in Simulated Body Fluid (SBF) for different time periods in order to find out degradation index (Di). Results showed that weight loss of most of the nanocomposites increased as a function of incubation time. - Highlights: • CMCh/PVA nanocomposites have been evaluated for activity against bacteria and fungi. • TEM showed that these hydrogels have size 3–19 nm. • Nanocomposites increased metal ion uptake and showed selectivity for cadmium ions. • Biodegradation increased as a function of incubation time in SBF solution. • Biodegradation increased with increase in CMCh and clay in nanocomposites.

  2. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites

    International Nuclear Information System (INIS)

    Crosslinked poly(vinyl alcohol) (PVA)/carboxymethyl chitosan (CMCh) nanocomposites were synthesized using terephthaloyl diisothiocyanate crosslinker, in the presence of montmorillonite (MMT), in different ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PVA hydrogels increased the swellability. Metal ion adsorption has also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non crosslinked CMCh. Antimicrobial activity was examined against Gram positive bacteria, against Gram negative bacteria, and also against fungi. Results indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation study was carried out in Simulated Body Fluid (SBF) for different time periods in order to find out degradation index (Di). Results showed that weight loss of most of the nanocomposites increased as a function of incubation time. - Highlights: • CMCh/PVA nanocomposites have been evaluated for activity against bacteria and fungi. • TEM showed that these hydrogels have size 3–19 nm. • Nanocomposites increased metal ion uptake and showed selectivity for cadmium ions. • Biodegradation increased as a function of incubation time in SBF solution. • Biodegradation increased with increase in CMCh and clay in nanocomposites

  3. Biopolymer based nanocomposites reinforced with graphene nanoplatelets

    Science.gov (United States)

    Botta, L.; Scaffaro, R.; Mistretta, M. C.; La Mantia, F. P.

    2016-05-01

    In this work, biopolymer based nanocomposites filled with graphene nanoplatelets (GnP) were prepared by melt compounding in a batch mixer. The polymer used as matrix was a commercial biodegradable polymer-blend of PLA and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), rheological and mechanical measurements. Moreover, the effect of the GnP amount on the investigated properties was evaluated. The results indicated that the incorporation of GnP increased the stiffness of the biopolymeric matrix.

  4. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    International Nuclear Information System (INIS)

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%wt/wt) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films

  5. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Science.gov (United States)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-12-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%wt/wt) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  6. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, G., E-mail: giovannibarbaro@email.it; Galdi, M. R., E-mail: mrgaldi@unisa.it; Di Maio, L., E-mail: ldimaio@unisa.it; Incarnato, L., E-mail: lincarnato@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%{sub wt/wt}) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  7. Microwave-Assisted Preparation of Biodegradable Water Absorbent Polyacrylonitrile/Montmorillonite Clay Nanocomposite

    Directory of Open Access Journals (Sweden)

    Prafulla K. Sahoo

    2011-01-01

    Full Text Available Polyacrylonitrile (PAN/Montmorillonite (MMT clay nanocomposite was prepared in a microwave oven using a transition metal Co(III complex taking ammonium persulfate (APS as initiator with a motive of converting hydrophobic PAN into hydrophilic nanocomposite material via nanotechnology by the inclusion of MMT to the virgin polymer. UV-visible spectral analysis revealed various interactions between the developed complex with other reaction components. The formation of the PAN/MMT nanocomposites was characterized by FTIR. Furthermore, as evidenced by X-ray diffraction (XRD, transmission electron microscopy (TEM, the composite so obtained was found to have nano-order. XRD and TEM were suggesting that montmorillonite layers were exfoliated during the polymerization process. An increasing in the thermal stability for the developed nanocomposite was recorded by thermogravimetric analysis (TGA. The water absorption and biodegradation properties were carried out for its ecofriendly nature and better commercialization.

  8. Nanocomposites of Polyacrylic Acid Nanogels and Biodegradable Polyhydroxybutyrate for Bone Regeneration and Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mikael Larsson

    2014-01-01

    Full Text Available Biodegradable cell scaffolds and local drug delivery to stimulate cell response are currently receiving much scientific attention. Here we present a nanocomposite that combines biodegradation with controlled release of lithium, which is known to enhance bone growth. Nanogels of lithium neutralized polyacrylic acid were synthesized by microemulsion-templated polymerization and were incorporated into a biodegradable polyhydroxybutyrate (PHB matrix. Nanogel size was characterized using dynamic light scattering, and the nanocomposites were characterized with regard to structure using scanning electron microscopy, mechanical properties using tensile testing, permeability using tritiated water, and lithium release in PBS using a lithium specific electrode. The nanogels were well dispersed in the composites and the mechanical properties were good, with a decrease in elastic modulus being compensated by increased tolerance to strain in the wet state. Approximately half of the lithium was released over about three hours, with the remaining fraction being trapped in the PHB for subsequent slow release during biodegradation. The prepared nanocomposites seem promising for use as dual functional scaffolds for bone regeneration. Here lithium ions were chosen as model drug, but the nanogels could potentially act as carriers for larger and more complex drugs, possibly while still carrying lithium.

  9. Clay-based polymer nanocomposites: research and commercial development.

    Science.gov (United States)

    Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R

    2005-10-01

    This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials. PMID:16245517

  10. Preparation and characterization of biodegradable PLA/organosilylated clay nanocomposites

    Science.gov (United States)

    Olivieri, R.; Di Maio, L.; Scarfato, P.; Incarnato, L.

    2016-05-01

    In this work a new organosilylated clay was successfully synthesized by functionalization of a natural sodium montmorillonite (MMT) by (3-glycidyloxypropyl)trimethoxysilane (GOPTMS). This organosilylated clay was used as nanofiller for preparation, by solvent casting, of poly(lactic acid) nanocomposite systems. Similar systems, containing as nanofiller the commercial Cloisite 30B (i.e. a natural sodium montmorillonite organically modified with alkylammonium salt), were also prepared for comparison. All the obtained nanocomposite films were characterized using several techniques (XRD, permeability and mechanical tensile tests). Obtained results pointed out that nanocomposite system containing the organosilylated clay showed a better intercalation of the polymer chains into the clay layers and a higher improvement of the oxygen barrier properties, when compared to both the neat PLA film and the PLA film loaded with Cloisite 30B.

  11. Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate nano-composites

    Directory of Open Access Journals (Sweden)

    V. Sridhar

    2013-04-01

    Full Text Available Novel biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate [PHBV]/graphene nanocomposites were prepared by solution casting. The thermal properties, crystallization behavior, microstructure, and fracture morphology of the composites were investigated. Scanning electron microscope (SEM results show that graphene layers are homogeneously dispersed in the polymer matrix. X-ray diffraction (XRD and dynamic scanning calorimetry (DSC studies show that the well dispersed graphene sheets act as nucleating agent for crystallization. Consequently, the mechanical properties of the composites have been substantially improved as evident from dynamic mechanical and static tensile tests. Differential thermal analysis (DTA showed an increase in temperature of maximum degradation. Soil degradation tests of PHBV/graphene nanocomposites showed that presence of graphene doesn’t interfere in its biodegradability.

  12. Biodegradable polyester nanocomposites: 1. The effect of the structure on mechanical behavior

    Czech Academy of Sciences Publication Activity Database

    Kubies, Dana; Kotek, Jiří; Puffr, Rudolf; Baldrian, Josef; Kovářová, Jana; Šlouf, Miroslav; Rypáček, František

    Paris : International Union of Pure and Applied Chemistry, 2004, 5.3.5.1-5.3.5.2. [IUPAC International Symposium on Macromolecules, World Polymer Congress MACRO /40./. Paris (FR), 04.07.2004-09.07.2004] R&D Projects: GA AV ČR KJB4050309 Institutional research plan: CEZ:AV0Z4050913 Keywords : polyester nanocomposites * biodegradability * silicate filler Subject RIV: CD - Macromolecular Chemistry http://www.e-polymers.org/paris/data/L4159.pdf

  13. Obtaining nanofibers from sisal to reinforce nanocomposites biodegradable matrixes

    International Nuclear Information System (INIS)

    Cellulose nanofibers have been extracted by acid hydrolysis from sisal fibers. They are seen a good source material due to availability and low cost. The nanofibers was evaluated by thermal degradation behavior using thermogravimetry (TG), crystallinity by X-ray diffraction and morphological structure was investigated by atomic force microscopy (AFM) experiments. The resulting nanofibers was shown high crystallinity and a network of rodlike cellulose elements. The nanofibers will be incorporated as reinforcement in a biodegradable matrix and evaluated. (author)

  14. Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion

    Science.gov (United States)

    The non-biodegradable and non-renewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and montmorillo...

  15. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation.

    Science.gov (United States)

    Ganji, Yasaman; Li, Qian; Quabius, Elgar Susanne; Böttner, Martina; Selhuber-Unkel, Christine; Kasra, Mehran

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. PMID:26652343

  16. Effect of type and content of modified montmorillonite on the structure and properties of bio-nanocomposite films based on soy protein isolate and montmorillonite

    Science.gov (United States)

    The non-biodegradable and non-renewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified mo...

  17. Crystallization and mechanical properties of biodegradable poly(p-dioxanone)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites via simple solution casting method

    Indian Academy of Sciences (India)

    Zhecun Wang; Chengdong Xiong; Qing Li

    2015-10-01

    In this study, biodegradable poly(p-dioxanone) (PPDO)/octamethyl-polyhedral oligomeric silsesquioxanes (ome-POSS) nanocomposites were fabricated by the simple solution casting method with various ome-POSS loadings. Scanning electron microscopic observations indicate that ome-POSS is well dispersed in the PPDO matrix. Effect of ome-POSS on the isothermal melt crystallization and dynamic mechanical properties of PPDO in the nanocomposites were studied in detail. It shows that the overall crystallization rates are faster in the nanocomposites than in neat PPDO and increase with the increase in ome-POSS loadings; however, X-ray diffraction patterns, POM and the Avrami exponent suggest that the crystal structure and the crystallization mechanism do not change despite the presence of ome-POSS. The mechanical property of PPDO/ome-POSS nanocomposites was enhanced with respect to neat PPDO.

  18. Biodegradable polyesters based on succinic acid

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2003-01-01

    Full Text Available Two series of aliphatic polyesters based on succinic acid were synthesized by copolymerization with adipic acid for the first series of saturated polyesters, and with fumaric acid for the second series. Polyesters were prepared starting from the corresponding dimethyl esters and 1,4-butanediol by melt transesterification in the presence of a highly effective catalyst tetra-n-butyl-titanate, Ti(0Bu4. The molecular structure and composition of the copolyesters was determined by 1H NMR spectroscopy. The effect of copolymer composition on the physical and thermal properties of these random polyesters were investigated using differential scanning calorimetry. The degree of crystallinity was determined by DSC and wide angle X-ray. The degrees of crystallinity of the saturated and unsaturated copolyesters were generally reduced with respect to poly(butylene succinate, PBS. The melting temperatures of the saturated polyesters were lower, while the melting temperatures of the unsaturated copolyesters were higher than the melting temperature of PBS. The biodegradability of the polyesters was investigated by enzymatic degradation tests. The enzymatic degradation tests were performed in a buffer solution with Candida cylindracea lipase and for the unsaturated polyesters with Rhizopus arrhizus lipase. The extent of biodegradation was quantified as the weight loss of polyester films. Also the surface of the polyester films after degradation was observed using optical microscopy. It could be concluded that the biodegradability depended strongly on the degree of crystallinity, but also on the flexibility of the chain backbone. The highest biodegradation was observed for copolyesters containing 50 mol.% of adipic acid units, and in the series of unsaturated polyesters for copolyesters containing 5 and 10 mol.% of fumarate units. Although the degree of crystallinity of the unsaturated polyesters decreased slightly with increasing unsaturation, the biodegradation

  19. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect.

    Science.gov (United States)

    Abdelrasoul, Gaser N; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532nm laser, known as the photothermal effect. PMID:26249594

  20. Graphene-based artificial nacre nanocomposites.

    Science.gov (United States)

    Zhang, Yuanyuan; Gong, Shanshan; Zhang, Qi; Ming, Peng; Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-05-01

    With its extraordinary properties as the strongest and stiffest material ever measured and the best-known electrical conductor, graphene could have promising applications in many fields, especially in the area of nanocomposites. However, processing graphene-based nanocomposites is very difficult. So far, graphene-based nanocomposites exhibit rather poor properties. Nacre, the gold standard for biomimicry, provides an excellent example and guidelines for assembling two-dimensional nanosheets into high performance nanocomposites. The inspiration from nacre overcomes the bottleneck of traditional approaches for constructing nanocomposites, such as poor dispersion, low loading, and weak interface interactions. This tutorial review summarizes recent research on graphene-based artificial nacre nanocomposites and focuses on the design of interface interactions and synergistic effects for constructing high performance nanocomposites. This tutorial review also focuses on a perspective of the dynamic area of graphene-based nanocomposites, commenting on whether the concept is viable and practical, on what has been achieved to date, and most importantly, what is likely to be achieved in the future. PMID:27039951

  1. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration

    International Nuclear Information System (INIS)

    Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH 7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration. - Highlights: • Novel non-steroidal anti-inflammatory drug encapsulated biodegradable electrospun nanocomposite scaffolds were synthesized. • Heat treatment displayed great influence on the morphology of scaffolds. • Fiber diameter was decreased and pore size was increased after heat

  2. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Ariba [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Khan, Abdul Samad; Shahzadi, Lubna; Siddiqi, Saadat Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, University of Health Sciences, Lahore (Pakistan); Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Qureshi, Zafar-ul-Ahsan [Veterinary Research Institute, Lahore (Pakistan); Manzoor, Faisal; Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2015-11-01

    Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH 7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration. - Highlights: • Novel non-steroidal anti-inflammatory drug encapsulated biodegradable electrospun nanocomposite scaffolds were synthesized. • Heat treatment displayed great influence on the morphology of scaffolds. • Fiber diameter was decreased and pore size was increased after heat

  3. Starch-based completely biodegradable polymer materials

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Starch is a natural polymer which possesses many unique properties and some shortcoming simultaneously. Some synthetic polymers are biodegradable and can be tailor-made easily. Therefore, by combining the individual advantages of starch and synthetic polymers, starch-based completely biodegradable polymers (SCBP are potential for applications in biomedical and environmental fields. Therefore it received great attention and was extensively investigated. In this paper, the structure and characteristics of starch and some synthetic degradable polymers are briefly introduced. Then, the recent progress about the preparation of SCBP via physical blending and chemical modification is reviewed and discussed. At last, some examples have been presented to elucidate that SCBP are promising materials for various applications and their development is a good solution for reducing the consumption of petroleum resources and environmental problem.

  4. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Gaser N.; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs, E-mail: szabolcs.beke@iit.it

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser.

  5. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    International Nuclear Information System (INIS)

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser

  6. Obtaining of new magnetic nanocomposites based on modified polysaccharide.

    Science.gov (United States)

    Tudorachi, Nita; Chiriac, Aurica

    2013-10-15

    The study presents the preparation of some composite materials with magnetic properties by two different encapsulation methods of magnetite (Fe3O4) in a polymer matrix based on carboxymethyl starch-g-polylactic acid (CMS-g-PLA). The copolymer matrix used to obtain the magnetic nanocomposites was synthesized by grafting reaction of carboxymethyl starch (CMS) with D,L-lactic acid (DLLA), in the presence of Sn octanoate [Sn(Oct)2] as catalyst. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3 (molar ratio 1/2). The magnetic composites were prepared by precipitation method in acetone (non-solvent) of the DMSO solutions of magnetite and copolymer, and synthesis in situ of the nanocomposites. In the first case, the particle size measured by DLS-technique was 168 nm, and the magnetization was 46.82 emu/g, while after in situ synthesis, the composite materials showed smaller size (141 nm), but the magnetization was reduced (3.04 emu/g). The higher magnetization in the first case is due to the great degree of encapsulation of the magnetite, which was about 43.4 wt.%, compared to 4.37 wt.% for the in situ synthesis (determined by thermogravimetry). The CMS-g-PLA copolymer, magnetite, and the nanocomposites were characterized by infrared spectroscopy (FTIR), near infrared chemical imagistic (NIR-CI), dynamic light scattering (DLS) technique, X-ray diffraction (WAXD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and thermal analyses. Since the polymer matrix and magnetite are biodegradable and biocompatible, the magnetic nanocomposites can be used for conjugation of some drugs. The polymer matrix CMS-g-PLA acts as a shell, and vehicle for the active component, whereas magnetite is the component which makes targeting possible by external magnetic field manipulation. PMID:23987367

  7. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  8. Crystallization kinetics and morphology of biodegradable poly(L-lactic acid)/graphene oxide nanocomposites: Influences of graphene oxide loading and crystallization temperature

    International Nuclear Information System (INIS)

    Highlights: ► Biodegradable PLLA/GO nanocomposites at different GO loadings have been prepared. ► Both nonisothermal and isothermal melt crystallization of PLLA are enhanced by GO. ► The crystal structure of PLLA does not change in the PLLA/GO nanocomposites. - Abstract: Biodegradable poly(L-lactic acid) (PLLA)/graphene oxide (GO) nanocomposites have been prepared successfully at various GO loadings. Transmission electron microscopy and wide angle X-ray diffraction results indicate that a relatively fine dispersion of GO is achieved in the PLLA matrix. Nonisothermal melt crystallization peak temperatures are slightly higher in the nanocomposites than in neat PLLA. The overall isothermal melt crystallization rates are reduced for both neat PLLA and the PLLA/GO nanocomposites with increasing crystallization temperature; moreover, the overall isothermal melt crystallization rates are significantly greater in the nanocomposites than in neat PLLA although the crystallization mechanism remains unchanged. The crystal structure of PLLA is not modified in the PLLA/GO nanocomposites. Both the nonisothermal and isothermal melt crystallization of PLLA in the nanocomposites are influenced apparently by the GO loading.

  9. Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids

    Directory of Open Access Journals (Sweden)

    Anne Linhardt

    2016-04-01

    Full Text Available A novel series of peptide based hybrid polymers designed to undergo enzymatic degradation is presented, via macrosubstitution of a polyphosphazene backbone with the tetrapeptide Gly-Phe-Leu-Gly. Further co-substitution of the hybrid polymers with hydrophilic polyalkylene oxide Jeffamine M-1000 leads to water soluble and biodegradable hybrid polymers. Detailed degradation studies, via 31P NMR spectroscopy, dynamic light scattering and field flow fractionation show the polymers degrade via a combination of enzymatic, as well as hydrolytic pathways. The peptide sequence was chosen due to its known property to undergo lysosomal degradation; hence, these degradable, water soluble polymers could be of significant interest for the use as polymer therapeutics. In this context, we investigated conjugation of the immune response modifier imiquimod to the polymers via the tetrapeptide and report the self-assembly behavior of the conjugate, as well as its enzymatically triggered drug release behavior.

  10. Structure and property of Cu-based thermosensitive nanocomposite

    Institute of Scientific and Technical Information of China (English)

    LOU Bai-yang; XU Bin; MA Xiao-chun; LI Le-guo

    2006-01-01

    The Cu-based thermosensitive nanocomposites are made by high energy ball milling. The microstructures and properties of Cu-based thermosensitive nanocomposites are studied by transmission electron microscopy(TEM) and themosensitivity test. The effects of milling time on the microstructures and the thermosensitivity of Cu-based nanocomposite material are researched. The results show that the Cu-based nanocomposite can be made by high energy ball milling. As the milling time increases, the copper particle size decreases in the nanocomposite, then the thermoexpansivity of nanocomposite increases. The nanocomposite is of best thermoexpansivity when the milling time is up to 100 h. At 35-45 ℃, the nanocomposite shows good thermosensitivity.

  11. Thermoelectric Properties of Polyacrylonitrile-Based Nanocomposite

    Science.gov (United States)

    Yusupov, K.; Khovaylo, V.; Muratov, D.; Kozhitov, L.; Arkhipov, D.; Pryadun, V.; Vasiliev, A.

    2016-07-01

    A polyacrylonitrile (PAN)-based nanocomposite with 20 wt.% Fe-Co/C has been prepared by infrared pyrolysis. Morphological and structural studies revealed that the composite consists of polyacrylonitrile as a plastifier, Fe-Co as a filler alloy, and carbon, which was formed during combustion of the polymer. Electrical resistivity and thermal conductivity of the composite are rather low at ambient temperatures and do not exceed 1 Ohm m and 0.5 W/m K, respectively. However, due to a very low Seebeck coefficient, the calculated figure of merit ZT of the nanocomposite does not exceed 2.1 × 10-8.

  12. Clay-based Nanocomposites Possibilities and Limitations

    Science.gov (United States)

    Papoulis, Dimitris

    2011-09-01

    In the last decades, clay mineral based nanocomposites and polymer-clay nanocomposites (PCNC) have been proposed as very useful materials for many uses including photocatalysis, medicinal uses as tissue engineering or modified drug delivery systems. Clay minerals and especially montmorillonite, kaolinite, halloysite palygorskite and sepiolite are the most used clay minerals because of their high surface areas, colloidal dimensions of their particles and other properties. This lecture aims at reporting on very recent developments in the use of clay minerals and PCNC as materials with photocatalytic and medical interest.

  13. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  14. Development of multifunctional fluoroelastomers based on nanocomposites

    International Nuclear Information System (INIS)

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  15. Base Oils Biodegradability Prediction with Data Mining Techniques

    OpenAIRE

    Malika Trabelsi; Saloua Saidane; Sihem Ben Abdelmelek

    2010-01-01

    In this paper, we apply various data mining techniques including continuous numeric and discrete classification prediction models of base oils biodegradability, with emphasis on improving prediction accuracy. The results show that highly biodegradable oils can be better predicted through numeric models. In contrast, classification models did not uncover a similar dichotomy. With the exception of Memory Based Reasoning and Decision Trees, tested classification techniques achieved high classifi...

  16. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites.

    Science.gov (United States)

    Sabaa, Magdy W; Abdallah, Heba M; Mohamed, Nadia A; Mohamed, Riham R

    2015-11-01

    Crosslinked poly(vinyl alcohol) (PVA)/carboxymethyl chitosan (CMCh) nanocomposites were synthesized using terephthaloyl diisothiocyanate crosslinker, in the presence of montmorillonite (MMT), in different ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PVA hydrogels increased the swellability. Metal ion adsorption has also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non crosslinked CMCh. Antimicrobial activity was examined against Gram positive bacteria, against Gram negative bacteria, and also against fungi. Results indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation study was carried out in Simulated Body Fluid (SBF) for different time periods in order to find out degradation index (Di). Results showed that weight loss of most of the nanocomposites increased as a function of incubation time. PMID:26249602

  17. Biodegradable PEG-based drug carriers

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Braunová, Alena; Ulbrich, Karel; Jelínková, Markéta; Říhová, Blanka; Seymour, L. W.

    Glasgow : University of Strathclyde, 2005, s. 7-9. [Conference on New Approaches to Drug Delivery "Nanomedicines of the Future". Glasgow (GB), 18.11.2005] R&D Projects: GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable polymers * drug carriers Subject RIV: EI - Biotechnology ; Bionics

  18. Effect of hydroxyapatite on the biodegradation and biomechanical stability of polyester nanocomposites for orthopaedic applications.

    Science.gov (United States)

    Jayabalan, M; Shalumon, K T; Mitha, M K; Ganesan, K; Epple, M

    2010-03-01

    The effect of hydroxyapatite (HAP) on the performance of nanocomposites of an unsaturated polyester, i.e., hydroxy-terminated high molecular weight poly(proplyene fumarate) (HT-PPFhm), was investigated. A thermoset nanocomposite was prepared with nanoparticles of calcined HAP (<100 nm, rod-like shape, filler content 30 wt.%), HT-PPFhm and N-vinyl pyrrolidone, dibenzoyl peroxide and N,N-dimethyl aniline. Two more nanocomposites were prepared with precipitated HAP nanoparticles (<100 nm rod-like shape) and commercially available HAP nanoparticles (<200 nm spherical shape), respectively. Calcined HAP nanoparticles resulted in very good crosslinking in the resin matrix with high crosslinking density and interfacial bonding with the polymer, owing to the rod-like shape of the nanoparticles; this gave improved biomechanical strength and modulus and also controlled degradation of the nanocomposite for scaffold formation. The tissue compatibility and osteocompatibility of the nanocomposite containing calcined HAP nanoparticles was evaluated. The tissue compatibility was studied by intramuscular implantation in a rabbit animal model for 3 months as per ISO standard 10993/6. The in vivo femoral bone repair was also carried out in the rabbit animal model as per ISO standard 10993/6. The nanocomposite containing calcined HAP nanoparticles is both biocompatible and osteocompatible. PMID:19788944

  19. Biodegradable Poly(Lactic Acid/Multiwalled Carbon Nanotube Nanocomposite Fabrication Using Casting And Hot Press Techniques

    Directory of Open Access Journals (Sweden)

    Park S.G.

    2015-06-01

    Full Text Available Biodegradable advanced polymer composites have recently received a large amount of attention. The present study aimed to design poly(lactic acid multiwalled carbon nanotube nanocomposites (PLA/MWCNTs using a simple fabrication technique. A PLA sheet was first dissolved in dichloromethane, and MWCNTs were subsequently added at various concentrations (0.5, 1.5 and 5% while applying shear strain stirring to achieve dispersion of carbon nanotubes (CNTs. These solutions were then molded and a hot press was used to generate sheets free of voids with entrapped solvent. The prepared samples were characterized using field emission scanning electron microscopy (FE-SEM, x-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, and thermogravimetric analysis (TGA. Our data showed composite samples free of defects and voids, indicating that the hot press is capable of generating sufficiently compact polymer matrices. Additionally, TGA and FTIR showed significant bonding interactions between the PLA matrix and the nano-fillers. Collectively, our results suggest that incorporation of CNTs as nano-fillers into biodegradable polymers may have multiple applications in many different sectors.

  20. Characterization of Chemical and Mechanical Properties of Polymer Based Nanocomposites

    OpenAIRE

    Wafy, Tamer

    2013-01-01

    Characterization of Chemical and Mechanical Properties of Polymer Based NanocompositesThe University of ManchesterTamer Wafy Doctor of Philosophy17 January, 2013One of the most significant issues in nanocomposite performance is improving the dispersion of carbon nanotubes (CNTs) in thermosetting or thermoplastic polymers in order to gain good mechanical properties. Several studies have investigated the fabrication of nanocomposites based on carbon nanotubes and analysed properties, but there ...

  1. Optical and mechanical properties of UV-weathered biodegradable PHBV/PBAT nanocomposite films containing halloysite nanotubes

    Science.gov (United States)

    Scarfato, P.; Avallone, E.; Acierno, D.; Russo, P.

    2014-05-01

    Recently, the increasing use of plastics, stringent environmental issues and the awareness of the progressive reduction of available petrochemical resources have ever more guided the research interest towards the investigation and development of innovative materials intrinsically biodegradable or derived from renewable sources, and generally known as bio-based polymers. Amongst the biobased and biodegradable polymers, many investigations were reported in literature about a family of polyesters known as poly(hydroxyalkanoate)s (PHAs), one of whose most prevalent is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this context, here we report the results of a photo-degradation study performed on biodegradable blown film samples based on a commercial grade PHBV/PBAT formulation. The films, subjected to photo-oxidative weathering in a climatic chamber under UV exposure, were systematically analysed in order to check the chemico-physical changes induced by the aging protocol, taking the as-produced films as the reference materials.

  2. Hydrogel-Based Nanocomposites and Mesenchymal Stem Cells: A Promising Synergistic Strategy for Neurodegenerative Disorders Therapy

    Directory of Open Access Journals (Sweden)

    Diego Albani

    2013-01-01

    Full Text Available Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs, to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  3. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    Science.gov (United States)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335

  4. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Directory of Open Access Journals (Sweden)

    Asif Khan

    2016-07-01

    Full Text Available We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  5. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Science.gov (United States)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  6. Biodegradable polyester nanocomposites: the effect of structure on mechanical and degradation behavior

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Kubies, Dana; Baldrian, Josef; Kovářová, Jana

    2011-01-01

    Roč. 47, č. 12 (2011), s. 2197-2207. ISSN 0014-3057 R&D Projects: GA AV ČR KJB200500601 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanocomposite * poly(.epsilon.-caprolactone) * layered silicate Subject RIV: JI - Composite Materials Impact factor: 2.739, year: 2011

  7. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant.

    Science.gov (United States)

    Abdal-Hay, Abdalla; Hasan, Anwarul; Yu-Kyoung; Lee, Min-Ho; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek

    2016-01-01

    This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements. The results showed that the AJS 3D membrane fiber layers, particularly the hybrid membrane layers containing a small amount of nHA (3 wt.%), induce a higher biocorrosion resistance and effectively decrease the initial degradation rate compared with the neat AM50 coupon samples. The adhesion strength improved highly due to the presence of nHA particles in the AJS layer. Furthermore, the long biodegradation rates of AM50 alloy in Hank's balanced salt solution (HBSS) were significantly controlled by the AJS-coatings. The results showed a higher cytocompatibility for AJS-coatings compared to that for neat Mg alloys. The nanostructured nHA embedded hybrid PLA nanofiber coating can therefore be a suitable coating material for Mg alloy as a potential material for biodegradable metallic orthopedic implants. PMID:26478426

  8. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

    Science.gov (United States)

    Moghadam, Mohamadreza Nassajian; Pioletti, Dominique P

    2016-08-01

    Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016. PMID:26061346

  9. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  10. BIODEGRADABILITY AND MECHANICAL BEHAVIOUR OF SUGAR PALM STARCH BASED BIOPOLYMER

    Directory of Open Access Journals (Sweden)

    J. Sahari

    2014-01-01

    Full Text Available A new Sugar Palm Starch (SPS based biopolymer was successfully developed using glycerol as plasticizer. The effect of glycerol concentration (viz., 15, 20, 30 and 40 by weight percent to the mechanical properties of plasticized SPS biopolymer was investigated. From this investigation, it was found that the 30% glycerol concentrated biopolymer showed the highest flexural strength and impact with the value of 0.13 MPa and 6.13 kJ/m2 respectively. Later, the above 30% glycerol biopolymer was undergone through weathering and biodegradation test. The biodegradability test showed 78.09% of tensile strength lost after 72 h of weathering testing period. Meanwhile, the weight loss (% of the same biopolymer was 63.58% after 72 h of biodegradation test.

  11. Thermal degradation kinetics and isoconversional analysis of biodegradable poly(3-hydroxybutyrate)/organomodified montmorillonite nanocomposites

    International Nuclear Information System (INIS)

    Poly(3-hydroxybutyrate) (PHB)/organically modified clay nanocomposites were prepared by the melt mixing method and were characterized using wide-angle X-ray diffraction. Their thermal degradation kinetics was investigated using thermogravimetric analysis at various heating rates. Further kinetic analysis was performed using isoconversional methods and the invariant kinetic parameters method was used to estimate the so-called 'true' kinetic parameters, i.e. the pre-exponential factor, A and the activation energy, E, as well as the reaction model. It was found that intercalated structures are formed and the thermal stability of the material is improved by the addition of the nano-filler. From the isoconversional analysis, it was found that the activation energy does not vary significantly with the degree of degradation denoting degradation in one step with similar values for pure PHB and for all nanocomposites. Using the invariant kinetic parameters method, it was found that the model that best describes the experimental data was that of Sestak-Berggren's with f(a) = αn(1 - α)m, where the value of n is always larger than m and is increasing with the amount of the nano-filler. The value of the 'true' activation energy was found to be about 100 kJ mol-1 for all nanocomposites and the pre-exponential factor for PHB was estimated equal to 5.35 x 109 min-1. Finally, the values of the kinetic rate constant k were found to decrease with the amount of the nano-filler up to 3 wt%, while for amounts larger than 3 wt% k increased reaching a value greater than that of pure PHB for the 10 wt% nanocomposites.

  12. Thermal degradation kinetics and isoconversional analysis of biodegradable poly(3-hydroxybutyrate)/organomodified montmorillonite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Achilias, Dimitris S., E-mail: axilias@chem.auth.gr [Laboratory of Organic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Panayotidou, Elpiniki [Laboratory of Organic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Department of Industrial Design Engineering, TEI of Western Macedonia, 50100 Kozani (Greece); Zuburtikudis, Ioannis [Department of Industrial Design Engineering, TEI of Western Macedonia, 50100 Kozani (Greece)

    2011-02-20

    Poly(3-hydroxybutyrate) (PHB)/organically modified clay nanocomposites were prepared by the melt mixing method and were characterized using wide-angle X-ray diffraction. Their thermal degradation kinetics was investigated using thermogravimetric analysis at various heating rates. Further kinetic analysis was performed using isoconversional methods and the invariant kinetic parameters method was used to estimate the so-called 'true' kinetic parameters, i.e. the pre-exponential factor, A and the activation energy, E, as well as the reaction model. It was found that intercalated structures are formed and the thermal stability of the material is improved by the addition of the nano-filler. From the isoconversional analysis, it was found that the activation energy does not vary significantly with the degree of degradation denoting degradation in one step with similar values for pure PHB and for all nanocomposites. Using the invariant kinetic parameters method, it was found that the model that best describes the experimental data was that of Sestak-Berggren's with f(a) = {alpha}{sup n}(1 - {alpha}){sup m}, where the value of n is always larger than m and is increasing with the amount of the nano-filler. The value of the 'true' activation energy was found to be about 100 kJ mol{sup -1} for all nanocomposites and the pre-exponential factor for PHB was estimated equal to 5.35 x 10{sup 9} min{sup -1}. Finally, the values of the kinetic rate constant k were found to decrease with the amount of the nano-filler up to 3 wt%, while for amounts larger than 3 wt% k increased reaching a value greater than that of pure PHB for the 10 wt% nanocomposites.

  13. Biodegradable xylitol-based elastomers: In vivo behavior and biocompatibility

    NARCIS (Netherlands)

    J.P. Bruggeman (Joost); C.J. Bettinger (Christopher); R.S. Langer (Robert)

    2010-01-01

    textabstractBiodegradable elastomers based on polycondensation reactions of xylitol with sebacic acid, referred to as poly(xylitol sebacate) (PXS) elastomers have recently been developed. We describe the in vivo behavior of PXS elastomers. Four PXS elastomers were synthesized, characterized, and com

  14. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deka Harekrishna

    2009-01-01

    Full Text Available Abstract The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  15. The characterization of novel biodegradable blends based on polyhydroxybutyrate

    OpenAIRE

    Pankova, Yulia; Shchegolikhin, Alexandr; lordanskii, Alexey; Zhulkina, Anna; Ol'khov, Anatoliy; Zaikov, Gennady

    2011-01-01

    The present paper focuses on the study of novel blends based on poly(3-hydroxybutyrate) (PHB) and polymers with different hydrophilicity (LDPE and PA). Polymer blends were produced from five ratios of PHB/LDPE in order to regulate the resistance to hydrolysis or (bio)degradation through the control of water permeability. The relation between the water transport and morphology (TEM data) shows the impact of polymer component ratio on the regulating water flux in a hydrophobic matrix. To elucid...

  16. Biodegradable Xylitol-Based Elastomers: In Vivo Behavior and Biocompatibility

    OpenAIRE

    Bruggeman, Joost; Bettinger, Christopher; Langer, Robert

    2010-01-01

    textabstractBiodegradable elastomers based on polycondensation reactions of xylitol with sebacic acid, referred to as poly(xylitol sebacate) (PXS) elastomers have recently been developed. We describe the in vivo behavior of PXS elastomers. Four PXS elastomers were synthesized, characterized, and compared with poly(L-lactic-co-glycolic acid) (PLGA). PXS elastomers displayed a high level of structural integrity and form stability during degradation. The in vivo half-life ranged from approximate...

  17. Biodegradable blends based on Polyhydroxybutyrate: structure and water diffusion

    OpenAIRE

    OLKHOV ANATOLIY ALEKSANDROVICH; MARKIN VALERIY SERGEEVICH; KOSENKO REGINA YUDELEVNA; GOLDSHTRAKH MARIANNA ALEKSANDROVNA; ZAIKOV GENNADIY EFREMOVICH; IORDANSKIY ALEKSEY LEONIDOVICH; PANKOVA YULIYA NIKOLAEVNA

    2015-01-01

    The present article focuses on the study of novel blends based on poly(3-hydroxybutyrate) (PHB) and polymers with different hydrophilicity (PELD, PA and PVA). Polymer blends were produced from five ratios of PHB/PELD in an effort to regulate the resistance to hydrolysis or (bio)degradation through the control of water permeability. The relation between the water transport and morphology (TEM data) shows the impact of polymer component ratio on the regulation of water flux in hydrophobic matri...

  18. Wideband electrical characterisation of carbon-based nanocomposites

    OpenAIRE

    Molenberg, Isabel

    2012-01-01

    Nanocomposite materials are composed of two or more different materials having different physical properties forming distinct ‘phases’. At least one of these constituents has dimensions of the order of the nanometre and the properties of these nanoparticles lead to the creation of a unique composite material. In particular, nanocomposites based on high aspect ratio particles like carbon nanotubes should exhibit outstanding mechanical, thermal and electrical properties at very small particle c...

  19. Biodegradation of pitch-based high performance carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. (Yamaguchi Univ., Yamaguchi, (Japan). Faculty of Education)

    1992-09-10

    Although carbon fibers are widely used in various purposes because of their excellent mechanical properties, their behavior under biodegradation by microorganisms has not been elucidated. To elucidate the process of biodegradation of carbon fibers is important for understanding thoroughly the durability and the functionality of the fibers. In this article, a study has been made on biodegradation of pitch-based high performance carbon fibers by microorganisms. The fiber which was degraded has been examined with a scanning electron microscope. Aspergillus flavus has broken surface areas of high performance carbon fibers in 60 days and the fibril structure under the surface layer of the fiber has been exfoliated by degradation. The fibrils on the second layer have been 100-110nm wide. The fibrils have been in line nearly parallel to the fiber axis. The above carbon fibers are carbon type, but in case of graphite type high performance carbon fibers, its broken areas have not been shown and they have shown much stronger resistance against microbial attacks. 11 refs., 8 figs., 2 tabs.

  20. Montmorillonite Clay-Based Polyurethane Nanocomposite As Local Triamcinolone Acetonide Delivery System

    OpenAIRE

    Flávia Carmo Horta Pinto; Armando Silva-Cunha; Gerson Antônio Pianetti; Eliane Ayres; Rodrigo Lambert Oréfice; Gisele Rodrigues Da Silva

    2011-01-01

    Biodegradable polyurethane was synthesized by preparing aqueous polyurethane dispersion having poly(caprolactone) and poly(ethylene glycol) as soft segments. Montmorillonite particles were delaminated within the waterborne polyurethane to produce a nanocomposite. The triamcinolone acetonide (TA), an important corticoid drug, was dispersed into the nanocomposite followed by a drying step to produce an implantable drug delivery system. Infrared (FTIR) results demonstrated that the original chem...

  1. Castor Oil-Based Biodegradable Polyesters.

    Science.gov (United States)

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ∼90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible. PMID:26301922

  2. Biodegradation behaviors and water adsorption of poly(vinyl alcohol)/starch/carboxymethyl cellulose/clay nanocomposites

    Science.gov (United States)

    Taghizadeh, Mohammad Taghi; Sabouri, Narges

    2013-09-01

    The focus of this work is to study the effect of sodium montmorillonite (MMT-Na) clay content on the rate and extent of enzymatic hydrolysis polyvinyl alcohol (PVA)/starch (S)/carboxymethyl cellulose (CMC) blends using enzyme cellulase. The rate of glucose production from each nanocomposite substrates was most rapid for the substrate without MMT-Na and decreased with the addition of MMT-Na for PVA/S/CMC blend (51.5 μg/ml h), PVA/S/CMC/1% MMT (45.4 μg/ml h), PVA/S/CMC/3% MMT (42.8 μg/ml h), and PVA/S/CMC/5% MMT (39.2 μg/ml h). The results of this study have revealed that films with MMT-Na content at 5 wt.% exhibited a significantly reduced rate and extent of hydrolysis. Enzymatic degradation behavior of MMT-Na containing nanocomposites of PVA/S/CMC was based on the determinations of weight loss and the reducing sugars. The degraded residues have been characterized by various analytical techniques, such as Fourier transform infrared spectroscopy, scanning electronic microscopy, and UV-vis spectroscopy.

  3. Biodegradable Xylitol-Based Elastomers: In Vivo Behavior and Biocompatibility

    Science.gov (United States)

    Bruggeman, Joost P.; Bettinger, Christopher J.; Langer, Robert

    2010-01-01

    Biodegradable elastomers based on polycondensation reactions of xylitol with sebacic acid, referred to as poly(xylitol sebacate) (PXS) elastomers have recently been developed. Herein, we describe the in vivo behavior of PXS elastomers. Four PXS elastomers were synthesized, characterized and compared to poly(L-lactic-co-glycolic acid) (PLGA). PXS elastomers displayed a high level of structural integrity and form stability during degradation. The in vivo half-life ranged from approximately 3 to 52 weeks. PXS elastomers exhibited increased biocompatibility compared to PLGA implants. PMID:20540093

  4. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  5. PBAT based nanocomposites for medical and industrial applications

    International Nuclear Information System (INIS)

    Poly(butylene adipate-co-terephthalate) (PBAT) based nanocomposites were prepared by melt blending PBAT with 5 and 10 wt.% of clay nanoparticles (unmodified and modified montmorillonites, unmodified and modified fluoro-hectorites, and unmodified sepiolites). All nanocomposites showed a good level of clay distribution and dispersion into PBAT, especially nanocomposites with high clay chemical affinity with the polymer matrix. DSC results showed that addition of layered silicates slightly hindered kinetics and extent of crystallization of PBAT; however, sepiolite particles were able to promote polymer crystallization kinetics and the transformation of the PBAT crystal structure to a more ordered form. Similar increases in the thermal stability of PBAT in nitrogen and air were obtained upon addition of all clays, due to a barrier effect of the clays toward polymer decomposition product ablation. Preliminary biocompatibility tests indicated that PBAT based materials with 10% clay content have good biological safety and display almost no cytotoxicity. The addition of all nanofillers increased the hardness of PBAT matrix. The DMA analysis showed that all nanocomposites presented higher E′ values than neat PBAT, indicating that addition of clays improved the mechanical properties of PBAT. For layered silicate nanocomposites, the main influencing factors on the thermo-mechanical properties appeared to be the aspect ratio and dispersion of clay nanoplatelets, rather than polymer/clay chemical affinity. The highest E′ values of sepiolite based nanocomposites make this nanoparticle the most attractive material for tissue engineering and environmental industrial applications. Highlights: ► PBAT nanocomposites with high thermo-mechanical properties were obtained. ► The effects of clay presence on PBAT crystalline structure were elucidated. ► The presence of the clays used in PBAT showed good biological safety. ► Sepiolites brought the higher improvements in PBAT

  6. Shape memory nanocomposites based on epoxy resin

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Matějka, Libor

    Riva del Garda: Elsevier, 2015. P3.146. [International Symposium Frontiers in Polymer Science /4./ - POLY 2015. 20.05.2015-22.05.2015, Riva del Garda] Grant ostatní: AV ČR(CZ) M200501203 Institutional support: RVO:61389013 Keywords : temperature-responsive * shape memory polymer * nanocomposite Subject RIV: CD - Macromolecular Chemistry

  7. New optical sensor panel on nanocomposite base

    Czech Academy of Sciences Publication Activity Database

    Panchenko, S.; Suleimenov, I.; Sedláková, Zdeňka; Semenyakin, N.

    Pfaffikon: Trans Tech Publications, 2014 - (Yu, L.; Xu, Q.), Roč. 1037, č. 2014, s. 20-25 ISSN 1022-6680. [International Conference on Computing, Control and Industrial Engineering /5./ - CCIE 2014. Wuhan (CN), 25.10.2014-26.10.2014] Institutional support: RVO:61389013 Keywords : optical sensor panel * nanocomposite * total internal reflection Subject RIV: CD - Macromolecular Chemistry

  8. Fabrication and Spectral Properties of Wood-Based Luminescent Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xianjun Li

    2014-01-01

    Full Text Available Pressure impregnation pretreatment is a conventional method to fabricate wood-based nanocomposites. In this paper, the wood-based luminescent nanocomposites were fabricated with the method and its spectral properties were investigated. The results show that it is feasible to fabricate wood-based luminescent nanocomposites using microwave modified wood and nanophosphor powders. The luminescent strength is in positive correlation with the amount of phosphor powders dispersed in urea-formaldehyde resin. Phosphors absorb UV and blue light efficiently in the range of 400–470 nm and show a broad band of bluish-green emission centered at 500 nm, which makes them good candidates for potential blue-green luminescent materials.

  9. Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro

    2016-05-01

    Full Text Available In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs as fillers and an antibiotic, i.e., ciprofloxacin (CFX, as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid (PLA and a copolyester (BioFlex®. The prepared materials were characterized by scanning electron microscopy (SEM, and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the tuning of the release of CFX without hindering the antimicrobial activity of the obtained materials.

  10. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  11. Study of nanocomposites based on iron oxides and pectin

    International Nuclear Information System (INIS)

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the 'iron-polymer' interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data

  12. Study of nanocomposites based on iron oxides and pectin

    Science.gov (United States)

    Chistyakova, Nataliya I.; Shapkin, Alexey A.; Sirazhdinov, Ruslan R.; Gubaidulina, Tatiana V.; Kiseleva, Tatiana Yu.; Kazakov, Alexander P.; Rusakov, Vyacheslav S.

    2014-10-01

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the "iron-polymer" interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data.

  13. Study of nanocomposites based on iron oxides and pectin

    Energy Technology Data Exchange (ETDEWEB)

    Chistyakova, Nataliya I., E-mail: nchistyakova@yandex.ru; Shapkin, Alexey A., E-mail: nchistyakova@yandex.ru; Sirazhdinov, Ruslan R., E-mail: nchistyakova@yandex.ru; Gubaidulina, Tatiana V., E-mail: nchistyakova@yandex.ru; Kiseleva, Tatiana Yu., E-mail: nchistyakova@yandex.ru; Kazakov, Alexander P., E-mail: nchistyakova@yandex.ru; Rusakov, Vyacheslav S., E-mail: nchistyakova@yandex.ru [M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie gory, 119991 Moscow (Russian Federation)

    2014-10-27

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the 'iron-polymer' interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data.

  14. Nanocomposites of PLA and PCL based on montmorillonite and sepiolite

    International Nuclear Information System (INIS)

    PLA and PCL nanocomposites prepared by adding two organically modified montmorillonites and one sepiolite were obtained by melt blending. Materials were characterized by Wide Angle X-ray analysis (WAXS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Dynamic-Mechanical Thermal Analysis (DMTA). All clays showed a good dispersion level with both polymeric matrices, whilst the highest thermo-mechanical improvements were reached depending on type of clay. These improvements were considerably higher in the case of PLA based nanocomposites probably because of a higher polymer/filler compatibility.

  15. POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers

    International Nuclear Information System (INIS)

    Nanocomposite polymer electrolytes based on high-molecular weight poly(oxyethylene) (POE) were prepared from high aspect ratio cellulosic whiskers and lithium trifluoromethyl sulfonyl imide (LiTFSI). Prior to the polymer electrolyte characterization, the polymer/whiskers nanocomposites were characterized using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Interactions between cellulose and POE were evidenced. The main effect of the filler was a thermal stabilization of the storage modulus for the composites above the melting point of the complexes POE/LiTFSI. The ionic conductivity was quite consistent with the specifications of lithium batteries

  16. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process

    Czech Academy of Sciences Publication Activity Database

    Stloukal, P.; Pekařová, S.; Kalendová, A.; Mattausch, H.; Laske, S.; Holzer, C.; Chitu, L.; Bodner, S.; Maier, G.; Šlouf, Miroslav; Koutný, M.

    2015-01-01

    Roč. 42, August (2015), s. 31-40. ISSN 0956-053X Institutional support: RVO:61389013 Keywords : composting * biodegradability * polylactic acid Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.220, year: 2014

  17. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    Science.gov (United States)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of

  18. Preparation of pyrenyl-based multifunctional nanocomposites for biomedical applications.

    Science.gov (United States)

    Lim, Eun-Kyung; Chung, Bong Hyun

    2016-02-01

    Nanocomposites are widely used to obtain an accurate diagnosis of, and to provide effective therapy for, a number of diseases, because they can be easily formulated by introducing therapeutic agents (e.g., drugs and genes) and imaging agents (e.g., magnetic nanocrystals). Furthermore, nanocomposites can be developed as all-in-one systems, which enable cancer diagnosis and therapy, as well as the simultaneous monitoring of drug behavior. In this protocol, we describe the synthesis of four pyrenyl-based polymers (pyrenyl polyethylene glycol (Py-PEG), pyrenyl dextran (Py-DEX), pyrenyl hyaluronan (Py-HA) and pyrenyl-conjugated heterofunctional PEG (pyrenyl PEG)) and their subsequent use in the preparation of multifunctional nanocomposites for different applications including multimodal imaging, targeted cancer detection and pH-sensitive drug delivery. Notably, these nanocomposites can be used to simultaneously perform multiple tasks--for example, delivering magnetic particles for early cancer detection by MRI, efficient cataloging of patient groups for personalized therapy and real-time monitoring of disease progress. Starting from the synthesis of pyrenyl-based polymers, this protocol can be completed in ∼15 d. PMID:26741408

  19. Synthesis and characterization of biomimetic citrate-based biodegradable composites.

    Science.gov (United States)

    Tran, Richard T; Wang, Liang; Zhang, Chang; Huang, Minjun; Tang, Wanjin; Zhang, Chi; Zhang, Zhongmin; Jin, Dadi; Banik, Brittany; Brown, Justin L; Xie, Zhiwei; Bai, Xiaochun; Yang, Jian

    2014-08-01

    Natural bone apatite crystals, which mediate the development and regulate the load-bearing function of bone, have recently been associated with strongly bound citrate molecules. However, such understanding has not been translated into bone biomaterial design and osteoblast cell culture. In this work, we have developed a new class of biodegradable, mechanically strong, and biocompatible citrate-based polymer blends (CBPBs), which offer enhanced hydroxyapatite binding to produce more biomimetic composites (CBPBHAs) for orthopedic applications. CBPBHAs consist of the newly developed osteoconductive citrate-presenting biodegradable polymers, crosslinked urethane-doped polyester and poly (octanediol citrate), which can be composited with up to 65 wt % hydroxyapatite. CBPBHA networks produced materials with a compressive strength of 116.23 ± 5.37 MPa comparable to human cortical bone (100-230 MPa), and increased C2C12 osterix gene and alkaline phosphatase gene expression in vitro. The promising results above prompted an investigation on the role of citrate supplementation in culture medium for osteoblast culture, which showed that exogenous citrate supplemented into media accelerated the in vitro phenotype progression of MG-63 osteoblasts. After 6 weeks of implantation in a rabbit lateral femoral condyle defect model, CBPBHA composites elicited minimal fibrous tissue encapsulation and were well integrated with the surrounding bone tissues. The development of citrate-presenting CBPBHA biomaterials and preliminary studies revealing the effects of free exogenous citrate on osteoblast culture shows the potential of citrate biomaterials to bridge the gap in orthopedic biomaterial design and osteoblast cell culture in that the role of citrate molecules has previously been overlooked. PMID:23996976

  20. Development of polymer nanocomposites based on layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Sipusic, J.

    2009-05-01

    Full Text Available Polymeric nanocomposites are commonly considered as systems composed of a polymeric matrix and - usually inorganic - filler. The types of nanofillers are indicated in Fig. 1. Beside wellknown layered silicate fillers, recent attention is attracted to layered double hydroxide fillers (LDH, mainly of synthetic origin. The structure of LDH is based on brucite, or magnesium hydroxide, Mg(OH2 and is illustrated in Fig. 2. The modification of LDHs is commonly done by organic anions, to increase the original interlayer distance and to improve the organophilicity of the filler, keeping in mind their final application as fillers for, usually hydrophobic, polymer matrices. We have used the modified rehydration procedure for preparing organically modified LDH. The stoichiometric quantities of Ca33Al2O6, CaO and benzoic (B (or undecenoic (U acid were mixed with water and some acetone. After long and vigorous shaking, the precipitated fillers were washed, dried and characterized. X-ray diffraction method (XRD has shown the increase of the original interlayer distance for unmodified LDH (OH–-saturated of 0.76 nm to the 1.6 nm in LDH-B or LDH-U fillers (Fig. 3. Infrared spectroscopy method (FTIR has confirmed the incorporation of benzoic anion within the filler layers (Fig. 4. For the preparation of LDH-B and LDH-U composites with polystyrene (PS, poly(methyl methacrylate (PMMA and copolymer (SMMA matrices, a two-step in situ bulk radical polymerization was selected (Table 1 for recipes, azobisisobutyronitrile as initiator, using conventional stirred tank reactor in the first step, and heated mold with the movable wall (Fig. 6 in the second step of polymerization. All the prepared composites with LDH-U fillers were macroscopically phase-separated, as was the PMMA/LDH-B composite.PS/LDH-B and SMMA/LDH-B samples were found to be transparent and were further examined for deduction of their structure (Fig. 5 and thermal properties. FTIR measurements showed that

  1. Carbon nanotube macrofilm-based nanocomposite electrodes for energy applications

    Science.gov (United States)

    Cao, Zeyuan

    Finding new electrode materials for energy conversion and storage devices have been the focus of recent research in the fields of science and engineering. Suffering from poor electronic conductivity, chemical and mechanical stability, active electrode materials are usually coupled with different carbon nanostructured materials to form nanocomposite electrodes, showing promising electrochemical performance. Among the carbon nanostructured materials, carbon nanotube (CNT) macrofilms draw great attention owing to their extraordinary properties, such as a large specific surface area, exceptionally high conductivity, porous structure, flexibility, mechanical robustness, and adhesion. They could effectively enhance the electrochemical performance of the incorporated active materials in the nanocomposites. In this dissertation, CNT macrofilm-based nanocomposites are investigated for rechargeable lithium-ion batteries, supercapacitors, and electrocatalysts of fuel cells. The progressive research developed various nanocomposites from cathode materials to anode materials followed by a general nanocomposite solution due to the unique adhesive property of the fragmented CNT macrofilms. The in-situ synthesis strategy are explored to in-situ deposit unlithiated cathode materials V2O5 and lithiated cathode materials LiMn2O4 nanocrystals in the matrix of the CNT macrofilms as nanocomposites to be paired with metallic lithium in half cells. The presence of oxygen-containing functional groups on the surface of the CNT macrofilms after purification can enhance the association with the active materials to enable the facilitated transport of solvated ions to the electrolyte/electrode interfaces and increase the diffusion kinetics, consequently enhancing the battery performance in terms of high specific capacity, rate capability, and cycling stability. It is also significant to demonstrate a reliable, low-cost, and effective route to synthesize the family of metal oxides (MxOy (M=Fe, Co

  2. Tunable Biodegradable Nanocomposite Hydrogel for Improved Cisplatin Efficacy on HCT-116 Colorectal Cancer Cells and Decreased Toxicity in Rats.

    Science.gov (United States)

    Abdel-Bar, Hend Mohamed; Osman, Rihab; Abdel-Reheem, Amal Youssef; Mortada, Nahed; Awad, Gehanne A S

    2016-02-01

    This work describes the development of a modified nanocomposite thermosensitive hydrogel for controlled cisplatin release and improved cytotoxicity with decreased side effects. The system was characterized in terms of physical properties, morphological architecture and in vitro cisplatin release. Cytotoxicity was tested against human colorectal carcinoma HCT-116. In vivo studies were conducted to evaluate the acute toxicity in terms of rats' survival rate and body weight loss. Nephro and hepatotoxicities were evaluated followed by histopathological alterations of various tissue organs. Nanocomposite thermosensitive hydrogel containing nanosized carrier conferred density and stiffness allowing a zero order drug release for 14 days. Enhanced cytotoxicity with 2-fold decrease in cisplatin IC50 was accomplished. A linear in vivo-in vitro correlation was proved for the system degradation. Higher animal survival rate and lower tissue toxicities proved the decreased toxicity of cisplatin nanocomposite compared to its solution. PMID:26709447

  3. Preparation of flexible PLA/PEG-POSS nanocomposites by melt blending and radiation crosslinking

    International Nuclear Information System (INIS)

    In this study, poly(lactic acid) (PLA)/poly(ethylene glycol)-functionalized polyhedral oligomeric silsesquioxane (PEG-POSS) nanocomposites with or without triallyl isocyanurate (TAIC) were investigated by melt blending and electron beam irradiation to enhance the flexibility of PLA. Based on the results of the crosslinking degree measurements, the PLA/PEG-POSS nanocomposites were crosslinked by electron beam irradiation in the presence of triallyl isocyanurate (TAIC) and their crosslinking degree reached up to 80% based on the absorbed dose and their compositions. From the results of the FE-SEM and EDX Si-mapping, the crosslinked PLA/PEG-POSS nanocomposites were homogenous without a micro-phase separation or radiation-induced morphological change. Based on the results of the tensile test, the PLA/PEG-POSS nanocomposites containing 15 wt% PEG-POSS exhibited the highest flexibility, and their tensile strength showed a maximum value of 44.5 MPa after electron beam irradiation at an absorbed dose of 100 kGy in the presence of TAIC, which is comparable to non-biodegradable polypropylene. The results of the dynamic mechanical analysis revealed that the crosslinked PLA/PEG-POSS nanocomposites exhibited a higher thermal resistance above their melting temperature in comparison to that of the neat PLA, although their glass transition temperature was lower than that of the neat PLA. The enzymatic biodegradation test revealed that the PLA/PEG-POSS nanocomposites were biodegradable even though their biodegradability was deteriorated in comparison to that of the neat PLA. - Highlights: • PLA/PEG-POSS nanocomposites were prepared by melt blending. • The nanocomposites containing TAIC were crosslinked by electron beam irradiation. • The mechanical properties of the nanocomposites were comparable to polypropylene. • The crosslinked nanocomposites can be biodegradable

  4. Novel transparent nanocomposite films based on chitosan and bacterial cellulose

    OpenAIRE

    Fernandes, Susana C. M.; Oliveira, Lúcia; Freire, Carmen S. R.; Silvestre, Armando J. D.; Neto, Carlos Pascoal; Gandini, Alessandro; Desbriéres, Jacques

    2009-01-01

    New nanocomposite films based on different chitosan matrices (two chitosans with different DPs and one water soluble derivative) and bacterial cellulose were prepared by a fully green procedure by casting a water based suspension of chitosan and bacterial cellulose nanofibrils. The films were characterized by several techniques, namely SEM, AFM, X-ray diffraction, TGA, tensile assays and visible spectroscopy. They were highly transparent, flexible and displayed better mechanical properties th...

  5. Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge

    Czech Academy of Sciences Publication Activity Database

    Hermanová, S.; Šmejkalová, P.; Merna, J.; Zarevúcka, Marie

    2015-01-01

    Roč. 111, Jan (2015), s. 176-184. ISSN 0141-3910 Institutional support: RVO:61388963 Keywords : poly(ethylene terephthalate) * copolymers * sludge * biodegradation * hydrolysis * waste Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.163, year: 2014

  6. Nanocomposite

    Science.gov (United States)

    Seifzadeh, Davod; Rahimzadeh Hollagh, Amin

    2014-11-01

    Electroless Ni-Co-P coating and Ni-Co-P-SiO2 nanocomposites were successfully applied on AZ91D magnesium alloy via environmentally friendly cerium-lanthanum-permanganate treatment and their properties were compared with traditionally binary Ni-P coating. The prepared coatings were analyzed using scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy. Moreover, the corrosion behavior of the coatings in 3.5 wt.% NaCl was evaluated by two electrochemical methods. It is found that the Ni-Co-P coating possesses more uniform and compact structure and better corrosion protection characteristics in comparison with the Ni-P coating. The plating rate of Ni-Co-P bath is relatively lower than the Ni-P bath, but it significantly increases after addition of SiO2 nanoparticles more probably due to adsorption of silica nanoparticles on alloy surface. The corrosion resistance of Ni-Co-P-SiO2 composite coatings was superior with respect to Ni-P and Ni-Co-P coatings due to formation of thick and compact coating with tortuous grain boundaries.

  7. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  8. Development of polymer nanocomposites based on layered double hydroxides

    OpenAIRE

    Sipusic, J.; Matusinovic, Z.; Rogosic, M.

    2009-01-01

    Polymeric nanocomposites are commonly considered as systems composed of a polymeric matrix and - usually inorganic - filler. The types of nanofillers are indicated in Fig. 1. Beside wellknown layered silicate fillers, recent attention is attracted to layered double hydroxide fillers (LDH), mainly of synthetic origin. The structure of LDH is based on brucite, or magnesium hydroxide, Mg(OH)2 and is illustrated in Fig. 2. The modification of LDHs is commonly done by organic anions, to increase t...

  9. Polyimide Based Nanocomposites for Affordable Space Transport

    Science.gov (United States)

    Dean, Derrick; Islam, Mohsina; Small, Sharee; Aldridge, Brandon; Campbell, Sandra G. (Technical Monitor)

    2001-01-01

    In setting forth its strategic plan, NASA has indicated that low-cost access to space is the key to unleashing the commercial potential of space and greatly expanding space research and exploration. The development of advanced materials will be an enabling technology for this quest for low-cost space access. In this research program, we are attempting to address the need for new advanced materials by developing high-performance nanodispersed inorganic/organic and organic/organic polyimide composites utilizing specific interactions. Our goal is to systematically manipulate these interactions and investigate the resulting processing morphology-property relationships. Specifically, we will investigate three main parameters on these relationships. These include (1) the type of polyimide; (2) the structure of the inorganic nanoparticle being used; and (3) manipulation of the interfacial energy. During the first year of this effort, we have demonstrated the successful synthesis of PMR-15/layered silicate nanocomposites. Morphological studies indicate that exfoliated structures were obtained in most instances, with a mixture of exfoliated and intercalated structures being observed also. Significant enhancements of the onset of decomposition were obtained by varying the strength of the interaction between the nanoparticle and the polymer. Varying the amount of a specific nanoparticle also affected the decomposition temperatures. A slight catalytic effect of the nanoparticles on both the imidization and crosslinking reaction has been observed and will be presented. In addition, incorporation of the nanoparticles was found to increase the glass transition temperature and slightly broaden the breadth of this relaxation.

  10. Study on Biodegradation of Palm Oil-based UV-Curable Films in Soil

    International Nuclear Information System (INIS)

    The palm oil-based ultraviolet (UV)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia's Dengkil complex which is near the BTS building at block 42. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based UV-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the film morphology and the film weight loss which are analyzed using the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based UV-curable films show quite satisfactory biodegradation levels. (author)

  11. Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors

    International Nuclear Information System (INIS)

    In the present study, polyaniline (PANI)/partially exfoliated multi-walled carbon nanotubes (Px-MWCNT) nanocomposites were investigated for supercapacitor application. Nanocomposites with varying weight/weight ratio of PANI and Px-MWCNT were prepared by in-situ polymerization of aniline over Px-MWCNT. Transmission and scanning electron microscopic analysis showed that the MWCNT was partial unzipped along the length of tubes. The morphology of PANI/Px-MWCNT nanocomposites exhibited wrapping of PANI over Px-MWCNT. Symmetric supercapacitors containing PANI/Px-MWCNT nanocomposites as the electrode material were fabricated. The electrochemical characterization of the nanocomposites was carried by two electrode method (unit cell configuration). Cyclic voltammetric analysis showed a synergistic increase in specific capacitance of the nanocomposites. Charge-discharge cycle study indicated that nanocomposites have greater charge-discharge rate capability than pure PANI. The observed result is attributed to the shorter diffusion length of ions in the nanocomposites as compared to that of pure PANI. The electrochemical impedance spectra of supercapacitors were resolved into real and losscapacitances. The loss capacitance indicated that the time constant of the nanocomposites decreases with increase in the Px-MWCNT content. The supercapacitors showed enhanced stability during continuous charge-discharge cycling as the PX-MWCNT content in the nanocomposites increased. PANI-50 and PANI-25 nanocomposites based supercapacitors exhibited 91% and 93% capacitive retention after 2000 charge-discharge cycle while pure PANI showed only 67% capacitance retention for the same number of cycles

  12. Experimental Evaluation of Biodegradable Film Compositions Based on Gelatin with Colchicine.

    Science.gov (United States)

    Bokeriya, L A; Bokeriya, O L; Sivtsev, V S; Novikova, S P; Salokhedinova, R R; Nikolashina, L N; Samsonova, N N; Gorodkov, A Yu; Serov, R A

    2016-07-01

    Biodegradable film compositions based on natural biopolymer gelatin with immobilized colchicine were prepared and their efficiency in prevention of the adhesion process in the pericardium was evaluated on rabbit model of postoperative pericarditis. The use of gelatin-based biodegradable film compositions significantly reduced the intensity of adhesion formation in the pericardial cavity, while immobilization of anti-inflammatory drug colchicine amplified their anti-adhesion activity. PMID:27496036

  13. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  14. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  15. Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

    OpenAIRE

    Balazs Farkas; Marina Rodio; Ilaria Romano; Alberto Diaspro; Romuald Intartaglia; Szabolcs Beke

    2015-01-01

    We report on the optical fabrication approach of preparing free-standing composite thin films of hydroxyapatite (HA) and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL). Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles were dispersed into the liquid polymer resin prior to the photocuring process using MPExSL. The resin is poly(propylene...

  16. Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics

    Directory of Open Access Journals (Sweden)

    Suresha K Mahadeva and Jaehwan Kim

    2011-01-01

    Full Text Available A highly flexible nanocomposite was developed by coating a regenerated cellulose film with a thin layer of tin oxide (SnO2 by liquid-phase deposition. Tin oxide was crystallized in solution and formed nanocrystal coatings on regenerated cellulose. The nanocrystalline layers did not exfoliate from cellulose. Transmission electron microscopy and energy dispersive x-ray spectroscopy suggest that SnO2 was not only deposited over the cellulose surface, but also nucleated and grew inside the cellulose film. Current–voltage characteristics of the nanocomposite revealed that its electrical resistivity decreases with deposition time, with the lowest value obtained for 24 h of deposition. The cellulose–SnO2 hybrid nanocomposite can be used for biodegradable and disposable chemical, humidity and biosensors.

  17. Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

    Directory of Open Access Journals (Sweden)

    Balazs Farkas

    2015-11-01

    Full Text Available We report on the optical fabrication approach of preparing free-standing composite thin films of hydroxyapatite (HA and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL. Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles were dispersed into the liquid polymer resin prior to the photocuring process using MPExSL. The resin is poly(propylene fumarate (PPF, a photo-polymerizable, biodegradable material. The polymer is blended with diethyl fumarate in 7:3 w/w to adjust the resin viscosity. The evaluation of the structural and mechanical properties of the fabricated hybrid thin film was performed by means of SEM and nanoindentation, respectively, while the chemical and degradation studies were conducted through thermogravimetric analysis, and FTIR. The photocuring efficiency was found to be dependent on the nanoparticle concentration. The MPExSL process yielded PPF thin films with a stable and homogenous dispersion of the embedded HA nanoparticles. Here, it was not possible to tune the stiffness and hardness of the scaffolds by varying the laser parameters, although this was observed for regular PPF scaffolds. Finally, the gradual release of the hydroxyapatite nanoparticles over thin film biodegradation is reported.

  18. Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies.

    Science.gov (United States)

    Farkas, Balazs; Rodio, Marina; Romano, Ilaria; Diaspro, Alberto; Intartaglia, Romuald; Beke, Szabolcs

    2015-01-01

    We report on the optical fabrication approach of preparing free-standing composite thin films of hydroxyapatite (HA) and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL). Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles were dispersed into the liquid polymer resin prior to the photocuring process using MPExSL. The resin is poly(propylene fumarate) (PPF), a photo-polymerizable, biodegradable material. The polymer is blended with diethyl fumarate in 7:3 w/w to adjust the resin viscosity. The evaluation of the structural and mechanical properties of the fabricated hybrid thin film was performed by means of SEM and nanoindentation, respectively, while the chemical and degradation studies were conducted through thermogravimetric analysis, and FTIR. The photocuring efficiency was found to be dependent on the nanoparticle concentration. The MPExSL process yielded PPF thin films with a stable and homogenous dispersion of the embedded HA nanoparticles. Here, it was not possible to tune the stiffness and hardness of the scaffolds by varying the laser parameters, although this was observed for regular PPF scaffolds. Finally, the gradual release of the hydroxyapatite nanoparticles over thin film biodegradation is reported. PMID:26734513

  19. Biobased additives as biodegradability enhancers with application in TPU-based footwear components

    OpenAIRE

    Fernandes, Isabel Patrícia; Barbosa, Mariana; Amaral, Joana Soares; Pinto, Vera; Rodrigues, José Luís; Ferreira, Maria José; Barreiro, M.F.

    2016-01-01

    Among the wide variety of materials employed in the manufacture of shoes, thermoplastic polyurethanes (TPUs) are one of the most widely used. Given its widespread use, and associated waste management problems, the development of more biodegradable and evironmentally compatible solutions is needed. In this work, a polyester-based TPU used in the footwear industry for outsoles production was modified by compounding with lignin, starch and cellulose at content of 4% (w/w). The biodegradability w...

  20. Processing and characterization of extruded zein-based biodegradable films

    Science.gov (United States)

    Wang, Ying

    The objectives of this study were to prepare biodegradable zein films by extrusion processing and to evaluate relevant physical properties of resulting films with respect to their potential as packaging materials. The manufacture of protein-based packaging films by extrusion has remained a challenge. In this study, a zein resin was prepared by combining zein and oleic acid. This resin was formed into films by blown extrusion at the bench-top scale. Resin moisture content and extruder barrel temperature profile were identified as major parameters controlling the process. The optimum temperature of the blowing head was determined to be 40--45°C, while optimum moisture at film collection was 14--15%. Physico-chemical properties of the extruded products were characterized. Extruded products exhibited plastic behavior and ductility. Morphology characterization by SEM showed micro voids in extruded zein sheets, caused by entrapped air bubbles or water droplets. DSC characterization showed that zein was effectively plasticized by oleic acid as evidenced by the lowered glass transition temperature of zein films. X-ray scattering was used to investigate changes in zein molecular aggregation during processing. It was observed that higher mechanical energy treatment progressively disrupted zein molecular aggregates, resulting in a more uniform distribution of individual zein molecules. With the incorporation of oleic acid as plasticizer and monoglycerides as emulsifier, zein formed structures with long-range periodicity which varied depending on the formulation and processing methods. Processing methods for film formation affected the binding of oleic acid to zein with higher mechanical energy treatment resulting in better interaction between the two components. The moisture sorption capacity of extruded zein films was reduced due to the compact morphology caused by extrusion. Plasticization with oleic acid further reduced moisture sorption of zein films. The overall

  1. Biodegradable composites based on L-polylactide and jute fibres

    DEFF Research Database (Denmark)

    Plackett, David; Løgstrup Andersen, T.; Batsberg Pedersen, W.;

    2003-01-01

    Biodegradable polymers can potentially be combined with plant fibres to produce biodegradable composite materials. In our research, a commercial L-polylactide was converted to film and then used in combination with jute fibre mats to generate composites by a film stacking technique. Composite...... tensile properties were determined and tensile specimen fracture surfaces were examined using environmental scanning electron microscopy. Degradation of the polylactide during the process was investigated using size exclusion chromatography. The tensile properties of composites produced at temperatures in...... the 180-220 degreesC range were significantly higher than those of polylactide alone. Composite samples failed in a brittle fashion under tensile load and showed little sign of fibre pull-out. Examination of composite fracture surfaces using electron microscopy showed voids occurring between the jute...

  2. Biodegradable resistive switching memory based on magnesium difluoride.

    Science.gov (United States)

    Zhang, Zhiping; Tsang, Melissa; Chen, I-Wei

    2016-08-11

    This study presents a new type of resistive switching memory device that can be used in biodegradable electronic applications. The biodegradable device features magnesium difluoride as the active layer and iron and magnesium as the corresponding electrodes. This is the first report on magnesium difluoride as a resistive switching layer. With on-off ratios larger than one hundred, the device on silicon switches at voltages less than one volt and requires only sub-mA programming current. AC endurance of 10(3) cycles is demonstrated with ±1 V voltage pulses. The switching mechanism is attributed to the formation and rupture of conductive filaments comprising fluoride vacancies in magnesium difluoride. Devices fabricated on a flexible polyethylene terephthalate substrate are tested for functionality, and degradation is subsequently demonstrated in de-ionized water. An additional layer of magnesium difluoride is used to hinder the degradation and extend the lifetime of the device. PMID:27476796

  3. Biodegradable polymeric materials based on B-starch

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Kruliš, Zdeněk; Kotek, Jiří

    Halle (Saale) : Martin Luther University Halle-Wittenberg, 2010 - (Radusch, H.; Fiedler, L.). s. 91 ISBN 978-3-86829-282-4. [International Scientific Conference on Polymeric Materials /14./. 15.09.2010-17.09.2010, Halle (Saale)] R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : starch -derived polymers * biodegradability * B- starch Subject RIV: GM - Food Processing

  4. New nanocomposites based on layered aluminosilicate and guanidine containing polyelectrolytes

    International Nuclear Information System (INIS)

    The new functional nanomaterials based on layered aluminosilicate and guanidine containing polyelectrolytes combining high bactericidal activity with an increased ability to bind to heavy metals and organic pollutants were received. To prove the chemical structure of the model compounds (zwitterionic delocalized resonance structures AG/MAG and PAG/PMAG), as well as the presence of such structures in nanocomposites received on their basis and the MMT, IR, 1H NMR spectroscopy, X-ray diffraction studies and nanoindentation/sclerometry followed by scanning the surface in the area of the indentation were used

  5. New nanocomposites based on layered aluminosilicate and guanidine containing polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Khashirov, Azamat A.; Zhansitov, Azamat A.; Khashirova, Svetlana Yu. [Kabardino-Balkarian State University a. Kh.M. Berbekov, 173 Chernyshevskogo st., 360004, Nalchik (Russian Federation); Zaikov, Genadiy E. [N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygin St., 119991, Moscow (Russian Federation)

    2014-05-15

    The new functional nanomaterials based on layered aluminosilicate and guanidine containing polyelectrolytes combining high bactericidal activity with an increased ability to bind to heavy metals and organic pollutants were received. To prove the chemical structure of the model compounds (zwitterionic delocalized resonance structures AG/MAG and PAG/PMAG), as well as the presence of such structures in nanocomposites received on their basis and the MMT, IR, {sup 1}H NMR spectroscopy, X-ray diffraction studies and nanoindentation/sclerometry followed by scanning the surface in the area of the indentation were used.

  6. Viabilidade celular de nanofibras de polímeros biodegradáveis e seus nanocompósitos com argila montmorilonita Cell viability of nanofibers from biodegradable polymers and their nanocomposites with montmorillonite

    Directory of Open Access Journals (Sweden)

    Alfredo M. Goes

    2012-01-01

    Full Text Available Mantas não tecidas de nanofibras de três polímeros biodegradáveis poli(ácido láctico, PDLLA, poli(Ε-caprolactona, PCL, e poli(butileno adipato-co-tereftalato, PBAT e seus nanocompósitos com uma nanoargila montmorilonita (MMT foram produzidas por eletrofiação. A morfologia, o comportamento térmico e a estrutura interna das nanofibras foram analisados por microscopia eletrônica de varredura e transmissão, calorimetria diferencial de varredura e difração de raios X, respectivamente. Observou-se que as nanofibras dos nanocompósitos possuíam diâmetros menores do que os correspondentes polímeros puros e que as nanofibras de PBAT puro e de PBAT/MMT apresentavam a menor cristalinidade de todas as mantas. A viabilidade celular de todas as nanofibras foi analisada pela técnica de redução do sal de tetrazolium pelo complexo enzimático piruvato desidrogenase presente na matriz de mitocôndrias (teste MTT. Os resultados mostraram que nenhuma manta nanofibrílica apresentou toxicidade às células e que as nanofibras de PBAT puro e seu nanocompósito propiciaram ainda um ambiente mais favorável ao desenvolvimento celular de fibroblastos de cardiomiócitos do que as condições oferecidas pelo controles, provavelmente por apresentarem menores diâmetros e baixa cristalinidade em relação às demais nanofibras. Estes resultados mostram o potencial de uso destas mantas nanofibrílicas como suportes de crescimento celular.Non-woven mats of nanofibers of three biodegradable polymers, viz. poly(lactic acid, PDLLA, poly(Ε-caprolactone, PCL, and poly(butylene adipate-co-terephthalate, PBAT, and their nanocomposites with montmorillonite nanoclay (MMT were produced by electrospinning. The morphology, thermal behavior and internal structure of the nanofibers were analyzed by scanning and transmission electron microscopy, differential scanning calorimetry and wide angle X-ray diffraction, respectively. The nanofibers of the nanocomposites had

  7. A review of experimental and modeling techniques to determine properties of biopolymer-based nanocomposites

    Science.gov (United States)

    The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). One of the reasons for unique properties of bio-nanocomposites is the differ...

  8. Conducting polymer based manganese dioxide nanocomposite as supercapacitor

    International Nuclear Information System (INIS)

    Poly 3,4-ethylenedioxythiophene (PEDOT)- and polyaniline (PANI) nanocomposites were synthesized based on manganese dioxide in the form of Nanorod. Suitability of these composites was studied extensively as an electrode material for symmetric supercapacitor in a widened operating voltage window of 1.2 V. Role of manganese dioxide during reverse microemulsion polymerization in n-hexane medium for PEDOT and aqueous dispersion polymerization for PANI, have been accounted through X-ray photoelectron spectroscopy (XPS). Structural morphology as well as thermal characterization was carried out using XRD, SEM, TEM, IR and TGA. Charge storage mechanism in these nanocomposites have been investigated through cyclic voltammetry (CV) at different scan rates (2–20 mV/s), where intercalation of metal ion during reduction and de-intercalation upon oxidation predominate over surface adsorption and desorption of metal ions into electrode material. Higher specific capacitance for PEDOT–MnO2 (315 F/g) and PANI–MnO2 (221 F/g) are observed in comparison with its constituent MnO2 (158 F/g) where the internal pore volume plays a significant role over the total surface area. AC impedance measurement in the frequency range 10 kHz to 10 mHz with potential amplitude of 5 mV were carried out to ascertain the pseudocapacitance (CFS) arising from the redox reactions over the electrical double layer capacitance (CDL) in the composite materials

  9. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    Science.gov (United States)

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules. PMID:26135389

  10. Porous alumina based ordered nanocomposite coating for wear resistance

    Science.gov (United States)

    Yadav, Arti; Muthukumar, M.; Bobji, M. S.

    2016-08-01

    Uniformly dispersed nanocomposite coating of aligned metallic nanowires in a matrix of amorphous alumina is fabricated by pulsed electrodeposition of copper into the pores of porous anodic alumina. Uniform deposition is obtained by controlling the geometry of the dendritic structure at the bottom of pores through stepwise voltage reduction followed by mild etching. The tribological behaviour of this nanocomposite coating is evaluated using a ball on flat reciprocating tribometer under the dry contact conditions. The nanocomposite coating has higher wear resistance compared to corresponding porous alumina coating. Wear resistant nanocomposite coating has wide applications especially in protecting the internal surfaces of aluminium internal combustion engines.

  11. Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride.

    Science.gov (United States)

    Lipsa, Rodica; Tudorachi, Nita; Darie-Nita, Raluca Nicoleta; Oprică, Lacramioara; Vasile, Cornelia; Chiriac, Aurica

    2016-07-01

    The purpose of this study was to assess the biodegradation of poly(lactic acid) (PLA) and some plasticized PLA based systems by Trichoderma viride fungus, in liquid medium and controlled laboratory conditions. The studied systems were achieved using PLA, hydrolyzed collagen (HC) as biological macromolecules and other additives by melt processing procedure. PLA and the systems' biodegradability was examined by the weight losses of the samples (after 7 and 21 days of exposure) and FTIR-ATR, GPC, SEM analyses (after 21 fungus inoculation days). The thermogravimetry (TG-DTG) study showed that the thermostability of the samples decreased after biodegradation and was influenced by the chemical structure of the systems' components. PMID:27064086

  12. Synthesis of biodegradable thermoplastic elastomers (BTPE based on ε-caprolactone

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available Aiming to mimic blood vessels, biodegradable thermoplastic elastomer (BTPE is designed to be elastic, flexible and tough. A series of biodegradable triblock copolymers and poly(ester-urethanes (PEU based on ε-caprolactone have been synthesized and studied. The crystallinity of the poly(ε-caprolactone used as soft segment has been disrupted by incorporating either L-lactide (L-LA units or trimethylene carbonate (TMC units. Our studies suggest that soft segment composition does affect the mechanical properties significantly.

  13. Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells

    KAUST Repository

    Croissant, Jonas

    2016-06-03

    We describe biodegradable mesoporous hybrid NPs in the presence of proteins, and its application for drug delivery. We synthesized oxamide-phenylene-based mesoporous organosilica nanoparticles (MON) in the absence of silica source which had a remarkably high organic content with a high surface area. Oxamide functions provided biodegradability in the presence of trypsin model proteins. MON displayed exceptionally high payloads of hydrophilic and hydrophobic drugs (up to 84 wt%), and a unique zero premature leakage without the pore capping, unlike mesoporous silica. MON were biocompatible and internalized into cancer cells for drug delivery.

  14. Film blowing of PHBV blends and PHBV-based multilayers for the production of biodegradable packages

    OpenAIRE

    Cunha, Mara; Fernandes, Bruno Daniel; Covas, J. A.; Vicente, A. A.; Hilliou, L.

    2016-01-01

    Poly(hydroxy butyrate-co-valerate) (PHBV) is a biodegradable polymer that is difficult to melt process into films. Such difficulty is mirrored in the lack of literature on film blowing of PHBV- or PHBV-based materials. To circumvent this problem, 70/30 wt % blends of PHBV with a biodegradable compound (PBSebT), or with poly(butylene adipate-co-terephtalate) (PBAT), were prepared and tested for extrusion film blowing. Both blends showed a similar rheological pattern at 175°C, which is the maxi...

  15. Polymer Nanocomposite Based Multi-layer Neutron Shields

    International Nuclear Information System (INIS)

    It is important to shield radiations generated from the various radiation sources including nuclear reactors, transportation and storage systems for the radioactive wastes, accelerator, hospital, and defense systems etc. In this regard, development of efficient, light and durable radiation shielding materials has been an issue for many years. High energy neutrons (fast neutrons) can be thermalized by colliding with the light elements such as hydrogen, and thermalized neutrons can be efficiently captured by neutron absorbers such as boron, lithium, or gadolinium, etc. To shield neutrons, it is common to use hydrogen rich polymer based shields containing thermal neutron absorbers. It is also necessary to shield secondary gamma radiations produced from nuclear reaction of neutrons with various materials. Hence, high density elements such as Fe, Pb, or W might be dispersed in the polymer base as well as with neutron absorbers at the same time. However, the particle sizes of these elements are in the range of several tens and hundreds micrometers causing possible leakage of radiation. To enhance radiation shielding efficiency, it is useful to use ultrafine particles to increase collision probability of radiation with the particles. Furthermore, it is theoretically possible to enhance radiation shielding efficiency by using the multi-layer structured shields whose constituents are different for each layer depending upon the shielding purpose under the same overall density. Also, material properties of the nanocomposites can be enhanced compared to the normal composites. This investigation is focused on characterization of the nanocomposite based multi-layer structured radiation shields compared to the conventional radiation shields

  16. Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device.

    Science.gov (United States)

    Xu, Shiyou; Yeh, Yao-wen; Poirier, Gerald; McAlpine, Michael C; Register, Richard A; Yao, Nan

    2013-06-12

    Piezoelectric nanocomposites represent a unique class of materials that synergize the advantageous features of polymers and piezoelectric nanostructures and have attracted extensive attention for the applications of energy harvesting and self-powered sensing recently. Currently, most of the piezoelectric nanocomposites were synthesized using piezoelectric nanostructures with relatively low piezoelectric constants, resulting in lower output currents and lower output voltages. Here, we report a synthesis of piezoelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) nanowire-based nanocomposite with significantly improved performances for energy harvesting and self-powered sensing. With the high piezoelectric constant (d33) and the unique hierarchical structure of the PMN-PT nanowires, the PMN-PT nanowire-based nanocomposite demonstrated an output voltage up to 7.8 V and an output current up to 2.29 μA (current density of 4.58 μA/cm(2)); this output voltage is more than double that of other reported piezoelectric nanocomposites, and the output current is at least 6 times greater. The PMN-PT nanowire-based nanocomposite also showed a linear relationship of output voltage versus strain with a high sensitivity. The enhanced performance and the flexibility of the PMN-PT nanowire-based nanocomposite make it a promising building block for energy harvesting and self-powered sensing applications. PMID:23634729

  17. Triblock Copolymers Based on 1,3-Trimethylene Carbonate and Lactide as Biodegradable Thermoplastic Elastomers

    NARCIS (Netherlands)

    Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Biodegradable triblock copolymers based on 1,3-trimethylene carbonate (TMC) and different lactides (i.e. D,L-lactide(DLLA), L-lactide (LLA), D-lactide (DLA)) designated as poly(DLLA-TMC-DLLA), poly(LLA-TMC-LLA) and poly(DLA-TMC-DLA) were prepared and their mechanical and thermal properties were comp

  18. Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay

    Science.gov (United States)

    Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+-MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aeroge...

  19. Soil burial biodegradation studies of palm oil-based UV-curable films

    Science.gov (United States)

    Tajau, Rida; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi; Hamidi, Nur Amira

    2016-01-01

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia's Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  20. Soil burial biodegradation studies of palm oil-based UV-curable films

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida, E-mail: rida@nuclearmalaysia.gov.my; Salleh, Mek Zah, E-mail: mekzah@nuclearmalaysia.gov.my; Salleh, Nik Ghazali Nik, E-mail: nik-ghazali@nuclearmalaysia.gov.my; Abdurahman, Mohamad Norahiman, E-mail: iman5031@yahoo.com [Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Salih, Ashraf Mohammed, E-mail: ashraf.msalih@gmail.com [Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum, 1111 Sudan (Sudan); Fathy, Siti Farhana, E-mail: farhana811@hotmail.com [Laboratory of Molecular Biomedicine, Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor (Malaysia); Azman, Anis Asmi, E-mail: anisasmi18@gmail.com; Hamidi, Nur Amira, E-mail: amirahamidi93@yahoo.com [School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800 USM, Pulau Pinang (Malaysia)

    2016-01-22

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  1. Soil burial biodegradation studies of palm oil-based UV-curable films

    International Nuclear Information System (INIS)

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels

  2. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  3. PET based nanocomposite films for microwave packaging applications

    International Nuclear Information System (INIS)

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET

  4. PET based nanocomposite films for microwave packaging applications

    Science.gov (United States)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-12-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  5. PET based nanocomposite films for microwave packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Galdi, M. R., E-mail: mrgaldi@unisa.it; Olivieri, R.; Liguori, L.; Albanese, D., E-mail: dalbanese@unisa.it; Di Matteo, M.; Di Maio, L., E-mail: ldimaio@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  6. Collagen based magnetic nanocomposites for oil removal applications

    OpenAIRE

    Palanisamy Thanikaivelan; Narayanan, Narayanan T.; Pradhan, Bhabendra K.; Ajayan, Pulickel M.

    2012-01-01

    A stable magnetic nanocomposite of collagen and superparamagnetic iron oxide nanoparticles (SPIONs) is prepared by a simple process utilizing protein wastes from leather industry. Molecular interaction between helical collagen fibers and spherical SPIONs is proven through calorimetric, microscopic and spectroscopic techniques. This nanocomposite exhibited selective oil absorption and magnetic tracking ability, allowing it to be used in oil removal applications. The environmental sustainabilit...

  7. UHMWPE-based nanocomposite as a material for damaged cartilage replacement

    International Nuclear Information System (INIS)

    In the present work dispersion-strengthened nanocomposites based on ultra-high molecular weight polyethylene (UHMWPE) after mechanical activation were studied. Mechanical activation was performed for hardening of the boundaries between the polymer particles, reducing the fusion defects and increasing of wear-resistance. Three types of samples were prepared: UHMWPE, UHMWPE/Al2O3 nanocomposite and UHMWPE/Al2O3 nanocomposite after mechanical activation. UHMWPE/Al2O3 nanocomposites prepared with mechanical activation show the best mechanical properties in compression and higher wear-resistance. UHMWPE/Al2O3 nanocomposites prepared with mechanical activation were chosen for in vivo study by orthotopical transplantation in rats. Animals' activity has been being monitored for 60 days after surgery. No signs of inflammation, cellular infiltration, destruction of material or bone–cartilage defect were found. Implanted sample has not changed its position of implantation, there were no any shifts. Obtained data shows that UHMWPE-based nanocomposite is a promising material for creating bioimplants for cartilage defect replacement. - Highlights: • Mechanical activation of UHMWPE composite leads to changing of fracture mechanism. • Mechanical activation leads to increasing of wear-resistance of UHMWPE composite. • The presence of Al2O3 in grain boundaries of UHMWPE inhibits crack growth. • Complete integration of UHMWPE-based implant in cartilage defect of rat was shown. • UHMWPE/Al2O3 nanocomposite may be recommended for use in cartilage replacement

  8. Biodegradable polycarbonate-based stimuli-responsive nanosystems for intracellular drug delivery

    OpenAIRE

    Chen, Wei

    2013-01-01

    Biodegradable nanosystems based on functional polycarbonate-based polymers have propelled the development of targeted and controlled drug and gene delivery. Functional polycarbonate-based polymers have overcome many drawbacks which limited the application of the common polyester materials in this area. It is apparent that recently introduced novel functionalities in polycarbonate-based polymers allowed the preparation of novel nanocarriers, which are bioresponsive (i.e. pH, temperature, and r...

  9. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    Science.gov (United States)

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  10. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    Science.gov (United States)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  11. Influence of expanded graphite (EG and graphene oxide (GO on physical properties of PET based nanocomposites

    Directory of Open Access Journals (Sweden)

    Paszkiewicz Sandra

    2014-12-01

    Full Text Available This work is the continuation and refinement of already published communications based on PET/EG nanocomposites prepared by in situ polymerization1, 2. In this study, nanocomposites based on poly(ethylene terephthalate with expanded graphite were compared to those with functionalized graphite sheets (GO. The results suggest that the degree of dispersion of nanoparticles in the PET matrix has important effect on the structure and physical properties of the nanocomposites. The existence of graphene sheets nanoparticles enhances the crystallization rate of PET. It has been confirmed that in situ polymerization is the effective method for preparation nanocomposites which can avoid the agglomeration of nanoparticles in polymer matrices and improve the interfacial interaction between nanofiller and polymer matrix. The obtained results have shown also that due to the presence of functional groups on GO surface the interactions with PET matrix can be stronger than in the case of exfoliated graphene (EG and matrix.

  12. Storage stability of banana chips in polypropylene based nanocomposite packaging films

    OpenAIRE

    Manikantan, M. R.; Sharma, Rajiv; Kasturi, R.; Varadharaju, N.

    2012-01-01

    In this study, polypropylene (PP) based nanocomposite films of 15 different compositions of nanoclay, compatibilizer and thickness were developed and used for packaging and storage of banana chips. The effect of nanocomposite films on the quality characteristics viz. moisture content (MC), water activity (WA), total color difference(TCD), breaking force (BF), free fatty acid (FFA), peroxide value(PV), total plate count (TPC) and overall acceptability score of banana chips under ambient condit...

  13. Study of annealing and orientation effects on physical properties of PLA based nanocomposite films

    OpenAIRE

    Cammarano, Sara

    2010-01-01

    PLA-sepiolite and PLA-halloysite nanocomposites prepared by melt blending were systematically characterized in terms of mechanical, thermal and barrier properties. Annealing and unidirectional stretching techniques were used with the aim to improve matrix performances of nanocomposite based films; a preliminary study on the production of PLA-halloysite composites via film blowing has been also considered. Addition of unmodified clays did not significantly alter PLA properties mainly b...

  14. Silicon-Based Thermoelectrics Made from a Boron-Doped Silicon Dioxide Nanocomposite

    OpenAIRE

    Snedaker, ML; Zhang, Y.; Birkel, CS; H. Wang; Day, T.; Shi, Y; Ji, X.; Kraemer, S.; Mills, CE; Moosazadeh, A; Moskovits, M.; Snyder, GJ; Stucky, GD

    2013-01-01

    We report a method for preparing p-type silicon germanium bulk alloys directly from a boron-doped silica germania nanocomposite. This is the first successful attempt to produce and characterize the thermoelectric properties of SiGe-based thermoelectric materials prepared at temperatures below the alloy's melting point through a magnesiothermic reduction of the silica-germania nanocomposite. We observe a thermoelectric power factor that is competitive with the literature record obtained for hi...

  15. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  16. Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites

    Directory of Open Access Journals (Sweden)

    N. N. Sudareva

    2012-03-01

    Full Text Available Poly(phenylene isophtalamide (PA was modified by fullerene C60 using solid-phase method. Novel ultrafiltration membranes based on nanocomposites containing up to 10 wt% of fullerene and carbon black were prepared. Properties of PA/C60 composites in solutions were studied by light scattering and rheological methods. The relationship between characteristics of casting solutions and properties of nanocomposite membranes was studied. Scanning electron microscopy was used for structural characterization of the membranes. It was found that increase in fullerene content in nanocomposite enhances the membrane rigidity. All nanocomposite membranes were tested in dynamic (ultrafiltration and static sorption experiments using a solution of protein mixture, with the purpose of studying protein sorption. The membranes modified by fullerene demonstrate the best values of flux reduced recovery after contact with protein solution. It was found that addition of fullerene C60 to the polymer improves technological parameters of the obtained composite membranes.

  17. Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensor.

    Science.gov (United States)

    Freire, T M; Dutra, L M U; Queiroz, D C; Ricardo, N M P S; Barreto, K; Denardin, J C; Wurm, Frederik R; Sousa, C P; Correia, A N; de Lima-Neto, P; Fechine, P B A

    2016-10-20

    Chitosan-based magnetite nanocomposites were synthesized using a versatile ultrasound assisted in situ method involving one quick step. This synthetic route approach results in the formation of spheroidal nanoparticles (Fe3O4) with average diameter between 10 and 24nm, which were found to be superparamagnetic with saturation magnetization (Ms) ranges from 32-57emug(-1), depending on the concentration. The incorporation of Fe3O4 into chitosan matrix was also confirmed by FTIR and TG techniques. This hybrid nanocomposite has the potential application as electrochemical sensors, since the electrochemical signal was excepitionally stable. In addition, the in situ strategy proposed in this work allowed us to synthesize the nanocomposite system in a short time, around 2min of time-consuming, showing great potential to replace convencional methods. Herein, the procedure will permit a further diversity of applications into nanocomposite materials engineering. PMID:27474623

  18. Low Density Polyethylene (LDPE) blends based on Poly(3-Hydroxi-Butyrate) (PHB) and Guar Gum (GG) biodegradable polymers

    OpenAIRE

    Marisa Cristina Guimarães Rocha; Lorena Rodrigues da Costa Moraes

    2015-01-01

    LDPE blends based on PHB and GG biodegradable polymers were prepared by melt mixing in a twin screw extruder. The mechanical properties of the materials were evaluated. Preliminary information about the biodegradation behavior of the specimens was obtained by visual observation of samples removed from the simulated soil in 90 days. The results indicated that LDPE/PHB blends may be used for designing LDPE based materials with increased susceptibility to degradation, if elongation at break and ...

  19. Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites

    International Nuclear Information System (INIS)

    The fracture behaviors of α-zirconium phosphate (α-ZrP) based epoxy nanocomposites, with and without core-shell rubber (CSR) toughening, were investigated. The state of exfoliation and dispersion of α-ZrP nanofiller in epoxy were characterized using X-ray scattering and various microscopy tools. The level of enhancement in storage moduli of epoxy nanocomposite against neat epoxy is found to depend on the state of exfoliation of α-ZrP as well as the damping characteristics of the epoxy matrix. The fracture process in epoxy nanocomposite is dominated by preferred crack propagation along the weak intercalated α-ZrP interfaces, and the presence of α-ZrP does not alter the fracture toughness of the epoxy matrix. However, the toughening using CSR can significantly improve the fracture toughness of the nanocomposite. The fracture mechanisms responsible for such a toughening effect in CSR-toughened epoxy nanocomposite are rubber particle cavitation, followed by shear banding of epoxy matrix. The ductility and toughenability of epoxy do not appear to be affected by the incorporation of α-ZrP. Approaches for producing toughened high performance polymer nanocomposites are discussed

  20. Rheological investigations of water based drilling fluid system developed using synthesized nanocomposite

    Science.gov (United States)

    Jain, Rajat; Mahto, Triveni K.; Mahto, Vikas

    2016-02-01

    In the present study, polyacrylamide grafted xanthan gum/multiwalled carbon nanotubes (PA-g-XG/MWCNT) nanocomposite was synthesized by free radical polymerization technique using potassium persulfate as an initiator. The polyacrylamide was grafted on xanthan gum backbone in the presence of MWCNT. The synthesized nanocomposite was characterized by X-ray diffraction technique (XRD), and Fourier transform infrared spectroscopy analysis (FT-IR). The morphological characteristics of the nanocomposite were analyzed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) analyses. Also, its temperature resistance property was observed with Thermogravimetric analysis (TGA). The effect of nanocomposite on the rheological properties of the developed drilling fluid system was analyzed with a strain controlled rheometer and Fann viscometer. Flow curves were drawn for the developed water based drilling fluid system at elevated temperatures. The experimental data were fitted to Bingham, power-law, and Herschel Bulkley flow models. It was observed that the Herschel Bulkley flow model predict the flow behavior of the developed system more accurately. Further, nanocomposite exhibited non-Newtonian shear thinning flow behavior in the developed drilling fluid system. Nanocomposite showed high temperature stability and had a significant effect on the rheological properties of the developed drilling fluid system as compared to conventionally used partially hydrolyzed polyacrylamide (PHPA) polymer.

  1. Improvement of the titanium implant biological properties by coating with poly (ɛ-caprolactone)-based hybrid nanocomposites synthesized via sol-gel

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2016-05-01

    When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ɛ-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of the obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.

  2. Biodegradable polymeric microsphere-based drug delivery for inductive browning of fat

    Directory of Open Access Journals (Sweden)

    Chunhui eJiang

    2015-11-01

    Full Text Available Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide (PLGA, a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue (WAT depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.

  3. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay

    International Nuclear Information System (INIS)

    Polyurethane organoclay nanocomposites have been synthesized via in situ polymerization method. The organoclay has been prepared by intercalation of diethanolamine or triethanolamine into montmorillonite clay (MMT) through ion exchange process. The syntheses of polyurethane-organoclay hybrids were carried out by swelling the organoclay into different kinds of diols followed by addition of diisocyanate. The nanocomposites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and X-ray diffraction (XRD). The results shows broaden with low intense and shift of the peak characteristic to d001 spacing to smaller 2θ and the MMT is dispersed homogeneously in the polymer matrix. Also, the TGA showed that the nanocomposites have higher decomposition temperature in comparison with the pristine polyurethane

  4. Synthesis and sensor applications of MoS2-based nanocomposites

    Science.gov (United States)

    Zhang, Wensi; Zhang, Panpan; Su, Zhiqiang; Wei, Gang

    2015-11-01

    Molybdenum disulfide (MoS2) is a typical layered transition-metal dichalcogenide material, which has aroused a great deal of interest in the past few years. Recently, more and more attention has been focused on the synthesis and applications of MoS2-based nanocomposites. In this review, we aimed to present a wider view of the synthesis of various MoS2-based nanocomposites for sensor and biosensor applications. We highlighted the potential methods like self-assembly, hydrothermal reaction, chemical vapour deposition, electrospinning, as well as microwave and laser beam treatments for the successful preparation of MoS2-based nanocomposites. On the other hand, three representative types of detection devices fabricated by the MoS2-based nanocomposites, field-effect transistor, optical, and electrochemical sensors, were introduced in detail and discussed fully. The relationships between the sensing performances and the special nanostructures within the MoS2-based nanocomposites were presented and discussed.

  5. Biochar-based nano-composites for the decontamination of wastewater: A review.

    Science.gov (United States)

    Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Xu, Yan; Zeng, Guang-Ming; Hu, Xin-Jiang; Liu, Shao-Bo; Wang, Xin; Liu, Si-Mian; Li, Jiang

    2016-07-01

    Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified. PMID:27131871

  6. Collagen based magnetic nanocomposites for oil removal applications

    Science.gov (United States)

    Thanikaivelan, Palanisamy; Narayanan, Narayanan T.; Pradhan, Bhabendra K.; Ajayan, Pulickel M.

    2012-01-01

    A stable magnetic nanocomposite of collagen and superparamagnetic iron oxide nanoparticles (SPIONs) is prepared by a simple process utilizing protein wastes from leather industry. Molecular interaction between helical collagen fibers and spherical SPIONs is proven through calorimetric, microscopic and spectroscopic techniques. This nanocomposite exhibited selective oil absorption and magnetic tracking ability, allowing it to be used in oil removal applications. The environmental sustainability of the oil adsorbed nanobiocomposite is also demonstrated here through its conversion into a bi-functional graphitic nanocarbon material via heat treatment. The approach highlights new avenues for converting bio-wastes into useful nanomaterials in scalable and inexpensive ways.

  7. UHMWPE-based nanocomposite as a material for damaged cartilage replacement

    Energy Technology Data Exchange (ETDEWEB)

    Senatov, F.S., E-mail: Senatov@misis.ru [National University of Science and Technology “MISIS”, 119049, Leninskiy pr. 4, Moscow (Russian Federation); Kopylov, A.N.; Anisimova, N.Yu.; Kiselevsky, M.V. [N.N. Blokhin Russian Cancer Research Center, 115478, Kashirskoye sh. 23, Moscow (Russian Federation); Maksimkin, A.V. [National University of Science and Technology “MISIS”, 119049, Leninskiy pr. 4, Moscow (Russian Federation)

    2015-03-01

    In the present work dispersion-strengthened nanocomposites based on ultra-high molecular weight polyethylene (UHMWPE) after mechanical activation were studied. Mechanical activation was performed for hardening of the boundaries between the polymer particles, reducing the fusion defects and increasing of wear-resistance. Three types of samples were prepared: UHMWPE, UHMWPE/Al{sub 2}O{sub 3} nanocomposite and UHMWPE/Al{sub 2}O{sub 3} nanocomposite after mechanical activation. UHMWPE/Al{sub 2}O{sub 3} nanocomposites prepared with mechanical activation show the best mechanical properties in compression and higher wear-resistance. UHMWPE/Al{sub 2}O{sub 3} nanocomposites prepared with mechanical activation were chosen for in vivo study by orthotopical transplantation in rats. Animals' activity has been being monitored for 60 days after surgery. No signs of inflammation, cellular infiltration, destruction of material or bone–cartilage defect were found. Implanted sample has not changed its position of implantation, there were no any shifts. Obtained data shows that UHMWPE-based nanocomposite is a promising material for creating bioimplants for cartilage defect replacement. - Highlights: • Mechanical activation of UHMWPE composite leads to changing of fracture mechanism. • Mechanical activation leads to increasing of wear-resistance of UHMWPE composite. • The presence of Al{sub 2}O{sub 3} in grain boundaries of UHMWPE inhibits crack growth. • Complete integration of UHMWPE-based implant in cartilage defect of rat was shown. • UHMWPE/Al{sub 2}O{sub 3} nanocomposite may be recommended for use in cartilage replacement.

  8. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.

    Science.gov (United States)

    Gu, Xinzhu; Mao, Zhongwei; Ye, Sang-Ho; Koo, Youngmi; Yun, Yeoheung; Tiasha, Tarannum R; Shanov, Vesselin; Wagner, William R

    2016-08-01

    Vascular stent design continues to evolve to further improve the efficacy and minimize the risks associated with these devices. Drug-eluting coatings have been widely adopted and, more recently, biodegradable stents have been the focus of extensive evaluation. In this report, biodegradable elastomeric polyurethanes were synthesized and applied as drug-eluting coatings for a relatively new class of degradable vascular stents based on Mg. The dynamic degradation behavior, hemocompatibility and drug release were investigated for poly(carbonate urethane) urea (PCUU) and poly(ester urethane) urea (PEUU) coated magnesium alloy (AZ31) stents. Poly(lactic-co-glycolic acid) (PLGA) coated and bare stents were employed as control groups. The PCUU coating effectively slowed the Mg alloy corrosion in dynamic degradation testing compared to PEUU-coated, PLGA-coated and bare Mg alloy stents. This was confirmed by electron microscopy, energy-dispersive x-ray spectroscopy and magnesium ion release experiments. PCUU-coating of AZ31 was also associated with significantly reduced platelet adhesion in acute blood contact testing. Rat vascular smooth muscle cell (rSMC) proliferation was successfully inhibited when paclitaxel was released from pre-loaded PCUU coatings. The corrosion retardation, low thrombogenicity, drug loading capacity, and high elasticity make PCUU an attractive option for drug eluting coating on biodegradable metallic cardiovascular stents. PMID:27085049

  9. Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications

    Science.gov (United States)

    Wang, Jiasheng; Shah, Zameer Hussain; Zhang, Shufen; Lu, Rongwen

    2014-04-01

    Silica-based nanocomposites with amorphous silica as the matrix or carrier along with a functional component have been extensively investigated. These nanocomposites combine the advantages of both silica and the functional components, demonstrating great potential for various applications. To synthesize such composites, one of the most frequently used methods is reverse microemulsion due to its convenient control over the size, shape, and structures. The structures of the composites have a decisive significance for their properties and applications. In this review, we tried to categorize the silica-based nanocomposites via reverse microemulsions based on their structures, discussed the syntheses individually for each structure, summarized their applications, and made some perspectives based on the current progress of this field.Silica-based nanocomposites with amorphous silica as the matrix or carrier along with a functional component have been extensively investigated. These nanocomposites combine the advantages of both silica and the functional components, demonstrating great potential for various applications. To synthesize such composites, one of the most frequently used methods is reverse microemulsion due to its convenient control over the size, shape, and structures. The structures of the composites have a decisive significance for their properties and applications. In this review, we tried to categorize the silica-based nanocomposites via reverse microemulsions based on their structures, discussed the syntheses individually for each structure, summarized their applications, and made some perspectives based on the current progress of this field. Electronic supplementary information (ESI) available: The structures of all the surfactants included in this review are listed. See DOI: 10.1039/c3nr06025j

  10. Micromechanical analysis of nanocomposites using 3D voxel based material model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2012-01-01

    A computational study on the effect of nanocomposite structures on the elastic properties is carried out with the use of the 3D voxel based model of materials and the combined Voigt–Reuss method. A hierarchical voxel based model of a material reinforced by an array of exfoliated and intercalated ...... probability of glass fibers in hybrid (hierarchical) composites, using the micromechanical voxel-based model of nanocomposites, it was observed that the nanoreinforcement in the matrix leads to slightly lower fiber failure probability....

  11. Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators

    International Nuclear Information System (INIS)

    Highlights: → Polyurethane based on pristine and metal (Ag and Cu) nanoparticle decorated CNTs nanocomposites are prepared through melt blending process. → The electrical, mechanical, dynamic mechanical, thermal conductivity and electro active shape memory properties of the PU nanocomposites were investigated. → The influence of metal nanoparticle decorated CNTs showed significant improvement in their all properties to compare to pristine CNTs. → Electro active shape memory studies of the PU/M-CNTs nanocomposites reveal extraordinary recoverability of its shape at lower applied dc voltages. - Abstract: Polymer nanocomposites based on thermoplastic polyurethane (PU) elastomer and metal nanoparticle (Ag and Cu) decorated multiwall carbon nanotubes (M-CNTs) were prepared through melt mixing process and investigated for its mechanical, dynamic mechanical and electro active shape memory properties. Structural characterization and morphological characterization of the PU nanocomposites were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Morphological characterization revealed better dispersion of M-CNTs in the polyurethane, which is attributed to the improved interaction between the M-CNTs and polyurethane. Loading of the metal nanoparticle coated carbon nanotubes resulted in the significant improvement on the mechanical properties such as tensile strength of the PU composites in comparison to the pristine carbon nanotubes (P-CNTs). Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the polyurethane increases slightly with increasing loading of both pristine and metal nanoparticle functionalized carbon nanotubes. The metal nanoparticles decorated carbon nanotubes also showed significant improvement in the thermal and electrical conductivity of the PU/M-CNTs nanocomposites. Shape memory studies of the PU/M-CNTs nanocomposites exhibit remarkable recoverability of its shape at lower applied dc voltages.

  12. BIODEGRADABILITY AND MECHANICAL BEHAVIOUR OF SUGAR PALM STARCH BASED BIOPOLYMER

    OpenAIRE

    J. Sahari; S. M. Sapuan; Zainudin, E. S.; Maleque, M A

    2014-01-01

    A new Sugar Palm Starch (SPS) based biopolymer was successfully developed using glycerol as plasticizer. The effect of glycerol concentration (viz., 15, 20, 30 and 40 by weight percent) to the mechanical properties of plasticized SPS biopolymer was investigated. From this investigation, it was found that the 30% glycerol concentrated biopolymer showed the highest flexural strength and impact with the value of 0.13 MPa and 6.13 kJ/m2 respectively. Later, the above 30% gl...

  13. Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications

    Science.gov (United States)

    Wen, Tianlong; Krishnan, Kannan M.

    2011-10-01

    Recently, magnetic nanocomposites (MNC) have aroused significant scientific and technological interests because their properties strongly rely on the interplay between those of the constituent components. Here, using three types of cobalt-based MNCs, we demonstrate how their physical behaviour, including thermal, electrical and magnetic, can be strongly affected by such interplays. First, using Aucore-Coshell nanoparticles (NPs), we demonstrate that their thermal stabilities are critically dependent on various boundaries and they structurally transform from the core-shells to the peanut structures via several intermediate states by a series of energy minimizations including the grain boundaries, Co/Au interface and strain. Second, the microstructures of the MNC are co-determined by the properties of the individual components, which in turn will strongly affect their overall properties. We illustrate this by a careful study of the electron transport in cobalt/poly (3-hexylthiophene, 2, 5-diyl) (P3HT) hybrid thin films, and show that they satisfy a fluctuation-induced tunnelling model that is strongly depended on their microstructures; moreover, a magnetoresistance in these thin films was also observed. Finally, the magnetic properties and phase stability of MNCs can also be strongly altered as a result of this interplay. Three phase transformations are observed in cobalt ferrofluids for T ~ 10-300 K, namely second order magnetic phase transformations (blocked-unblocked transition) at the blocking temperature of the magnetic NP, first order magnetic and structural phase transformations at the solvent melting temperature, TM, and second order premelting transformation at TPM < T < TM. These transformations show specific magnetic signatures in field-cool and zero-field-cool magnetization measurements and are qualitatively in agreement with predictions using M-spectrum theory.

  14. Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications

    International Nuclear Information System (INIS)

    Recently, magnetic nanocomposites (MNC) have aroused significant scientific and technological interests because their properties strongly rely on the interplay between those of the constituent components. Here, using three types of cobalt-based MNCs, we demonstrate how their physical behaviour, including thermal, electrical and magnetic, can be strongly affected by such interplays. First, using Aucore-Coshell nanoparticles (NPs), we demonstrate that their thermal stabilities are critically dependent on various boundaries and they structurally transform from the core-shells to the peanut structures via several intermediate states by a series of energy minimizations including the grain boundaries, Co/Au interface and strain. Second, the microstructures of the MNC are co-determined by the properties of the individual components, which in turn will strongly affect their overall properties. We illustrate this by a careful study of the electron transport in cobalt/poly (3-hexylthiophene, 2, 5-diyl) (P3HT) hybrid thin films, and show that they satisfy a fluctuation-induced tunnelling model that is strongly depended on their microstructures; moreover, a magnetoresistance in these thin films was also observed. Finally, the magnetic properties and phase stability of MNCs can also be strongly altered as a result of this interplay. Three phase transformations are observed in cobalt ferrofluids for T ∼ 10-300 K, namely second order magnetic phase transformations (blocked-unblocked transition) at the blocking temperature of the magnetic NP, first order magnetic and structural phase transformations at the solvent melting temperature, TM, and second order premelting transformation at TPM M. These transformations show specific magnetic signatures in field-cool and zero-field-cool magnetization measurements and are qualitatively in agreement with predictions using M-spectrum theory. (topical review)

  15. Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Wen Tianlong; Krishnan, Kannan M, E-mail: kannanmk@uw.edu [Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195-2120 (United States)

    2011-10-05

    Recently, magnetic nanocomposites (MNC) have aroused significant scientific and technological interests because their properties strongly rely on the interplay between those of the constituent components. Here, using three types of cobalt-based MNCs, we demonstrate how their physical behaviour, including thermal, electrical and magnetic, can be strongly affected by such interplays. First, using Au{sub core}-Co{sub shell} nanoparticles (NPs), we demonstrate that their thermal stabilities are critically dependent on various boundaries and they structurally transform from the core-shells to the peanut structures via several intermediate states by a series of energy minimizations including the grain boundaries, Co/Au interface and strain. Second, the microstructures of the MNC are co-determined by the properties of the individual components, which in turn will strongly affect their overall properties. We illustrate this by a careful study of the electron transport in cobalt/poly (3-hexylthiophene, 2, 5-diyl) (P3HT) hybrid thin films, and show that they satisfy a fluctuation-induced tunnelling model that is strongly depended on their microstructures; moreover, a magnetoresistance in these thin films was also observed. Finally, the magnetic properties and phase stability of MNCs can also be strongly altered as a result of this interplay. Three phase transformations are observed in cobalt ferrofluids for T {approx} 10-300 K, namely second order magnetic phase transformations (blocked-unblocked transition) at the blocking temperature of the magnetic NP, first order magnetic and structural phase transformations at the solvent melting temperature, T{sub M}, and second order premelting transformation at T{sub PM} < T < T{sub M}. These transformations show specific magnetic signatures in field-cool and zero-field-cool magnetization measurements and are qualitatively in agreement with predictions using M-spectrum theory. (topical review)

  16. Nanocomposite films based on chitosan and chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Kelnar, Ivan; Morganti, P.; Carezzi, F.; Pavlova, Ewa; Hašek, Jindřich; Kaprálková, Ludmila; Brožová, Libuše; Kovářová, Jana; Mikešová, Jana; Pekárek, Michal; Kobera, Libor; Bastl, Zdeněk

    Moscow : Lomonosov Moscow State University, 2014. s. 521. [International Conference on Nanostructured Materials /12./ - NANO 2014. 13.07.2014-18.07.2014, Moscow] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 ; RVO:61388955 ; RVO:86652036 Keywords : chitin nanofibrils * chitosan * nanocomposite Subject RIV: CD - Macromolecular Chemistry

  17. Methyltrimethoxysilane (MTMS)-based silica-iron oxide superhydrophobic nanocomposites.

    Science.gov (United States)

    Nadargi, Digambar; Gurav, Jyoti; Marioni, Miguel A; Romer, Sara; Matam, Santhosh; Koebel, Matthias M

    2015-12-01

    We report a facile synthesis of superhydrophobic silica-iron oxide nanocomposites via a co-precursor sol-gel process. The choice of the silica precursor (Methyltrimethoxysilane, MTMS) in combination with iron nitrate altered the pore structure dramatically. The influence of iron oxide doping on the structural properties of pristine MTMS aerogel is discussed. PMID:26277744

  18. Biodegradable glycogen-based nanostructures for biomedicine application

    Czech Academy of Sciences Publication Activity Database

    Rabyk, Mariia; Pařízek, Martin; Hrubý, Martin; Vetrík, Miroslav; Kučka, Jan; Pospíšilová, Aneta; Štěpánek, Petr

    Budapest : Laboratory of Plastics and Rubber Technology, Budapest University of Technology and Economics, 2014, L-232. [International Conference on Bio-Based Polymers and Composites /2./ - BiPoCo 2014. Visegrád (HU), 24.08.2014-28.08.2014] R&D Projects: GA ČR GA202/09/2078; GA ČR GAP208/10/1600; GA MPO FR-TI4/625 Grant ostatní: AV ČR(CZ) M200501201 Institutional support: RVO:61389013 ; RVO:67985823 Keywords : nanoparticles * in vivo imaging * glycogen Subject RIV: CF - Physical ; Theoretical Chemistry; EI - Biotechnology ; Bionics (FGU-C)

  19. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials.

    Science.gov (United States)

    Fukushima, K

    2016-01-01

    Aliphatic polycarbonates have drawn attention as biodegradable polymers that can be applied to a broad range of resorbable medical devices. In particular, poly(trimethylene carbonate) (PTMC), its copolymers, and its derivatives are currently studied due to their unique degradation characteristics that are different from those of aliphatic polyesters. Furthermore, their flexible and hydrophobic nature has driven the application of PTMC-based polymers to soft tissue regeneration and drug delivery. This review presents the diverse applications and functionalization strategies of PTMC-based materials in relation to recent advances in medical technologies and their subsequent needs in clinical settings. PMID:26323327

  20. Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites

    International Nuclear Information System (INIS)

    A combination of molecular dynamics, molecular structural mechanics, and finite element method is employed to compute the elastic constants of a polymeric nanocomposite embedded with graphene sheets, and carbon nanotubes. The model is first applied to study the effect of inclusion of graphene sheets on the Young modulus of the composite. To explore the significance of the nanofiller geometry, the elastic constants of nanotube-based and graphene-based polymer composites are computed under identical conditions. The reinforcement role of these nanofillers is also investigated in transverse directions. Moreover, the dependence of the nanocomposite's axial Young modulus on the presence of ripples on the surface of the embedded graphene sheets, due to thermal fluctuations, is examined via MD simulations. Finally, we have also studied the effect of sliding motion of graphene layers on the elastic constants of the nanocomposite. -- Highlights: → A hierarchical MD/FEM multiscale model of nanocomposites is developed. → At low nanofiller content, graphene layers perform significantly better than CNTs. → Ripples in the graphene layers reduce the Young modulus of nanocomposites. → The elastic moduli is considerably affected by the shear of graphene layers.

  1. Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites

    International Nuclear Information System (INIS)

    Highlights: • SWCNT and NCC can effectively improve the mechanical properties of nano-composites. • SWCNT is more effective than NCC to increase modulus and strength. • Longer NCC is more effective to improve the mechanical properties of nano-composites. • It is more economic to use NCC than SWCNT to improve mechanical properties. - Abstract: Using beam and tetrahedron elements to simulate nanocrystalline cellulose (NCC), single wall carbon nanotube (SWCNT) and polypropylene (PP), finite element method (FEM) is used to predict the mechanical properties of nano-composites. The bending, shear and torsion behaviors of nano-composites are especially investigated due to the limited amount of information in the present literature. First, mixed method (MM) and FEM are used to compare the bending stiffness of NCC/PP and SWCNT/PP composites. Second, based on mechanics of materials, the shear moduli of both types of nano-composites are obtained. Finally, fixing the number of fibers and for different volume contents, four NCC lengths are used to determine the mechanical properties of the composites. The bending and shearing performances are also compared between NCC and SWCNT based composites. In all cases, the elastic–plastic analyses are carried out and the stress or strain distributions for specific regions are also investigated. From all the results obtained, an economic analysis shows that NCC is more interesting than SWCNT to reinforce PP

  2. Analysis of Toxicity of Ceramic Nanoparticles and Functional Nanocomposites Based on Vulcanized Natural Rubber

    Directory of Open Access Journals (Sweden)

    Bellucci Felipe Silva

    2015-01-01

    Full Text Available Nanocomposites are multiphase materials of which, at least one of the phases, has a dimension smaller than 100 nm. These materials have attracted technological and scientific interest due to their multifunctional characteristics and potential, which allow them to combine unique properties which are not found in traditional commercial materials, such as natural rubber alone. The objective of this work is to analyse the toxicity of nanoparticles and nanocomposites when applied to mammal cells in order to obtain bioactive agents, as well as to evaluate the potential to be applied in biological systems. Ferroelectric ceramic nanoparticles of KSr2Nb5O15 (KSN and paramagnetic ceramic nanoparticles Ni0.5Zn0.5Fe2O4 (NZF were prepared and utilized to produce functional and multifunctional nanocomposites based on vulcanized natural rubber (NR/KSN and NR/NZF with different nanoparticle concentrations. For both kinds of nanoparticles and both classes of nanocomposites, independently of the nanoparticle concentration, it is not possible to observe any reduction of the cellular viability until the incubation time is finished. In this way, these results point to the possibility of using these nanoparticles and nanocomposites, from the toxicity point of view, as bioactivity agents in biological systems based on mammalian cells.

  3. Computational analysis of metallic nanowire-elastomer nanocomposite based strain sensors

    Science.gov (United States)

    Lee, Sangryun; Amjadi, Morteza; Pugno, Nicola; Park, Inkyu; Ryu, Seunghwa

    2015-11-01

    Possessing a strong piezoresistivity, nanocomposites of metal nanowires and elastomer have been studied extensively for its use in highly flexible, stretchable, and sensitive sensors. In this work, we analyze the working mechanism and performance of a nanocomposite based stretchable strain sensor by calculating the conductivity of the nanowire percolation network as a function of strain. We reveal that the nonlinear piezoresistivity is attributed to the topological change of percolation network, which leads to a bottleneck in the electric path. We find that, due to enhanced percolation, the linearity of the sensor improves with increasing aspect ratio or volume fraction of the nanowires at the expense of decreasing gauge factor. In addition, we show that a wide range of gauge factors (from negative to positive) can be obtained by changing the orientation distribution of nanowires. Our study suggests a way to intelligently design nanocomposite-based piezoresistive sensors for flexible and wearable devices.

  4. Computational analysis of metallic nanowire-elastomer nanocomposite based strain sensors

    Directory of Open Access Journals (Sweden)

    Sangryun Lee

    2015-11-01

    Full Text Available Possessing a strong piezoresistivity, nanocomposites of metal nanowires and elastomer have been studied extensively for its use in highly flexible, stretchable, and sensitive sensors. In this work, we analyze the working mechanism and performance of a nanocomposite based stretchable strain sensor by calculating the conductivity of the nanowire percolation network as a function of strain. We reveal that the nonlinear piezoresistivity is attributed to the topological change of percolation network, which leads to a bottleneck in the electric path. We find that, due to enhanced percolation, the linearity of the sensor improves with increasing aspect ratio or volume fraction of the nanowires at the expense of decreasing gauge factor. In addition, we show that a wide range of gauge factors (from negative to positive can be obtained by changing the orientation distribution of nanowires. Our study suggests a way to intelligently design nanocomposite-based piezoresistive sensors for flexible and wearable devices.

  5. Design of nanocomposite film-based plasmonic device for gas sensing

    Indian Academy of Sciences (India)

    Kaushik Brahmachari; Mina Ray

    2014-07-01

    Surface plasmon resonance (SPR) is a very efficient tool for chemical and biological sensing in nanotechnology, nanobiotechnology, medicine and environmental monitoring. A theoretical simulation study incorporating the use of admittance loci design methodology in SPR-based sensing device using gold-tungsten trioxide (Au-WO3−) nanocomposite film is reported in this paper. A simple Kretschmann–Raether-type prism-based plasmonic device consisting of a glass prism, Au-WO3− nanocomposite film and various gas samples is considered. Complex permittivity for both stoichiometric and non-stoichiometric Au-WO3− nanocomposite films has been used for the simulation of the admittance loci plots, resonance curves and sensitivity curves by considering angular interrogation at a fixed wavelength of 632.8 nm.

  6. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants

    International Nuclear Information System (INIS)

    The fabrication of a smart magnetically controllable bio-based polymeric nanocomposite (NC) has immense potential in the biomedical domain. In this context, magneto-thermoresponsive sunflower oil modified hyperbranched polyurethane (HBPU)/Fe3O4 NCs with different wt.% of magnetic nanoparticles (Fe3O4) were prepared by an in situ polymerization technique. Fourier-transform infrared, x-ray diffraction, vibrating sample magnetometer, scanning electron microscope, transmission electron microscope, thermal analysis and differential scanning calorimetric were used to analyze various physico-chemical structural attributes of the prepared NC. The results showed good interfacial interactions between HBPU and well-dispersed superparamagnetic Fe3O4, with an average diameter of 7.65 nm. The incorporation of Fe3O4 in HBPU significantly improved the thermo-mechanical properties along with the shape-memory behavior, antibacterial activity, biocompatibility as well as biodegradability in comparison to the pristine system. The cytocompatibility of the degraded products of the NC was also verified by in vitro hemolytic activity and MTT assay. In addition, the in vivo biocompatibility and non-immunological behavior, as tested in Wistar rats after subcutaneous implantation, show promising signs for the NC to be used as antibacterial biomaterial for biomedical device and implant applications. (paper)

  7. DIAGNOSTIC METHODS FOR SILICA-REINFORCED CARBON NANOTUBE-BASED NANOCOMPOSITES

    OpenAIRE

    ESEEV M.K.; GOSHEV A.A.; HORODEK P.; KAPUSTIN S.N.; KOBETS A.G.; OSOKIN C.S.

    2016-01-01

    This paper presents results of the experimental studies of the properties of silica-based nanocomposites with filler in the form of carbon nanotubes by dielectric relaxation and positron annihilation spectroscopy. Based on these results, techniques for diagnosis and control of the investigated materials were proposed.

  8. Advanced clay nanocomposites based on in situ photopolymerization utilizing novel polymerizable organoclays

    Science.gov (United States)

    Kim, Soon Ki

    Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol

  9. Long-term aging of a CeO2 based nanocomposite used for wood protection

    International Nuclear Information System (INIS)

    A multi-scale methodology was used to characterize the long-term behavior and chemical stability of a CeO2-based nanocomposite used as UV filter in wood stains. ATR-FTIR and 13C NMR demonstrated that the citrate coated chelates with Ce(IV) through its central carboxyl- and its α-hydroxyl- groups at the surface of the unaged nanocomposite. After 42 days under artificial daylight, the citrate completely disappeared and small amount of degradation products remained attached to the surface even after 112 days. Moreover, the release/desorption of the citrate layer led to a surface reorganization of the nano-sized CeO2 core observed by XANES (Ce L3-edge). Such a surface and structural transformation of the commercialized nanocomposite could have implications in term of fate, transport, and potential impacts towards the environment. - Highlights: • Organic coating of the nano-composite is degradated after 1.5 month. • Structural reorganization of the nano-sized CeO2 core over aging. • Potential implications in term of exposure and impact towards biological organisms. - The long-term aging of a CeO2 nanocomposite lead to surface chemistry and structural changes in aquatic environments

  10. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    International Nuclear Information System (INIS)

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  11. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    Science.gov (United States)

    Zhul'Kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L.

    2009-05-01

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  12. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    Energy Technology Data Exchange (ETDEWEB)

    Zhul' kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L., E-mail: iordan@chph.ras.ru [Russian Academy of Sciences, Semenov Institute of Chemical Physics (Russian Federation)

    2009-05-15

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  13. Preparation and characterization of magnetite-based silica nanocomposite

    Directory of Open Access Journals (Sweden)

    Popovici Mihaela

    2004-01-01

    Full Text Available Sol-gel method and successive thermal treatments in vacuum and nitrogen atmosphere were employed to synthesize magnetite nanoparticles isolate them with the aid of amorphous silica. Thermogravimetric and differential thermal analyses coupled with mass spectrometry, X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and vibrating sample magnetometry measurements were performed on the obtained nanocomposites. The effect of atmosphere on the formation of magnetite phase was remarkable.

  14. Preparation and characterization of magnetite-based silica nanocomposite

    OpenAIRE

    Popovici Mihaela; Savii Cecilia; Nižnanský Daniel; Šubrt Jan; Vecernikova Eva; Enache Corina; Ionescu Claudia

    2004-01-01

    Sol-gel method and successive thermal treatments in vacuum and nitrogen atmosphere were employed to synthesize magnetite nanoparticles isolate them with the aid of amorphous silica. Thermogravimetric and differential thermal analyses coupled with mass spectrometry, X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and vibrating sample magnetometry measurements were performed on the obtained nanocomposites. The effect of atmosphere on the formation of magnetite phase ...

  15. Carbon nanotube reinforced aluminum based nanocomposite fabricated by thermal spray forming

    Science.gov (United States)

    Laha, Tapas

    The present research concentrates on the fabrication of bulk aluminum matrix nanocomposite structures with carbon nanotube reinforcement. The objective of the work was to fabricate and characterize multi-walled carbon nanotube (MWCNT) reinforced hypereutectic Al-Si (23 wt% Si, 2 wt% Ni, 1 wt% Cu, rest Al) nanocomposite bulk structure with nanocrystalline matrix through thermal spray forming techniques viz. plasma spray forming (PSF) and high velocity oxy-fuel (HVOF) spray forming. This is the first research study, which has shown that thermal spray forming can be successfully used to synthesize carbon nanotube reinforced nanocomposites. Microstructural characterization based on quantitative microscopy, scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and X ray photoelectron spectroscopy (XPS) confirms (i) retention and macro/sub-macro level homogenous distribution of multiwalled carbon nanotubes in the Al-Si matrix and (ii) evolution of nanostructured grains in the matrix. Formation of ultrathin beta-SiC layer on MWCNT surface, due to chemical reaction of Si atoms diffusing from Al-Si alloy and C atoms from the outer walls of MWCNTs has been confirmed theoretically and experimentally. The presence of SiC layer at the interface improves the wettability and the interfacial adhesion between the MWCNT reinforcement and the Al-Si matrix. Sintering of the as-sprayed nanocomposites was carried out in an inert environment for further densification. As-sprayed PSF nanocomposite showed lower microhardness compared to HVOF, due to the higher porosity content and lower residual stress. The hardness of the nanocomposites increased with sintering time due to effective pore removal. Uniaxial tensile test on CNT-bulk nanocomposite was carried out, which is the first ever study of such nature. The tensile test results showed inconsistency in the data attributed to inhomogeneous

  16. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  17. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Lee-Chun eSu

    2014-07-01

    Full Text Available Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate (POC showed approximately 70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers (CUPEs and biodegradable photoluminescent polymers (BPLPs also exhibited significant bacteria reduction of ~20% and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that they are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  18. Novel Epoxy Resin/SiO2 Nanocomposites Preparation Method Based on Diminutive Bubbles Explosion

    Institute of Scientific and Technical Information of China (English)

    NIE Peng; ZHAO Xue-zeng; CHEN Fang; WANG Wei-jie; BAI Yong-ping

    2006-01-01

    To obtain suspended dispersion of nano-particles in liquid without any dispersant, a novel epoxy resin/SiO2 nanocomposites preparation method based on diminutive bubbles explosion is presented. And, corresponding nanocomposites preparation system was designed. The preparation system applies compressed gas as transmission medium to carry nanomaterials into epoxy resin solution. The compressed gas with nanomaterials turns into diminutive bubbles distributing in epoxy resin/SiO2. The great pressure difference between inner and outer-bubbles led to bubbles inflation and explosion. During the bubble inflation, bubble oscillation may generate. The stretching rate may reach 106 s-1, which favors more homogeneous dispersion of nanoparticles. During the bubbles explosion the released energy and the explosion shock waves disperse the nanoparticles into epoxy resin solution. By using the preparation system, epoxy resin/SiO2 nanocomposites were prepared. The SiO2 dispersed into epoxy as the configuration of 15 nm - 30 nm particles.

  19. Synthesis and characterization of graphene-based nanocomposites with potential use for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Nuvoli, Daniele; Alzari, Valeria; Sanna, Roberta; Scognamillo, Sergio [Universita di Sassari, Local INSTM Unit, Dipartimento di Chimica e Farmacia (Italy); Alongi, Jenny; Malucelli, Giulio, E-mail: giulio.malucelli@polito.it [Politecnico di Torino, sede di Alessandria, Local INSTM Unit, Dipartimento di Scienza Applicata e Tecnologia (Italy); Mariani, Alberto, E-mail: mariani@uniss.it [Universita di Sassari, Local INSTM Unit, Dipartimento di Chimica e Farmacia (Italy)

    2013-03-15

    In the present study, graphene-based nanocomposites containing different amounts of nanofiller dispersed into Bis-GMA/tetraethyleneglycol diacrylate (Bis-GMA/TEGDA) polymer matrix have been prepared. In particular, the graphene dispersions, produced at high concentration (up to 6 mg/ml) by simple sonication of graphite in TEGDA monomer, have been used for the direct preparation of nanocomposite copolymers with Bis-GMA. The morphology of the obtained nanocomposites has been investigated as well as their thermal and mechanical properties. SEM analyses have clearly shown that graphene deeply interacts with the polymer matrix, thus resulting in a reinforcing effect on the material as proved by compression and hardness tests; at variance, graphene does not seem to affect the glass transition temperature of the obtained polymer networks.

  20. Poly(lactic acid) (PLA) based nanocomposites-a novel way of drug-releasing

    International Nuclear Information System (INIS)

    In this communication, poly(lactic acid) nanofibers have been fabricated by electrospinning and then poly(lactic acid) (PLA) based nanocomposites have been prepared by accumulating anticancer drug daunorubicin on PLA nanofibers combined with TiO2 nanoparticles. Our atomic force microscopy (AFM) and laser-scanning confocal microscope (LSCM) studies demonstrate that the respective drug molecules could be readily self-assembled on the surface of the blends of nano-TiO2 with PLA polymer nanocomposites, which could further efficiently facilitate the drug permeation and accumulation on the target leukemia K562 cells. Besides, the respective new nanocomposites have good biocompatibility, ease of surface chemistry modification and very high surface area, which may afford the possibility for their promising application in pharmacology and biomedical engineering areas. (communication)

  1. Fabrication and Characterization of Graphene/Graphene Oxide-Based Poly(vinyl alcohol) Nanocomposite Membranes

    Science.gov (United States)

    Hieu, Nguyen Huu; Long, Nguyen Huynh Bach Son; Kieu, Dang Thi Minh; Nhiem, Ly Tan

    2016-05-01

    Graphene (GE)- or graphene oxide (GO)-based poly(vinyl alcohol) (PVA) nanocomposite membranes have been prepared by the solution blending method. Raman spectra and atomic force microscopy images confirmed that GE and GO were synthesized with average thickness of 0.901 nm and 0.997 nm, respectively. X-ray diffraction patterns indicated good exfoliation of GE or GO in the PVA matrix. Fourier-transform infrared spectra revealed the chemical fractions of the nanocomposite membranes. Differential scanning calorimetry results proved that the thermal stability of the nanocomposite membranes was enhanced compared with neat PVA membrane. Transmission electron microscopy images revealed good dispersion of GE or GO sheets in the PVA matrix with thickness in the range of 19 nm to 39 nm. As a result, good compatibility between GE or GO and PVA was obtained at 0.5 wt.% filler content.

  2. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. PMID:21945787

  3. Catalytic and capacity properties of nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers

    Institute of Scientific and Technical Information of China (English)

    Olga Yu. Podyacheva; Andrei I. Stadnichenko; Svetlana A. Yashnik; Olga A. Stonkus; Elena M. Slavinskaya; Andrei I. Boronin; Andrei V. Puzynin; Zinfer R. Ismagilov

    2014-01-01

    The nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers (N-CNFs) with cobalt oxide contents of 10-90 wt%were examined as catalysts in the CO oxidation and superca-pacity electrodes. Depending on Со3О4 content, such nanocomposites have different morphologies of cobalt oxide nanoparticles, distributions over the bulk, and ratios of Со3+/Co2+ cations. The 90%Со3О4-N-CNFs nanocomposite showed the best activity because of the increased concentration of defects in N-CNFs. The capacitance of electrodes containing 10%Со3О4-N-CNFs was 95 F/g, which is 1.7 times higher than electrodes made from N-CNFs.

  4. Characterization and Modeling of Segmental Dynamics in Silicone Based Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R S; Baumann, T; Gee, R; Maiti, A; Patel, M; Lewicki, J

    2009-03-27

    content on a number of silicone based nanocomposite systems. This data is providing improved insight into the structural contributions to the changes in segmental dynamics. Here we provide an overview of our ongoing work toward understanding the influence of the network structure on the physical and chemical properties of advanced composite elastomers, including material performance in severe environments (high temperature, high strains, high radiation fluxes).

  5. Study on Moulding Technology of Starch-Based Totally-Biodegradable Plastic Products

    Institute of Scientific and Technical Information of China (English)

    MATaoLIUChang-jiang

    2005-01-01

    Based on monofactorial comparison experiment, the following two excellent technological formations are derived for the production of starch-based totally-biodegradable tray via extruding, pelleting,slicing, and sucking molding: The first formulation: 40% of starch, 12.5% of DOP, 5% of EVA, 15% of polyvinyl alcohol, 20%of talc power and calcium carbonate, and 7.5 % of other materials. The material temperature in high-speed kneader is about 90℃, rotation velocity is 600 r/min, kneading duration is 5-10 minutes, diameter of screw stem of extruder is 90 ram, ratio of length versus diameter of screw stem (L/D) is 44, rotation velocity of the screws stem is 40-50 r/min. Temperature in four segments of extruder is 145 ℃, 155℃,150℃, and 160℃ respectively, and temperature in extruder head is 170℃ ; the material rod extruded is set while passing a cold water hath, and then is cut to pellets whose size is 3 mm×3 mm; the latter is transformed into slices and subject to sucking molding after predrying; temperature of sucking molding is 180-190℃, and sucking molding duration is 15-20 seconds. The second formulation: 60% of starch, 15% of DOP, 5% of PFIB, 15% of polyvinyl alcohol, and 5% of other materials. All technological parameters are the same with that for the first formulation. According to the test result of Chinese Institute of Plastic Processing, the biodegradation ratio of the tray made through the above treatment 1 and 2 in 30 days amounted to 54.2 % and 70.6% respectively,which shows that a satisfied biodegradation effect is realized.

  6. Study on Moulding Technology of Starch-Based Totally-Biodegradable Plastic Products

    Institute of Scientific and Technical Information of China (English)

    MA Tao; LIU Chang-jiang

    2005-01-01

    Based on monofactorial comparison experiment,the following two excellent technological formations are derived for the production of starch-based totally-biodegradable tray via extruding,pelleting,slicing,and sucking molding:The first formulation:40% of starch,12.5% of DOP,5% of EVA,15% of polyvinyl alcohol,20%of talc power and calcium carbonate,and 7.5% of other materials. The material temperature in high-speed kneader is about 90℃,rotation velocity is 600 r/min,kneading duration is 5 ~ 10 minutes,diameter of screw stem of extruder is 90 mm,ratio of length versus diameter of screw stem (L/D) is 44,rotation velocity of the screws stem is 40 ~ 50 r/min. Temperature in four segments of extruder is 145 ℃,155 ℃,150℃,and 160 ℃ respectively,and temperature in extruder head is 170 ℃; the material rod extruded is set while passing a cold water bath,and then is cut to pellets whose size is 3 mm × 3 mm; the latter is transformed into slices and subject to sucking molding after predrying; temperature of sucking molding is 180~190 ℃,and sucking molding duration is 15~20 seconds.The second formulation:60% of starch,15% of DOP,5% of PHB,15% of polyvinyl alcohol,and 5 % of other materials. All technological parameters are the same with that for the first formulation.According to the test result of Chinese Institute of Plastic Processing,the biodegradation ratio of the tray made through the above treatment 1 and 2 in 30 days amounted to 54.2 % and 70.6 % respectively,which shows that a satisfied biodegradation effect is realized.

  7. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS).

    Science.gov (United States)

    Ceseracciu, Luca; Heredia-Guerrero, José Alejandro; Dante, Silvia; Athanassiou, Athanassia; Bayer, Ilker S

    2015-02-18

    Designing starch-based biopolymers and biodegradable composites with durable mechanical properties and good resistance to water is still a challenging task. Although thermoplastic (destructured) starch has emerged as an alternative to petroleum-based polymers, its poor dimensional stability under humid and dry conditions extensively hinders its use as the biopolymer of choice in many applications. Unmodified starch granules, on the other hand, suffer from incompatibility, poor dispersion, and phase separation issues when compounded into other thermoplastics above a concentration level of 5%. Herein, we present a facile biodegradable elastomer preparation method by incorporating large amounts of unmodified corn starch, exceeding 80% by volume, in acetoxy-polyorganosiloxane thermosets to produce mechanically robust, hydrophobic bioelastomers. The naturally adsorbed moisture on the surface of starch enables autocatalytic rapid hydrolysis of polyorganosiloxane to form Si-O-Si networks. Depending on the amount of starch granules, the mechanical properties of the bioelastomers can be easily tuned with high elastic recovery rates. Moreover, starch granules considerably lowered the surface friction coefficient of the polyorganosiloxane network. Stress relaxation measurements indicated that the bioelastomers have strain energy dissipation factors that are lower than those of conventional rubbers, rendering them as promising green substitutes for plastic mechanical energy dampeners. Corn starch granules also have excellent compatibility with addition-cured polysiloxane chemistry that is used extensively in microfabrication. Regardless of the starch concentration, all of the developed bioelastomers have hydrophobic surfaces with lower friction coefficients and much less water uptake capacity than those of thermoplastic starch. The bioelastomers are biocompatible and are estimated to biodegrade in Mediterranean seawater within three to six years. PMID:25622232

  8. Cellulose-Based Bio- and Nanocomposites: A Review

    Directory of Open Access Journals (Sweden)

    Susheel Kalia

    2011-01-01

    Full Text Available Cellulose macro- and nanofibers have gained increasing attention due to the high strength and stiffness, biodegradability and renewability, and their production and application in development of composites. Application of cellulose nanofibers for the development of composites is a relatively new research area. Cellulose macro- and nanofibers can be used as reinforcement in composite materials because of enhanced mechanical, thermal, and biodegradation properties of composites. Cellulose fibers are hydrophilic in nature, so it becomes necessary to increase their surface roughness for the development of composites with enhanced properties. In the present paper, we have reviewed the surface modification of cellulose fibers by various methods. Processing methods, properties, and various applications of nanocellulose and cellulosic composites are also discussed in this paper.

  9. Nanocomposite polymer electrolytes based on poly(oxyethylene and cellulose whiskers

    Directory of Open Access Journals (Sweden)

    My Ahmed Saïd Azizi Samir

    2005-06-01

    Full Text Available Solid lithium-conducting nanocomposite polymer electrolytes based on poly(oxyethylene (POE were prepared from high aspect ratio cellulosic whiskers and lithium imide salt, LiTFSI. The cellulosic whiskers were extracted from tunicate -a sea animal- and consisted of slender parallelepiped rods that have an average length around 1 µm and a width close to 15 nm. High performance nanocomposite electrolytes were obtained. The filler provided a high reinforcing effect while a high level of ionic conductivity was retained with respect to unfilled polymer electrolytes. Cross-linking and plasticizing of the matrix as well as preparation of the composites from an organic medium were also investigated.

  10. Process modeling of conductivity in nanocomposites based on reticulated polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    The dependences of electric conductivities of thermosetting polymer nanocomposites based on epoxy polymer and polycyanurate filled by carbon nanotubes were investigated. Low values of percolation threshold at volume fraction of carbon nanotubes from 0.001 to 0.002 were observed for all samples.Absolute values of the percolation threshold are in good agreement with the results of mathematical modeling. It is established that electrical properties of thermosetting polymer nanocomposites can be characterized in the frame of the same theoretical model despite difference in polymers properties

  11. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    Science.gov (United States)

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials. PMID:24758045

  12. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation.

    Science.gov (United States)

    Borreani, Giorgio; Tabacco, Ernesto

    2015-01-01

    The research was aimed at studying whether the polyethylene (PE) film currently used to cover maize silage could be replaced with bio-based biodegradable films, and at determining the effects on the fermentative and microbiological quality of the resulting silages in laboratory silo conditions. Biodegradable plastic film made in 2 different formulations, MB1 and MB2, was compared with a conventional 120-μm-thick PE film. A whole maize crop was chopped; ensiled in MB1, MB2, and PE plastic bags, 12.5kg of fresh weight per bag; and opened after 170d of conservation. At silo opening, the microbial and fermentative quality of the silage was analyzed in the uppermost layer (0 to 50mm from the surface) and in the whole mass of the silo. All the silages were well fermented with little differences in fermentative quality between the treatments, although differences in the mold count and aerobic stability were observed in trial 1 for the MB1 silage. These results have shown the possibility of successfully developing a biodegradable cover for silage for up to 6mo after ensiling. The MB2 film allowed a good silage quality to be obtained even in the uppermost part of the silage close to the plastic film up to 170d of conservation, with similar results to those obtained with the PE film. The promising results of this experiment indicate that the development of new degradable materials to cover silage till 6mo after ensiling could be possible. PMID:25468689

  13. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium

    NARCIS (Netherlands)

    Kubacka, A.; Suarez Diez, M.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Martins Dos Santos, V.A.P.; Fernández-García, M.; Ferrer, M.

    2014-01-01

    Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose radical-media

  14. Dynamic melt flow of nanocomposites based on poly-epsilon-caprolactam

    DEFF Research Database (Denmark)

    Utracki, Leszek; Lyngaae-Jørgensen, Jørgen

    2002-01-01

    The dynamic flow behavior of polyamide-6 (PA-6) and a nanocomposite (PNC) based on it was studied. The latter resin contained 2 wt% of organoclay. The two materials were blended in proportions of 0, 25, 50, 75, and 100 wt% PNC. The dynamic shear rheological properties of well-dried specimens were...

  15. Microstructural characterization of Mg-based bulk metallic glass and nanocomposite

    International Nuclear Information System (INIS)

    New magnesium-based bulk metallic glasses Mg60Cu30Y10 have been prepared by pressure casting. Glassy alloys were successfully annealed to become nanocomposite containing 200 nm crystallites in an amorphous matrix. The microstructure of bulk glassy alloy and nanocomposite obtained during heat treatment was examined by X-ray diffraction and scanning and high-resolution electron microscopy. Metallic glass has been also studied to explain the structural characteristics by the reverse Monte Carlo (RMC) modeling based on the diffraction data. The HRTEM images allow to indicate some medium-range order (MRO) regions about 2–3 nm in size and formation of local atomic clusters. The RMC modeling results confirmed some kinds of short range order (SRO) structures. It was found that the structure of bulk metallic glass formed by the pressure casting is homogeneous. The composite material contained very small particles in the amorphous matrix. Homogeneous glassy alloy had better corrosion resistance than a composite containing nanocrystalline particles in a glassy matrix. - Highlights: • RMC modeling demonstrates some kinds of SRO structures in Mg-based BMGs. • HRTEM indicated MRO regions about 2–3 nm and SRO regions about 0.5 nm in size. • Mg-based glassy alloys were successfully annealed to become nanocomposite material. • Crystalline particles have spherical morphology with an average diameter of 200 nm. • Glassy alloy had higher corrosion resistance than a nanocomposite sample

  16. Amperometric hydrogen peroxide biosensor based on cobalt ferrite–chitosan nanocomposite

    International Nuclear Information System (INIS)

    A novel H2O2 biosensor based on horseradish peroxidase (HRP) immobilized into CoFe2O4–chitosan nanocomposite has been developed for the detection of hydrogen peroxide. The nanocomposite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). HRP has been entrapped into CoFe2O4–chitosan nanocomposite film and the immobilized enzyme could retain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogen peroxide. The linear range for H2O2 determination was from 3 × 10−2 to 8 mM, with a detection limit of 2 × 10−3 mM based on S/N = 3. The response time of the biosensor was 4 s. The effects of the pH and the temperature of the immobilized HRP electrode were also studied. - Highlights: ► HRP biosensor based on CoFe2O4–chitosan nanocomposite has been developed for H2O2 detection. ► The biosensor seems to be simple to prepare, fast to respond, inexpensive and sensitive. ► The biosensor had high sensitivity, good repeatability, reusability and long term stability.

  17. Amperometric hydrogen peroxide biosensor based on cobalt ferrite-chitosan nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Yard Latin-Small-Letter-Dotless-I mc Latin-Small-Letter-Dotless-I , Feyza S.; Senel, Mehmet, E-mail: msenel@fatih.edu.tr; Baykal, Abduelhadi

    2012-02-01

    A novel H{sub 2}O{sub 2} biosensor based on horseradish peroxidase (HRP) immobilized into CoFe{sub 2}O{sub 4}-chitosan nanocomposite has been developed for the detection of hydrogen peroxide. The nanocomposite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). HRP has been entrapped into CoFe{sub 2}O{sub 4}-chitosan nanocomposite film and the immobilized enzyme could retain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogen peroxide. The linear range for H{sub 2}O{sub 2} determination was from 3 Multiplication-Sign 10{sup -2} to 8 mM, with a detection limit of 2 Multiplication-Sign 10{sup -3} mM based on S/N = 3. The response time of the biosensor was 4 s. The effects of the pH and the temperature of the immobilized HRP electrode were also studied. - Highlights: Black-Right-Pointing-Pointer HRP biosensor based on CoFe{sub 2}O{sub 4}-chitosan nanocomposite has been developed for H{sub 2}O{sub 2} detection. Black-Right-Pointing-Pointer The biosensor seems to be simple to prepare, fast to respond, inexpensive and sensitive. Black-Right-Pointing-Pointer The biosensor had high sensitivity, good repeatability, reusability and long term stability.

  18. High performances unsaturated polyester based nanocomposites: Effect of vinyl modified nanosilica on mechanical properties

    Directory of Open Access Journals (Sweden)

    J. D. Rusmirovic

    2016-02-01

    Full Text Available Influences of the vinyl modified nanosilica Aerosil® 380, i.e./i>, vinyl and methacryloyl silane coupling agent and linseed oil fatty acids (BD reactive residues, on the mechanical properties of the unsaturated polyester resins (UPes based nanocomposites, was studied. The polycondensation of maleic anhydride and products of poly(ethylene terephthalate (PET depolymerization with propylene glycol, with and without separation of ethylene glycol, yields UPe1 and UPe2 resin, respectively. The hydroxyl terminated PET depolymerization products (glycolyzates and UPes were characterized by acid and hydroxyl values, Fourier Transform Infrared (FTIR and nuclear magneti resonance (NMR spectroscopies. Transmission electron microscopy (TEM confirmed that silica nanoparticles formed domains of aggregates in the polymer matrix. An increase from 195 to 247% of stress at break (σb, and from 109 to 131% of impact strength (σi of UPes based nanocomposites was obtained for 1 wt% addition of vinyl modified silica. Flexural strength (σf increase from 106 to 156% for both UPes based nanocomposites with 1 wt% addition of BD modified silica. Cross-linking density (ν, storage modulus (G', tanδ and Tg of the nanocomposite were determined from the dynamic mechanical testing and discussed in relation to the structure of silica modification.

  19. Tribological Properties of Graphene-based Fe3O4 Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    QIAO Yu-Lin, ZHAO Hai-Chao, ZANG Yan, ZHANG Qing

    2015-01-01

    Full Text Available Graphene-based Fe3O4 nanocomposite materials were prepared by the melthod of Liquid-phase Ultrasonic Exfoliation. Morphologies of nanocomposite materials were characterized by means of SEM and TEM. Its tribological properties as a pure water additive were investigated using multi-functional reciprocating friction and wear tester. The lubrication mechanism was discussed based on results of analyses of SEM, XPS. The results showed that the Fe3O4 nanoparticles with size of 20­90 nm were densely and randomly deposited on interlamination and surface of graphene sheets. The nanocomposite materials as a pure water additive displayed good friction-reducing and antiwear performance. Compared with pure water, the graphene-based Fe3O4 nanocomposite could reduce the friction coefficient of 26.7% and the wear mass of 35.4% under condition of 10 N of load and 0.01wt% of concentration. The prosperity was attributed to the effect of adsorption membrane and boundary lubrication film containing graphene and Fe3O4 which inhibited oxidation of Fe and reduced wear on the frictional surface.

  20. DC current in nanosilica-based polyethylene nanocomposites

    OpenAIRE

    Wang, Yan; Xu, Zhiqiang; Chen, George; Vaughan, Alun

    2015-01-01

    In the present paper, DC current of polyethylene nanocomposites containing different nanosilica loading ratios, either the untreated or the surface treated using the trimethoxy(propyl)silane coupling agent has been investigated. TGA was used to identify the true loading concentration in the samples and the nanofillers dispersion was studied using SEM. A range of electric field from 10 kV/mm to 50 kV/mm were applied It has been found that two dynamic processes are involved in the current obser...

  1. Two-dimensional nanocomposites based on tungsten oxide nanoplates and graphene nanosheets for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Well-defined nanocomposite electrodes based on active materials and graphene have been known to hold improved lithium ion reaction properties such as the lithium ion insertion/desertion reaction, cycle life, and high rate performance. Here, we report two-dimensional nanocomposites consisting of WO3 nanoplates and graphene nanosheets (GNS) using a hydrothermal method and heating process for use in high-performance lithium ion batteries. A compilation of the data from XRD, SEM, and TEM suggests that the nanocomposites consist of high crystalline WO3 nanoplates and GNS. The capacity and high rate cycling performance of the nanocomposites as an anode for lithium ion batteries are evaluated using coin cells. The nanocomposite electrode with an optimized amount of GNS exhibits high reversible capacity, good capacity retention, and excellent high rate cycling performance

  2. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties.

    Science.gov (United States)

    Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata

    2016-07-01

    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups. PMID:27045632

  3. Controlled release profiles of dipyridamole from biodegradable microspheres on the base of poly(3-hydroxybutyrate.

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Novel biodegradable microspheres on the base of poly(3-hydroxybutyrate (PHB designed for controlled release of antithrombotic drug, namely dipyridamole (DPD, have been kinetically studied. The profiles of release from the microspheres with different diameters 4, 9, 63, and 92 µm present the progression of nonlinear and linear stages. Diffusionkinetic equation describing both linear (PHB hydrolysis and nonlinear (diffusion stages of the DPD release profiles from the spherical subjects has been written down as the sum of two terms: desorption from the homogeneous sphere in accordance with diffusion mechanism and the zero-order release. In contrast to the diffusivity dependence on microsphere size, the constant characteristics (k of linearity are scarcely affected by the diameter of PHB microparticles. The view of the kinetic profiles as well as the low rate of DPD release are in satisfactory agreement with kinetics of weight loss measured in vitro for the PHB films. Taking into account kinetic results, we suppose that the degradation of both films and PHB microspheres is responsible for the linear stage of DPD release profiles. In the nearest future, combination of biodegradable PHB and DPD as a representative of proliferation cell inhibitors will give possibility to elaborate the novel injectable therapeutic system for a local, long-term, antiproliferative action.

  4. A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions.

    Science.gov (United States)

    Huang, Zhanhua; Wu, Qinglin; Liu, Shouxin; Liu, Tian; Zhang, Bin

    2013-09-12

    A novel biodegradable β-cyclodextrin-based gel (CAM) was prepared and applied to the removal of Cd(2+), Pb(2+) and Cu(2+) ions from aqueous solutions. CAM hydrogel has a typical three-dimensional network structure, and showed excellent capability for the removal of heavy metal ions. The effect of different experimental parameters, such as initial pH, adsorbent dosage and initial metal ion concentration, were investigated. The adsorption isotherm data fitted well to the Freundlich model. The adsorption capacity was in the order Pb(2+)>Cu(2+)>Cd(2+) under the same experimental conditions. The maximum adsorption capacities for the metal ions in terms of mg/g of dry gel were 210.6 for Pb(2+), 116.41 for Cu(2+), and 98.88 for Cd(2+). The biodegradation efficiency of the resin reached 79.4% for Gloeophyllum trabeum. The high adsorption capacity and kinetics results indicate that CAM can be used as an alternative adsorbent to remove heavy metals from aqueous solution. PMID:23911476

  5. Study of ink paper sensor based on aluminum/carbon nanotubes agglomerated nanocomposites.

    Science.gov (United States)

    dos Reis, Marcos A L; Saraiva, Augusto F; Vieira, Manuel F G; Del Nero, Jordan

    2012-09-01

    Agglomerated nanocomposites based on Aluminum/Carbon Nanotubes (AI/CNT) were produced by an arc discharge technique under argon/acetone atmosphere and ultrasonically dispersed in distilled water to form an ink-like composite. This ink was spread onto commercial paper to produce a conductive thick film. Experimental results show that the electrical resistance of Al/CNT nanocomposite on paper changes when a mechanical stress and/or heat is applied. The multi-sensory properties obtained are the following: (i) piezoresistive effect, electrical resistance shows linear dependence with pressure intensity at room temperature; (ii) polynomial relationship between electrical resistance and temperature; and (iii) high accuracy thermal sensor compared to a K type thermocouple at 25 degrees C. The nanocomposite and paper morphology was analyzed by Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM/EDS) and a favorable surface for physisorption was observed. Transmission Electron Microscopy (TEM) was utilized for Al/CNT agglomerated indicating that the ink paper based on nanocomposite shows good performance as a thermo-piezoresistive sensor. PMID:23035420

  6. Functional features of the nanocomposites, based on CNT

    Directory of Open Access Journals (Sweden)

    R.R. Abdrakhimov

    2015-10-01

    Full Text Available This article includes working out and trial of technological process of manufacturing functional nanocomposite on the basis of the epoxy resin and multiwall carbon nanotubes (CNT of the Taunit-MD type. We discuss two advanced variants of implementing this nanocomposite: first of them - increasing strength of fiber composite material; second - using acquired material electric conductivity for determining temperature and pressure (deformation changes. Material was prepared by means of a planetary mixer and ceramic grinding bodies. We performed dispersion quality analysis by means of an atomic-force microscope. This analysis demonstrated uniform distribution of the nanoparticles over the solidified material surface. Strength analysis result allowed obtaining data on material and matrix modulus of elasticity and strength changing. Material electric conductivity study allowed obtaining coefficients of thermo- and pressure sensitivity for sensors with different orientation of carbon nanotubes with weight content of 1%, 2%, and 3%. Performed study data demonstrate potential of using CNT as conductive particles in composite unit, allowing, for example, perform monitoring of the structure condition.

  7. Multiscale modeling of polymer nanocomposites

    Science.gov (United States)

    Sheidaei, Azadeh

    In recent years, polymer nano-composites (PNCs) have increasingly gained more attention due to their improved mechanical, barrier, thermal, optical, electrical and biodegradable properties in comparison with the conventional micro-composites or pristine polymer. With a modest addition of nanoparticles (usually less than 5wt. %), PNCs offer a wide range of improvements in moduli, strength, heat resistance, biodegradability, as well as decrease in gas permeability and flammability. Although PNCs offer enormous opportunities to design novel material systems, development of an effective numerical modeling approach to predict their properties based on their complex multi-phase and multiscale structure is still at an early stage. Developing a computational framework to predict the mechanical properties of PNC is the focus of this dissertation. A computational framework has been developed to predict mechanical properties of polymer nano-composites. In chapter 1, a microstructure inspired material model has been developed based on statistical technique and this technique has been used to reconstruct the microstructure of Halloysite nanotube (HNT) polypropylene composite. This technique also has been used to reconstruct exfoliated Graphene nanoplatelet (xGnP) polymer composite. The model was able to successfully predict the material behavior obtained from experiment. Chapter 2 is the summary of the experimental work to support the numerical work. First, different processing techniques to make the polymer nanocomposites have been reviewed. Among them, melt extrusion followed by injection molding was used to manufacture high density polyethylene (HDPE)---xGnP nanocomposties. Scanning electron microscopy (SEM) also was performed to determine particle size and distribution and to examine fracture surfaces. Particle size was measured from these images and has been used for calculating the probability density function for GNPs in chapter 1. A series of nanoindentation tests have

  8. Preparation and characterization of crosslinked poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites by electron beam irradiation

    International Nuclear Information System (INIS)

    Highlights: ► The homogenously-mixed PCL/POSS nanocomposites were prepared by solution blending. ► The crosslinking of the nanocomposites was conducted by electron beam irradiation. ► The crosslinked nanocomposites showed the improved mechanical and thermal properties. ► This technique is useful to fabricate high-performance polymer nanocomposites. - Abstract: Crosslinked poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane (PCL/POSS) nanocomposite films prepared by a solution casting were crosslinked by electron beam irradiation under various conditions. The results of the crosslinking degree measurement revealed that the crosslinking degree of the PCL/POSS nanocomposites reached to 74%, which depended on the POSS content and the absorbed dose. The results of the FE–SEM and EDX analyses revealed that the POSS was homogeneously dispersed in the PCL matrix. In comparison to the virgin PCL with a tensile strength of 20 MPa, the tensile strength of the crosslinked PCL/POSS nanocomposites increased to 25.8 MPa with an increasing POSS content and absorbed dose to 100 kGy, whereas their elongation-at-break was considerably reduced. The results of the dynamic mechanical analysis revealed that the crosslinked PCL/POSS nanocomposites had a higher heat resistance than the virgin PCL. Based on the results of the enzymatic degradation test, the biodegradability of the crosslinked PCL/POSS nanocomposites was significantly reduced in comparison to that of the virgin PCL.

  9. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers

    Directory of Open Access Journals (Sweden)

    Shinji Ochi

    2011-02-01

    Full Text Available The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms.

  10. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    Science.gov (United States)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  11. Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer

    OpenAIRE

    Tianwen Yuan; Jia Yu; Jun Cao; Fei Gao; Yueqi Zhu; Yingsheng Cheng; Wenguo Cui

    2016-01-01

    Esophageal stent implantation can relieve esophageal stenosis and obstructions in benign esophageal strictures, and magnesium alloy stents are a good candidate because of biodegradation and biological safety. However, biodegradable esophageal stents show a poor corrosion resistance and a quick loss of mechanical support in vivo. In this study, we chose the elastic and biodegradable mixed polymer of Poly(ε-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) as the coated membrane on ma...

  12. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. PMID:23827538

  13. Synthesis and Properties of Magnetically Operated Nanocomposites Based on Transition Metals Oxides

    Directory of Open Access Journals (Sweden)

    Lyudmyla STOROZHUK

    2013-03-01

    Full Text Available Technique for synthesis magnetically operated nanocomposites based on transition metals oxides (MeFe2O4, Me = Fe2+, Ni2+, Co2+ with biologically compatible coating (SiO2x were developed and optimized. Tetraethoxysilane (TEOS and sodium silicate were used as precursors for formation of SiO2 onto surface of magnetic component. Content of SiO2 in nanocomposite surface layer were adjusted from 0.1 g to 1.0 g for 1.0 g of magnetic component. Structure of the obtained nanocomposites was studied using XRD method, electron microscopy and IR-Fourier spectroscopy. Influence of adsorbents composition on their magnetic properties was studied using vibration magnetometer. It was shown that values of specific magnetization at saturation for nanocomposites containing 0.2 g of non-magnetic component per 1 g of magnetic component corresponds to the typical values of pure magnetic phase. With increasing of content of non-magnetic components a decrease of specific magnetization at saturation was revealed.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3818

  14. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Annamaria Panniello

    2014-01-01

    Full Text Available Polymeric ionic liquids (PILs are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites.

  15. Development of multifunctional fluoroelastomers based on nanocomposites; Desenvolvimento de elastomeros fluorados multifuncionais baseados em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Zen, Heloisa Augusto

    2015-07-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  16. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin; Zhang, Aidong; Du, Dan; Lin, Yuehe

    2012-07-13

    We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe3+ and [Fe(CN)6]3 in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicating the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos. These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.

  17. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    International Nuclear Information System (INIS)

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H2SO4/H3PO4 and KMnO4 based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors

  18. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    Science.gov (United States)

    Maio, A.; Fucarino, R.; Khatibi, R.; Botta, L.; Rosselli, S.; Bruno, M.; Scaffaro, R.

    2014-05-01

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H2SO4/H3PO4 and KMnO4 based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

  19. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Maio, A. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo, Italy and STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans (Italy); Fucarino, R.; Khatibi, R. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Botta, L.; Scaffaro, R. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Rosselli, S.; Bruno, M. [STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans II, 90128 Palermo (Italy)

    2014-05-15

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

  20. Mathematical Simulation of Temperature Profiles within Microwave Heated Wood Made for Wood-Based Nanocomposites

    OpenAIRE

    Xianjun Li; Yongfeng Luo; Hongbin Chen; Xia He; Jianxiong Lv; Yiqiang Wu

    2013-01-01

    High intensive microwave pretreatment is a new method to modify wood for the fabrication of wood-based nanocomposites. Based on the physical law on heat transfer, a mathematical model to describe the temperature profiles within wood heated by high intensive microwave was established and simulated in this research. The results showed that the temperature profiles within wood were related to microwave heating methods; The temperature inside wood firstly increased and then gradually decreased al...

  1. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins

    NARCIS (Netherlands)

    Seck, Tetsu M.; Melchels, Ferry P. W.; Feijen, Jan; Grijpma, Dirk W.

    2010-01-01

    Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photo-polymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibi

  2. Sorption kinetics and microbial biodegradation activity of hydrophobic chemicals in sewage sludge: Model and measurements based on free concentrations

    NARCIS (Netherlands)

    Artola-Garicano, E.; Borkent, I.; Damen, K.; Jager, T.; Vaes, W.H.J.

    2003-01-01

    In the current study, a new method is introduced with which the rate-limiting factor of biodegradation processes of hydrophobic chemicals in organic and aqueous systems can be determined. The novelty of this approach lies in the combination of a free concentration-based kinetic model with measuremen

  3. BisGMA-polyvinylpyrrolidone blend based nanocomposites reinforced with chitosan grafted f-multiwalled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    A. Praharaj

    2015-01-01

    Full Text Available In this work, initially a non-destroyable surface grafting of acid functionalized multiwalled carbon nanotubes (f-MWCNTs with biopolymer chitosan (CS was carried out using glutaraldehyde as a cross-linking agent via the controlled covalent deposition method which was characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Then, BisGMA (bisphenol-A glycidyldimethacrylate-polyvinylpyrrolidone (PVP blend was prepared (50:50 wt% by a simple sonication method. The CS grafted f-MWCNTs (CS/f-MWCNTs were finally dispersed in BisGMA-PVP blend (BGP50 system in different compositions i.e. 0, 2, 5 and 7 wt% and pressed into molds for the fabrication of reinforced nanocomposites which were characterized by SEM. Nanocomposites reinforced with 2 wt% raw MWCNTs and acid f-MWCNTs were also fabricated and their properties were studied in detail. The results of comparative study report lower values of the investigated properties in nanocomposites with 2 wt% raw and f-MWCNTs than the one with 2 wt% CS/f-MWCNTs proving it to be a better reinforcing nanofiller. Further, the mechanical behavior of the nanocomposites with various CS/f-MWCNTs content showed a dramatic increase in Young’s Modulus, tensile strength, impact strength and hardness along with improved dynamic mechanical, thermal and electrical properties at 5 wt% content of CS/f-MWCNTs. The addition of CS/f-MWCNTs also resulted in reduced corrosion and swelling properties. Thus, the fabricated nanocomposites with optimum nanofiller content could serve as low cost and light weight structural, thermal and electrical materials compatible in various corrosive and solvent based environments.

  4. Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions

    Science.gov (United States)

    Mittal, Hemant; Maity, Arjun; Ray, Suprakas Sinha

    2016-02-01

    Biodegradable hydrogel nanocomposites (HNC) of gum karaya (GK) grafted with poly(acrylic acid) (PAA) incorporated silicon carbide nanoparticles (SiC NPs) were synthesized using the in situ graft copolymerization method and tested for the adsorption of cationic dyes from aqueous solution. The structure and morphology of the HNC were characterized using different spectroscopic and microscopic techniques. The results showed that the surface area and porosity of the hydrogel polymer significantly increased after nanocomposite formation with SiC NPs. The HNC was employed for the removal of cationic dyes, i.e., malachite green (MG) and rhodamine B (RhB) from the aqueous solution. The HNC was found to remove 91% (MG) and 86% (RhB) of dyes with a polymer dose of 0.5 and 0.6 g l-1 in neutral medium, respectively. The adsorption process was found to be highly pH dependent and followed the pseudo-second-order rate model. The adsorption isotherm data fitted well with the Langmuir adsorption isotherm with a maximum adsorption capacity of 757.57 and 497.51 mg g-1 for MG and RhB, respectively. Furthermore, the HNC was demonstrated as a versatile adsorbent for the removal of both cationic and anionic dyes from the simulated wastewater. The HNC showed excellent regeneration capacity and was successfully used for the three cycles of adsorption-desorption. In summary, the HNC has shown its potential as an environment friendly and efficient adsorbent for the adsorption of cationic dyes from contaminated water.

  5. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Machado, Luci D.B., E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oishi, Akihiro; Nakayama, Kazuo, E-mail: a.oishi@aist.go.j, E-mail: kazuo-nakayama@jcom.home.ne.j [National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki-ken (Japan). Research Institute for Sustainable Chemical Innovation; Nagasawa, Naotsugu; Tamada, Masao, E-mail: nagasawa.naotsugu@jaea.go.j [Japan Atomic Energy Agency (JAEA), Gunma-ken (Japan). Quantum Beam Science Directorate

    2009-07-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  6. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    International Nuclear Information System (INIS)

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  7. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    Science.gov (United States)

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications. PMID:27062241

  8. Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs)

    OpenAIRE

    S. Faraji, E. Danesh, D. J. Tate, M. L. Turner, L. A. Majewski

    2016-01-01

    Low voltage organic field-effect transistors (OFETs) using solution-processed cyanoethyl cellulose (CEC) and CEC-based nanocomposites as the gate dielectric are demonstrated. Barium strontium titanate (BST) nanoparticles are homogeneously dispersed in CEC to form the high-k (18.0 ± 0.2 at 1 kHz) nanocomposite insulator layer. The optimised p-channel DPPTTT OFETs with BST-CEC nanocomposite as the gate dielectric operate with minimal hysteresis, display field-effect mobilities in excess of 1 cm...

  9. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects.

    Science.gov (United States)

    Prateek; Thakur, Vijay Kumar; Gupta, Raju Kumar

    2016-04-13

    Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field. PMID:27040315

  10. Design Wood Nanocomposites from Polymer Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    LVWenhua; ZHAOGuangjie

    2004-01-01

    Researches on wood nanocomposites, which involve nano science and technology, wood science,materials science and other related subjects, have important science signification and promising prospect for the development and study of new wood composites with high appending values and multi-properties. This paper reviewed the conventional wood composites, and then discussed the approaches to prepare wood nanocomposites. Based on the achievements of researches on polymer/montmorillonite (MMT) nanocomposites, the design ideas of preparing nanocomposites of wood and inorganic MMT were systematically put forward. Nano compounding of wood and other materials is an effective approach to greatly improve or modify wood.

  11. Magnetic properties of nanocrystalline cobalt based powder soft magnetic materials and nanocomposites with silicon matrix

    International Nuclear Information System (INIS)

    The paper presents the effect of the high energy ball milling parameters and of isothermal heating of the cobalt based metallic glasses on the magnetic properties and structure of the powder material and silicon matrix nano-composites. The high energy ball milling process of the Co68Fe4Mo1Si13.5B13.5 metallic glass was carried out for various time period in the 'as quenched' state and after the isothermal heating. Heating of powder obtained by milling was also performed, to check its effect on changes of magnetic properties. The effects of the high energy ball milling and isothermal heating on the structure, grain size and magnetic properties of powder, and of the silicon base nano-composites made from them were also investigated. (author)

  12. Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites

    International Nuclear Information System (INIS)

    We present a new concept of light-controlled conductance switching based on metal/polymer nanocomposites with dissolved chromophores that do not have intrinsic current switching ability. Photoswitchable metal/PMMA nanocomposites were prepared by physical vapor deposition of Au and Pt clusters, respectively, onto spin-coated thin poly(methylmethacrylate) films doped with azo-dye molecules. High dye concentrations were achieved by functionalizing the azo groups with tails and branches, thus enhancing solubility. The composites show completely reversible optical switching of the absorption bands upon alternating irradiation with UV and blue light. We also demonstrate reversible light-controlled conductance switching. This is attributed to changes in the metal cluster separation upon isomerization based on model experiments where analogous conductance changes were induced by swelling of the composite films in organic vapors and by tensile stress.

  13. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays.

    Science.gov (United States)

    Martynková, Grazyna Simha; Valásková, Marta

    2014-01-01

    The review is focused on the recent research and development of antimicrobial nanocomposites based on selected carbon nanomaterials and natural nanoclay minerals. The nanocomposites comprised of two or several components, where at least one presents antimicrobial properties, are discussed. Yet the most popular agent remains silver as nanoparticle or in ionic form. Second, broadly studied group, are organics as additives or polymeric matrices. Both carbons and clays in certain forms possess antimicrobial properties. A lot of interest is put on to research graphene oxide. The low-environmental impact technologies-based on sustainable biopolymers have been studied. Testing of antimicrobial properties of nanomaterials is performed most frequently on E. coli and S. aureus bacterias. PMID:24730289

  14. GRAPHENE BASED METAL AND METAL OXIDE NANOCOMPOSITES: SYNTHESIS, PROPERTIES AND THEIR APPLICATIONS

    KAUST Repository

    Khan, Mujeeb

    2015-06-11

    Graphene, an atomically thin two-dimensional carbonaceous material, has attracted tremendous attention in the scientific community, due to its exceptional electronic, electrical, and mechanical properties. Indeed, with the recent explosion of methods for a large-scale synthesis of graphene, the number of publications related to graphene and other graphene based materials have increased exponentially. Particularly the easy preparation of graphene like materials, such as, highly reduced graphene oxide (HRG) via reduction of graphite oxide (GO), offers a wide range of possibilities for the preparation of graphene based inorganic nanocomposites by the incorporation of various functional nanomaterials for a variety of applications. In this review, we discuss the current development of graphene based metal and metal oxide nanocomposites, with a detailed account of their synthesis and properties. Specifically, much attention has been given to their wide range of applications in various fields, including, electronics, electrochemical and electrical fields. Overall, by the inclusion of various references, this review covers in detail aspects of the graphene-based inorganic nanocomposites.

  15. Biodegradable Polymers

    OpenAIRE

    Isabelle Vroman; Lan Tighzert

    2013-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  16. Preparation and tribological properties of water-soluble copper/silica nanocomposite as a water-based lubricant additive

    International Nuclear Information System (INIS)

    Highlights: ► A facile process is established to prepare water-soluble Cu/SiO2 nanocomposite. ► Cu/SiO2 nanocomposite exhibit markedly improved tribological properties. ► The state and thickness of the film on worn surface is closely related to applied load. - Abstract: Cu/SiO2 nanocomposite was synthesized by sol–gel method. The size, morphology and phase structure of as-prepared Cu/SiO2 nanocomposite were analyzed by means of X-ray diffraction and transmission electron microscopy, and its ultraviolet-visible light spectrum was measured in relation to surface plasmon excitation of Cu particles. The tribological properties of as-synthesized Cu/SiO2 nanocomposite as an additive in distilled water were investigated with a four-ball machine, and the morphology and elemental composition of worn steel surfaces were examined with a scanning electron microscope and an X-ray photoelectron spectroscope. Results show that as-synthesized Cu/SiO2 nanocomposite as a lubricant additive is able to significantly improve the tribological properties of distilled water. A protective and lubricious film composed of Cu and a small amount of FeS, FeSO4 and SiO2 is formed on steel sliding surfaces lubricated by distilled water containing Cu/SiO2 nanocomposite. During friction process Cu nanoparticles can be released from Cu/SiO2 nanocomposite to fill up micro-pits and grooves of steel sliding surfaces, resulting in greatly reduced friction and wear of steel frictional pair via self-repairing. The state and thickness of the film formed on the worn surface is closely related to applied load; and Cu/SiO2 nanocomposite might be a promising water-based lubricant additive for steel-steel contact subjected to moderate load.

  17. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    International Nuclear Information System (INIS)

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  18. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ju; Kim, Young-Jin [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of); Nam, Kyoungphile, E-mail: kpnam@snu.ac.k [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of)

    2009-08-15

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  19. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties

    OpenAIRE

    Ehsan Naderi Kalali; Xin Wanga; De-Yi Wang

    2015-01-01

    Functionalized layered double hydroxides (LDHs) based on a multi-modifier system composed of hydroxypropyl-sulfobutyl-beta-cyclodextrin sodium (sCD), dodecylbenzenesulfonate (DBS) and taurine (T) have been designed and fabricated in this paper, aiming at developing high performance fire retardant epoxy nanocomposites. In this multi-modifier system, sCD was utilized to improve the char yield, DBS was used to enlarge the inter-layer distance of LDH and T was used to enhance the interaction betw...

  20. Piezoresistive Behavior of Carbon Nanotube based Poly(vinylidene fluoride) Nanocomposites towards Strain Sensing Applications

    OpenAIRE

    Ke, Kai

    2016-01-01

    With the development of modern industrial engineering technology, increasing demands of multifunctional materials drive the exploration of new applications of electrical conductive polymer nanocomposites (CPNCs). Toward applications of smart materials, sensing performance of CPNCs has gained immense attention in the last decade. Among them, strain sensors, based on piezoresistive behavior of CPNCs, are of high potential to carry out structural health monitoring (SHM) tasks. Poly(vinylidene fl...

  1. Synthesis of Polydopamine Functionalized Reduced Graphene Oxide-Palladium Nanocomposite for Laccase Based Biosensor

    OpenAIRE

    Da-Wei Li; Lei Luo; Peng-Fei Lv; Qing-Qing Wang; Ke-Yu Lu; An-Fang Wei; Qu-Fu Wei

    2016-01-01

    Graphene based 2D nanomaterials have attracted increasing attention in biosensing application due to the outstanding physicochemical properties of graphene. In this work, palladium nanoparticles (Pd) loaded reduced graphene oxide (rGO) hybrid (rGO-Pd) was synthesized through a facile method. Laccase (Lac) was immobilized on rGO-Pd by utilizing the self-polymerization of dopamine, which generated polydopamine (PDA). The PDA-Lac-rGO-Pd nanocomposites were further modified on electrode surface t...

  2. Emission of volatile organic compounds during processing and use of organoclay-based nanocomposites

    OpenAIRE

    Thouzeau, C; Henneuse, Catherine; Sclavons, Michel; Devaux, Jacques; Soulestin, Jérémy; Stoclet, Grégory

    2013-01-01

    Polymer based nanocomposites are a new broad class of materials widely used in a large range of applications as they generally exhibit improved properties compared with the neat polymer. These materials have been known for a few decades and they have been widely studied in academia and industries, regarding their preparation and properties characterization. More recently, environmental, health and public concerns related to air quality have imposed severe worldwide rules regarding the emissio...

  3. Densely Packed Linear Assembles of Carbon Nanotube Bundles in Polysiloxane-Based Nanocomposite Films

    OpenAIRE

    Hong-Baek Cho; Minh Triet Tan Huynh; Tadachika Nakayama; Son Thanh Nguyen; Hisayuki Suematsu; Tsuneo Suzuki; Weihua Jiang; Satoshi Tanaka; Yoshinori Tokoi; Soo Wohn Lee; Tohoru Sekino; Koichi Niihara

    2013-01-01

    Linear assemblies of carbon nanotubes (LACNTs) were fabricated and controlled in polysiloxane-based nanocomposite films and the effects of the LACNTs on the thermal and electrical properties of the films were investigated. CNTs were dispersed by mechanical stirring and sonication in a prepolymer of polysiloxane. Homogeneous suspensions were cast on polyamide spacers and oriented by linear-assembly by applying DC and switching DC electric fields before the mixture became cross-linked. Densely ...

  4. A NOVEL RESISTIVE HUMIDITY SENSOR BASED ON SODIUM POLYSTYRENESULFONATE/TiO2 NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Yang Li; Mu-jie Yang; Yong She

    2002-01-01

    A resistive humidity sensor was prepared based on sodium polystyrenesulfonate (NaPSS)/TiO2 nanocomposites,and its electrical response to humidity was examined. The sensor exhibits better linearity, smaller hysteresis (< 4% RH) and quicker response (absorption: less than 2 s; desorption: less than 20 s) in comparison with sensor composed of NaPSS. The effect of concentration of NaPSS and TiO2 on humidity response of sensors was discussed.

  5. Nanocomposite thin films for miniaturized multi-ayer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions

    OpenAIRE

    Schneller, T.; Halder, S; Waser, R.; Pithan, C.; Dornseiffer, J.; Shiratori, Y; Houben, L.; Vyshnavi, N.; Majumber, S.B.

    2011-01-01

    In the present work a flexible approach for the wet chemical processing of nanocomposite functional thin films is demonstrated. Barium titanate (BTO) based nanocomposite thin films for future miniaturized multi-layer ceramic capacitors are chosen as model systems to introduce the concept of "hybrid solutions" which consist of stabile mixtures of reverse micelle derived BTO nanoparticle dispersions and conventional molecular precursor solutions of either the same (BTO:BTO) or a specifically di...

  6. Properties of poly(lactic acid nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate

    Directory of Open Access Journals (Sweden)

    K. Fukushima

    2012-11-01

    Full Text Available Poly(lactic acid (PLA based nanocomposites based on 5 wt.% of an organically modified montmorillonite (CLO, unmodified sepiolite (SEP and organically modified zirconium phosphonate (ZrP were obtained by melt blending. Wide angle X-ray scattering (WAXS and scanning electron microscopy (SEM analysis showed a different dispersion level depending on the type and functionalisation of nanoparticles. Differenctial scanning calorimetric (DSC analysis showed that PLA was able to crystallize on heating, and that the addition of ZrP could promote extent of PLA crystallization, whereas the presence of CLO and SEP did not significantly affect the crystallization on heating and melting behaviour of PLA matrix. Dynamic Mechanical Thermoanalysis (DMTA results showed that addition of all nanoparticles brought considerable improvements in E' of PLA, resulting in a remarkable increase of elastic properties for PLA nanocomposites. The melt viscosity and dynamic shear moduli (G',G" of PLA nanocomposites were also enhanced significantly by the presence of CLO and SEP, and attributed to the formation of a PLA/nanoparticle interconnected structure within the polymer matrix. The oxygen permeability of PLA did not significantly vary upon addition of SEP and ZrP nanoparticles. Only addition of CLO led to about 30% decrease compared to PLA permeability, due to the good clay dispersion and clay platelet-like morphology. The characteristic high transparency of PLA in the visible region was kept upon addition of the nanoparticles. Based on these achievements, a high potential of these PLA nanocomposites in sustainable packaging applications could be envisaged.

  7. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    Science.gov (United States)

    Yulovskaya, V. D.; Kuz'micheva, G. M.; Klechkovskaya, V. V.; Orekhov, A. S.; Zubavichus, Ya. V.; Domoroshchina, E. N.; Shegay, A. V.

    2016-03-01

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO2/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO2 characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO2 aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.

  8. Furfural resin-based bio-nanocomposites reinforced by reactive nanocrystalline cellulose

    Science.gov (United States)

    Wang, C.; Sun, S.; Zhao, G.; He, B.; Xiao, H.

    2009-07-01

    The work presented herein has been focused on reinforcing the furfural resins (FA) by reactive-modified nanocrystalline cellulose (NCC) in an attempt to create a bio-nanocomposite completely based on natural resources. FA prepolymers were synthesized with an acid catalyst, and NCC was rendered reactive via the grafting of maleic anhydride (MAH). The resulting NCC and nanocomposites were characterized using TEM, SEM and FT-IR. It was found that NCC appeared to be spherical in shape with diameters under 100 nm. FT-IR confirmed that there were hydrogen and esterification bonding between MAH and NCC or FA prepolymer. After solidified with paratoluenesulfonic acid, NCC-reinforced FA resin composites showed granular cross-section while FA resin with layered structures. Mechanical property tests indicated that NCC-reinforced FA resin composites possessed the improved tensile and flexural strengths, in comparison with FA resin.

  9. Characterization of Electret Based on Inorganic-organic Nanocomposite Using Fluoropolymer and Silica Nanoparticles

    Science.gov (United States)

    Suzuki, M.; Shimokizaki, M.; Takahashi, T.; Yoshikawa, Y.; Aoyagi, S.

    2015-12-01

    An A novel electret based on inorganic-organic nano composite using fluoropolymer and silica nanoparticles was developed in this study. CYTOP® is used to fabricate the nanocomposite electret, which is one of fluoropolymer. Three kinds of silica nanoparticles dispersed in methyl ethyl ketone were employed. Each type of nanoparticles was mixed in the CYTOP or stuck between three layers of CYTOP. Then, negative charge was implanted by corona discharge method. The initial surface potential of the nanocomposite electret was higher than that of a control electret made of pure CYTOP. Additionally, time stability of those was also better than that of control electret. However, above mentioned properties of the mix-typed electret was worse than that of stuck-typed electret, because of discharging through aggregates composed of the nanoparticles.

  10. Densely Packed Linear Assembles of Carbon Nanotube Bundles in Polysiloxane-Based Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Hong-Baek Cho

    2013-01-01

    Full Text Available Linear assemblies of carbon nanotubes (LACNTs were fabricated and controlled in polysiloxane-based nanocomposite films and the effects of the LACNTs on the thermal and electrical properties of the films were investigated. CNTs were dispersed by mechanical stirring and sonication in a prepolymer of polysiloxane. Homogeneous suspensions were cast on polyamide spacers and oriented by linear-assembly by applying DC and switching DC electric fields before the mixture became cross-linked. Densely packed LACNTs that fixed the composite film surfaces were fabricated with various structures and thicknesses that depended on the DC and switching DC conditions. Polymer nanocomposites with different LACNT densities exhibited enhanced thermal and electrical conductivities and high optical transmittances. They are considered promising structural materials for electronic sectors in automotive and aerospace applications.

  11. Development and characterization of new phosphorus based flame retardant tetraglycidyl epoxy nanocomposites for aerospace application

    Indian Academy of Sciences (India)

    K Shree Meenakshi; E Pradeep Jaya Sudhan; S Ananda Kumar

    2012-04-01

    A study was made in the present investigation on the development and characterization of triphenyl phosphine oxide based phosphorus tetraglycidyl epoxy nanocomposites denoted as ‘C’ and to find out its suitability for use in high performance applications. The synthesized resin was characterized by Fourier transform infrared spectra (FT–IR) and 1H, 13C nuclear magnetic resonance (NMR) spectra. Nanoclay and POSS-amine nanoreinforcements denoted as N1 and N2 were incorporated into the synthesized epoxy resin. Curing was done with diaminodiphenylmethane (DDM) and bis(3-aminophenyl) phenylphosphine oxide (BAPPO) curing agents denoted as and , respectively. Mechanical, thermal, flame retardant, water absorption behaviour and electrical properties of the epoxy nanocomposites were studied and the results are discussed.

  12. Thermoplastic Polymer Nanocomposites Based on Inorganic Fullerene-like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammed Naffakh

    2014-06-01

    Full Text Available Using inorganic fullerene-like (IF nanoparticles and inorganic nanotubes (INT in organic-inorganic hybrid composite, materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites. The processing of such high-performance hybrid thermoplastic polymer nanocomposites is achieved via melt-blending without the aid of any modifier or compatibilizing agent. The incorporation of small quantities (0.1–4 wt.% of IF/INTs (tungsten disulfide, IF-WS2 or molybdenum disulfide, MoS2 generates notable performance enhancements through reinforcement effects and excellent lubricating ability in comparison with promising carbon nanotubes or other inorganic nanoscale fillers. It was shown that these IF/INT nanocomposites can provide an effective balance between performance, cost effectiveness, and processability, which is of significant importance for extending the practical applications of diverse hierarchical thermoplastic-based composites.

  13. Preparation of nanocomposites based on poly(Butylene Succinate) and montmorillonite organoclay via in situ polymerization

    International Nuclear Information System (INIS)

    Nanocomposites based on poly(butylene succinate) (PBS) and organophilic montmorillonite were synthesized via in situ polymerization using three different clay compositions (4, 6 and 8 wt%). The products were characterized by several different techniques. X-ray diffraction was useful to confirm the increase of the interlayer spacing of the clay due to the presence of the polymer chains among layers. Thermal analysis indicated that the polymerization method chosen led to materials with lower thermal stability compared to the pure PBS, due to the difficulty of chain growth in the presence of the clay. Low-field NMR technique was used to assess clay dispersion in the polymer, with exfoliated structures predominating in the nanocomposites. (author)

  14. Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process.

    Science.gov (United States)

    Xia, Ying; Larock, Richard C

    2011-09-01

    Waterborne castor oil-based polyurethane-silica nanocomposites with the polymer matrix and silica nanoparticles chemically bonded have been successfully prepared through a sol-gel process. The formation of silica nanoparticles in water not only reinforces the resulting coatings, but also increases the crosslink density of the nanocomposites. The (29)Si solid state NMR spectrum indicates the formation of silica and the TEM indicates that the nanoparticles are embedded in the polymers, resembling a core-shell structure. The silica nanoparticles in the polymer matrix play an important role in improving both the mechanical properties and the thermal stabilities of the resulting nanocomposites. This work provides an effective and promising way to prepare biorenewable, high performance nanocomposite coatings. PMID:25867899

  15. Synthesis and energy transfer within carbon-based fluorescent rare earth nanoparticles and nanocomposites (Conference Presentation)

    Science.gov (United States)

    Yust, Brian G.; Chipara, Mircea; Saenz, Aaron

    2016-03-01

    Recently, there has been a great deal of interest in fluorescent and upconverting rare earth-based nanoparticles for biomedical imaging and photodynamic therapy applications. While many of the widely explored upconverting contrast agents are comprised of fluoride or oxide crystal structures, very little work has been done to investigate the up- and downconversion emission in rare earth-doped carbon nanocomposites. Of particular interest, graphene-UCNP nanocomposites and sesquicarbide nanoparticles may offer a wide range of new applications when coupled with the extraordinary optical properties of rare earth-doped systems, such as potential use as nano-transducers. Carbon-based nanocomposites and sesquicarbides doped with rare earth elements were synthesized using the microwave and solvothermal methods with additional brief high temperature heat treatments. They were then characterized by XRD, visible and NIR excitation and emission spectroscopy, as well as Raman spectrsocopy. Tuning of the emission manifold ratios was explored through different compositions and size. Also, energy transfer between the emitting ions and the electronic states of the host structure was explored. Finally, cytotoxicity was tested, and cellular uptake of these nanomaterials was performed with confocal microscopy.

  16. Temperature Effect on Electrical Treeing and Partial Discharge Characteristics of Silicone Rubber-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mohd Hafizi Ahmad

    2015-01-01

    Full Text Available This study investigated electrical treeing and its associated phase-resolved partial discharge (PD activities in room-temperature, vulcanized silicone rubber/organomontmorillonite nanocomposite sample materials over a range of temperatures in order to assess the effect of temperature on different filler concentrations under AC voltage. The samples were prepared with three levels of nanofiller content: 0% by weight (wt, 1% by wt, and 3% by wt. The electrical treeing and PD activities of these samples were investigated at temperatures of 20°C, 40°C, and 60°C. The results show that the characteristics of the electrical tree changed with increasing temperature. The tree inception times decreased at 20°C due to space charge dynamics, and the tree growth time increased at 40°C due to the increase in the number of cross-link network structures caused by the vulcanization process. At 60°C, more enhanced and reinforced properties of the silicone rubber-based nanocomposite samples occurred. This led to an increase in electrical tree inception time and electrical tree growth time. However, the PD characteristics, particularly the mean phase angle of occurrence of the positive and negative discharge distributions, were insensitive to variations in temperature. This reflects an enhanced stability in the nanocomposite electrical properties compared with the base polymer.

  17. Fabrication and Characterization of Magnetoresponsive Electrospun Nanocomposite Membranes Based on Methacrylic Random Copolymers and Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ioanna Savva

    2012-01-01

    Full Text Available Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA and 2-(acetoacetoxyethyl methacrylate (AEMA (MMA-co-AEMA and oleic acid-coated magnetite (OA·Fe3O4 nanoparticles. The AEMA moieties containing β-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4 content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.

  18. Hybrid nanocomposites based on conducting polymer and silicon nanowires for photovoltaic application

    International Nuclear Information System (INIS)

    Hybrid nanocomposites based on a nanoscale combination of organic and inorganic semiconductors are a promising way to enhance the performance of solar cells through a higher aspect ratio of the interface and the good processability of polymers. Nanocomposites are based on a heterojunction network between poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) as an organic electron donor and silicon nanowires (SiNWs) as an inorganic electron acceptor. Nanowires (NWs) seem to be a promising material for this purpose, as they provide a large surface area for contact with the polymer and a designated conducting pathway whilst their volume is low. In this paper, silicon nanowires are introduced by mixing them into the polymer matrix. Hybrid nanocomposites films were deposited onto ITO substrate by spin coating method. Optical properties and photocurrent response were investigated. Charge transfer between the polymer and SiNWs has been demonstrated through photoluminescence measurements. The photocurrent density of ITO/MEH-PPV:SiNWs/Al structures have been obtained by J–V characteristics. The Jsc value is about 0.39 µA/cm2. - Highlights: • SiNWs synthesis by Vapor–Liquid–Solid (VLS) mechanism. • SiNWs contribution to absorption spectra enhancement of MEH-PPV:SiNWs nanocomposites. • Decrease of PL intensity of MEH-PPV by addition of SiNWs. • Charge transfer process was taken place. • ITO/MEH-PPV:SiNWs/Al structure shows a photovoltaic effect, with a FF of 0.32

  19. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...

  20. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  1. An organic indicator functionalized graphene oxide nanocomposite-based colorimetric assay for the detection of sarcosine

    Science.gov (United States)

    Xue, Zhonghua; Yin, Bo; Wang, Hui; Li, Mengqian; Rao, Honghong; Liu, Xiuhui; Zhou, Xinbin; Lu, Xiaoquan

    2016-03-01

    Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS functionalized GO nanocomposite through π-π stacking has been demonstrated to be useful as a highly efficient catalyst system for the selective and sensitive colorimetric determination of sarcosine by providing a nanocomposite-amplified colorimetric response. Meanwhile, the strategy offered excellent selectivity toward sarcosine species against other amino acids as well as a satisfying detection limit of 0.73 μM. More importantly, by using an electrochemical method, a credible sensing mechanism of GO nanocomposite-based colorimetric platform for a special analyte determination can be easily verified and elucidated, which also provides an attractive alternative to conventional characterization strategies.Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS

  2. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    OpenAIRE

    Joanna Rydz; Wanda Sikorska; Mariya Kyulavska; Darinka Christova

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in vie...

  3. Polyester-Based (Biodegradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Joanna Rydz

    2014-12-01

    Full Text Available This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (biodegradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications of these attractive polymer families are outlined. Environmental impact and in particular (biodegradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields.

  4. Development of Composite Porous Scaffolds Based on Collagen and Biodegradable Poly(ester urethane)urea

    OpenAIRE

    Guan, Jianjun; Stankus, John J.; Wagner, William R.

    2006-01-01

    Our objective in this work was to develop a flexible, biodegradable scaffold for cell transplantation that would incorporate a synthetic component for strength and flexibility and type I collagen for enzymatic lability and cytocompatibility. A biodegradable poly(ester urethane)urea was synthesized from poly(caprolactone), 1,4-diisocyanatobutane, and putrescine. Using a thermally induced phase separation process, porous scaffolds were created from a mixture containing this polyurethane and 0%,...

  5. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    Science.gov (United States)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique

  6. Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly, E-mail: pan@anvil.nrl.navy.mi [Multifunctional Materials Branch, Code 6350 U.S. Naval Research Laboratory 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2011-10-29

    The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.

  7. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties.

    Science.gov (United States)

    Wang, Jingjing; Hu, Hongkai; Yang, Zhonglin; Wei, Jun; Li, Juan

    2016-04-01

    Nanocomposite hydrogels with interpenetrating polymer network (IPN) structure based on poly(ethylene glycol) methyl ether methacrylate modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose (AG-N3) were prepared by a one-pot strategy under UV irradiation. The hydrogels exhibited a highly macroporous spongelike structure, and the pore size decreased with the increase of the ZnO-PEGMA content. Due to the entanglement and favorable interactions between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum compressive and tensile strengths of the IPN hydrogels reached 24.8 and 1.98MPa respectively. The transparent IPN hydrogels transmitted more than 85% of visible light at all wavelengths (400-800nm). The IPN hydrogels exhibited anti-adhesive property towards Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and the bactericidal activity increased with the ZnO-PEGMA content. The incorporation of ZnO-PEGMA did not reduce the biocompatibility of the IPN hydrogels and all the IPN nanocomposites showed negligible cytotoxicity. The present study not only provided a facile method for preparing hydrogel nanocomposites with IPN structure but also developed a new hydrogel material which might be an excellent candidate for wound dressings. PMID:26838864

  8. Development of Polymer Based Nanocomposites as a Marker of Cadmium in Complex Matrices

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2015-01-01

    Full Text Available Poly(propylene carbonate/β-cyclodextrin (PPC-BCD nanocomposites were developed as effective extractor for a specific extraction and separation of cadmium(II by use of inductively coupled plasma-optical emission spectrometry. The selectivity of nanocomposites with different wt% of BCD (PPC-BCD 0.5, PPC-BCD 1, PPC-BCD 3, PPC-BCD 5, or PPC-BCD 10 was investigated toward Cd(II. Based on selectivity and pH studies, Cd(II was the most quantitatively adsorbed on PPC-BCD 5 phase at pH 6, indicating that PPC-BCD 5 was the most selective toward Cd(II among other nanocomposites. On the basis of adsorption isotherm study, the superior adsorption capacity of PPC-BCD 5 phase for Cd(II was found to be 149.25 mg·g−1, following the Langmuir adsorption isotherm model. The kinetic of adsorption for Cd(II has been examined by pseudo-first- and second-order models. The kinetic exploration suggested a pseudo-second-order kinetic model for the adsorption of Cd(II on the PPC-BCD 5. Additionally, results of thermodynamic investigation demonstrated favorable spontaneous process for the adsorption mechanism of PPC-BCD 5 toward Cd(II.

  9. Thermally Sprayable Anti-corrosion Marine Coatings Based on MAH-g-LDPE/UHMWPE Nanocomposites

    Science.gov (United States)

    Jeeva Jothi, K.; Santhoskumar, A. U.; Amanulla, Syed; Palanivelu, K.

    2014-12-01

    Polymer composite coatings based on low-density polyethylene (LDPE) and ultra-high-molecular-weight polyethylene (UHMWPE) blends were prepared for marine coatings. The incorporation of carboxyl moiety in the polymer blends of LDPE/UHMWPE was carried out by grafting with maleic anhydride (MAH) at varying concentrations of 1-8 wt.% using reactive extrusion process. An optimum percentage of grafting of 2.1% was achieved with 5 wt.% of maleic anhydride. Further, the nanocomposites of MAH-grafted-LDPE/UHMWPE blends were prepared by incorporating cloisite 15A nanoclay at varying concentrations of 1-4 wt.%. The polymer nanocomposites were converted into fine powders suitable for thermal spray having ≤200 μ particle size using cryogenic grinding. The effect of the intact coatings applied on grit-blasted mild steel by thermal spray technique was evaluated for abrasion resistance, adhesion strength, and corrosion resistance. The corrosion resistance of the polymer nanocomposites was studied by salt spray technique and Electrochemical Impedance Spectroscopy The abrasion resistance of coatings increases with increasing UHMWPE content in the blends. However, blends with higher concentration of UHMWPE resulted in coarse coatings with poor adhesion. The coatings with 90:10 MAH-grafted-LDPE/UHMWPE having 3 wt.% of nanoclay showed good abrasion resistance, adhesion strength, and better corrosion resistance.

  10. The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites

    Directory of Open Access Journals (Sweden)

    Mohini Sain

    2007-01-01

    Full Text Available The aim of this work was to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of hemp nanofibers, using inverse gas chromatography (IGC, and to investigate the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Bio-nanocomposite materials were prepared from poly (lactic acid (PLA and polyhydroxybutyrate (PHB as the matrix, and the cellulose nanofibers extracted from hemp fiber by chemo-mechanical treatments. Cellulose fibrils have a high density of –OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. The IGC results indicated that styrene maleic anhydride coated and ethylene-acrylic acid coated fibers improved their potential to interact with both acidic and basic resins. From transmission electron microscopy (TEM, it was shown that the nanofibers were partially dispersed in the polymer matrix. The mechanical properties of the nanocomposites were lower than those predicted by theoretical calculations for both nanofiber-reinforced biopolymers.

  11. Nanocomposites based on highly luminescent nanocrystals and semiconducting conjugated polymer for inkjet printing

    Science.gov (United States)

    Binetti, E.; Ingrosso, C.; Striccoli, M.; Cosma, P.; Agostiano, A.; Pataky, K.; Brugger, J.; Curri, M. L.

    2012-02-01

    In this work nanocomposites based on organic-capped semiconductor nanocrystals formed of a core of CdSe coated with a shell of ZnS (CdSe@ZnS), with different sizes, and a semiconducting conjugated polymer, namely poly[(9,9-dihexylfluoren-2,7-diyl)-alt- (2,5-dimethyl-1,4-phenylene)] (PF-DMB) have been investigated. The nanocomposites are prepared by mixing the pre-synthesized components in organic solvents, thereby assisting the dispersion of the organic-coated nano-objects in the polymer host. UV-vis steady state and time-resolved spectroscopy along with (photo)electrochemical techniques have been performed to characterize the obtained materials. The study shows that the embedded nanocrystals increase the PF-DMB stability against oxidation and, at the same time, extend the light harvesting capability to the visible spectral region, thus resulting in detectable photocurrent signals. The nanocomposites have been dispensed by means of a piezo-actuated inkjet system. Such inks present viscosity and surface tension properties well suited for stable and reliable drop-on-demand printing using an inkjet printer. The fabrication of arrays of single-color pixels made of the nanocomposites and micrometers in size has been performed. Confocal and atomic force microscopy have confirmed that inkjet-printed microstructures present the intrinsic emission properties of both the embedded nanocrystals and PF-DMB, resulting in a combined luminescence. Finally, the morphology of the printed pixels is influenced by the embedded nanofillers.

  12. Nanocomposites based on highly luminescent nanocrystals and semiconducting conjugated polymer for inkjet printing

    International Nuclear Information System (INIS)

    In this work nanocomposites based on organic-capped semiconductor nanocrystals formed of a core of CdSe coated with a shell of ZnS (CdSe-ZnS), with different sizes, and a semiconducting conjugated polymer, namely poly[(9,9-dihexylfluoren-2,7-diyl)-alt- (2,5-dimethyl-1,4-phenylene)] (PF-DMB) have been investigated. The nanocomposites are prepared by mixing the pre-synthesized components in organic solvents, thereby assisting the dispersion of the organic-coated nano-objects in the polymer host. UV–vis steady state and time-resolved spectroscopy along with (photo)electrochemical techniques have been performed to characterize the obtained materials. The study shows that the embedded nanocrystals increase the PF-DMB stability against oxidation and, at the same time, extend the light harvesting capability to the visible spectral region, thus resulting in detectable photocurrent signals. The nanocomposites have been dispensed by means of a piezo-actuated inkjet system. Such inks present viscosity and surface tension properties well suited for stable and reliable drop-on-demand printing using an inkjet printer. The fabrication of arrays of single-color pixels made of the nanocomposites and micrometers in size has been performed. Confocal and atomic force microscopy have confirmed that inkjet-printed microstructures present the intrinsic emission properties of both the embedded nanocrystals and PF-DMB, resulting in a combined luminescence. Finally, the morphology of the printed pixels is influenced by the embedded nanofillers. (paper)

  13. Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling

    Science.gov (United States)

    Wang, Yang; Shan, Jerry W.; Weng, George J.

    2015-08-01

    The dispersion state or degree of agglomeration of graphene is known to have a significant influence on the percolation threshold and electrical conductivity of graphene-based polymer nanocomposites. In addition, an imperfectly conducting interface and tunneling-assisted interfacial conductivity can also affect the overall conductivity. In this paper, a continuum theory is developed that considers all these factors. We first present a two-scale composite model consisting of graphene-rich regions serving as the agglomerates and a graphene-poor region as the matrix. We then introduce the effective-medium theory to determine the percolation threshold and electrical conductivity of the agglomerate and the composite. To account for the effect of imperfect interfaces, a thin layer of interphase with low conductivity is introduced to build a thinly coated graphene, while to account for the contribution of electron hopping from one graphene to another, Cauchy's statistical function which can reflect the increased tunneling activity near the percolation threshold is introduced. It is shown that the percolation threshold of the nanocomposite is controlled by two dispersion parameters, a and b, and the aspect ratio of agglomerates, αR . It is also shown that the overall conductivity of the nanocomposite mainly depends on the intrinsic conductivity of graphene and polymer matrix, the intrinsic interfacial resistivity, and the tunneling-assisted hopping process. We highlight the conceived theory by demonstrating that a set of recently measured data on the percolation threshold and electrical conductivity of graphene/polystyrene nanocomposites can be well captured by it.

  14. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  15. Residual Monomer Content and Its Release into Water from the Denture Base Nanocomposite Using Organic Montmorillonite as Reinforcement

    Institute of Scientific and Technical Information of China (English)

    LI Hongbo; ZHANG Chao; LI Zhian; WANG Yining; XIAO Qun

    2008-01-01

    A novel kind of denture base nanocomposite was prepared by polymethyl methyacrylate(PMMA) and cethyltrimethylammonium bromide modified organic montmorillonite (OMMT).The dispersion of montmorillonite in the polymer matrix was characterized by x-ray diffraction (XRD) and transimission electron microscope (TEM).The content of residual MMA in nanocomposites and the amount of MMA released to water from nanocomposites were determined by gas chromatography (GC).The analysis of TEM and XRD showed that exfoliated-intercalated and intercalated nanocomposites were formed when the content of OMMT was 3% and 5% in the PMMA powder respectively.The results of GC showed that the residual MMA increased with the increase of OMMT content in the polymer matrix.After 7 days in water,the amount of MMA released into water from the nanocomposites tended to be stable.The results of one-way ANOVA and t-test showed that OMMT gave a significant increase of residual MMA concentration (p<0.05) in nanocomposites.

  16. Tuning the processability, morphology and biodegradability of clay incorporated PLA/LLDPE blends via selective localization of nanoclay induced by melt mixing sequence

    Directory of Open Access Journals (Sweden)

    S. H. Jafari

    2013-01-01

    Full Text Available Polylactic acid (PLA/linear low density polyethylene (LLDPE blend nanocomposites based on two different commercial-grade nanoclays, Cloisite® 30B and Cloisite® 15A, were produced via different melt mixing procedures in a counter-rotating twin screw extruder. The effects of mixing sequence and clay type on morphological and rheological behaviors as well as degradation properties of the blends were investigated. The X-ray diffraction (XRD results showed that generally the level of exfoliation in 30B based nanocomposites was better than 15A based nanocomposites. In addition, due to difference in hydrophilicity and kind of modifiers in these two clays, the effect of 30B on refinement of dispersed phase and enhancement of biodegradability of PLA/LLDPE blend was much more remarkable than that of 15A nanoclay. Unlike the one step mixing process, preparation of nanocomposites via a two steps mixing process improved the morphology. Based on the XRD and TEM (transmission electron microscopic results, it is found that the mixing sequence has a remarkable influence on dispersion and localization of the major part of 30B nanoclay in the PLA matrix. Owing to the induced selective localization of nanoclays in PLA phase, the nanocomposites prepared through a two steps mixing sequence exhibited extraordinary biodegradability, refiner morphology and better melt elasticity.

  17. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    OpenAIRE

    Yossathorn Tanetrungroj; Jutarat Prachayawarakorn

    2015-01-01

    In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS) were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on n...

  18. Investigation of the application of an enzyme-based biodegradability test method to a municipal solid waste biodrying process

    OpenAIRE

    Wagland, Stuart Thomas; Godley, Andrew R.; Tyrrel, Sean F.

    2011-01-01

    This paper presents a study to evaluate the recently developed enzymatic hydrolysis test (EHT) through its repeated application to a waste treatment process. A single waste treatment facility, involving a biodrying process, has been monitored using three different methods to assess the biodegradable content of the organic waste fractions. These test methods were the anaerobic BMc, aerobic DR4 and the EHT, which is a method based on the enzymatic hydrolysis of the cellulosic ...

  19. Pectin- and gelatin-based film: effect of gamma irradiation on the mechanical properties and biodegradation

    International Nuclear Information System (INIS)

    Agricultural by-products, pectin and gelatin, were used to prepare a biodegradable film. The film casting solution including the pectin and gelatin was irradiated at 0, 10, 20, and 30 kGy to investigate the irradiation effect on the mechanical properties of the film. The tensile strength of the 10 kGy-irradiated film was the highest among the treatments but the elongation at break, water vapour permeability, and swelling ratio were the lowest. Hunter color L*- and a*-values decreased but the b*-value increased as the irradiation dose increased. The total organic carbon content produced from the Paenibacillus polymyxa and Pseudomonas aeruginosa also showed that the film of 10 kGy-irradiated was lower than those of 0, 20, and 30 kGy-irradiated films. In conclusion, irradiation of the film casting solution at 10 kGy increased the mechanical properties of the pectin and gelatin based film. To manufacture the film by agricultural by-products, however, the irradiation dose of the film casting solution should be determined to achieve better mechanical properties

  20. Cationic content effects of biodegradable amphoteric chitosan-based flocculants on the flocculation properties

    Institute of Scientific and Technical Information of China (English)

    Zhen Yang; Hu Yang; Rongshi Cheng; Yabo Shang; Xin Huang; Yichun Chen; Yaobo Lu; Aimin Chen; Yuxiang Jiang; Wei Gu; Xiaozhi Qian

    2012-01-01

    A series of biodegradable amphoteric chitosan-based flocculants(3-chloro-2-hydroxypropyl trimethyl ammonium chloride(CTA)modified carboxymethyl chitosan,denoted as CMC-CTA)with different substitution degrees of CTA were prepared successfully.The content of carboxymethyl groups in each CMC-CTA sample was kept almost constant.The solubility of the various flocculants showed that,higher cationic content of flocculants caused a better solubility.The flocculation experiments using kaolin suspension as synthetic water at the laboratory scale indicated that the substitution degree of CTA was one of the key factors for the flocculation properties.With the increase of cationic content,the flocculants were demonstrated better flocculation performance and lower dosage requirement.Flocculation kinetics model of particles collisions combining zeta potential and turbidity measurements was employed to investigate the effects of the cationic content of the flocculants on the flocculation properties from the viewpoint of flocculation mechanism in detail.Furthermore,flocculation performance using raw water from Zhenjiang part of Yangtze River at the pilot scale showed the similar effects to those at the laboratory scale.

  1. Core–shell nanoparticles and enhanced polarization in polymer based nanocomposite dielectrics

    International Nuclear Information System (INIS)

    We present a detailed study of the evolution and nature of metallic core–oxide shell particles and the role of nanostructure in the physics of enhanced polarization in polymer-nanocomposite (PNC) based dielectrics. Nylon-6 based PNCs consisting of aluminium (core)–aluminium oxide (shell) nanoparticles were fabricated by a vacuum deposition technique. Their resulting high polarizability was closely related to the formation and chemistry of the core–shell structure that was revealed by transmission electron microscopy to comprise a highly-defective, strained and non-stoichiometric semi-crystalline/amorphous Al-oxide shell. (paper)

  2. Preclinical in vivo Performance of Novel Biodegradable, Electrospun Poly(lactic acid and Poly(lactic-co-glycolic acid Nanocomposites: A Review

    Directory of Open Access Journals (Sweden)

    Claudia Holderegger

    2015-08-01

    Full Text Available Bone substitute materials have witnessed tremendous development over the past decades and autogenous bone may still be considered the gold standard for many clinicians and clinical approaches in order to rebuild and restore bone defects. However, a plethora of novel xenogenic and synthetic bone substitute materials have been introduced in recent years in the field of bone regeneration. As the development of bone is actually a calcification process within a collagen fiber arrangement, the use of scaffolds in the formation of fibers may offer some advantages, along with additional handling characteristics. This review focuses on material characteristics and degradation behavior of electrospun biodegradable polyester scaffolds. Furthermore, we concentrated on the preclinical in vivo performance with regard to bone regeneration in preclinical studies. The major findings are as follows: Scaffold composition and architecture determine its biological behavior and degradation characteristics; The incorporation of inorganic substances and/or organic substances within composite scaffolds enhances new bone formation; L-poly(lactic acid and poly(lactic-co-glycolic acid composite scaffolds, especially when combined with basic substances like hydroxyapatite, tricalcium phosphate or demineralized bone powder, seem not to induce inflammatory tissue reactions in vivo.

  3. Low Density Polyethylene (LDPE blends based on Poly(3-Hydroxi-Butyrate (PHB and Guar Gum (GG biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Marisa Cristina Guimarães Rocha

    2015-02-01

    Full Text Available LDPE blends based on PHB and GG biodegradable polymers were prepared by melt mixing in a twin screw extruder. The mechanical properties of the materials were evaluated. Preliminary information about the biodegradation behavior of the specimens was obtained by visual observation of samples removed from the simulated soil in 90 days. The results indicated that LDPE/PHB blends may be used for designing LDPE based materials with increased susceptibility to degradation, if elongation at break and impact properties are not determinant factors of their performance. LDPE based materials on GG present values of flexural and mechanical strength lower than those of LDPE/PHB blends. LDPE/PHB/GG blends exhibit unsatisfactory properties. Apparently, the effect of addition of GG to LDPE on the biodegradation behavior of LDPE/GG blends was less intense than the effect caused by addition of PHB to the blends. Similar observation has occurred with the partial replacement of GG by PHB in the ternary blends.

  4. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  5. Biomechanical properties of a novel biodegradable magnesium-based interference screw

    Directory of Open Access Journals (Sweden)

    Marco Ezechieli

    2016-06-01

    Full Text Available Magnesium-based interference screws may be an alternative in anterior/posterior cruciate ligament reconstruction. The well-known osteoconductive effects of biodegradable magnesium alloys may be useful. It was the purpose of this study to evaluate the biomechanical properties of a magnesium based interference screw and compare it to a standard implant. A MgYREZr-alloy interference screw and a standard implant (Milagro®; De Puy Mitek, Raynham, MA, USA were used for graft fixation. Specimens were placed into a tensile loading fixation of a servohydraulic testing machine. Biomechanical analysis included pretensioning of the constructs at 20 N for 1 min following cyclic pretensioning of 20 cycles between 20 and 60 N. Biomechanical elongation was evaluated with cyclic loading of 1000 cycles between 50 and 200 N at 0.5 Hz. Maximum load to failure was 511.3±66.5 N for the Milagro® screw and 529.0±63.3 N for magnesium-based screw (ns, P=0.57. Elongations after preload, during cyclical loading and during failure load were not different between the groups (ns, P>0.05. Stiffness was 121.1±13.8 N/mm for the magnesiumbased screw and 144.1±18.4 for the Milagro® screw (ns, P=0.32. MgYREZr alloy interference screws show comparable results in biomechanical testing to standard implants and may be an alternative for anterior cruciate reconstruction in the future.

  6. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  7. Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites

    Science.gov (United States)

    Balcerzak, M.; Jakubowicz, J.; Kachlicki, T.; Jurczyk, M.

    2015-04-01

    Mechanical alloying and annealing at 1023 K for 0.5 h under an argon atmosphere were used to prepare Ti2Ni-based nanocrystalline alloys and their nanocomposites. Ti2Ni alloy was chemically modified by Pd and multi-walled carbon nanotubes. An objective of the present study is to provide data on hydrogenation properties of Ti2Ni-based alloys and compounds containing Pd and/or multi-walled carbon nanotubes. Alloys and composites were characterized by X-ray diffraction, scanning electron microscopy equipped with an electron energy dispersive spectrometer, transmission electron microscopy, atomic force microscopy to evaluate phase composition, crystal structure, grain size, particle morphology and distribution of catalyst element. Hydrogenation/dehydrogenation properties and hydriding kinetics of materials were measured using a Sievert's apparatus. Hydrogenation properties of nanostructured Ti2Ni-based alloy and Ti2Ni-based nanocomposites were compared with those of the binary Ti2Ni compound. In present work we shown how mechanical alloying method and chemical modification by Pd and MWCNTs affected hydrogen storage properties of Ti2Ni alloy. The highest hydrogen capacity obtained for nanostructured Ti2Ni + Pd alloy equaled 2.1 wt.%. Up to our knowledge it is the highest hydrogen storage capacity obtained so far for Ti2Ni-based materials.

  8. Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: Structural, thermal and mechanical characterization and EMI shielding capability

    Energy Technology Data Exchange (ETDEWEB)

    Arranz-Andrés, J., E-mail: jarranz@ictp.csic.es [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain); Pulido-González, N. [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain); Fonseca, C. [POLCA, Departamento de Química Industrial y Polímeros, E. T. de Ingenieros Industriales, Universidad Politécnica de Madrid, Ronda de Valencia, 3, 28012 Madrid (Spain); Pérez, E.; Cerrada, M.L. [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain)

    2013-11-01

    Novel (nano)composites based on PVDF and different content of Al nanoparticles have been prepared in order to learn about their electromagnetic interference shielding capability. Very promising results are obtained, with an excellent balance between shielding and sample weight, so that these materials are potentially good alternatives to replace neat metals for that application. Moreover, a complete structural and morphological characterization, as well as an evaluation of their thermal and mechanical behavior, has been also performed. - Graphical abstract: EMI shielding capability in lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles. - Highlights: • Novel hybrids based on PVDF and different contents of Al nanoparticles have been prepared. • A complete characterization of the nanocomposites has been performed. • Interactions between PVDF matrix and Al nanoparticles are deduced from FTIR. • Attenuation of the electromagnetic radiation increases spectacularly with the Al content.

  9. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability

    International Nuclear Information System (INIS)

    Highlights: • The nanocomposite HZO-201 was stable under varying solution chemistry. • HZO-201 exhibited preferable phosphate removal over other ubiquitous anions. • Selective sorption mechanism was probed and discussed. • HZO-201 could be regenerated for cyclic use with constant efficiency. - Abstract: In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl−, NO3−, SO42−, HCO3−). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO43−/L) by using HZO-201 was ∼1600 BV in the first run (<0.5 mg P-PO43−/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH–NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH

  10. Adhesion of biocompatible and biodegradable micropatterned surfaces

    NARCIS (Netherlands)

    Kaiser, J.S.; Kamperman, M.M.G.; Souza, E.J.; Schick, B.; Arzt, E.

    2011-01-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PL

  11. Facile approach in fabricating superhydrophobic coatings from silica-based nanocomposite

    Science.gov (United States)

    Guo, Yonggang; Wang, Qihua

    2010-10-01

    This study develops a one-step technique to synthesize various super water-repellent coatings with addition of modified silica nanoparticles. Surface topography observation showed that stacking of spherical silica nanoparticles formed primary surface roughness. The wettability of the products was investigated. It was found that the as-prepared surface possesses superhydrophobic properties not only for pure water but also for corrosive water under both acidic and basic conditions. The silica-based nanocomposite coatings can be fabricated on glass substrates and other functional engineering material surfaces, such as copper, iron, aluminum alloy, to form self-cleaning coatings.

  12. Electrochemical behavior of amorphous metal-silicon-carbon nanocomposites based on titanium or tungsten nanophase

    International Nuclear Information System (INIS)

    Electrode behavior of nanocomposite films containing titanium- or tungsten-based conducting nanophase embedded in dielectric silicon-carbon matrix, deposited onto glassceramics substrate, is studied by cyclic voltammetry and electrochemical impedance spectroscopy. As the films' resistivity decreases, their electrochemical behavior gradually changes from that of 'poor conductor' to the nearly metal-like behavior. In particular, the differential capacitance increases, the charge transfer in a model redox system [Fe(CN)6]3-/4- accelerates, which may be explained by the increasing number of metal-containing clusters at the film/electrolyte solution interface

  13. Fabrication and Properties of Thermal Sprayed AlSi-Based Coatings from Nanocomposite Powders

    Science.gov (United States)

    Limpichaipanit, A.; Banjongprasert, C.; Jaiban, P.; Jiansirisomboon, S.

    2013-02-01

    AlSi-based nanocomposite powders (where nanoparticles were TiO2, ZrO2, and Al2O3 and the amount of reinforcement was 2.5, 5, and 10 wt.%) were made by ball milling and then thermal sprayed using low velocity oxy-fuel technique. The AlSi-based nanocomposite powders had nanosized ceramic reinforcement adhered to the surface of the powders after ball milling. The AlSi-based coatings had the typical thermal spray microstructure where lamellae, oxide layers, unmelted particles, and pores could be seen. Submicron second phase in the form of agglomerates, molten splats, or unmelted particles between AlSi lamellae could be observed as well. Hardness and porosity of the coatings increased when more ceramic second phase particles (harder than AlSi) were added. Sliding wear tests were carried out in pin-on-disk geometry. The wear tracks of AlSi and AlSi-based coatings show plastic deformation as the main material removal mechanism during the sliding wear test. The sliding wear rate of the coatings decreased as more second phase ceramic particles were added. It was due to an increase in the hardness and a decrease in the friction coefficient of the coatings.

  14. Recent Advances in Upconversion Nanoparticles-Based Multifunctional Nanocomposites for Combined Cancer Therapy.

    Science.gov (United States)

    Tian, Gan; Zhang, Xiao; Gu, Zhanjun; Zhao, Yuliang

    2015-12-16

    Lanthanide-doped upconversion nanoparticles (UCNPs) have the ability to generate ultraviolet or visible emissions under continuous-wave near-infrared (NIR) excitation. Utilizing this special luminescence property, UCNPs are approved as a new generation of contrast agents in optical imaging with deep tissue-penetration ability and high signal-to-noise ratio. The integration of UCNPs with other functional moieties can endow them with highly enriched functionalities for imaging-guided cancer therapy, which makes composites based on UCNPs emerge as a new class of theranostic agents in biomedicine. Here, recent progress in combined cancer therapy using functional nanocomposites based on UCNPs is reviewed. Combined therapy referring to the co-delivery of two or more therapeutic agents or a combination of different treatments is becoming more popular in clinical treatment of cancer because it generates synergistic anti-cancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. Here, the recent advances of combined therapy contributed by UCNPs-based nanocomposites on two main branches are reviewed: i) photodynamic therapy and ii) chemotherapy, which are the two most widely adopted therapies of UCNPs-based composites. The future prospects and challenges in this emerging field will be also discussed. PMID:26505885

  15. Preparation and tribological properties of water-soluble copper/silica nanocomposite as a water-based lubricant additive

    Science.gov (United States)

    Zhang, Chunli; Zhang, Shengmao; Yu, Laigui; Zhang, Zhijun; Wu, Zhishen; Zhang, Pingyu

    2012-10-01

    Cu/SiO2 nanocomposite was synthesized by sol-gel method. The size, morphology and phase structure of as-prepared Cu/SiO2 nanocomposite were analyzed by means of X-ray diffraction and transmission electron microscopy, and its ultraviolet-visible light spectrum was measured in relation to surface plasmon excitation of Cu particles. The tribological properties of as-synthesized Cu/SiO2 nanocomposite as an additive in distilled water were investigated with a four-ball machine, and the morphology and elemental composition of worn steel surfaces were examined with a scanning electron microscope and an X-ray photoelectron spectroscope. Results show that as-synthesized Cu/SiO2 nanocomposite as a lubricant additive is able to significantly improve the tribological properties of distilled water. A protective and lubricious film composed of Cu and a small amount of FeS, FeSO4 and SiO2 is formed on steel sliding surfaces lubricated by distilled water containing Cu/SiO2 nanocomposite. During friction process Cu nanoparticles can be released from Cu/SiO2 nanocomposite to fill up micro-pits and grooves of steel sliding surfaces, resulting in greatly reduced friction and wear of steel frictional pair via self-repairing. The state and thickness of the film formed on the worn surface is closely related to applied load; and Cu/SiO2 nanocomposite might be a promising water-based lubricant additive for steel-steel contact subjected to moderate load.

  16. Synthesis and Characterization of Novel Polycarbonate Based Polyurethane/Polymer Wrapped Hydroxyapatite Nanocomposites: Mechanical Properties, Osteoconductivity and Biocompatibility.

    Science.gov (United States)

    Selvakumar, M; Jaganathan, Saravana Kumar; Nando, Golok B; Chattopadhyay, Santanu

    2015-02-01

    The present investigation reports the preparation of two types of 2D rod-like nano-hydroxyapatite (nHA) (unmodified and Polypropylene glycol (PPG) wrapped) of varying high-aspect ratios, by modified co-precipitation methods, without any templates. These nHA were successfully introduced into novel synthesized Thermoplastic Polyurethane (TPU) matrices based on polycarbonate soft segments, by both in-situ and ex-situ techniques. Physico-mechanical properties of the in-situ prepared TPU/nHA nanocomposites were found to be superior compared to the ex-situ counterparts, and pristine nHA reinforced TPU. Improved biocompatibility of the prepared nanocomposites was confirmed by MTT assays using osteoblast-like MG63 cells. Cell proliferation was evident over an extended period. Osteoconductivity of the nanocomposites was observed by successful formation of an apatite layer on the surface of the samples, after immersion into simulated body fluid (SBF). Prothrombin time (PT) and activated partial thromboplastin time (APTT), as calculated from coagulation assays, displayed an increase in the clotting time, particularly for the PPG-wrapped nHA nanocomposites, prepared through the in-situ technique. Only 0.3% of hemolysis was observed for the in-situ prepared nanocomposites, which establishes the antithrombotic property of the material. The key parameters for enhancing the technical properties and biocompatibility of the nanocomposites are: the interfacial adhesion parameter (B(σy)), the polymer-filler affinity, the aspect ratio of filler and non-covalent modifications, and the state of dispersion. Thus, the novel TPU/polymer wrapped nHA nanocomposites have great potential for biomedical applications, in particular for vascular prostheses, cardiovascular implants, scaffolds, and soft and hard tissues implants. PMID:26349305

  17. Novel bioactive Co-based alloy/FA nanocomposite for dental applications

    Directory of Open Access Journals (Sweden)

    Mohammadhossein Fathi

    2012-01-01

    Full Text Available Background: Dental cobalt base alloys are biocompatible dental materials and have been widely used in dentistry. However, metals are bioinert and may not present bioactivity in human body. Bioactivity is the especial ability to interact with human body and make a bonding to soft and hard tissues. The aim of the present research was fabrication and bioactivity evaluation of novel cobalt alloy/Fluorapatite nanocomposite (CoA/FaNC with different amounts of Fluorapatite (FA nanopowder. Materials and Methods: Co-Cr-Mo alloy (ASTM F75 powder was prepared and mixed in a planetary ball mill with different amounts of FA nanopowders (10, 15, 20% wt. Prepared composite powders were cold pressed and sintered at 1100°C for 4 h. X-ray diffraction (XRD, scanning electron microscopy and transition electron microscopy techniques were used for phase analysis, crystallite size determination of FA and also for phase analysis and evaluation of particle distribution of composites. Bioactivity behavior of prepared nanocomposites was evaluated in simulated body fluid (SBF for 1 up to 28 days. Results: Results showed that nucleus of apatite were formed on the surface of the prepared CoA/FaNC during 1 up to 28 days immersion in the SBF solution. On the other hand, CoA/FaNC unlike Co-base alloy possessed bone-like apatite-formation ability. Conclusion: It was concluded that bioinert Co-Cr-Mo alloy could be successfully converted into bioactive nanocomposite by adding 10, 15, 20 wt% of FA nano particles.

  18. Design of biobased and biodegradable - compostable engineered plastics based on poly(lactide)

    Science.gov (United States)

    Schneider, Jeffrey Samuelson

    Poly(lactide) (PLA) is a biobased and biodegradable - compostable plastic that is derived from renewable resources such as corn and sugar cane. It possesses excellent strength and stiffness properties and is recognized as safe for biomedical and food packaging applications. Commercially, it costs $1/lb and is now competitive with petroleum based polymers that have dominated the industry for decades. However, the material has some inherently weak properties that prevent it from certain applications - most notably, its rheological properties, brittleness, and poor high temperature performance. Cost effective modifications of the polymer to enhance these deficiencies could allow for increased applications and further its commercial growth. Multiple synthetic strategies have been developed to address PLA's performance property deficiencies. PLA typically exhibits poor melt strength and does not have the ability to strain harden, partially a result of its highly linear nature. Strain hardening and high melt strength are crucial elements of a material when producing blown films, a large untapped market for PLA. By increasing molecular weight and introducing long-chain branching into the material, these properties can be improved. Epoxy-functionalized PLA (EF-PLA) was synthesized by reacting PLA with a multifunctional epoxy polymer (MEP) using reactive extrusion processing (REX). These modified PLA polymers can function as a rheology modifier for PLA and a compatibilizer for blends with other biopolyesters. The modified PLA showed an increased melt strength and exhibited significant strain hardening, thus making it more suited for blown film applications. Blown films comprised of PLA and poly(butylene adipate-co-terephthalate) (PBAT) were produced using EF-PLA as a reactive modifier for rheological enhancement and compatibilization. This resulted in films with better processability (as seen by increased bubble stability) and improved mechanical properties, compared to a

  19. Preparation and Properties of Polyester-Based Nanocomposite Gel Coat System

    Directory of Open Access Journals (Sweden)

    M. Balasubramanian

    2007-01-01

    Full Text Available Nanocomposite gel coat system is prepared using unsaturated polyester resin with aerosil powder, CaCO3, and organoclay. The influence of organoclay addition on mechanical and water barrier properties of gel coat system is studied for different amount (1, 2, and 3 wt % of organoclay. The nanolevel incorporation of organoclay improves the mechanical and water barrier properties of nanocomposite gel coat system. The nanocomposite gel coat system exhibits 55% improvement in tensile modulus and 25% improvement in flexural modulus. There is a 30% improvement in impact property of nanocomposite gel coat system. The dynamic mechanical analysis shows a slight increase in glass transition temperature for nanocomposite gel coat system.

  20. Solution-processable phosphorescent to organic light-emitting diodes based on chromophoric amphiphile/silica nanocomposite

    Science.gov (United States)

    Yang, Chung-He; Yang, Sheng-Hsiung; Hsu, Chain-Shu

    2009-08-01

    We report the synthesis of a tris-cyclometalated iridium complex which emits sky-blue light and its potential use in phosphorescent light-emitting devices. The hybrid meso-structured nanocomposites by sol-gel co-assembly with tetraethyl ortho-silicate and corresponding molecular interactions within mesopores were also demonstrated. Electroluminescent devices were fabricated using carbazole-based monomers and iridium complex as the active layer, acting as a host/guest system through a co-assembled sol-gel process. Devices based on this nanocomposite showed improved luminescent efficiencies several times higher than that of similar chromophores elaborated in the literature. A triple-layer electroluminescence device with the configuration of ITO/PEDOT/ Ir(F2OC11ppy)3:CA-C11:PBD nanocomposite/TPBI/Ca/Al showed a maximum brightness of 1389 cd m-2 at 12 V and a maximum efficiency of 3.29 cd A-1.

  1. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility.

    Science.gov (United States)

    Wang, Juan; He, Yonghui; Maitz, Manfred F; Collins, Boyce; Xiong, Kaiqin; Guo, Lisha; Yun, Yeoheung; Wan, Guojiang; Huang, Nan

    2013-11-01

    Biodegradable magnesium-based materials have a high potential for cardiovascular stent applications; however, there exist concerns on corrosion control and biocompatibility. A surface-eroding coating of poly(1,3-trimethylene carbonate) (PTMC) on magnesium (Mg) alloy was studied, and its dynamic degradation behavior, electrochemical corrosion, hemocompatibility and histocompatibility were investigated. The PTMC coating effectively protected the corrosion of the Mg alloy in the dynamic degradation test. The corrosion current density of the PTMC-coated alloy reduced by three orders and one order of magnitude compared to bare and poly(ε-caprolactone) (PCL)-coated Mg alloy, respectively. Static and dynamic blood tests in vitro indicated that significantly fewer platelets were adherent and activated, and fewer erythrocytes attached on the PTMC-coated surface and showed less hemolysis than on the controls. The PTMC coating after 16 weeks' subcutaneous implantation in rats maintained ~55% of its original thickness and presented a homogeneously flat surface demonstrating surface erosion, in contrast to the PCL coated control, which exhibited non-uniform bulk erosion. The Mg alloy coated with PTMC showed less volume reduction and fewer corrosion products as compared to the controls after 52 weeks in vivo. Excessive inflammation, necrosis and hydrogen gas accumulation were not observed. The homogeneous surface erosion of the PTMC coating from exterior to interior (surface-eroding behavior) and its charge neutral degradation products contribute to its excellent protective performance. It is concluded that PTMC is a promising candidate for a surface-eroding coating applied to Mg-based implants. PMID:23467041

  2. Novel injectable and in situ curable glycolide/lactide based biodegradable polymer resins and composites.

    Science.gov (United States)

    Xie, Dong; Park, Jong-Gu; Zhao, Jun; Turner, Charles H

    2007-07-01

    Novel in situ polymerizable liquid three-arm biodegradable oligomeric polyesters based upon glycolic acid (GA), L-lactic acid (LLA), and their copolymers are synthesized and characterized. Injectable and in situ curable polymer neat resins and their composites formulated with bioabsorbable beta-tricalcium phosphate are prepared at room temperature using photo- and redox-initiation systems, respectively. The cured neat resins show the initial compressive yield strength (YCS, MPa), modulus (M, MPa), ultimate compressive strength (UCS, MPa), and toughness (T, kN mm), ranging from 4.0 to 20.1, 201.5 to 730.2, 82.7 to 310.5, and 1.02 to 3.93. The cured composites show the initial YCS, M, UCS and T, ranging from 27.7 to 56.4, 1440 to 4870, 81.6 to 158.9, and 0.94 to 1.97. Increasing GA/LLA ratio increases all the initial compressive strengths of both neat resins and composites. Increasing filler content increases YCS and M but decreases UCS and T. A diametral tensile strength test shows the same trend as a compressive strength test. There seems to be an optimal flexural strength for the composite at the filler content around 43%. An increasing molar ratio increases curing time but decreases the degree of conversion (DC). An increasing filler content increases curing time but decreases exotherm and DC. During the course of degradation, all the materials show a burst degradation behavior within 24 h, followed by an increase in CS. The poly(glycolic acid) neat resin completely loses its strength at around Day 45. The composites completely lose their strengths at different time intervals, depending on their molar ratio and filler content. The degradation rate is found to be molar ratio and filler-content dependent. PMID:16920760

  3. Aromatic-aliphatic copolyesters based on waste poly(ethylene terephthalate) and their biodegradability

    Czech Academy of Sciences Publication Activity Database

    Prokopová, I.; Vlčková, E.; Šašek, Václav; Náhlík, J.; Soukupová-Chaloupková, V.; Skolil, J.

    -, 052 (2008), s. 1-9. ISSN 1618-7229 R&D Projects: GA ČR GA203/03/0508; GA ČR GA203/06/0528 Institutional research plan: CEZ:AV0Z50200510 Keywords : aromatic-aliphatic colpolyesters * rhodococcus erythropolis * biodegradability Subject RIV: EE - Microbiology, Virology Impact factor: 0.661, year: 2008

  4. Biodegradation of composites based on maltodextrin and wheat B-starch in compost

    Czech Academy of Sciences Publication Activity Database

    Růžek, L.; Růžková, M.; Koudela, M.; Bečková, L.; Bečka, D.; Kruliš, Zdeněk; Šárka, E.; Voříšek, K.; Ledvina, Š.; Šalounová, B.; Venyercsanová, J.

    2015-01-01

    Roč. 42, č. 4 (2015), s. 209-214. ISSN 0862-867X R&D Projects: GA ČR GA525/09/0607 Institutional support: RVO:61389013 Keywords : biodegradable plastics * acetylated maltodextrin * lettuce Subject RIV: JI - Composite Materials Impact factor: 0.586, year: 2014

  5. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    Science.gov (United States)

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  6. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  7. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Science.gov (United States)

    Seyfi, Javad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Sadeghi, Gity Mir Mohamad; Zohuri, Gholamhossein; Hejazi, Iman; Simon, Frank

    2015-08-01

    In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  8. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    International Nuclear Information System (INIS)

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM

  9. Polymer-ceramic nanocomposites based on new concepts for embedded capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, Masa-aki [Departement of Organic and Polymeric Materials, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552 (Japan)]. E-mail: mkakimot@o.cc.titech.ac.jp; Takahashi, Akio [Hitachi, Ltd., 1-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki 319-1292 (Japan); Tsurumi, Taka-aki [Departement of Organic and Polymeric Materials, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552 (Japan); Hao, Jianjun [Departement of Organic and Polymeric Materials, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552 (Japan); Li, Li [Departement of Organic and Polymeric Materials, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552 (Japan); Kikuchi, Ryohei [Departement of Organic and Polymeric Materials, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552 (Japan); Miwa, Takao [Hitachi, Ltd., 1-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki 319-1292 (Japan); Oono, Toshiyuki [Hitachi, Ltd., 1-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki 319-1292 (Japan); Yamada, Shinji [Hitachi, Ltd., 1-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki 319-1292 (Japan)

    2006-07-25

    Polymer-ceramic nanocomposites based on new concepts were developed for embedded capacitor applications. The dielectric constant was above 80 at 1 MHz and the specific capacitance was successfully achieved 8 nF/cm{sup 2}. By use of this nanocomposites, multilayer printed wiring boards with embedded passive components were fabricated for prototypes. The following technologies would be reported in this conference. Firstly, based on the investigation of barium titanate (BaTiO{sub 3}) crystallites, various particles with the sizes from 17 to 100 nm were prepared by the two-step thermal decomposition method from barium titanyl oxalate (BaTiO(C{sub 2}O{sub 4}){sub 2}.4H{sub 2}O). It was clarified that BaTiO{sub 3} particles with a size of around 70 nm exhibited a maximum dielectric constant of over 15,000. Secondary, the BaTiO{sub 3} surface modification based on a new concept was applied to improve the affinity between BaTiO{sub 3} particles and polymer matrix. Thirdly, the blend polymer of an aromatic polyamide (PA) and an aromatic bismaleimide (BMI) was employed as the matrix from a view-point of both the processability during fabricating the substrates with embedded passive components and the thermal stability during assembling LSI chips. Finally, these technologies were combined and optimized for embedded capacitor materials.

  10. A novel aluminum based nanocomposite with high strength and good ductility

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanalizadeh, Hossein, E-mail: hralizadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Emamy, Masoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Shokouhimehr, Mohammadreza [School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of)

    2015-11-15

    Aluminum based nanocomposite containing nano-sized Al{sub 3}Mg{sub 2} reinforcing was fabricated via mechanical milling followed by hot extrusion techniques. For this, Al and Al{sub 3}Mg{sub 2} powders were mixed mechanically and milled at different times (0, 2, 5, 7, 10, 15 and 20 h) to achieve Al–10 wt.% Al{sub 3}Mg{sub 2} composite powders. Hot extrusion of cold pressed powders was done at 400 °C with extrusion ratio of 6:1. Microstructures of the powders and consolidated materials were studied using transmission electron microscopy, scanning electron microscope and X-ray diffraction. Fracture surfaces were also investigated by scanning electron microscopy equipped with EDS analyzer. The results showed that an increase in milling time caused to reduce the grain size unlike the lattice strain of Al matrix. In addition, the fabricated composites exhibited homogeneous distribution and less agglomerations of the n-Al{sub 3}Mg{sub 2} with increasing milling time. The mechanical behavior of these nanocomposites was investigated by hardness and tensile tests, which revealed it has four times the strength of a conventional Al along with good ductility. It was found that the ultimate tensile strength (UTS) and elongation of the nanocomposites were significantly improved with increases in milling time up to 15 h. This improvement was attributed to the grain refinement strengthening and homogeneous distribution of the n-Al{sub 3}Mg{sub 2}. Fracture surfaces showed that the interfacial bonding between Al and Al{sub 3}Mg{sub 2} could be improved with increasing in milling time. Also HRTEM results from interface showed that a metallurgical clean interface and intimate contact between matrix and second phase. By extending the milling process up to 20 h, there was no significant improvement in mechanical behavior of materials, due to the completion of milling process and dynamic and static recovery of composite at higher milling times. - Highlights: • A novel aluminum-based

  11. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells.

    Science.gov (United States)

    Gopinathan, Janarthanan; Quigley, Anita F; Bhattacharyya, Amitava; Padhye, Rajiv; Kapsa, Robert M I; Nayak, Rajkishore; Shanks, Robert A; Houshyar, Shadi

    2016-04-01

    In the current study, we describe the synthesis, material characteristics, and cytocompatibility of conducting poly (ɛ-caprolactone) (PCL)-based nano-composite films. Electrically conducting carbon nano-fillers (carbon nano-fiber (CNF), nano-graphite (NG), and liquid exfoliated graphite (G)) were used to prepare porous film type scaffolds using modified solvent casting methods. The electrical conductivity of the nano-composite films was increased when carbon nano-fillers were incorporated in the PCL matrix. CNF-based nano-composite films showed the highest increase in electrical conductivity. The presence of an ionic solution significantly improved the conductivity of some of the polymers, however at least 24 h was required to absorb the simulated ion solutions. CNF-based nano-composite films were found to have good thermo-mechanical properties compared to other conducting polymer films due to better dispersion and alignment in the critical direction. Increased nano-filler content increased the crystallisation temperature. Analysis of cell viability revealed no increase in cell death on any of the polymers compared to tissue culture plastic controls, or compared to PCL polymer without nano-composites. The scaffolds showed some variation when tested for PC12 cell attachment and proliferation, however all the polymers supported PC12 attachment and differentiation in the absence of cell adhesion molecules. In general, CNF-based nano-composite films with highest electrical conductivity and moderate roughness showed highest cell attachment and proliferation. These polymers are promising candidates for use in neural applications in the area of bionics and tissue engineering due to their unique properties. PMID:26646762

  12. Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer

    Directory of Open Access Journals (Sweden)

    Tianwen Yuan

    2016-05-01

    Full Text Available Esophageal stent implantation can relieve esophageal stenosis and obstructions in benign esophageal strictures, and magnesium alloy stents are a good candidate because of biodegradation and biological safety. However, biodegradable esophageal stents show a poor corrosion resistance and a quick loss of mechanical support in vivo. In this study, we chose the elastic and biodegradable mixed polymer of Poly(ε-caprolactone (PCL and poly(trimethylene carbonate (PTMC as the coated membrane on magnesium alloy stents for fabricating a fully biodegradable esophageal stent, which showed an ability to delay the degradation time and maintain mechanical performance in the long term. After 48 repeated compressions, the mechanical testing demonstrated that the PCL-PTMC-coated magnesium stents possess good flexibility and elasticity, and could provide enough support against lesion compression when used in vivo. According to the in vitro degradation evaluation, the PCL-PTMC membrane coated on magnesium was a good material combination for biodegradable stents. During the in vivo evaluation, the proliferation of the smooth muscle cells showed no signs of cell toxicity. Histological examination revealed the inflammation scores at four weeks in the magnesium-(PCL-PTMC stent group were similar to those in the control group (p > 0.05. The α-smooth muscle actin layer in the media was thinner in the magnesium-(PCL-PTMC stent group than in the control group (p < 0.05. Both the epithelial and smooth muscle cell layers were significantly thinner in the magnesium-(PCL-PTMC stent group than in the control group. The stent insertion was feasible and provided reliable support for at least four weeks, without causing severe injury or collagen deposition. Thus, this stent provides a new stent for the treatment of benign esophageal stricture and a novel research path in the development of temporary stents in other cases of benign stricture.

  13. Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites.

    Science.gov (United States)

    Shi, Jin; Cha, Tae-Gon; Claussen, Jonathan C; Diggs, Alfred R; Choi, Jong Hyun; Porterfield, D Marshall

    2011-12-01

    Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In this study, we used single-stranded DNA (ssDNA) to modify SWCNTs to increase solubility in water. This allowed us to explore new schemes of combining ssDNA-SWCNT and Pt black in aqueous media systems. The result is a nanocomposite with enhanced biosensor performance. The surface morphology, electroactive surface area, and electrocatalytic performance of different fabrication protocols were studied and compared. The ssDNA-SWCNT/Pt black nanocomposite constructed by a layered scheme proved most effective in terms of biosensor activity. The key feature of this protocol is the exploitation of ssDNA-SWCNTs as molecular templates for Pt black electrodeposition. The glucose and ATP microbiosensors fabricated on this platform exhibited high sensitivity (817.3 nA/mM and 45.6 nA/mM, respectively), wide linear range (up to 7 mM and 510 μM), low limit of detection (1 μM and 2 μM) and desirable selectivity. This work is significant to biosensor development because this is the first demonstration of ssDNA-SWCNT/Pt black nanocomposite as a platform for constructing both single-enzyme and multi-enzyme biosensors for physiological applications. PMID:21858297

  14. Sensitive determination of bisphenol A base on arginine functionalized nanocomposite graphene film

    International Nuclear Information System (INIS)

    Highlights: ► The water-soluble arginine functionalized graphene was produced successfully by an environment-friendly method. ► Electrochemical behaviors and some kinetic parameters of bisphenol A on the Arg-G/GCE were investigated. ► The proposed sensor showed more outstanding sensitivity properties toward the bisphenol A than the reported sensors. ► The proposed method opened a new simply way to detection of bisphenol A in the environmental protection. - Abstract: Arginine (Arg) functionalized graphene (Arg-G) nanocomposite was produced successfully by an environment-friendly method, and the morphology of the nanocomposite was characterized by transmission electron microscopy (TEM), Raman spectra, etc. Based on Arg-G nanocomposite, an electrochemical sensor was fabricated for sensitive detection of bisphenol A (BPA). The electrochemical behaviors of BPA on Arg-G modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Experimental parameters, such as the accumulation potential and time, scan rate, and the pH value of buffer solution were optimized. Under the optimized conditions, the oxidation peak current was proportional to BPA concentration in the range between 5.0 nmol/L and 40.0 μmol/L with the correlation coefficient of 0.9986 and the limit of detection of 1.1 nmol/L (S/N = 3). Moreover, the fabricated electrode also exhibited good reproducibility and stability. The proposed sensor was successfully employed to determine BPA in real plastic products and the recoveries were satisfactory.

  15. Study Structure and Properties of Nanocomposite Material Based on Unsaturated Polyester with Clay Modified by Poly(ethylene oxide

    Directory of Open Access Journals (Sweden)

    Tran Duy Thanh

    2012-01-01

    Full Text Available In recent years, polymer clay nanocomposites have been attracting considerable interests in polymers science because of their advantages. There are many scientists who researched about this kind of material and demonstrated that when polymer matrix was added to little weight of clay, properties were enhanced considerably. Because clay is a hydrophilic substance so it is difficult to use as filler in polymer matrix having hydrophobic nature, so clay needs to be modified to become compatible with polymer. In this study, poly(ethylene oxide was used as a new modifier for clay to replace some traditional ionic surfactants such as primary, secondary, tertiary, and quaternary alkyl ammonium or alkylphosphonium cations having the following disadvantages: disintegrate at high temperature, catalyze polymer degradation, and make nanoproducts colorific, and so forth. In order to evaluate modifying effect of poly(ethylene oxide, modified clay products were characterize d by X-ray spectrum. Then organoclay was used to prepare nanocomposite based on unsaturated polyester. Morphology and properties of nanocomposites were measure d by X-ray diffraction, transmission electron microscopy, tensile strength, and thermal stability. The results showed that clay galleries changed to intercalated state in the nanocomposites. Properties of nanocomposites were improved a lot when the loading of the organoclay was used at 1 phr.

  16. An Internship Program for Deaf and Hard of Hearing Students in Polymer-Based Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Cebe,P.; Cherdack, D.; Guertin, R.; Haas, T.; S. Ince, B.; Valluzzi, R.

    2006-01-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  17. Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites

    Science.gov (United States)

    Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng

    2016-06-01

    Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc.

  18. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds

    International Nuclear Information System (INIS)

    A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at -0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 x 103 μA mM-1 cm-2, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.

  19. Waste to Want: Polymer nanocomposites using nanoclays extracted from Oil based drilling mud waste

    Science.gov (United States)

    Adegbotolu, Urenna V.; Njuguna, James; Pollard, Pat; Yates, Kyari

    2014-08-01

    Due to the European Union (EU) waste frame work directive (WFD), legislations have been endorsed in EU member states such as UK for the Recycling of wastes with a vision to prevent and reduce landfilling of waste. Spent oil based drilling mud (drilling fluid) is a waste from the Oil and Gas industry with great potentials for recycling after appropriate clean-up and treatment processes. This research is the novel application of nanoclays extracted from spent oil based drilling mud (drilling fluid) clean-up as nanofiller in the manufacture of nanocomposite materials. Research and initial experiments have been undertaken which investigate the suitability of Polyamide 6 (PA6) as potential polymer of interest. SEM and EDAX were used to ascertain morphological and elemental characteristics of the nanofiller. ICPOES has been used to ascertain the metal concentration of the untreated nanofiller to be treated (by oil and heavy metal extraction) before the production of nanocomposite materials. The challenges faced and future works are also discussed.

  20. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lu Limin; Zhang Li [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Zhang Xiaobing, E-mail: xbzhang@hnu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Huan Shuangyan; Shen Guoli; Yu Ruqin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)

    2010-04-30

    A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at -0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 {mu}M, with a high sensitivity of 2.11 x 10{sup 3} {mu}A mM{sup -1} cm{sup -2}, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 {mu}M for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.

  1. Polymer-Based Nanocomposites: An Internship Program for Deaf and Hard of Hearing Students

    Science.gov (United States)

    Cebe, Peggy; Cherdack, Daniel; Seyhan Ince-Gunduz, B.; Guertin, Robert; Haas, Terry; Valluzzi, Regina

    2007-03-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  2. Preparation and tribological properties of water-soluble copper/silica nanocomposite as a water-based lubricant additive

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunli [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang Shengmao [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yu Laigui; Zhang Zhijun [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Wu Zhishen, E-mail: zhishenwu@yahoo.com [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A facile process is established to prepare water-soluble Cu/SiO{sub 2} nanocomposite. Black-Right-Pointing-Pointer Cu/SiO{sub 2} nanocomposite exhibit markedly improved tribological properties. Black-Right-Pointing-Pointer The state and thickness of the film on worn surface is closely related to applied load. - Abstract: Cu/SiO{sub 2} nanocomposite was synthesized by sol-gel method. The size, morphology and phase structure of as-prepared Cu/SiO{sub 2} nanocomposite were analyzed by means of X-ray diffraction and transmission electron microscopy, and its ultraviolet-visible light spectrum was measured in relation to surface plasmon excitation of Cu particles. The tribological properties of as-synthesized Cu/SiO{sub 2} nanocomposite as an additive in distilled water were investigated with a four-ball machine, and the morphology and elemental composition of worn steel surfaces were examined with a scanning electron microscope and an X-ray photoelectron spectroscope. Results show that as-synthesized Cu/SiO{sub 2} nanocomposite as a lubricant additive is able to significantly improve the tribological properties of distilled water. A protective and lubricious film composed of Cu and a small amount of FeS, FeSO{sub 4} and SiO{sub 2} is formed on steel sliding surfaces lubricated by distilled water containing Cu/SiO{sub 2} nanocomposite. During friction process Cu nanoparticles can be released from Cu/SiO{sub 2} nanocomposite to fill up micro-pits and grooves of steel sliding surfaces, resulting in greatly reduced friction and wear of steel frictional pair via self-repairing. The state and thickness of the film formed on the worn surface is closely related to applied load; and Cu/SiO{sub 2} nanocomposite might be a promising water-based lubricant additive for steel-steel contact subjected to moderate load.

  3. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  4. Lead-free BaTiO3 nanowires-based flexible nanocomposite generator

    Science.gov (United States)

    Park, Kwi-Il; Bae, Soo Bin; Yang, Seong Ho; Lee, Hyung Ik; Lee, Kisu; Lee, Seung Jun

    2014-07-01

    We have synthesized BaTiO3 nanowires (NWs) via a simple hydrothermal method at low temperature and developed a lead-free, flexible nanocomposite generator (NCG) device by a simple, low-cost, and scalable spin-coating method. The hydrothermally grown BaTiO3 NWs are mixed in a polymer matrix without a toxic dispersion enhancer to produce a piezoelectric nanocomposite (p-NC). During periodical and regular bending and unbending motions, the NCG device fabricated by utilizing a BaTiO3 NWs-polydimethylsiloxane (PDMS) composite successfully harvests the output voltage of ~7.0 V and current signals of ~360 nA, which are utilized to drive a liquid crystal display (LCD). We also characterized the instantaneous power (~1.2 μW) of the NCG device by calculating the load voltage and current through the connected external resistance.We have synthesized BaTiO3 nanowires (NWs) via a simple hydrothermal method at low temperature and developed a lead-free, flexible nanocomposite generator (NCG) device by a simple, low-cost, and scalable spin-coating method. The hydrothermally grown BaTiO3 NWs are mixed in a polymer matrix without a toxic dispersion enhancer to produce a piezoelectric nanocomposite (p-NC). During periodical and regular bending and unbending motions, the NCG device fabricated by utilizing a BaTiO3 NWs-polydimethylsiloxane (PDMS) composite successfully harvests the output voltage of ~7.0 V and current signals of ~360 nA, which are utilized to drive a liquid crystal display (LCD). We also characterized the instantaneous power (~1.2 μW) of the NCG device by calculating the load voltage and current through the connected external resistance. Electronic supplementary information (ESI) available: PDF materials involve the linear superposition test results (Fig. S1) and the durability test results (Fig. S2) of BaTiO3 NWs-based NCG device. A video file (Video S1) shows the power up of an LCD screen by the NCG device without any external energy source. See DOI: 10.1039/c4nr

  5. Development of nanocomposites based on potato starch; Desenvolvimento de nanocompositos a base de amido de batata

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Luciana Macedo; Tavares, Maria Ines Bruno, E-mail: mibt@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-07-01

    Nanocomposites of potato starch were prepared by the solution intercalation method with the addition of organically modified montmorillonite clay (Viscogel B and unmodified sodic clay (NT25) as well as modified and unmodified silica (R972 and A200, respectively), using water as the solvent. The nanocomposites were characterized by conventional techniques of X-ray diffraction and thermogravimetric analysis. They were also characterized using the non-conventional low-field nuclear magnetic resonance, which is an effective alternative technique for characterizing nanocomposites. This technique allows one to investigate dispersion of nanofillers by the degree of intercalation and/or exfoliation, in addition to determine the distribution of nanoparticles in the polymer matrix and modifications of the molecular mobility of these fillers. The nanostructured materials obtained with the clays presented good dispersion and formation of mixed nanomaterials, with different degrees of intercalation and exfoliation. The mobility of the material decreased upon adding silica in the starch matrix, which applied to both types of silica. From the TGA technique, a slight increase in thermal stability of the nanocomposite was noted in relation to the starch matrix. (author)

  6. Preparation and Osteogenesis Activities of Electroactive Biodegradable Nanocomposites PAP/op-HA/PLGA%电活性可生物降解纳米复合材料PAP/op-HA/PLGA的制备及成骨活性

    Institute of Scientific and Technical Information of China (English)

    邬海涛; 于婷; 朱庆三; 焦自学; 危岩; 章培标; 陈学思

    2011-01-01

    以苯胺五聚体(AP)与聚乳酸(PLA)的三嵌段共聚物(PAP)与表面接枝低聚乳酸的纳米羟基磷灰石(op-HA)和聚丙交酯-乙交酯(PLGA)的复合物共混,制备了电活性可降解纳米复合材料PAP/op-HA/PLGA,采用紫外-可见光谱、循环伏安扫描和标准四探针法分析其电化学特性及电导率.采用ESEM观察其膜表面形貌,用接触角评价其亲水性.通过在材料膜表面接种兔成骨细胞进行体外培养,采用荧光染色、NIH ImageJ图像分析和Real-time PCR综合评价细胞在材料表面的黏附、扩展(细胞面积比)和成骨相关基因的表达水平,以此评价新犁电活性纳米复合骨修复材料PAP/op-HA/PLGA的表面性质和生物活性.结果表明,PAP/op-HA/PLGA的电导牢较低(5×10S/cm),但具有良好的电化学氧化还原性能,PAP质量分数为0.1%时,材料的亲水性明显改善,成骨细胞的黏附和扩展明显增强.培养7 d时骨形态蛋白-2(BMP-2)和骨连接蛋白(Osteonectin)的基因表达水平明显提高,而对Ⅰ型胶原蛋白的基因表达无明显影响.表明PAP/op-HA/PLGA具有良好的细胞相容性和成骨活性.%The electroactive biodegradable nanocomposites PAP/op-HA/PLGA were prepared by blending a triblock copolymer PLA-b-AP-b-PLA (PAP) of polylactide(PLA)and aniline pentamer(AP)with oligomeric lactic acid-surface grafted hydroxyapatite ( op-HA )/poly(lactide-co-glycolide)(PLGA).The electrochemical properties and conductivity were characterized using UV-Vis spectroscopy, cyclic voltammetry and standard four-probe method.The film's surface morphology was displayed by ESEM and the contact angle was measured to evaluate the film' s hydrophilicity.Rabbit's osteoblasts were cultured in vitro on the film surface.For comprehensively evaluating surface properties and biological activity of the new electroactive nanocomposites PAP/op-HA/PLGA for bone repair,cell adhesion and cell spreading(cell area fraction)were determined using fiuorescein

  7. Improvement in conductivity and thermal stability of polystyrene with two-step reduced graphene oxide based nanocomposite graphene/polystyrene

    International Nuclear Information System (INIS)

    In in situ microemulsion synthesis, we have synthesized successfully nanocomposite based on polystyrene (PS) and two-step reduced graphene oxide sheets with heat and NaBH4 agent after they had been treated by monoglyceride. Resulted nanocomposite has been better in electrical conductivity (approximately 2.01x10-2 S/cm), thermal stability (increased about 120 oC) and physical properties (glass transition temperature increases of over 6.40 oC, elastic modulus increases by 45%) than pure PS properties. (author)

  8. Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly (vinyl alcohol) core-shell nanocomposite

    OpenAIRE

    Shukla, S K; Deshpande, Swapneel R.; Shukla, Sudheesh K.; Tiwari, Ashutosh

    2012-01-01

    A potentiometrically tuned-glucose biosensor was fabricated using core-shell nanocomposite based on zinc oxide encapsulated chitosan-graft-poly(vinyl alcohol) (ZnO/CHIT-g-PVAL). In a typical experiment, ZnO/CHIT-g-PVAL core-shell nanocomposite containing <20 nm ZnO nanoparticles was synthesized using wet-chemical method. The glucose responsive bio-electrode, i.e., glucose oxidase/ZnO/chitosan-graft-poly(vinyl alcohol) (GOD/ZnO/CHIT-g-PVAL/ITO) was obtained by immobilization of glucose ...

  9. Study of negatronic device based on amorphous carbon/nickel nanocomposite

    International Nuclear Information System (INIS)

    Composite based on pyrogallol and formaldehyde (PF) reached by NiO nanoparticles has been prepared using sol–gel method to obtain negatronic PF/Ni devices. The obtained materials were subjected to heat treatment under inert atmosphere at 650 °C for 2 h. The X-ray diffraction analysis (XRD) shows that PF sample was composed of amorphous material while PF/Ni XRD spectra exhibited the presence of metallic nickel characteristic lines. The transmission electron microscopy (TEM) images indicate that PF sample was formed by homogenous material, and metallic nickel nanoparticles sized around 30 nm were dispersed in the PF/Ni nanocomposite. dc I(V) characteristics indicate a symmetric and non-linear behavior and the presence of negative differential resistance (RDN) phase in the PF/Ni sample. The dc conductivity (σdc) can be explained by Variable Range Hopping (3D-VRH) conduction model in both samples. The ac conductance shows the dominance of hopping conduction mechanism in PF sample; however, the Correlated Barrier Hopping (CBH) model seems to be dominant in the PF/Ni nanocomposite. The Nyquist plots were used to identify an equivalent circuit with the aim to study the possible contribution of the grains and boundary grains to the samples conductivities.

  10. Influence of dispersion states on the performance of polymer-based nanocomposites

    International Nuclear Information System (INIS)

    Although nanoparticle-modified polymers have tremendous promise in many applications, particularly dielectric energy storage, true nanoscale dispersion is extremely difficult to achieve. In this paper, we carefully engineer various dispersion states of titania nanoparticles in polyvinylidene fluoride and analyze their impact on dielectric behavior and energy storage ability. In particular, we compare nanocomposites prepared using commercially available nanoparticles to those we prepared using in situ and ex situ synthesis of nanoparticles. SEM and TEM studies showed that the in situ case leads to the best dispersion. Interestingly, dielectric permittivity was most influenced by dispersion state where the in situ case showed a higher increase, however, dielectric breakdown and energy storage density were less affected by dispersion and more affected by procedure that minimized residues and impurities. The in situ technique, in particular, showed nanoscale dispersion, low dielectric loss and higher energy storage density. In terms of mechanical behavior, all three cases showed a similar performance in the rubbery region, whereas the impact of dispersion was more pronounced in the glassy region. In fact, the trend was opposite to the dielectric permittivity where nanoscale dispersion resulted in a lower storage modulus likely due to the lower effective mechanical load transfer going to the nanoscale. The results of our study shed some light on the role of dispersion quality and processing techniques in affecting the final dielectric, mechanical and breakdown behavior of TiO2-based polymer nanocomposites. (paper)

  11. A label-free electrochemical aptasensor based on graphene oxide/double-stranded DNA nanocomposite.

    Science.gov (United States)

    Li, Yu; Wang, Qi; Zhang, Yuting; Deng, Dongmei; He, Haibo; Luo, Liqiang; Wang, Zhenxin

    2016-09-01

    A novel label-free electrochemical impedance aptasensor based on a gold nanoparticles/double-stranded DNA-graphene (AuNPs/dsDNA-GO) nanocomposite modified glassy carbon electrode was presented for quantitative determination of thrombin. GO was covalently functionalized with dsDNA via a facile amidation process, and then AuNPs were electrodeposited onto the surface of dsDNA-GO. The morphology, conductivity and interaction of the as-prepared nanocomposites were characterized by scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy (EIS), Raman and Fourier transform infrared spectroscopy. The thrombin-binding aptamer (TBA) was conjugated to AuNPs via gold-thiol chemistry to construct electrochemical aptasensing platform, and the specific recognition between TBA and thrombin was monitored by EIS. Under optimum conditions, thrombin could be quantified in a wide range of 0.1-100nM (R(2)=0.9960) with low detection limit of 0.06nM (S/N=3). PMID:27182650

  12. Morphological Features and Melting Behavior of Nanocomposites Based on Isotactic Polypropylene and Multiwalled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Orta,C.; Medellin-Rodriguez, F.; Davila-Rodriguez, M.; Aguirre-Figueroa, Y.; Yoon, K.; Hsiao, B.

    2007-01-01

    Nanocomposites based on low molar mass isotactic polypropylene (iPP) and a low concentrations (1-2 wt %) of multiwalled carbon nanotubes (MWCNTs) were studied using thermal analysis, optical and electronic microscopy, and X-ray diffraction/scattering techniques. It was first determined that MWCNT decrease induction time and act as nucleating agents of the iPP crystals during nonisothermal crystallization. One of the consequences of the nucleation effect was that the original spherulitic morphology of iPP was transformed into a fibrillar-like. The corresponding long period of the original well-defined lamellar structure slightly increased suggesting the formation of thicker crystals in samples containing MWCNT. The nature of the {alpha}-iPP crystalline structure was not affected by MWCNT. After nonisothermal crystallization, two melting endotherms were present during thermal scanning of the iPP/MWCNT nanocomposites their proportion changing with the heating rate. After resolving the total DSC signal in its components using MDSC, the overall evolution of such behavior could be explained in terms of the melting/recrystallization mechanism.

  13. A novel graphene based nanocomposite for application in 3D flexible micro-supercapacitors

    Science.gov (United States)

    Marasso, S. L.; Rivolo, P.; Giardi, R.; Mombello, D.; Gigot, A.; Serrapede, M.; Benetto, S.; Enrico, A.; Cocuzza, M.; Tresso, E.; Pirri, C. F.

    2016-06-01

    In this work a hybrid graphene-based flexible micro-supercapacitor (MSC) exploiting a novel composite material was fabricated and extensively characterized. The MSC electrodes have been obtained from a synthesized composite aerogel of reduced graphene oxide and polycrystalline nanoparticles of molybdenum (IV) oxide (MoO2) and then dispersed in a solution containing poly(3,4-ethylenedioxythiophene) (PEDOT). Usually in MSCs the electrons have to percolate through the nanostructured Three-dimensional (3D) matrix in order to reach the collectors, made by metal thin films that provide electrical contacts only on the surface of active material. In the attempt to enable a more efficient charge transfer and to allow direct electrical contact without metal deposition, in this study a highly doped PEDOT acting both as current collector and as binder for the nanocomposite material has been employed. 3D MSCs were fabricated through a Lithographie, Galvanoformung, Abformung (LIGA)-like process to obtain high aspect ratio microstructures in polydimethylsiloxane replicas. Capacitance values of 94 F g‑1 for the nanocomposite and of 14 mF cm‑2 for the device were achieved. Moreover, bending test has demonstrated good performance preservation in a U shape conformation of the device.

  14. Ternary and quaternary nanocomposites based on polystyrene, SBS, organically modified clay and silicone-polyether

    International Nuclear Information System (INIS)

    This work aims the study of toughened nanocomposites based on polystyrene (PS), poly(styrene-b-butadiene-b-styrene) (SBS), organically modified clay (C20A) and silicone-polyether, PDMS-POE. The intercalation of the copolymer PDMS-POE into the clay galleries increased the interlamellar distance, improving the exfoliation of the clay during the extrusion process of the materials. C20A/PDMS-POE nanocomposite, MC20A, was prepared by mechanical mixture using 1:1 wt% ratio. MC20A was incorporated into PS and PS/SBS blends using an extruder. The materials were characterized by X-ray diffraction and stress-strain mechanical tests. MC20A/PS/SBS, prepared by extrusion, showed an increase in the interlamellar distance, suggesting the intercalation of PS or SBS into the clay galleries. The PDMSPOE acted as a 'plasticizer' for PS and PS/SBS blend. However, this effect was not reverted by the clay addition. On the contrary, the 'plasticizer' effect was intensified by the clay maybe due to the slip characteristics of PDMS-POE associated with the lamella orientation. (author)

  15. Improved triclosan delivery by a novel silica-based nanocomposite.

    Science.gov (United States)

    Makarovsky, Igor; Lellouche, Jonathan; Lellouche, Jean-Paul; Banin, Ehud

    2013-04-01

    In this study, we report on the design, synthesis, and full characterization of a covalently-linked, triclosan silica-based nanoparticles (T-SNPs), coated with a polyaminated shell (NH2 -T-SNPs). Various techniques are used to elucidate and rationalize the potential biological mechanism of action of these novel nanoparticles. NH2 -T-SNPs are found to be potently bactericidal with no detectable lag time for the antimicrobial activity against E. coli and S. aureus. In this context, we also prove that triclosan is the chemical agent that mediated the bactericidal activity of these chemically-modified NPs. The obtained experimental data allows us to pinpoint the actual minimal bactericidal concentrations (MBCs) of triclosan-bound NPs by quantifying intracellular triclosan concentrations. Furthermore, we conduct preliminary cytotoxicity studies, which show that triclosan bound NPs are less cytotoxic (2000 fold) in vitro compared to free-triclosan when tested with various human and mammalian cell lines. Taken together, our results further support the characterization and development of these new nanoscale materials for various biomedical applications. PMID:23184708

  16. Novel "soft" biodegradable nanoparticles prepared from aliphatic based monomers as a potential drug delivery system

    Czech Academy of Sciences Publication Activity Database

    Jäger, Alessandro; Gromadzki, Daniel; Jäger, Eliezer; Giacomelli, F. C.; Kozlowska, A.; Kobera, Libor; Brus, Jiří; Říhová, Blanka; El Fray, M.; Ulbrich, Karel; Štěpánek, Petr

    2012-01-01

    Roč. 8, č. 16 (2012), s. 4343-4354. ISSN 1744-683X R&D Projects: GA AV ČR IAAX00500803; GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : biodegradable nanoparticles * light scattering from polymer nanoparticles * drug release Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.909, year: 2012

  17. Fibers and 3D mesh scaffolds from biodegradable starch-based blends : production and characterization

    OpenAIRE

    Pavlov, Miroslav P.; Mano, J. F.; Neves, N. M.; Reis, R. L.

    2004-01-01

    The aim of this work is the production of fibers from biodegradable polymers to obtain 3D scaffolds for tissue engineering of hard tissues. The scaffolds required for this highly demanding application need to have, as well as the biological and mechanical characteristics, a high degree of porosity with suitable dimensions for cell seeding and proliferation. Furthermore, the open cell porosity should have adequate interconnectivity for a continuous flow of nutrients and...

  18. In vitro investigations of a novel wound dressing concept based on biodegradable polyurethane

    Science.gov (United States)

    Rottmar, Markus; Richter, Michael; Mäder, Xenia; Grieder, Kathrin; Nuss, Katja; Karol, Agnieszka; von Rechenberg, Brigitte; Zimmermann, Erika; Buser, Stephan; Dobmann, Andreas; Blume, Jessica; Bruinink, Arie

    2015-06-01

    Non-healing and partially healing wounds are an important problem not only for the patient but also for the public health care system. Current treatment solutions are far from optimal regarding the chosen material properties as well as price and source. Biodegradable polyurethane (PUR) scaffolds have shown great promise for in vivo tissue engineering approaches, but accomplishment of the goal of scaffold degradation and new tissue formation developing in parallel has not been observed so far in skin wound repair. In this study, the mechanical properties and degradation behavior as well as the biocompatibility of a low-cost synthetic, pathogen-free, biocompatible and biodegradable extracellular matrix mimicking a PUR scaffold was evaluated in vitro. The novel PUR scaffolds were found to meet all the requirements for optimal scaffolds and wound dressings. These three-dimensional scaffolds are soft, highly porous, and form-stable and can be easily cut into any shape desired. All the material formulations investigated were found to be nontoxic. One formulation was able to be defined that supported both good fibroblast cell attachment and cell proliferation to colonize the scaffold. Tunable biodegradation velocity of the materials could be observed, and the results additionally indicated that calcium plays a crucial role in PUR degradation. Our results suggest that the PUR materials evaluated in this study are promising candidates for next-generation wound treatment systems and support the concept of using foam scaffolds for improved in vivo tissue engineering and regeneration.

  19. Biodegradable polyester-based shape memory polymers: Concepts of (supramolecular architecturing

    Directory of Open Access Journals (Sweden)

    J. Karger-Kocsis

    2014-06-01

    Full Text Available Shape memory polymers (SMPs are capable of memorizing one or more temporary shapes and recovering to the permanent shape upon an external stimulus that is usually heat. Biodegradable polymers are an emerging family within the SMPs. This minireview delivers an overlook on actual concepts of molecular and supramolecular architectures which are followed to tailor the shape memory (SM properties of biodegradable polyesters. Because the underlying switching mechanisms of SM actions is either related to the glass transition (Tg or melting temperatures (Tm, the related SMPs are classified as Tg- or Tm-activated ones. For fixing of the permanent shape various physical and chemical networks serve, which were also introduced and discussed. Beside of the structure developments in one-way, also those in two-way SM polyesters were considered. Adjustment of the switching temperature to that of the human body, acceleration of the shape recovery, enhancement of the recovery stress, controlled degradation, and recycling aspects were concluded as main targets for the future development of SM systems with biodegradable polyesters.

  20. Biopolymer-based thermoplastic mixture for producing solid biodegradable shaped bodies and its photo degradation stability

    Science.gov (United States)

    Sulong, Nurulsaidatulsyida; Rus, Anika Zafiah M.

    2013-12-01

    In recent years, biopolymers with controllable lifetimes have become increasingly important for many applications in the areas of agriculture, biomedical implants and drug release, forestry, wild life conservation and waste management. Natural oils are considered to be the most important class of renewable sources. They can be obtained from naturally occurring plants, such as sunflower, cotton, linseed and palm oil. In Malaysia, palm oil is an inexpensive and commodity material. Biopolymer produced from palm oil (Bio-VOP) is a naturally occurring biodegradable polymer and readily available from agriculture. For packaging use however, Bio-VOP is not thermoplastic and its granular form is unsuitable for most uses in the plastics industry, mainly due to processing difficulties during extrusion or injection moulding. Thus, research workers have developed several methods to blend Bio-VOP appropriately for industrial uses. In particular, injections moulding processes, graft copolymerisation, and preparation of blends with thermoplastic polymers have been studied to produce solid biodegradable shaped bodies. HDPE was chosen as commercial thermoplastic materials and was added with 10% Bio-VOP for the preparation of solid biodegradable shaped bodies named as HD-VOP. The UV light exposure of HD-VOP at 12 minutes upon gives the highest strength of this material that is 17.6 MPa. The morphological structure of HD-VOP shows dwi structure surface fracture which is brittle and ductile properties.

  1. Polylactide-based renewable composites from natural products residues by encapsulated film bag: characterization and biodegradability.

    Science.gov (United States)

    Wu, Chin-San

    2012-09-01

    In the present study, the biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted polylactide (PLA-g-AA) and natural products residues (corn starch, CS) were evaluated. Composites containing acrylic acid-grafted PLA (PLA-g-AA/CS) exhibited noticeably superior mechanical properties due to their greater compatibility with CS compared with PLA/CS. The feasibility of using PLA-g-AA/CS as a film bag material to facilitate the controlled release of an encapsulated phosphate-solubilizing bacterium (PSB) Burkholderia cepacia as a fertilizer use promoter was then evaluated. For purposes of comparison and accurate characterization, a PLA film bag was also assessed. The results showed that the bacterium completely degraded both the PLA and the PLA-g-AA/CS composite film bags, resulting in cell release. The PLA-g-AA/CS (20 wt%) film bags were more biodegradable than those made of PLA, and displayed a higher loss of molecular weight and intrinsic viscosity, indicating a strong connection between these characteristics and biodegradability. PMID:24751080

  2. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng, E-mail: cpufengc@163.com [China Pharmaceutical University, Department of Pharmaceutics, School of Pharmacy (China)

    2015-12-15

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC{sub 0–6h} values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes.

  3. A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •A Fe3O4–aniline-naphthylamine nanocomposite was prepared via a simple route. •The magnetic nanocomposite was applied for isolation of RhB from water. •The nanocomposite applicability was compared with other pristine polymers. •The method was applied for the determination of RhB in different samples. -- Abstract: A novel Fe3O4–poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50 nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe3O4/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35–5.00 μg L−1 with R2 = 0.9991 was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.10 μg L−1 and 0.35 μg L−1 (n = 3), respectively. The relative standard deviation for water sample with 0.5 μg L−1 of RhB was 4.2% (n = 5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94–99%

  4. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    International Nuclear Information System (INIS)

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC0–6h values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes

  5. Local buckling analysis of biological nanocomposites based on a beam-spring model

    OpenAIRE

    Zhiling Bai; Baohua Ji

    2015-01-01

    Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existin...

  6. Sensors on Textile Fibres Based on Ag/a-C:H:O Nanocomposite Coatings

    OpenAIRE

    Martin Drabik; Nina Vogel-Schäuble; Manfred Heuberger; Dirk Hegemann; Hynek Biederman

    2013-01-01

    In this contribution we present a study of the vacuum deposition process of metal/plasma polymer nanocomposite thin films monitored using plasma diagnostics (optical emission spectroscopy). We investigate the electrical properties of the nanocomposite structures suitable for their application as humidity sensors. Furthermore, the film microstructure is characterized by transmission electron microscopy and electron diffraction analysis. The amount of silver in the nanocomposite is evaluated us...

  7. Predictive analysis of chitosan-based nanocomposite biopolymers elastic properties at nano- and microscale.

    Science.gov (United States)

    Kossovich, Elena L; Safonov, Roman A

    2016-04-01

    Chitosan nanocomposites mechanical properties play a major role in usage of such materials for specific areas of application, mostly in medicine and development of ecologically-friendly production. Computer-based predictive modelling of such composites will reduce costs of their development. In this paper, a multiscale approach for structural characterization and evaluation of mechanical properties is proposed based on hybrid coarse-grained/all atom molecular dynamics. Chitosan films and fibers are constructed and studied in silico as well as chitosan composites with different types of randomly distributed reinforcing fillers (graphene nanoparticles, graphene oxide nanoparticles, carbon nanotubes, chitin nanoparticles). Young's moduli are found for such composites, degrees of improvement of mechanical properties and size effects within the framework of proposed methodology are discussed. PMID:26970953

  8. Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites

    Science.gov (United States)

    Mi, J. L.; Zhao, X. B.; Zhu, T. J.; Tu, J. P.

    2007-10-01

    Nanocomposites offer a promising approach to incorporate nanostructured constituents to bulk thermoelectric materials. n-type CoSb3 nanocomposites were prepared by hot pressing the mixture of nanoscale and microsized CoSb3 powders synthesized by solvothermal method and melting, respectively. Microstructure analysis shows that the bulk materials are composed of nano- and micrograins. The nanocomposite structures are effective in reducing thermal conductivity more than electrical conductivity, hence in improving the thermoelectric performance. A dimensionless figure of merit of 0.71 is obtained for the nanocomposite with 40wt% nanopowder inclusions, about 54% increase of that without nanopowder inclusions.

  9. Facile one-step synthesis of nanocomposite based on carbon nanotubes and Nickel-Aluminum layered double hydroxides with high cycling stability for supercapacitors.

    Science.gov (United States)

    Bai, Caihui; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan

    2016-10-15

    Nickel-Aluminum Layered Double Hydroxide (NiAl-LDH) and nanocomposite of Carbon Nanotubes (CNTs) and NiAl-LDH (CNTs/NiAl-LDH) were prepared by using a facile one-step homogeneous precipitation approach. The morphology, structure and electrochemical properties of the as-prepared CNTs/NiAl-LDH nanocomposite were then systematically studied. According to the galvanostatic charge-discharge curves, the CNTs/NiAl-LDH nanocomposite exhibited a high specific capacitance of 694Fg(-1) at the 1Ag(-1). Furthermore, the specific capacitance of the CNTs/NiAl-LDH nanocomposite still retained 87% when the current density was increased from 1 to 10Ag(-1). These results indicated that the CNTs/NiAl-LDH nanocomposite displayed a higher specific capacitance and rate capability than pure NiAl-LDH. And the participation of CNTs in the NiAl-LDH composite improved the electrochemical properties. Additionally, the capacitance of the CNTs/NiAl-LDH nanocomposite kept at least 92% after 3000cycles at 20Ag(-1), suggesting that the nanocomposite exhibited excellent cycling durability. This strategy provided a facile and effective approach for the synthesis of nanocomposite based on CNTs and NiAl-LDH with enhanced supercapacitor behaviors, which can be potentially applied in energy storage conversion devices. PMID:27405071

  10. Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors

    Science.gov (United States)

    Ubertini, Filippo; Laflamme, Simon; Ceylan, Halil; Materazzi, Annibale Luigi; Cerni, Gianluca; Saleem, Hussam; D'Alessandro, Antonella; Corradini, Alessandro

    2014-04-01

    The authors have recently developed two novel solutions for strain sensing using nanocomposite materials. While they both aim at providing cost-effective solutions for the monitoring of local information on large-scale structures, the technologies are different in their applications and physical principles. One sensor is made of a cementitious material, which could make it suitable for embedding within the core of concrete structures prior to casting, and is a resistor, consisting of a carbon nanotube cement-based transducer. The other sensor can be used to create an external sensing skin and is a capacitor, consisting of a flexible conducting elastomer fabricated from a nanocomposite mix, and deployable in a network setup to cover large structural surfaces. In this paper, we advance the understanding of nanocomposite sensing technologies by investigating the potential of both novel sensors for the dynamic monitoring of civil structures. First, an in-depth dynamic characterization of the sensors using a uniaxial test machine is conducted. Second, their performance at dynamic monitoring of a full-scale concrete beam is assessed, and compared against off-the-shelf accelerometers. Experimental results show that both novel technologies compare well against mature sensors at vibration-based structural health monitoring, showing the promise of nanocomposite technologies for the monitoring of large-scale structural systems.

  11. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    Directory of Open Access Journals (Sweden)

    Mushahary D

    2013-08-01

    Full Text Available Dolly Mushahary,1,2 Ragamouni Sravanthi,2 Yuncang Li,2 Mahesh J Kumar,1 Nemani Harishankar,4 Peter D Hodgson,1 Cuie Wen,3 Gopal Pande2 1Institute for Frontier Materials, Deakin University, Geelong, Australia; 2CSIR- Centre for Cellular and Molecular Biology, Hyderabad, India; 3Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Australia; 4National Institute of Nutrition (ICMR, Tarnaka, Hyderabad, India Abstract: Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. Keywords: osteoblasts, bone mineralization, corrosion, osseointegration, surface energy, peri-implant

  12. Polymer-Ceramic Nanocomposites Based on New Concepts for Embedded Capacitor

    Science.gov (United States)

    Takahashi, Akio; Kakimoto, Masa-Aki; Tsurumi, Taka-Aki; Hao, Jianjun; Li, Li; Kikuchi, Ryohei; Miwa, Takao; Ohno, Toshiyuki; Yamada, Shinji; Takezawa, Yoshitaka

    A rapid growth of mixed-signal integrated circuits is driving the needs of multifunction and miniaturization of the component in electronics applications. Polymer-ceramic composites have been of great interest as embedded capacitor materials because they enabled companies to combine the processability of polymers with the high dielectric constant of ceramics. Polymer-ceramic nanocomposites based on new concepts were developed for embedded capacitor applications. The dielectric constant was above 80 at 1 MHz and the specific capacitance was successfully achieved 8 nF/cm2. By use of this nanocomposites, multilayer printed wiring boards with embedded passive components were fabricated for prototypes. The following technologies are reported in this paper. Firstly, based on the investigation of barium titanium oxide (BaTiO3) crystallites, various particles with the sizes from 17 nm to 100 nm were prepared by the 2-step thermal decomposition method from barium titanyl oxalate (BaTiO(C2O4)2·4H2O). It was clarified that BaTiO3 particles with a size of around 70 nm exhibited a maximum dielectric constant of over 15,000 by FEM analysis from the measured dielectric constants of BaTiO3 suspensions. Secondary, the BaTiO3 surface modification based on a new concept was applied to improve the affinity between BaTiO3 particles and polymer matrix. Thirdly, the blend polymer of an aromatic polyamide (PA) and an aromatic bismaleimide (BMI) was employed as the matrix from a view-point of both the processabilty during fabricating the substrates with embedded passive components and the thermal stability during assembling LSI chips. Finally, these technologies were combined and optimized for embedded capacitor materials.

  13. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  14. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications.

    Science.gov (United States)

    Hung, Kun-Che; Tseng, Ching-Shiow; Hsu, Shan-Hui

    2014-10-01

    Biodegradable materials that can undergo degradation in vivo are commonly employed to manufacture tissue engineering scaffolds, by techniques including the customized 3D printing. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. So far, there is no investigation on water-based 3D printing for synthetic materials. In this study, the water dispersion of elastic and biodegradable polyurethane (PU) nanoparticles is synthesized, which is further employed to fabricate scaffolds by 3D printing using polyethylene oxide (PEO) as a viscosity enhancer. The surface morphology, degradation rate, and mechanical properties of the water-based 3D-printed PU scaffolds are evaluated and compared with those of polylactic-co-glycolic acid (PLGA) scaffolds made from the solution in organic solvent. These scaffolds are seeded with chondrocytes for evaluation of their potential as cartilage scaffolds. Chondrocytes in 3D-printed PU scaffolds have excellent seeding efficiency, proliferation, and matrix production. Since PU is a category of versatile materials, the aqueous 3D printing process developed in this study is a platform technology that can be used to fabricate devices for biomedical applications. PMID:24729580

  15. Mechanical behaviour of nanocomposites derived from zirconium based bulk amorphous alloys

    International Nuclear Information System (INIS)

    The effects on mechanical properties of partial crystallization of a zirconium based bulk amorphous alloy (Vit1) are investigated. Nanocomposites are produced by appropriate heat treatments at temperatures higher than the glass transition temperature. Mechanical properties at room temperature are investigated by compression tests and hardness measurements including nanoindentation. The variation of the fracture stress with the degree of crystallinity is related to the nature, the size and the dispersion of the crystals in the amorphous phase. The variations of microstructure are estimated thanks to differential scanning calorimetry, X-ray diffraction and transmission electron microscopy. A significant connexion between crystals induces a decrease of the fracture stress whereas hardness continuously increases with crystallinity. From nanoindentation tests, Young's modulus and apparent yield stresses were roughly estimated and it is concluded that crystallization tends to increase the yield stress. Nevertheless, AFM observations of the imprints after indentation suggest that the mechanism of deformation can vary significantly with crystallization

  16. Self-healing phenomenon and dynamic hardness of C60-based nanocomposite coatings.

    Science.gov (United States)

    Penkov, Oleksiy V; Pukha, Volodymyr E; Devizenko, Alexander Yu; Kim, Hae-Jin; Kim, Dae-Eun

    2014-05-14

    The phenomenon of surface self-healing in C60-based polymer coatings deposited by ion-beam assisted physical vapor deposition was investigated. Nanoindentation of the coatings led to the formation of a protrusion rather than an indent. This protrusion was accompanied by an abnormal shape of the force-distance curve, where the unloading curve lies above the loading curve due to an additional force applied in pulling the indenter out of the media. The coatings exhibited a nanocomposite structure that was strongly affected by the ratio of C60 ion and C60 molecular beam intensities during deposition. The coatings also demonstrated the dynamic hardness effect, where the effective value of the hardness depends significantly on the indentation speed. PMID:24697539

  17. Organophilic bentonites based on Argentinean and Brazilian bentonites: part 2: potential evaluation to obtain nanocomposites

    Directory of Open Access Journals (Sweden)

    L. B. Paiva

    2012-12-01

    Full Text Available This work describes the preparation of composites of polypropylene and organophilic bentonites based on Brazilian and Argentinean bentonites. During the processing of the samples in a twin screw microextruder, torque and pressures of the extruder were accompanied and the viscosity values were calculated. No significant changes in the torque, pressure and viscosity were found for composites prepared with different bentonites. The samples were characterized by XRD and TEM to evaluate the structure and dispersion of the organophilic bentonites. Composites with exfoliated, partially exfoliated and intercalated structures were obtained and correlations between the intrinsic properties of the sodium clays and organophilic bentonites and their influence on the composites were studied. The cation exchange capacity of the sodium bentonites and the swelling capacity of the organophilic bentonites were the most important properties to obtain exfoliated structures in composites. All bentonites showed the potential to obtain polymer nanocomposites, but the ones from Argentina displayed the best results.

  18. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  19. Fluidized bed coating efficiency and morphology of coatings for producing Al-based nanocomposite hollow spheres

    Institute of Scientific and Technical Information of China (English)

    Mostafa Amirjan; Hamid Khorsand; Manouchehr Khorasani

    2014-01-01

    We performed fluidized bed coating of Al-based nanocomposite powder–binder suspensions onto polymer substrates. The effects of the type and amount of the binder and nanoparticle additive on the coating process efficiency and coating characteristics were investigated. The efficiency decreased from 52% to 49% as the processing time increased from 15 to 20 min. However, the amount and thickness of the coating also increased as the processing time and amount of the binder were increased. The addition of nanoparticles to the system decreased the thickness of the coating from 222 to 207 µm when polyvinyl alcohol (PVA) was used as a binder. The suspension containing 3wt% R-4410 binder exhibited the greatest efficiency of 60%.

  20. Polymer nanocomposites based on polyamide 12 filled with nickel and copper nanoparticles

    Science.gov (United States)

    Shapoval, E. S.; Zuev, V. V.

    2014-05-01

    The method for producing nanoscale nickel particles (particle diameter 20-30 nm) protected from oxidation thin carbon shell (1-2 nm) was developed. The polymer nanocomposites based on PA 12 matrix filled with filled with 0.1 to 1 wt. % nickel nanoparticles were synthesized by in situ polymerization. The tensile properties of polymer composites (Young's modulus, ultimate strength) were increased on 15-20% compared to the neat polymer. Also this article reports the findings of an investigation of a synthetic route for a synthesis a size-controllable molecularly capped copper nanoparticles. At using copper nanoparticles as filler the mechanical properties became worse by about 5-10% as compared PA12. Thus, needs the search of optimal way to modification of PA 12 matrix with copper nanoparticles.

  1. Biodegradable multiblock polymers based on N-(2-hydroxypropyl) methacrylamide for preparation of macromolecular therapeutics

    Czech Academy of Sciences Publication Activity Database

    Mužíková, Gabriela; Pola, Robert; Laga, Richard; Pechar, Michal

    Bratislava : Young Scientists Council of Polymer Institute of Slovak Academy of Sciences, 2016. s. 79. ISBN 978-80-970923-8-2. [Bratislava Young Polymer Scientists workshop /6./ - BYPoS 2016. 14.03.2016-18.03.2016, Ždiar] R&D Projects: GA ČR(CZ) GA14-12742S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) LO1507; GA ČR(CZ) GJ16-14957Y Institutional support: RVO:61389013 Keywords : multiblock polymers * RAFT polymerization * biodegradation Subject RIV: CD - Macromolecular Chemistry

  2. Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties

    Energy Technology Data Exchange (ETDEWEB)

    Chiolerio, Alessandro [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Camarchia, Vittorio, E-mail: vittorio.camarchia@polito.it [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Electronics and Telecommunications Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Quaglia, Roberto; Pirola, Marco [Electronics and Telecommunications Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Pandolfi, Paolo [Politronica Inkjet Printing S.r.l., C/O i3p, Corso Castelfidardo 30/A, 10129 Torino (Italy); Pirri, Candido Fabrizio [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-12-05

    Highlights: • Polymer–silver nanocomposite conductive ink for RF fast prototyping. • Reduction of the sintering temperature. • Improved printing resolution. • State-of-the-art electrical conductivity. • Good RF performances. - Abstract: The development of highly conductive Ag nanoparticle (NP)-based inkjet printed (IP) connections is a fundamental process for the success of next-generation digitally printed electronics. This is true both at low frequency and at RF, considering the increasing integration of heterogeneous technologies and the use of flexible substrates. Ink-based technologies provide and form at liquid state the functional material that is then delivered to solid via a sintering process to achieve NP coalescence and electrical percolation. Sintering must be performed at very low temperatures (depending on the substrate choice) to be compatible with previous process steps, to preserve the geometry and fulfill the requirements in term of electrical conductivity, as well as to reduce production costs. While IP, as additive technology, is now well settled for DC or low frequency applications, few results on electrical characterization at RF or microwave frequencies are present due to low conductivity, poor geometry definition and low reproducibility. Hence, a good setup of ink formulation and technological realization is fundamental to enable system performance assessment in the high frequency regime. In this paper we propose a breakthrough: we present a nanocomposite ink, whose thermal and DC electrical properties are extremely interesting and competitive with pure-metallic ink systems. Introducing a copolymer in the formulation, we obtained a reduction of the overall sintering temperature, if compared to the pristine NP suspension, along with improved printing resolution together with very good electrical conductivity. The RF characterization has been performed in the range 1–6 GHz on geometries printed on sintered alumina and on a power

  3. Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties

    International Nuclear Information System (INIS)

    Highlights: • Polymer–silver nanocomposite conductive ink for RF fast prototyping. • Reduction of the sintering temperature. • Improved printing resolution. • State-of-the-art electrical conductivity. • Good RF performances. - Abstract: The development of highly conductive Ag nanoparticle (NP)-based inkjet printed (IP) connections is a fundamental process for the success of next-generation digitally printed electronics. This is true both at low frequency and at RF, considering the increasing integration of heterogeneous technologies and the use of flexible substrates. Ink-based technologies provide and form at liquid state the functional material that is then delivered to solid via a sintering process to achieve NP coalescence and electrical percolation. Sintering must be performed at very low temperatures (depending on the substrate choice) to be compatible with previous process steps, to preserve the geometry and fulfill the requirements in term of electrical conductivity, as well as to reduce production costs. While IP, as additive technology, is now well settled for DC or low frequency applications, few results on electrical characterization at RF or microwave frequencies are present due to low conductivity, poor geometry definition and low reproducibility. Hence, a good setup of ink formulation and technological realization is fundamental to enable system performance assessment in the high frequency regime. In this paper we propose a breakthrough: we present a nanocomposite ink, whose thermal and DC electrical properties are extremely interesting and competitive with pure-metallic ink systems. Introducing a copolymer in the formulation, we obtained a reduction of the overall sintering temperature, if compared to the pristine NP suspension, along with improved printing resolution together with very good electrical conductivity. The RF characterization has been performed in the range 1–6 GHz on geometries printed on sintered alumina and on a power

  4. Effect of Radiation on the Electrical Properties of PEDOT-Based Nanocomposites.

    Science.gov (United States)

    Karbovnyk, Ivan; Olenych, Igor; Aksimentyeva, Olena; Klym, Halyna; Dzendzelyuk, Orest; Olenych, Yuri; Hrushetska, Oksana

    2016-12-01

    Systematic evaluation of the influence of radiation on the electrical response of hybrid nanocomposites obtained by adding multi-walled carbon nanotubes into poly(3,4-ethylenedioxythiophene) and poly(styrenesulfonate) host matrix is presented. Variations of resistance and conductivity of nanocomposites depending on the volume fraction of nanotubes in the matrix, ionizing radiation dosage, and temperature are analyzed. PMID:26868421

  5. Fire and Gas Barrier Properties of Poly(styrene-co-acrylonitrile Nanocomposites Using Polycaprolactone/Clay Nanohybrid Based-Masterbatch

    Directory of Open Access Journals (Sweden)

    S. Benali

    2008-01-01

    Full Text Available Exfoliated nanocomposites are prepared by dispersion of poly(ε-caprolactone (PCL grafted montmorillonite nanohybrids used as masterbatches in poly(styrene-co-acrylonitrile (SAN. The PCL-grafted clay nanohybrids with high inorganic content are synthesized by in situ intercalative ring-opening polymerization of ε-caprolactone between silicate layers organomodified by alkylammonium cations bearing two hydroxyl functions. The polymerization is initiated by tin alcoholate species derived from the exchange reaction of tin(II bis(2-ethylhexanoate with the hydroxyl groups borne by the ammonium cations that organomodified the clay. These highly filled PCL nanocomposites (25 wt% in inorganics are dispersed as masterbatches in commercial poly(styrene-co-acrylonitrile by melt blending. SAN-based nanocomposites containing 3 wt% of inorganics are accordingly prepared. The direct blend of SAN/organomodified clay is also prepared for sake of comparison. The clay dispersion is characterized by wide-angle X-ray diffraction (WAXD, atomic force microscopy (AFM, and solid state NMR spectroscopy measurements. The thermal properties are studied by thermogravimetric analysis. The flame retardancy and gas barrier resistance properties of nanocomposites are discussed both as a function of the clay dispersion and of the matrix/clay interaction.

  6. Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs)

    Science.gov (United States)

    Faraji, Sheida; Danesh, Ehsan; Tate, Daniel J.; Turner, Michael L.; Majewski, Leszek A.

    2016-05-01

    Low voltage organic field-effect transistors (OFETs) using solution-processed cyanoethyl cellulose (CEC) and CEC-based nanocomposites as the gate dielectric are demonstrated. Barium strontium titanate (BST) nanoparticles are homogeneously dispersed in CEC to form the high-k (18.0  ±  0.2 at 1 kHz) nanocomposite insulator layer. The optimised p-channel DPPTTT OFETs with BST-CEC nanocomposite as the gate dielectric operate with minimal hysteresis, display field-effect mobilities in excess of 1 cm2 V‑1 s‑1 at 3 V, possess low subthreshold swings (132  ±  8 mV dec‑1), and have on/off ratios greater than 103. Addition of a 40–50 nm layer of cross-linked poly(vinyl phenol) (PVP) on the surface of the nanocomposite layer significantly decreases the gate leakage current (<10‑7 A cm‑2 at  ±3 V) and the threshold voltage (<  ‑0.7 V) enabling operation of the OFETs at 1.5 V. The presented bilayer BST-CEC/PVP dielectrics are a promising alternative for the fabrication of low voltage, solution-processed OFETs that are suitable for use in low power, portable electronics.

  7. Synthesis and Properties of Pulse Electrodeposited Lead-Free Tin-Based Sn/ZrSiO4 Nanocomposite Coatings

    Science.gov (United States)

    Bhattacharya, Sumit; Sharma, Ashutosh; Das, Siddhartha; Das, Karabi

    2016-03-01

    The Sn-based ZrSiO4 nanocomposite coatings have been synthesized by pulse co-electrodeposition technique from an aqueous electrolyte containing SnCl2·2H2O, C6H17N3O7, Triton X, and varying amounts of nano-sized ZrSiO4 particles (0, 5, 10, 15, 20, 25, 30, and 35 g/L). As-deposited films have been analyzed using X-ray diffraction, scanning electron microscope equipped with an energy dispersive X-ray spectrometer, and transmission electron microscope. The microhardness, wear as well as corrosion property of the coatings have been also evaluated. It is observed that the surface morphology of Sn-ZrSiO4 nanocomposite coatings is strongly dependent on the reinforcement concentration in the electrolyte, and the Sn-ZrSiO4 nanocomposite solder deposited from the electrolyte containing 25 g/L ZrSiO4 yields the highest hardness and the best wear and corrosion property among all the synthesized samples. The whisker growth propensity of the developed Sn-ZrSiO4 nanocomposites has also been examined after 90 days of aging at room temperature and reported here.

  8. SnO2-SrO based nanocomposites and their photocatalytic activity for the treatment of organic pollutants

    Science.gov (United States)

    Sultana, Saima; Rafiuddin; Khan, Mohammad Zain; Umar, Khalid; Ahmed, Arham S.; Shahadat, Mohammad

    2015-10-01

    The present paper reports development of SnO2-SrO based nanocomposites using facile hydrothermal and sol-gel method. Nanocomposites were characterized on the basis of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Studies (EDS), Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR), Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) techniques. The materials were explored for the photocatalytic activity regarding the treatment of organic pollutants viz-azo-dye, pesticide and drug. In addition, a comparative study was performed in term of particle size using hydrothermal and sol-gel route. It was observed that hydrothermal route showed an improved particle size, which affects the photocatalytic activity, porosity and crystalline nature of the nanocomposite. Further, kinetic and thermodynamic parameters were also calculated for the photodegradation experiments. It was found that the rate of photodegradation reaction followed the pseudo-first order kinetics and the highest rate was observed for azo-dye while it was lowest for the drug. A negative values of the Gibbs free energy (ΔG) show that the photodegradation proceeds with a net decrease in free energy of the system. The results of photodegradation of dye, pesticide and drug indicate that nanocomposites of SnO2-SrO can be effectively applied for the treatment of organic pollutants.

  9. Sensors on Textile Fibres Based on Ag/a-C:H:O Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Martin Drabik

    2013-08-01

    Full Text Available In this contribution we present a study of the vacuum deposition process of metal/plasma polymer nanocomposite thin films monitored using plasma diagnostics (optical emission spectroscopy. We investigate\tthe\telectrical\tproperties\tof\tthe nanocomposite structures suitable for their application as\thumidity\tsensors.\tFurthermore,\tthe\tfilm microstructure is characterized by transmission electron microscopy and electron diffraction analysis. The amount of silver in the nanocomposite is evaluated using inductively coupled plasma optical emission spectrometry and the morphology of the structured\tsystem\tof\tmetal\telectrodes\tand nanocomposite films on monofilament textile fibres is visualized using scanning electron microscopy. Ageing of nanocomposite coatings and the influence of an aqueous environment on their internal structure and properties are discussed.

  10. Biodegradable congress 2012; Bioschmierstoff-Kongress 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Within the Guelzower expert discussions at 5th and 6th June, 2012 in Oberhausen (Federal Republic of Germany) the following lectures were held: (1) Promotion of biodegradable lubricants by means of research and development as well as public relations (Steffen Daebeler); (2) Biodegradable lubricants - An overview of the advantages and disadvantages of the engaged product groups (Hubertus Murrenhoff); (3) Standardization of biodegradable lubricants - CEN/DIN standard committees - state of the art (Rolf Luther); (4) Market research for the utilization of biodegradable lubricants and means of proof of sustainability (Norbert Schmitz); (5) Fields of application for high performance lubricants and requirements upon the products (Gunther Kraft); (6) Investigations of biodegradable lubricants in rolling bearings and gears (Christoph Hentschke); (7) Biodegradable lubricants in central lubrication systems Development of gears and bearings of offshore wind power installations (Reiner Wagner); (8) Investigations towards environmental compatibility of biodegradable lubricants used in offshore wind power installations (Tolf Schneider); (9) Development of glycerine based lubricants for the industrial metalworking (Harald Draeger); (10) Investigations and utilization of biodegradable oils as electroinsulation oils in transformers (Stefan Tenbohlen); (11) Operational behaviour of lubricant oils in vegetable oil operation and Biodiesel operation (Horst Hamdorf); (12) Lubrication effect of lubricating oil of the third generation (Stefan Heitzig); (13) Actual market development from the view of a producer of biodegradable lubricants (Frank Lewen); (14) Utilization of biodegradable lubricants in forestry harvesters (Guenther Weise); (15) New biodegradable lubricants based on high oleic sunflower oil (Otto Botz); (16) Integrated fluid concept - optimized technology and service package for users of biodegradable lubricants (Juergen Baer); (17) Utilization of a bio oil sensor to control

  11. Challenges and opportunities in using Life Cycle Assessment and Cradle to Cradle® for biodegradable bio-based polymers: a review

    DEFF Research Database (Denmark)

    Niero, Monia; Manat, Renil; Møller, Birger Lindberg;

    2015-01-01

    Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from establis......Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from...

  12. PREPARATION OF BIODEGRADABLE FLAX SHIVE CELLULOSE-BASED SUPERABSORBENT POLYMER UNDER MICROWAVE IRRADIATION

    Directory of Open Access Journals (Sweden)

    Hao Feng

    2010-05-01

    Full Text Available Superabsorbent polymer was prepared by graft polymerization of acrylic acid onto the chain of cellulose from flax shive by using potassium persulfate (KPS as an initiator and N,N’-methylenebisacrylamide (MBA as a crosslinker under microwave irradiation. SEM photographs were also studied for more information about the shive, cellulose from shive, and the superabsorbent polymer. The structure of the graft copolymer was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TGA. The biodegradability in soil was measured at 32 and 40 oC. The polymer was porous, and thermal stability of the polymer was observed up to approximately 200 oC. FT-IR analysis indicated that acrylic acid in polymer was successfully grafted onto the cellulose. The graft copolymer was found to be an effective superabsorbent resin, rapidly absorbing water to almost 1000 times its own dry weight at pH around 7.3. The water absorbency in 0.9% NaCl, KCl, FeCl3 solutions and urine were 56.47 g/g, 54.71g/g, 9.89g/g and 797.21g/g, respectively. The product biologically degraded up to 40% at 40 oC in 54 days, which shows good biodegradability.

  13. Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies

    Science.gov (United States)

    Noorakma, Abdullah C. W.; Zuhailawati, Hussain; Aishvarya, V.; Dhindaw, B. K.

    2013-10-01

    A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.

  14. Development of a Novel Biodegradable Metallic Stent Based on Microgalvanic Effect.

    Science.gov (United States)

    Frattolin, Jennifer; Barua, Rajib; Aydin, Huseyin; Rajagopalan, Sriraman; Gottellini, Luca; Leask, Richard; Yue, Stephen; Frost, David; Bertrand, Olivier F; Mongrain, Rosaire

    2016-02-01

    The implementation of biodegradable stents has the potential to revolutionize obstructive coronary artery disease treatment. Limitations still currently exist, however, that prevent biodegradable stents from replacing permanent metallic stents in the global market. The ideal combination of stent properties, including sufficient mechanical strength, controlled degradation, and biocompatibility, has yet to be realized. A novel manufacturing process is proposed that utilizes cold gas-dynamic spraying to fabricate a metal structure with significantly reduced grain size. Iron and stainless steel 316L are combined to form a novel amalgamate with enhanced mechanical strength and a controllable degradation rate, due to the resulting microgalvanic reaction. Flat specimens composed of iron and 316L are fabricated in various compositions, and mechanical and degradation tests were conducted. Femto laser techniques are utilized to produce stents composed of 80% Fe and 20% stainless steel 316L. The in vitro degradation behaviour of the stent is investigated using static and dynamic corrosion tests. It is shown that the corrosion rate can be adjusted to desired values, by varying the weight percentage of iron and stainless steel 316L within the amalgamate. PMID:26384666

  15. Synthesis and characterization of polymers based on citric acid and glycerol: Its application in non-biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Jaime Alfredo Mariano-Torres

    2015-01-01

    Full Text Available El notable incremento mundial en el consumo de plásticos y su l argo tiempo de residencia en el ambiente muestran la gran neces idad de productos con caracterís ticas biodegradables. En este proyecto fueron desarrollados polímeros biodegradables a base del ácido cítrico y del glicerol. La síntesis de esto s se lleva a cabo a diferentes condiciones de concentración y a temperatura constante. Se des arrollaron mediante un proceso económicamente viable. Se caracterizaron p or medio de las siguientes técnicas: Numero ácido, espectroscop ia infrarroja FTIR, índice de refracc ión, viscosidad, análisis de impacto, ensayo de tensión, dure za, calorimetría, el % de Humed ad (método de la estufa con recirculación de aire, determinación de densi dad, además de pruebas cualitativas para corroborar su biodegra dabilidad. Los polímeros elaborados fueron mezclados con una formulación de PVC grado médico, obteniendo un polímero hibrido y se pudo observar que modifica sus propiedades mecánicas.

  16. Are Biodegradable Osteosyntheses Still an Option for Midface Trauma? Longitudinal Evaluation of Three Different PLA-Based Materials.

    Science.gov (United States)

    Kolk, Andreas; Köhnke, Robert; Saely, Christoph H; Ploder, Oliver

    2015-01-01

    The aim was to evaluate three different biodegradable polylactic acid- (PLA-) based osteosynthesis materials (OM). These OM (BioSorb, LactoSorb, and Delta) were used in 64 patients of whom 55 (85.9%) had fractures of the zygoma, five (7.8%) in the LeFort II level, two of the frontal bone (3.1%), and two of the maxillary sinus wall (3.1%). In addition to routine follow-up (FU) at 3, 6, and 12 months (m) (T1, T2, and T3) all patients were finally evaluated at a mean FU after 14.1 m for minor (e.g., nerve disturbances, swelling, and pain) and major (e.g., infections and occlusal disturbances) complications. Out of all 64 patients 38 presented with complications; of these 28 were minor (43.8%) and 10 major (15.6%) resulting in an overall rate of 59.4%. Differences in minor complications regarding sensibility disturbance at T1 and T3 were statistically significant (P = 0.04). Differences between the OM were not statistically significant. Apart from sufficient mechanical stability for clinical use of all tested OM complications mostly involved pain and swelling probably mainly related to the initial bulk reaction attributable to the drop of pH value during the degradation process. This paper includes a review of the current aspects of biodegradable OM. PMID:26491680

  17. Are Biodegradable Osteosyntheses Still an Option for Midface Trauma? Longitudinal Evaluation of Three Different PLA-Based Materials

    Directory of Open Access Journals (Sweden)

    Andreas Kolk

    2015-01-01

    Full Text Available The aim was to evaluate three different biodegradable polylactic acid- (PLA- based osteosynthesis materials (OM. These OM (BioSorb, LactoSorb, and Delta were used in 64 patients of whom 55 (85.9% had fractures of the zygoma, five (7.8% in the LeFort II level, two of the frontal bone (3.1%, and two of the maxillary sinus wall (3.1%. In addition to routine follow-up (FU at 3, 6, and 12 months (m (T1, T2, and T3 all patients were finally evaluated at a mean FU after 14.1 m for minor (e.g., nerve disturbances, swelling, and pain and major (e.g., infections and occlusal disturbances complications. Out of all 64 patients 38 presented with complications; of these 28 were minor (43.8% and 10 major (15.6% resulting in an overall rate of 59.4%. Differences in minor complications regarding sensibility disturbance at T1 and T3 were statistically significant (P=0.04. Differences between the OM were not statistically significant. Apart from sufficient mechanical stability for clinical use of all tested OM complications mostly involved pain and swelling probably mainly related to the initial bulk reaction attributable to the drop of pH value during the degradation process. This paper includes a review of the current aspects of biodegradable OM.

  18. Are Biodegradable Osteosyntheses Still an Option for Midface Trauma? Longitudinal Evaluation of Three Different PLA-Based Materials

    Science.gov (United States)

    Kolk, Andreas; Köhnke, Robert; Saely, Christoph H.; Ploder, Oliver

    2015-01-01

    The aim was to evaluate three different biodegradable polylactic acid- (PLA-) based osteosynthesis materials (OM). These OM (BioSorb, LactoSorb, and Delta) were used in 64 patients of whom 55 (85.9%) had fractures of the zygoma, five (7.8%) in the LeFort II level, two of the frontal bone (3.1%), and two of the maxillary sinus wall (3.1%). In addition to routine follow-up (FU) at 3, 6, and 12 months (m) (T1, T2, and T3) all patients were finally evaluated at a mean FU after 14.1 m for minor (e.g., nerve disturbances, swelling, and pain) and major (e.g., infections and occlusal disturbances) complications. Out of all 64 patients 38 presented with complications; of these 28 were minor (43.8%) and 10 major (15.6%) resulting in an overall rate of 59.4%. Differences in minor complications regarding sensibility disturbance at T1 and T3 were statistically significant (P = 0.04). Differences between the OM were not statistically significant. Apart from sufficient mechanical stability for clinical use of all tested OM complications mostly involved pain and swelling probably mainly related to the initial bulk reaction attributable to the drop of pH value during the degradation process. This paper includes a review of the current aspects of biodegradable OM. PMID:26491680

  19. Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.r [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Chibac, Andreea L.; Buruiana, Tinca; Musteata, Valentina [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2011-07-15

    Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers N-methacryloyloxyethylcarbamoyl-5- (dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and N-methacryloyloxyethylcarbamoyl -5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis ({sup 1}H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu{sup 2+}) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films. - Highlights: {yields} Dansylated hybrid composites were prepared by polymerization of monomers in organo-MMT or by sol-gel. {yields} Quenching effects by acids, Cu{sup 2+} and nitrobenzene in solution/film were evidenced. {yields} A fluorescence dequenching was observed for the composite with silsesquixane units. {yields} A reversible process occurs in the composite film exposed to nitrobenzene vapors.

  20. Synthesis and Physicochemical Behaviour of Polyurethane-Multiwalled Carbon Nanotubes Nanocomposites Based on Renewable Castor Oil Polyols

    OpenAIRE

    2014-01-01

    Polyurethanes (PUs) are high performance materials, with vast industrial and engineering applications. In this research, effects of Multiwalled Carbon Nanotubes (MWCNTs) on physicochemical properties of Castor Oil based Polyurethanes (COPUs) were studied. MWCNTs were added in different weight percentages (0% to 1% wt) in a castor oil based polyurethane (COPUs-MWCNTs) nanocomposites. The composition, structure, and morphology of polyurethanes were characterized by Fourier transform infrared sp...

  1. Preparation and characterization of crosslinked poly(butylene adipate-co-terephthalate)/polyhedral oligomeric silsesquioxane nanocomposite by electron beam irradiation

    International Nuclear Information System (INIS)

    The electron beam-induced crosslinking of poly(butylene adipate-co-terephthalate) (PBAT)/polyhedral oligomeric silsesquioxane (POSS) nanocomposites was investigated in this study. PBAT/POSS nanocomposites prepared by a solution blending with various compositions were crosslinked by electron beam irradiation at various absorbed doses ranging from 20 to 200 kGy and their properties were characterized in terms of their degree of crosslinking, morphology, thermal and mechanical properties, and biodegradability. The results of the degree of crosslinking measurements revealed that PBAT/POSS nanocomposites were more effectively crosslinked than the pure PBAT and that the degree of crosslinking was dependent on the absorbed dose and POSS content. From the results of the FE-SEM and EDX analyses, the POSS was found to be uniformly dispersed in the PBAT matrix. Based on the results of the UTM, DMA, and TMA, the crosslinked PBAT/POSS nanocomposites exhibited much higher thermal and mechanical properties compared to those of the pure PBAT. - Highlights: ► Crosslinked PBAT/POSS nanocomposites were prepared by electron beam irradiation. ► The POSS as a nanofillers was homogeneously dispersed in the PBAT matrix. ► The crosslinked nanocomposites exhibited improved thermal and mechanical properties.

  2. Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution

    International Nuclear Information System (INIS)

    Highlights: • CuO-rGO nanocomposites was synthesized with a facile, green and effective chemical method. • The nonenzymatic modified electrode achieved electrocatalytic oxidation towards glucose. • The glucose sensor shows a high sensitivity of 2221 μA mM−1 cm−2 towards glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A novel, stable and sensitive non-enzymatic glucose biosensor based on nanocomposites of copper oxide (CuO) and the reduced graphene oxide (rGO) was developed. A facile, green and effective chemical method was employed to synthesize the CuO-rGO nanocomposites in a mixture solution of water-isopropanol. During the synthesis process, isopropanol acted as both solvent and reductant. CuO nanoparticles were successfully decorated onto the graphene oxide (GO) sheets through electrostatic force and hydrolysis reaction. Meantime, GO could be partly reduced to the rGO without any addition of strong reduction agents. The information on the structure and topology of as-prepared CuO-rGO nanocomposites was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and its electrochemical catalytical performance was also studied. The results indicated that CuO-rGO nanocomposites could display a synergistic effect of rGO sheets and CuO nanoparticles towards the electro-oxidation of glucose in the alkaline solution, leading to a remarkable decrease in the overpotential of the glucose oxidation. At the applied potential of 0.4 V, the CuO-rGO film modified glassy carbon electrode (CuO/rGO/GCE) presented a high sensitivity of 2221 μA mM−1 cm−2 and a wide linear range from 0.4 μM to 12 mM towards glucose with good selectivity and stability

  3. A novel multi-walled carbon nanotube (MWNT)-based nanocomposite for PEFC electrodes

    Indian Academy of Sciences (India)

    S Mohanapriya; K K Tintula; S D Bhat; S Pitchumani; P Sridhar

    2012-06-01

    A novel nanocomposite comprising MWNTs and mixed-conducting polymeric components (electronic and ionic) is prepared, characterized and investigated as a support for platinum (Pt). Nanocomposite of MWNTs and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT–PSS) is prepared by in situ polymerization and characterized using Fourier–Transform infrared spectroscopy (FT–IR), thermogravimetric analysis (TGA) in conjunction with scanning electron microscopy (SEM). Atomic force microscopy (AFM) studies are also carried out to characterize the surface topography of MWNTs/PEDOT–PSS nanocomposite. X-ray diffraction (XRD) studies reveal that MWNTs/PEDOT–PSS nanocomposite provides better backbone for the improved dispersion of Pt as evidenced by the reduced Pt crystallite size over MWNTs/PEDOT–PSS nanocomposite compared to MWNTs. Electrochemical characterization studies performed with Pt/nanocomposite and Pt/MWNTs demonstrate the superior catalytic activity of Pt/nanocomposite under reduced Nafion loadings in relation to Pt/MWNTs. It is observed that mixed conducting nanoporous network ofMWNTs/PEDOT–PSS composite structure promotes the catalytic activity of Pt by enhancing catalyst utilization.

  4. Cell-Instructive Graphene-Containing Nanocomposites Induce Multinucleated Myotube Formation.

    Science.gov (United States)

    Patel, Akhil; Xue, Yingfei; Mukundan, Shilpaa; Rohan, Lisa C; Sant, Vinayak; Stolz, Donna B; Sant, Shilpa

    2016-06-01

    Myoblast differentiation is a key step in myogenesis and has long been considered to be controlled mainly by biochemical cues such as growth factors. However, the tissue engineering approaches based on biochemical cues demonstrate low reproducibility as a precise spatial control over their bioactivity is challenging. Recently, substrate micro/nano-structure and electro-responsive properties are recognized for their important roles in myoblast differentiation. In this study, we hypothesized that engineering biophysical features such as nano/micro-fibrous structure and conductive properties into a single biomaterial scaffold will instruct the myoblasts to differentiate into multinucleated myotubes even in the absence of differentiation media. We fabricated nanocomposite scaffolds composed of conductive graphene nanosheets and polycaprolactone (PCL), a widely used biocompatible material. The resulting graphene-PCL scaffolds possess excellent conductivity due to graphene nanosheets and great processability, biodegradability and elastic mechanical properties conferred by PCL. Additionally, physicochemical and mechanical properties of nanocomposite scaffolds can be tuned by varying graphene concentration. Further, graphene-PCL nanocomposites and their 8-week degradation products exhibited remarkable cytocompatibility and promoted adhesion and proliferation of C2C12 mouse myoblast cells. Importantly, these nanocomposite scaffolds induced graphene concentration-dependent differentiation of C2C12 cells into multinucleated myotubes even in normal growth media suggesting their cell-instructive potential. Thus, graphene-PCL nanocomposite scaffolds can serve as a strategy to promote skeletal muscle regeneration without biochemical cues. PMID:26983841

  5. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    2012-01-01

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  6. New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization.

    Science.gov (United States)

    Pacelli, Settimio; Paolicelli, Patrizia; Casadei, Maria Antonietta

    2015-08-01

    A new derivative of dextran grafted with polyethylene glycol methacrylate through a carbonate bond (DEX-PEG-MA) has been synthesized and characterized. The photo-crosslinking reaction of DEX-PEG-MA allowed the obtainment of biodegradable networks tested for their mechanical and release properties. The new hydrogels were compared with those made of dextran methacrylate (DEX-MA), often employed as drug delivery systems of small molecules. The inclusion of PEG as a spacer created additional interactions among the polymeric chains improving the extreme fragility and lack of hardness typical of gels made of DEX-MA. Moreover, the different behavior in terms of swelling and degradability of the networks was able to affect the release of a model macromolecule over time, making DEX-PEG-MA matrices suitable candidates for the delivery of high molecular weight peptides. Interestingly, the combination of the two dextran derivatives showed intermediate ability to modulate the release of high molecular weight macromolecules. PMID:25933541

  7. Green and biodegradable composite films with novel antimicrobial performance based on cellulose.

    Science.gov (United States)

    Wu, Yuehan; Luo, Xiaogang; Li, Wei; Song, Rong; Li, Jing; Li, Yan; Li, Bin; Liu, Shilin

    2016-04-15

    In order to obtain a safe and biodegradable material with antimicrobial properties from cellulose for food packaging, we presented a facile way to graft chitosan onto the oxidized cellulose films. The obtained films had a high transparent property of above 80% transmittance, excellent barrier properties against oxygen and antimicrobial properties against Escherichia coli and Staphylococcus aureus. The antimicrobial properties, mechanical properties, and water vapor permeability of composites are essential characteristics in determining their applicability as food-packaging materials. Moreover, using a sausage model, it was shown that the composites exhibited better performance than traditional polyethylene packaging material and demonstrated good potential as food packaging materials. The results presented a new insight into the development of green materials for food packaging. PMID:26616947

  8. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Salih, A. M. [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor, Malaysia and Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum 1111 (Sudan); Ahmad, Mansor Bin; Ibrahim, Nor Azowa [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor (Malaysia); Dahlan, Khairul Zaman Hj Mohd [Polycomposite Sdn Bhd, No.75-2, Jalan TKS 1, Taman Kajang Sentral, 43000 Kajang, Selangor (Malaysia); Tajau, Rida [Radiation Processing Technology Division, Nuclear Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Mahmood, Mohd Hilmi [No. 107, Jalan 2, Taman Kajang Baru, Sg Jelok, 43000 Kajang, Selangor (Malaysia); Yunus, Wan Md. Zin Wan [Department of Chemistry, Centre for Defence Foundation Studies, National Defence University of Malaysia, 57000, Sungai Besi Camp, Kuala Lumpur (Malaysia)

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  9. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    International Nuclear Information System (INIS)

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA

  10. Tribology of Nanocomposites

    CERN Document Server

    2013-01-01

    This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.

  11. Anaerobic biodegradation of benzene series compounds by mixed cultures based on optional electronic acceptors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of batch experiments were performed using mixed bacterial consortia to investigate biodegradation performance of benzene,toluene,ethylbenzene and three xylene isomers (BTEX) under nitrate,sulfate and ferric iron reducing conditions.The results showed that toluene,ethylbenzeoe,m-xylene and o-xylene could be degraded independently by the mixed cultures coupled to nitrate,sulfate and ferric iron reduction.Under ferric iron reducing conditions the biodegradation of benzene and p-xylene could be occurred only in the presence of other alkylbenzenes.Alkylbenzenes can serve as the primary substrates to stimulate the transformation of benzene and p-xylene under anaerobic conditions.Benzene and p-xylene are more toxic than toluene and ethylbenzene,under the three terminal electron acceptors conditions,the degradation rates decreased with toluene > ethylbenzene > m-xylene > o-xylene > benzene > p-xylene.Nitrate was a more favorable electron acceptor compared to sulfate and ferric iron.The ratio between sulfate consumed and the loss of benzene,toluene,ethylbenzene,o-xylene,m-xylene,p-xylene was 4.44,4.51,4.42,4.32,4.37 and 4.23,respectively;the ratio between nitrate consumed and the loss of these substrates was 7.53,6.24,6.49,7.28,7.81,7.61,respectively;the ratio between the consumption of ferric iron and the loss of toluene,ethylbenzene,o-xylene,m-xylenewas 17.99,18.04,18.07,17.97,respectively.

  12. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review

    International Nuclear Information System (INIS)

    Highlights: • We review the innovative advances in polymer-based signal amplification. • Conceptual connectivity between different amplified methodologies is illustrated. • Examples explain the mechanisms of polymers/polymerizations-based amplification. • Several elegant applications are summarized that illustrate underlying concept. - Abstract: Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted

  13. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin, E-mail: liusq@seu.edu.cn

    2015-06-02

    Highlights: • We review the innovative advances in polymer-based signal amplification. • Conceptual connectivity between different amplified methodologies is illustrated. • Examples explain the mechanisms of polymers/polymerizations-based amplification. • Several elegant applications are summarized that illustrate underlying concept. - Abstract: Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.

  14. SINTHESES AND FUNCTIONALIZATION OF POLY(L-LACTIDE) BASED NANOCOMPOSITES SYSTEMS FOR SELECTIVE AND CONTROLLED DRUG RELEASE IN BIOMEDICAL USES

    OpenAIRE

    Casini, Gabriele

    2012-01-01

    In this thesis, the research activity, focused on two investigations topics, both addressed to the preparation and characterization of poly(L-lactide) (PLLA) based nano-materials for biomedical applications, is reported. In particular, the research deals with the preparation of a new polymeric substrate for vaccine (line 1) and superparamagnetic nanoparticles-PLLA core-shell nanocomposites for targeted and controlled release of anti-tumor drugs (line 2).The polymer we used in both the resea...

  15. Preparation of polymer nanocomposite materials based on unsaturated polyester resin and nanosilica A200. Part II - Structural and properties of polymer nanocomposite materials based on unsaturated polyester resin and nanosilica A200 with coupling agent

    International Nuclear Information System (INIS)

    Effects of coupling agent on the structures and properties of nanocomposite materials based on unsaturated polyester resin and A200 silica nanoparticles were investigated. The viscosity of the resin/A200 silica mixtures increased with increasing coupling agent content because of forming core-shell structures and the mechanical properties of polymer nanocomposites generally were better than those without coupling agent and appeared a maximum in mechanical properties at 4.0 wt% coupling agent content. IR analyze indicated that the coupling agent had reacted with unsaturated polyester resin and A200 silica nanoparticles. SEM, Fe-SEM and TG-SDC demonstrated more homogeneous dispersion of A200 silica nanoparticles in the polymer matrix and accompanied by lower glass transition temperature and melt temperature. Furthermore, it was also found that the best dispersion route involved a methanol dispersion technique. (author)

  16. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Laurencin, Cato T. (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor); Botchwey, Edward (Inventor); Lu, Helen H. (Inventor); Khan, Mohammed Yusuf (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  17. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins.

    Science.gov (United States)

    Seck, Tetsu M; Melchels, Ferry P W; Feijen, Jan; Grijpma, Dirk W

    2010-11-20

    Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photo-polymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials. PMID:20659509

  18. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Ozel, T.; Mutlugun, E.;

    2014-01-01

    We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers, the e...

  19. Nanocomposite Membranes based on Perlfuorosulfonic Acid/Ceramic for Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; WANG Guangjin; YE Hong; YAN Shilin

    2015-01-01

    Perlfuorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Naifon membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Naifon membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

  20. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin

    International Nuclear Information System (INIS)

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate–gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate–gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01–0.08 μg mL−1) with sensitivity of 0.26 μA μg mL−1. The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035 μg mL−1 and 0.0036 μg mL−1 in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. - Highlights: • Extraction of PHA from indigenously isolated Pseudomonas aeruginosa BPC2 • Developed PHA/AuNPs/HRP/ITO based biosensor without the use of chemical cross linker • Detection of antimalarial drug artemisinin using the nanocomposite based biosensor

  1. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Radhapyari, Keisham [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India); Konwar, Bolin Kumar [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Nagaland University (Central), Lumami, Zunheboto, Nagaland 798627 (India); Khan, Raju, E-mail: khan.raju@gmail.com [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India)

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate–gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate–gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01–0.08 μg mL{sup −1}) with sensitivity of 0.26 μA μg mL{sup −1}. The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035 μg mL{sup −1} and 0.0036 μg mL{sup −1} in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. - Highlights: • Extraction of PHA from indigenously isolated Pseudomonas aeruginosa BPC2 • Developed PHA/AuNPs/HRP/ITO based biosensor without the use of chemical cross linker • Detection of antimalarial drug artemisinin using the nanocomposite based biosensor.

  2. Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites

    International Nuclear Information System (INIS)

    The goal of our study was to investigate the potential benefits of reinforcing polymer matrices with nanoobjects for structural applications by looking at both the mechanical properties and environmental impacts. For determining the mechanical properties, we applied the material indices defined by Ashby for stiffness and strength. For the calculation of environmental impacts, we applied the life cycle assessment methodology, focusing on non-renewable energy use (NREU). NREU has shown to be a good indicator also for other environmental impacts. We then divided the NREU by the appropriate Ashby index to obtain the 'functionality-based NREU'. We studied 23 different nanocomposites, based on thermoplastic and thermosetting polymer matrices and organophilic montmorillonite, silica, carbon nanotubes (single-walled and multiwalled) and calcium carbonate as filler. For 17 of these, we saw a decrease of the functionality-based NREU with increasing filler content. We draw the conclusion that the use of nanoobjects as filler can have benefits from both an environmental point of view and with respect to mechanical properties.

  3. Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater.

    Science.gov (United States)

    Ma, Weifang; Nie, Chao; Chen, Bin; Cheng, Xiang; Lun, Xiaoxiu; Zeng, Fangang

    2015-05-01

    Endocrine disrupting chemical (EDC) pollution in river-based artificial groundwater recharge using reclaimed municipal wastewater poses a potential threat to groundwater-based drinking water supplies in Beijing, China. Lab-scale leaching column experiments simulating recharge were conducted to study the adsorption, biodegradation, and transport characteristics of three selected EDCs: 17β-estradiol (E2), 17α-ethinylestradiol (EE2) and bisphenol A (BPA). The three recharge columns were operated under the conditions of continual sterilization recharge (CSR), continual recharge (CR), and wetting and drying alternative recharge (WDAR). The results showed that the attenuation effect of the EDCs was in the order of WDAR>CR>CSR system and E2>EE2>BPA, which followed first-order kinetics. The EDC attenuation rate constants were 0.0783, 0.0505, and 0.0479 m(-1) for E2, EE2 and BPA in the CR system, respectively. The removal rates of E2, EE2, and BPA in the CR system were 98%, 96% and 92%, which mainly depended on biodegradation and were affected by water temperature. In the CR system, the concentrations of BPA, EE2, and E2 in soil were 4, 6 and 10 times higher than in the WDAR system, respectively. According to the DGGE fingerprints, the bacterial community in the bottom layer was more diverse than in the upper layer, which was related to the EDC concentrations in the water-soil system. The dominant group was found to be proteobacteria, including Betaproteobacteria and Alphaproteobacteria, suggesting that these microbes might play an important role in EDC degradation. PMID:25968269

  4. Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate

    International Nuclear Information System (INIS)

    A series of biodegradable acrylic terminated polyurethanes (APUs) based on poly(ε-caprolactone) diol (PCL), aliphatic 1,6-hexamethylene diisocyanate (HDI) and hydroxyethyl methyl acrylate (HEMA) was synthesized as potential materials for hard tissue biomedical applications. PCLs with low molecular weights of 1000 and 2000 g/mol were employed to provide different amounts of end capped urethane acrylate in APUs. To control crosslink density, a mixture of two different reactive diluents including mono-functional HEMA and bi-functional ethylene glycol dimethacrylate (EGDMA) with different weight ratios was incorporated into the APUs, called here PUAs. Morphological characteristics and mechanical properties were investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). DMA results indicated some degree of microphase separation between hard and soft segments; however, the microphase separation is more prominent for PUAs with higher molecular weight PCL. It was also found that the degree of crosslinking dominated greatly the formation of crystalline structure. PUAs with low crosslink density exhibited crystalline microstructure. The results also indicated that the mechanical properties of PUAs were governed considerably by crystalline microstructure, and hard segment content. All PUAs demonstrated hydrophobic behavior and were able to be degraded hydrolytically. The degradation process was closely related to the microstructure and surface tension of PUAs. - Highlights: • We synthesized biodegradable acrylated polyurethanes (PUA) based on PCL and HDI. • Morphological and mechanical properties were investigated experimentally. • Increasing crystallinity and hard segment content enhances the mechanical properties. • Hydrolytic degradation was associated with surface tension and amorphous structure

  5. Analysis of Toxicity of Ceramic Nanoparticles and Functional Nanocomposites Based on Vulcanized Natural Rubber

    OpenAIRE

    Bellucci Felipe Silva; Fukushima Jeferson Camargo; de Moraes Josué; Lima Nobre Marcos Augusto; Paschoalini Amarildo Tabone; Job Aldo Eloizo

    2015-01-01

    Nanocomposites are multiphase materials of which, at least one of the phases, has a dimension smaller than 100 nm. These materials have attracted technological and scientific interest due to their multifunctional characteristics and potential, which allow them to combine unique properties which are not found in traditional commercial materials, such as natural rubber alone. The objective of this work is to analyse the toxicity of nanoparticles and nanocomposites when applied to mammal cells i...

  6. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha;

    2015-01-01

    Detailed characterisation of the properties of composite materials with nanoscale fibres is central for the further progress in optimization of their manufacturing and properties. In the present study, a methodology for the determination and analysis of the volumetric composition of nanocomposites...... 5 significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric...... composition. An analytical model, previously established for conventional fibre composites, is used for the analysis of the volumetric composition. For the aluminosilicate/polylactate nanocomposites, based on the established linear relationship between the porosity content and the fibre volume content, the...

  7. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  8. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    International Nuclear Information System (INIS)

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric

  9. Development of a stimuli-responsive polymer nanocomposite toward biologically optimized, MEMS-based neural probes

    International Nuclear Information System (INIS)

    This paper reports the development of micromachining processes and mechanical evaluation of a stimuli-responsive, mechanically dynamic polymer nanocomposite for biomedical microsystems. This nanocomposite consists of a cellulose nanofiber network encased in a polyvinyl acetate matrix. Micromachined tensile testing structures fabricated from the nanocomposite displayed a reversible and switchable stiffness comparable to bulk samples, with a Young's modulus of 3420 MPa when dry, reducing to ∼20 MPa when wet, and a stiff-to-flexible transition time of ∼300 s. This mechanically dynamic behavior is particularly attractive for the development of adaptive intracortical probes that are sufficiently stiff to insert into the brain without buckling, but become highly compliant upon insertion. Along these lines, a micromachined neural probe incorporating parylene insulating/moisture barrier layers and Ti/Au electrodes was fabricated from the nanocomposite using a fabrication process designed specifically for this chemical- and temperature-sensitive material. It was found that the parylene layers only slightly increased the stiffness of the probe in the wet state in spite of its much higher Young's modulus. Furthermore, the Ti/Au electrodes exhibited impedance comparable to Au electrodes on conventional substrates. Swelling of the nanocomposite was highly anisotropic favoring the thickness dimension by a factor of 8 to 12, leading to excellent adhesion between the nanocomposite and parylene layers and no discernable deformation of the probes when deployed in deionized water

  10. Co-based ternary nanocomposites: synthesis and their superior performances for hydrogenation of p-nitrophenol and adsorption for methyl blue

    International Nuclear Information System (INIS)

    A new kind of Co-based ternary nanocomposites has been obtained via one step without any additional surfactant at zero centigrade degree. Some experimental parameters play crucial roles in determining the morphologies and homogeneity of the final products, such as reaction temperature and the introduction of Na2S2O3·5H2O. The samples were characterized by XRD, SEM, TEM, UV–Vis, XPS, and BET. The result reveals that the as-prepared samples are Co1.29Ni1.71O4–Co3S4–Co3O4 Co-based ternary nanocomposites with an elliptic morphology composed of numerous fold-shaped superthin films (average thickness of ca. 2 nm). Interestingly, the obtained nanocomposites display superior performance for the hydrogenation of p-nitrophenol at room temperature in the presence of NaBH4. More importantly, the as-prepared nanocomposites show the huge adsorption capacity for methyl blue at room temperature, reaches 1100 mg g−1. Graphical Abstract: A kind of new-type Co-based ternary nanocomposites has been obtained via one step without surfactants at zero centigrade degree. The as-prepared nanocomposites display superior performance for the hydrogenation of p-nitrophenol in the presence of NaBH4 at room temperature

  11. Co-based ternary nanocomposites: synthesis and their superior performances for hydrogenation of p-nitrophenol and adsorption for methyl blue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Yuan; Fan, Yan-Ling; Ni, Jing-Jing; Xu, Ting-Ting; Song, Ji-Ming, E-mail: songjm@ahu.edu.cn, E-mail: jiming@ahu.edu.cn [Anhui University, The Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, School of Chemistry & Chemical Engineering (China)

    2016-01-15

    A new kind of Co-based ternary nanocomposites has been obtained via one step without any additional surfactant at zero centigrade degree. Some experimental parameters play crucial roles in determining the morphologies and homogeneity of the final products, such as reaction temperature and the introduction of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O. The samples were characterized by XRD, SEM, TEM, UV–Vis, XPS, and BET. The result reveals that the as-prepared samples are Co{sub 1.29}Ni{sub 1.71}O{sub 4}–Co{sub 3}S{sub 4}–Co{sub 3}O{sub 4} Co-based ternary nanocomposites with an elliptic morphology composed of numerous fold-shaped superthin films (average thickness of ca. 2 nm). Interestingly, the obtained nanocomposites display superior performance for the hydrogenation of p-nitrophenol at room temperature in the presence of NaBH{sub 4}. More importantly, the as-prepared nanocomposites show the huge adsorption capacity for methyl blue at room temperature, reaches 1100 mg g{sup −1}. Graphical Abstract: A kind of new-type Co-based ternary nanocomposites has been obtained via one step without surfactants at zero centigrade degree. The as-prepared nanocomposites display superior performance for the hydrogenation of p-nitrophenol in the presence of NaBH{sub 4} at room temperature.

  12. Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA-Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyeongrae; Babu, V. Ramesh; Rao, K. S. V. Krishna; Kim, Yonghyun; Mei, Surong; Lee, Yongill; Joo, Woo Hong [Changwon National Univ., Changwon (Korea, Republic of)

    2012-10-15

    New silver nanoparticle (AgNP)-loaded amino acid based hydrogels were synthesized successfully from poly (vinyl alcohol) (PVA) and poly(acryl amide-co-acryloyl phenyl alanine) (PAA) by redox polymerization. The formation of AgNP in hydrogels was confirmed by using a UV-Vis spectrophotometer and XRD. The structure and morphology of silver nanocomposite hydrogels were studied by using a scanning electron microscopy (SEM), which demonstrated scattered nanoparticles, ca. 10-20 nm. Thermogravimetric analysis revealed large differences of weight loss (i. e., 48%) between the prestine hydrogel and silver nanocomposite. The antibacterial studies of AgNP-loaded PAA (Ag-PAA) hydrogels was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. These Ag-PAA hydrogels showed significant activities against all the test bacteria. Newly developed hydrogels could be used for medical applications, such as artificial burn dressings.

  13. Electrosprayed nanocomposites based on hyaluronic acid derivative and Soluplus for tumor-targeted drug delivery.

    Science.gov (United States)

    Lee, Song Yi; Lee, Jeong-Jun; Park, Ju-Hwan; Lee, Jae-Young; Ko, Seung-Hak; Shim, Jae-Seong; Lee, Jongkook; Heo, Moon Young; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-09-01

    Nanocomposite (NC) based on hyaluronic acid-ceramide (HACE) and Soluplus (SP) was fabricated by electrospraying for the tumor-targeted delivery of resveratrol (RSV). Amphiphilic property of both HACE and SP has been used to entrap RSV in the internal cavity of NC. Electrospraying with established experimental conditions produced HACE/SP/RSV NC with 230nm mean diameter, narrow size distribution, negative zeta potential, and >80% drug entrapment efficiency. Sustained and pH-dependent drug release profiles were observed in drug release test. Cellular uptake efficiency of HACE/SP NC was higher than that of SP NC, mainly based on HA-CD44 receptor interaction, in MDA-MB-231 (CD44 receptor-positive human breast cancer) cells. Selective tumor targetability of HACE/SP NC, compared to SP NC, was also confirmed in MDA-MB-231 tumor-xenograted mouse model using a near-infrared fluorescence (NIRF) imaging. According to the results of pharmacokinetic study in rats, decreased in vivo clearance and increased half-life of RSV in NC group, compared to drug solution group, were shown. Given that these experimental results, developed HACE/SP NC can be a promising theranostic nanosystem for CD44 receptor-expressed cancers. PMID:27208440

  14. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    Science.gov (United States)

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. PMID:27612823

  15. Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Preferable Phosphate Removal and Recovery.

    Science.gov (United States)

    Qiu, Hui; Liang, Chen; Zhang, Xiaolin; Chen, Mindong; Zhao, Yunxia; Tao, Tao; Xu, Zhengwen; Liu, Gang

    2015-09-23

    Advanced removal of phosphate by low-cost adsorbents from municipal wastewater or industrial effluents is an effective and economic way to prevent the occurrence of eutrophication. Here, we proposed a novel method to immobilize hydrous zirconium oxide nanoparticle within quaternary-aminated wheat straw, and obtained an inexpensive, eco-friendly nanocomposite Ws-N-Zr. The biomass-based Ws-N-Zr exhibited higher preference toward phosphate than commercial anion exchanger IRA-900 when competing sulfate ions coexisted at relatively high levels. Such excellent performance of Ws-N-Zr resulted from its specific hybrid structure, the quaternary ammonium groups bonded on the host favor the preconcentration of phosphate ions inside the wheat straw based on Donnan effect, and the encapsulated HZO nanoparticle exhibits preferable sequestration of phosphate ions through specific interaction, as further demonstrated by FTIR and X-ray photoelectron spectroscopy. Cycle adsorption and regeneration experiments demonstrated that Ws-N-Zr could be employed for repeated use without significant capacity loss, when the binary NaOH-NaCl solution was employed as the regenerant. The influence of solution pH and contact time was also examined. The results suggested that Ws-N-Zr has a great potential in efficient removal of phosphate in contaminated waters. PMID:26340586

  16. Synthesis of Polydopamine Functionalized Reduced Graphene Oxide-Palladium Nanocomposite for Laccase Based Biosensor

    Science.gov (United States)

    Luo, Lei; Lv, Peng-Fei; Wang, Qing-Qing; Wei, An-Fang

    2016-01-01

    Graphene based 2D nanomaterials have attracted increasing attention in biosensing application due to the outstanding physicochemical properties of graphene. In this work, palladium nanoparticles (Pd) loaded reduced graphene oxide (rGO) hybrid (rGO-Pd) was synthesized through a facile method. Laccase (Lac) was immobilized on rGO-Pd by utilizing the self-polymerization of dopamine, which generated polydopamine (PDA). The PDA-Lac-rGO-Pd nanocomposites were further modified on electrode surface to construct novel biosensing platform. The obtained electrochemical biosensor was applied in the detection of catechol, achieving excellent analytic results. Under the optimum condition, this biosensor possessed a linear range from 0.1 µM to 263 µM for catechol detection, the sensitivity reached 18.4 µA mM−1, and the detection limit was as low as 0.03 µM. In addition, the biosensor also showed good repeatability, reproducibility, anti-interference, and stability. Moreover, the novel Lac based biosensor was successfully used in the trace detection of catechol existing in real water environment. PMID:27478426

  17. A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu; Daliri, Rasoul; Roostaie, Ali

    2013-09-10

    Graphical abstract: -- Highlights: •A Fe{sub 3}O{sub 4}–aniline-naphthylamine nanocomposite was prepared via a simple route. •The magnetic nanocomposite was applied for isolation of RhB from water. •The nanocomposite applicability was compared with other pristine polymers. •The method was applied for the determination of RhB in different samples. -- Abstract: A novel Fe{sub 3}O{sub 4}–poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50 nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe{sub 3}O{sub 4}/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35–5.00 μg L{sup −1} with R{sup 2} = 0.9991 was obtained. The limits of detection (3S{sub b}) and limits of quantification (10S{sub b}) of the method were 0.10 μg L{sup −1} and 0.35 μg L{sup −1} (n = 3), respectively. The relative standard deviation for water sample with 0.5 μg L{sup −1} of RhB was 4.2% (n = 5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94–99%.

  18. Solution-processable phosphorescent to organic light-emitting diodes based on chromophoric amphiphile/silica nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chung-He; Yang, Sheng-Hsiung; Hsu, Chain-Shu, E-mail: cshsu@mail.nctu.edu.t [Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China)

    2009-08-05

    We report the synthesis of a tris-cyclometalated iridium complex which emits sky-blue light and its potential use in phosphorescent light-emitting devices. The hybrid meso-structured nanocomposites by sol-gel co-assembly with tetraethyl ortho-silicate and corresponding molecular interactions within mesopores were also demonstrated. Electroluminescent devices were fabricated using carbazole-based monomers and iridium complex as the active layer, acting as a host/guest system through a co-assembled sol-gel process. Devices based on this nanocomposite showed improved luminescent efficiencies several times higher than that of similar chromophores elaborated in the literature. A triple-layer electroluminescence device with the configuration of ITO/PEDOT/ Ir(F2OC11ppy){sub 3}:CA-C11:PBD nanocomposite/TPBI/Ca/Al showed a maximum brightness of 1389 cd m{sup -2} at 12 V and a maximum efficiency of 3.29 cd A{sup -1}.

  19. Investigation of the application of an enzyme-based biodegradability test method to a municipal solid waste biodrying process.

    Science.gov (United States)

    Wagland, S T; Godley, A R; Tyrrel, S F

    2011-07-01

    This paper presents a study to evaluate the recently developed enzymatic hydrolysis test (EHT) through its repeated application to a waste treatment process. A single waste treatment facility, involving a biodrying process, has been monitored using three different methods to assess the biodegradable content of the organic waste fractions. These test methods were the anaerobic BMc, aerobic DR4 and the EHT, which is a method based on the enzymatic hydrolysis of the cellulosic content of waste materials. The input municipal solid waste (MSW) and the output solid recovered fuel (SRF) and organic fines streams were sampled over a period of nine months from a single mechanical biological treatment (MBT) facility. The EHT was applied to each stream following grinding to SRF output samples in each of the test methods, significantly (p<0.05) for the EHT and DR4 methods, on the basis of DOC released and oxygen consumed, respectively. The variation between sample replicates for the EHT was higher where sample sizes of <2 mm were analysed compared to sizes of <10 mm, and the DOC release at each phase of the EHT was observed to be higher when using particle sizes of <2 mm. Despite this, additional sample grinding from the <10 mm to a smaller particle size of <2 mm is not sufficiently beneficial to the analysis of organic waste fractions in the EHT method. Finally, it was concluded that as similar trends were observed for each test method, this trial confirms that EHT has the potential to be deployed as a practical operational biodegradability monitoring tool. PMID:21421298

  20. Enhancement of the optical properties of a new radiochromic dosimeter based on aliphatic-aromatic biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Schimitberger, Thiago, E-mail: tschimitberger@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear; Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The development of a dosimeter that is of low cost, easy to process without dependence on expensive complex instruments and environment friendly is a challenging in irradiation quality control. Recently, an aliphatic-aromatic biodegradable polymer has been proposed as radiochromic dosimeter. The dosimeter is based on biodegradable poly(butylene adipate-co-terephthalate) copolymers (PBAT). In order to improve the photoluminescence (PL) properties of PBAT, increasing its range of applicability (50 kGy to 1000 kGy), this work investigates the influence of solution concentration in the dose response. Films with thickness of c.a. 80 μm were produce by wirebar coating, a simple deposition method for preparing large areas of organic films at low cost. The irradiation of samples was performed at room temperature using a Co-60 source at dose rate of 20 kGy/h. The films were exposed to doses ranging from 501 kGy to 1000 kGy. A 405 nm LED light source was used to excite the films. The USB2000 spectrometer made by Ocean Optics was used to collect the emission spectra of the luminescent films. The photoluminescent intensity captured by the spectrometer present linear radiation dose dependence. The maximum PL for the film sample made from a 0.05 g.mL{sup -1} solution is 1.5 (a.u.) while it is about 3.5 (a.u.) for a film sample made from a 0.2 mg.mL{sup -1} solution, when irradiated with 1000 kGy. These results indicate that PBAT films have great potential to be used as a high gamma dose radiochromic dosimeter over a wide dose range, expanding its applicability for different radiations process. (author)

  1. A study of cytocompatibility and degradation of iron-based biodegradable materials.

    Science.gov (United States)

    Oriňaková, Renáta; Oriňak, Andrej; Giretová, Mária; Medvecký, L'ubomír; Kupková, Miriam; Hrubovčáková, Monika; Maskal'ová, Iveta; Macko, Ján; Kal'avský, František

    2016-02-01

    Biodegradable metallic implants are of significant importance in the replacement of bones or the repair of bone defects. Iron-phosphate-coated carbonyl iron powder (Fe/P) was prepared by the phosphating method. Moreover, Fe/P-Mn alloy was produced by sintering the Fe/P powder mixed with manganese powder. Bare carbonyl iron samples and the Fe/P and Fe/P-Mn sintered samples were evaluated for their microstructure, cytotoxicity, and hemocompatibility. The microstructure of the sintered samples was examined using an optical microscope and scanning electron microscopic analysis. Corrosion behavior was evaluated by potentiodynamic polarization in Hank's solution. The in vitro biocompatibilities were investigated by cytotoxicity and hemolysis tests. The results obtained demonstrate that the addition of Mn resulted in higher surface inhomogeneity, porosity and roughness as well as in increased cytotoxicity. The phosphate coating has a moderately negative effect on the cytotoxicity. The corrosion rates determined from Tafel diagrams were ordered in the following sequence: Fe/P-Mn, Fe, Fe/P from high to low. The hemocompatibility of experimental samples was ordered in the following sequence: Fe/P, Fe/P-Mn, Fe from high to low. All samples were found to be hemocompatible. PMID:26553881

  2. Mechanical and water vapor permeability properties of biodegradables films based on methylcellulose, glucomannan, pectin and gelatin

    Directory of Open Access Journals (Sweden)

    Hulda Noemi Mamani Chambi

    2011-09-01

    Full Text Available Mimic biological structures such as the cell wall of plant tissues may be an alternative to obtain biodegradable films with improved mechanical and water vapor barrier properties. This study aims to evaluate the mechanical properties and water vapor permeability (WVP of films produced by using the solvent-casting technique from blended methylcellulose, glucomannan, pectin and gelatin. First, films from polysaccharides at pH 4 were produced. The film with the best mechanical performance (tensile strength = 72.63 MPa; elongation = 9.85% was obtained from methylcellulose-glucomannan-pectin at ratio 1:4:1, respectively. Then, gelatin was added to this polysaccharide blend and the pH was adjusted to 4, 5 and 6. Results showed significant improvement in WVP when films were made at pH 5 and at polysaccharides/gelatin ratio of 90/10 and 10/90, reaching 0.094 and 0.118 g.mm/h.m².kPa as values, respectively. Films with the best mechanical properties were obtained from the blend of polysaccharides, whereas WVP was improved from the blend of polysaccharides and gelatin at pH 5.

  3. Development of polysaccharide based biodegradable packaging materials suitable for radiation sterilization

    International Nuclear Information System (INIS)

    The biodegradable composites are prepared by melt blending method in Poly-lab Rheomix internal mixer from Thermo Electron. The high-density polyethylene (90 wt%) and maleic anhydride grafted polyethylene (10 wt%) are heat melted at 170 °C under the constant rotors speed (60 rpm). After 3 min, maize starch (Gelose 80) 10 parts per hundred (phr), sepiolite, stearic acid (1 phr), Irganox 1010 (0.2 phr) and Irgafos 168 (0.1 phr) are added and mixed for another 15 min. The sepiolite is varied from 2 to 6 phr in these composites. The PE0, PE2, PE4 and PE6 identification codes are used to represent composites containing 0, 2, 4 and 6 phr of sepiolite respectively. The heat pressed sheets are prepared at 170 οC at 200 bar. These sheet are irradiated under electron beam in air at room temperature using UELV-10-10S linear electron beam irradiator (NIIEFA, Russia) at 10 MeV and 1mA using 1 kGy/pass. The samples are subjected to various doses of electron beam irradiation ranging from 25 to 100 kGy. The structural and morphological analysis of developed composites is characterized by Fourier transform infrared spectrophotometer and scanning electron microscope. The thermal properties are investigated using thermo-gravimetric analyzer and differential scanning calorimeter. The gel content and tensile properties are also measured

  4. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.

    Science.gov (United States)

    Liu, Baoxia; Wang, Yan; Yang, Fei; Wang, Xing; Shen, Hong; Cui, Haixin; Wu, Decheng

    2016-08-01

    Conventional pesticides usually need to be used in more than recommended dosages due to their loss and degradation, which results in a large waste of resources and serious environmental pollution. Encapsulation of pesticides in biodegradable carriers is a feasible approach to develop environment-friendly and efficient controlled-release delivery system. In this work, we fabricated three kinds of polylactic acid (PLA) carriers including microspheres, microcapsules, and porous microcapsules for controlled delivery of Lambda-Cyhalothrin (LC) via premix membrane emulsification (PME). The microcapsule delivery system had better water dispersion than the other two systems. Various microcapsules with a high LC contents as much as 40% and tunable sizes from 0.68 to 4.6μm were constructed by manipulating the process parameters. Compared with LC technical and commercial microcapsule formulation, the microcapsule systems showed a significantly sustained release of LC for a longer period. The LC release triggered by LC diffusion and matrix degradation could be optimally regulated by tuning LC contents and particle sizes of the microcapsules. This multi-regulated release capability is of great significance to achieve the precisely controlled release of pesticides. A preliminary bioassay against plutella xylostella revealed that 0.68μm LC-loaded microcapsules with good UV and thermal stability exhibited an activity similar to a commercial microcapsule formulation. These results demonstrated such an aqueous microcapsule delivery system had a great potential to be further explored for developing an effective and environmentally friendly pesticide-release formulation. PMID:27062215

  5. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.

    Science.gov (United States)

    Xiang, Dong; Yin, Longwei; Ma, Jingyun; Guo, Enyan; Li, Qun; Li, Zhaoqiang; Liu, Kegao

    2015-01-21

    Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 μA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 μM and a low detection limit of 0.24 μM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 μM with a high sensitivity of 6.9 μA mM(-1) cm(-2) and a low detection limit of 2.7 μM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose. PMID:25429370

  6. Redução da hidrofilicidade de filmes biodegradáveis à base de amido por meio de polimerização por plasma Reduction of hydrophilicity of biodegradable starch-based films by plasma polymerization

    Directory of Open Access Journals (Sweden)

    Rossana M. S. M. Thiré

    2004-03-01

    Full Text Available Devido ao baixo custo de produção e excelente biodegradabilidade, o amido constitui-se em matéria-prima promissora para a produção de plásticos biodegradáveis. No entanto, a grande hidrofilicidade dos filmes à base de amido representa uma séria limitação tecnológica à sua comercialização, uma vez que as propriedades dos filmes são afetadas pela variação da umidade relativa do ar durante a sua estocagem ou o seu uso. Neste trabalho, filmes de amido termoplástico foram recobertos com uma fina camada protetora polimérica gerada por intermédio da tecnologia de plasma frio. 1-Buteno e 1,3-butadieno foram utilizados como monômeros para a polimerização por plasma. Os filmes recobertos apresentaram uma redução de até 80% na absorção de água e aumento do ângulo de contato em relação à água. Estes resultados indicaram uma redução significativa na natureza hidrofílica do material à base de amido após o recobrimento.Due to low cost and excellent biodegradability, the use of starch as a raw material for bioplastic production is growing in interest. However, the properties of starch-based materials are affected by relative humidity during their use and storage due to their hydrophilic character. In this work, thermoplastic cornstarch films were coated by cold plasma technology with a protective thin layer in order to reduce water sensitivity. 1-Butene and 1,3-butadiene were used as monomers for plasma polymerization. Coated films presented a reduction of water absorption up to 80% an increase in contact angle related to water. These results indicated that the coating process reduced significantly the hydrophilic nature of the starch-based materials.

  7. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials.

    Science.gov (United States)

    Bhowmick, Arundhati; Jana, Piyali; Pramanik, Nilkamal; Mitra, Tapas; Banerjee, Sovan Lal; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-10-20

    This paper reports the development of multifunctional zirconium oxide (ZrO2) doped nancomposites having chitosan (CTS), organically modified montmorillonite (OMMT) and nano-hydroxyapatite (HAP). Formation of these nanocomposites was confirmed by various characterization techniques such as Fourier transform infrared spectroscopy and powder X-ray diffraction. Scanning electron microscopy images revealed uniform distribution of OMMT and nano-HAP-ZrO2 into CTS matrix. Powder XRD study and TEM study revealed that OMMT has partially exfoliated into the polymer matrix. Enhanced mechanical properties in comparison to the reported literature were obtained after the addition of ZrO2 nanoparticle into the nanocomposites. In rheological measurements, CMZH I-III exhibited greater storage modulus (G') than loss modulus (G″). TGA results showed that these nanocomposites are thermally more stable compare to pure CTS film. Strong antibacterial zone of inhibition and the lowest minimum inhibition concentration (MIC) value of these nanocomposites against bacterial strains proved that these materials have the ability to prevent bacterial infection in orthopedic implants. Compatibility of these nanocomposites with pH and blood of human body was established. It was observed from the swelling study that the swelling percentage was increased with decreasing the hydrophobic OMMT content. Human osteoblastic MG-63 cell proliferations were observed on the nanocomposites and cytocompatibility of these nanocomposites was also established. Moreover, addition of 5wt% OMMT and 5wt% nano-HAP-ZrO2 into 90wt% CTS matrix provides maximum tensile strength, storage modulus, aqueous swelling and cytocompatibility along with strong antibacterial effect, pH and erythrocyte compatibility. PMID:27474636

  8. Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity.

    Science.gov (United States)

    Tang, Lian; Han, Jinlu; Jiang, Zhenlin; Chen, Shiyan; Wang, Huaping

    2015-03-01

    Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose (BC) with amphiphobicity have been successfully prepared through in situ chemical synthesis and then infiltrated with polysiloxane solution. The results suggested that polypyrrole (PPy) nanoparticles deposited on the surface of BC formed a continuous core-shell structure by taking along the BC template. After modification with polysiloxane, the surface characteristics of the conductive BC membranes changed from highly hydrophilic to hydrophobic. The AFM images revealed that the roughness of samples after polysiloxane treatment increased along with the increase of pyrrole concentration. The contact angles (CAs) data revealed that the highest water contact angle and highest oil contact angle are 160.3° and 136.7°, respectively. The conductivity of the amphiphobic membranes with excellent flexibility reached 0.32 S/cm and demonstrated a good electromagnetic shielding effectiveness with an SE of 15 dB which could be applied in electromagnetic shielding materials with self-cleaning properties. It opened a new field of potential applications of BC materials. PMID:25498630

  9. Microstructure based optical modeling of ZnO- porous silicon permeated nanocomposites

    International Nuclear Information System (INIS)

    ZnO composites with porous silicon (PSi) are increasingly used in advanced optical and electronic structures. ZnO/PSi nanocomposites have been prepared by permeating anodized PSi with ZnO sols based on zinc acetate. Upon thermal annealing the ZnO sols form surface wurzite nanocrystals, as indicated by XRD from annealing temperatures of 400 °C. By increasing the annealing up to 800 °C, electron microscopies evidence that ZnO diffuses through the columnar PSi, while void ZnO crystallites decorate the surface. Angular dependent x-ray photoelectron spectra agree with the partial coverage of the PSi surface by disperse ZnO nanocrystals. In depth composition, analyzed using C-resonant backscattering spectroscopy confirms an activation of ZnO diffusion and PSi oxidation at high temperatures. This microstructural information was used to analyse the optical properties through models adapted to critical processing temperatures. A uniaxial anisotropic layer, included to consider columnar PSi, and an evolution of optical coefficients in agreement with thermally induced effects (namely PSi oxidation and ZnO diffusion-transformation) allows to satisfactorily simulate ellipsometric spectra. The results are relevant for the optimization of bifunctional electronic-antireflective ZnO/PSi structures. (paper)

  10. Synthesis and optical properties of TiO2-based magnetic nanocomposites

    Science.gov (United States)

    Scarisoreanu, M.; Morjan, I.; Fleaca, C.-T.; Morjan, I. P.; Niculescu, A.-M.; Dutu, E.; Badoi, A.; Birjega, R.; Luculescu, C.; Vasile, E.; Danciu, V.; Filoti, G.

    2015-05-01

    Magnetic titania nanoparticles covered/embedded in SiO2 shell/matrix were simultaneously manufactured by the single-step laser pyrolysis. The present study is a continuation of our previous investigations on the TiO2/Fe and TiO2/HMDSO (hexamethyldisiloxane) derived-systems. The aim of this work is to study the synthesis by IR (Infrared) laser pyrolysis of magnetic TiO2 based nanocomposites which implies many concurrent processes induced in the gas phase by the laser radiation. The dependence between characteristic properties and the synthesis parameters was determined by many analytical and complementary methods: XRD (X-ray diffraction) structural analysis, UV-vis (ultraviolet-visible) and EDAX (energy-dispersive X-ray) spectroscopy, TEM and HRTEM (transmission electron microscopy at low and high resolution) analysis and magnetic measurements. The results of analysis indicate the presence of disordered silica, Fe, α-Fe2O3 and mixtures of anatase and rutile phases with mean crystallite dimensions (in the 14-34 nm range) with typical character of diluted magnetic oxide systems and a lower bandgap energy (Eg = 1.85 eV) as compared with TiO2 P25 Degussa sample.

  11. An Indigo Carmine-Based Hybrid Nanocomposite with Supramolecular Control of Dye Aggregation and Photobehavior.

    Science.gov (United States)

    Costa, Ana L; Gomes, Ana C; Pillinger, Martyn; Gonçalves, Isabel S; de Melo, J Sérgio Seixas

    2015-08-17

    Zn-Al layered double hydroxides (LDHs) containing solely indigo carmine (IC) or 1-hexanesulfonate (HS) anions, or a mixture of the two with different HS/IC molar ratios, were prepared by the direct synthesis method and characterized by various techniques. Hydrotalcite-type phases were obtained with basal spacings of 17.6 Å for the LDH intercalated by IC (IC-LDH) and 18.2-18.3 Å for the other materials containing HS. From the basal spacing for IC-LDH and UV/Vis spectroscopic data, it is proposed that the dye molecules assemble within the interlayer galleries to form a J-type stacking arrangement. A comprehensive electronic spectral and photophysical study was undertaken for IC in solution and all materials, aiming to obtain a detailed characterization of the host-guest and guest-guest interactions. In solution (the solvent surrounded "isolated" molecule), IC presents a fast excited state proton transfer with rate constants of ∼1.2-1.4×10(11)  s(-1) , which is linked to the very efficient radiationless deactivation channel. In the solid state it is shown that incorporation of IC within the LDH decreases the level of aggregation, and that further addition of HS induces the appearance of isolated IC units within the LDH galleries. The indigo carmine-based nanocomposites reported constitute a step forward in the design of hybrid materials with tunable properties. PMID:26216072

  12. Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, D.S. [Rheology and Materials Processing Centre, School of Civil and Chemical Engineering, RMIT University, 124 La Trobe St., Melbourne 3000 (Australia)]. E-mail: deeptangshu@hotmail.com; Prasad, R. [Rheology and Materials Processing Centre, School of Civil and Chemical Engineering, RMIT University, 124 La Trobe St., Melbourne 3000 (Australia); Gupta, R.K. [Rheology and Materials Processing Centre, School of Civil and Chemical Engineering, RMIT University, 124 La Trobe St., Melbourne 3000 (Australia); Bhattacharya, S.N. [Rheology and Materials Processing Centre, School of Civil and Chemical Engineering, RMIT University, 124 La Trobe St., Melbourne 3000 (Australia)]. E-mail: sati.bhattacharya@rmit.edu.au

    2005-08-01

    Various polymer clay nanocomposites (PCNs) were prepared from ethylene vinyl acetate copolymer (EVA) with 9, 18 and 28% vinyl acetate (VA) content filled with different wt.% (2.5, 5 and 7.5) of a Montmorillonite-based organo-modified clay (Cloisite[reg] C15A and C30B). The PCNs were prepared using melt blending techniques. Morphological information regarding intercalation and exfoliation were determined by using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). WAXS and TEM confirmed that increasing the VA content was necessary to achieve greater clay-polymer interaction as seen from the comparatively higher intercalation of clay platelets with 28% VA. The effect of addition of clay on the development and the modification of crystalline morphology in EVA matrix was also studied using WAXS and temperature-modulated differential scanning calorimetry (MDSC). Results are presented showing that the addition of clay platelets does not increase the matrix crystallinity but the morphology was significantly modified such that there was an increase in the 'rigid' amorphous phase. Mechanical properties were also evaluated against the respective morphological information for each specimen and there are indications that the level of clay-polymer interaction plays a significant role in such morphological modification, and in such a way that affects the final PCN mechanical properties which has wide and significant applications in the packaging industries.

  13. Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites

    International Nuclear Information System (INIS)

    Various polymer clay nanocomposites (PCNs) were prepared from ethylene vinyl acetate copolymer (EVA) with 9, 18 and 28% vinyl acetate (VA) content filled with different wt.% (2.5, 5 and 7.5) of a Montmorillonite-based organo-modified clay (Cloisite[reg] C15A and C30B). The PCNs were prepared using melt blending techniques. Morphological information regarding intercalation and exfoliation were determined by using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). WAXS and TEM confirmed that increasing the VA content was necessary to achieve greater clay-polymer interaction as seen from the comparatively higher intercalation of clay platelets with 28% VA. The effect of addition of clay on the development and the modification of crystalline morphology in EVA matrix was also studied using WAXS and temperature-modulated differential scanning calorimetry (MDSC). Results are presented showing that the addition of clay platelets does not increase the matrix crystallinity but the morphology was significantly modified such that there was an increase in the 'rigid' amorphous phase. Mechanical properties were also evaluated against the respective morphological information for each specimen and there are indications that the level of clay-polymer interaction plays a significant role in such morphological modification, and in such a way that affects the final PCN mechanical properties which has wide and significant applications in the packaging industries

  14. Electrical Properties and Electromagnetic Shielding Effectiveness of Carbon Based Epoxy Nanocomposites

    Science.gov (United States)

    Bellucci, S.; Micciulla, F.; Sacco, I.; Coderoni, L.; Rinaldi, G.

    Designing and engineering of new kind of electromagnetic interference (EMI) shielding for electronic systems and devices is a pressing need due to the wide range of using of several electronic devices. Electromagnetic (EM) shields have to guarantee high performances and right operation of electronic systems and to prevent the electronic pollution. Electronic systems are getting faster, smaller high frequency of clock and high energy in small dimension, so they generate, as effect, thermal drawback, and mechanical, as well. They are used in several electronic equipments and it is easy to find them in common life: communications, computations, automations, biomedical, military, space and other purposes. Nanocomposites based on Carbon Nanotubes (CNTs) give powerful and multifunctional materials with very high performances: mechanical, thermal, electrical properties. It is possible to achieve lighter and cheaper EM shields than the actual ones. Examples of new materials that can come from nanotubes are many: high conductors that are multifunctional (electrical and structural), highly anisotropic insulators and high-strength, porous ceramics and others.

  15. Enhanced photovoltaic properties in graphitic carbon nanospheres networked TiO2 nanocomposite based dye sensitized solar cell

    International Nuclear Information System (INIS)

    Highlights: • Nano size graphitic carbon nanospheres were prepared from MWCNTs. • TiO2/GCNS composite was used as the photoanode in dye-sensitized solar cell. • An improved photovoltaic performance with GCNS–TiO2 composite was noticed. - Abstract: In this work, we report a novel carbon based TiO2 nanocomposite electron injection layer (photoanode) toward the improved performance of DSSCs. Graphitic carbon nanospheres (GCNSs) were synthesized by a unique acidic treatment of multi-wall carbon nanotubes. GCNS–TiO2 nanocomposites with different concentrations of GCNSs (ranging from 5 to 20 μL) were prepared to use as photoanodes in DSSCs. Structural and morphological properties of GCNS–TiO2 nanocomposites were analyzed by Raman spectroscopy and ultra-high resolution transmission electron microscopy techniques, respectively. A systematic increment in the short circuit current density (JSC) and open circuit voltage (VOC) of DSSC was observed by increasing GCNS concentration up to an optimal value, possibly due to the combined effect of slight rise in quasi-Fermi level and higher carrier transport rate in the resultant composite. Thus, a significant enhancement of ∼47% in the efficiency of DSSC containing GCNS–TiO2 photoanode was observed as compare to DSSC with pure TiO2 photoanode

  16. Removal of Cu{sup 2+} and Pb{sup 2+} ions using CMC based thermoresponsive nanocomposite hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Oezkahraman, Bengi [Faculty of Engineering, Chemical Engineering Department, Hitit University, Corum (Turkey); Acar, Isil; Emik, Serkan [Faculty of Engineering, Chemical Engineering Department, Istanbul University, Avcilar-Istanbul (Turkey)

    2011-07-15

    In this study, carboxymethylcellulose (CMC) based thermoresponsive nanocomposite hydrogel was synthesized for the removal of Cu{sup 2+} and Pb{sup 2+} ions from aqueous solutions. To prepare nanocomposite hydrogel, graft copolymerization of N-isopropyl acrylamide (NIPAm) and acrylic acid (AA) onto CMC was carried out in Na-montmorillonite (MMT)/water suspension media and ammonium persulfate (APS) used as initiator. The chemical structures of hydrogels were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction spectroscopy (XRD). Lower critical solution temperature (LCST), pH responsivity, swelling, and deswelling properties of the hydrogels were also examined. In addition competitive and non-competitive removal of Cu{sup 2+} and Pb{sup 2+} studies were carried out. According to heavy metal sorption studies results, removal capacities of nanocomposite hydrogel for both metal ions were found to be higher than those of pure hydrogel. The analyzed adsorption data showed that the adsorption process of Cu{sup 2+} and Pb{sup 2+} could be explained by pseudo-second order kinetic model. Moreover, according to competitive sorption studies, it is found to be that both hydrogels are more selective to Cu{sup 2+} ion rather than Pb{sup 2+}. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Enhanced photovoltaic properties in graphitic carbon nanospheres networked TiO{sub 2} nanocomposite based dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Radhe [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Sahoo, Satyaprakash, E-mail: satya504@gmail.com [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Chitturi, Venkateswara Rao [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Williams, Joseph D. [Department of Biomedical and Chemical Engineering, Syracuse University, L.C. Smith College of Engineering and Computer Science, Syracuse, NY (United States); Resto, Oscar [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Katiyar, Ram S., E-mail: rkatiyar@hpcf.uprrp.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States)

    2015-08-25

    Highlights: • Nano size graphitic carbon nanospheres were prepared from MWCNTs. • TiO{sub 2}/GCNS composite was used as the photoanode in dye-sensitized solar cell. • An improved photovoltaic performance with GCNS–TiO{sub 2} composite was noticed. - Abstract: In this work, we report a novel carbon based TiO{sub 2} nanocomposite electron injection layer (photoanode) toward the improved performance of DSSCs. Graphitic carbon nanospheres (GCNSs) were synthesized by a unique acidic treatment of multi-wall carbon nanotubes. GCNS–TiO{sub 2} nanocomposites with different concentrations of GCNSs (ranging from 5 to 20 μL) were prepared to use as photoanodes in DSSCs. Structural and morphological properties of GCNS–TiO{sub 2} nanocomposites were analyzed by Raman spectroscopy and ultra-high resolution transmission electron microscopy techniques, respectively. A systematic increment in the short circuit current density (J{sub SC}) and open circuit voltage (V{sub OC}) of DSSC was observed by increasing GCNS concentration up to an optimal value, possibly due to the combined effect of slight rise in quasi-Fermi level and higher carrier transport rate in the resultant composite. Thus, a significant enhancement of ∼47% in the efficiency of DSSC containing GCNS–TiO{sub 2} photoanode was observed as compare to DSSC with pure TiO{sub 2} photoanode.

  18. Preparation and characterization of a novel epoxy based nanocomposite using tryptophan as an eco-friendly curing agent

    International Nuclear Information System (INIS)

    Highlights: • Epoxy cured with tryptophan in the presence of 2,4,5-triphenylimidazole. • Kinetic study on the epoxy nanocomposite using advanced isoconversional method. • Structural study and characterization of nanocomposite using SEM, XRD, AFM and DMTA. - Abstract: In this study, kinetics of the curing reaction between DGEBA epoxy resin and tryptophan as an environmentally friendly curing agent in the presence of 2,4,5-triphenylimidazole was reported. The role of silica nanoparticles (SiNP) in changing the mechanism of the curing reaction was also studied. The optimum molar ratio of DGEBA/tryptophan and the optimum content of SiNP were determined by calorimetry analyses. Kinetic analysis using the advanced isoconversional method revealed that the system undergoes the vitrification. Thermogravimetric analysis demonstrated that addition of SiNP does not improve the thermal stability of the tryptophan based thermosets. Impedance spectroscopy and also the standard four-probe method were performed to investigate the effect of curing agent and SiNP loading level on the electrical properties of the cured epoxy. The structure and morphology of the nanocomposite were studied by X-ray diffraction analysis, atomic force microscopy and scanning electron microscopy imaging. Dynamic mechanical thermal analysis revealed that the crosslinking density cannot be significantly affected with the addition of SiNP

  19. Preparation and characterization of a novel epoxy based nanocomposite using tryptophan as an eco-friendly curing agent

    Energy Technology Data Exchange (ETDEWEB)

    Motahari, Ahmad, E-mail: motahari@umz.ac.ir [Faculty of Chemistry, University of Mazandaran, P.O. Box 453, Babolsar (Iran, Islamic Republic of); Omrani, Abdollah; Rostami, Abbas Ali [Faculty of Chemistry, University of Mazandaran, P.O. Box 453, Babolsar (Iran, Islamic Republic of); Ehsani, Morteza [Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran (Iran, Islamic Republic of)

    2013-12-20

    Highlights: • Epoxy cured with tryptophan in the presence of 2,4,5-triphenylimidazole. • Kinetic study on the epoxy nanocomposite using advanced isoconversional method. • Structural study and characterization of nanocomposite using SEM, XRD, AFM and DMTA. - Abstract: In this study, kinetics of the curing reaction between DGEBA epoxy resin and tryptophan as an environmentally friendly curing agent in the presence of 2,4,5-triphenylimidazole was reported. The role of silica nanoparticles (SiNP) in changing the mechanism of the curing reaction was also studied. The optimum molar ratio of DGEBA/tryptophan and the optimum content of SiNP were determined by calorimetry analyses. Kinetic analysis using the advanced isoconversional method revealed that the system undergoes the vitrification. Thermogravimetric analysis demonstrated that addition of SiNP does not improve the thermal stability of the tryptophan based thermosets. Impedance spectroscopy and also the standard four-probe method were performed to investigate the effect of curing agent and SiNP loading level on the electrical properties of the cured epoxy. The structure and morphology of the nanocomposite were studied by X-ray diffraction analysis, atomic force microscopy and scanning electron microscopy imaging. Dynamic mechanical thermal analysis revealed that the crosslinking density cannot be significantly affected with the addition of SiNP.

  20. Design of a low power optical limiter based on a new nanocomposite material incorporating silica-encapsulated phthalocyanine in Nafion

    Science.gov (United States)

    Sathiyamoorthy, K.; Vijayan, C.; Kothiyal, M. P.

    2007-10-01

    We report on the design of a stable optical limiter in the low laser power regime based on the thermal variation of refractive index in a novel nanocomposite material. The optical material, chloroaluminium-phthalocyanine (ClAlPc), is embedded in SiO2-Nafion nanocomposite membrane (ClSNf) and its thermally induced nonlinear refractive index is characterized by the Z-scan technique with a low power cw He-Ne laser as the source. The value of nonlinear refractive index coefficient, n2, is found to be about 1.11 × 10-11 m2 W-1. The experiment is repeated with the dye doped in pure Nafion membrane (ClNf) and the results are compared with those of ClAlPc doped SiO2-Nafion nanocomposite membrane. The value of n2 is found to be 1.36 × 10-11 m2 W-1 and is larger than that of the ClAlPc embedded SiO2-Nafion nanocomposite membrane. The photostability of the dye-embedded membrane is studied by exposing the sample to cw He-Ne laser and monitoring its fluorescence emission intensity continuously. The samples are found to show large thermal lens effect and demonstrated to be good optical limiters in the low power regime. Whereas the optical properties of dye-doped Nafion appear to be slightly better than those of the dye embedded in silica and incorporated in Nafion, the latter is found to offer excellent photostability.

  1. Design of a low power optical limiter based on a new nanocomposite material incorporating silica-encapsulated phthalocyanine in Nafion

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyamoorthy, K; Vijayan, C; Kothiyal, M P [Department of Physics, Indian Institute of Technology, Chennai 600 036 (India)

    2007-10-07

    We report on the design of a stable optical limiter in the low laser power regime based on the thermal variation of refractive index in a novel nanocomposite material. The optical material, chloroaluminium-phthalocyanine (ClAlPc), is embedded in SiO{sub 2}-Nafion nanocomposite membrane (ClSNf) and its thermally induced nonlinear refractive index is characterized by the Z-scan technique with a low power cw He-Ne laser as the source. The value of nonlinear refractive index coefficient, n{sub 2}, is found to be about 1.11 x 10{sup -11} m{sup 2} W{sup -1}. The experiment is repeated with the dye doped in pure Nafion membrane (ClNf) and the results are compared with those of ClAlPc doped SiO{sub 2}-Nafion nanocomposite membrane. The value of n{sub 2} is found to be 1.36 x 10{sup -11} m{sup 2} W{sup -1} and is larger than that of the ClAlPc embedded SiO{sub 2}-Nafion nanocomposite membrane. The photostability of the dye-embedded membrane is studied by exposing the sample to cw He-Ne laser and monitoring its fluorescence emission intensity continuously. The samples are found to show large thermal lens effect and demonstrated to be good optical limiters in the low power regime. Whereas the optical properties of dye-doped Nafion appear to be slightly better than those of the dye embedded in silica and incorporated in Nafion, the latter is found to offer excellent photostability.

  2. Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite.

    Science.gov (United States)

    Shukla, S K; Deshpande, Swapneel R; Shukla, Sudheesh K; Tiwari, Ashutosh

    2012-09-15

    A potentiometrically tuned-glucose biosensor was fabricated using core-shell nanocomposite based on zinc oxide encapsulated chitosan-graft-poly(vinyl alcohol) (ZnO/CHIT-g-PVAL). In a typical experiment, ZnO/CHIT-g-PVAL core-shell nanocomposite containing glucose responsive bio-electrode, i.e., glucose oxidase/ZnO/chitosan-graft-poly(vinyl alcohol) (GOD/ZnO/CHIT-g-PVAL/ITO) was obtained by immobilization of glucose oxidase (GOD) onto the electrode made of resulting ZnO core-shell nanocomposite coated on the indium-tin oxide (ITO) glass substrate. The ZnO/CHIT-g-PVAL/ITO and GOD/ZnO/CHIT-g-PVAL electrodes were characterized with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), whereas ZnO/CHIT-g-PVAL size of core-shell nanoparticles were measured using transmission electron microscopy (TEM). The electrostatic interaction between GOD and ZnO/CHIT-g-PVAL provided the resulting tuned enzyme electrode with a high degree of enzyme immobilization and excellent lifetime stability. The response studies were carried out as a function of glucose concentration with potentiometric measurement. The GOD/ZnO/CHIT-g-PVAL/ITO bioelectrode has showed a linear potential response to the glucose concentration ranging from 2 μM to 1.2mM. The glucose biosensor exhibited a fast surface-controlled redox biochemistry with a detection limit of 0.2 μM, a sensitivity of >0.04 V/μM and a response time of three sec. ZnO/CHIT-g-PVAL core-shell nanocomposite could be a promising nanomaterials for a range of enzymic biosensors. PMID:22967553

  3. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes–poly(acrylamide) nanocomposite film modified electrode

    International Nuclear Information System (INIS)

    Highlights: ► A sensitive electrochemical sensor for detecting methyl parathion in environmental samples. ► The preparation, characterization and application of this novel MWCNTs–PAAM nanocomposite. ► The MWCNTs–PAAM/GCE exhibited a high adsorption and strong affinity toward methyl parathion. ► Wide linear range and low detection limit of the proposed method for detecting methyl parathion. - Abstract: A sensitive electrochemical differential pulse voltammetry method was developed for detecting methyl parathion based on multiwalled carbon nanotubes–poly(acrylamide) (MWCNTs–PAAM) nanocomposite film modified glassy carbon electrode. The novel MWCNTs–PAAM nanocomposite, containing high content of amide groups, was synthesized by PAAM polymerizing at the vinyl group functionalized MWCNTs surface using free radical polymerization. The MWCNTs–PAAM nanocomposite was characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis and scanning electron microscopy. Electrochemical behavior and interference studies of MWCNTs–PAAM/GCE for methyl parathion were investigated. The experimental results demonstrated that the MWCNTs–PAAM/GCE exhibited a high adsorption and strong affinity toward methyl parathion compared with some metal ions and nitroaromatic compounds, which exist in environmental samples. The adsorbed amount of methyl parathion on the MWCNTs–PAAM/GCE approached the equilibrium value upon 5 min adsorption time. A linear calibration curve for methyl parathion was obtained in the concentration range from 5.0 × 10−9 to 1.0 × 10−5 mol L−1, with a detection limit of 2.0 × 10−9 mol L−1. The MWCNTs–PAAM/GCE was proved to be a suitable sensing tool for the fast, sensitive and selective determination of methyl parathion in environmental water samples.

  4. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes-poly(acrylamide) nanocomposite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanbo [Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China); College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001 (China); Yu, Dajun; Yu, Yanyan [Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China); Zhou, Tianshu [Department of Environmental Science, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China); Shi, Guoyue, E-mail: gyshi@chem.ecnu.edu.cn [Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer A sensitive electrochemical sensor for detecting methyl parathion in environmental samples. Black-Right-Pointing-Pointer The preparation, characterization and application of this novel MWCNTs-PAAM nanocomposite. Black-Right-Pointing-Pointer The MWCNTs-PAAM/GCE exhibited a high adsorption and strong affinity toward methyl parathion. Black-Right-Pointing-Pointer Wide linear range and low detection limit of the proposed method for detecting methyl parathion. - Abstract: A sensitive electrochemical differential pulse voltammetry method was developed for detecting methyl parathion based on multiwalled carbon nanotubes-poly(acrylamide) (MWCNTs-PAAM) nanocomposite film modified glassy carbon electrode. The novel MWCNTs-PAAM nanocomposite, containing high content of amide groups, was synthesized by PAAM polymerizing at the vinyl group functionalized MWCNTs surface using free radical polymerization. The MWCNTs-PAAM nanocomposite was characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis and scanning electron microscopy. Electrochemical behavior and interference studies of MWCNTs-PAAM/GCE for methyl parathion were investigated. The experimental results demonstrated that the MWCNTs-PAAM/GCE exhibited a high adsorption and strong affinity toward methyl parathion compared with some metal ions and nitroaromatic compounds, which exist in environmental samples. The adsorbed amount of methyl parathion on the MWCNTs-PAAM/GCE approached the equilibrium value upon 5 min adsorption time. A linear calibration curve for methyl parathion was obtained in the concentration range from 5.0 Multiplication-Sign 10{sup -9} to 1.0 Multiplication-Sign 10{sup -5} mol L{sup -1}, with a detection limit of 2.0 Multiplication-Sign 10{sup -9} mol L{sup -1}. The MWCNTs-PAAM/GCE was proved to be a suitable sensing tool for the fast, sensitive and selective determination of methyl parathion in environmental water samples.

  5. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Directory of Open Access Journals (Sweden)

    Lu X

    2012-04-01

    Full Text Available Xiaoli Lu1,2, Yang Xia1, Mei Liu1, Yunzhu Qian3, Xuefeng Zhou4, Ning Gu4, Feimin Zhang1,41Institute of Stomatology, Nanjing Medical University, Nanjing, 2Nantong Stomatological Hospital, Nantong, 3Center of Stomatology, The Second Affiliated Hospital of Suzhou University, Suzhou, 4Suzhou Institute, Southeast University, Suzhou, People's Republic of ChinaAbstract: To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride] and anionic [poly(sodium 4-styrenesulfonate] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05. Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.Keywords: layer-by-layer, diatomite, nanoceramics, zirconia (ZrO2, dental materials

  6. Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy

    Science.gov (United States)

    Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.

    2016-03-01

    In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.

  7. Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres

    International Nuclear Information System (INIS)

    To realize long-term in vitro culture of hepatocytes at a high density while maintaining a high hepatic function for aggregate-based liver tissue engineering, we report here a novel culture method whereby endothelialized rat hepatocyte aggregates were formed using a PDMS microwell device and cultured in a perfusion bioreactor by introducing spacers between aggregates to improve oxygen and nutrient supply. Primary rat hepatocyte aggregates around 100 µm in diameter coated with human umbilical vein endothelial cells were spontaneously and quickly formed after 12 h of incubation, thanks to the continuous supply of oxygen by diffusion through the PDMS honeycomb microwell device. Then, the recovered endothelialized rat hepatocyte aggregates were mixed with biodegradable poly-l-lactic acid fibres in suspension and packed into a PDMS-based bioreactor. Perfusion culture of 7 days was successfully achieved with more than 73.8% cells retained in the bioreactor. As expected, the fibres acted as spacers between aggregates, which was evidenced from the enhanced albumin production and more spherical morphology compared with fibre-free packing. In summary, this study shows the advantages of using PDMS-based microwells to form heterotypic aggregates and also demonstrates the feasibility of spacing tissue elements for improving oxygen and nutrient supply to tissue engineering based on modular assembly. (paper)

  8. Novel carboxymethyl cellulose based nanocomposite membrane: Synthesis, characterization and application in water treatment.

    Science.gov (United States)

    Saber-Samandari, Samaneh; Saber-Samandari, Saeed; Heydaripour, Samira; Abdouss, Majid

    2016-01-15

    Significant efforts have been made to develop composite membranes with high adsorption efficiencies for water treatment. In this study, a carboxymethyl cellulose-graft-poly(acrylic acid) membrane was synthesized in the presence of silica gel, which was used as an inorganic support. Then, different amounts of bentonite were introduced to the carboxymethyl cellulose (CMC) grafted networks as a multifunctional crosslinker, and nanocomposite membranes were prepared. The nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, and scanning electron microscopy, which revealed their compositions and surface morphologies. The novel synthesized nanocomposite membranes were utilized as adsorbents for the removal of crystal violet (CV) and cadmium (Cd (II)) ions, which were selected as representatives of a dye and a heavy metal, respectively. We explored the effects of various parameters, such as time, pH, temperature, initial concentration of adsorbate solution and amount of adsorbent, on membrane adsorption capacity. Furthermore, the kinetic, adsorption isotherm models and thermodynamic were employed for the description of adsorption processes. The maximum adsorption capacities of membranes for CV and Cd (II) ions were found to be 546 and 781 mg g(-1), respectively. The adsorption of adsorbate ions by all types of nanocomposite membranes followed pseudo-second-order kinetic model and was best fit with the Freundlich adsorption isotherm. The results indicated that the synthesized nanocomposite membrane is an efficient adsorbent for the removal of cationic dye and metal contaminants from aqueous solution during water treatment. PMID:26560638

  9. Modeling the electromechanical and strain response of carbon nanotube-based nanocomposites

    Science.gov (United States)

    Lee, Bo Mi; Loh, Kenneth J.; Burton, Andrew R.; Loyola, Bryan R.

    2014-04-01

    Over the last few decades, carbon nanotube (CNT)-based thin films or nanocomposites have been widely investigated as a multifunctional material. The proposed applications extend beyond sensing, ultra-strong coatings, biomedical grafts, and energy harvesting, among others. In particular, thin films characterized by a percolated and random distribution of CNTs within a flexible polymeric matrix have been shown to change its electrical properties in response to applied strains. While a plethora of experimental work has been conducted, modeling their electromechanical response remains challenging. Furthermore, their design and optimization require the derivation of accurate electromechanical models that could predict thin film response to applied strains. Thus, the objective of this study is to implement a percolation-based piezoresistive model that could explain the underlying mechanisms for strain sensing. First, a percolation-based model with randomly distributed, straight CNTs was developed in MATLAB. Second, the number of CNTs within a unit area was varied to explore its influence on percolation probability. Then, to understand how the film's electrical properties respond to strain, two different models were implemented. Both models calculated the geometrical response of the film and CNTs due to applied uniaxial strains. The first model considered the fact that the electrical resistance of individual CNTs changed depending solely on its length between junctions. The other model further explored the idea of incorporating strain sensitivity of individual CNTs. The electromechanical responses and the strain sensitivities of the two models were compared by calculating how their bulk resistance varied due to applied tensile and compressive strains. The numerical model results were then qualitatively compared to experimental results reported in the literature.

  10. A Low-Cost Wheat Bran Medium for Biodegradation of the Benzidine-Based Carcinogenic Dye Trypan Blue Using a Microbial Consortium

    OpenAIRE

    Harshad Lade; Avinash Kadam; Diby Paul; Sanjay Govindwar

    2015-01-01

    Environmental release of benzidine-based dyes is a matter of health concern. Here, a microbial consortium was enriched from textile dye contaminated soils and investigated for biodegradation of the carcinogenic benzidine-based dye Trypan Blue using wheat bran (WB) as growth medium. The PCR-DGGE analysis of enriched microbial consortium revealed the presence of 15 different bacteria. Decolorization studies suggested that the microbial consortium has high metabolic activity towards Trypan Blue ...

  11. An Automatic Detection Method of Nanocomposite Film Element Based on GLCM and Adaboost M1

    Directory of Open Access Journals (Sweden)

    Hai Guo

    2015-01-01

    Full Text Available An automatic detection model adopting pattern recognition technology is proposed in this paper; it can realize the measurement to the element of nanocomposite film. The features of gray level cooccurrence matrix (GLCM can be extracted from different types of surface morphology images of film; after that, the dimension reduction of film can be handled by principal component analysis (PCA. So it is possible to identify the element of film according to the Adaboost M1 algorithm of a strong classifier with ten decision tree classifiers. The experimental result shows that this model is superior to the ones of SVM (support vector machine, NN and BayesNet. The method proposed can be widely applied to the automatic detection of not only nanocomposite film element but also other nanocomposite material elements.

  12. Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose.

    Science.gov (United States)

    Duan, Jianli; Gong, Shanshan; Gao, Yuan; Xie, Xiaolin; Jiang, Lei; Cheng, Qunfeng

    2016-04-27

    Inspired by the nacre, we demonstrated the integrated ternary artificial nacre nanocomposites through synergistic toughening of graphene oxide (GO) and nanofibrillar cellulose (NFC). In addition, the covalent bonding was introduced between adjacent GO nanosheets. The synergistic toughening effects from building blocks of one-dimensional NFC and two-dimensional GO, interface interactions of hydrogen and covalent bonding together result in the integrated mechanical properties including high tensile strength, toughness, and fatigue life as well as high electrical conductivity. These extraordinary properties of the ternary synthetic nacre nanocomposites allow the support for advances in diverse strategic fields including stretchable electronics, transportation, and energy. Such bioinspired strategy also provides a new insight in designing novel multifunctional nanocomposites. PMID:27054460

  13. Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties

    KAUST Repository

    Kelarakis, Antonios

    2010-01-01

    Structure-properties relationships in poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, clay nanocomposites are reported for the first time. Addition of organically modified clays to PVDF-HFP promotes an α to β transformation of the polymer crystals. The degree of transformation depends on the nature of the clay surface modifier and scales with the strength of the interactions between the clay and the polymer. The nanocomposites exhibit significant increases in elongation to failure compared to the neat copolymer. In addition, their dielectric permittivity is higher over a wide temperature range. Their mechanical and dielectric properties scale similar to the amount of the β phase present in the nanocomposites. © 2009 Elsevier Ltd. All rights reserved.

  14. A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite

    International Nuclear Information System (INIS)

    Graphical abstract: Copper/porous silicon nanocomposite powder was prepared by electrodless plating of copper nanoparticles on the etched silicon. The electrocatalytic effect of this nanocomposite on glucose oxidation was investigated. The novel developed sensor displayed a fast amperometric response time of less than 4 s. The sensor could detect glucose as low as 0.2 μmol dm−3. - Abstract: Cu/PSi (copper/porous silicon) nanocomposite powder was prepared by chemical etching of silicon (Si) powder in a HF/HNO3 solution, followed by electrodless plating of copper nanoparticles on the etched PSi powder in a solution containing CuSO4 as a metal precursor. The resulting nanocomposite was characterized by X–ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and FT–IR spectroscopy. The copper nanoparticles in PSi support show the good chemical and electrochemical stability as well as electrocatalytic effect on Glc oxidation, hence the Cu/PSi nanocomposite was used to modify carbon paste electrode (CPE) to fabricate non-enzymatic Glc sensor. The electrocatalytic activity of Cu/PSi nanocomposite was investigated for Glc oxidation in alkaline and neutral solutions using cyclic voltammetry and chronoamperometry. The novel developed sensor displayed a fast amperometric response time of less than 4 s, long time stability, good signal reproducibility and two linear ranges from 1.0 to 190.0 μmol dm−3 and 190 μmol dm−3 to 2.3 mmol dm−3 of Glc with a detection limit of 0.2 μmol dm−3. The sensor exhibited no interference from common interferences such as ascorbic acid, dopamine, uric acid, fructose and citric acid. The good analytical performance, low cost and easy preparation method made this novel electrode material promising for the development of effective Glc sensor

  15. Synthesis, characterization and optical properties of polymer-based ZnS nanocomposites.

    Science.gov (United States)

    Tiwari, A; Khan, S A; Kher, R S; Dhoble, S J; Chandel, A L S

    2016-03-01

    Nanostructured polymer-semiconductor hybrid materials such as ZnS-poly(vinyl alcohol) (ZnS-PVA), ZnS-starch and ZnS-hydroxypropylmethyl cellulose (Zns-HPMC) are synthesized by a facile aqueous route. The obtained nanocomposites are characterized using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV/vis spectroscopy and photoluminescence (PL). XRD studies confirm the zinc blende phase of the nanocomposites and indicate the high purity of the samples. SEM studies indicate small nanoparticles clinging to the surface of a bigger particle. The Energy Dispersive Analysis by X-rays (EDAX) spectrum reveals that the elemental composition of the nanocomposites consists primarily of Zn:S. FTIR studies indicate that the polymer matrix is closely associated with ZnS nanoparticles. The large number of hydroxyl groups in the polymer matrix facilitates the complexation of metal ions. The absorption spectra of the specimens show a blue shift in the absorption edge. The spectrum reveals an absorption edge at 320, 310 and 325 nm, respectively. PL of nanocomposites shows broad peaks in the violet-blue region (420-450 nm). The emission intensity changes with the nature of capping agent. The PL intensity of ZnS-HPMC nanocomposites is found to be highest among the studied nanocomposites. The results clearly indicate that hydroxyl-functionalized HPMC is much more effective at nucleating and stabilizing colloidal ZnS nanoparticles in aqueous suspensions compared with PVA and starch. PMID:26334003

  16. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.

    Science.gov (United States)

    Sharifi, Shahriar; van Kooten, Theo G; Kranenburg, Hendrik-Jan C; Meij, Björn P; Behl, Marc; Lendlein, Andreas; Grijpma, Dirk W

    2013-11-01

    Injuries to the intervertebral disc caused by degeneration or trauma often lead to tearing of the annulus fibrosus (AF) and extrusion of the nucleus pulposus (NP). This can compress nerves and cause lower back pain. In this study, the characteristics of poly(D,L-lactide-co-trimethylene carbonate) networks with shape-memory properties have been evaluated in order to prepare biodegradable AF closure devices that can be implanted minimally invasively. Four different macromers with (D,L-lactide) to trimethylene carbonate (DLLA:TMC) molar ratios of 80:20, 70:30, 60:40 and 40:60 with terminal methacrylate groups and molecular weights of approximately 30 kg mol(-1) were used to prepare the networks by photo-crosslinking. The mechanical properties of the samples and their shape-memory properties were determined at temperatures of 0 °C and 40 °C by tensile tests- and cyclic, thermo-mechanical measurements. At 40 °C all networks showed rubber-like behavior and were flexible with elastic modulus values of 1.7-2.5 MPa, which is in the range of the modulus values of human annulus fibrosus tissue. The shape-memory characteristics of the networks were excellent with values of the shape-fixity and the shape-recovery ratio higher than 98 and 95%, respectively. The switching temperatures were between 10 and 39 °C. In vitro culture and qualitative immunocytochemistry of human annulus fibrosus cells on shape-memory films with DLLA:TMC molar ratios of 60:40 showed very good ability of the networks to support the adhesion and growth of human AF cells. When the polymer network films were coated by adsorption of fibronectin, cell attachment, cell spreading, and extracellular matrix production was further improved. Annulus fibrosus closure devices were prepared from these AF cell-compatible materials by photo-polymerizing the reactive precursors in a mold. Insertion of the multifunctional implant in the disc of a cadaveric canine spine showed that these shape-memory devices could be

  17. HIGH PERFORMANCE SUPERCAPACITOR ELECTRODE BASED ON REDUCED GRAPHENE OXIDE/NI(OH)2 NANOCOMPOSITE

    OpenAIRE

    Adhikary, M. C.; M.H Priyadarsini; Rath, S.K.; Das, C. K.

    2016-01-01

    Herein we have reported an easy and cost effective synthesis of rGO/Ni(OH)2 hybrid nanocomposite for possible application as supercapacitor active material. The hybrid nanocomposite was able to show high capacitance of 189F/g and high cycle life of 95% capacitance retention over 500 cyc...

  18. Silicon, iron and titanium doped calcium phosphate-based glass reinforced biodegradable polyester composites as bone analogous materials

    Science.gov (United States)

    Shah Mohammadi, Maziar

    Bone defects resulting from disease or traumatic injury is a major health care problem worldwide. Tissue engineering offers an alternative approach to repair and regenerate bone through the use of a cell-scaffold construct. The scaffold should be biodegradable, biocompatible, porous with an open pore structure, and should be able to withstand the applied forces. Phosphate-based glasses (PGs) may be used as reinforcing agents in degradable composites since their degradation can be predicted and controlled through their chemistry. This doctoral dissertation describes the development and evaluation of PGs reinforced biodegradable polyesters for intended applications in bone augmentation and regeneration. This research was divided into three main objectives: 1) Investigating the composition dependent properties of novel PG formulations by doping a sodium-free calcium phosphate-based glass with SiO2, Fe2O3, and TiO2. Accordingly, (50P2 O5-40CaO- xSiO2-(10-x)Fe2O3, where x = 10, 5 and 0 mol.%) and (50P2O5-40CaO-xSiO 2-(10-x)TiO2 where x = 10, 7, 5, 3 and 0 mol.%) formulations were developed and characterised. SiO2 incorporation led to increased solubility, ion release, pH reduction, as well as hydrophilicity, surface energy, and surface polarity. In contrast, doping with Fe2O 3 or TiO2 resulted in more durable glasses, and improved cell attachment and viability. It was hypothesised that the presence of SiO 2 in the TiO2-doped formulations could up-regulate the ionic release from the PG leading to higher alkaline phosphatase activity of MC3T3-E1 cells. 2) Incorporating Si, Fe, and Ti doped PGs as fillers, either as particulates (PGPs) or fibres (PGFs), into biodegradable polyesters (polycaprolactone (PCL) and semi-crystalline and amorphous poly(lactic acid) (PLA and PDLLA)) with the aim of developing degradable bone analogous composites. It was found that PG composition and geometry dictated the weight loss, ionic release, and mechanical properties of the composites. It

  19. Mechanical properties and fire retardancy of bidirectional reinforced composite based on biodegradable starch resin and basalt fibres

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available Environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill space and depletion of finite natural resources of fossil raw materials, such as petroleum or natural gas. The substitution of synthetic petroleum-based resins with natural biodegradable resins appears to be one appropriate measure to remedy the above-mentioned situation. This study presents the development of a composite that uses environmentally degradable starch-based resin as matrix and basalt fibre plain fabric as reinforcement. Prepreg sheets were manufactured by means of a modified doctor blade system and a hot power press. The sheets were used to manufacture bidirectional-reinforced specimens with fibre volume contents ranging from 33 to 61%. Specimens were tested for tensile and flexural strength, and exhibited values of up to 373 and 122 MPa, respectively. Through application of silane coupling agents to the reinforcement fibres, the flexural composite properties were subsequently improved by as much as 38%. Finally, in order to enhance the fire retardancy and hence the applicability of the composite, fire retardants were applied to the resin, and their effectiveness was tested by means of flame rating (according to UL 94 and thermogravimetric analysis (TGA, respectively.

  20. Development of green nanocomposites reinforced by cellulose nanofibers extracted from paper sludge

    Science.gov (United States)

    Takagi, Hitoshi; Nakagaito, Antonio N.; Kusaka, Kazuya; Muneta, Yuya

    2015-03-01

    Cellulose nanofibers have been showing much greater potential to enhance the mechanical and physical properties of polymer-based composite materials. The purpose of this study is to extract the cellulose nanofibers from waste bio-resources; such as waste newspaper and paper sludge. The cellulosic raw materials were treated chemically and physically in order to extract individualized cellulose nanofiber. The combination of acid hydrolysis and following mechanical treatment resulted in the extraction of cellulose nanofibers having diameter of about 40 nm. In order to examine the reinforcing effect of the extracted cellulose nanofibers, fully biodegradable green nanocomposites were fabricated by composing polyvinyl alcohol (PVA) resin with the extracted cellulose nanofibers, and then the tensile tests were conducted. The results showed that the enhancement in mechanical properties was successfully obtained in the cellulose nanofiber/PVA green nanocomposites.

  1. Proceedings of biodegradation

    International Nuclear Information System (INIS)

    This book contains the proceedings of Biodegradation. Topics include:biodegradation using the tools of biotechnology, basic science aspects of biodegradation, the physiological characteristics of microorganisms, the use of selective techniques that enhance the process of microbial evolution of biodegradative genes in nature, the genetic characteristics of microorganisms allowing them to biodegrade both natural and synthetic toxic chemicals, the molecular techniques that allow selective assembly of genetic segments form a variety of bacterial strains to a single strain, and methods needed to advance biodegradation research as well as the high-priority chemical problems important to the Department of Defense or to the chemical industry

  2. Research Progress on Iron-based Biodegradable Coronary Stents%可降解铁基心血管支架材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    徐文利; 吴竞尧; 谭丽丽; 杨柯

    2012-01-01

    The history and current status of studies on iron-based coronary stents are summarized, and the advantage of iron-based biodegradable stents and preliminary results of animal tests are presented. The results show that iron-based alloy is a suitable biodegradable coronary stent material, but the low degradation rate is its existing problem. On the basis of the analysis of the novel research progress investigation of biodegradable iron-based alloy, it is presented that though many useful attempts have been made to improve the degradation rate, no instructive result has been achieved. It is suggested that the biodegradation mechanism of iron-based alloy in human body be studied to develop novel methods to improve its degradation rate.%概述了可降解铁基心血管支架材料的研究历史及现状,介绍了可降解铁基心血管支架的优势及其早期动物实验结果.结果表明,铁基合金是一种非常适宜制作可降解心血管支架的材料,但其存在降解速度过慢的问题.在分析可降解铁基合金的最新研究进展基础上,认为在提高铁基合金的降解速度方面虽然目前已经进行了很多有益的尝试,但是尚无极具意义的结果.同时提出,应在对人体环境下铁基合金的降解行为研究基础上发展新的提高铁基合金降解速度的方法.

  3. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  4. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers.

    Science.gov (United States)

    Ou, Wenfeng; Qiu, Handi; Chen, Zhifei; Xu, Kaitian

    2011-04-01

    A series of block poly(ester-urethane)s (abbreviated as PU3/4HB) based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) segments were synthesized by a facile way of melting polymerization using 1,6-hexamethylene diisocyanate (HDI) as the coupling agent and stannous octanoate (Sn(Oct)(2)) as catalyst, with different 4HB contents and segment lengths. The chemical structure, molecular weight and distribution were systematically characterized by (1)H nuclear magnetic resonance spectrum (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The thermal property was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The hydrophilicity was investigated by static contact angle of deionized water and CH(2)I(2). DSC curves revealed that the PU3/4HB polyurethanes have their T(g) from -25.6 °C to -4.3 °C, and crystallinity from 2.5% to 25.3%, being almost amorphous to semi-crystalline. The obtained PU3/4HBs are hydrophobic (water contact angle 77.4°-95.9°), and their surface free energy (SFE) were studied. The morphology of platelets adhered on the polyurethane film observed by scanning electron microscope (SEM) showed that platelets were activated on the PU3/4HB films which would lead to blood coagulation. The lactate dehydrogenase (LDH) assay revealed that the PU3/4HBs displayed higher platelet adhesion property than raw materials and biodegradable polymer polylactic acid (PLA) and would be potential hemostatic materials. Crystallinity degree, hydrophobicity, surface free energy and urethane linkage content play important roles in affecting the LDH activity and hence the platelet adhesion. CCK-8 assay showed that the PU3/4HB is non-toxic and well for cell growth and proliferation of mouse fibroblast L929. It showed that the hydrophobicity is an important factor for cell growth while 3HB content of the PU3/4HB is important for the cell proliferation. Through changing the

  5. Synthesis and optical properties of TiO{sub 2}-based magnetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Scarisoreanu, M.; Morjan, I. [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, PO Box MG-36, Magurele, Bucharest 077125 (Romania); Fleaca, C.-T., E-mail: claudiufleaca@yahoo.com [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, PO Box MG-36, Magurele, Bucharest 077125 (Romania); “Politehnica” University of Bucharest, Physics Department, Independentei 313, Bucharest (Romania); Morjan, I.P.; Niculescu, A.-M.; Dutu, E.; Badoi, A.; Birjega, R.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, PO Box MG-36, Magurele, Bucharest 077125 (Romania); Vasile, E. [“Politehnica” University of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Oxide Materials and Nanomaterials, Gh. Polizu 1-7, Bucharest (Romania); Danciu, V. [“Babes-Boyai” University, Faculty of Chemistry and Chemical Engineering, Electrochemical Research Laboratory, 11 Arany Janos Street, Cluj-Napoca 400028 (Romania); Filoti, G. [National Institute for Materials Physics (NIMP), Atomistilor 105bis, PO Box MG7, R-077125 Magurele, Bucharest (Romania)

    2015-05-01

    Highlights: • Magnetic titania@silica nanoparticles were synthesized by the single step laser pyrolysis. • Fe(CO){sub 5}, TiCl{sub 4}, HMDSO and O{sub 2} from air were the precursors and C{sub 2}H{sub 4} was the sensitizer. • Samples present a typical character of diluted magnetic oxide systems. • Samples have a lower bandgap energy (down to E{sub g} = 1.85 eV) than the P25 Degussa. - Abstract: Magnetic titania nanoparticles covered/embedded in SiO{sub 2} shell/matrix were simultaneously manufactured by the single-step laser pyrolysis. The present study is a continuation of our previous investigations on the TiO{sub 2}/Fe and TiO{sub 2}/HMDSO (hexamethyldisiloxane) derived-systems. The aim of this work is to study the synthesis by IR (Infrared) laser pyrolysis of magnetic TiO{sub 2} based nanocomposites which implies many concurrent processes induced in the gas phase by the laser radiation. The dependence between characteristic properties and the synthesis parameters was determined by many analytical and complementary methods: XRD (X-ray diffraction) structural analysis, UV–vis (ultraviolet–visible) and EDAX (energy-dispersive X-ray) spectroscopy, TEM and HRTEM (transmission electron microscopy at low and high resolution) analysis and magnetic measurements. The results of analysis indicate the presence of disordered silica, Fe, α-Fe{sub 2}O{sub 3} and mixtures of anatase and rutile phases with mean crystallite dimensions (in the 14–34 nm range) with typical character of diluted magnetic oxide systems and a lower bandgap energy (E{sub g} = 1.85 eV) as compared with TiO{sub 2} P25 Degussa sample.

  6. Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field

    International Nuclear Information System (INIS)

    Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelastically coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form

  7. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    Science.gov (United States)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  8. Synthesis and optical properties of TiO2-based magnetic nanocomposites

    International Nuclear Information System (INIS)

    Highlights: • Magnetic titania@silica nanoparticles were synthesized by the single step laser pyrolysis. • Fe(CO)5, TiCl4, HMDSO and O2 from air were the precursors and C2H4 was the sensitizer. • Samples present a typical character of diluted magnetic oxide systems. • Samples have a lower bandgap energy (down to Eg = 1.85 eV) than the P25 Degussa. - Abstract: Magnetic titania nanoparticles covered/embedded in SiO2 shell/matrix were simultaneously manufactured by the single-step laser pyrolysis. The present study is a continuation of our previous investigations on the TiO2/Fe and TiO2/HMDSO (hexamethyldisiloxane) derived-systems. The aim of this work is to study the synthesis by IR (Infrared) laser pyrolysis of magnetic TiO2 based nanocomposites which implies many concurrent processes induced in the gas phase by the laser radiation. The dependence between characteristic properties and the synthesis parameters was determined by many analytical and complementary methods: XRD (X-ray diffraction) structural analysis, UV–vis (ultraviolet–visible) and EDAX (energy-dispersive X-ray) spectroscopy, TEM and HRTEM (transmission electron microscopy at low and high resolution) analysis and magnetic measurements. The results of analysis indicate the presence of disordered silica, Fe, α-Fe2O3 and mixtures of anatase and rutile phases with mean crystallite dimensions (in the 14–34 nm range) with typical character of diluted magnetic oxide systems and a lower bandgap energy (Eg = 1.85 eV) as compared with TiO2 P25 Degussa sample

  9. Local buckling analysis of biological nanocomposites based on a beam-spring model

    Directory of Open Access Journals (Sweden)

    Zhiling Bai

    2015-07-01

    Full Text Available Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existing studies. We show that there is a transition of the buckling behaviors from a local buckling mode to a global one when we continuously increase the aspect ratio of mineral, leading to an increase of the buckling strength which levels off to the strength of the composites reinforced with continuous crystals. We find that the contact condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio, but the effect diminishes when the aspect ratio is large. Our analyses also show that the staggered arrangement of mineral plays a central role in the stability of the biological nanocomposites.

  10. Mechanical and thermomechanical properties of polycarbonate-based polyurethane-silica nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Poreba, Rafal; Špírková, Milena; Hrdlička, Z.

    2011-01-01

    Roč. 5, č. 3 (2011), s. 155-159. ISSN 1820-6131 R&D Projects: GA ČR GAP108/10/0195 Institutional research plan: CEZ:AV0Z40500505 Keywords : fumed silica * polycarbonate diol * nanocomposites Subject RIV: CD - Macromolecular Chemistry http://www.tf.uns.ac.rs/publikacije/PAC/pdf/PAC%2013%2004.pdf

  11. Quantum dot sensitized solar cell based on poly (3-hexyl thiophene)/CdSe nanocomposites

    Science.gov (United States)

    Sehgal, Preeti; Narula, Anudeep kumar

    2015-10-01

    The optoelectronic properties of P3HT-CdSe nanocomposites prepared by insitu chemical oxidative polymerization were studied. CdSe QDs were synthesized by hot injection method using tri octyl phosphine oxide (TOPO) as capping ligand whereas the P3HT polymer was prepared by chemical oxidative polymerization. FTIR studies confirmed the regioregularity of the P3HT and revealed the chemical interaction of P3HT and CdSe in nanocomposite. Absorption studies showed blue shift for the nanocomposites as compare to pristine P3HT, the electron transfer from conducting polymer to the CdSe was detected by the measurements of quenching of photoluminescence from conducting polymer after the addition of semiconductor nano crystals which confirmed that an optimum amount of nanoparticles provide networking in hybrid composites. The optimal result for device prepared by P3HT-CdSe nanocomposites was open circuit voltage (Voc) 0.5, short circuit current density (Jsc) 0.66, Fill factor (FF) 0.6855 and efficiency (η) 0.22%.

  12. Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. II. Mechanical, thermal, and gas transport properties

    Czech Academy of Sciences Publication Activity Database

    Poreba, Rafal; Špírková, Milena; Brožová, Libuše; Lazić, N.; Pavličevič, Jelena; Strachota, Adam

    2013-01-01

    Roč. 127, č. 1 (2013), s. 329-341. ISSN 0021-8995 R&D Projects: GA ČR GAP108/10/0195 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyurethane elastomer * nanocomposite * polycarbonate diol Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.640, year: 2013

  13. Effects of ultrasound time on the properties of polyvinyl alcohol-based nanocomposite films

    Directory of Open Access Journals (Sweden)

    Akbar Jokar

    2015-09-01

    Full Text Available Background and Objectives: Preparation and evaluation of nanocomposite films have become prevalent in recent years. One of the most important methods for dispersing nanoparticles in polymers is the use of ultrasound radiation. Polyvinyl alcohol-montmorillonite (PVA-MMT nanocomposite films were prepared via solvent casting method. Materials and Methods: The effects of different ultrasound times (0, 10, 20, 30, and 40 min on the properties of nanocomposite films were evaluated in a completely randomized design (CRD with five treatments and three replicates. The films were characterized by mechanical properties, opacity, water vapor permeability (WVP, and color. Fourier transform infrared (FTIR and X-ray diffraction (XRD were applied to investigate and prove the effects of ultrasound time. Results: Results revealed that the ultrasound time significantly affected the characteristics of the films. XRD and FTIR results were in accordance with the effects of sonication time. The changing trends of PVA film properties due to increasing the sonication times were not similar. Sonication time did not have any significant effect on some traits like a*, WVP, L*, and yellowness index (YI, while it affected b*, tensile strength, and opacity significantly. Conclusions: Depending on the target of using nanocomposite films, appropriate time of sonication should be used.

  14. Tin-based "super-POSS" building blocks in epoxy nanocomposites with highly improved oxidation resistance

    Czech Academy of Sciences Publication Activity Database

    Strachota, Adam; Rodzen, Krzysztof; Ribot, F.; Perchacz, Magdalena; Trchová, Miroslava; Steinhart, Miloš; Starovoytova, Larisa; Šlouf, Miroslav; Strachota, Beata

    2014-01-01

    Roč. 55, č. 16 (2014), s. 3498-3515. ISSN 0032-3861 R&D Projects: GA ČR GAP108/11/2151 Institutional support: RVO:61389013 Keywords : nanocomposite * POSS * stannoxane Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.562, year: 2014

  15. Bioinspired nanocomposite structures for bone tissue regeneration based on collagen, gelatin, polyamide and hydroxyapatite

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Balík, Karel; Šupová, Monika; Hrušková, Daniela; Sucharda, Zbyněk; Černý, Martin; Sedláček, R.

    2009-01-01

    Roč. 12, 89-91 (2009), s. 13-15. ISSN 1429-7248 R&D Projects: GA ČR GA106/09/1000 Institutional research plan: CEZ:AV0Z30460519 Keywords : nanocomposite * bone regeneration * collagen Subject RIV: JI - Composite Materials

  16. Organic-inorganic nanocomposite based on epoxy resin: nonaqueous sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Matějka, Libor

    Madrid : ICMM-CSIC, 2013. s. 153. [International Sol- Gel Conference /17./ - Sol- Gel 2013. 25.08.2013-30.08.2013, Madrid] R&D Projects: GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : epoxy- silica nanocomposite * borontrifluoridemonoethylamine Subject RIV: CD - Macromolecular Chemistry

  17. Processing and properties of Cu based micro- and nano-composites

    Indian Academy of Sciences (India)

    S Panda; K Dash; B C Ray

    2014-04-01

    Nano-composites of 1, 3, 5 and 7 vol% Al2O3 (average size < 50 nm) and microcomposites having compositions 5, 10, 15, 20 vol% of Al2O3 (average size ∼ 10 m) reinforced in copper matrix were fabricated by powder metallurgy route. All the specimens were sintered at different sintering temperatures (850, 900 and 1000°C) to study the effect of temperature on the process and progress of sinterability of the reinforced micro- and nanoparticles in the matrix. These micro- and nano-composites were characterized using X-ray diffraction and scanning electron microscopy followed by density, microhardness and wear measurements. The compression and flexural tests were also carried out in order to investigate the mechanical behaviour of the micro- and nano-composites for a fixed optimum sintering temperature. Fractography of the 3-point bend specimens was performed to investigate the fracture behaviour of the micro- and nano-composites. The flexural test results showed that the ultimate flexural strength decreases and flexural modulus increases with the increase in reinforcement content.

  18. Composition - properties relationship of nanostructured polycarbonate-based polyurethane/nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Poreba, Rafal; Špírková, Milena; Pavličevič, Jelena; Lazić, N.

    Belgrade: Materials Research Society of Serbia , 2011 - (Uskoković, D.). s. 39 [Annual Conference /13./ YUCOMAT 2011. 05.09.2011-09.09.2011, Herceg Novi] R&D Projects: GA ČR GAP108/10/0195 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyurethane elastomers * nanocomposites * polycarbonate diol Subject RIV: CD - Macromolecular Chemistry

  19. Low Energy TEM Characterizations of Ordered Mesoporous Silica-Based Nanocomposite Materials for Catalytic Applications

    Czech Academy of Sciences Publication Activity Database

    Al-Sharab, J. F.; Mikmeková, Eliška; Das, S.; Goswami, A.; El-Sheikh, S. M.; Ismail, A. A.; Hesari, M.; Maran, F.; Asefa, T.

    2014-01-01

    Roč. 20, S3 (2014), s. 1900-1901. ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : low energy electron mkicroscopy * nanocomposites * catalyses Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.877, year: 2014

  20. Thermo-mechanical properties of polystyrene-based shape memory nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Fu, Y.Q.; Ahmad, M.; Luo, J.K.; Huang, W.M.; Kraft, A.; Reuben, R.; Pei, Y.T.; Chen, Zhenguo; Hosson, J.Th.M. De

    2010-01-01

    Shape memory nanocomposites were fabricated using chemically cross-linked polystyrene (PS) copolymer as a matrix and different nanofillers (including alumina, silica and clay) as the reinforcing agents. Their thermo-mechanical properties and shape memory effects were characterized. Experimental resu