WorldWideScience

Sample records for biodegradable dissolved organic

  1. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds

    Science.gov (United States)

    Jason B. Fellman; Eran Hood; David V. D' Amore; Richard T. Edwards; Dan White

    2009-01-01

    The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation-emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in...

  2. Effect of photodegradation and biodegradation on the concentration and composition of dissolved organic matter in diverse waterbodies

    Science.gov (United States)

    Manalilkada Sasidharan, S.; Dash, P.; Singh, S.; Lu, Y.

    2017-12-01

    The objective of this research was to quantify the effects of photodegradation and biodegradation on the dissolved organic matter (DOM) concentration and composition in five distinct waterbodies with diverse types of watershed land use and land cover in the southeastern United States. The water bodies included an agricultural pond, a lake in a predominantly forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared from these water bodies by dispensing filtered water samples to unfiltered samples in 10:1 ratio. The first set was kept in the sunlight during the day (12 hours), and colored dissolved organic matter (CDOM) absorption and fluorescence were measured periodically over a 30-day period for examining the effects of combined photo- and biodegradation. The second set of samples was kept in the dark for examining the effects of biodegradation alone, and CDOM absorption and fluorescence were measured at the same time as the sunlight-exposed samples. Subsequently, spectrometric results in tandem with multivariate statistical analysis were used to interpret the lability vs. composition of DOM. Parallel factor analysis (PARAFAC) revealed the presence of four DOM components (C1-C4). C1 and C4 were microbial tryptophan-like, labile lighter components, while C2 and C3 were terrestrial humic like or fulvic acid type, larger aromatic refractory components. The principal component analysis (PCA) also revealed two distinct groups of DOM - C1 and C4 vs. C2 and C3. The negative PC1 loadings of C2, C3, HIX, a254 and SUVA indicated humic-like or fulvic-like structurally complex refractory aromatic DOM originated from higher plants in forested areas. C1, C4, SR, FI and BI had positive PC1 loadings, which indicated structurally simpler labile DOM were derived from agricultural areas or microbial activity. There was a decrease in dissolved organic carbon (DOC) due to combined photo- and biodegradation, and transformation of components C2

  3. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations

    KAUST Repository

    Li, Dong; Alidina, Mazahirali; Ouf, Mohamed; Sharp, Jonathan O.; Saikaly, Pascal; Drewes, Jorg

    2013-01-01

    supplemented with either moderate (1.1 mg/L) or low (0.5 mg/L) biodegradable dissolved organic carbon (BDOC) for a period of six months during which time, spatial (1 cm, 30 cm, 60 cm, 90 cm, and 120 cm) and temporal (monthly) analyses of sediment

  4. Dissolved organic matter removal during coal slag additive soil aquifer treatment for secondary effluent recharging: Contribution of aerobic biodegradation.

    Science.gov (United States)

    Wei, Liangliang; Li, Siliang; Noguera, Daniel R; Qin, Kena; Jiang, Junqiu; Zhao, Qingliang; Kong, Xiangjuan; Cui, Fuyi

    2015-06-01

    Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Anaerobic biodegradation of dissolved ethanol in a pilot-scale sand aquifer: Variability in plume (redox) biogeochemistry

    Science.gov (United States)

    McLeod, Heather C.; Roy, James W.; Slater, Gregory F.; Smith, James E.

    2018-01-01

    The use of ethanol in alternative fuels has led to contamination of groundwater with high concentrations of this easily biodegradable organic compound. Previous laboratory and field studies have shown vigorous biodegradation of ethanol plumes, with prevalence of reducing conditions and methanogenesis. The objective of this study was to further our understanding of the dynamic biogeochemistry processes, especially dissolved gas production, that may occur in developing and aging plume cores at sites with ethanol or other organic contamination of groundwater. The experiment performed involved highly-detailed spatial and temporal monitoring of ethanol biodegradation in a 2-dimensional (175 cm high × 525 cm long) sand aquifer tank for 330 days, with a vertical shift in plume position and increased nutrient inputs occurring at Day 100. Rapid onset of fermentation, denitrification, sulphate-reduction and iron(III)-reduction occurred following dissolved ethanol addition, with the eventual widespread development of methanogenesis. The detailed observations also demonstrate a redox zonation that supports the plume fringe concept, secondary reactions resulting from a changing/moving plume, and time lags for the various biodegradation processes. Additional highlights include: i) the highest dissolved H2 concentrations yet reported for groundwater, possibly linked to vigorous fermentation in the absence of common terminal electron-acceptors (i.e., dissolved oxygen, nitrate, and sulphate, and iron(III)-minerals) and methanogenesis; ii) evidence of phosphorus nutrient limitation, which stalled ethanol biodegradation and perhaps delayed the onset of methanogenesis; and iii) the occurrence of dissimilatory nitrate reduction to ammonium, which has not been reported for ethanol biodegradation to date.

  6. Biodegradability of terrigenous dissolved organic matter in estuaries draining glacial and wetland-dominated watersheds

    Science.gov (United States)

    Fellman, J. B.; Hood, E.; Spencer, R. G.; Edwards, R. T.; D'Amore, D. V.; Hernes, P. J.

    2008-12-01

    The processing of terrigenous dissolved organic matter (DOM) by estuarine food webs mediates its transfer from riverine to near-shore coastal environments. We used PARAFAC modeling of fluorescence excitation- emission matrices (EEMs) and biodegradable dissolved organic carbon (BDOC) incubations to investigate changes in the chemical quality and biodegradability of terrigenous DOM along a salinity gradient in three estuaries in coastal southeastern Alaska: 1) a watershed with high glacial coverage, 2) a forested watershed with low glacial coverage and 3) a watershed with high wetland coverage. Biodegradable DOC incubations were conducted for each site by inoculating filtered river water with whole water collected from four different salinities (0, 2, 10 and 25 ppt) and incubating the water samples for 2, 7, 14 and 28 days. The percent BDOC ranged from 33-54% for the 28-day incubations at the three sites and greater than half of the total BDOC was consumed during the first 2 days of the incubations. The percent BDOC was also greater in the estuary draining the highly glaciated watershed for all four salinities. Moreover, percent BDOC increased with increasing salinity in all three estuaries, suggesting greater bacterial utilization of terrigenous DOC under estuarine as compared to riverine conditions. There are several potential explanations for the observed patterns in BDOC: 1) there is a shift in bacterial community composition along the salinity gradient we sampled and 2) marine bacteria contain a more diverse set of hydrolytic isoenzymes than riverine bacteria, allowing them to more effectively metabolize terrigenous DOM. Application of a conservative mixing model combined with PARAFAC modeling of fluorescence EEMs showed that fluorescent DOM behaved conservatively in all three estuaries, as indicated by the near-linear decrease in the contribution of humic-like fluorescence with increasing salinity. PARAFAC modeling further showed that the relative contribution

  7. Anthropogenic impacts on the optical characteristics and biodegradability of dissolved and particulate organic matter in the Han River watershed, South Korea

    Science.gov (United States)

    Shirina Begum, Most; Jin, Hyojin; Yoon, Tae Kyung; Park, Ji-Hyung

    2016-04-01

    To understand how anthropogenic perturbations such as dams and pollution modify the chemical characteristics and biological transformations of riverine organic matter during transit through urbanized watersheds, we compared the optical characteristics and biodegradability of dissolved organic matter (DOM) and particulate organic matter (POM) along different reaches and urban tributary streams of the Han River watershed during short-term incubations. Laboratory incubations were conducted for 5-7 days at 20-25 oC with filtered or unfiltered water samples collected from up-, mid-, and downstream reaches with different levels of anthropogenic perturbations and three urban streams along the downstream reach that receive effluents from waste water treatment facilities in the metropolitan Seoul. Optical parameters such as ultraviolet absorbance at 254 nm, absorption coefficients at 254 nm and 350 nm, fluorescence index, humic-like fluorescence, microbial humic-like fluorescence, and protein-like fluorescence, and spectral slope at 350-400 nm were significantly correlated with increasing concentration of biodegradable dissolved organic carbon (BDOC) in filtered and unfiltered sample along the Han River up-, mid-, down-, and urban streams. The concentrations of BDOC in the urban streams were 6-12 times higher than in the filtered and unfiltered main-stem river samples, with significantly higher values in presence of POM in the unfiltered samples than in the filtered samples. In a separate 5-day incubation experiment with the unfiltered water sample from a downstream location of the Han River and its urban tributary water in isolation or mixed , the rate of concurrent biodegradation of both DOM and POM, as measured by the cumulative rate of CO2 production, was higher in the mixture than the average rate of the separately incubated samples, indicating the priming effect of mixed organic materials on the biodegradation of allochthonous organic materials from the other site

  8. Biodegradability of dissolved organic carbon in permafrost soils and waterways: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-06-01

    As Arctic regions warm, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to thaw and decomposition. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the reactivity and subsequent fate of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism and its biodegradability will determine the extent and rate of carbon release from aquatic ecosystems to the atmosphere. Knowledge of the mechanistic controls on DOC biodegradability is however currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences used as common practice in the literature. We further synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-Arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher BDOC losses in both soil and aquatic systems. We hypothesize that the unique composition of permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively shorter flow path lengths and transport times, resulted in higher overall terrestrial and freshwater BDOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC losses in large streams and rivers, but no apparent change in smaller streams and soil leachates. We attribute this seasonal change to a combination of factors including

  9. Dissolved organic carbon biodegradability from thawing permafrost stimulated by sunlight rather than inorganic nitrogen

    Science.gov (United States)

    Liu, F.; Chen, L.; Zhang, B.; Wang, G.; Qin, S.; Yang, Y.

    2017-12-01

    Permafrost thaw could result in a large portion of frozen carbon being laterally transferred to aquatic ecosystems as dissolved organic carbon (DOC). During this delivery process, the size of biodegradable DOC (BDOC) determines the proportion of DOC mineralized by microorganisms and associated carbon loss to the atmosphere, which may further trigger positive carbon-climate feedback. Thermokarst is an abrupt permafrost thaw process that can enhance DOC export and also impact DOC processing through increased inorganic nitrogen (N) and sunlight exposure. However, it remains unclear how thermokarst-impacted BDOC responds to inorganic N addition and ultraviolet (UV) light irradiation. Here we explored the responses of DOC concentration, composition and its biodegradability to inorganic N and UV light in a typical thermokarst on the Tibetan Plateau, by combining field observation and laboratory incubation with spectra analyses (UV-visible absorption and three-dimensional fluorescence spectra) and parallel factor analyses. Our results showed that BDOC in thermokarst feature outflows was significantly higher than in reference water. Furthermore, inorganic N addition had no influence on thermokarst-impacted BDOC, whereas exposure to UV light significantly increased BDOC by as much as 2.3 times higher than the dark-control. Moreover, N addition and UV irradiation did not generate additive effects on BDOC. These results imply that sunlight rather than inorganic N can increase thermokarst-derived BDOC, potentially strengthening the positive permafrost carbon-climate feedback.

  10. Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation.

    Science.gov (United States)

    Wadhawan, Tanush; Simsek, Halis; Kasi, Murthy; Knutson, Kristofer; Prüβ, Birgit; McEvoy, John; Khan, Eakalak

    2014-05-01

    Biodegradability of dissolved organic nitrogen (DON) has been studied in wastewater, freshwater and marine water but not in drinking water. Presence of biodegradable DON (BDON) in water prior to and after chlorination may promote formation of nitrogenous disinfectant by-products and growth of microorganisms in the distribution system. In this study, an existing bioassay to determine BDON in wastewater was adapted and optimized, and its application was tested on samples from four treatment stages of a water treatment plant including ozonation and biologically active filtration. The optimized bioassay was able to detect BDON in 50 μg L(-1) as N of glycine and glutamic solutions. BDON in raw (144-275 μg L(-1) as N), softened (59-226 μg L(-1) as N), ozonated (190-254 μg L(-1) as N), and biologically filtered (17-103 μg L(-1) as N) water samples varied over a sampling period of 2 years. The plant on average removed 30% of DON and 68% of BDON. Ozonation played a major role in increasing the amount of BDON (31%) and biologically active filtration removed 71% of BDON in ozonated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Bioavailability of dissolved organic nitrogen (DON) in wastewaters from animal feedlots and storage lagoons

    Science.gov (United States)

    Dissolved organic nitrogen (DON) transport from animal agriculture to surface waters can lead to eutrophication and dissolved oxygen depletion. Biodegradable DON (BDON) is a portion of DON that is mineralized by bacteria while bioavailable DON (ABDON) is utilized by bacteria and/or algae. This stu...

  12. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Science.gov (United States)

    Hong, Xiaoyun; Wei, Liangming; Wu, Fei; Wu, Zaozhan; Chen, Lizhu; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. PMID:24039404

  13. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-12-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later

  14. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Directory of Open Access Journals (Sweden)

    Hong X

    2013-09-01

    Full Text Available Xiaoyun Hong,1,2,* Liangming Wei,3,* Fei Wu,2,* Zaozhan Wu,2 Lizhu Chen,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, Shanghai, People's Republic of China; 2School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China; 3Research Institute of Micro/Nano Science and Technology, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. Keywords: microneedle, dissolving, biodegradable, sustained release

  15. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  16. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and

  17. Restoration and Purification of Dissolved Organic Nitrogen by Bacteria and Phytoremediation in Shallow Eutrophic Lakes Sediments

    Science.gov (United States)

    Li, Xin; Yue, Yi

    2018-06-01

    Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.

  18. Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds.

    Science.gov (United States)

    Khan, Eakalak; Wirojanagud, Wanpen; Sermsai, Nawarat

    2009-01-30

    The mineralization and biodegradability increase and their combination of two traditional and two relatively new organic contaminants by Fenton reagents with three different types of iron, Fe(2+), Fe(3+), and Fe(0) were investigated. The traditional contaminants examined were trichloroethene (TCE) and 2,4-dichlorophenol (2,4-DCP) while 1,4-dioxane (1,4-D) and 1,2,3-trichloropropane (TCP) were studied for the relatively new contaminants. The mineralization and biodegradability were represented by dissolved organic carbon (DOC) reduction and the ratio of biodegradable dissolved organic carbon and DOC, respectively. For all four contaminants, Fenton reagent using Fe(2+) was more effective in the DOC reduction than Fenton reagents using Fe(3+) and Fe(0) in most cases. The types of Fe that provided maximum biodegradability increase were not the same for all four compounds, Fe(3+) for TCE, Fe(0) for 2,4-DCP, Fe(2+) for 1,4-D, and Fe(3+) for TCP. When the combination of DOC elimination and biodegradability increase (least refractory fraction) was considered, Fe(2+) was the best choice except for 2,4-DCP which was susceptible to Fe(0) catalyzed Fenton reagent the most. The least refractory fractions remaining after 120 min of reaction were 20-25% for TCE, 2,4-DCP, and TCP and 30-40% for 1,4-D. The iron type in Fenton reaction also affected the type of mineralization kinetics of TCE, 2,4-DCP, and TCP as well as the types of degradation by-products of these contaminants. Some of the by-products found, such as isopropanol and propionic aldehyde, which were produced from Fe(0) catalyzed Fenton degradation of TCP, have not been previously reported.

  19. Biodegradability of organic matter associated with sewer sediments during first flush.

    Science.gov (United States)

    Sakrabani, Ruben; Vollertsen, Jes; Ashley, Richard M; Hvitved-Jacobsen, Thorkild

    2009-04-01

    The high pollution load in wastewater at the beginning of a rain event is commonly known to originate from the erosion of sewer sediments due to the increased flow rate under storm weather conditions. It is essential to characterize the biodegradability of organic matter during a storm event in order to quantify the effect it can have further downstream to the receiving water via discharges from Combined Sewer Overflow (CSO). The approach is to characterize the pollutograph during first flush. The pollutograph shows the variation in COD and TSS during a first flush event. These parameters measure the quantity of organic matter present. However these parameters do not indicate detailed information on the biodegradability of the organic matter. Such detailed knowledge can be obtained by dividing the total COD into fractions with different microbial properties. To do so oxygen uptake rate (OUR) measurements on batches of wastewater have shown itself to be a versatile technique. Together with a conceptual understanding of the microbial transformation taking place, OUR measurements lead to the desired fractionation of the COD. OUR results indicated that the highest biodegradability is associated with the initial part of a storm event. The information on physical and biological processes in the sewer can be used to better manage sediment in sewers which can otherwise result in depletion of dissolved oxygen in receiving waters via discharges from CSOs.

  20. Enhancement of in situ biodegradation of organic compounds in groundwater by targeted pump and treat intervention

    International Nuclear Information System (INIS)

    Thornton, S.F.; Baker, K.M.; Bottrell, S.H.; Rolfe, S.A.; McNamee, P.; Forrest, F.; Duffield, P.; Wilson, R.D.; Fairburn, A.W.; Cieslak, L.A.

    2014-01-01

    Highlights: • Pumping reduces contaminant toxicity below levels which stimulate in situ biodegradation. • Pumping increases the mixing of background oxidants into the plume for anaerobic respiration. • Bacterial sulphate reduction is very sensitive to contaminant concentrations. • Stable isotope analysis confirms the contribution of different biodegradation processes. • Targeted pump and treatment can enhance the natural attenuation of complex plumes. - Abstract: This study demonstrates the value of targeted pump and treatment (PAT) to enhance the in situ biodegradation of organic contaminants in groundwater for improved restoration. The approach is illustrated for a plume of phenolic compounds in a sandstone aquifer, where PAT is used for hydraulic containment and removal of dissolved phase contaminants from specific depth intervals. Time-series analysis of the plume hydrochemistry and stable isotope composition of dissolved species (δ 34 S-SO 4 , δ 13 C-CH 4 , δ 13 C-TDIC (TDIC = Total Dissolved Inorganic Carbon)) in groundwater samples from high-resolution multilevel samplers were used to deduce changes in the relative significance of biodegradation processes and microbial activity in the plume, induced by the PAT system over 3 years. The PAT system has reduced the maximum contaminant concentrations (up to 6800 mg L −1 total phenols) in the plume by 50% to ∼70% at different locations. This intervention has (i) stimulated in situ biodegradation in general, with an approximate doubling of contaminant turnover based on TDIC concentration, which has increased from <200 mg L −1 to >350 mg L −1 , (ii) enhanced the activity of SO 4 -reducing microorganisms (marked by a declining SO 4 concentration with corresponding increase in SO 4 -δ 34 S to values >7–14‰ V-CDT relative to background values of 1.9–6.5‰ V-CDT ), and (iii) where the TDIC increase is greatest, has changed TDIC-δ 13 C from values of −10 to −15‰ V-PDB to ∼−20‰ V

  1. Sources and transformations of dissolved lignin phenols and chromophoric dissolved organic matter in Otsuchi Bay, Japan

    Directory of Open Access Journals (Sweden)

    Chia-Jung eLu

    2016-06-01

    Full Text Available Dissolved lignin phenols and optical properties of dissolved organic matter (DOM were measured to investigate the sources and transformations of terrigenous DOM (tDOM in Otsuchi Bay, Japan. Three rivers discharge into the bay, and relatively high values of syringyl:vanillyl phenols (0.73 ± 0.07 and cinnamyl:vanillyl phenols (0.33 ± 0.10 indicated large contributions of non-woody angiosperm tissues to lignin and tDOM. The physical mixing of river and seawater played an important role in controlling the concentrations and distributions of lignin phenols and chromophoric DOM (CDOM optical properties in the bay. Lignin phenol concentrations and the CDOM absorption coefficient at 350 nm, a(350, were strongly correlated in river and bay waters. Measurements of lignin phenols and CDOM in bay waters indicated a variety of photochemical and biological transformations of tDOM, including oxidation reactions, photobleaching and a decrease in molecular weight. Photodegradation and biodegradation of lignin and CDOM were investigated in decomposition experiments with river water and native microbial assemblages exposed to natural sunlight or kept in the dark. There was a rapid and substantial removal of lignin phenols and CDOM during the first few days in the light treatment, indicating transformations of tDOM and CDOM can occur soon after discharge of buoyant river water into the bay. The removal of lignin phenols was slightly greater in the dark (34% than in the light (30% during the remaining 59 days of the incubation. Comparison of the light and dark treatments indicated biodegradation was responsible for 67% of total lignin phenol removal during the 62-day incubation exposed to natural sunlight, indicating biodegradation is a dominant removal process in Otsuchi Bay.

  2. The effect of feed water dissolved organic carbon concentration and composition on organic micropollutant removal and microbial diversity in soil columns simulating river bank filtration.

    Science.gov (United States)

    Bertelkamp, C; van der Hoek, J P; Schoutteten, K; Hulpiau, L; Vanhaecke, L; Vanden Bussche, J; Cabo, A J; Callewaert, C; Boon, N; Löwenberg, J; Singhal, N; Verliefde, A R D

    2016-02-01

    This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska

    Science.gov (United States)

    Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.

    2018-06-01

    Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest

  4. Biodegradation behavior of natural organic matter (NOM) in a biological aerated filter (BAF) as a pretreatment for ultrafiltration (UF) of river water

    KAUST Repository

    Huang, Guocheng

    2011-04-15

    In this study, biodegradation of natural organic matter (NOM) in a biological aerated filter (BAF) as pretreatment of UF treating river water was investigated. Photometric measurement, three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy and liquid chromatography with online organic carbon detector (LC-OCD) were used to investigate the fate of NOM fractions in the BAF+UF process. Results showed that the BAF process could effectively remove particles and parts of dissolved organic matter, which led to a lower NOM loading in the UF system, but different NOM fractions showed different biodegradation potentials. Further biodegradation batch experiments confirmed this observation and identified that polysaccharides and proteins (quantified using photometric methods) contained a large proportion of readily biodegradable matter while humic substances were mainly composed of inert organic substances. According to EEM measurements, it is evident that protein-like substances were more readily eliminated by microorganisms than humic-like substances. LC-OCD data also supported the phenomena that the polysaccharides and large-size proteins were more degradable than humic substances. © 2011 Springer-Verlag.

  5. Effect of aluminium on dissolved organic matter mineralization in an allophanic and kaolinitic temperate rain forest soil

    Science.gov (United States)

    Merino, Carolina; Matus, Francisco; Fontaine, Sebastien

    2016-04-01

    Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.

  6. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.

    Science.gov (United States)

    Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

    2014-01-01

    The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.

  7. Grey water biodegradability.

    Science.gov (United States)

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  8. Bioavailability and biodegradation kinetics of organics in soil

    International Nuclear Information System (INIS)

    Tabak, H.H.; Govind, R.; Gao, Chao; Kim, In-soo; Lai, Lei

    1992-01-01

    As EPA begins to remediate Superfund sites using permanent treatment technologies, such as bioremediation, a fundamental understanding of the kinetics and the factors that control the rate of bioremediation will be required. Biological treatment technologies hold considerable promise for safe, economical, on-site treatment of toxic wastes. A variety of biological treatment systems designed to degrade or detoxify environmental contaminants are currently being developed and marketed. Knowledge of the kinetics of biodegradation is essential to the evaluation of the persistence of most organic pollutants in soil. Furthermore, measurement of biodegradation kinetics can provide useful insights into the favorable range of the important environmental parameters for improvement of the microbiological activity and consequently the enhancement of contaminant biodegradation. A major effort is currently underway to clean up aquifers and soils that are contaminated by organic chemicals, which has generated increased interest in the development of in situ bioremediation technologies. Although considerable data exists for rates of biodegradation in aquatic environments, there is little information on biodegradation kinetics in soil matrices, where irreversible binding to the soil phase may limit the chemicals bioavailability and ultimate degradation. Knowledge on biodegradation kinetics in soil environments can facilitate decisions on the efficacy of in situ bioremediation. 6 refs., 3 figs., 2 tabs

  9. Fate of dissolved organic nitrogen in two stage trickling filter process.

    Science.gov (United States)

    Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak

    2012-10-15

    Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: Assessment of retention efficiency.

    Science.gov (United States)

    Mermillod-Blondin, Florian; Simon, Laurent; Maazouzi, Chafik; Foulquier, Arnaud; Delolme, Cécile; Marmonier, Pierre

    2015-09-15

    Managed aquifer recharge (MAR) has been developed in many countries to limit the risk of urban flooding and compensate for reduced groundwater recharge in urban areas. The environmental performances of MAR systems like infiltration basins depend on the efficiency of soil and vadose zone to retain stormwater-derived contaminants. However, these performances need to be finely evaluated for stormwater-derived dissolved organic matter (DOM) that can affect groundwater quality. Therefore, this study examined the performance of MAR systems to process DOM during its transfer from infiltration basins to an urban aquifer. DOM characteristics (fluorescent spectroscopic properties, biodegradable and refractory fractions of dissolved organic carbon -DOC-, consumption by micro-organisms during incubation in slow filtration sediment columns) were measured in stormwater during its transfer through three infiltration basins during a stormwater event. DOC concentrations sharply decreased from surface to the aquifer for the three MAR sites. This pattern was largely due to the retention of biodegradable DOC which was more than 75% for the three MAR sites, whereas the retention of refractory DOC was more variable and globally less important (from 18% to 61% depending on MAR site). Slow filtration column experiments also showed that DOC retention during stormwater infiltration through soil and vadose zone was mainly due to aerobic microbial consumption of the biodegradable fraction of DOC. In parallel, measurements of DOM characteristics from groundwaters influenced or not by MAR demonstrated that stormwater infiltration increased DOC quantity without affecting its quality (% of biodegradable DOC and relative aromatic carbon content -estimated by SUVA254-). The present study demonstrated that processes occurring in soil and vadose zone of MAR sites were enough efficient to limit DOC fluxes to the aquifer. Nevertheless, the enrichments of DOC concentrations measured in groundwater below

  11. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime

    International Nuclear Information System (INIS)

    Tejeda-Agredano, Maria-Carmen; Mayer, Philipp; Ortega-Calvo, Jose-Julio

    2014-01-01

    Binding of polycyclic aromatic hydrocarbons (PAHs) to dissolved organic matter (DOM) can reduce the freely dissolved concentration, increase apparent solubility or enhance diffusive mass transfer. To study the effects of DOM on biodegradation, we used phenanthrene and pyrene as model PAHs, soil humic acids as model DOM and a soil Mycobacterium strain as a representative degrader organism. Humic acids enhanced the biodegradation of pyrene when present as solid crystals but not when initially dissolved or provided by partitioning from a polymer. Synchronous fluorescence spectrophotometry, scintillation counting and a microscale diffusion technique were applied in order to determine the kinetics of dissolution and diffusive mass transfer of pyrene. We suggest that humic acids can enhance or inhibit biodegradation as a result of the balance of two opposite effects, namely, solubilization of the chemicals on the one hand and inhibition of cell adhesion to the pollutant source on the other. Highlights: • Humic acids can enhance the biodegradation of PAHs. • The enhancement depends on how the bacteria are exposed to PAHs. • Humic acids stimulate if PAHs are provided by dissolution form crystals. • An inhibition occurs if PAHs are provided by partitioning from a silicone. • The balance between enhanced dissolution and decreased adhesion is the cause. -- Humic acids cause opposite effects on biodegradation of PAHs depending on the exposure regime

  12. Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris with/without presence of bacteria.

    Science.gov (United States)

    Sun, Jingyi; Simsek, Halis

    2017-07-01

    Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae+bacteria, while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae+bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. Copyright © 2017. Published by Elsevier B.V.

  13. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    Science.gov (United States)

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. © 2014 SETAC.

  14. Cycling downwards - dissolved organic matter in soils

    NARCIS (Netherlands)

    Kaiser, K.; Kalbitz, K.

    2012-01-01

    Dissolved organic matter has been recognized as mobile, thus crucial to translocation of metals, pollutants but also of nutrients in soil. We present a conceptual model of the vertical movement of dissolved organic matter with soil water, which deviates from the view of a chromatographic stripping

  15. Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland.

    Science.gov (United States)

    Chen, Meilian; Jaffé, Rudolf

    2014-09-15

    Dissolved organic carbon (DOC) measurements and optical properties were applied to assess the photo- and bio-reactivity of dissolved organic matter (DOM) from different sources, including biomass leaching, soil leaching and surface waters in a subtropical wetland ecosystem. Samples were exposed to light and/or dark incubated through controlled laboratory experiments. Changes in DOC, ultraviolet (UV-Vis) visible absorbance, and excitation-emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC) were performed to assess sample degradation. Degradation experiments showed that while significant amounts of DOC were consumed during bio-incubation for biomass leachates, a higher degree of bio-recalcitrance for soil leachate and particularly surface waters was displayed. Photo- and bio-humification transformations were suggested for sawgrass, mangrove, and seagrass leachates, as compared to substantial photo-degradation and very little to almost no change after bio-incubation for the other samples. During photo-degradation in most cases the EEM-PARAFAC components displayed photo-decay as compared to a few cases which featured photo-production. In contrast during bio-incubation most EEM-PARAFAC components proved to be mostly bio-refractory although some increases and decreases in abundance were also observed. Furthermore, the sequential photo- followed by bio-degradation showed, with some exceptions, a "priming effect" of light exposure on the bio-degradation of DOM, and the combination of these two processes resulted in a DOM composition more similar to that of the natural surface water for the different sub-environments. In addition, for leachate samples there was a general enrichment of one of the EEM-PARAFAC humic-like component (Ex/Em: bio-degradation process. This study exemplifies the effectiveness of optical property and EEM-PARAFAC in the assessment of DOM reactivity and highlights the importance of the coupling of photo- and bio-degradation

  16. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  17. Dissolved organic carbon and nitrogen release from Holocene permafrost and seasonally frozen soils

    Science.gov (United States)

    Wickland, K.; Waldrop, M. P.; Koch, J. C.; Jorgenson, T.; Striegl, R. G.

    2017-12-01

    Permafrost (perennially frozen) soils store vast amounts of carbon (C) and nitrogen (N) that are vulnerable to mobilization to the atmosphere as greenhouse gases and to terrestrial and aquatic ecosystems as dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) upon thaw. Such releases will affect the biogeochemistry of arctic and boreal regions, yet little is known about active layer (seasonally frozen) and permafrost source variability that determines DOC and TDN mobilization. We quantified DOC and TDN leachate yields from a range of active layer and permafrost soils in Alaska varying in age and C and N content to determine potential release upon thaw. Soil cores from the upper 1 meter were collected in late winter, when soils were frozen, from three locations representing a range in geographic position, landscape setting, permafrost depth, and soil types across interior Alaska. Two 15 cm-thick segments were extracted from each core: a deep active-layer horizon and a shallow permafrost horizon. Soils were thawed and leached for DOC and TDN yields, dissolved organic matter optical properties, and DOC biodegradability; soils were analyzed for C and N content, and radiocarbon content. Soils had wide-ranging C and N content (<1-44% C, <0.1-2.3% N), and varied in radiocarbon age from 450-9200 years before present - thus capturing typical ranges of boreal and arctic soils. Soil DOC and TDN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. However, across all sites DOC and TDN yields were significantly greater from permafrost soils (0.387 ± 0.324 mg DOC g-1 soil; 0.271 ± 0.0271 mg N g-1 soil) than from active layer soils (0.210 ± 0.192 mg DOC g-1 soil; 0.00716 ± 0.00569 mg N g-1 soil). DOC biodegradability increased with increasing radiocarbon age, and was statistically similar for active layer and permafrost soils. Our findings suggest that the continuously frozen state of permafrost soils has preserved

  18. Cementation of biodegraded radioactive oils and organic waste

    International Nuclear Information System (INIS)

    Gorbunova, O.; Safonov, A.; Tregubova, V.; German, K.

    2015-01-01

    The possibility of the microbiological pre-treatment of the oil-containing organic liquid radioactive waste (LRW) before solidification in the cement matrix has been studied. It is experimentally proved that the oil containing cement compounds during long-term storage are subject to microbiological degradation due to the reaction of biogenic organic acids with the minerals of the cement matrix. We recommend to biodegrade the LRW components before their solidification, which reduces the volume of LRW and prevent the destruction of the inorganic cement matrix during the long term storage. The biodegradation of the oil containing LRW is possible by using the radioresistant microflora which oxidize the organic components of the oil to carbon dioxide and water. Simultaneously there is the bio-sorption of the radionuclides by bacteria and emulsification of oil in cement slurry due to biogenic surface-active substances of glycolipid nature. It was experimentally established that after 7 days of biodegradation of oil-containing liquid radioactive waste the volume of LRW is reduced by the factor from 2 to 10 due to the biodegradation of the organic phase to the non-radioactive gases (CH 4 , H 2 O, CO 2 , N 2 ), which are excluded from the volume of the liquid radioactive waste. At the same time, the microorganisms are able to extract from the LRW up to 80-90% of alpha-radionuclides, up to 50% of 90 Sr, up to 20% of 137 Cs due to sorption processes at the cellular structures. The radioactive biomass is subject to dehydration and solidification in the matrix. The report presents the following experimental data: type of bacterial flora, the parameters of biodegradation, the cementing parameters, the properties of the final cement compound with oil-containing liquid radioactive waste

  19. Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use.

    Science.gov (United States)

    Shang, Peng; Lu, YueHan; Du, YingXun; Jaffé, Rudolf; Findlay, Robert H; Wynn, Anne

    2018-01-15

    Human land use has led to significant changes in the character of dissolved organic matter (DOM) in lotic ecosystems. These changes are expected to have important environmental and ecological consequences. However, high spatiotemporal variability has been reported in previous studies, and the underlying mechanisms remain inadequately understood. This study assessed variation in the properties of stream water DOM within watersheds across a gradient of agricultural land use with grazing pasture lands as the dominant agricultural type in the southeastern United States. We collected water samples under baseflow conditions five times over eight months from a regional group of first- to fourth-order streams. Samples were analyzed for dissolved organic carbon (DOC) concentration, DOM quality based on absorbance and fluorescence properties, as well as DOM biodegradability. We found that air temperature and antecedent hydrological conditions (indicated by antecedent precipitation index and stream water sodium concentrations) positively influenced stream water DOC concentration, DOM fluorescence index, and the proportion of soil-derived, microbial humic fluorescence. This observation suggests that elevated production and release of microbial DOM in soils facilitated by high temperature, in conjunction with strong soil-stream hydrological connectivity, were important drivers for changes in the concentration and composition of stream water DOM. By comparison, watersheds with a high percentage of agricultural land use showed higher DOC concentration, larger proportion of soil-derived, humic-like DOM compounds, and higher DOC biodegradability. These observations reflect preferential mobilization of humic DOM compounds from shallow organic matter-rich soils in agricultural watersheds, likely due to enhanced soil erosion, organic matter oxidation and relatively shallow soil-to-stream flow paths. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations

    KAUST Repository

    Li, Dong

    2013-05-01

    This study investigates the evolution of the microbial community in laboratory-scale soil columns simulating the infiltration zone of managed aquifer recharge (MAR) systems and analogous natural aquifer sediment ecosystems. Parallel systems were supplemented with either moderate (1.1 mg/L) or low (0.5 mg/L) biodegradable dissolved organic carbon (BDOC) for a period of six months during which time, spatial (1 cm, 30 cm, 60 cm, 90 cm, and 120 cm) and temporal (monthly) analyses of sediment-associated microbial community structure were analyzed. Total microbial biomass associated with sediments was positively correlated with BDOC concentration where a significant decline in BDOC was observed along the column length. Analysis of 16S rRNA genes indicated dominance by Bacteria with Archaea comprising less than 1 percent of the total community. Proteobacteria was found to be the major phylum in samples from all column depths with contributions from Betaproteobacteria, Alphaproteobacteria and Gammaproteobacteria. Microbial community structure at all the phylum, class and genus levels differed significantly at 1 cm between columns receiving moderate and low BDOC concentrations; in contrast strong similarities were observed both between parallel column systems and across samples from 30 to 120 cm depths. Samples from 1 cm depth of the low BDOC columns exhibited higher microbial diversity (expressed as Shannon Index) than those at 1 cm of moderate BDOC columns, and both increased from 5.4 to 5.9 at 1 cm depth to 6.7-8.3 at 30-120 cm depths. The microbial community structure reached steady state after 3-4 months since the initiation of the experiment, which also resulted in an improved DOC removal during the same time period. This study suggested that BDOC could significantly influence microbial community structure regarding both composition and diversity of artificial MAR systems and analogous natural aquifer sediment ecosystems. © 2013 Elsevier Ltd.

  1. Advances in Biodegradation of Multiple Volatile Organic Compounds

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.

    2017-12-01

    Bioremediation of soil and groundwater containing multiple contaminants remains a challenge in environmental science and engineering because complete biodegradation of all components is necessary but very difficult to accomplish in practice. This presentation provides a brief overview on advances in biodegradation of multiple volatile organic compounds (VOCs) including chlorinated ethylenes, benzene, toluene and dichloromethane (DCM). Case studies on aerobic biodegradation of benzene, toluene and DCM, and integrated anaerobic-aerobic biodegradation of 7 contaminants, specifically, tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), DCM, benzene and toluene will be provided. Recent findings based on systematic laboratory experiments indicated that aerobic toluene degradation can be enhanced by co-existence of benzene. Propioniferax, not a known benzene, toluene and DCM degrader can be a key microorganism that involves in biodegradation when the three contaminants co-exist. Integrated anaerobic-aerobic biodegradation is capable of completely degrading the seven VOCs with initial concentrations less than 30 mg/L. Dehalococcoides sp., generally considered sensitive to oxygen, can survive aerobic conditions for at least 28 days, and can be activated during the subsequent anaerobic biodegradation. This presentation may provide a systematic information about biodegradation of multiple VOCs, and a scientific basis for the complete bioremediation of multiple contaminants in situ.

  2. The effects of LMWOAs on biodegradation of multi-component PAHs in aqueous solution using dual-wavelength fluorimetry

    International Nuclear Information System (INIS)

    Wei Xingyuan; Sang Lingzi; Chen Jianing; Zhu Yaxian; Zhang Yong

    2009-01-01

    Biodegradation of dissolved fluorene (Flu), phenanthrene (Ph) and pyrene (Py), three polycyclic aromatic hydrocarbons (PAHs), singly or as a mixture of the three, by two bacterial strains, MEBIC 5140 (Mycobacterium flavescens) and MEBIC 5141 (Mycobacterium scrofulaceum), as well as the effects of low molecular weight organic acids (LMWOAs), e.g. malic acid, citric acid and butyric acid on biodegradation of the three PAHs in mineral salts medium aqueous solution were investigated using a newly established dual-wavelength fluorimetric method. The results showed that biodegradation processes can be monitored simultaneously, quickly and simply by dual-wavelength fluorimetry. Both co-metabolism and inhibitory effects were found during the biodegradation of the three PAHs by MEBIC 5140 and MEBIC 5141. Positive effects of butyric acid and negative effects of citric acid on biodegradation of the three PAHs in a mixture were observed. - Biodegradation processes of dissolved multi-component PAHs in a mixture and effects of LMWOAs were investigated using a dual-wavelength fluorimetry.

  3. The removal kinetics of dissolved organic matter and the optical clarity of groundwater

    Science.gov (United States)

    Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald

    2016-09-01

    Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d-1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d-1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20-75 μM; 0.26-1 mg L-1) and ultraviolet absorption coefficient values ( a 254 < 5 m-1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.

  4. The effect of microbial activity and adsorption processes on groundwater dissolved organic carbon character and concentration

    Science.gov (United States)

    Meredith, K.; McDonough, L.; Oudone, P.; Rutlidge, H.; O'Carroll, D. M.; Andersen, M. S.; Baker, A.

    2017-12-01

    Balancing the terrestrial global carbon budget has proven to be a significant challenge. Whilst the movement of carbon in the atmosphere, rivers and oceans has been extensively studied, the potential for groundwater to act as a carbon source or sink through both microbial activity and sorption to and from mineral surfaces, is poorly understood. To investigate the biodegradable component of groundwater dissolved organic carbon (DOC), groundwater samples were collected from multiple coastal and inland sites. Water quality parameters such as pH, electrical conductivity, temperature, dissolved oxygen were measured in the field. Samples were analysed and characterised for their biodegradable DOC content using spectrofluorometric and Liquid Chromatography-Organic Carbon Detection (LC-OCD) techniques at set intervals within a 28 day period. Further to this, we performed laboratory sorption experiments on our groundwater samples using different minerals to examine the effect of adsorption processes on DOC character and concentration. Calcium carbonate, quartz and iron coated quartz were heated to 400ºC to remove potential carbon contamination, and then added at various known masses (0 mg to 10 g) to 50 mL of groundwater. Samples were then rotated for two hours, filtered at 0.2 μm and analysed by LC-OCD. This research forms part of an ongoing project which will assist in identifying the factors affecting the mobilisation, transport and removal of DOC in uncontaminated groundwater. By quantifying the relative importance of these processes, we can then determine whether the groundwater is a carbon source or sink. Importantly, this information will help guide policy and identify the need to include groundwater resources as part of the carbon economy.

  5. Biodegradable Sonobuoy Decelerators

    Science.gov (United States)

    2015-06-01

    of Water Temperature and the Presence of Salt on the Disintegration Time of MonoSol A200 PVOH...polyhydroxyalkanoate (PHA). The proposed film would disintegrate , dissolve, and eventually biodegrade to prevent long-term effects on marine life. Ensuring no...Standard Specification for Non-Floating Biodegradable Plastics in the Marine Environment. Results showed that no PHA grades were toxic to the marine

  6. Effect of dissolved oxygen on biological denitrification using biodegradable plastic as the carbon source

    Science.gov (United States)

    Zhang, Xucai; Zhang, Jianmei

    2018-02-01

    Biological denitrification is currently a common approach to remove nitrate from wastewater. This study was conducted to evaluate the influence of dissolved oxygen on denitrification in wastewater treatment using biodegradable plastic as carbon source by designing the aerated, anoxic, and low-oxygen experimental treatment groups. The results showed that the removal rates of nitrate in anoxic and low-oxygen groups were 30.6 g NO3 --Nm-3 d-1 and 30.8 g NO3 --N m-3 d-1 at 83 h, respectively, both of which were higher than that of the aerated group. There was no significant difference between the anoxic and low-oxygen treatment groups for the nitrate removal. Additional, the nitrite accumulated during the experiments, and the nitrite concentrations in anoxic and aerated groups were lower than those in low-oxygen group. No nitrite was detected in all groups at the end of the experiments. These findings indicated that dissolved oxygen has important influence on denitrification, and anoxic and low-oxygen conditions can support completely denitrification when using BP as carbon source in nitrate-polluted wastewater treatment.

  7. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea

    OpenAIRE

    Harvey, E. Therese; Kratzer, Susanne; Andersson, Agneta

    2015-01-01

    Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with ...

  8. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations.

    Science.gov (United States)

    Li, Dong; Alidina, Mazahirali; Ouf, Mohamed; Sharp, Jonathan O; Saikaly, Pascal; Drewes, Jörg E

    2013-05-01

    This study investigates the evolution of the microbial community in laboratory-scale soil columns simulating the infiltration zone of managed aquifer recharge (MAR) systems and analogous natural aquifer sediment ecosystems. Parallel systems were supplemented with either moderate (1.1 mg/L) or low (0.5 mg/L) biodegradable dissolved organic carbon (BDOC) for a period of six months during which time, spatial (1 cm, 30 cm, 60 cm, 90 cm, and 120 cm) and temporal (monthly) analyses of sediment-associated microbial community structure were analyzed. Total microbial biomass associated with sediments was positively correlated with BDOC concentration where a significant decline in BDOC was observed along the column length. Analysis of 16S rRNA genes indicated dominance by Bacteria with Archaea comprising less than 1 percent of the total community. Proteobacteria was found to be the major phylum in samples from all column depths with contributions from Betaproteobacteria, Alphaproteobacteria and Gammaproteobacteria. Microbial community structure at all the phylum, class and genus levels differed significantly at 1 cm between columns receiving moderate and low BDOC concentrations; in contrast strong similarities were observed both between parallel column systems and across samples from 30 to 120 cm depths. Samples from 1 cm depth of the low BDOC columns exhibited higher microbial diversity (expressed as Shannon Index) than those at 1 cm of moderate BDOC columns, and both increased from 5.4 to 5.9 at 1 cm depth to 6.7-8.3 at 30-120 cm depths. The microbial community structure reached steady state after 3-4 months since the initiation of the experiment, which also resulted in an improved DOC removal during the same time period. This study suggested that BDOC could significantly influence microbial community structure regarding both composition and diversity of artificial MAR systems and analogous natural aquifer sediment ecosystems. Copyright © 2013 Elsevier Ltd

  9. Multi-technical approach to characterize the dissolved organic matter from clay-stone

    International Nuclear Information System (INIS)

    Blanchart, Pascale; Michels, Raymond; Faure, Pierre; Parant, Stephane; Bruggeman, Christophe; De Craen, Mieke

    2012-01-01

    -technical approach was used to characterize the DOM. DOC measurements allowed comparing the yields of dissolved organic matter for each sample. Molecular characterization of the extracted material was performed using PyGC-MS (flash pyrolysis - gas chromatography - mass spectrometry), and SEC-HPLC (size exclusion chromatography) in order to identify compounds as well as molecular weight distributions. 3D-Fluorescence was also performed in order to obtain a spectroscopic fingerprint of each DOM. The description of the DOM allows establishing relationships between the geochemical characteristics of the organic matter (maturity, origin, preservation and oxygen content) from the geological formation and the DOM quantity and composition. This study thus establishes a background to the characterization of dissolved organic matter of host rocks and can be used to further assessment of the reactivity of the organic matter (oxidation, biodegradation, thermal stress, lixiviation...)

  10. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  11. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  12. Absorption features of chromophoric dissolved organic matter (CDOM) and tracing implication for dissolved organic carbon (DOC) in Changjiang Estuary, China

    OpenAIRE

    Zhang, X. Y.; Chen, X.; Deng, H.; Du, Y.; Jin, H. Y.

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) represents the light absorbing fraction of dissolved organic carbon (DOC). Studies have shown that the optical properties of CDOM can be used to infer the distribution and diffusion characteristics of DOC in the estuary and coastal zone. The inversion of DOC concentrations from remote sensing has been implemented in certain regions. In this study we investigate the potential of tracing DOC from CDOM by the measure...

  13. Evaluation of Anaerobic Biodegradation of Organic Carbon Extracted from Aquifer Sediment

    OpenAIRE

    Kelly, Catherine Aileen

    2006-01-01

    In conjunction with ongoing studies to develop a method for quantifying potentially biodegradable organic carbon (Rectanus et al 2005), this research was conducted to evaluate the extent to which organic carbon extracted using this method will biodegrade in anaerobic environments. The ultimate goal is to use this method for the evaluation of chloroethene contaminated sites in order to estimate the long-term sustainability of monitored natural attenuation (MNA) as a remediation strategy. Alt...

  14. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  15. Applications of PDMS partitioning methods in the study of biodegradation of pyrene in the

    DEFF Research Database (Denmark)

    Tejeda-Agredano, MC; Gouliarmou, Varvara; Ortega-Calvo, JJ

    Although there are reports on the inhibition of anthropogenic organic chemicals biodegradation due to binding to dissolved humic substances (HS), there is an increasing body of evidence pointing to an enhancing effect in the case of hydrophobic chemicals, like pyrene. The addition of humic fracti...

  16. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  17. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions.

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-09-27

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs.

  18. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs. PMID:28904262

  19. Production of Dissolved Organic Matter During Doliolid Feeding

    Science.gov (United States)

    Castellane, N. J.; Paffenhofer, G. A.; Stubbins, A.

    2016-02-01

    The biological carbon pump (BCP) draws carbon dioxide out of the atmosphere and buries it at the seafloor. The efficiency of the BCP is determined in part by the sinking rates of particulate organic carbon (POC) from ocean surface waters. Zooplankton can package POC into fecal pellets with higher sinking rates than their food source (e.g. phytoplankton), increasing the efficiency of the BCP. However, dissolved organic carbon (DOC) is also produced as zooplankton ingest and egest food, reducing the efficiency of BCP. The pelagic tunicate Dolioletta gegenbauri (doliolid) is a gelatinous zooplankton found at high concentrations in shelf waters, including our study site: the South Atlantic Bight. Doliolids are efficient grazers capable of stripping large quantities of phytoplankton from the water column. To determine the balance between pellet formation and DOC production during feeding, doliolids (6-7 mm gonozooids) were placed in natural seawater amended with a live phytoplankton food source and incubated on a plankton wheel. Dissolved organic matter (DOM) released directly to the water as well as the water soluble fraction of pellet organic matter were quantified and optically characterized. Colored dissolved organic matter (CDOM) absorbance and fluorescence spectra revealed that doliolid feeding produces DOM with optical properties that are commonly indicative of newly produced, highly biolabile DOM of microbial origin. Based upon these optical characteristics, doliolid-produced DOM is expected to be highly bio-labile in the environment and therefore rapidly degraded by surface ocean microbes shunting phytoplankton-derived organic carbon out of the BCP and back to dissolved inorganic carbon.

  20. Aerobic co-treatment of landfill leachate and domestic wastewater - are slowly biodegradable organics removed or simply diluted?

    Science.gov (United States)

    Campos, R; Ferraz, F M; Vieira, E M; Povinelli, J

    2014-01-01

    This study investigated the co-treatment of landfill leachate/domestic wastewater in bench-scale activated sludge (AS) reactors to determine whether the slowly biodegradable organic matter (SBOM) was removed rather than diluted. The AS reactors were loaded with mixtures of raw leachate and leachate that was pretreated by air stripping. The tested volumetric ratios were 0%, 0.2%, 2% and 5%. For all of the tested conditions, the reactors performed better when pretreated leachate was used rather than raw leachate, and the best volumetric ratio was 2%. The following removals were obtained: 97% for the biochemical oxygen demand (BOD5,20), 79% for total suspended solids, 77% for dissolved organic carbon and 84% for soluble chemical oxygen demand. Most of the pretreated leachate SBOM (65%) was removed rather than diluted or adsorbed into the sludge, as confirmed by Fourier transform infrared (FTIR) spectroscopy analyses.

  1. Towards a universal microbial inoculum for dissolved organic carbon degradation experiments

    Science.gov (United States)

    Pastor, Ada; Catalán, Núria; Gutiérrez, Carmen; Nagar, Nupur; Casas-Ruiz, Joan P.; Obrador, Biel; von Schiller, Daniel; Sabater, Sergi; Petrovic, Mira; Borrego, Carles M.; Marcé, Rafael

    2017-04-01

    Dissolved organic carbon (DOC) is the largest biologically available pool of organic carbon in aquatic ecosystems and its degradation along the land-to-ocean continuum has implications for carbon cycling from local to global scales. DOC biodegradability is usually assessed by incubating filtered water inoculated with native microbial assemblages in the laboratory. However, the use of a native inoculum from several freshwaters, without having a microbial-tailored design, hampers our ability to tease apart the relative contribution of the factors driving DOC degradation from the effects of local microbial communities. The use of a standard microbial inoculum would allow researchers to disentangle the drivers of DOC degradation from the metabolic capabilities of microbial communities operating in situ. With this purpose, we designed a bacterial inoculum to be used in experiments of DOC degradation in freshwater habitats. The inoculum is composed of six bacterial strains that easily grow under laboratory conditions, possess a versatile metabolism and are able to grow under both aerobic and anaerobic conditions. The mixed inoculum showed higher DOC degradation rates than those from their isolated bacterial components and the consumption of organic substrates was consistently replicated. Moreover, DOC degradation rates obtained using the designed inoculum were responsive across a wide range of natural water types differing in DOC concentration and composition. Overall, our results show the potential of the designed inoculum as a tool to discriminate between the effects of environmental drivers and intrinsic properties of DOC on degradation dynamics.

  2. Dissolved organic carbon and dissolved organic nitrogen data collected using bottle in a world wide distribution from 02 September 1998 to 02 November 2003 (NODC Accession 0002403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) data were collected using bottle casts in a world wide distribution. Data were collected from 02...

  3. Functional speciation of metal-dissolved organic matter complexes by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry and deconvolution analysis

    International Nuclear Information System (INIS)

    Laborda, Francisco; Ruiz-Begueria, Sergio; Bolea, Eduardo; Castillo, Juan R.

    2009-01-01

    High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (HP-SEC-ICP-MS), in combination with deconvolution analysis, has been used to obtain multielemental qualitative and quantitative information about the distributions of metal complexes with different forms of natural dissolved organic matter (DOM). High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry chromatograms only provide continuous distributions of metals with respect to molecular masses, due to the high heterogeneity of dissolved organic matter, which consists of humic substances as well as biomolecules and other organic compounds. A functional speciation approach, based on the determination of the metals associated to different groups of homologous compounds, has been followed. Dissolved organic matter groups of homologous compounds are isolated from the aqueous samples under study and their high performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry elution profiles fitted to model Gaussian peaks, characterized by their respective retention times and peak widths. High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry chromatograms of the samples are deconvoluted with respect to these model Gaussian peaks. This methodology has been applied to the characterization of metal-dissolved organic matter complexes in compost leachates. The most significant groups of homologous compounds involved in the complexation of metals in the compost leachates studied have been hydrophobic acids (humic and fulvic acids) and low molecular mass hydrophilic compounds. The environmental significance of these compounds is related to the higher biodegradability of the low molecular mass hydrophilic compounds and the lower mobility of humic acids. In general, the hydrophilic compounds accounted for the complexation of around 50% of the leached

  4. Biodegradation of oil palm empty fruit bunch by composite micro-organisms

    International Nuclear Information System (INIS)

    Yusri Atan; Mat Rasol Awang; Mohammed Omar; Azizah Hashim; Tamikazu Kume; Shoji Hashimoto

    1998-01-01

    A comparison study on the comparative biodegradation ability on EFB by five groups of composite micro-organisms [Organomine, Thomas, Ohres C, Ohres II and micro-organisms from POME (palm oil mill effluent)] has been performed with the aim of producing a compost at a faster rate than that by natural biodegradation. The experiment was carried out by mixing 50 gram EFB (dry weight basis) with 3% ammonium sulphate to which was added 1% composite micro-organisms and water to produce a composting media of moisture content about 60%. Respiration of composite micro-organisms as well as from decomposition of EFB releasing CO sub 2. The choice of useful micro-organisms was based on its ability to degrade EFB as reflected by higher evolution rate of CO sub 2 released and retaining higher percentage of nitrogen in the final product

  5. Organic solvents improve hydrocarbon desorption and biodegradation in highly contaminated weathered soils

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rivero, M. [Tecnologico de Estudios Superiores de Ecatepec, Mexico City (Mexico); Saucedo-Casteneda, G.; Gutierrez-Rojas, M. [Autonoma Metropolitan Univ., Mexico City (Mexico). Dept. of Biotechnology

    2007-07-15

    A toluene-based microbial slurry phase system was used to remediate hydrocarbons (HC) in highly contaminated soil samples collected from a site next to a working refinery in Mexico. Initial HC concentrations of the samples were 237.2 {+-} 16,6 g kg{sup -1} in dry soil. The microbial consortium consisted of 10 different strains in a mineral solution. Non-polar solvents used in the phase system included hexane, benzene, and toluene. Polar solvents included n-butanol, acetone, and methanol. The bioavailability of the HCs was increased using both polar and nonpolar solvents in order to promote desorption from the soil and to enhance overall HC biodegradation. HC desorption was analyzed in an abiotic system. Respiration and residual HCs were examined after a period of 30 days in order to compare the effects of the 2 solvents. The biodegradation extracts were then fractionated in a silica gel column to determine if the solvents actually enhanced the biodegradation of specific HC fractions. The study showed that induced dipole interactions forces resulted when nonpolar molecules were dissolved into a nonpolar solvent. Results for desorption and solubility varied among the 6 solvents. Higher dielectric constants resulted in higher solubility and desorption of HCs for nonpolar solvents, while the opposite effect was observed for polar solvents. It was concluded that toluene produced better biodegradation results than any of the milder solvents. 34 refs., 4 tabs., 1 fig.

  6. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost.

    Science.gov (United States)

    Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao

    2018-04-14

    Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  8. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li Kun [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States) and Northeast Institute of Geography and Agro-ecology, CAS, Harbin 150040 (China)]. E-mail: bx@pssci.umass.edu; Torello, William A. [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States)

    2005-03-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf.

  9. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    International Nuclear Information System (INIS)

    Li Kun; Xing Baoshan; Torello, William A.

    2005-01-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf

  10. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    Science.gov (United States)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  11. Fate and behavior of dissolved organic matter in a submerged anoxic-aerobic membrane bioreactor (MBR).

    Science.gov (United States)

    Zhang, Dongqing; Trzcinski, Antoine Prandota; Luo, Jinxue; Stuckey, David C; Tan, Soon Keat

    2018-02-01

    In this study, the production, composition, and characteristics of dissolved organic matter (DOM) in an anoxic-aerobic submerged membrane bioreactor (MBR) were investigated. The average concentrations of proteins and carbohydrates in the MBR aerobic stage were 3.96 ± 0.28 and 8.36 ± 0.89 mg/L, respectively. After membrane filtration, these values decreased to 2.9 ± 0.2 and 2.8 ± 0.2 mg/L, respectively. High performance size exclusion chromatograph (HP-SEC) analysis indicated a bimodal molecular weight (MW) distribution of DOMs, and that the intensities of all the peaks were reduced in the MBR effluent compared to the influent. Three-dimensional fluorescence excitation emission matrix (FEEM) indicated that fulvic and humic acid-like substances were the predominant DOMs in biological treatment processes. Precise identification and characterization of low-MW DOMs was carried out using gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis indicated that the highest peak numbers (170) were found in the anoxic stage, and 54 (32%) compounds were identified with a similarity greater than 80%. Alkanes (28), esters (11), and aromatics (7) were the main compounds detected. DOMs exhibited both biodegradable and recalcitrant characteristics. There were noticeable differences in the low-MW DOMs present down the treatment process train in terms of numbers, concentrations, molecular weight, biodegradability, and recalcitrance.

  12. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea.

    Science.gov (United States)

    Harvey, E Therese; Kratzer, Susanne; Andersson, Agneta

    2015-06-01

    Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with relatively little terrestrial input. The CDOM:DOC ratio was higher in the Gulf of Bothnia, where CDOM had a greater influence on the Secchi depth, which is used as an indicator of eutrophication and hence important for Baltic Sea management. Based on the results of this study, we recommend regular CDOM measurements in monitoring programmes, to increase the value of concurrent Secchi depth measurements.

  13. Iron traps terrestrially derived dissolved organic matter at redox interfaces

    Science.gov (United States)

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-01-01

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  14. Heat treatment of organics for increasing anaerobic biodegradability. Quarterly progress report, July 1, 1979-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Stuckey, D.; Colberg, P.J.; Baugh, K.; Young, L.Y.; McCarty, P.L.

    1979-01-01

    The objective of this study is to evaluate thermochemical pretreatment as a method for increasing the anaerobic biodegradability of organic materials so that they can be more completely fermented to methane gas, a potential source of fuel. The current study has four specific phases: (1) biological conversion of lignocellulose to methane, (2) biodegradation of lignin and lignin fractions, (3) pretreatment of nitrogenous organics for increasing biodegradability, (4) biodegradation of lignin aromatic compounds, and (5) biochemical methane potential and toxicity testing. Results are reported for phases one, two, and three. No new information is available for phases four and five at this time.

  15. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  16. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium

    International Nuclear Information System (INIS)

    Boggs, S. Jr.; Seitz, M.G.

    1984-01-01

    Groundwaters typically contain dissolved organic carbon consisting largely of high molecular weight compounds of humic and fulvic acids. To evaluate whether these dissolved organic substances can enhance the tranport of radionuclides through the groundwater system, experiments were conducted to examine the sorption of americium and neptunium onto crushed basalt in the presence of dissolved humic- and fulvic-acid organic carbon introduced into synthetic groundwater. The partitioning experiments with synthetic groundwater show that increasing the concentration of either humic or fulvic acid in the water has a significant inhibiting effect on sorption of both americium and neptunium. At 22 0 C, adsorption of these radionuclides, as measured by distribution ratios (the ratio of nuclide sorbed onto the solid to nuclide in solution at the end of the experiment), decreased by 25% to 50% by addition of as little as 1 mg/L dissolved organic carbon and by one to two orders of magnitude by addition of 100 to 200 mg/L dissolved organic carbon. Distribution ratios measured in solutions reacted at 90 0 C similarly decreased with the addition of dissolved organic carbon but generally ranged from one to two orders of magnitude higher than those determined in the 22 0 C experiment. These results suggest that organic carbon dissolved in deep groundwaters may significantly enhance the mobility of radionuclides of americium and neptunium. 23 references, 5 figures, 11 tables

  17. Tracing the origin of dissolved organic matter (DOM) in subterranean estuaries using colored DOM and amino acids

    Science.gov (United States)

    Kim, T.; Kwon, E.; Kim, G.

    2011-12-01

    In order to determine the origin of dissolved organic matter (DOM) in the subterranean estuary (STE), the mixing zone of fresh terrestrial groundwater and recirculating seawater in a coastal permeable aquifer, we conducted water sampling from two STEs with different geological settings: (1) Jeju Island beaches (Hwasun and Samyang), which are composed of volcanic rocks and sandy sediments, and (2) Hampyeong beach, which is located in a large intertidal, sandy flat zone. The distributions of salinity, total hydrolysable amino acids (THAA), dissolved organic carbon (DOC), and colored DOM (CDOM) were measured for groundwater samples in these STEs. In the Hwasun STE, the humic-like peak decreases with increasing salinity, whereas the protein-like peak does not show a clear relationship with salinity. In contrast, in the Samyang STE, both humic-like peak and protein-like peak increase with increasing salinity. These contrasting results indicate that DOM in the Hwasun STE originates mainly from terrestrial inputs, while that in the Samyang STE originates mainly from biological and/or microbial activities. In the Hampyeong STE, we observed good correlations among the biodegradation index, alanine D/L ratios, THAA concentrations, DOC, and CDOM index (both humic-like and protein-like). Together with their geographical distribution patterns, these correlations indicate that DOM in the Hampyeong STE is mainly derived from marine sediments in the course of seawater recirculation. Our study shows that CDOM and amino acids are excellent tracers of DOM in the STE where DOM is derived from diverse sources.

  18. Radiocarbon in marine dissolved organic carbon (DOC)

    NARCIS (Netherlands)

    Clercq, M. le; Plicht, J. van der; Meijer, H.A.J.; Baar, H.J.W. de

    Dissolved Organic Carbon (DOC) plays an important role in the ecology and carbon cycle in the ocean. Analytical problems with concentration and isotope ratio measurements have hindered its study. We have constructed a new analytical method based on supercritical oxidation for the determination of

  19. The Impacts of Organic Pollution on the Hydrochemistry and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    The greater percentage of these pollutants is organic in origin. ... Introduction of large volumes of biodegradable wastes both reduced the dissolved ... The relatively low abundance of the filter- .... Analysis of Water Samples : Air and Water.

  20. Cosorption study of organic pollutants and dissolved organic matter in a soil

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Cespedes, F. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain); Fernandez-Perez, M. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain)]. E-mail: mfernand@ual.es; Villafranca-Sanchez, M. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain); Gonzalez-Pradas, E. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain)

    2006-08-15

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl{sub 2} aqueous medium at 25 deg. C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L{sup -1}, produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K {sub doc}, has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment. - Cosorption of organic pollutants and DOM.

  1. Cosorption study of organic pollutants and dissolved organic matter in a soil

    International Nuclear Information System (INIS)

    Flores-Cespedes, F.; Fernandez-Perez, M.; Villafranca-Sanchez, M.; Gonzalez-Pradas, E.

    2006-01-01

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl 2 aqueous medium at 25 deg. C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L -1 , produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K doc , has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment. - Cosorption of organic pollutants and DOM

  2. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge

    Science.gov (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Butler, Kenna D.

    2012-01-01

    Groundwater discharge to rivers has increased in recent decades across the circumpolar region and has been attributed to thawing permafrost in arctic and subarctic watersheds. Permafrost-driven changes in groundwater discharge will alter the flux of dissolved organic carbon (DOC) in rivers, yet little is known about the chemical composition and reactivity of dissolved organic matter (DOM) of groundwater in permafrost settings. Here, we characterize DOM composition of winter flow in 60 rivers and streams of the Yukon River basin to evaluate the biogeochemical consequences of enhanced groundwater discharge associated with permafrost thaw. DOC concentration of winter flow averaged 3.9 ± 0.5 mg C L−1, yet was highly variable across basins (ranging from 20 mg C L−1). In comparison to the summer-autumn period, DOM composition of winter flow had lower aromaticity (as indicated by specific ultraviolet absorbance at 254 nm, or SUVA254), lower hydrophobic acid content, and a higher proportion of hydrophilic compounds (HPI). Fluorescence spectroscopy and parallel factor analysis indicated enrichment of protein-like fluorophores in some, but not all, winter flow samples. The ratio of DOC to dissolved organic nitrogen, an indicator of DOM biodegradability, was positively correlated with SUVA254 and negatively correlated with the percentage of protein-like compounds. Using a simple two-pool mixing model, we evaluate possible changes in DOM during the summer-autumn period across a range of conditions reflecting possible increases in groundwater discharge. Across three watersheds, we consistently observed decreases in DOC concentration and SUVA254 and increases in HPI with increasing groundwater discharge. Spatial patterns in DOM composition of winter flow appear to reflect differences in the relative contributions of groundwater from suprapermafrost and subpermafrost aquifers across watersheds. Our findings call for more explicit consideration of DOC loss and stabilization

  3. Application of Bayesian belief net in modelling the origin and effects of terrigenous dissolved organic matter in a boreal aquatic ecosystem

    Science.gov (United States)

    Rahikainen, Mika; Hoikkala, Laura; Soinne, Helena

    2013-04-01

    Bayesian belief nets (BBN) are capable of developing holistic understanding of the origin, transportation, and effects of dissolved organic matter (DOM) in ecosystems. The role of riverine DOM, transporting carbon and macronutrients N and P into lakes and coastal areas, has been largely neglected in research about processes influencing aquatic ecosystem functions although dissolved organic matter provides a significant nutrient source for primary producers in aquatic environments. This neglect has also contributed to the environmental policies which are focused in the control of inorganic N and P load. It is of great social and economic interest to gain improved knowledge of whether the currently applied policy instruments act in synchrony in mitigating eutrophication caused by N and P versus DOM load. DOM is a complex mixture of compounds that are poorly characterized. DOM export is strongly regulated by land use (urban, forest, agricultural land, peat land), in addition to soil type and soil organic carbon concentration. Furthermore, the composition of DOM varies according to its origin. The fate and effects of DOM loads in the fresh water and coastal environments depend, for example, on their biodegradability. Degradation kinetics again depends on the interactions between composition of the DOM pool and the receiving environment. Impact studies of dissolved organic matter pose a complicated environmental impact assessment challenge for science. There exists strategic uncertainty in the science about the causal dependencies and about the quality of knowledge related to DOM. There is a clear need for systematization in the approach as uncertainty is typically high about many key processes. A cross-sectorial, integrative analysis will aid in focusing on the most relevant issues. A holistic and unambiguous analysis will provide support for policy-decisions and management by indicating which outcome is more probable than another. The task requires coupling complex

  4. Assessment of MTBE biodegradation in contaminated groundwater using 13C and 14C analysis: Field and laboratory microcosm studies

    International Nuclear Information System (INIS)

    Thornton, Steven F.; Bottrell, Simon H.; Spence, Keith H.; Pickup, Roger; Spence, Michael J.; Shah, Nadeem; Mallinson, Helen E.H.; Richnow, Hans H.

    2011-01-01

    Highlights: → Carbon isotope fractionation for MTBE varies with dissolved oxygen concentration. → Carbon isotope fractionation can underestimate MTBE biodegradation at plume fringes. → Fractionation factors must be for specific biodegradation mechanisms and conditions. → Specific microbial populations influence carbon isotope fractionation in groundwater. - Abstract: Radiolabelled assays and compound-specific stable isotope analysis (CSIA) were used to assess methyl tert-butyl ether (MTBE) biodegradation in an unleaded fuel plume in a UK chalk aquifer, both in the field and in laboratory microcosm experiments. The 14 C-MTBE radiorespirometry studies demonstrated widespread potential for aerobic and anaerobic MTBE biodegradation in the aquifer. However, δ 13 C compositions of MTBE in groundwater samples from the plume showed no significant 13 C enrichment that would indicate MTBE biodegradation at the field scale. Carbon isotope enrichment during MTBE biodegradation was assessed in the microcosms when dissolved O 2 was not limiting, compared with low in situ concentrations (2 mg/L) in the aquifer, and in the absence of O 2 . The microcosm experiments showed ubiquitous potential for aerobic MTBE biodegradation in the aquifer within hundreds of days. Aerobic MTBE biodegradation in the microcosms produced an enrichment of 7 per mille in the MTBE δ 13 C composition and an isotope enrichment factor (ε) of -1.53 per mille when dissolved O 2 was not limiting. However, for the low dissolved O 2 concentration of up to 2 mg/L that characterizes most of the MTBE plume fringe, aerobic MTBE biodegradation produced an enrichment of 0.5-0.7 per mille, corresponding to an ε value of -0.22 per mille to -0.24 per mille. No anaerobic MTBE biodegradation occurred under these experimental conditions. These results suggest the existence of a complex MTBE-biodegrading community in the aquifer, which may consist of different aerobic species competing for MTBE and dissolved O 2

  5. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Cuicui Mu

    2016-01-01

    Full Text Available Thermokarst lakes are widely distributed on the Qinghai-Tibetan Plateau (QTP, which accounts for 8% of the global permafrost area. These lakes probably promote organic matter biodegradation and thus accelerate the emission of carbon-based greenhouse gases. However, little is known about greenhouse gas concentrations and their stable isotopes characteristics of these lakes. In this study, we measured the concentrations of dissolved organic carbon (DOC, dissolved CO2 and CH4, as well as the distribution of δ13CCO2, δ13CCH4, and δ13COM (organic matter of lake sediments in thermokarst lakes on the QTP. Results showed that the OM of the lake sediments was highly decomposed. The concentrations of DOC, CO2 and CH4 in the lake water on the QTP were 1.2–49.6 mg L–1, 3.6–45.0 μmol L–1 and 0.28–3.0 μmol L–1, respectively. The highest CO2 and CH4 concentrations were recorded in July while the lowest values in September, which suggested that temperature had an effect on greenhouse gas production, although this pattern may also relate to thermal stratification of the water column. The results implied that thermokast lakes should be paid more attention to regarding carbon cycle and greenhouse gas emissions on the QTP.

  6. Production of dissolved organic carbon in aquatic sediment suspensions

    NARCIS (Netherlands)

    Koelmans, A.A.; Prevo, L.

    2003-01-01

    In many water quality models production of dissolved organic carbon (DOC) is modelled as mineralisation from particulate organic matter (POM). In this paper it is argued that the DOC production from dessicated sediments by water turbulence may be of similar importance
    In many water quality

  7. Influence of Biodegradation on the Organic Compounds Composition of Peat.

    Science.gov (United States)

    Serebrennikova, Olga; Svarovskaya, Lidiya; Duchko, Maria; Strelnikova, Evgeniya; Russkikh, Irina

    2016-06-01

    Largest wetland systems are situated on the territory of the Tomsk region. They are characterized by the high content of organic matter (OM), which undergoes transformation as a result of physical, chemical and biological processes. The composition of peat OM is determined by the nature of initial peat-forming plants, their transformation products and bacteria. An experiment in stimulated microbial impact was carried out for estimating the influence of biodegradation on the composition of peat lipids. The composition of the functional groups in the bacterial biomass, initial peat and peat after biodegradation was determined by IR-spectroscopy using the spectrometer NICOLET 5700. The IR spectra of peat and bacteria organic matter are characterized by the presence of absorption bands in ranges: 3400-3200 cm-1, which refers to the stretching vibrations of OH-group of carboxylic acids and various types of hydrogen bonds; 1738-1671 cm-1 - characteristic stretching vibrations of the C = O group of carboxylic acids and ketones; 1262 cm-1 - stretching vibrations of C-O of carboxylic acids. Group and individual composition of organic compounds in studied samples was determined by gas chromatography-mass-spectrometry.

  8. Assessment of anaerobic biodegradability of five different solid organic wastes

    Science.gov (United States)

    Kristanto, Gabriel Andari; Asaloei, Huinny

    2017-03-01

    The concept of waste to energy emerges as an alternative solution to increasing waste generation and energy crisis. In the waste to energy concept, waste will be used to produce renewable energy through thermochemical, biochemical, and physiochemical processes. In an anaerobic digester, organic matter brake-down due to anaerobic bacteria produces methane gas as energy source. The organic waste break-down is affected by various characteristics of waste components, such as organic matter content (C, N, O, H, P), solid contents (TS and VS), nutrients ratio (C/N), and pH. This research aims to analyze biodegradability and potential methane production (CH4) from organic waste largely available in Indonesia. Five solid wastes comprised of fecal sludge, cow rumen, goat farm waste, traditional market waste, and tofu dregs were analyzed which showed tofu dregs as waste with the highest rate of biodegradability compared to others since the tofu dregs do not contain any inhibitor which is lignin, have 2.7%VS, 14 C/N ratios and 97.3% organic matter. The highest cumulative methane production known as Biochemical Methane Potential was achieved by tofu dregs with volume of 77 ml during 30-day experiment which then followed by cow rumen, goat farm waste, and traditional market waste. Subsequently, methane productions were calculated through percentage of COD reduction, which showed the efficiency of 99.1% that indicates complete conversion of the high organic matter into methane.

  9. Leaching of dissolved organic and inorganic nitrogen from legume-based grasslands

    DEFF Research Database (Denmark)

    Kusliene, Gedrime; Eriksen, Jørgen; Rasmussen, Jim

    2015-01-01

    Leaching of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) is a considerable loss pathway in grassland soils. We investigated the white clover (Trifolium repens) contribution to N transport and temporal N dynamics under a pure stand of white clover and white clover...

  10. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    Science.gov (United States)

    Olaniran, Ademola O.; Balgobind, Adhika; Pillay, Balakrishna

    2013-01-01

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals. PMID:23676353

  11. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    Directory of Open Access Journals (Sweden)

    Balakrishna Pillay

    2013-05-01

    Full Text Available Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation, treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.

  12. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    Science.gov (United States)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  13. Nonionic surfactant Brij35 effects on toluene biodegradation in a ...

    African Journals Online (AJOL)

    Nonionic surfactant effects on the toluene dissolved in the water phase and biodegradation kinetic behaviors of toluene in a composite bead biofilter were investigated. The toluene dissolved in the water phase was enhanced by the addition of surfactant into aqueous solution and the enhancing effect was more pronounced ...

  14. Dissolved organic carbon in the INDEX area of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; De

    -Sea Research II 48 (2001) 3353–3361 Dissolved organic carbon in the INDEX area of the Central Indian Basin Sugandha Sardessai*, S.N. de Sousa National Institute of Oceanography, Dona-Paula, Goa 403 004, India Abstract Dissolved organic carbon (DOC..., 1996). While there is substantial information available on the DOC content of sea water throughout the Atlantic, Pacific and southern oceans, there are limited reports on contents and distribution of this organic fraction in the Indian Ocean (Menzel...

  15. A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream

    Science.gov (United States)

    Sleighter, Rachel L.; Cory, Rose M.; Kaplan, Louis A.; Abdulla, Hussain A. N.; Hatcher, Patrick G.

    2014-08-01

    The bioreactivity or susceptibility of dissolved organic matter (DOM) to microbial degradation in streams and rivers is of critical importance to global change studies, but a comprehensive understanding of DOM bioreactivity has been elusive due, in part, to the stunningly diverse assemblages of organic molecules within DOM. We approach this problem by employing a range of techniques to characterize DOM as it flows through biofilm reactors: dissolved organic carbon (DOC) concentrations, excitation emission matrix spectroscopy (EEMs), and ultrahigh resolution mass spectrometry. The EEMs and mass spectral data were analyzed using a combination of multivariate statistical approaches. We found that 45% of stream water DOC was biodegraded by microorganisms, including 31-45% of the humic DOC. This bioreactive DOM separated into two different groups: (1) H/C centered at 1.5 with O/C 0.1-0.5 or (2) low H/C of 0.5-1.0 spanning O/C 0.2-0.7 that were positively correlated (Spearman ranking) with chromophoric and fluorescent DOM (CDOM and FDOM, respectively). DOM that was more recalcitrant and resistant to microbial degradation aligned tightly in the center of the van Krevelen space (H/C 1.0-1.5, O/C 0.25-0.6) and negatively correlated (Spearman ranking) with CDOM and FDOM. These findings were supported further by principal component analysis and 2-D correlation analysis of the relative magnitudes of the mass spectral peaks assigned to molecular formulas. This study demonstrates that our approach of processing stream water through bioreactors followed by EEMs and FTICR-MS analyses, in combination with multivariate statistical analysis, allows for precise, robust characterization of compound bioreactivity and associated molecular level composition.

  16. Cosorption study of organic pollutants and dissolved organic matter in a soil.

    Science.gov (United States)

    Flores-Céspedes, F; Fernández-Pérez, M; Villafranca-Sánchez, M; González-Pradas, E

    2006-08-01

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L(-1), produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K(doc), has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment.

  17. Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use

    DEFF Research Database (Denmark)

    Asmala, E.; Autio, R.; Kaartokallio, H.

    2013-01-01

    The microbial degradation of dissolved organic carbon and nitrogen (DOC, DON) was studied in three Finnish boreal estuaries with contrasting land use patterns (Kiiminkijoki - natural forest and peatland; Kyrönjoki - agricultural; Karjaanjoki - mixed/urban). Bioassays of 12-18 d long durations were...... the estuaries, from 7.9 to 10.6% and from 5.5 to 21.9%, respectively. DOM originating from the catchment dominated by natural forests and peatlands (Kiiminkijoki) had the lowest DOC and DON degradation rates, as well as the lowest proportions of biodegradable DOC and DON. A greater proportion of agricultural...... in the Kyrönjoki estuary. Lower DOC:DON ratios, smaller molecular weight and higher CDOM absorption spectral slope values of DOM resulted in higher proportion of the initial DOC and DON being transferred to microbial growth and therefore to the pelagic food web. The pristine, peatland and forest...

  18. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    Science.gov (United States)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  19. Relationship between the colored dissolved organic matter and dissolved organic carbon and the application on remote sensing in East China Sea

    Science.gov (United States)

    Qiong, Liu; Pan, Delu; Huang, Haiqing; Lu, Jianxin; Zhu, Qiankun

    2011-11-01

    A cruise was conducted in the East China Sea (ECS) in autumn 2010 to collect Dissolved Organic Carbon (DOC) and Colored Dissolved Organic Matter (CDOM) samples. The distribution of DOC mainly controlled by the hydrography since the relationship between DOC and salinity was significant in both East China Sea. The biological activity had a significant influence on the concentration of DOC with a close correlation between DOC and Chl a. The absorption coefficient of CDOM (a355) decreased with the salinity increasing in the shelf of East China Sea (R2=0.9045). CDOM and DOC were significantly correlated in ECS where DOC distribution was dominated largely by the Changjiang diluted water. Based on the relationship of CDOM and DOC, we estimated the DOC concentration of the surface in ECS from satellite-derived CDOM images. Some deviations induced by the biological effect and related marine DOC accumulations were discussed.

  20. THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION

    Science.gov (United States)

    Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal sea...

  1. Biodegradation of radioactive organic liquid waste from spent fuel reprocessing

    International Nuclear Information System (INIS)

    Ferreira, Rafael Vicente de Padua

    2008-01-01

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab-scale hot cell, known as Celeste located at Nuclear and Energy Research Institute, IPEN - CNEN/SP. The program was ended at the beginning of 90's, and the laboratory was closed down. Part of the radioactive waste generated mainly from the analytical laboratories is stored waiting for treatment at the Waste Management Laboratory, and it is constituted by mixture of aqueous and organic phases. The most widely used technique for the treatment of radioactive liquid wastes is the solidification in cement matrix, due to the low processing costs and compatibility with a wide variety of wastes. However, organics are generally incompatible with cement, interfering with the hydration and setting processes, and requiring pre -treatment with special additives to stabilize or destroy them. The objective of this work can be divided in three parts: organic compounds characterization in the radioactive liquid waste; the occurrence of bacterial consortia from Pocos de Caldas uranium mine soil and Sao Sebastiao estuary sediments that are able to degrade organic compounds; and the development of a methodology to biodegrade organic compounds from the radioactive liquid waste aiming the cementation. From the characterization analysis, TBP and ethyl acetate were chosen to be degraded. The results showed that selected bacterial consortia were efficient for the organic liquid wastes degradation. At the end of the experiments the biodegradation level were 66% for ethyl acetate and 70% for the TBP. (author)

  2. Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans

    Science.gov (United States)

    Chen, R. F.; Gardner, G. B.; Peri, F.

    2016-02-01

    Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.

  3. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  4. Exoenzyme activities as indicators of dissolved organic matter composition in the hyporheic zone of a floodplain river

    Science.gov (United States)

    Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay

    2010-01-01

    We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...

  5. Colored dissolved organic matter in shallow estuaries: the effect of source on quantification

    OpenAIRE

    W. K. Oestreich; N. K. Ganju; J. W. Pohlman; S. E. Suttles

    2015-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM...

  6. Laboratory studies of dissolved radiolabelled microcystin-LR in lake water

    DEFF Research Database (Denmark)

    Hyenstrand, Per; Rohrlack, Thomas; Beattie, Kenneth A

    2003-01-01

    The fate of dissolved microcystin-LR was studied in laboratory experiments using surface water taken from a eutrophic lake. Based on initial range finding, a concentration of 50 microg l(-1) dissolved 14C-microcystin-LR was selected for subsequent time-course experiments. The first was performed ...... fractions. The study demonstrated that biodegradation of dissolved microcystin-LR occurred in water collected at a lake surface with carbon dioxide as a major end-product....

  7. Influence of Concentration and Salinity on the Biodegradability of Organic Additives in Hydraulic Fracturing Fluid

    Science.gov (United States)

    Mouser, P. J.; Kekacs, D.

    2014-12-01

    One of the risks associated with the use of hydraulic fracturing technologies for energy development is the potential release of hydraulic fracturing-related fluids into surface waters or shallow aquifers. Many of the organic additives used in hydraulic fracturing fluids are individually biodegradable, but little is know on how they will attenuate within a complex organic fluid in the natural environment. We developed a synthetic hydraulic fracturing fluid based on disclosed recipes used by Marcellus shale operators to evaluate the biodegradation potential of organic additives across a concentration (25 to 200 mg/L DOC) and salinity gradient (0 to 60 g/L) similar to Marcellus shale injected fluids. In aerobic aqueous solutions, microorganisms removed 91% of bulk DOC from low SFF solutions and 57% DOC in solutions having field-used SFF concentrations within 7 days. Under high SFF concentrations, salinity in excess of 20 g/L inhibited organic compound biodegradation for several weeks, after which time the majority (57% to 75%) of DOC remained in solution. After SFF amendment, the initially biodiverse lake or sludge microbial communities were quickly dominated (>79%) by Pseudomonas spp. Approximately 20% of added carbon was converted to biomass while the remainder was respired to CO2 or other metabolites. Two alcohols, isopropanol and octanol, together accounted for 2-4% of the initial DOC, with both compounds decreasing to below detection limits within 7 days. Alcohol degradation was associated with an increase in acetone at mg/L concentrations. These data help to constrain the biodegradation potential of organic additives in hydraulic fracturing fluids and guide our understanding of the microbial communities that may contribute to attenuation in surface waters.

  8. Dilution limits dissolved organic carbon utilization in the deep ocean

    NARCIS (Netherlands)

    Arrieta, J.M.; Mayol, E.; Hansman, R.L.; Herndl, G.J.; Dittmar, T.; Duarte, C.M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An

  9. Air oxidation and biodegradation of the organic matter from the Boom Claycomparison between artificial and natural altered series

    International Nuclear Information System (INIS)

    Blanchart, Pascale; Faure, Pierre; Michels, Raymond; Bruggeman, Christophe; De Craen, Mieke

    2010-01-01

    of these artificial series was compared to samples collected in situ, in older galleries. This comparison between natural and artificial series allowed to assess the behaviour of molecular markers and kerogen as a function of air oxidation. Moreover, water leaching experiments allowed studying influence of air oxidation on the nature and the amount of dissolved organic carbon (DOC). By comparison with in-situ collected piezometer waters it will be possible to determine if air oxidation is a plausible control for DOC in the Boom Clay. Finally biodegradation experiments were started in August 2009. The bacteria used in these experiments are of the sulfato reducing bacteria (SRB). Three conditions were chosen: - PRACLAY and bacteria. - PRACLAY oxidized during 2 months to 130 deg. C and bacteria. - PRACLAY and death inoculum (for control experiments). The samples remain in incubators incubator during 2, 4, 6, 9 months. Molecular markers will be followed in the various samples and will see the influence of biodegradation on alteration of organic matter. (authors)

  10. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    Science.gov (United States)

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-12-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p  0.95, p CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.

  11. Global effects of agriculture on fluvial dissolved organic matter

    DEFF Research Database (Denmark)

    Graeber, Daniel; Boëchat, Iola; Encina, Francisco

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter...

  12. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter

    International Nuclear Information System (INIS)

    Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, F.; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D.

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid–base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. Long-term trends in a range of acid waters were also reproduced. The model suggests that the sustained nature of observed DOC increases can best be explained by a continuously replenishing potentially-dissolved carbon pool, rather than dissolution of a large accumulated store. The simulations informed the development of hypotheses that: DOC increase is related to plant productivity increase as well as to pH change; DOC increases due to nitrogen pollution will become evident, and be sustained, after soil pH has stabilised. -- Highlights: • A model of dissolved organic carbon (DOC) was developed by integrating simple models • MADOC simulates effects of sulphur and nitrogen deposition and interactions with pH. • Responses of DOC and pH to experimental acidification and alkalisation were reproduced. • The persistence of DOC increases will depend on continued supply of potential DOC. • DOC fluxes are likely determined by plant productivity as well as soil solution pH. -- Effects of changes in sulphur and nitrogen pollution on dissolved organic carbon fluxes are predicted by simulating soil organic matter cycling, the release of potentially-dissolved carbon, and interactions with soil pH

  13. Photochemical Transformation and Bacterial Utilization of Dissolved Organic Matter and Disinfection Byproduct Precursors from Foliar Litter

    Science.gov (United States)

    Chow, A. T.; Wong, P.; O'Geen, A. T.; Dahlgren, R. A.

    2009-12-01

    Foliar litter is an important terrestrial source of dissolved organic matter (DOM) in surface water. DOM is a public health concern since it is a precursor of carcinogenic disinfection byproducts (DBPs) during drinking water treatment. Chemical characterization of in-situ water samples for their impact on water treatment may be misleading because DOM characteristics can be altered from their original composition during downstream transport to water treatment plants. In this study, we collected leachate from four fresh litters and decomposed duffs from four dominant vegetation components of California oak woodlands: blue oak (Quercus douglassi), live oak (Quercus wislizenii), foothill pine (Pinus sabiniana), and annual grasses to evaluate their DOM degradability and the reactivity of altered DOM towards DBP formation. Samples were filtered through a sterilized membrane (0.2 micron) and exposed to natural sunlight and Escherichia coli K-12 independently for 14 days. Generally speaking, leachate from decomposed duff was relatively resistant towards biodegradation compared to that from fresh litter, but the former was more susceptible to photo-transformation. Photo-bleaching caused a 30% decrease in ultra-violet absorbance at 254 nm (UVA) but no significant changes in dissolved organic carbon (DOC) concentration. This apparent loss of aromatic carbon in DOM, in terms of specific UVA, did not result in a decrease of specific trihalomethane (THM) formation potential, although aromatic carbon is considered as a major reactive site for THM formation. In addition, there were significant increases (p < 0.05) of chloral hydrate after the 14-day exposure, suggesting that the photolytic products could be a precursor of chloral hydrate. In contrast, samples inoculated with E. coli did not show a significant effect on the DOC concentration, UVA or DBP formation, although the colony counts indicated a 2-log cell growth during the 14-day incubation. Results suggest photolysis is a

  14. Ozone/UV treatment to enhance biodegradation of surfactants in industrial wastewater. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Cline, J.E. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Sullivan, P.F. [Specialty Industrial Products, Inc., Spartanburg, SC (United States); Lovejoy, M.A.; Collier, J. [Sun River Innovations, Ltd., Lexington, KY (United States); Adams, C.D. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    The new owners of a surfactant manufacturing plant wanted to triple production but were limited by the plant`s wastewater treatment capacity. Mass balance calculations indicated that little aerobic biodegradation was occurring in the plant`s wastewater treatment system. Literature reviews and laboratory tests confirmed that as much as 60% of the plant`s products might resist aerobic biodegradation. Overall chemical losses, both solid and aqueous, were estimated at 3.8% of theoretical. Organic loadings to the wastewater treatment system were 170 kg/d of which 50 kg/d reached the biological treatment system. Pollution prevention measures have allowed a > 20% increase in production levels with a > 30% decrease in effluent volume and no increase in discharge of chemical oxygen demand (COD). A new dissolved air flotation (DAF) system removes 70% of the organic loading. Sludge volumes are lower by an order of magnitude than with the clarifier/drum-filter process it replaced.

  15. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    Science.gov (United States)

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, Robert G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  16. Selective Leaching of Dissolved Organic Matter From Alpine Permafrost Soils on the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wang, Yinghui; Xu, Yunping; Spencer, Robert G. M.; Zito, Phoebe; Kellerman, Anne; Podgorski, David; Xiao, Wenjie; Wei, Dandan; Rashid, Harunur; Yang, Yuanhe

    2018-03-01

    Ongoing global temperature rise has caused significant thaw and degradation of permafrost soils on the Qinghai-Tibetan Plateau (QTP). Leaching of organic matter from permafrost soils to aquatic systems is highly complex and difficult to reproduce in a laboratory setting. We collected samples from natural seeps of active and permafrost layers in an alpine swamp meadow on the QTP to shed light on the composition of mobilized dissolved organic matter (DOM) by combining optical measurements, ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry, radiocarbon (14C), and solid-state 13C nuclear magnetic resonance spectroscopy. Our results show that even though the active layer soils contain large amounts of proteins and carbohydrates, there is a selective release of aromatic components, whereas in the deep permafrost layer, carbohydrate and protein components are preferentially leached during the thawing process. Given these different chemical characteristics of mobilized DOM, we hypothesize that photomineralization contributes significantly to the loss of DOM that is leached from the seasonally thawed surface layer. However, with continued warming, biodegradation will become more important since biolabile materials such as protein and carbohydrate are preferentially released from deep-layer permafrost soils. This transition in DOM leachate source and associated chemical composition has ramifications for downstream fluvial networks on the QTP particularly in terms of processing of carbon and associated fluxes.

  17. Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the southern ocean

    OpenAIRE

    Ortega-Retuerta, E.; Frazer, Thomas K.; Duarte, Carlos M.; Ruiz-Halpern, Sergio; Tovar-Sánchez, Antonio; Arrieta López de Uralde, Jesús M.; Reche, Isabel

    2009-01-01

    Chromophoric dissolved organic matter (CDOM), the optically active fraction of dissolved organic matter, is primarily generated by pelagic organisms in the open ocean. In this study, we experimentally determined the quantity and spectral quality of CDOM generated by bacterioplankton using two different substrates (with and without photoproducts) and by Antarctic krill Euphausia superba and evaluated their potential contributions to CDOM dynamics in the peninsular region of the Southern Ocean....

  18. Degradation of riverine dissolved organic matter by seawater bacteria

    NARCIS (Netherlands)

    Rochelle-Newall, E.J.; Pizay, M-D.; Middelburg, J.J.; Boschker, H.T.S.; Gattuso, J.P.

    2004-01-01

    The functional response of a seawater bacterial community transplanted into freshwater dissolved organic matter (DOM) was investigated together with the response of natural populations of bacteria to size-fractioned natural source water. Seawater bacteria were incubated over a period of 8 d in

  19. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    OpenAIRE

    Yun-Young Choi; Seung-Ryong Baek; Jae-In Kim; Jeong-Woo Choi; Jin Hur; Tae-U Lee; Cheol-Joon Park; Byung Joon Lee

    2017-01-01

    Municipal wastewater treatment plants (WWTPs) in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industri...

  20. A watershed-scale characterization of dissolved organic carbon and nutrients on the South Carolina Coastal Plain

    Science.gov (United States)

    Daniel Tufford; Setsen Alton-Ochir

    2016-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver of numerous biogeochemical processes in aquatic ecosystems, both in-stream and downstream in estuaries. This study sought to characterize chromophoric DOM (CDOM), dissolved organic carbon (DOC), and dissolved nutrients in major rivers and their...

  1. A watershed-scale characterication of dissolved organic carbon and nutrients on the South Carolina Coastal Plain

    Science.gov (United States)

    Daniel L. Tufford; Setsen Alton-Ochir; Warren Hankinson

    2016-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver of numerous biogeochemical processes in aquatic ecosystems, both in-stream and downstream in estuaries. This study sought to characterize chromophoric DOM (CDOM), dissolved organic carbon (DOC), and dissolved nutrients in major rivers and their...

  2. Microencapsulation of superoxide dismutase into biodegradable microparticles by spray-drying.

    Science.gov (United States)

    Youan, Bi-Botti Célestin

    2004-01-01

    The aim of this work was to encapsulate superoxide dismutase (SOD) into biodegradable microparticles by spray-drying technique. The nature of the organic solvent to dissolve the polymer, the method of incorporation of the drug in the organic phase (with or without a surfactant, namely sucrose ester of HLB = 6), the surfactant/polymer ratio, and the nature of the biodegradable polyesters were investigated as formulation variables. The polyesters investigated as matrix were poly(epsilon-caprolactone) (PCL), poly(d, l, lactide-co-glycolide) (PLG-RG756), and poly(d, l-lactide) (PLA-R207) of respective molecular weight 78.2 kDa, 84.8 kDa, and 199.8 kDa. At surfactant/polymer ratio of 1/10, the SOD-retained enzymatic activities were higher (> 95%) for PLG-RG756 and PLA-R207 but relatively lower for the PCL (approximately 85%) probably due to the PCL relatively higher hydrophobicity. The obtained microparticles exhibited average volume mean diameter of 4-10 microm, the smaller for PCL and the larger for PLG-RG756 polymeric matrix. The in vitro release profile showed that SOD was completely (100%) released from PLA-R207 in 48 hr and from PLG-RG756 and PCL within 72 hr. These results showed that spray-drying with incorporation of surfactant such as sucrose ester may efficiently encapsulate SOD into biodegradable microparticles. Such formulations may improve the bioavailability of SOD and similar biopharmaceuticals.

  3. Biodegradation of organ chlorine pesticides in contaminated soil collected from Yen Tap, Cam Khe, Phu Tho

    International Nuclear Information System (INIS)

    Nguyen Thuy Binh; Nguyen Van Toan; Pham Thi Thai; Dinh Thi Thu Hang

    2007-01-01

    Biodegradation of POPs contaminant in soil collected from Phu Tho province and Nghe An province had carried out. The process comprises treating soil, which contains anaerobic and aerobic microbes capable of transforming lindane and DDT into harmless material and being under anaerobic and aerobic steps. Significant biodegradation of POPs contaminants occurred in there tests. But some of toxic organic compounds remained. (author)

  4. Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean.

    Science.gov (United States)

    Clifford, Elisabeth L; Hansell, Dennis A; Varela, Marta M; Nieto-Cid, Mar; Herndl, Gerhard J; Sintes, Eva

    2017-11-01

    Taurine (Tau), an amino acid-like compound, is present in almost all marine metazoans including crustacean zooplankton. It plays an important physiological role in these organisms and is released into the ambient water throughout their life cycle. However, limited information is available on the release rates by marine organisms, the concentrations and turnover of Tau in the ocean. We determined dissolved free Tau concentrations throughout the water column and its release by abundant crustacean mesozooplankton at two open ocean sites (Gulf of Alaska and North Atlantic). At both locations, the concentrations of dissolved free Tau were in the low nM range (up to 15.7 nM) in epipelagic waters, declining sharply in the mesopelagic to about 0.2 nM and remaining fairly stable throughout the bathypelagic waters. Pacific amphipod-copepod assemblages exhibited lower dissolved free Tau release rates per unit biomass (0.8 ± 0.4 μmol g -1 C-biomass h -1 ) than Atlantic copepods (ranging between 1.3 ± 0.4 μmol g -1 C-biomass h -1 and 9.5 ± 2.1 μmol g -1 C-biomass h -1 ), in agreement with the well-documented inverse relationship between biomass-normalized excretion rates and body size. Our results indicate that crustacean zooplankton might contribute significantly to the dissolved organic matter flux in marine ecosystems via dissolved free Tau release. Based on the release rates and assuming steady state dissolved free Tau concentrations, turnover times of dissolved free Tau range from 0.05 d to 2.3 d in the upper water column and are therefore similar to those of dissolved free amino acids. This rapid turnover indicates that dissolved free Tau is efficiently consumed in oceanic waters, most likely by heterotrophic bacteria.

  5. Characteristics of dissolved organic matter following 20 years of peatland restoration

    NARCIS (Netherlands)

    Höll, B.S.; Fiedler, S.; Jungkunst, H.F.; Kalbitz, K.; Freibauer, A.; Drösler, M.; Stahr, K.

    2009-01-01

    The changes in the amounts and composition of dissolved organic matter (DOM) following long-term peat restoration are unknown, although this fraction of soil organic matter affects many processes in such ecosystems. We addressed this lack of knowledge by investigating a peatland in south-west

  6. Fluorescent dissolved organic matter in the continental shelf waters ...

    Indian Academy of Sciences (India)

    Fluorescent dissolved organic matter (FDOM) of southwestern Bay of Bengal surface water during southwest monsoon consisted five fluorophores, three humic-like and two protein-like. The humification index (HIX) and humic fluorophores, viz., visible (C), marine (M) and UV (A) humic-likes indicated, better than ...

  7. Origin of heat-induced structural changes in dissolved organic matter

    Czech Academy of Sciences Publication Activity Database

    Drastík, M.; Novák, František; Kučerík, J.

    2013-01-01

    Roč. 90, č. 2 (2013), s. 789-795 ISSN 0045-6535 Institutional support: RVO:60077344 Keywords : dissolved organic matter * humic substances * hydration * hysteresis Subject RIV: DF - Soil Science Impact factor: 3.499, year: 2013

  8. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks.

    Science.gov (United States)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-11-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (Kdoc) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. Kdoc values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol-water partition coefficients (Kow) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R(2) = 0.95, p mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCFDOM) and DOM-influenced lowest observed effect level (LOELDOM) indicate that the ecological risk of HOCs is decreased by DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks

    International Nuclear Information System (INIS)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-01-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (K_d_o_c) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. K_d_o_c values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol–water partition coefficients (K_o_w) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R"2 = 0.95, p < 0.05) and organic chlorine pesticides (OCPs) (methoxychlor excluded, R"2 = 0.82, p < 0.05). The positive correlations identified between the lgK_d_o_c and lgBCF (bioconcentration factor) for PBDEs and OCPs, as well as the negative correlation observed for polycyclic aromatic hydrocarbons (PAHs), indicated that different binding or partition mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCF_D_O_M) and DOM-influenced lowest observed effect level (LOEL_D_O_M) indicate that the ecological risk of HOCs is decreased by DOM. - Highlights: • Complexing-flocculation is viable in measuring K_d_o_c in a multi-polluted system. • The binding mechanisms between PAHs and organic halogens were different. • DOM should be considered when assessing ecological risk of HOCs in natural ecosystem. - Assuming only freely dissolved HOCs are effective, bioconcentration factors and ecological risks of HOCs are decreased by dissolved organic matter via binding.

  10. Towards an understanding of feedbacks between plant productivity, acidity and dissolved organic matter

    Science.gov (United States)

    Rowe, Ed; Tipping, Ed; Davies, Jessica; Monteith, Don; Evans, Chris

    2014-05-01

    The recent origin of much dissolved organic carbon (DOC) (Tipping et al., 2010) implies that plant productivity is a major control on DOC fluxes. However, the flocculation, sorption and release of potentially-dissolved organic matter are governed by pH, and widespread increases in DOC concentrations observed in northern temperate freshwater systems seem to be primarily related to recovery from acidification (Monteith et al., 2007). We explore the relative importance of changes in productivity and pH using a model, MADOC, that incorporates both these effects (Rowe et al., 2014). The feedback whereby DOC affects pH is included. The model uses an annual timestep and relatively simple flow-routing, yet reproduces observed changes in DOC flux and pH in experimental (Evans et al., 2012) and survey data. However, the first version of the model probably over-estimated responses of plant productivity to nitrogen (N) deposition in upland semi-natural ecosystems. There is a strong case that plant productivity is an important regulator of DOC fluxes, and theoretical reasons for suspecting widespread productivity increases in recent years due not only to N deposition but to temperature and increased atmospheric CO2 concentrations. However, evidence that productivity has increased in upland semi-natural ecosystems is sparse, and few studies have assessed the major limitations to productivity in these habitats. In systems where phosphorus (P) limitation prevails, or which are co-limited, productivity responses to anthropogenic drivers will be limited. We present a revised version of the model that incorporates P cycling and appears to represent productivity responses to atmospheric N pollution more realistically. Over the long term, relatively small fluxes of nutrient elements into and out of ecosystems can profoundly affect productivity and the accumulation of organic matter. Dissolved organic N (DON) is less easily intercepted by plants and microbes than mineral N, and DON

  11. Changes in The Content of Biodegradable Organic Matter in Tap Water in The City of Częstochowa / Zmiany Zawartości Biodegradowalnej Materii Organicznej w Wodzie Wodociagowej Dla Miasta Częstochowy

    Directory of Open Access Journals (Sweden)

    Rakocz Klaudia

    2016-03-01

    Full Text Available This paper presents research aimed at the assessment of biodegradable organic carbon content changes (BDOC during water disinfection process. The water samples examined in the research came from intakes, pumping stations at treatment plants situated in the Silesia district and water consumers. The examined water was underground water. One water sample was disinfected by sodium sub chloride while the other one by ozone. BDOC was determined using the Joret method, which involves observation of dissolved organic carbon (DOC decrease in the examined water. The research has shown that BDOC content fluctuates at every stage of the treatment process and distribution of the examined water. Another analyzed parameter was biological stability of water.

  12. δ15N, δ13C and radiocarbon in dissolved organic carbon as indicators of environmental change

    International Nuclear Information System (INIS)

    Geyer, S.; Kalbitz, K.

    2002-01-01

    Decomposition, humification, and stabilization of soil organic matter are closely related to the dynamics of dissolved organic matter. Enhanced peat decomposition results in increasing aromatic structures and polycondensation of dissolved organic molecules. Although recent studies support the concept that DOM can serve as an indicator for processes driven by changing environmental processes in soils affecting the C and N cycle (like decomposition and humification) and also permit insight in former conditions some 1000 years ago, it is unknown whether dissolved organic carbon (DOC) and nitrogen (DON) have an equal response to these processes. (author)

  13. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    KAUST Repository

    Baltar, Federico

    2017-04-19

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes in many marine environments more than half of the total activity. This high proportion causes an uncoupling between hydrolysis rates and the actual bacterial activity. However, we do not know what factors control the proportion of dissolved relative to total EEA, nor how this may change in the future ocean. To resolve this, we performed laboratory experiments with water from the Great Barrier Reef (Australia) to study the effects of temperature and dissolved organic matter sources on EEA and the proportion of dissolved EEA. We found that warming increases the rates of organic matter hydrolysis and reduces the proportion of dissolved relative to total EEA. This suggests a potential increase of the coupling between organic matter hydrolysis and heterotrophic activities with increasing ocean temperatures, although strongly dependent on the organic matter substrates available. Our study suggests that local differences in the organic matter composition in tropical coastal ecosystems will strongly affect the proportion of dissolved EEA in response to ocean warming.

  14. FACTORS INFLUENCING PHOTOREACTIONS OF DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    Science.gov (United States)

    Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...

  15. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    DEFF Research Database (Denmark)

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse...... experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA......), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met.Obtained degradation kinetics are in the order, BPA

  16. Biodegradation of Organic Liquid Waste by Using Consortium Bacteria as Material Preparation of Environmental Pollution Course Textbook

    Directory of Open Access Journals (Sweden)

    Dora Dayu Rahma Turista

    2017-07-01

    Full Text Available Organic waste is one waste type which oftenly pollutes the waters. Biodegradation can be used as an environmental remedy solution that is contaminated by organic matter. This research aimed to determine the ability of bacteria consortium in degrading of organic liquid waste, and construct the textbook for Environmental Pollution subject based on research of biodegradation organic waste by using bacteria consortium. This research was done through two stages. The first stage was an experimental research by using Randomized Complete Designe with bacterial type treatment and 3 repetitions, while the second phase of research was a developmental research from the first stage. The results of the first phase showed that the combination of 3 indigenous isolats bacteria (Enterobacter gergoviae, Vibrio parahaemolyticus, and Pseudomonas stutzeri was the highest potential bacteria in decreasing BOD (71.75% , COD (74.40%, TSS (58.44%, and increasing DO (84.15%. The second phase was Educational Research and Development of teaching materials which refers to the development model of Borg & Gall. The stages of research were: Research and Information Collecting, Planning, Develop Preliminary Form of Product, Preliminary Field Testing and Main Product Revision which was produced as textbook for the Environmental Pollution course entitled Biodegradation Organic Waste by Using Bacteria Consortium.

  17. Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads.

    Science.gov (United States)

    Kanagaraj, James; Mandal, Asit Baran

    2012-01-01

    Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.

  18. Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion?

    Science.gov (United States)

    Hulatt, Chris J; Thomas, David N

    2010-11-01

    Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.

  19. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics.

    Science.gov (United States)

    Devillers, J; Pandard, P; Richard, B

    2013-01-01

    Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure-biodegradation relationship (SBR) and quantitative structure-biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite™ includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.

  20. Facilitated transport of polychlorinated biphenyls and polybrominated diphenyl ethers by dissolved organic matter.

    NARCIS (Netherlands)

    ter Laak, T.L.; van Eijkeren, J.C.; Busser, F.; van Leeuwen, H.P.; Hermens, J.L.M.

    2009-01-01

    The exchange rate of hydrophobic organic chemicals between the aqueous phase and a sorbent (e.g., soil, organism, passive sampler) is relevant for distribution processes between environmental compartments, including organisms. Dissolved phases such as humic acids, proteins, and surfactants can

  1. Facilitated transport of polychlorinated biphenyls and polybrominated diphenyl ethers by dissolved organic matter

    NARCIS (Netherlands)

    Laak, ter T.L.; Eijkeren, van J.C.H.; Busser, F.J.M.; Leeuwen, van H.P.; Hermens, J.L.

    2009-01-01

    The exchange rate of hydrophobic organic chemicals between the aqueous phase and a sorbent (e.g., soil, organism, passive sampler) is relevant for distribution processes between environmental compartments, including organisms. Dissolved phases such as humic acids, proteins, and surfactants can

  2. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) SOURCE CHARACTERIZATION IN THE LOUISIANA BIGHT

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) in the Mississippi plume region may have several distinct sources: riverine (terrestrial soils), wetland (terrestrial plants), biological production (phytoplankton, zooplankton, microbial), and sediments. Complex mixing, photodegradati...

  3. Chromophoric dissolved organic matter export from U.S. rivers

    Science.gov (United States)

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-04-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  4. Role of primary substrate composition on microbial community structure and function and trace organic chemical attenuation in managed aquifer recharge systems

    KAUST Repository

    Li, Dong; Alidina, Mazahirali; Drewes, Jorg

    2014-01-01

    This study was performed to reveal the microbial community characteristics in simulated managed aquifer recharge (MAR), a natural water treatment system, under different concentrations and compositions of biodegradable dissolved organic carbon (BDOC

  5. Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water.

    Science.gov (United States)

    Hijnen, W A M; Schurer, R; Bahlman, J A; Ketelaars, H A M; Italiaander, R; van der Wal, A; van der Wielen, P W J J

    2018-02-01

    It is possible to distribute drinking water without a disinfectant residual when the treated water is biologically stable. The objective of this study was to determine the impact of easily and slowly biodegradable compounds on the biostability of the drinking water at three full-scale production plants which use the same surface water, and on the regrowth conditions in the related distribution systems. Easily biodegradable compounds in the drinking water were determined with AOC-P17/Nox during 2012-2015. Slowly biodegradable organic compounds measured as particulate and/or high-molecular organic carbon (PHMOC), were monitored at the inlet and after the different treatment stages of the three treatments during the same period. The results show that PHMOC (300-470 μg C L -1 ) was approximately 10% of the TOC in the surface water and was removed to 50-100 μg C L -1 . The PHMOC in the water consisted of 40-60% of carbohydrates and 10% of proteins. A significant and strong positive correlation was observed for PHMOC concentrations and two recently introduced bioassay methods for slowly biodegradable compounds (AOC-A3 and biomass production potential, BPC 14 ). Moreover, these three parameters in the biological active carbon effluent (BACF) of the three plants showed a positive correlation with regrowth in the drinking water distribution system, which was assessed with Aeromonas, heterotrophic plate counts, coliforms and large invertebrates. In contrast, the AOC-P17/Nox concentrations did not correlate with these regrowth parameters. We therefore conclude that slowly biodegradable compounds in the treated water from these treatment plants seem to have a greater impact on regrowth in the distribution system than easily biodegradable compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks.

    Science.gov (United States)

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S; Álvarez, Pedro A; Reche, Isabel

    2018-01-01

    Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named "extractive" species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (-holothurian) only contained around 810 individuals of Anemonia sulcata , whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali . We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and -holothurians (-H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four -H tanks that contained only 80 individuals of A. sulcata . In the time-series, absorption coefficients at 325 nm ( a 325 ) and spectral slopes from 275 to 295 nm ( S 275-295 ) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m -1 and 16 µm -1 , respectively) than in the effluent of the -holothurian tank (average: 0.69 m -1 and 34 µm -1 , respectively), the former being similar to those found in the inlet

  7. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    Science.gov (United States)

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  8. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.

    Science.gov (United States)

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M

    2016-08-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. Copyright © 2016. Published by Elsevier Ltd.

  9. FDA-Approved Natural Polymers for Fast Dissolving Tablets

    Directory of Open Access Journals (Sweden)

    Md Tausif Alam

    2014-01-01

    Full Text Available Oral route is the most preferred route for administration of different drugs because it is regarded as safest, most convenient, and economical route. Fast disintegrating tablets are very popular nowadays as they get dissolved or facilely disintegrated in mouth within few seconds of administration without the need of water. The disadvantages of conventional dosage form, especially dysphagia (arduousness in swallowing, in pediatric and geriatric patients have been overcome by fast dissolving tablets. Natural materials have advantages over synthetic ones since they are chemically inert, non-toxic, less expensive, biodegradable and widely available. Natural polymers like locust bean gum, banana powder, mango peel pectin, Mangifera indica gum, and Hibiscus rosa-sinenses mucilage ameliorate the properties of tablet and utilized as binder, diluent, and superdisintegrants increase the solubility of poorly water soluble drug, decrease the disintegration time, and provide nutritional supplement. Natural polymers are obtained from the natural origin and they are cost efficacious, nontoxic, biodegradable, eco-friendly, devoid of any side effect, renewable, and provide nutritional supplement. It is proved from the studies that natural polymers are more safe and efficacious than the synthetic polymers. The aim of the present article is to study the FDA-approved natural polymers utilized in fast dissolving tablets.

  10. Distinct optical chemistry of dissolved organic matter in urban pond ecosystems

    Czech Academy of Sciences Publication Activity Database

    McEnroe, N. A.; Williams, C. J.; Xenopoulos, M. A.; Porcal, Petr; Frost, P. C.

    2013-01-01

    Roč. 8, č. 11 (2013), e80334 E-ISSN 1932-6203 Institutional support: RVO:60077344 Keywords : dissolved organic matter * photodegradation * fluorescence * PARAFAC Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.534, year: 2013

  11. Drivers of fluorescent dissolved organic matter in the global epipelagic ocean

    KAUST Repository

    Catalá , T. S.; Á lvarez-Salgado, X. A.; Otero, J.; Iuculano, F.; Companys, B.; Horstkotte, B.; Romera-Castillo, C.; Nieto-Cid, M.; Latasa, M.; Moran, Xose Anxelu G.; Gasol, J. M.; Marrasé , C.; Stedmon, C. A.; Reche, I.

    2016-01-01

    Fluorescent dissolved organic matter (FDOM) in open surface waters (< 200 m) of the Atlantic, Pacific, and Indian oceans was analysed by excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC). A four-component PARAFAC

  12. Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern north Atlantic ocean

    NARCIS (Netherlands)

    Lønborg, C.; Yokokawa, T.; Herndl, G.J.; Alvarez-Salgado, X.A.

    2015-01-01

    The distribution and fate of coloured dissolved organic matter (CDOM) in the epipelagic Eastern North Atlantic was investigated during a cruise in the summer 2009 by combining field observations and culture experiments. Dissolved organic carbon (DOC) and nitrogen (DON), the absorption spectra of

  13. Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels

    OpenAIRE

    Rochelle-Newall, E.; Delille, B.; Frankignoulle, M.; Gattuso, J.-P.; Jacquet, S.; Riebesell, Ulf; Terbrüggen, A.; Zondervan, I.

    2004-01-01

    Chromophoric dissolved organic matter (CDOM) represents the optically active fraction of the bulk dissolved organic matter (DOM) pool. Recent evidence pointed towards a microbial source of CDOM in the aquatic environment and led to the proposal that phytoplankton is not a direct source of CDOM, but that heterotrophic bacteria, through reprocessing of DOM of algal origin, are an important source of CDOM. In a recent experiment designed at looking at the effects of elevated pCO2 on blooms of th...

  14. Development of an extraction method for the determination of dissolved organic radiocarbon in seawater by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Tanaka, Takayuki; Otosaka, Shigeyoshi; Togawa, Orihiko; Amano, Hikaru

    2009-01-01

    We developed an extraction method for accurately and reproducibly determining dissolved organic radiocarbon in seawater by ultraviolet oxidation of dissolved organic carbon and subsequent accelerator mass spectrometry. We determined the irradiation time required for oxidation of the dissolved organic carbon. By modifying the experimental apparatus, we decreased contamination by dead carbon, which came mainly from petrochemical products in the apparatus and from the incursion of carbon dioxide from the atmosphere. The modifications decreased the analytical blank level to less than 1% of sample size, a percentage that had not previously been achieved. The recovery efficiency was high, 95±1%. To confirm both the accuracy and reproducibility of the method, we tested it by analyzing an oxalic acid radiocarbon reference material and by determining the dissolved organic carbon in surface seawater samples. (author)

  15. The Absorption of Light in Lakes: Negative Impact of Dissolved Organic Carbon on Primary Productivity

    OpenAIRE

    Thrane, Jan-Erik; Hessen, Dag O.; Andersen, Tom

    2014-01-01

    Colored dissolved organic matter (CDOM) absorbs a substantial fraction of photosynthetically active radiation (PAR) in boreal lakes. However, few studies have systematically estimated how this light absorption influences pelagic primary productivity. In this study, 75 boreal lakes spanning wide and orthogonal gradients in dissolved organic carbon (DOC) and total phosphorus (TP) were sampled during a synoptic survey. We measured absorption spectra of phytoplankton pigments, CDOM, and non-algal...

  16. Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis

    Science.gov (United States)

    Horváth, Anikó; Futó, István; Palcsu, László

    2014-05-01

    Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.

  17. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Science.gov (United States)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  18. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Directory of Open Access Journals (Sweden)

    Aron eStubbins

    2015-10-01

    Full Text Available Wildfires have produced black carbon (BC since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC. The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon were analyzed for dissolved organic carbon (DOC, colored dissolved organic matter (CDOM, and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254. Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  19. [Sources of dissolved organic carbon and the bioavailability of dissolved carbohydrates in the tributaries of Lake Taihu].

    Science.gov (United States)

    Ye, Lin-Lin; Wu, Xiao-Dong; Kong, Fan-Xiang; Liu, Bo; Yan, De-Zhi

    2015-03-01

    Surface water samples of Yincungang and Chendonggang Rivers were collected from September 2012 to August 2013 in Lake Taihu. Water temperature, Chlorophyll a and bacterial abundance were analyzed, as well as dissolved organic carbon (DOC) concentrations, stable carbon isotope of DOC (Δ13C(DOC)), specific UV absorbance (SUVA254 ) and dissolved carbohydrates concentrations. Δ13C(DOC) ranged from -27.03% per thousand ± 0.30% per thousand to -23.38%per thousand ± 0.20% per thousand, indicating a terrestrial source. Both the autochthonous and allochthonous sources contributed to the carbohydrates pool in the tributaries. Significant differences in PCHO (polysaccharides) and MCHO (monosaccharides) concentrations were observed between spring-summer and autumn-winter (P carbohydrates. PCHO contributed a major fraction to TCHO (total dissolved carbohydrates) in autumn and winter, which could be explained by the accumulation of undegradable PCHO limited by the low water temperature; MCHO contributed a major fraction to TCHO in spring and summer, which might be caused by the transformation from PCHO by microbes at high water temperature.

  20. Acid-base properties of Baltic Sea dissolved organic matter

    Science.gov (United States)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2017-09-01

    Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.

  1. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica.

    Science.gov (United States)

    Sanyal, Aritri; Antony, Runa; Samui, Gautami; Thamban, Meloth

    2018-03-01

    Cryoconite holes (cylindrical melt-holes on the glacier surface) are important hydrological and biological systems within glacial environments that support diverse microbial communities and biogeochemical processes. This study describes retrievable heterotrophic microbes in cryoconite hole water from three geographically distinct sites in Antarctica, and a Himalayan glacier, along with their potential to degrade organic compounds found in these environments. Microcosm experiments (22 days) show that 13-60% of the dissolved organic carbon in the water within cryoconite holes is bio-available to resident microbes. Biodegradation tests of organic compounds such as lactate, acetate, formate, propionate and oxalate that are present in cryoconite hole water show that microbes have good potential to metabolize the compounds tested. Substrate utilization tests on Biolog Ecoplate show that microbial communities in the Himalayan samples are able to oxidize a diverse array of organic substrates including carbohydrates, carboxylic acids, amino acids, amines/amides and polymers, while Antarctic communities generally utilized complex polymers. In addition, as determined by the extracellular enzyme activities, majority of the microbes (82%, total of 355) isolated in this study (Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Basidiomycota) had ability to degrade a variety of compounds such as proteins, lipids, carbohydrates, cellulose and lignin that are documented to be present within cryoconite holes. Thus, microbial communities have good potential to metabolize organic compounds found in the cryoconite hole environment, thereby influencing the water chemistry in these holes. Moreover, microbes exported downstream during melting and flushing of cryoconite holes may participate in carbon cycling processes in recipient ecosystems. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Chromophoric dissolved organic matter export from U.S. rivers

    Science.gov (United States)

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  3. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Sadeghi-Nassaj

    2018-02-01

    Full Text Available Background Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM. A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named “extractive” species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM. However, the effects of sea cucumbers on CDOM are still unknown. Methods During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (−holothurian only contained around 810 individuals of Anemonia sulcata, whereas the other tank (+holothurian also included 90 individuals of Holothuria tubulosa and Holothuria forskali. We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm and qualitative (spectral slopes optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H and –holothurians (−H. We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four –H tanks that contained only 80 individuals of A. sulcata. Results In the time-series, absorption coefficients at 325 nm (a325 and spectral slopes from 275 to 295 nm (S275−295 were significantly lower in the effluent of the +holothurian tank (average: 0.33 m−1 and 16 µm−1, respectively than in the effluent of the −holothurian tank (average: 0.69 m−1 and 34 µm−1, respectively, the former

  4. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment.

    Science.gov (United States)

    Ghattas, Ann-Kathrin; Fischer, Ferdinand; Wick, Arne; Ternes, Thomas A

    2017-06-01

    Although strictly anaerobic conditions prevail in several environmental compartments, up to now, biodegradation studies with emerging organic contaminants (EOCs), such as pharmaceuticals and personal care products, have mainly focused on aerobic conditions. One of the reasons probably is the assumption that the aerobic degradation is more energetically favorable than degradation under strictly anaerobic conditions. Certain aerobically recalcitrant contaminants, however, are biodegraded under strictly anaerobic conditions and little is known about the organisms and enzymatic processes involved in their degradation. This review provides a comprehensive survey of characteristic anaerobic biotransformation reactions for a variety of well-studied, structurally rather simple contaminants (SMOCs) bearing one or a few different functional groups/structural moieties. Furthermore it summarizes anaerobic degradation studies of more complex contaminants with several functional groups (CMCs), in soil, sediment and wastewater treatment. While strictly anaerobic conditions are able to promote the transformation of several aerobically persistent contaminants, the variety of observed reactions is limited, with reductive dehalogenations and the cleavage of ether bonds being the most prevalent. Thus, it becomes clear that the transferability of degradation mechanisms deduced from culture studies of SMOCs to predict the degradation of CMCs, such as EOCs, in environmental matrices is hampered due the more complex chemical structure bearing different functional groups, different environmental conditions (e.g. matrix, redox, pH), the microbial community (e.g. adaptation, competition) and the low concentrations typical for EOCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Molecular characterization of macrophyte-derived dissolved organic matters and their implications for lakes

    Science.gov (United States)

    Chemical properties of whole organic matter (OM) and its dissolved organic matter (DOM) fraction from six dominant macrophytes in Lake Dianchi were comparatively characterized, and their environmental implications were discussed. Significant differences in chemical composition of the OM samples were...

  6. Intrinsic bacterial biodegradation of petroleum contamination demonstrated in situ using natural abundance, molecular-level 14C analysis

    International Nuclear Information System (INIS)

    Slater, G.F.; Nelson, R.K.; Kile, B.M.; Reddy, C.M.

    2006-01-01

    Natural abundance, molecular-level C 14 analysis was combined with comprehensive gas chromatography (GC x GC) to investigate, in situ, the role of intrinsic biodegradation in the loss of petroleum hydrocarbons from the rocky, inter-tidal zone impacted by the Bouchard 120 oil spill. GC x GC analysis indicated accelerated losses of n-alkane components of the residual petroleum hydrocarbons between day 40 and day 50 after the spill. 14 C analysis of bacterial phospholipid fatty acids (PLFA) from the impacted zone on day 44 showed that the polyunsaturated fatty acids attributed to the photoautotrophic component of the microbial community had the same ( 14 C as the local dissolved inorganic carbon (DIG), indicating that this DIG was their carbon source. In contrast there was significant (C depletion in the saturated and mono-unsaturated PLFA indicating incorporation of petroleum carbon. This correlation between the observed accelerated n-alkane losses and microbial incorporation of (C-depleted carbon directly demonstrated, in situ, that intrinsic biodegradation was affecting the petroleum. Since the majority of organic contaminants originate from petroleum feed-stocks, in situ molecular-level 14 C analysis of microbial PLFA can provide insights into the occurrence and pathways of biodegradation of a wide range of organic contaminants. (Author)

  7. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater

    DEFF Research Database (Denmark)

    Christensen, Jette B.; Jensen, Dorthe Lærke; Grøn, Christian

    1998-01-01

    Samples of dissolved organic carbon (DOG) were obtained from landfill leachate-polluted groundwater at Vejen Landfill, Denmark. The humic acids, fulvic acids and the hydrophilic fraction were isolated and purified. Based on DOC measurements, the fulvic acid fraction predominated, accounting...

  8. Field demonstration of natural biodegradation of BTEX compounds

    International Nuclear Information System (INIS)

    Borden, R.C.; Davis, C.W.; LeBrun, L.E. IV

    1993-01-01

    An extensive field study is being conducted at an underground storage tank (UST) release in Sampson Co., NC to aid in understanding the physical, chemical and biological processes controlling the rate and extent of natural bioremediation. Uncontaminated groundwater at the site contains roughly 5 mg/l dissolved oxygen and 15 mg/l nitrate as N. Although the USTs and some soil were removed, much of the NAPL contaminated soil could not be excavated and remains behind as a continuing source of dissolved BTEX. The NAPL gasoline in the subsurface has been naturally biodegrading for several years. Because of the low ground water velocity and high levels of contamination, bioremediation is not yet complete but the effects of oxygen and nitrates enhanced bioremediation are evident. Toluene, ethylbenzene, m + p-xylene and to a lesser extent o-xylene are rapidly removed in a zone less than 125 ft (40 m) wide immediately downgradient from the NAPL source area. A long narrow plume of dissolved benzene and MTBE persists and is migrating downgradient towards a small creek. Biodegradation of the benzene plume appears to be limited by diffusion of oxygen into the anoxic plume. In aerobic microcosms, all BTEX components were rapidly removed to below detection. Toluene and ethylbenzene were removed to below 10 ug/l in the denitrifying microcosms after an extended lag period

  9. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lihui [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Zhang, Yongming, E-mail: zhym@shnu.edu.cn [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Bai, Qi; Yan, Ning; Xu, Hua [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701 (United States)

    2015-04-28

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA.

  10. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    International Nuclear Information System (INIS)

    Yang, Lihui; Zhang, Yongming; Bai, Qi; Yan, Ning; Xu, Hua; Rittmann, Bruce E.

    2015-01-01

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA

  11. Mangroves, a major source of dissolved organic carbon to the oceans

    Science.gov (United States)

    Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.

    2006-03-01

    Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.

  12. Terrestrial dissolved organic matter distribution in the North Sea.

    Science.gov (United States)

    Painter, Stuart C; Lapworth, Dan J; Woodward, E Malcolm S; Kroeger, Silke; Evans, Chris D; Mayor, Daniel J; Sanders, Richard J

    2018-07-15

    The flow of terrestrial carbon to rivers and inland waters is a major term in the global carbon cycle. The organic fraction of this flux may be buried, remineralized or ultimately stored in the deep ocean. The latter can only occur if terrestrial organic carbon can pass through the coastal and estuarine filter, a process of unknown efficiency. Here, data are presented on the spatial distribution of terrestrial fluorescent and chromophoric dissolved organic matter (FDOM and CDOM, respectively) throughout the North Sea, which receives organic matter from multiple distinct sources. We use FDOM and CDOM as proxies for terrestrial dissolved organic matter (tDOM) to test the hypothesis that tDOM is quantitatively transferred through the North Sea to the open North Atlantic Ocean. Excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) revealed a single terrestrial humic-like class of compounds whose distribution was restricted to the coastal margins and, via an inverse salinity relationship, to major riverine inputs. Two distinct sources of fluorescent humic-like material were observed associated with the combined outflows of the Rhine, Weser and Elbe rivers in the south-eastern North Sea and the Baltic Sea outflow to the eastern central North Sea. The flux of tDOM from the North Sea to the Atlantic Ocean appears insignificant, although tDOM export may occur through Norwegian coastal waters unsampled in our study. Our analysis suggests that the bulk of tDOM exported from the Northwest European and Scandinavian landmasses is buried or remineralized internally, with potential losses to the atmosphere. This interpretation implies that the residence time in estuarine and coastal systems exerts an important control over the fate of tDOM and needs to be considered when evaluating the role of terrestrial carbon losses in the global carbon cycle. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    OpenAIRE

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected wi...

  14. Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability.

    Science.gov (United States)

    Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker

    2007-02-15

    Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (OSAR 1) and on 16 inactivating molecular fragments (GSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (GSAR 1) and 70.4% (OSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: (1) Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. (2) Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. (3) Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.

  15. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    Science.gov (United States)

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.

  16. Polar Organic Pollutants in Groundwater: Experimental Approaches to Biodegradation During Subsoil Passage

    Directory of Open Access Journals (Sweden)

    T.P. Knepper

    2002-01-01

    Full Text Available A selection of polar organic compounds was investigated for their biodegradation on a laboratory scale fixed-bed bioreactor and the decline of the parent compounds besides the formation of metabolites was monitored. Of particular interest was the investigation into the degradation of pesticides, especially isoproturon (IPU, surfactants and industrial by-products of chemical synthesis. The results from the laboratory degradation experiments are compared to findings in groundwater.

  17. INFLUENCE OF DISSOLVED ORGANIC MATTER ON AGROCHEMICAL PHOTOREACTIONS IN AQUATIC ENVIRONMENTS

    Science.gov (United States)

    Pioneering studies by Don Crosby and co-workers demonstrated that the sunlight-induced dissipation of agrochemicals in water often is strongly affected by natural constituents in the water such as nitrate and dissolved organic matter. In this presentation, the focus is on the rol...

  18. Drivers of fluorescent dissolved organic matter in the global epipelagic ocean

    DEFF Research Database (Denmark)

    Catalá, T.S.; Álvarez-Salgado, X. A.; Otero, J.

    2016-01-01

    Fluorescent dissolved organic matter (FDOM) in open surface waters (< 200 m) of the Atlantic, Pacific, and Indian oceans was analysed by excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC). A four-component PARAFAC model was fit to the EEMs, which included two hum...

  19. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    International Nuclear Information System (INIS)

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-01-01

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied

  20. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  1. Differential recycling of coral and algal dissolved organic matter via the sponge loop

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; van Oevelen, D.; Struck, U.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.

    Corals and macroalgae release large quantities of dissolved organic matter (DOM), one of the largest sources of organic matter produced on coral reefs. By rapidly taking up DOM and transforming it into particulate detritus, coral reef sponges are proposed to play a key role in transferring the

  2. Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas

    NARCIS (Netherlands)

    Alling, Vanja; Sanchez-Garcia, Laura; Porcelli, Don; Pugach, Sveta; Vonk, Jorien E.; Van Dongen, Bart; Mörth, Carl Magnus; Anderson, Leif G.; Sokolov, Alexander; Andersson, Per; Humborg, Christoph; Semiletov, Igor P.; Gustafsson, Örjan

    2010-01-01

    Climate change is expected to have a strong effect on the Eastern Siberian Arctic Shelf (ESAS) region, which includes 40% of the Arctic shelves and comprises the Laptev and East Siberian seas. The largest organic carbon pool, the dissolved organic carbon (DOC), may change significantly due to

  3. Uptake of dissolved organic carbon and trace elements by zebra mussels

    Science.gov (United States)

    Roditi, Hudson A.; Fisher, Nicholas S.; Sañudo-Wilhelmy, Sergio A.

    2000-09-01

    Zebra mussels (Dreissena polymorpha) are widespread and abundant in major freshwater ecosystems in North America, even though the phytoplankton food resources in some of these systems seem to be too low to sustain them. Because phytoplankton biomass is greatly depleted in ecosystems with large D. polymorpha populations and bacteria do not seem to be an important food source for this species, exploitation of alternative carbon sources may explain the unexpected success of D. polymorpha in such environments. Here we examine the possibility that absorption of dissolved organic carbon (DOC) from water could provide a nutritional supplement to zebra mussels. We find that mussels absorb 14C-labelled DOC produced by cultured diatoms with an efficiency of 0.23%; this indicates that DOC in natural waters could contribute up to 50% of the carbon demand of zebra mussels. We also find that zebra mussels absorb some dissolved metals that have been complexed by the DOM; although absorption of dissolved selenium was unaffected by DOC, absorption of dissolved cadmium, silver and mercury by the mussels increased 32-, 8.7- and 3.6-fold, respectively, in the presence of high-molecular-weight DOC.

  4. Winter to spring variations of chromophoric dissolved organic matter in a temperate estuary (Po River, northern Adriatic Sea).

    Science.gov (United States)

    Berto, D; Giani, M; Savelli, F; Centanni, E; Ferrari, C R; Pavoni, B

    2010-07-01

    The light absorbing fraction of dissolved organic carbon (DOC), known as chromophoric dissolved organic matter (CDOM) showed wide seasonal variations in the temperate estuarine zone in front of the Po River mouth. DOC concentrations increased from winter through spring mainly as a seasonal response to increasing phytoplankton production and thermohaline stratification. The monthly dependence of the CDOM light absorption by salinity and chlorophyll a concentrations was explored. In 2003, neither DOC nor CDOM were linearly correlated with salinity, due to an exceptionally low Po river inflow. Though the CDOM absorbance coefficients showed a higher content of chromophoric dissolved organic matter in 2004 with respect to 2003, the spectroscopic features confirmed that the qualitative nature of CDOM was quite similar in both years. CDOM and DOC underwent a conservative mixing, only after relevant Po river freshets, and a change in optical features with an increase of the specific absorption coefficient was observed, suggesting a prevailing terrestrial origin of dissolved organic matter. Published by Elsevier Ltd.

  5. Experimental Evidence for Abiotic Sulfurization of Marine Dissolved Organic Matter

    Directory of Open Access Journals (Sweden)

    Anika M. Pohlabeln

    2017-11-01

    Full Text Available Dissolved organic sulfur (DOS is the largest pool of organic sulfur in the oceans, and as such it is an important component of the global sulfur cycle. DOS in the ocean is resistant against microbial degradation and turns over on a millennium time scale. However, sources and mechanisms behind its stability are largely unknown. Here, we hypothesize that in sulfate-reducing sediments sulfur is abiotically incorporated into dissolved organic matter (DOM and released to the ocean. We exposed natural seawater and the filtrate of a plankton culture to sulfidic conditions. Already after 1-h at 20°C, DOS concentrations had increased 4-fold in these experiments, and 14-fold after 4 weeks at 50°C, indicating that organic matter does not need long residence times in natural sulfidic environments to be affected by sulfurization. Molecular analysis via ultrahigh-resolution mass spectrometry showed that sulfur was covalently and unselectively bound to DOM. Experimentally produced and natural DOS from sediments were highly similar on a molecular and structural level. By combining our data with published benthic DOC fluxes we estimate that 30–200 Tg DOS are annually transported from anaerobic and sulfate reducing sediments to the oceans. Uncertainties in this first speculative assessment are large. However, this first attempt illustrates that benthic DOS flux is potentially one order of magnitude larger than that via rivers indicating that this could balance the estimated global net removal of refractory DOS.

  6. Biodegradable plastics derived from micro-fibrillated cellulose fiber and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, M.; Hosokawa, J.; Yoshihara, K.; Kubo, T.; Kabeya, H.; Endo, T. [Shikoku National Industrial Research Inst., Kagawa (Japan)

    1995-12-25

    We have been carrying out studies to develop biodegradable plastics from natural polysaccharides. We have found that a combination of micro-fibrillated cellulose fiber and chitosan produces a useful material that can be used to form biodegradable film and moldings. Cellulose-chitosan composite film demonstrate higher strength than general purpose plastic films, and wet strength peaks when chitosan content is 10-20%. The relatively small amount of chitosan needed is economically convenient because chitosan is more expensive than cellulose. This film biodegrade well in soil, completely dissolving and disappearing in two months. Biodegradability is influenced by the temperature used in thermal treatment the film, the quantity of acid groups in the cellulose, and other factors. These characteristics will be used to control decomposition. Since cellulose-chitosan-plastics are not thermoplastics, we have been working on joint research with companies to produce films, nonwoven fabrics and foams. We discuss here the properties and application of these composite moldings. 4 refs., 3 figs., 3 tabs.

  7. Aerobic biodegradation of organotin compounds in activated sludge batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stasinakis, Athanasios S. [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece)]. E-mail: astas@env.aegean.gr; Thomaidis, Nikolaos S. [Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 157 71 (Greece); Nikolaou, Anastasia [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece); Kantifes, Andreas [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece)

    2005-04-01

    The biodegradation behavior of four organotin (OT) compounds, namely tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT) and triphenyltin (TPhT), was studied in lab-scale activated sludge batch reactors. The activated sludge was spiked with the OT compounds at a level of 100 {mu}g l{sup -1} as Sn. Determination of the OT compounds by GC-FPD after ethylation in the dissolved and particulate phase revealed that 24 h after the start of the experiments, almost the total of OT compounds has been removed from the dissolved phase and is associated with the suspended solids. Calculation of mass balance in batch reactors showed that OT compounds biodegradation was performed via a sequential dealkylation process. Removals due to biodegradation were differentiated according to the parent compound. In experiments with non-acclimatized biomass, a percentage of 27.1, 8.3, 73.8 and 51.3 was still present as TBT, DBT, MBT and TPhT, respectively, at the end of the experiment (18th day). Half-lives (t{sub 1/2}) of 10.2 and 5.1 days were calculated for TBT and DBT, respectively, whereas apparent t{sub 1/2} values could not be determined for MBT and TPhT (t{sub 1/2} > 18 days). The capacity of activated sludge to biodegrade OT compounds in the absence of supplemental substrate indicated that these compounds can be metabolized as single sources of carbon and energy in activated sludge systems. Excluding TBT, the presence of low concentrations of supplemental substrate did not affect the biodegradation potential of activated sludge. The acclimatization of biomass on OT compounds enhanced significantly biodegradation, resulting in significant decreases of half-lives of OT compounds. As a result in the presence of acclimatized biomass, half-lives of 1.4, 3.6, 9.8 and 5.0 days were calculated for TBT, DBT, MBT and TPhT, respectively. - The fate of organotins is assessed in activated sludge systems.

  8. Aerobic biodegradation of organotin compounds in activated sludge batch reactors

    International Nuclear Information System (INIS)

    Stasinakis, Athanasios S.; Thomaidis, Nikolaos S.; Nikolaou, Anastasia; Kantifes, Andreas

    2005-01-01

    The biodegradation behavior of four organotin (OT) compounds, namely tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT) and triphenyltin (TPhT), was studied in lab-scale activated sludge batch reactors. The activated sludge was spiked with the OT compounds at a level of 100 μg l -1 as Sn. Determination of the OT compounds by GC-FPD after ethylation in the dissolved and particulate phase revealed that 24 h after the start of the experiments, almost the total of OT compounds has been removed from the dissolved phase and is associated with the suspended solids. Calculation of mass balance in batch reactors showed that OT compounds biodegradation was performed via a sequential dealkylation process. Removals due to biodegradation were differentiated according to the parent compound. In experiments with non-acclimatized biomass, a percentage of 27.1, 8.3, 73.8 and 51.3 was still present as TBT, DBT, MBT and TPhT, respectively, at the end of the experiment (18th day). Half-lives (t 1/2 ) of 10.2 and 5.1 days were calculated for TBT and DBT, respectively, whereas apparent t 1/2 values could not be determined for MBT and TPhT (t 1/2 > 18 days). The capacity of activated sludge to biodegrade OT compounds in the absence of supplemental substrate indicated that these compounds can be metabolized as single sources of carbon and energy in activated sludge systems. Excluding TBT, the presence of low concentrations of supplemental substrate did not affect the biodegradation potential of activated sludge. The acclimatization of biomass on OT compounds enhanced significantly biodegradation, resulting in significant decreases of half-lives of OT compounds. As a result in the presence of acclimatized biomass, half-lives of 1.4, 3.6, 9.8 and 5.0 days were calculated for TBT, DBT, MBT and TPhT, respectively. - The fate of organotins is assessed in activated sludge systems

  9. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  10. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  11. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    Science.gov (United States)

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  12. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    DEFF Research Database (Denmark)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-01-01

    concentrations across the salinity gradient and ranged from 1.67 to 33.4 m−1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence......The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87...... the prediction in wavelengths above 520nm. Despite significant seasonal and spatial differences in DOC–CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44gCm−2yr−1, and 1...

  13. Linear and nonlinear relationships between biodegradation potential and molecular descriptors/fragments for organic pollutants and a theoretical interpretation

    International Nuclear Information System (INIS)

    He, Jia; Qin, Weichao; Zhang, Xujia; Wen, Yang; Su, Limin; Zhao, Yuanhui

    2013-01-01

    Prediction of the biodegradability of organic pollutants is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. In this paper, linear and nonlinear relationships between biological oxygen demand (BOD) and molecular descriptors/fragments have been investigated for 1130 organic chemicals. Significant relationships have been observed between the simple molecular descriptors and %BOD for some homologous compounds, but not for the whole set of compounds. Electronic parameters, such as E HOMO and E LUMO , are the dominant factors affecting the biodegradability for some homologous chemicals. However, other descriptors, such as molecular weight, acid dissociation constant and polarity still have a significant impact on the biodegradation. The best global model for %BOD prediction is that developed from a chain-based fragmentation scheme. At the same time, the theoretical relationship between %BOD and molecular descriptors/fragments has been investigated, based on a first-order kinetic process. The %BOD is nonlinearly, rather than linearly, related to the descriptors. The coefficients of determination can be significantly improved by using nonlinear models for the homologous compounds and the whole data set. After analysing 1130 ready and not ready biodegradable compounds using 23 simple descriptors and various fragmentation schemes, it was revealed that biodegradation could be well predicted from a chain-based fragmentation scheme, a decision tree and a %BOD model. The models were capable of separating NRB and RB with an overall accuracy of 87.2%, 83.0% and 82.5%, respectively. The best classification model developed was a chain-based model but it used 155 fragments. The simplest model was a decision tree which only used 10 structural fragments. The effect of structures on the biodegradation has been analysed and the biodegradation pathway and mechanisms have been discussed based on activating and inactivating

  14. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    Science.gov (United States)

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  15. Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS Sensors: Case Study for the Northern Gulf of Mexico

    OpenAIRE

    Blake A. Schaeffer; Thomas S. Bianchi; Eurico J. D'Sa; Christopher L. Osburn; Nazanin Chaichi Tehrani

    2013-01-01

    Empirical band ratio algorithms for the estimation of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) for Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS ocean color sensors were assessed and developed for the northern Gulf of Mexico. Match-ups between in situ measurements of CDOM absorption coefficients at 412 nm (aCDOM(412)) with that derived from SeaWiFS were examined using two previously reported r...

  16. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    Science.gov (United States)

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  17. Optical Proxies for Dissolved Organic Matter in Estuaries and Coastal Waters

    Science.gov (United States)

    Osburn, C. L.; Montgomery, M. T.; Boyd, T. J.; Bianchi, T. S.; Coffin, R. B.; Paerl, H. W.

    2016-02-01

    The flux of terrestrial dissolved organic carbon (DOC) into the coastal ocean from rivers and estuaries is a major part of the ocean's carbon cycle. Absorbing and fluorescing properties of chromophoric dissolved organic matter (CDOM) often are used to fingerprint its sources and to track fluxes of terrestrial DOM into the ocean. They also are used as proxies for organic matter to calibrate remote sensing observations from air and space and from in situ platforms. In general, strong relationships hold for large river dominated estuaries (e.g., the Mississippi River) but little is known about how widely such relationships can be developed in estuaries that have relatively small or multiple riverine inputs. Results are presented from a comparison of six diverse estuarine systems: the Atchafalaya River (ARE), the Mackenzie River (MRE), the Chesapeake Bay (CBE), Charleston Harbor (CHE), Puget Sound (PUG), and the Neuse River (NRE). Mean DOM concentrations ranged from 100 to 700 µM and dissolved lignin concentrations ranged from ca. 3-30 µg L-1. Overall trends were linear between CDOM measured at 350 nm (a350) and DOC concentration (R2=0.77) and between a350 and lignin (R2=0.87). Intercepts of a350 vs lignin were not significantly different from zero (P=0.43) suggesting that most of the CDOM was terrestrial in nature. Deviations from these regressions were strongest in the Neuse River Estuary, the most eutrophic of the six estuaries studied. After this calibration procedure, fluorescence modeling via parallel factor analysis (PARAFAC) was used to make estimates of terrigenous and planktonic DOC in these estuaries.

  18. The effects of salinity, pH, and dissolved organic matter on acute copper toxicity to the rotifer, Brachionus plicatilis ("L" strain).

    Science.gov (United States)

    Arnold, W R; Diamond, R L; Smith, D S

    2010-08-01

    This paper presents data from original research for use in the development of a marine biotic ligand model and, ultimately, copper criteria for the protection of estuarine and marine organisms and their uses. Ten 48-h static acute (unfed) copper toxicity tests using the euryhaline rotifer Brachionus plicatilis ("L" strain) were performed to assess the effects of salinity, pH, and dissolved organic matter (measured as dissolved organic carbon; DOC) on median lethal dissolved copper concentrations (LC50). Reconstituted and natural saltwater samples were tested at seven salinities (6, 11, 13, 15, 20, 24, and 29 g/L), over a pH range of 6.8-8.6 and a range of dissolved organic carbon of <0.5-4.1 mg C/L. Water chemistry analyses (alkalinity, calcium, chloride, DOC, hardness, magnesium, potassium, sodium, salinity, and temperature) are presented for input parameters to the biotic ligand model. In stepwise multiple regression analysis of experimental results where salinity, pH, and DOC concentrations varied, copper toxicity was significantly related only to the dissolved organic matter content (pH and salinity not statistically retained; alpha=0.05). The relationship of the 48-h dissolved copper LC50 values and dissolved organic carbon concentrations was LC50 (microg Cu/L)=27.1xDOC (mg C/L)1.25; r2=0.94.

  19. Removal of dissolved organic carbon in pilot wetlands of subsuperficial and superficial flows

    Directory of Open Access Journals (Sweden)

    Ruth M. Agudelo C

    2010-04-01

    Full Text Available Objective: to compare removal of dissolved organic carbon (d o c obtained with pilot wetlands of subsuperficial flow (p h s s and superficial flow (p h s, with Phragmites australis as treatment alternatives for domestic residual waters of small communities and rural areas. Methodology: an exploratory and experimental study was carried out adding 100,12 mg/L of dissolved organic carbon to synthetic water contaminated with Chlorpyrifos in order to feed the wetlands. A total amount of 20 samples were done, 16 of them in four experiments and the other ones in the intervals with no use of pesticides. Samples were taken on days 1, 4, 8, and 11 in the six wetlands, three of them subsuperficial, and three of them superficial. The main variable answer was dissolved organic carbon, measured in the organic carbon analyzer. Results: a high efficiency in the removal of d o c was obtained with the two types of wetlands: 92,3% with subsuperficial flow and 95,6% with superficial flow. Such a high removal was due to the interaction between plants, gravel and microorganisms. Conclusion: although in both types of wetlands the removal was high and similar, it is recommended to use those of subsuperficial flow because in the superficial ones algae and gelatinous bio-films are developed, which becomes favorable to the development of important epidemiologic vectors in terms of public health.

  20. Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance.

    Science.gov (United States)

    Kavitha, S; Yukesh Kannah, R; Rajesh Banu, J; Kaliappan, S; Johnson, M

    2017-11-01

    The present study investigates the synergistic effect of combined bacterial disintegration on mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal biomass lysis, enhanced biodegradability, and methane generation were used as indices to assess efficiency of the disintegration. A maximal dissolvable organics release and algal biomass lysis rate of about 1100, 950 and 800mg/L and 26, 23 and 18% was achieved in PA+C (protease, amylase+cellulase secreting bacteria), C (cellulase alone) and PA (protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater production of volatile fatty acids (1000mg/L) was noted in PA+C bacterial disintegration of microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal biomass to biomethanation process with higher biodegradability of about 0.27gCOD/gCOD, respectively. The energy balance analysis of this combined bacterial disintegration of microalgal biomass provides surplus positive net energy (1.14GJ/d) by compensating the input energy requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Carbon-14 measurements and characterization of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1987-01-01

    Carbon-14 was measured in the dissolved organic carbon (DOC) in ground water and compared with 14 C analyses of dissolved inorganic carbon (DIC). Two field sites were used for this study; the Stripa mine in central Sweden, and the Milk River Aquifer in southern Alberta, Canada. The Stripa mine consists of a Precambrian granite dominated by fracture flow, while the Milk River Aquifer is a Cretaceous sandstone aquifer characterized by porous flow. At both field sites, 14 C analyses of the DOC provide additional information on the ground-water age. Carbon-14 was measured on both the hydrophobic and hydrophilic organic fractions of the DOC. The organic compounds in the hydrophobic and hydrophilic fractions were also characterized. The DOC may originate from kerogen in the aquifer matrix, from soil organic matter in the recharge zone, of from a combination of these two sources. Carbon-14 analyses, along with characterization of the organics, were used to determine this origin. Carbon-14 analyses of the hydrophobic fraction in the Milk River Aquifer suggest a soil origin, while 14 C analyses of the hydrophilic fraction suggest an origin within the Cretaceous sediments (kerogen) or from the shale in contact with the aquifer

  2. Biodegradation of oils in uranium deposits

    International Nuclear Information System (INIS)

    Landais, P.

    1989-01-01

    The biodegradation of free hydrocarbons that have migrated in reservoir facies has often been observed in the field of petroleum exploration. This alteration is characterized by the progressive removal by bacteria of the different types of hydrocarbons: n-alkanes, branched alkanes, aromatics, cycloalkanes, etc. One of the most important consequences of biodegradation is the biogenic reduction of sulphate, which has been noticed in several Pb-Zn deposits. Biodegradation of oils spatially associated with uranium mineralizations has been observed in Temple Mountain, Utah, and the Grand Canyon, Arizona, in the United States of America, and in Lodeve in France. It leads to the transformation of fluid oils into solid bitumens. Emphasis is placed on the relationships between the effects of biodegradation on organic matter (oxidation of aromatization) and the nature of aqueous fluids analysed in fluid inclusions trapped in authigenic minerals. Different mechanisms are proposed to explain the transformations of organic matter during biodegradation and their possible links with the ore forming process. (author). 40 refs, 13 figs, 1 tab

  3. Carbon transfer from dissolved organic carbon to the cladoceran Bosmina: a mesocosm study

    Directory of Open Access Journals (Sweden)

    Tang Yali

    2017-01-01

    Full Text Available A mesocosm study illuminated possible transfer pathways for dissolved organic carbon from the water column to zooplankton. Organic carbon was added as 13C enriched glucose to 15 mesocosms filled with natural lake water. Stable isotope analysis and phospholipid fatty acids-based stable isotope probing were used to trace the incorporation of 13C into the cladoceran Bosmina and its potential food items. Glucose-C was shown to be assimilated into phytoplankton (including fungi and heterotrophic protists, bacteria and Bosmina, all of which became enriched with 13C during the experiment. The study suggests that bacteria play an important role in the transfer of glucose-C to Bosmina. Furthermore, osmotic algae, fungi and heterotrophic protists might also contribute to the isotopic signature changes observed in Bosmina. These findings help to clarify the contribution of dissolved organic carbon to zooplankton and its potential pathways.

  4. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  5. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation

    Science.gov (United States)

    Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.

    2014-10-01

    The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.

  6. Distributions and characteristics of dissolved organic matter in temperate coastal waters (Southern North Sea)

    Science.gov (United States)

    Lübben, Andrea; Dellwig, Olaf; Koch, Sandra; Beck, Melanie; Badewien, Thomas H.; Fischer, Sibylle; Reuter, Rainer

    2009-04-01

    The spatial and temporal distributions of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) was studied in the East-Frisian Wadden Sea (Southern North Sea) during several cruises between 2002 and 2005. The spatial distribution of CDOM in the German Bight shows a strong gradient towards the coast. Tidal and seasonal variations of dissolved organic matter (DOM) identify freshwater discharge via flood-gates at the coastline and pore water efflux from tidal flat sediments as the most important CDOM sources within the backbarrier area of the Island of Spiekeroog. However, the amount and pattern of CDOM and DOC is strongly affected by various parameters, e.g. changes in the amount of terrestrial run-off, precipitation, evaporation, biological activity and photooxidation. A decoupling of CDOM and DOC, especially during periods of pronounced biological activity (algae blooms and microbial activity), is observed in spring and especially in summer. Mixing of the endmembers freshwater, pore water, and open sea water results in the formation of a coastal transition zone. Whilst an almost conservative behaviour during mixing is observed in winter, summer data point towards non-conservative mixing.

  7. Stabilization of dissolved organic matter by aluminium: A toxic effect or stabilization through precipitation?

    NARCIS (Netherlands)

    Scheel, T.; Jansen, B.; van Wijk, A.J.; Verstraten, J.M.; Kalbitz, K.

    2008-01-01

    Carbon mineralization in acidic forest soils can be retarded by large concentrations of aluminium (Al). However, it is still unclear whether Al reduces C mineralization by direct toxicity to microorganisms or by decreased bioavailability of organic matter (OM) because dissolved organic matter (DOM)

  8. Sources, fluxes, and behaviors of fluorescent dissolved organic matter (FDOM) in the Nakdong River Estuary, Korea

    Science.gov (United States)

    Lee, Shin-Ah; Kim, Guebuem

    2018-02-01

    We monitored seasonal variations in dissolved organic carbon (DOC), the stable carbon isotope of DOC (δ13C-DOC), and fluorescent dissolved organic matter (FDOM) in water samples from a fixed station in the Nakdong River Estuary, Korea. Sampling was performed every hour during spring tide once a month from October 2014 to August 2015. The concentrations of DOC and humic-like FDOM showed significant negative correlations against salinity (r2 = 0.42-0.98, p ocean.

  9. Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM absorption coefficients

    Directory of Open Access Journals (Sweden)

    Cédric G. Fichot

    2016-02-01

    Full Text Available Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric DOM (CDOM absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of 9 lignin phenols and CDOM absorption coefficients (ag(λ were used to examine their relationship along the river-ocean continuum (0-37 salinity and across contrasting coastal oceans (sub-tropical, temperate, high-latitude. Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with ag(λ. The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from ag(λ with a +/- 20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs.

  10. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin A.; Granskog, Mats A.

    2014-01-01

    The majority of dissolved organic matter (DOM) in the ocean is resistant to microbial degradation, yet its formation remains poorly understood. The fluorescent fraction of DOM can be used to trace the formation of recalcitrant DOM (RDOM). A long-term (> 1 year) experiment revealed 27–52% removal...... of dissolved organic carbon and a nonlinear increase in RDOM fluorescence associated with microbial turnover of semilabile DOM. This fluorescence was also produced using glucose as the only initial carbon source, suggesting that degradation of prokaryote remnants contributes to RDOM. Our results indicate...... that the formation of a fluorescent RDOM component depends on the bioavailability of the substrate: the less labile, the larger the production of fluorescent RDOM relative to organic carbon remineralized. The anticipated increase in microbial carbon demand due to ocean warming can potentially forcemicrobes...

  11. Degradation of non-biodegradable pesticides in water by coupling photo catalysis and bio treatment; Eliminacion de plaguicidas no biodegrabables en aguas mediante acoplamiento de fotocatalisis solar y oxidacion biologica

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros Martin, M. M.; Sanchez Perez, J. A.; Malato Rodriguez, S.

    2008-07-01

    The influence of pesticide concentration, expressed as dissolved organic carbon (DOC), on combined solar photo-Fenton and biological oxidation treatment was studied using wastewater containing different pure and commercial pesticides (dimethoate, oxydemeton-methyl, carbaryl, oxamyl, methomyl, imidacloprid, dimethoate and pyrimethanil). Different initial concentrations were assayed. Variation in biodegradability with photo catalytic treatment intensity was tested using Pseudomonas putida. Biodegradation efficiencies after the photoreaction were found to be lower for the pesticide solution with the higher concentration, showing that to achieve sufficient biodegradability, the photo-Fenton treatment time must be increased with pesticide concentration. Bio treatment was carried out in different reactor including sequencing batch reactor (SBR) mode. As revealed by the biodegradation kinetics, intermediates generated at the higher pesticide concentration caused lower carbon removal rates in spite of the longer photo-Fenton treatment time applied. One strategy for treating water with high concentrations of pesticides and overcoming the low biodegradability of photo-Fenton intermediates is to mix it with a biodegradable carbon source (wastewater containing an easily biodegradable substrate, such as urban wastewater) before biological oxidation. This combination of photo-Fenton and acclimatized activated sludge in several SBR cycles led to complete biodegradation of a pesticide solutions up to of 500 mg/L of DOC. (Author)

  12. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    Science.gov (United States)

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information......Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76 ºS to 79 ºN to hydrolyze a range of high...

  14. Interactions of diuron with dissolved organic matter from organic amendments.

    Science.gov (United States)

    Thevenot, Mathieu; Dousset, Sylvie; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Andreux, Francis

    2009-07-01

    Diuron is frequently detected in some drinking water reservoirs under the Burgundy vineyards, where organic amendments are applied. The environmental effect of these amendments on pesticide transport is ambiguous: on the one hand it could enhance their retention by increasing soil organic carbon content; on the other hand, dissolved organic matter (DOM) could facilitate their transport. Elutions were performed using columns packed with glass beads in order to investigate DOM-diuron interactions, and the possible co-transport of diuron and DOM. Four organic amendments (A, B, C and D) were tested; C and D were sampled at fresh (F) and mature (M) stages. An increase in diuron leaching was observed only for A and D(F) amendments (up to 16% compared to the DOM-free blank samples), suggesting a DOM effect on diuron transport. These results could be explained by the higher DOM leaching for A and D(F) compared to B, C(F), C(M) and D(M) increasing diuron-DOM interactions. These interactions seem to be related to the aromatic and aliphatic content of the DOM, determining formation of hydrogen and non-covalent bonds. The degree of organic matter maturity does not seem to have any effect with amendment C, while a reduction in diuron leaching is observed between D(F) and D(M). After equilibrium dialysis measurement of diuron-DOM complexes, it appeared that less than 3% of the diuron applied corresponded to complexes with a molecular weight >1000 Da. Complexes <1000 Da could also take part in this facilitated transport.

  15. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N-2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  16. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  17. Understanding dissolved organic matter reactivity in a global context: tribute to Dr. George Aiken's many contributions

    Science.gov (United States)

    McKnight, Diane

    2017-04-01

    As Dr. George Aiken emphasized throughout his distinguished research career, the diversity of sources of dissolved organic material (DOM) is associated with a diversity of dissolved organic compounds with a range of chemistries and reactivities that are present in the natural environment. From a limnological perspective, dissolved organic matter (DOM) can originate from allochthonous sources on the landscape which drains into a lake, river, wetland, coastal region, or other aquatic ecosystem, or from autochthonous sources within the given aquatic ecosystem. In many landscapes, the precursor organic materials that contribute to the DOM of the associated aquatic ecosystem can be derived from diverse sources, e.g. terrestrial plants, plant litter, organic material in different soil horizons, and the products of microbial growth and decay. Yet, through his focus on the underlying chemical processes a clear, chemically robust foundation for understanding DOM reactivity has emerged from Aiken's research. These processes include the enhancement in solubility due to ionized carboxylic acid functional groups and the reactions of organic sulfur groups with mercury. This approach has advanced understand of carbon cycling in the lakes of the Mars-like barren landscapes of the McMurdo Dry Valleys in Antarctica and the rivers draining the warming tundra of the Arctic.

  18. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  19. Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration

    Science.gov (United States)

    Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.

    2011-01-01

    Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.

  20. Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter

    Science.gov (United States)

    Nelson, Norman B.; Siegel, David A.; Carlson, Craig A.; Swan, Chantal M.

    2010-02-01

    Basin-scale distributions of light absorption by chromophoric dissolved organic matter (CDOM) are positively correlated (R2 > 0.8) with apparent oxygen utilization (AOU) within the top kilometer of the Pacific and Indian Oceans. However, a much weaker correspondence is found for the Atlantic (R2 organic matter from sinking particles. The observed meridional-depth sections of CDOM result from a balance between biogeochemical processes (autochthonous production and solar bleaching) and the meridional overturning circulation. Rapid mixing in the Atlantic dilutes CDOM in the interior and implies that the time scale for CDOM accumulation is greater than ˜50 years. CDOM emerges as a unique tracer for diagnosing changes in biogeochemistry and the overturning circulation, similar to dissolved oxygen, with the additional feature that it can be quantified from satellite observation.

  1. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    Science.gov (United States)

    L.R. Seifert-Monson; B.H. Hill; R.K. Kolka; T.M. Jicha; L.L. Lehto; C.M. Elonen

    2014-01-01

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolved organic carbon solubility. To further investigate the relationship between deposition...

  2. Unraveling the size-dependent optical properties of dissolved organic matter

    DEFF Research Database (Denmark)

    Wünsch, Urban; Stedmon, Colin; Tranvik, Lars

    2018-01-01

    The size-dependent optical properties of dissolved organic matter (DOM) from four Swedish lakes were investigated using High Performance Size Exclusion Chromatography (HPSEC) in conjunction with online characterization of absorbance (240–600 nm) and fluorescence (excitation: 275 nm, emission: 300....... This study demonstrates the potential for HPSEC and novel mathematical approaches to provide unprecedented insights into the relationship between optical and chemical properties of DOM in aquatic systems...

  3. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter

    OpenAIRE

    Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, Filip; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D.

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid-base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. ...

  4. Long-term dynamics of dissolved organic carbon: implications for drinking water supply.

    Science.gov (United States)

    Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N

    2012-08-15

    Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply. Copyright © 2012 Elsevier B

  5. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  6. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  7. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Moreno, Laura, E-mail: laura.delgado@eez.csic.es; Wu, Laosheng; Gan, Jay

    2015-08-15

    Natural waters such as surface water and sediment porewater invariably contain dissolved organic matter (DOM). Association of strongly hydrophobic contaminants (HOCs) with DOM leads to decreased toxicity and bioavailability, but bioavailability of DOM-sorbed HOCs is difficult to measure. Current methods to estimate bioavailability of HOCs in water are based on only the freely dissolved concentration (C{sub free}). The ignorance of the exchangeable fraction of HOCs sorbed on DOM may result in an underestimation of the toxicity potential of HOCs to aquatic organisms. Here we explore the applicability of an isotope dilution method (IDM) to measuring the desorption fraction of DOM-sorbed pyrene and bifenthrin and determining their exchangeable pool (E) as an approximation of bioavailability. E values, expressed as percentage of the total concentration, ranged between 0.80 and 0.92% for pyrene and 0.74 and 0.85% for bifenthrin, depending primarily on the amount of chemical in the freely dissolved form. However, between 34 and 78% of the DOM-sorbed pyrene was exchangeable. This fraction ranged between 23% and 82% for bifenthrin. The ability of IDM to predict bioavailability was further shown from a significant relationship (r{sup 2} > 0.72, P < 0.0001) between E and bioaccumulation into Daphnia magna. Therefore, IDM may be used to improve the bioavailability measurement and risk assessment of HOCs in aquatic systems.

  8. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM)

    International Nuclear Information System (INIS)

    Delgado-Moreno, Laura; Wu, Laosheng; Gan, Jay

    2015-01-01

    Natural waters such as surface water and sediment porewater invariably contain dissolved organic matter (DOM). Association of strongly hydrophobic contaminants (HOCs) with DOM leads to decreased toxicity and bioavailability, but bioavailability of DOM-sorbed HOCs is difficult to measure. Current methods to estimate bioavailability of HOCs in water are based on only the freely dissolved concentration (C free ). The ignorance of the exchangeable fraction of HOCs sorbed on DOM may result in an underestimation of the toxicity potential of HOCs to aquatic organisms. Here we explore the applicability of an isotope dilution method (IDM) to measuring the desorption fraction of DOM-sorbed pyrene and bifenthrin and determining their exchangeable pool (E) as an approximation of bioavailability. E values, expressed as percentage of the total concentration, ranged between 0.80 and 0.92% for pyrene and 0.74 and 0.85% for bifenthrin, depending primarily on the amount of chemical in the freely dissolved form. However, between 34 and 78% of the DOM-sorbed pyrene was exchangeable. This fraction ranged between 23% and 82% for bifenthrin. The ability of IDM to predict bioavailability was further shown from a significant relationship (r 2 > 0.72, P < 0.0001) between E and bioaccumulation into Daphnia magna. Therefore, IDM may be used to improve the bioavailability measurement and risk assessment of HOCs in aquatic systems

  9. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean

    NARCIS (Netherlands)

    Romera-Castillo, C.; Pinto, M.; Langer, T.M.; Alvarez-Salgado, X.A.; Herndl, G.

    2018-01-01

    Approximately 5.25 trillion plastic pieces are floating at the sea surface. The impact of plastic pollution on the lowest trophic levels of the food web, however, remains unknown. Here we show that plastics release dissolved organic carbon (DOC) into the ambient seawater stimulating the activity of

  10. THE USE OF BIOFILTRATION PROCESS TO REMOVE ORGANIC MATTER FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Dorota Papciak

    2016-07-01

    Full Text Available The article describes the research on the removal of organic matter from natural underground water using biofiltration process. The study was carried out in semi-technical scale on a model filter composed of activated carbon WD-extra. The development of biological activity in a biosorption bed, as well as observations on the relationship between the processes of sorption and biodegradation was evaluated based on the Eberhardt, Madsen, Sontheimer (EMS test. Leading operation control parameters of biologically active carbon filter BAF included: change of TOC content, dissolved oxygen and permanganate index. To evaluate the colonization of granular carbon determination of ATP value was used. The presence of the biofilm was found by observation using light and scanning microscopes. The organic compounds in the water taken were adsorbed 100% and 70% biodegradable. The combination of sorption process with biodegradation until depletion of activated carbon adsorption capacity allowed in the initial phase of coalbed work for the removal of organic matter in approx. 100% . Formation of biofilm at the right time allowed to extend the filtration cycle and helped lower the TOC by 70%, i.e. from 10 mg C/l to 3-4 mg C/l.

  11. Enhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment.

    Science.gov (United States)

    Wu, Qing-Lian; Guo, Wan-Qian; Bao, Xian; Yin, Ren-Li; Feng, Xiao-Chi; Zheng, He-Shan; Luo, Hai-Chao; Ren, Nan-Qi

    2017-09-01

    A new pretreatment method based on tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide was tried to enhance sludge disintegration, and improved sludge biodegradability and subsequent volatile fatty acid (VFA) production. Sludge activity decreased to less than 10% after 2 days pretreatment using 20mg/g-TSS THPS, which also obviously destroyed EPS and cell membrane, and dissolved more biodegradable substances (48.8%) than raw sludge (19.7%). Moreover, 20mg/g-TSS THPS pretreatment shortened fermentation time to 4days and improved VFA production to 2778mg COD/L (4.35 times than that in control). Therein, the sum of n-butyric, n-valeric and iso-valeric acids unexpectedly accounted for 60.5% of total VFA (only 20.1% of that in control). The more high molecular weight VFAs (C4-C5) than low molecular VFAs (C2-C3) resulted from THPS pretreatment benefited to subsequent medium-chain volatile acids (C6-C12) generation to realize the separation and recovery of organic carbon more efficiently. Copyright © 2017. Published by Elsevier Ltd.

  12. Biodegradation of cyanide in groundwater and soils from gasworks sites in south-eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, S.M.E.; Weaver, T.R.; Lawrence, C.R. [University of Melbourne, Parkvills, Vic. (Australia). School of Earth Sciences

    1999-07-01

    Groundwater from a gasworks site in south-eastern Australia has been found to contain high concentrations of cyanide (total), sulphate, and ammonia (1400 mg L{sup -1}, 6500 mg L{sup -1}, and 580 mg L{sup -1} respectively). Soil from another gasworks site has been found to contain 587 mg kg{sup -1} of cyanide (total), with concentrations of cyanide in the groundwater at this site being relatively low ({lt} 21 mgL{sup -1} CN(Total)). Experiments were conducted to determine the biodegradation rates of cyanide in groundwater and soils using samples from both sites. Column experiments and bioreactors were constructed to produce both aerobic and anaerobic conditions for the groundwater containing high concentrations of cyanide. Samples of water were taken periodically to analyse the pH, redox potential, temperature, and concentrations of cyanide (free and total), sulphate, ammonia, nitrate and dissolved organic carbon (DOC). Initial results indicate that concentrations of cyanide are declining in both aerobic and anaerobic conditions, with biodegradation one process producing degradation. 9 refs., 4 figs., 2 tabs.

  13. Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic

    Directory of Open Access Journals (Sweden)

    Rachel E. Sipler

    2017-06-01

    Full Text Available Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.

  14. Northern Gulf of Mexico estuarine coloured dissolved organic matter derived from MODIS data

    Science.gov (United States)

    Coloured dissolved organic matter (CDOM) is relevant for water quality management and may become an important measure to complement future water quality assessment programmes. An approach to derive CDOM using the Moderate Resolution Imaging Spectroradiometer (MODIS) was developed...

  15. Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests

    NARCIS (Netherlands)

    Camino-Serrano, Marta; Graf Pannatier, Elisabeth; Vicca, Sara; Luyssaert, Sebastiaan; Jonard, Mathieu; Ciais, Philippe; Guenet, Bertrand; Gielen, Bert; Peñuelas, Josep; Sardans, Jordi; Waldner, Peter; Sawicka, Kasia

    2016-01-01

    Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish

  16. Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests

    NARCIS (Netherlands)

    Camino-Serrano, M.; Graf Pannatier, E.; Vicca, S.; Luyssaert, S.; Jonard, M.; Ciais, P.; Guenet, B.; Gielen, B.; Peñuelas, J.; Sardans, J.; Waldner, P.; Etzold, S.; Cecchini, G.; Clarke, N.; Galić, Z.; Gandois, L.; Hansen, K.; Johnson, J.; Klinck, U.; Lachmanová, Z.; Lindroos, A.J.; Meesenburg, H.; Nieminen, T.M.; Sanders, T.G.M.; Sawicka, K.; Seidling, W.; Thimonier, A.; Vanguelova, E.; Verstraeten, A.; Vesterdal, L.; Janssens, I.A.

    2016-01-01

    Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish

  17. Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga

    International Nuclear Information System (INIS)

    Gorski, P.R.; Armstrong, D.E.; Hurley, J.P.; Krabbenhoft, D.P.

    2008-01-01

    Bioavailability of mercury (Hg) to Selenastrum capricornutum was assessed in bioassays containing field-collected freshwater of varying dissolved organic carbon (DOC) concentrations. Bioconcentration factor (BCF) was measured using stable isotopes of methylmercury (MeHg) and inorganic Hg(II). BCFs for MeHg in low-DOC lake water were significantly larger than those in mixtures of lake water and high-DOC river water. The BCF for MeHg in rainwater (lowest DOC) was the largest of any treatment. Rainwater and lake water also had larger BCFs for Hg(II) than river water. Moreover, in freshwater collected from several US and Canadian field sites, BCFs for Hg(II) and MeHg were low when DOC concentrations were >5 mg L -1 . These results suggest high concentrations of DOC inhibit bioavailability, while low concentrations may provide optimal conditions for algal uptake of Hg. However, variability of BCFs at low DOC indicates that DOC composition or other ligands may determine site-specific bioavailability of Hg. - Bioavailability of mercury to an alga was greatest at low concentrations of natural dissolved organic carbon and inhibited at high concentrations of natural dissolved organic carbon

  18. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons.

    Science.gov (United States)

    Abbasnezhad, Hassan; Gray, Murray; Foght, Julia M

    2011-11-01

    Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil-water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase. © Springer-Verlag 2011

  19. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    Science.gov (United States)

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength 400 nm.

  20. Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: Batch and column studies

    KAUST Repository

    Maeng, Sungkyu; Sharma, Saroj K.; Abel, Chol D T; Magic-Knezev, Aleksandra; Amy, Gary L.

    2011-01-01

    Natural water treatment systems such as bank filtration have been recognized as providing effective barriers in the multi-barrier approach for attenuation of organic micropollutants for safe drinking water supply. In this study, the role of biodegradation in the removal of selected pharmaceutically active compounds (PhACs) during soil passage was investigated. Batch studies were conducted to investigate the removal of 13 selected PhACs from different water sources with respect to different sources of biodegradable organic matter. Neutral PhACs (phenacetine, paracetamol, and caffeine) and acidic PhACs (ibuprofen, fenoprofen, bezafibrate, and naproxen) were removed with efficiencies greater than 88% from different organic matter water matrices during batch studies (hydraulic retention time (HRT): 60 days). Column experiments were then performed to differentiate between biodegradation and sorption with regard to the removal of selected PhACs. In column studies, removal efficiencies of acidic PhACs (e.g., analgesics) decreased under conditions of limited biodegradable carbon. The removal efficiencies of acidic PhACs were found to be less than 21% under abiotic conditions. These observations were attributed to sorption under abiotic conditions established by a biocide (20 mM sodium azide), which suppresses microbial activity/biodegradation. However, under biotic conditions, the removal efficiencies of these acidic PhACs were found to be greater than 59%. This is mainly attributed to biodegradation. Moreover, the average removal efficiencies of hydrophilic (polar) neutral PhACs (paracetamol, pentoxifylline, and caffeine) with low octanol/water partition coefficients (log K ow less than 1) were low (11%) under abiotic conditions. However, under biotic conditions, removal efficiencies of the neutral PhACs were greater than 98%. In contrast, carbamazepine persisted and was not easily removed under either biotic or abiotic conditions. This study indicates that biodegradation

  1. Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: Batch and column studies

    KAUST Repository

    Maeng, Sungkyu

    2011-10-01

    Natural water treatment systems such as bank filtration have been recognized as providing effective barriers in the multi-barrier approach for attenuation of organic micropollutants for safe drinking water supply. In this study, the role of biodegradation in the removal of selected pharmaceutically active compounds (PhACs) during soil passage was investigated. Batch studies were conducted to investigate the removal of 13 selected PhACs from different water sources with respect to different sources of biodegradable organic matter. Neutral PhACs (phenacetine, paracetamol, and caffeine) and acidic PhACs (ibuprofen, fenoprofen, bezafibrate, and naproxen) were removed with efficiencies greater than 88% from different organic matter water matrices during batch studies (hydraulic retention time (HRT): 60 days). Column experiments were then performed to differentiate between biodegradation and sorption with regard to the removal of selected PhACs. In column studies, removal efficiencies of acidic PhACs (e.g., analgesics) decreased under conditions of limited biodegradable carbon. The removal efficiencies of acidic PhACs were found to be less than 21% under abiotic conditions. These observations were attributed to sorption under abiotic conditions established by a biocide (20 mM sodium azide), which suppresses microbial activity/biodegradation. However, under biotic conditions, the removal efficiencies of these acidic PhACs were found to be greater than 59%. This is mainly attributed to biodegradation. Moreover, the average removal efficiencies of hydrophilic (polar) neutral PhACs (paracetamol, pentoxifylline, and caffeine) with low octanol/water partition coefficients (log K ow less than 1) were low (11%) under abiotic conditions. However, under biotic conditions, removal efficiencies of the neutral PhACs were greater than 98%. In contrast, carbamazepine persisted and was not easily removed under either biotic or abiotic conditions. This study indicates that biodegradation

  2. Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: batch and column studies.

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K; Abel, Chol D T; Magic-Knezev, Aleksandra; Amy, Gary L

    2011-10-15

    Natural water treatment systems such as bank filtration have been recognized as providing effective barriers in the multi-barrier approach for attenuation of organic micropollutants for safe drinking water supply. In this study, the role of biodegradation in the removal of selected pharmaceutically active compounds (PhACs) during soil passage was investigated. Batch studies were conducted to investigate the removal of 13 selected PhACs from different water sources with respect to different sources of biodegradable organic matter. Neutral PhACs (phenacetine, paracetamol, and caffeine) and acidic PhACs (ibuprofen, fenoprofen, bezafibrate, and naproxen) were removed with efficiencies greater than 88% from different organic matter water matrices during batch studies (hydraulic retention time (HRT): 60 days). Column experiments were then performed to differentiate between biodegradation and sorption with regard to the removal of selected PhACs. In column studies, removal efficiencies of acidic PhACs (e.g., analgesics) decreased under conditions of limited biodegradable carbon. The removal efficiencies of acidic PhACs were found to be less than 21% under abiotic conditions. These observations were attributed to sorption under abiotic conditions established by a biocide (20 mM sodium azide), which suppresses microbial activity/biodegradation. However, under biotic conditions, the removal efficiencies of these acidic PhACs were found to be greater than 59%. This is mainly attributed to biodegradation. Moreover, the average removal efficiencies of hydrophilic (polar) neutral PhACs (paracetamol, pentoxifylline, and caffeine) with low octanol/water partition coefficients (log Kow less than 1) were low (11%) under abiotic conditions. However, under biotic conditions, removal efficiencies of the neutral PhACs were greater than 98%. In contrast, carbamazepine persisted and was not easily removed under either biotic or abiotic conditions. This study indicates that biodegradation

  3. PRODUCTION OF HYDRATED ELECTRONS FROM PHOTOIONIZATION OF DISSOLVED ORGANIC MATTER IN NATURAL WATERS

    Science.gov (United States)

    Under UV irradiation, an important primary photochemical reaction of colored dissolved organic matter (CDOM) is electron ejection, producing hydrated electrons (e-aq). The efficiency of this process has been studied in both fresh and seawater samples with both steady-state scave...

  4. Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity.

    Science.gov (United States)

    Mladenov, Natalie; Pulido-Villena, Elvira; Morales-Baquero, Rafael; Ortega-Retuerta, Eva; Sommaruga, Ruben; Reche, Isabel

    2008-01-01

    The effects of many environmental stressors such as UV radiation are mediated by dissolved organic matter (DOM) properties. Therefore, determining the factors shaping spatial and temporal patterns is particularly essential in the most susceptible, low dissolved organic carbon (DOC) lakes. We analyzed spatiotemporal variations in dissolved organic carbon concentration and dissolved organic matter optical properties (absorption and fluorescence) in 11 transparent lakes located above tree line in the Sierra Nevada Mountains (Spain), and we assessed potential external (evaporation and atmospheric deposition) and internal (bacterial abundance, bacterial production, chlorophyll a, and catchment vegetation) drivers of DOM patterns. At spatial and temporal scales, bacteria were related to chromophoric DOM (CDOM). At the temporal scale, water soluble organic carbon (WSOC) in dust deposition and evaporation were found to have a significant influence on DOC and CDOM in two Sierra Nevada lakes studied during the ice-free periods of 2000-2002. DOC concentrations and absorption coefficients at 320 nm were strongly correlated over the spatial scale (n = 11, R(2) = 0.86; p DOC concentration and CDOM to these factors. At the continental scale, higher mean DOC concentrations and more CDOM in lakes of the Sierra Nevada than in lakes of the Pyrenees and Alps may be due to a combination of more extreme evaporation, and greater atmospheric dust deposition.

  5. Biodegradability enhancement of textile wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-01-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5 /COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process

  6. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  7. Dynamics of dissolved organic carbon in a stream during a quarter century of forest succession

    Science.gov (United States)

    Judy L. Meyer; Jackson Webster; Jennifer Knoepp; E.F. Benfield

    2014-01-01

    Dissolved organic carbon (DOC) is a heterogeneous mixture of compounds that makes up a large fraction of the organic matter transported in streams. It plays a significant role in many ecosystems. Riverine DOC links organic carbon cycles of continental and oceanic ecosystems. It is a significant trophic resource in stream food webs. DOC imparts color to lakes,...

  8. Assessing the Role of Dissolved Organic Phosphate on Rates of Microbial Phosphorus Cycling

    Science.gov (United States)

    Gonzalez, A. C.; Popendorf, K. J.; Duhamel, S.

    2016-02-01

    Phosphorus (P) is an element crucial to life, and it is limiting in many parts of the ocean. In oligotrophic environments, the dissolved P pool is cycled rapidly through the activity of microbes, with turnover times of several hours or less. The overarching aim of this study was to assess the flux of P from picoplankton to the dissolved pool and the role this plays in fueling rapid P cycling. To determine if specific microbial groups are responsible for significant return of P to the dissolved pool during cell lifetime, we compared the rate of cellular P turnover (cell-Pτ, the rate of cellular P uptake divided by cellular P content) to the rate of cellular biomass turnover (cellτ). High rates of P return to the dissolved pool during cell lifetime (high cell-Pτ/cellτ) indicate significant P regeneration, fueling more rapid turnover of the dissolved P pool. We hypothesized that cell-Pτ/cellτ varies widely across picoplankton groups. One factor influencing this variation may be each microbial group's relative uptake of dissolved organic phosphorus (DOP) versus dissolved inorganic phosphorus (DIP). As extracellular hydrolysis is necessary for P incorporation from DOP, this process may return more P to the dissolved pool than DIP incorporation. This leads to the question: does a picoplankton's relative uptake of DOP (versus DIP) affect the rate at which it returns phosphorus to the dissolved pool? To address this question, we compared the rate of cellular P turnover based on uptake of DOP and uptake DIP using cultured representatives of three environmentally significant picoplankton groups: Prochlorococcus, Synechococcus, and heterotrophic bacteria. These different picoplankton groups are known to take up different ratios of DOP to DIP, and may in turn make significantly different contributions to the regeneration and cycling phosphorus. These findings have implications towards our understanding of the timeframes of biogeochemical cycling of phosphorus in the

  9. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil

    NARCIS (Netherlands)

    Liu, Hongfei; Yang, Xiaomei; Liu, Guobin; Liang, Chutao; Xue, Sha; Chen, Hao; Ritsema, Coen J.; Geissen, Violette

    2017-01-01

    Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but

  10. Effect of dissolved organic carbon in recycled wastewaters on boron adsorption by soils

    Science.gov (United States)

    In areas of water scarcity, recycled municipal wastewaters are being used as water resources for non-potable applications, especially for irrigation. Such wastewaters often contain elevated levels of dissolved organic carbon (DOC) and solution boron (B). Boron adsorption was investigated on eight ...

  11. An assessment on modified AZ80 alloys for prospect biodegradable CV stent applications

    NARCIS (Netherlands)

    Erinc, M.; Sillekens, W.H.

    2009-01-01

    In medicine, stents are inserted into an artery to prevent local constrictions to blood flow. Commonly used stents are permanent metal stents, yet developments in this area are more and more heading towards biodegradable stents. Implants made of materials that can dissolve in the patient's body by

  12. Determination of the partition coefficient between dissolved organic carbon and seawater using differential equilibrium kinetics.

    Science.gov (United States)

    Kim, Du Yung; Kwon, Jung-Hwan

    2018-05-04

    Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (K DOCw ) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain K DOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4'-trichlorobiphenyl (PCB 28), 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (K DOCsw ) were determined using seawater samples from the Korean coast. The log K DOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k 2 ) and their log K DOCsw values were obtained by comparing their k 2 with that of PCB 28. The calculated log K DOCsw values were 6.57-7.35 for PCB 44, 6.23-7.44 for PCB 101, and 6.35-7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the K DOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean"

    KAUST Repository

    Arrieta, J M; Mayol, E.; Hansman, R. L.; Herndl, G. J.; Dittmar, T.; Duarte, Carlos M.

    2015-01-01

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering

  14. The global distribution and dynamics of chromophoric dissolved organic matter.

    Science.gov (United States)

    Nelson, Norman B; Siegel, David A

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) is a ubiquitous component of the open ocean dissolved matter pool, and is important owing to its influence on the optical properties of the water column, its role in photochemistry and photobiology, and its utility as a tracer of deep ocean biogeochemical processes and circulation. In this review, we discuss the global distribution and dynamics of CDOM in the ocean, concentrating on developments in the past 10 years and restricting our discussion to open ocean and deep ocean (below the main thermocline) environments. CDOM has been demonstrated to exert primary control on ocean color by its absorption of light energy, which matches or exceeds that of phytoplankton pigments in most cases. This has important implications for assessing the ocean biosphere via ocean color-based remote sensing and the evaluation of ocean photochemical and photobiological processes. The general distribution of CDOM in the global ocean is controlled by a balance between production (primarily microbial remineralization of organic matter) and photolysis, with vertical ventilation circulation playing an important role in transporting CDOM to and from intermediate water masses. Significant decadal-scale fluctuations in the abundance of global surface ocean CDOM have been observed using remote sensing, indicating a potentially important role for CDOM in ocean-climate connections through its impact on photochemistry and photobiology.

  15. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Origins and bioavailability of dissolved organic matter in groundwater

    Science.gov (United States)

    Shen, Yuan; Chapelle, Francis H.; Strom, Eric W.; Benner, Ronald

    2015-01-01

    Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and d-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific d-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.

  17. Seasonal changes in photochemical properties of dissolved organic matter in small boreal streams

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2013-01-01

    Roč. 10, č. 8 (2013), s. 5533-5543 ISSN 1726-4170 R&D Projects: GA ČR(CZ) GAP503/12/0781 Institutional support: RVO:60077344 Keywords : photodegradation * dissolved organic matter * seasonal * stream Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.753, year: 2013

  18. The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice

    Science.gov (United States)

    Norman, Louiza; Thomas, David N.; Stedmon, Colin A.; Granskog, Mats A.; Papadimitriou, Stathys; Krapp, Rupert H.; Meiners, Klaus M.; Lannuzel, Delphine; van der Merwe, Pier; Dieckmann, Gerhard S.

    2011-05-01

    An investigation of coloured dissolved organic matter (CDOM) and its relationships to physical and biogeochemical parameters in Antarctic sea ice and oceanic water have indicated that ice melt may both alter the spectral characteristics of CDOM in Antarctic surface waters and serve as a likely source of fresh autochthonous CDOM and labile DOC. Samples were collected from melted bulk sea ice, sea ice brines, surface gap layer waters, and seawater during three expeditions: one during the spring to summer and two during the winter to spring transition period. Variability in both physical (temperature and salinity) and biogeochemical parameters (dissolved and particulate organic carbon and nitrogen, as well as chlorophyll a) was observed during and between studies, but CDOM absorption coefficients measured at 375 nm (a 375) did not differ significantly. Distinct peaked absorption spectra were consistently observed for bulk ice, brine, and gap water, but were absent in the seawater samples. Correlation with the measured physical and biogeochemical parameters could not resolve the source of these peaks, but the shoulders and peaks observed between 260 and 280 nm and between 320 to 330 nm respectively, particularly in the samples taken from high light-exposed gap layer environment, suggest a possible link to aromatic and mycosporine-like amino acids. Sea ice CDOM susceptibility to photo-bleaching was demonstrated in an in situ 120 hour exposure, during which we observed a loss in CDOM absorption of 53% at 280 nm, 58% at 330 nm, and 30% at 375 nm. No overall coincidental loss of DOC or DON was measured during the experimental period. A relationship between the spectral slope (S) and carbon-specific absorption (a *375) indicated that the characteristics of CDOM can be described by the mixing of two broad end-members; and aged material, present in brine and seawater samples characterised by high S values and low a *375; and a fresh material, due to elevated in situ

  19. Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant.

    Science.gov (United States)

    Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang

    2017-07-01

    Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (PCDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.

  20. Mobility of the dissolved organic matter through intact boom clay cores

    International Nuclear Information System (INIS)

    Put, M.J.; Dierckx, A.; Aertsens, M.; Canniere, P. de

    1998-01-01

    Performance assessment studies are expected to predict the enhancement of the migration of trivalent lanthanides and actinides due to their complexation with organic matter, which play a role as a transport agent [1]. Therefore, the mobility of the dissolved organic matter in the interstitial boom clay water is studied. For the first time, the mobile fraction present in the clay water is concentrated and labelled with a radioisotope to study the mobility of the organic matter in clay and the interaction of the mobile with the non-mobile. The isotopes tested as label are 125 I and 14 C. The 125 I label proved to be unstable and hence discarded. The labelled organic matter is then diluted for migration experiments on boom clay cores under anaerobic conditions. The influence of the molecular size on its mobility is studied by the separation of the labelled organic matter in different size fractions. (orig.)

  1. Dissolved Organic Matter Composition and Export from U.S. Rivers

    Science.gov (United States)

    Aiken, G.; Butman, D. E.; Spencer, R. G.; Raymond, P.

    2012-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with water and land resource management. Organic source materials, watershed geochemistry, oxidative processes and hydrology strongly influence the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals. In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of a multi-year study designed to assess the seasonal and spatial variability of DOM quantity and quality for 15 large North American river basins. Samples were collected from the mouths of the rivers using a sampling program designed to capture hydrologic and seasonal variability of DOM export. DOM concentrations and composition, based on DOM fractionation on XAD resins, chromophoric dissolved organic matter (CDOM) parameters (ultraviolet /visible absorption and fluorescence spectroscopy), specific compound analyses, and DO14C content varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration and carbon specific ultra-violet absorbance at 254 nm (SUVA254), an optical measurement that is an indicator of DOM aromatic carbon content. In almost all systems, CDOM optical parameters correlated strongly with DOC concentration and hydrophobic organic acid (HPOA) content (aquatic humic substances). In

  2. Effects of watershed history on dissolved organic matter characteristics in headwater streams

    Science.gov (United States)

    Youhei Yamashita; Brian D. Kloeppel; Jennifer Knoepp; Gregory L. Zausen; Rudolf Jaffe'

    2011-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver in aquatic ecosystem function. Climate, land use, and forest cover changes all impact stream DOM and alter biogeochemical cycles in terrestrial environments. We determined the temporal variation in DOM quantity and quality in headwater streams at a...

  3. Biodegradation of organic compounds in vadose zone and aquifer sediments

    International Nuclear Information System (INIS)

    Konopka, A.; Turco, R.

    1991-01-01

    The microbial processes that occur in the subsurface under a typical Midwest agricultural soil were studied. A 26-m bore was installed in November of 1988 at a site of the Purdue University Agronomy Research Center. Aseptic collections of soil materials were made at 17 different depths. Physical analysis indicated that the site contained up to 14 different strata. The site materials were primarily glacial tills with a high carbonate content. The N,P, and organic C contents of sediments tended to decrease with depth. Ambient water content was generally less than the water content, which corresponds to a -0.3-bar equivalent. No pesticides were detected in slurry incubations of up to 128 days. The sorption of atrazine and metolachlor was correlated with the clay content of the sediments. Microbial biomass (determined by direct microscopic count, viable count, and phospholipid assay) in the tills was lower than in either the surface materials or the aquifer located at 25 m. The biodegradation of glucose and phenol occurred rapidly and without a lag in samples from the aquifer capillary fringe, saturated zone, and surface soils. In contrast, lag periods and smaller biodegradation rates were found in the till samples. Subsurface sediments are rich in microbial numbers and activity. The most active strata appear to be transmissive layers in the saturated zone. This implies that the availability of water may limit activity in the profile

  4. Dissolved organic nutrients and phytoplankton production in the Mandovi estuary and coastal waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.

    Total organic nitrogen (TON) and dissolved organic phosphorus (DOP) in the coastal and estuarine waters of Goa, India varied from 0.6 to 47.1 mu g-at N 1-1 and 0.12 to 3.49 mu g-at P l-1 respectively. The chlorophyll content of these waters...

  5. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Science.gov (United States)

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  6. Dynamics of dissolved and extractable organic nitrogen upon soil amendment with crop residues

    NARCIS (Netherlands)

    Ros, G.H.; Hoffland, E.

    2010-01-01

    Dissolved organic nitrogen (DON) is increasingly recognized as a pivotal pool in the soil nitrogen (N) cycle. Numerous devices and sampling procedures have been used to estimate its size, varying from in situ collection of soil solution to extraction of dried soil with salt solutions. Extractable

  7. Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA

    Science.gov (United States)

    Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.

    2017-12-01

    Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.

  8. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2001-01-01

    Experiments on aqueous TiO 2 photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO 2 photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5∼3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs

  10. Higher molecular weight dissolved organic nitrogen turnover as affected by soil management history

    DEFF Research Database (Denmark)

    Lønne Enggrob, Kirsten

    of different management histories on the turnover of high Mw DON. Further, we distinguished between several classes of high Mw DON, i.e., 1-10 kDa and >10 kDa. 3. Materials and methods With the use of micro-lysimeters, the turnover of triple-labeled (15N, 14C and 13C) high Mw DON was studied in a sandy soil......High molecular weight dissolved organic nitrogen turnover as affected by soil management history *Kirsten Lønne Enggrob,1 Lars Elsgaard,1 and Jim Rasmussen1 1Aarhus University, Dept. of Agroecology, Foulum, Denmark 1. Introduction Dissolved organic nitrogen (DON) play an important role in soil N...... are presented for 14CO2 evolution during 14 days of incubation. 4. Results and conclusion Results showed that the turnover rate of high Mw DON was dependent on both the Mw size of DON and on the soil liming history. Evidence showing where in the DON Mw sizes the bottleneck lies will be presented....

  11. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2001-01-01

    Experiments on aqueous TiO{sup 2} photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO{sup 2} photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5{approx}3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs.

  12. Fractional, biodegradable and spectral characteristics of extracted and fractionated sludge extracellular polymeric substances.

    Science.gov (United States)

    Wei, Liang-Liang; Wang, Kun; Zhao, Qing-Liang; Jiang, Jun-Qiu; Kong, Xiang-Juan; Lee, Duu-Jong

    2012-09-15

    Correlation between fractional, biodegradable and spectral characteristics of sludge extracellular polymeric substances (EPS) by different protocols has not been well established. This work extracted sludge EPS using alkaline extractants (NH₄OH and formaldehyde + NaOH) and physical protocols (ultrasonication, heating at 80 °C or cation exchange resin (CER)) and then fractionated the extracts using XAD-8/XAD-4 resins. The alkaline extractants yielded more sludge EPS than the physical protocols. However, the physical protocols extracted principally the hydrophilic components which were readily biodegradable by microorganisms. The alkaline extractants dissolved additional humic-like substances from sludge solids which were refractory in nature. Different extraction protocols preferably extracted EPS with distinct fractional, biodegradable and spectral characteristics which could be applied in specific usages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics.

    Science.gov (United States)

    Xu, Dazhuang; Zou, Hui; Liu, Meiying; Tian, Jianwen; Huang, Hongye; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-15

    Fluorescent organic nanoparticles (FONs) with aggregation-induced emission (AIE) features have recently emerged as promising fluorescent probes for biomedical applications owing to their excellent optical properties, designability and biocompatibility. Significant progress has been made recently for synthesis and biomedical applications of these AIE-active FONs. However, only very limited reports have demonstrated the fabrication of biodegradable AIE-active FONs with red fluorescence emission. In this study, a novel strategy has been developed for the preparation of biodegradable AIE-active polyurethanes (PUs) through a two-step polymerization, in which the diisocyanate-terminated polyethylene glycol (NCO-PEG-NCO) was synthesized and subsequently conjugated with diamine-containing AIE dye (NH 2 -Phe-NH 2 ). The successful synthesis of AIE-active Phe-PEG 2000 PUs is evidenced by a series of characterization techniques. Because of the formation of AIE-active amphiphilic PUs, the final copolymers can self-assemble into spherical nanoparticles, which exhibit strong luminescence and high water dispersion. The biological evaluation results suggest that the AIE-active Phe-PEG 2000 FONs possess low toxicity and desirable cell permeability. Therefore, we anticipate that these AIE-active FONs with biodegradable potential will trigger much research enthusiasm and effort toward the creation of new AIE-active materials with improved properties for various biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Influence of dissolved organic carbon on the sorption of plutonium to natural sediments

    International Nuclear Information System (INIS)

    Nelson, D.M.; Karttunen, J.O.; Orlandini, K.A.; Larsen, R.P.

    1981-01-01

    One prominent aspect of the environmental behavior of plutonium is a tendency for strong, though not complete, association with soil and sediments. The nature of this association is not well understood, and the water quality parameters which may affect it have not been identified. It is assumed that adsorption is dependent upon the chemical species present (oxidation state and complex ion associations) and that the uncomplexed form of Pu(IV) is the one that is most highly sorbed. In certain oligotrophic waters the dissolved plutonium is primarily in the oxidized form (presumably as Pu(V)), a form that is weakly sorbed. This could account for its solubility. In all water, however, some of the dissolved plutonium is present in the reduced form (presumably as Pu(IV)). The apparent solubility of this reduced form, as measured by a sediment concentration factor, varies markedly among the lakes. The concentrations of dissolved organic carbon (DOC) have now been measured in the waters from a number of lakes and a general dependence of the sediment concentration factor (K/sub D/) for Pu(IV) upon DOC has become evident. In order to study the nature of this plutonium-organic complex in more detail several experiments were conducted in which the sediment concentration factor was measured as a function of DOC concentration

  15. Biodegradation of ethyl acetate in radioactive liquid organic waste by bacterial communities

    International Nuclear Information System (INIS)

    Ferreira, Rafael V.P.; Sakata, Solange K.; Borba, Tania R.; Bellini, Maria H.; Marumo, Julio T.; Dutra, Fernando

    2009-01-01

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab -scale hot cell, known as CELESTE located at IPEN-CNEN/SP. The program was ended at the beginning of 90's and part of the radioactive waste generated mainly from the analytical laboratories is stored at the Waste Management Laboratory. Among various types of radioactive waste generated, the organic liquid represents a major problem for its management, because it can not be directly solidified with cement. The objective of this work is to develop a pretreatment methodology to degrade the ethyl acetate present in organic liquid waste so that it can subsequently be immobilized in cement. This work was divided into two parts: selection and adaptation of three bacterial communities for growth in medium containing ethyl acetate and degradation experiments of ethyl acetate present in radioactive organic liquid waste. The results showed that from bacterial communities the highest biodegradation level observed was 77%. (author)

  16. Effect of activated carbon on biodegradation of organic micropollutants in water; Suichu biryo yuki busshitsu no biseibutsu bunkai ni oyobosu kasseitan no koka

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, T.; Nakano, S. [Osaka Municipal Technical Research Institute, Osaka (Japan)

    1997-01-10

    The effect of activated carbon (AC) on biodegradation of organic micropollutants in water was investigated, using fenitrothion, phenol and aniline as the model compounds, activated sludges cultured in a mixed solution of glucose, peptone and aniline, and Rhodotorula glutinis isolated as the phenol-degradation bacterium. The following conclusions are obtained by analyzing the corrected degradation curves derived from the adsorption equilibrium relationships, oxygen consumption characteristics and observed degradation curves. Biodegradation of each compound is accelerated in the presence of AC. Non-biological degradation of fenitrothion is also accelerated in the presence of AC, its effect being more noted in biodegradation and increasing as AC quantity increases. Phenol is biodegraded by different mechanisms, depending on its initial concentration. The maximum oxygen consumption rate during the biodegradation of phenol increases in the presence of AC, conceivably resulting from enhanced bacterial activities. 5 refs., 6 figs., 4 tabs.

  17. Impact of dissolved organic matter on bioavailability of chlorotoluron to wheat

    Energy Technology Data Exchange (ETDEWEB)

    Song Ninghui [Department of Applied Chemistry, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Building of Chemistry, Nanjing 210095 (China); Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Zhang Shuang; Hong Min [Department of Applied Chemistry, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Building of Chemistry, Nanjing 210095 (China); Yang Hong, E-mail: hongyang@njau.edu.c [Department of Applied Chemistry, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Building of Chemistry, Nanjing 210095 (China); Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China)

    2010-03-15

    Chlorotoluron (Chl) is a phenylurea herbicide and is widely used for controlling weeds. While it has brought great benefits to crop production, it has also resulted in contamination to ecosystem. In this study, we investigated accumulation of chlorotoluron (Chl) and biological responses of wheat plants as affected by dissolved organic matter (DOM). Wheat seedlings grown under 10 mg kg{sup -1} Chl for 4 d showed a low level of chlorophyll accumulation and damage to plasma membrane. The growth was inhibited by exposure of chlorotoluron. Treatment with 50 mg DOC kg{sup -1} DOM derived either from sludge (DOM-SL) or straw (DOM-ST) attenuated the chlorotoluron toxicity to plants. Both DOMs decreased activities of catalase, peroxidase and superoxide dismutase in Chl-treated seedlings. However, an increased glutathione S-transferases activity was observed under the same condition. Wheat plants treated with Chl in the presence of DOM accumulated less Chl than those treated with Chl alone. Moreover, in the presence of DOM, bioconcentration factor (BCF) decreased whereas translocation factors increased. Analyses with FT-IR spectra confirmed the regulatory role of DOMs in reducing Chl accumulation in wheat. - Dissolved organic matter (DOM) as a soil amendment can reduce herbicide accumulation in crops.

  18. Biodegradation of Used Motor Oil in Soil Using Organic Waste Amendments

    Science.gov (United States)

    Abioye, O. P.; Agamuthu, P.; Abdul Aziz, A. R.

    2012-01-01

    Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day−1) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day−1) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration. PMID:22919502

  19. Moessbauer spectroscopy for characterizing biodegradation of magnetic nanoparticles in a living organism

    Energy Technology Data Exchange (ETDEWEB)

    Mischenko, Ilya Nikitich, E-mail: IlyaMischenko@rambler.ru; Chuev, Michail Alexandrovich; Cherepanov, Valeriy Mihailovich; Polikarpov, Michail Alexeevich [National Research Centre ' Kurchatov Institute' (Russian Federation)

    2012-03-15

    We have developed a model for describing nanoparticles magnetic dynamics. This allows us to fit self-consistently the wide set of the experimental data, particularly, the evolution of Moessbauer spectral shape with temperature and external magnetic field as well as the magnetization curves for nanoparticles injected into mice. Thus, we reliably evaluate changes in characteristics of the nanoparticles and their chemical transformation to ferritin-like forms in mouse's organs as a function of time after injection of nanoparticles. Actually, the approach allows one to quantitatively characterize biodegradation and biotransformation of magnetic particles in a body.

  20. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    Science.gov (United States)

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...

  1. Impact of low molecular weight organic acids and dissolved organic matter on sorption and mobility of isoproturon in two soils.

    Science.gov (United States)

    Ding, Qing; Wu, Hai Lang; Xu, Yun; Guo, Li Juan; Liu, Kai; Gao, Hui Min; Yang, Hong

    2011-06-15

    Isoproturon is a selective herbicide belonging to the phenylurea family and widely used for pre- and post-emergence control of annual weeds. Soil amendments (e.g. organic compounds or dissolved organic matter) may affect environmental behavior and bioavailability of pesticides. However, whether the physiochemical process of isoproturon in soils is affected by organic amendments and how it is affected in different soil types are unknown. To evaluate the impact of low molecular weight organic acids (LMWOA) and dissolved organic matter (DOM) on sorption/desorption and mobility of isoproturon in soils, comprehensive analyses were performed using two distinct soil types (Eutric gleysols and Hap udic cambisols). Our analysis revealed that adsorption of isoproturon in Eutric gleysols was depressed, and desorption and mobility of isoproturon were promoted in the presence of DOM and LMWOA. However, the opposite result was observed with Hap udic cambisols, suggesting that the soil type affected predominantly the physiochemical process. We also characterized differential components of the soils using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared (FT-IR) spectroscopy and show that the two soils displayed different intensity of absorption bands for several functional groups. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Dynamic behaviour of river colloidal and dissolved organic matter through cross-flow ultrafiltration system.

    Science.gov (United States)

    Wilding, Andrew; Liu, Ruixia; Zhou, John L

    2005-07-01

    Through cross-flow filtration (CFF) with a 1-kDa regenerated cellulose Pellicon 2 module, the ultrafiltration characteristics of river organic matter from Longford Stream, UK, were investigated. The concentration of organic carbon (OC) in the retentate in the Longford Stream samples increased substantially with the concentration factor (cf), reaching approximately 40 mg/L at cf 15. The results of dissolved organic carbon (DOC) and colloidal organic carbon (COC) analysis, tracking the isolation of colloids from river waters, show that 2 mg/L of COC was present in those samples and good OC mass balance (77-101%) was achieved. Fluorescence measurements were carried out for the investigation of retentate and permeate behaviour of coloured dissolved organic materials (CDOM). The concentrations of CDOM in both the retentate and permeate increased with increasing cf, although CDOM were significantly more concentrated in the retentate. The permeation model expressing the correlation between log[CDOM] in the permeate and logcf was able to describe the permeation behaviour of CDOM in the river water with regression coefficients (r(2)) of 0.94 and 0.98. Dry weight analysis indicated that the levels of organic colloidal particles were from 49 to 71%, and between 29 and 51% of colloidal particles present were inorganic. COC as a percentage of DOC was found to be 10-16% for Longford Stream samples.

  3. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes.

    Science.gov (United States)

    He, Yuhong; Song, Na; Jiang, He-Long

    2018-04-01

    In recent years, the black water phenomenon has become an environmental event in eutrophic shallow lakes in China, leading to deterioration of lake ecosystems and potable water crises. Decomposition of macrophyte debris has been verified as a key inducement for black water events. In this study, the effects of the decomposition of dissolved organic matter (Kottelat et al., WASP 187:343-351, 2008) derived from macrophyte leachate on the occurrence of black water events are investigated to clarify the detailed mechanisms involved. Results show that dissolved organic matter (DOM) is composed of a trace of chromophoric DOM and mostly non-chromophoric dissolved organic matter (CDOM). DOM decomposition is accompanied by varied concentration of CDOM components, generation of organic particles, and increased microbial concentrations. These processes increase water chroma only during initial 48 h, so the intensified water color cannot be maintained by DOM decomposition alone. During DOM decomposition, microorganisms first consume non-CDOM, increasing the relative CDOM concentration and turning the water color to black (or brown). Simultaneously, tryptophan and aromatic proteins, which are major ingredients of CDOM, enhance UV light absorption, further aggravating the macroscopic phenomenon of black color. Our results show that DOM leached from decayed macrophytes promotes or even triggers the occurrence of black water events and should be taken more seriously in the future.

  4. Anaerobic biodegradation of hexazinone in four sediments

    International Nuclear Information System (INIS)

    Wang Huili; Xu Shuxia; Tan Chengxia; Wang Xuedong

    2009-01-01

    Anaerobic biodegradation of hexazinone was investigated in four sediments (L1, L2, Y1 and Y2). Results showed that the L2 sediment had the highest biodegradation potential among four sediments. However, the Y1 and Y2 sediments had no capacity to biodegrade hexazinone. Sediments with rich total organic carbon, long-term contamination history by hexazinone and neutral pH may have a high biodegradation potential because the former two factors can induce the growth of microorganisms responsible for biodegradation and the third factor can offer suitable conditions for biodegradation. The addition of sulfate or nitrate as electron acceptors enhanced hexazinone degradation. As expected, the addition of electron donors (lactate, acetate or pyruvate) substantially inhibited the degradation. In natural environmental conditions, the effect of intermediate A [3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H, 3H)dione] on anaerobic hexazinone degradation was negligible because of its low level.

  5. COLORED DISSOLVED ORGANIC MATTER (CDOM) CHARACTERIZATION BY ABSORPTION AND FLUORESCENCE SPECTRA

    OpenAIRE

    Goncalves Araujo, Rafael; Ramirez-Perez, Marta; Kraberg, Alexandra; Piera, Jaume; Bracher, Astrid

    2014-01-01

    Colored dissolved organic matter (CDOM) absorption and fluorescence spectra were analyzed from samples collected in the Lena River Delta region (Siberia, Russia; summer-2013) and in the Alfacs Bay (Ebro River Delta, Spain; summer-2013/winter-2014) in order to use optical measurements to infer loading and origin of CDOM. Absorbance spectra and Excitation-Emission matrices (EEMs) were obtained with a HORIBA Aqualog® spectrofluorometer. CDOM absorption at 443nm (a443) and terrestrial absorption ...

  6. Simultaneous effect of dissolved organic carbon, surfactant, and organic acid on the desorption of pesticides investigated by response surface methodology

    DEFF Research Database (Denmark)

    Trinh, Ha Thu; Duong, Hanh Thi; Ta, Thao Thi

    2017-01-01

    Desorption of pesticides (fenobucarb, endosulfan, and dichlorodiphenyltrichloroethane (DDT)) from soil to aqueous solution with the simultaneous presence of dissolved organic carbon (DOC), sodium dodecyl sulfate (SDS), and sodium oxalate (Oxa) was investigated in batch test by applying a full...

  7. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ZhiPing, E-mail: liulqs@163.com [Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045 (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Wu, WenHui; Shi, Ping [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Guo, JinSong [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400045 (China); Cheng, Jin [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China)

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  8. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea

    Science.gov (United States)

    Zhu, Wen-Zhuo; Zhang, Hong-Hai; Zhang, Jing; Yang, Gui-Peng

    2018-04-01

    The absorption coefficient and fluorescent components of chromophoric dissolved organic matter (CDOM) in the Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS) in spring and autumn were analyzed in this study. Excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) identified three components, namely, humic-like C1, tyrosine-like C2 and tryptophan-like C3. The seasonal variations in the vertical patterns of the CDOM absorption coefficient (aCDOM(355)) and fluorescent components were influenced by the seasonal water mass except for the terrestrial input. The relationship between aCDOM(355) and dissolved organic matter (DOC) was attributed to their own mixing behavior. The correlation of the fluorescent components with DOC was disturbed by other non-conservative processes during the export of CDOM to the open ocean. The different chemical compositions and origins of DOC and CDOM led to variability in carbon-specific CDOM absorption (a*CDOM(355)) and fluorescent component ratios (ICn/IC1). The relationship between a*CDOM(355) and aCDOM(355) demonstrated that dissolved organic matter (DOM) in the BS, but not in the ECS, highly contributed non-absorbing DOC to the total DOC concentration. The photodegradation of dominant terrestrially derived CDOM in the ECS contributed to the positive relationship between a*CDOM(355) and ICn/IC1. By contrast, the abundant autochthonous CDOM in the YS was negatively correlated with ICn/IC1 in autumn. Our established box models showed that water exchange is a potentially important source of the aromatic components in the BS, YS, and ECS. Hence, the seasonal variations in water exchange might contribute to the variability of CDOM chemical composition in the BS, YS, and ECS, and significantly influence the structure and function of their ecosystems.

  9. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    Science.gov (United States)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  10. Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light.

    Science.gov (United States)

    Zhou, Dandan; Xu, Zhengxue; Dong, Shanshan; Huo, Mingxin; Dong, Shuangshi; Tian, Xiadi; Cui, Bin; Xiong, Houfeng; Li, Tingting; Ma, Dongmei

    2015-07-07

    Intimate coupling of photocatalysis and biodegradation (ICPB) technology is attractive for phenolic wastewater treatment, but has only been investigated using UV light (called UPCB). We examined the intimate coupling of visible-light-induced photocatalysis and biodegradation (VPCB) for the first time. Our catalyst was prepared doping both of Er(3+) and YAlO3 into TiO2 which were supported on macroporous carriers. The macroporous carriers was used to support for the biofilms as well. 99.8% removal efficiency of phenol was achieved in the VPCB, and this was 32.6% higher than that in the UPCB. Mineralization capability of UPCB was even worse, due to less adsorbable intermediates and cell lysis induced soluble microbial products release. The lower phenol degradation in the UPCB was due to the serious detachment of the biofilms, and then the microbes responsible for phenol degradation were insufficient due to disinfection by UV irradiation. In contrast, microbial communities in the carriers were well protected under visible light irradiation and extracellular polymeric substances secretion was enhanced. Thus, we found that the photocatalytic reaction and biodegradation were intimately coupled in the VPCB, resulting in 64.0% removal of dissolved organic carbon. Therefore, we found visible light has some advantages over UV light in the ICPB technology.

  11. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    Science.gov (United States)

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bioavailability of autochthonous dissolved organic nitrogen in marine plankton communities

    DEFF Research Database (Denmark)

    Knudsen, Helle; Markager, Svend Stiig; Søndergaard, Morten

    The purpose of this study was to investigate the bioavailability of dissolved organic nitrogen (DON) produced during a phytoplankton bloom. The experiments were conducted with natural plankton communities as batch growth experiments over approximately 30 days with nitrogen limitation. Five to six...... times during the exponential and stationary phases of each experimental bloom the bioavailability of DON was measured over 60 days together with DOC and oxygen consumption. The overall aim was to quantify remineralization of the added nitrate. The results showed that maximum 33 % of the added nitrate...

  13. Uptake of allochthonous dissolved organic matter from soil and salmon in coastal temperate rainforest streams

    Science.gov (United States)

    Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones

    2009-01-01

    Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...

  14. Effect of Gamma Irradiation on the Biodegradation Process of some Organic Pollutants

    International Nuclear Information System (INIS)

    El-Shahawy, M.R.

    2014-01-01

    Water samples were collected from Ras Gemsa on western coast of Suez Gulf, then microbiologically and chemically analyzed. The total petroleum hydrocarbons (TPH) was at concentration of 357 ppm and exceeded the known permissible limits ranged from 5 to 100 ppm according to the receiving water bulk. On the other hand the biodegrading bacterial counts ( CFU ) clearly reflected the great adaptation of endogenous bacteria to use hydrocarbons as a sole source of carbon. The ratio of biodegrading bacteria to heterotrophic ones was about 3.3%. Five hydrocarbon degrading bacteria were isolated from Suez Gulf Consortia. One isolate HD1 were selected to be promising due to its capacity of hydrocarbon degradation, this promising isolate was characterized and identified by API system as Bacillus subtilis. The biodegradation kinetics of radiated polluted water samples by B. subtilis and the Suez Gulf consortium was monitored gravimetrically. The results showed that The Suez Gulf consortium had more biodegradation capacity than the single isolate B. subtilis overall radiation doses applied and non-radiated polluted water sample. The data showed a significant increase of the biodegradability with increase of radiation doses used

  15. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams

    DEFF Research Database (Denmark)

    Nimptsch, Jorge; Woelfl, Stefan; Osorio, Sebastian

    2015-01-01

    Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradabilit...

  16. Production of Chromophoric Dissolved Organic Matter from Mangrove Leaf Litter and Floating Sargassum Colonies

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) strongly absorbs solar radiation in the blue-green and serves as the primary attenuator of water column ultraviolet radiation (UV-R). CDOM interferes with remote sensing of ocean chlorophyll and can control UV-R-induced damage to light...

  17. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems

    Science.gov (United States)

    Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.

    2018-01-01

    The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.

  18. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans.

    Science.gov (United States)

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin; Markager, Stiig

    2017-12-31

    Based on an extensive literature survey containing more than 12,000 paired measurements of dissolved organic carbon (DOC) concentrations and absorption of chromophoric dissolved organic matter (CDOM) distributed over four continents and seven oceans, we described the global distribution and transformation of dissolved organic matter (DOM) along the aquatic continuum across rivers and lakes to oceans. A strong log-linear relationship (R 2 =0.92) between DOC concentration and CDOM absorption at 350nm was observed at a global scale, but was found to be ecosystem-dependent at local and regional scales. Our results reveal that as DOM is transported towards the oceans, the robustness of the observed relation decreases rapidly (R 2 from 0.94 to 0.44) indicating a gradual decoupling between DOC and CDOM. This likely reflects the decreased connectivity between the landscape and DOM along the aquatic continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7m 2 × gC -1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM pool is gradually becoming less reactive, which has profound consequences on cycling of organic carbon in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. PHOTOREACTIVITY OF CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organi...

  20. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: A review

    International Nuclear Information System (INIS)

    Keith-Roach, Miranda J.

    2008-01-01

    The potential migration of radionuclides is of concern at contaminated land sites and, in the long term, waste repositories. Pathways of migration need to be characterised on a predictive level so that management decisions can be made with confidence. A pathway that is relatively poorly understood at present is radionuclide solubilisation due to complexation by organic complexing agents that are present in mixed radioactive wastes, and at radioactively contaminated land sites. Interactions of the complexing agents with radionuclides and the host environment, and the response to changes in the physicochemical conditions make their role far from simple to elucidate. In addition, chemical and biodegradation of the organic materials may be important. In this paper, key co-contaminant organics are reviewed with emphasis on their environmental fate and impact on radionuclide migration

  1. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: A review

    Energy Technology Data Exchange (ETDEWEB)

    Keith-Roach, Miranda J. [Biogeochemistry and Environmental Analytical Chemistry Group/Consolidated Radio-isotope Facility, School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: mkeith-roach@plymouth.ac.uk

    2008-06-15

    The potential migration of radionuclides is of concern at contaminated land sites and, in the long term, waste repositories. Pathways of migration need to be characterised on a predictive level so that management decisions can be made with confidence. A pathway that is relatively poorly understood at present is radionuclide solubilisation due to complexation by organic complexing agents that are present in mixed radioactive wastes, and at radioactively contaminated land sites. Interactions of the complexing agents with radionuclides and the host environment, and the response to changes in the physicochemical conditions make their role far from simple to elucidate. In addition, chemical and biodegradation of the organic materials may be important. In this paper, key co-contaminant organics are reviewed with emphasis on their environmental fate and impact on radionuclide migration.

  2. Bioavailability and export of dissolved organic matter from a tropical river during base- and stormflow conditions

    Science.gov (United States)

    Tracy N. Wiegner; Randee L. Tubal; Richard A. MacKenzie

    2009-01-01

    Concentrations, bioavailability, and export of dissolved organic matter (DOM), particulate organic matter (POM), and nutrients from the Wailuku River, Hawai'i, U.S.A., were examined under base- and stormflow conditions. During storms, DOM and POM concentrations increased approximately by factors of 2 and 11, respectively, whereas NO3...

  3. Colored dissolved organic matter in Tampa Bay, Florida

    Science.gov (United States)

    Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

    2007-01-01

    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m-1) about seven times higher than that in June (∼ 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the

  4. Radiocarbon in dissolved organic matter in the central North Pacific Ocean

    International Nuclear Information System (INIS)

    Williams, P.M.; Druffel, E.R.M.

    1987-01-01

    The authors present the first detailed profile of radiocarbon measured in dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the oligotrophic gyre of the central North Pacific. Δ 14 C of DOC ranged from -150 per mille (1,310 yr BP) in surface waters to -540 per mille (6,240 yr BP) at 5,710 m, 40 m off the bottom. The surprising similarity in the shapes of the profiles of Δ 14 C in the DOC and DIC pools suggest that similar processes are controlling the radiocarbon distribution in each of the two reservoirs and that bomb-produced radiocarbon has penetrated the DOC + DIC pools to a depth of ∼ 900 m. The depletion of the Δ 14 Csub(DOC) values by 300 per mille with respect to the Δ 14 Csub(DIC) values suggests that a certain fraction of the DOC is recycled within the ocean on longer time-scales than DIC. (author)

  5. Evaluation of dissolved oxygen and organic substances concentrations in water of the nature reserve Alluvium Zitavy

    International Nuclear Information System (INIS)

    Palaticka, A.; Noskovic, J.; Babosova, M.

    2007-01-01

    In 2006 concentrations of dissolved oxygen and organic substances were evaluated in water in the Nature Reserve Alluvium Zitavy (indirect method based on their oxidation by K 2 Cr 2 0 7 was used). The results are represented in mg of O 2 · dm -3 . Taking of samples took place in 6 sampling sites in regular month intervals. Based on obtained data and according to the standard STN 75 7221 (Water quality -The classification of the water surface quality) water in individual sampling sites was ranked into the classes of the .water surface quality. From the data it is clear that the concentrations of dissolved oxygen and organic substances in the Nature Reserve Alluvium Zitavy changed in dependence on sampling sites and time. The highest mean concentrations of dissolved oxygen in dependence on sampling time were found out in spring months and the lowest concentrations in summer months. They ranged from 1.6 mg 0 2 · dm -3 (July) to 9.0 mg O 2 · dm -3 (March). Falling dissolved oxygen values can be related to successive increase of water temperature, thus good conditions were created for decomposition of organic matter by microorganisms in water and sediments in which they use dissolved oxygen. In dependence on sampling place the highest mean concentration of dissolved oxygen was in sampling site No. 4 (6.0 mg 0 2 · dm -3 ) which is situated in the narrowest place in the NR. The lowest value was in sampling site No. 2 (3.6 mg 0 2 · dm -3 ) which is a typical wetland ecosystem. High mean values of COD Cr in dependence on sampling time were determined in summer months and low values during winter moths. Dependence of COD Cr values on sampling site was also manifested. The lowest mean value was obtained in sampling site No. 4 (59.5 mg · dm -3 ) and the highest value in sampling site No. 5 (97.1 mg · dm -3 ) which is also a typical wetland. Based on the results and according to the STN 75 7221 we ranked water in all sampling sites into the 5 th class of the water

  6. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    Science.gov (United States)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights

  7. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  8. Dissolved organic carbon fluxes from hydropedologic units in Alaskan coastal temperate rainforest watersheds

    Science.gov (United States)

    David V. D' Amore; Rick T. Edwards; Paul A. Herendeen; Eran Hood; Jason B. Fellman

    2015-01-01

    Dissolved organic C (DOC) transfer from the landscape to coastal margins is a key component of regional C cycles. Hydropedology provides a conceptual and observational framework for linking soil hydrologic function to landscape C cycling. We used hydropedology to quantify the export of DOC from the terrestrial landscape and understand how soil temperature and water...

  9. Regeneration of Surgically Excised Segments of Dog Esophagus using Biodegradable PLA Hollow Organ Grafts,

    Science.gov (United States)

    1980-06-01

    7 AG 396 ARMY INST OF DENTAL RESEARCH WASHINGTON DC FIG 6/5 REGENERATION OF SURGICALLY EXCISED SEGMENTS OF DOG ESOPHAGUS US-ETC(W) U15 G’OE UN8 N F...the graft; infection; inadequate blood supply; difficulties in suture retention; leakage at the anastomatic sites; stenosis of the anasto- mosis...excised segment of the dog esophagus. On a conceptual L- J basis, the use of a biodegradable polymer to fabricate a successful J hollow organ graft holds

  10. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    Science.gov (United States)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  11. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : f

  12. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation

    International Nuclear Information System (INIS)

    Cébron, Aurélie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Leyval, Corinne

    2013-01-01

    Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5–6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives. -- Highlights: ► Re-incorporation of soil organic extract increased 6-times the PAH availability. ► Complexity of organic contamination is the main driver of PAH availability. ► Biodegradation of PAH with less than 5-cycles increased with increasing PAH availability. ► Pseudomonas and Fusarium species are favoured when PAH availability increased. -- More than ageing, the complexity of organic contamination is the main driver of PAH availability

  13. Photolysis of sulfamethoxypyridazine in various aqueous media: Aerobic biodegradation and identification of photoproducts by LC-UV–MS/MS

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Nareman D.H., E-mail: drndahshan@yahoo.com [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg (Germany); Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Mahmoud, Waleed M.M. [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg (Germany); Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Hadad, Ghada M.; Abdel-Salam, Randa A. [Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Kümmerer, Klaus, E-mail: Klaus.Kuemmerer@uni.leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg (Germany)

    2013-01-15

    Highlights: ► Sulfonamides are one of the most extensively used antibiotics in human and veterinary medicine. ► Sulfamethoxypyridazine (SMP) underwent photodegradation in three different media. ► SMP was not readily biodegradable. ► SMP and some of its degradation products were identified by LC-UV–MS/MS. -- Abstract: Sulfonamides are one of the most frequently used antibiotics worldwide. Therefore, mitigation processes such as abiotic or biotic degradation are of interest. Photodegradation and biodegradation are the potentially significant removal mechanisms for pharmaceuticals in aquatic environments. The photolysis of sulfamethoxypyridazine (SMP) using a medium pressure Hg-lamp was evaluated in three different media: Millipore water pH 6.1 (MW), effluent from sewage treatment plant pH 7.6 (STP), and buffered demineralized water pH 7.4 (BDW). Identification of transformation products (TPs) was performed by LC-UV–MS/MS. The biodegradation of SMP using two tests from the OECD series was studied: Closed Bottle test (OECD 301 D), and Manometric Respirometry test (OECD 301 F). In biodegradation tests, it was found that SMP was not readily biodegradable so it may pose a risk to the environment. The results showed that SMP was removed completely within 128 min of irradiation in the three media, and the degradation rate was different for each investigated type of water. However, dissolved organic carbon (DOC) was not removed in BDW and only little DOC removal was observed in MW and STP, thus indicating the formation of TPs. Analysis by LC-UV–MS/MS revealed new TPs formed. The hydroxylation of SMP represents the main photodegradation pathway.

  14. Photolysis of sulfamethoxypyridazine in various aqueous media: Aerobic biodegradation and identification of photoproducts by LC-UV–MS/MS

    International Nuclear Information System (INIS)

    Khaleel, Nareman D.H.; Mahmoud, Waleed M.M.; Hadad, Ghada M.; Abdel-Salam, Randa A.; Kümmerer, Klaus

    2013-01-01

    Highlights: ► Sulfonamides are one of the most extensively used antibiotics in human and veterinary medicine. ► Sulfamethoxypyridazine (SMP) underwent photodegradation in three different media. ► SMP was not readily biodegradable. ► SMP and some of its degradation products were identified by LC-UV–MS/MS. -- Abstract: Sulfonamides are one of the most frequently used antibiotics worldwide. Therefore, mitigation processes such as abiotic or biotic degradation are of interest. Photodegradation and biodegradation are the potentially significant removal mechanisms for pharmaceuticals in aquatic environments. The photolysis of sulfamethoxypyridazine (SMP) using a medium pressure Hg-lamp was evaluated in three different media: Millipore water pH 6.1 (MW), effluent from sewage treatment plant pH 7.6 (STP), and buffered demineralized water pH 7.4 (BDW). Identification of transformation products (TPs) was performed by LC-UV–MS/MS. The biodegradation of SMP using two tests from the OECD series was studied: Closed Bottle test (OECD 301 D), and Manometric Respirometry test (OECD 301 F). In biodegradation tests, it was found that SMP was not readily biodegradable so it may pose a risk to the environment. The results showed that SMP was removed completely within 128 min of irradiation in the three media, and the degradation rate was different for each investigated type of water. However, dissolved organic carbon (DOC) was not removed in BDW and only little DOC removal was observed in MW and STP, thus indicating the formation of TPs. Analysis by LC-UV–MS/MS revealed new TPs formed. The hydroxylation of SMP represents the main photodegradation pathway

  15. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  16. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    KAUST Repository

    Maeng, Sungkyu

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM. © 2012 Elsevier B.V.

  17. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study.

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Dissolved Organic Matter Land-Ocean Linkages in the Arctic

    Science.gov (United States)

    Mann, P. J.; Spencer, R. M.; Hernes, P. J.; Tank, S. E.; Striegl, R.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2012-04-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC), and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is important for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the NSF funded Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric and fluorescent dissolved organic matter (CDOM & FDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Lignin composition was also successfully modeled using FDOM measurements decomposed using PARAFAC analysis. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in

  19. Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)

    NARCIS (Netherlands)

    Van Engeland, T.; Soetaert, K.E.R.; Knuijt, A.; Laane, R.W.P.M.; Middelburg, J.J.

    2010-01-01

    Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the

  20. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2000-01-01

    Experiments on aqueous TiO 2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO 2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  1. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  2. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    Science.gov (United States)

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  3. [Linking optical properties of dissolved organic matter with NDMA formation potential in the Huangpu River].

    Science.gov (United States)

    Dong, Qian-Qian; Zhang, Ai; Li, Yong-Mei; Chen, Ling; Huang, Qing-Hui

    2014-03-01

    Surface water samples from the Huangpu River were filtered to measure the UV absorption and fluorescence spectrum. Dissolved organic carbon (DOC), N-nitrosodimethylamine (NDMA), and its formation potential (NDMA-FP) were also analyzed to explore relationships between the properties of dissolved organic matter (DOM) and the formation potential of disinfection byproducts-NDMA in the Huangpu River. The study found that: NDMA-FP concentration increased with the increasing of DOC concentration (r = 0.487, P NDMA-FP concentration had positive relationships with the fluorescence intensity of protein-like substances such as low-molecular-weight (LMW) tyrosine-like and tryptophan-like substances (r = 0.421, P NDMA formation potential increases with the increasing DOM content in the Huangpu River, which is significantly related with the protein-like substances, but decreases with the increasing aromaticity and humification of DOM.

  4. Formation of Chromophoric Dissolved Organic Matter by Bacterial Degradation of Phytoplankton-Derived Aggregates

    Directory of Open Access Journals (Sweden)

    Joanna D. Kinsey

    2018-01-01

    Full Text Available Organic matter produced and released by phytoplankton during growth is processed by heterotrophic bacterial communities that transform dissolved organic matter into biomass and recycle inorganic nutrients, fueling microbial food web interactions. Bacterial transformation of phytoplankton-derived organic matter also plays a poorly known role in the formation of chromophoric dissolved organic matter (CDOM which is ubiquitous in the ocean. Despite the importance of organic matter cycling, growth of phytoplankton and activities of heterotrophic bacterial communities are rarely measured in concert. To investigate CDOM formation mediated by microbial processing of phytoplankton-derived aggregates, we conducted growth experiments with non-axenic monocultures of three diatoms (Skeletonema grethae, Leptocylindrus hargravesii, Coscinodiscus sp. and one haptophyte (Phaeocystis globosa. Phytoplankton biomass, carbon concentrations, CDOM and base-extracted particulate organic matter (BEPOM fluorescence, along with bacterial abundance and hydrolytic enzyme activities (α-glucosidase, β-glucosidase, leucine-aminopeptidase were measured during exponential growth and stationary phase (~3–6 weeks and following 6 weeks of degradation. Incubations were performed in rotating glass bottles to keep cells suspended, promoting cell coagulation and, thus, formation of macroscopic aggregates (marine snow, more similar to surface ocean processes. Maximum carbon concentrations, enzyme activities, and BEPOM fluorescence occurred during stationary phase. Net DOC concentrations (0.19–0.46 mg C L−1 increased on the same order as open ocean concentrations. CDOM fluorescence was dominated by protein-like signals that increased throughout growth and degradation becoming increasingly humic-like, implying the production of more complex molecules from planktonic-precursors mediated by microbial processing. Our experimental results suggest that at least a portion of open

  5. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  6. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, J M; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  7. Deepwater Horizon oil in Gulf of Mexico waters after 2 years: transformation into the dissolved organic matter pool.

    Science.gov (United States)

    Bianchi, Thomas S; Osburn, Christopher; Shields, Michael R; Yvon-Lewis, Shari; Young, Jordan; Guo, Laodong; Zhou, Zhengzhen

    2014-08-19

    Recent work has shown the presence of anomalous dissolved organic matter (DOM), with high optical yields, in deep waters 15 months after the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GOM). Here, we continue to use the fluorescence excitation-emission matrix (EEM) technique coupled with parallel factor analysis (PARAFAC) modeling, measurements of bulk organic carbon, dissolved inorganic carbon (DIC), oil indices, and other optical properties to examine the chemical evolution and transformation of oil components derived from the DWH in the water column of the GOM. Seawater samples were collected from the GOM during July 2012, 2 years after the oil spill. This study shows that, while dissolved organic carbon (DOC) values have decreased since just after the DWH spill, they remain higher at some stations than typical deep-water values for the GOM. Moreover, we continue to observe fluorescent DOM components in deep waters, similar to those of degraded oil observed in lab and field experiments, which suggest that oil-related fluorescence signatures, as part of the DOM pool, have persisted for 2 years in the deep waters. This supports the notion that some oil-derived chromophoric dissolved organic matter (CDOM) components could still be identified in deep waters after 2 years of degradation, which is further supported by the lower DIC and partial pressure of carbon dioxide (pCO2) associated with greater amounts of these oil-derived components in deep waters, assuming microbial activity on DOM in the current water masses is only the controlling factor of DIC and pCO2 concentrations.

  8. Interaction of extrinsic chemical factors affecting photodegradation of dissolved organic matter in aquatic ecosystems

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2014-01-01

    Roč. 13, č. 5 (2014), s. 799-812 ISSN 1474-905X R&D Projects: GA ČR(CZ) GAP503/12/0781 Institutional support: RVO:60077344 Keywords : photodegradation * dissolved organic matter * calcium * nitrate * iron * pH Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.267, year: 2014

  9. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

    NARCIS (Netherlands)

    Margolin, A.R.; Gerringa, L.J.A.; Hansell, D.A.; Rijkenberg, M.J.A.

    2016-01-01

    Dissolved organic carbon (DOC) concentrations in the deep Black Sea are ~2.5 times higher than found in the globalocean. The two major external sources of DOC are rivers and the Sea of Marmara, a transit point for waters from theMediterranean Sea. In addition, expansive phytoplankton blooms

  10. The role of dissolved organic matter in adsorbing heavy metals in clay-rich soils

    NARCIS (Netherlands)

    Refaey, Y.; Jansen, B.; El-Shater, A.H.; El-Haddad, A.A.; Kalbitz, K.

    2014-01-01

    Adsorption of tested heavy metals on Egyptian soils was large in all situations tested and follows the order: Cu >> Ni ≈ Zn. Copper was influenced by the timing of dissolved organic matter addition more than Ni and Zn. Specific binding mechanisms (inner-sphere complexes) dominated the affinity of Cu

  11. Co-optimization of diesel fuel biodegradation and N2 fixation through the addition of particulate organic carbon

    International Nuclear Information System (INIS)

    Piehler, M.; Swistak, J.; Paerl, H.

    1995-01-01

    Petroleum hydrocarbon pollution in the marine environment is widespread and current bioremedial techniques are often not cost effective for small spills. The formulation of simple and inexpensive bioremedial methods could help reduce the impacts of frequent low volume spills in areas like marinas and ports. Particulate organic carbon (POC) was added to diesel fuel amended samples from inshore marine waters in the form of corn-slash (post-harvest leaves and stems), with and without inorganic nutrients (nitrate and phosphate). Biodegradation of diesel fuel ( 14 C hexadecane mineralization) and N 2 fixation were measured in response to the additions, The addition of POC was necessary for N 2 fixation and diesel fuel biodegradation to co-occur. The effects of diesel fuel and inorganic nutrient additions on N 2 fixation rates were not consistent, with both inhibitory and stimulatory responses to each addition observed. The highest observed diesel fuel biodegradation levels were in response to treatments that included inorganic nutrients. The addition of POC alone increased diesel fuel degradation levels above that observed in the control. In an attempt to determine the effect of the POC on the microbial community, the corn particles were observed microscopically using scanning electron microscopy and light microscopy with tetrazolium salt additions. The corn particles were found to have abundant attached bacterial communities and microscale oxygen concentration gradients occurring on individual particles. The formation of oxygen replete microzones may be essential for the co-occurrence of aerobic diesel fuel biodegradation and oxygen inhibited N2 fixation. Mesocosm experiments are currently underway to further examine the structure and function of this primarily heterotrophic system and to explore the potential contribution of N 2 fixation to the N requirements of diesel fuel biodegradation

  12. Spatial distribution of soils determines export of nitrogen and dissolved organic carbon from an intensively managed agricultural landscape

    DEFF Research Database (Denmark)

    Wohlfart, T; Exbrayat, J-F; Schelde, Kirsten

    2012-01-01

    nitrogen (TDN), nitrate (NO3−), ammonium nitrogen and dissolved organic carbon (DOC) concentrations were measured, and dissolved organic nitrogen (DON) was calculated for each grabbed sample. Electrical conductivity, pH and flow velocity were measured during sampling. Statistical analyses showed...... significant differences between the northern, southern and converged stream parts, especially for NO3− concentrations with average values between 1.4 mg N l−1 and 9.6 mg N l−1. Furthermore, throughout the sampling period DON concentrations increased to 2.8 mg N l−1 in the northern stream contributing up to 81...

  13. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, f ow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  14. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Directory of Open Access Journals (Sweden)

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  15. Mössbauer spectroscopy for characterizing biodegradation of magnetic nanoparticles in a living organism

    International Nuclear Information System (INIS)

    Mischenko, Ilya Nikitich; Chuev, Michail Alexandrovich; Cherepanov, Valeriy Mihailovich; Polikarpov, Michail Alexeevich

    2012-01-01

    We have developed a model for describing nanoparticles magnetic dynamics. This allows us to fit self-consistently the wide set of the experimental data, particularly, the evolution of Mössbauer spectral shape with temperature and external magnetic field as well as the magnetization curves for nanoparticles injected into mice. Thus, we reliably evaluate changes in characteristics of the nanoparticles and their chemical transformation to ferritin-like forms in mouse’s organs as a function of time after injection of nanoparticles. Actually, the approach allows one to quantitatively characterize biodegradation and biotransformation of magnetic particles in a body.

  16. Inner filter correction of dissolved organic matter fluorescence

    DEFF Research Database (Denmark)

    Kothawala, D.N.,; Murphy, K.R.; Stedmon, Colin

    2013-01-01

    The fluorescence of dissolved organic matter (DOM) is suppressed by a phenomenon of self-quenching known as the inner filter effect (IFE). Despite widespread use of fluorescence to characterize DOM in surface waters, the advantages and constraints of IFE correction are poorly defined. We assessed...... the effectiveness of a commonly used absorbance-based approach (ABA), and a recently proposed controlled dilution approach (CDA) to correct for IFE. Linearity between corrected fluorescence and total absorbance (ATotal; the sum of absorbance at excitation and emission wavelengths) across the full excitation......-emission matrix (EEM) in dilution series of four samples indicated both ABA and CDA were effective to an absorbance of at least 1.5 in a 1 cm cell, regardless of wavelength positioning. In regions of the EEMs where signal to background noise (S/N) was low, CDA correction resulted in more variability than ABA...

  17. A method to simultaneously determining the reduction in PAH dissolved concentrations and bioaccessibility in carbon amended soils

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E. C.; Rein, Arno

    In order to investigate the potential of different soil amendments (activated charcoal (AC), charcoal (biochar), compost) to sorb PAHs and their effect on bioaccessibility and biodegradation of PAHs in soil, a method was developed that can determine simultaneously the changes in PAH dissolved...

  18. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems : A meta-analysis

    NARCIS (Netherlands)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G M; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-01-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the

  19. Advanced characterization of dissolved organic matter released by bloom-forming marine algae

    KAUST Repository

    Rehman, Zahid Ur

    2017-06-01

    Algal organic matter (AOM), produced by marine phytoplankton during bloom periods, may adversely affect the performance of membrane processes in seawater desalination. The polysaccharide fraction of AOM has been related to (bio)fouling in micro-filtration and ultrafiltration, and reverse osmosis membranes. However, so far, the chemical structure of the polysaccharides released by bloom-forming algae is not well understood. In this study, dissolved fraction of AOM produced by three algal species (Chaetoceros affinis, Nitzschia epithemoides and Hymenomonas spp.) was characterized using liquid chromatography–organic carbon detection (LC-OCD) and fluorescence spectroscopy. Chemical structure of polysaccharides isolated from the AOM solutions at stationary phase was analyzed using proton nuclear magnetic resonance (H-NMR). The results showed that production and composition of dissolved AOM varied depending on algal species and their growth stage. AOM was mainly composed of biopolymers (BP; i.e., polysaccharides and proteins [PN]), but some refractory substances were also present.H-NMR spectra confirmed the predominance of carbohydrates in all samples. Furthermore, similar fingerprints were observed for polysaccharides of two diatom species, which differed considerably from that of coccolithophores. Based on the findings of this study,H-NMR could be used as a method for analyzing chemical profiles of algal polysaccharides to enhance the understanding of their impact on membrane fouling.

  20. How appetizing is the dissolved organic matter (DOM) trees lose during rainfall?

    Science.gov (United States)

    Howard, D.; Van Stan, J. T., II; Whitetree, A.; Zhu, L.; Stubbins, A.

    2017-12-01

    Dissolved organic carbon (DOC) is the chemical backbone of dissolved organic matter (DOM), which is important because it drives many processes in soils and waterways. Current DOC work has paid little attention to interactions between rain and plant canopies, where rainfall is partitioned into throughfall and stemflow. Even less DOC research has investigated the effect of arboreal epiphytes on throughfall and stemflow DOC. The purpose of this study is twofold: (1) assess the degree and timing of DOC consumption by microbial communities (biolability) in throughfall and stemflow, and (2) determine whether the presence of arboreal epiphytes in the canopy affect DOC biolability. Biolability of stemflow and throughfall DOC from Juniperus virginiana (cedar) was determined by incubating samples for 14 days. Throughfall and stemflow DOC was highly biolabile with DOC concentrations decreasing by 30-60%. Throughfall DOC was more biolabile than stemflow DOC. DOC in both throughfall and stemflow from epiphyte-covered cedars was less biolabile than DOC from trees without epiphytes. The high biolability of tree-derived DOC indicates that its supply provides carbon substrates to the microbial community at the forest floor, in soils and the rhizosphere. Epiphytes appear to be important in determining the biolability of DOC and therefore the size of this carbon subsidy to the soil ecosystem.

  1. Mixing and photoreactivity of dissolved organic matter in the Nelson/Hayes estuarine system (Hudson Bay, Canada)

    Science.gov (United States)

    Guéguen, C.; Mokhtar, M.; Perroud, A.; McCullough, G.; Papakyriakou, T.

    2016-09-01

    This work presents the results of a 4-year study (2009-2012) investigating the mixing and photoreactivity of dissolved organic matter (DOM) in the Nelson/Hayes estuary (Hudson Bay). Dissolved organic carbon (DOC), colored DOM, and humic-like DOM decreased with increasing salinity (r2 = 0.70-0.84). Removal of DOM was noticeable at low to mid salinity range, likely due to degradation and/or adsorption to particles. DOM photobleaching rates (i.e., decrease in DOM signal resulting from exposure to solar radiation) ranged from 0.005 to 0.030 h- 1, corresponding to half-lives of 4.9-9.9 days. Dissolved organic matter from the Nelson and Hayes Rivers was more photoreactive than from the estuary where the photodegradation of terrestrial DOM decreased with increasing salinity. Coincident with the loss of CDOM absorption was an increase in spectral slope S, suggesting a decrease in DOM molecular weight. Marked differences in photoreactivity of protein- and humic-like DOM were observed with highly humidified material being the most photosensitive. Information generated by our study will provide a valuable data set for better understanding the impacts of future hydroelectric development and climate change on DOM biogeochemical dynamics in the Nelson/Hayes estuary and coastal domain. This study will constitute a reference on terrestrial DOM fate prior to building additional generating capacity on the Nelson River.

  2. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    Science.gov (United States)

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Biodegradation: Updating the Concepts of Control for Microbial Cleanup in Contaminated Aquifers

    DEFF Research Database (Denmark)

    Meckenstock, Rainer U.; Elsner, Martin; Griebler, Christian

    2015-01-01

    Biodegradation is one of the most favored and sustainable means of removing organic pollutants from contaminated aquifers but the major steering factors are still surprisingly poorly understood. Growing evidence questions some of the established concepts for control of biodegradation. Here, we...... on the controls of biodegradation in contaminant plumes. These include the plume fringe concept, transport limitations, and transient conditions as currently underestimated processes affecting biodegradation....

  4. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter

    DEFF Research Database (Denmark)

    Autio, Iida; Soinne, Helena; Helin, Janne

    2016-01-01

    We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations...... of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5–9 % of the DOC and 45 % of the DON were degraded by the bacterial...

  5. Examining the role of dissolved organic nitrogen in stream ecosystems across biomes and Critical Zone gradients

    Science.gov (United States)

    Wymore, A.; Rodriguez-Cardona, B.; Coble, A. A.; Potter, J.; Lopez Lloreda, C.; Perez Rivera, K.; De Jesus Roman, A.; Bernal, S.; Martí Roca, E.; Kram, P.; Hruska, J.; Prokishkin, A. S.; McDowell, W. H.

    2016-12-01

    Watershed nitrogen exports are often dominated by dissolved organic nitrogen (DON); yet, little is known about the role ambient DON plays in ecosystems. As an organic nutrient, DON may serve as either an energy source or as a nutrient source. One hypothesized control on DON is nitrate (NO3-) availability. Here we examine the interaction of NO3- and DON in streams across temperate forests, tropical rainforests, and Mediterranean and taiga biomes. Experimental streams also drain contrasting Critical Zones which provide gradients of vegetation, soil type and lithology (e.g. volcaniclastic, granitic, ultramafic, Siberian Traps Flood Basalt) in which to explore how the architecture of the Critical Zone affects microbial biogeochemical reactions. Streams ranged in background dissolved organic carbon (DOC) concentration (1-50 mg C/L) and DOC: NO3- ratios (10-2000). We performed a series of ecosystem-scale NO3- additions in multiple streams within each environment and measured the change in DON concentration. Results demonstrate that there is considerable temporal and spatial variation across systems with DON both increasing and decreasing in response to NO3- addition. Ecologically this suggests that DON can serve as both a nutrient source and an energy source to aquatic microbial communities. In contrast, DOC concentrations rarely changed in response to NO3- additions suggesting that the N-rich fraction of the ambient dissolved organic matter pool is more bioreactive than the C-rich fraction. Contrasting responses of the DON and DOC pools indicate different mechanisms controlling their respective cycling. It is likely that DON plays a larger role in ecosystems than previously recognized.

  6. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater

    DEFF Research Database (Denmark)

    Kragh, Theis; Søndergaard, Morten; Tranvik, Lars

    2008-01-01

    This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were...... arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used...

  7. Growth response of four freshwater algal species to dissolved organic nitrogen of different concentration and complexity

    DEFF Research Database (Denmark)

    Fiedler, Dorothea; Graeber, Daniel; Badrian, Maria

    2015-01-01

    1. Dissolved organic nitrogen (DON) compounds dominate the nitrogen pool of many lakes, but their importance as nitrogen sources for freshwater phytoplankton is not fully understood. Previous growth experiments demonstrated the availability of urea and amino acids but often at unnaturally high...... (DCAA), natural organic matter (NOM)) or with nitrate as the sole nitrogen source. Monocultures of Chlamydomonas spp., Cyclotella meneghiniana, Microcystis aeruginosa and Anabaena flos-aquae were incubated with dissolved nitrogen compounds at concentrations ranging from 0.01 to 0.5 mg N L−1, which...... and their compound preferences. Therefore, DON composition can influence biomass and structure of phytoplankton communities. 6. These experiments demonstrate the importance of the main DON compounds for phytoplankton growth when no inorganic nitrogen is available. DON should in future be included in nitrogen budget...

  8. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    Science.gov (United States)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  9. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of

  10. Seasonal and air mass trajectory effects on dissolved organic matter of bulk deposition at a coastal town in south-western Europe.

    Science.gov (United States)

    Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C

    2013-01-01

    Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.

  11. Oxidation by UV and ozone of organic contaminants dissolved in deionized and raw mains water

    International Nuclear Information System (INIS)

    Francis, P.D.

    1987-01-01

    Organic contaminants dissolved in deionized pretreated and raw mains water were reacted with ultraviolet light and ozone. Ozone first was used for partial oxidation followed by ozone combined with ultraviolet radiation to produce total oxidation. The reduction of total organic carbon (TOC) level and direct oxidation of halogenated compounds were measured throughout the treatment process. The rate of TOC reduction was compared for ozone injected upstream and inside the reactor

  12. Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean"

    KAUST Repository

    Arrieta, Jesus

    2015-12-18

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering the redefinition of recalcitrant DOC recently proposed by Jiao et al., the dilution hypothesis best explains our experimental observations.

  13. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    Science.gov (United States)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths

  14. TREATMENT OF URBAN STORMWATER FOR DISSOLVED POLLUTANTS: A COMPARATIVE STUDY OF THREE NATURAL ORGANIC MEDIA

    Science.gov (United States)

    The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...

  15. Characterisation and biodegradation of settleable organic matter for ...

    African Journals Online (AJOL)

    Biodegradation of settled COD is studied by evaluating the associated OUR profile obtained in an aerated batch reactor. Hydrolysis was selected, as in current modelling, as the rate-limiting step for O2 consumption. Settled COD was found to incorporate a significant fraction of active biomass that needs to be accounted for ...

  16. Transformations and Fates of Terrigenous Dissolved Organic Matter in River-influenced Ocean Margins

    Science.gov (United States)

    Fichot, Cedric G.

    Rivers contribute about 0.25 Pg of terrigenous dissolved organic carbon (tDOC) to the ocean each year. The fate and transformations of this material have important ramifications for the metabolic state of the ocean, air-sea CO2 exchange, and the global carbon cycle. Stable isotopic compositions and terrestrial biomarkers suggest tDOC must be efficiently mineralized in ocean margins. Nonetheless, the extent of tDOC mineralization in these environments remains unknown, as no quantitative estimate is available. The complex interplay of biogeochemical and physical processes in these systems compounded by the limited practicality of chemical proxies (organic biomarkers, isotopic compositions) make the quantification of tDOC mineralization in these dynamic systems particularly challenging. In this dissertation, new optical proxies were developed (Chapters 1 and 2) and facilitated the first quantitative assessment of tDOC mineralization in a dynamic river-influenced ocean margin (Chapter 3) and the monitoring of continental runoff distributions in the coastal ocean using remote sensing (Chapter 4). The optical properties of chromophoric dissolved organic matter (CDOM) were used as optical proxies for dissolved organic carbon concentration ([DOC]) and %tDOC. In both proxies, the CDOM spectral slope coefficient ( S275-295) was exploited for its informative properties on the chemical nature and composition of dissolved organic matter. In the first proxy, a strong relationship between S275-295 and the ratio of CDOM absorption to [DOC] facilitated accurate retrieval (+/- 4%) of [DOC] from CDOM. In the second proxy, the existence of a strong relationship between S275-295 and the DOC-normalized lignin yield facilitated the estimation of the %tDOC from S 275-295. Using the proxies, the tDOC concentration can be retrieved solely from CDOM absorption coefficients (lambda = 275-295 nm) in river-influenced ocean margins. The practicality of optical proxies facilitated the calculation

  17. The size distribution of dissolved uranium in natural waters

    International Nuclear Information System (INIS)

    Mann, D.K.; Wong, G.T.F.

    1987-01-01

    The size distribution of dissolved uranium in natural waters is poorly known. Some fraction of dissolved uranium is known to associate with organic matter which had a wide range of molecular weights. The presence of inorganic colloidal uranium has not been reported. Ultrafiltration has been used to quantify the size distribution of a number of elements, such as dissolved organic carbon, selenium, and some trace metals, in both the organic and/or the inorganic forms. The authors have applied this technique to dissolved uranium and the data are reported here

  18. [Evolution of Dissolved Organic Matter Properties in a Constructed Wetland of Xiao River, Hebei].

    Science.gov (United States)

    Ma, Li-na; Zhang, Hui; Tan, Wen-bing; Yu, Min-da; Huang, Zhi-gang; Gao, Ru-tai; Xi, Bei-dou; He, Xiao-song

    2016-01-01

    The evolution of water DOC and COD, and the source, chemical structure, humification degree and redox of dissolved organic matter (DOM) in a constructed wetland of Xiao River, Hebei, was investigated by 3D excitation--emission matrix fluorescence spectroscopy coupled with ultraviolet spectroscopy and chemical reduction, in order to explore the geochemical processes and environmental effects of DOM. Although DOC contributes at least 60% to COD, its decrease in the constructed wetland is mainly caused by the more extensive degradation of elements N, H, S, and P than C in DOM, and 65% is contributed from the former. DOM is mainly consisted of microbial products based on proxies f470/520 and BIX, indicating that DOM in water is apparently affected by microbial degradation. The result based on PARAFAC model shows that DOM in the constructed wetland contains protein-like and humus-like components, and Fulvic- and humic-like components are relatively easier to degrade than protein-like components. Fulvic- and humic-like components undergo similar decomposition in the constructed wetland. A common source of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) exists; both CDOM and FDOM are mainly composed of a humus-like material and do not exhibit selective degradation in the constructed wetland. The proxies E2 /E3, A240-400, r(A, C) and HIX in water have no changes after flowing into the constructed wetland, implying that the humification degree of DOM in water is hardly affected by wet constructed wetland. However, the constructed wetland environment is not only beneficial in forming the reduced state of DOM, but also facilitates the reduction of ferric. It can also improve the capability of DOM to function as an electron shuttle. This result may be related to the condition that the aromatic carbon of DOM can be stabilized well in the constructed wetland.

  19. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    Directory of Open Access Journals (Sweden)

    Andreas F Haas

    Full Text Available Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta, a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii and a dominant hermatypic coral (Porites lobata. Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻², stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹ and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻². Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence

  20. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    International Nuclear Information System (INIS)

    Case, F.N.; Ketchen, E.E.

    1975-01-01

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid

  1. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  2. Characteristics of Chromophoric and Fluorescent Dissolved Organic Matter in the Nordic Seas

    OpenAIRE

    Makarewicz, Anna; Kowalczuk, Piotr; Sagan, Sławomir; Granskog, Mats A.; Pavlov, Alexey K.; Zdun, Agnieszka; Borzycka, Karolina; Zabłocka, Monika

    2018-01-01

    Optical properties of Chromophoric (CDOM) and Fluorescent Dissolved Organic Matter (FDOM) were characterized in the Nordic Seas including the West Spitsbergen Shelf during June–July of 2013, 2014 and 2015. The CDOM absorption coefficient at 350 nm, aCDOM(350) showed significant interannual variation. In 2013, the highest average aCDOM(350) values (aCDOM = 0.30 ± 0.12 m−1) were observed due to the influence of cold and low–saline wat...

  3. Survival of Acetate in Biodegraded Stream Water DOM: New Insights Based on NMR Spectroscopy

    Science.gov (United States)

    Whitty, S.; Waggoner, D. C.; Bowen, J. C.; Cory, R. M.; Kaplan, L.; Hatcher, P.

    2017-12-01

    DOM is a complex chemical mixture of high- (HMW) and low-molecular-weight (LMW) organic molecules that serve as the primary energy sources for heterotrophic bacteria in freshwater environments. However, there are still large uncertainties on the composition of DOM that is labile and thus rapidly metabolized. The current thinking is that labile DOM is primarily composed of monosaccharides, amino acids, and other LMW organic acids such as formic, acetic, or propionic among others, although some humic substances also are biologically labile. To test the contribution of LMW organic acids to the labile fraction of DOM, freshwater samples were collected from five streams within the Rio Tempisquito watershed in Costa Rica and subjected to differing degrees of biodegradation using a series of plug-flow bioreactors with residence times ranging from 0.5-150 min. Varying the residence times of bioreactors allows for separation and identification of labile from less labile to more recalcitrant DOM. The stream water fed into the bioreactors had DOC concentrations that ranged from 0.7-1.2 ppm C and the GF/F-filtered stream water as well as the bioreactor effluents were analyzed directly without pre-treatment using proton nuclear magnetic resonance spectroscopy (1H NMR). Small molecules dominated the 1H NMR spectra with the greatest changes, as a function of bioreactor residence time, in the carbohydrate, terminal methyl, and long-chain methylene structures. In contrast, acetate remained relatively constant after 150 min of bioreactor residence time, thus raising the question of why this inherently labile volatile fatty acid was not consumed by stream microbes colonizing bioreactors that otherwise metabolized approximately 35% of the total dissolved organic carbon present in the stream water. We suggest that acetate may resist biodegradation because it is complexed strongly with inorganic cations.

  4. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms.

    Science.gov (United States)

    Phillips, Theresa M; Seech, Alan G; Lee, Hung; Trevors, Jack T

    2005-08-01

    The organochlorine pesticide Lindane is the gamma-isomer of hexachlorocyclohexane (HCH). Technical grade Lindane contains a mixture of HCH isomers which include not only gamma-HCH, but also large amounts of predominantly alpha-, beta- and delta-HCH. The physical properties and persistence of each isomer differ because of the different chlorine atom orientations on each molecule (axial or equatorial). However, all four isomers are considered toxic and recalcitrant worldwide pollutants. Biodegradation of HCH has been studied in soil, slurry and culture media but very little information exists on in situ bioremediation of the different isomers including Lindane itself, at full scale. Several soil microorganisms capable of degrading, and utilizing HCH as a carbon source, have been reported. In selected bacterial strains, the genes encoding the enzymes involved in the initial degradation of Lindane have been cloned, sequenced, expressed and the gene products characterized. HCH is biodegradable under both oxic and anoxic conditions, although mineralization is generally observed only in oxic systems. As is found for most organic compounds, HCH degradation in soil occurs at moderate temperatures and at near neutral pH. HCH biodegradation in soil has been reported at both low and high (saturated) moisture contents. Soil texture and organic matter appear to influence degradation presumably by sorption mechanisms and impact on moisture retention, bacterial growth and pH. Most studies report on the biodegradation of relatively low (< 500 mg/kg) concentrations of HCH in soil. Information on the effects of inorganic nutrients, organic carbon sources or other soil amendments is scattered and inconclusive. More in-depth assessments of amendment effects and evaluation of bioremediation protocols, on a large scale, using soil with high HCH concentrations, are needed.

  5. Biodegradation behavior of natural organic matter (NOM) in a biological aerated filter (BAF) as a pretreatment for ultrafiltration (UF) of river water

    KAUST Repository

    Huang, Guocheng; Meng, Fangang; Zheng, Xing; Wang, Yuan; Wang, Zhigang; Liu, Huijun; Jekel, Martin R.

    2011-01-01

    In this study, biodegradation of natural organic matter (NOM) in a biological aerated filter (BAF) as pretreatment of UF treating river water was investigated. Photometric measurement, three-dimensional excitation-emission matrix (EEM) fluorescence

  6. Biogeochemical relationships between ultrafiltered dissolved organic matter and picoplankton activity in the Eastern Mediterranean Sea

    NARCIS (Netherlands)

    Meador, Travis B.; Gogou, Alexandra; Spyres, Georgina; Herndl, Gerhard J.; Krasakopoulou, Evangelia; Psarra, Stella; Yokokawa, Taichi; De Corte, Daniele; Zervakis, Vassilis; Repeta, Daniel J.

    2010-01-01

    We targeted the warm, subsurface waters of the Eastern Mediterranean Sea (EMS) to investigate processes that are linked to the chemical composition and cycling of dissolved organic carbon (DOC) in seawater. The apparent respiration of semi-labile DOC accounted for 27 +/- 18% of oxygen consumption in

  7. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Science.gov (United States)

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  8. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  9. Amount, composition and seasonality of dissolved organic carbon and nitrogen export from agriculture in contrasting climates

    DEFF Research Database (Denmark)

    Graeber, Daniel; Meerhof, Mariana; Zwirnmann, Elke

    2014-01-01

    Agricultural catchments are potentially important but often neglected sources of dissolved organic matter (DOM), of which a large part is dissolved organic carbon (DOC) and nitrogen (DON). DOC is an important source of aquatic microbial respiration and DON may be an important source of nitrogen...... to aquatic ecosystems. However, there is still a lack of comprehensive studies on the amount, composition and seasonality of DOM export from agricultural catchments in different climates. The aim of our study was to assess the amount, composition and seasonality of DOM in a total of four streams in the wet......-temperate and subtropical climate of Denmark and Uruguay, respectively. In each climate, we investigated one stream with extensive agriculture (mostly pasture) and one stream with intensive agriculture (mostly intensively used arable land) in the catchment. We sampled each stream taking grab samples fortnightly for two...

  10. Seasonal dynamics and conservative mixing of dissolved organic matter in the temperate eutrophic estuary Horsens Fjord

    DEFF Research Database (Denmark)

    Markager, Stiig; Stedmon, Colin; Søndergaard, Morten

    2011-01-01

    of different DOM parameters i.e. dissolved organic carbon (DOC), nitrogen (DON), and phosphorous (DOP), light absorption and eight fluorescence components, were analysed relative to conservative mixing. Many of the parameters did not behave conservatively. For DON, DOP and absorption, more than 65......This study presents the results of a year-long study investigating the characteristics of dissolved organic matter (DOM) in the Danish estuary, Horsens Fjord. The estuary is shallow with a mean depth of 2.9 m and receives high loadings of inorganic nutrients from its catchment. The behaviour......% of the freshwater concentration was removed initially at salinities below 12. At higher salinities two general patterns were identified. Concentrations of DON, DOP and four humic fluorescent fractions were not, or only weakly, related to salinity, showing that other processes than mixing were involved. Other...

  11. Biodegradable Polydepsipeptides

    Directory of Open Access Journals (Sweden)

    Jintang Guo

    2009-02-01

    Full Text Available This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.

  12. Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: case study of Connecticut River at Middle Haddam Station, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-11-01

    The prediction of colored dissolved organic matter (CDOM) using artificial neural network approaches has received little attention in the past few decades. In this study, colored dissolved organic matter (CDOM) was modeled using generalized regression neural network (GRNN) and multiple linear regression (MLR) models as a function of Water temperature (TE), pH, specific conductance (SC), and turbidity (TU). Evaluation of the prediction accuracy of the models is based on the root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (CC), and Willmott's index of agreement (d). The results indicated that GRNN can be applied successfully for prediction of colored dissolved organic matter (CDOM).

  13. Natural attenuation of petroleum hydrocarbons-a study of biodegradation effects in groundwater (Vitanovac, Serbia).

    Science.gov (United States)

    Marić, Nenad; Matić, Ivan; Papić, Petar; Beškoski, Vladimir P; Ilić, Mila; Gojgić-Cvijović, Gordana; Miletić, Srđan; Nikić, Zoran; Vrvić, Miroslav M

    2018-01-20

    The role of natural attenuation processes in groundwater contamination by petroleum hydrocarbons is of intense scientific and practical interest. This study provides insight into the biodegradation effects in groundwater at a site contaminated by kerosene (jet fuel) in 1993 (Vitanovac, Serbia). Total petroleum hydrocarbons (TPH), hydrochemical indicators (O 2 , NO 3 - , Mn, Fe, SO 4 2- , HCO 3 - ), δ 13 C of dissolved inorganic carbon (DIC), and other parameters were measured to demonstrate biodegradation effects in groundwater at the contaminated site. Due to different biodegradation mechanisms, the zone of the lowest concentrations of electron acceptors and the zone of the highest concentrations of metabolic products of biodegradation overlap. Based on the analysis of redox-sensitive compounds in groundwater samples, redox processes ranged from strictly anoxic (methanogenesis) to oxic (oxygen reduction) within a short distance. The dependence of groundwater redox conditions on the distance from the source of contamination was observed. δ 13 C values of DIC ranged from - 15.83 to - 2.75‰, and the most positive values correspond to the zone under anaerobic and methanogenic conditions. Overall, results obtained provide clear evidence on the effects of natural attenuation processes-the activity of biodegradation mechanisms in field conditions.

  14. Photobleaching Kinetics of Chromophoric Dissolved Organic Matter Derived from Mangrove Leaf Litter and Floating Sargassum Colonies

    Science.gov (United States)

    We examined the photoreactivity of chromophoric dissolved organic matter (CDOM) derived from Rhizophora mangle (red mangrove) leaf litter and floating Sargassum colonies as these marine plants can be important contributors to coastal and open ocean CDOM pools, respectively. Mangr...

  15. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy

    Science.gov (United States)

    Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...

  16. Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type

    NARCIS (Netherlands)

    Camino-Serrano, Marta; Gielen, Bert; Luyssaert, Sebastiaan; Ciais, Philippe; Vicca, Sara; Guenet, Bertrand; Vos, Bruno De; Cools, Nathalie; Ahrens, Bernhard; Altaf Arain, M.; Borken, Werner; Clarke, Nicholas; Clarkson, Beverley; Cummins, Thomas; Don, Axel; Pannatier, Elisabeth Graf; Laudon, Hjalmar; Moore, Tim; Nieminen, Tiina M.; Nilsson, Mats B.; Peichl, Matthias; Schwendenmann, Luitgard; Siemens, Jan; Janssens, Ivan

    2014-01-01

    Lateral transport of carbon plays an important role in linking the carbon cycles of terrestrial and aquatic ecosystems. There is, however, a lack of information on the factors controlling one of the main C sources of this lateral flux, i.e., the concentration of dissolved organic carbon (DOC) in

  17. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation

    NARCIS (Netherlands)

    Zhang, Y.; Liu, M.; Qin, B.; Feng, S.

    2009-01-01

    Photochemical degradation of chromophoric-dissolved organic matter (CDOM) by UV-B radiation decreases CDOM absorption in the UV region and fluorescence intensity, and alters CDOM composition. CDOM absorption, fluorescence, and the spectral slope indicating the CDOM composition were studied using

  18. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    Science.gov (United States)

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Anthropogenic inputs of dissolved organic matter in New York Harbor

    Science.gov (United States)

    Gardner, G. B.; Chen, R. F.; Olavasen, J.; Peri, F.

    2016-02-01

    The Hudson River flows into the Atlantic Ocean through a highly urbanized region which includes New York City to the east and Newark, New Jersey to the west. As a result, the export of Dissolved Organic Carbon (DOC) from the Hudson to the Atlantic Ocean includes a significant anthropogenic component. A series of high resolution studies of the DOC dynamics of this system were conducted between 2003 and 2010. These included both the Hudson and adjacent large waterways (East River, Newark Bay, Kill Van Kull and Arthur Kill) using coastal research vessels and smaller tributaries (Hackensack, Pasaic and Raritan rivers) using a 25' boat. In both cases measurements were made using towed instrument packages which could be cycled from near surface to near bottom depths with horizontal resolution of approximately 20 to 200 meters depending on depth and deployment strategy. Sensors on the instrument packages included a CTD to provide depth and salinity information and a chromophoric dissolved organic matter(CDOM) fluorometer to measure the fluorescent fraction of the DOC. Discrete samples allowed calibration of the fluorometer and the CDOM data to be related to DOC. The combined data set from these cruises identified multiple scales of source and transport processes for DOC within the Hudson River/New York Harbor region. The Hudson carries a substantial amount of natural DOC from its 230 km inland stretch. Additional sources exist in fringing salt marshes adjacent to the Hackensack and Raritan rivers. However the lower Hudson/New Harbor region receives a large input of DOC from multiple publically owned treatment works (POTW) discharges. The high resolution surveys allowed us to elucidate the distribution of these sources and the manner in which they are rapidly mixed to create the total export. We estimate that anthropogenic sources account for up to 2.5 times the DOC flux contributed by natural processes.

  20. Molecular characterization of dissolved organic matter (DOM): a critical review.

    Science.gov (United States)

    Nebbioso, Antonio; Piccolo, Alessandro

    2013-01-01

    Advances in water chemistry in the last decade have improved our knowledge about the genesis, composition, and structure of dissolved organic matter, and its effect on the environment. Improvements in analytical technology, for example Fourier-transform ion cyclotron (FT-ICR) mass spectrometry (MS), homo and hetero-correlated multidimensional nuclear magnetic resonance (NMR) spectroscopy, and excitation emission matrix fluorimetry (EEMF) with parallel factor (PARAFAC) analysis for UV-fluorescence spectroscopy have resulted in these advances. Improved purification methods, for example ultrafiltration and reverse osmosis, have enabled facile desalting and concentration of freshly collected DOM samples, thereby complementing the analytical process. Although its molecular weight (MW) remains undefined, DOM is described as a complex mixture of low-MW substances and larger-MW biomolecules, for example proteins, polysaccharides, and exocellular macromolecules. There is a general consensus that marine DOM originates from terrestrial and marine sources. A combination of diagenetic and microbial processes contributes to its origin, resulting in refractory organic matter which acts as carbon sink in the ocean. Ocean DOM is derived partially from humified products of plants decay dissolved in fresh water and transported to the ocean, and partially from proteinaceous and polysaccharide material from phytoplankton metabolism, which undergoes in-situ microbial processes, becoming refractory. Some of the DOM interacts with radiation and is, therefore, defined as chromophoric DOM (CDOM). CDOM is classified as terrestrial, marine, anthropogenic, or mixed, depending on its origin. Terrestrial CDOM reaches the oceans via estuaries, whereas autochthonous CDOM is formed in sea water by microbial activity; anthropogenic CDOM is a result of human activity. CDOM also affects the quality of water, by shielding it from solar radiation, and constitutes a carbon sink pool. Evidence in support

  1. Fringe-controlled biodegradation under dynamic conditions: Quasi 2-D flow-through experiments and reactive-transport modeling

    Science.gov (United States)

    Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A.

    2015-01-01

    Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling.

  2. Biodegradation of creosote compounds: Comparison of experiments at different scales

    DEFF Research Database (Denmark)

    Broholm, K.; Arvin, Erik

    2001-01-01

    of the pyrroles on the biodegradation of benzene, and the biodegradation of benzothiophene occurs only in the presence of a primary substrate. The experiments show that some biodegradation processes of organic compounds may be common to different microorganisms.......This paper compares the results of biodegradation experiments with creosote compounds performed at different scales. The experiments include field observations, field experiments, large-scale intact laboratory column experiments, model fracture experiments, and batch experiments. Most...... of the experiments were conducted with till or ground water from the field site at Ringe on the island of Funen. Although the experiments were conducted on different scales, they revealed that some phenomena-e.g., an extensive biodegradation potential of several of the creosote compounds, the inhibitory influence...

  3. The Role of Refractory Dissolved Organic Matter in Ocean Carbon Sequestration

    DEFF Research Database (Denmark)

    Jørgensen, Linda

    The ocean assimilates a large amount of atmospheric CO2 and is potentially a buffer for climate change. A fraction of the assimilated CO2 is incorporated into algal biomass and further converted into refractory dissolved organic matter (DOM). Carbon bound in refractory DOM has the potential...... studies the prokaryotic production and degradation of oceanic refractory DOM and discusses the reasons for the persistent nature of this large DOM fraction. The first two papers investigate the microbial carbon pump, i.e. prokaryotic transfor-mation of organic carbon into refractory DOM. The results show...... DOM compounds in the ocean are rare—possibly too rare to sustain viable uptake and assimilation. Hence, the dilute concentration of individual compounds is a possible explanation for the apparent refractory nature of most DOM in the ocean. Understanding the mechanisms that control the quality...

  4. Long-Term Experimental Acidification Drives Watershed Scale Shift in Dissolved Organic Matter Composition and Flux

    Science.gov (United States)

    Michael D. SanClements; Ivan J. Fernandez; Robert H. Lee; Joshua A. Roberti; Mary Beth Adams; Garret A. Rue; Diane M. McKnight

    2018-01-01

    Over the last several decades dissolved organic carbon concentrations (DOC) in surface waters have increased throughout much of the northern hemisphere. Several hypotheses have been proposed regarding the drivers of this phenomenon including decreased sulfur (S) deposition working via an acidity- change mechanism. Using fluorescence spectroscopy and data from two long-...

  5. BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds

    Science.gov (United States)

    Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.

  6. Processing of humic-rich riverine dissolved organic matter by estuarine bacteria: effects of predegradation and inorganic nutrients

    DEFF Research Database (Denmark)

    Asmala, E.; Autio, R.; Kaartokallio, H.

    2014-01-01

    The bioavailability of predegraded dissolved organic matter (DOM) from a humic-rich, boreal river to estuarine bacteria from the Baltic Sea was studied in 39-day bioassays. The river waters had been exposed to various degrees of bacterial degradation by storing them between 0 and 465 days in dark...... prior to the bioassay. The resulting predegraded DOM was inoculated with estuarine bacteria and the subsequent changes in DOM quantity and quality measured. During the incubations, dissolved organic carbon (DOC) and oxygen concentrations decreased, indicating heterotrophic activity. Coloured DOM...... was degraded less than DOC, indicating a selective utilization of DOM, and humic-like fluorescence components increased during the incubations. The amount of DOC degraded was not affected by the length of DOM predegradation. The percentage of bioavailable DOC (%BDOC) was higher in experiment units with added...

  7. Effect of degrading yellow oxo-biodegradable low-density polyethylene films to water quality

    Science.gov (United States)

    Requejo, B. A.; Pajarito, B. B.

    2017-05-01

    Polyethylene (PE) contributes largely to plastic wastes that are disposed in aquatic environment as a consequence of its widespread use. In this study, yellow oxo-biodegradable low-density PE films were immersed in deionized water at 50°C for 49 days. Indicators of water quality: pH, oxidation-reduction potential, turbidity, and total dissolved solids (TDS), were monitored at regular intervals. It was observed that pH initially rises and then slowly decreases with time, oxidation-reduction potential decreases then slowly increases with time, turbidity rises above the control at varied rates, and TDS increases abruptly and rises at a hindered rate. Moreover, the films potentially leach out lead chromate. The results imply that degrading oxo-biodegradable LDPE films results to significant reduction of water quality.

  8. Reinterpreting the importance of oxygen-based biodegradation in chloroethene-contaminated groundwater

    Science.gov (United States)

    Bradley, Paul M.

    2011-01-01

    Chlororespiration is common in shallow aquifer systems under conditions nominally identified as anoxic. Consequently, chlororespiration is a key component of remediation at many chloroethene-contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products is interpreted as evidence that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene-contaminated shallow aquifer systems, however, nonconservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms and is consistent with contaminant degradation to nondiagnostic mineralization products like CO2. While anoxic mineralization of chloroethene compounds has been proposed previously, recent results suggest that oxygen-based mineralization of chloroethenes also can be significant at dissolved oxygen concentrations below the currently accepted field standard for nominally anoxic conditions. Thus, reassessment of the role and potential importance of low concentrations of oxygen in chloroethene biodegradation are needed, because mischaracterization of operant biodegradation processes can lead to expensive and ineffective remedial actions. A modified interpretive framework is provided for assessing the potential for chloroethene biodegradation under different redox conditions and the probable role of oxygen in chloroethene biodegradation.

  9. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    The modelling of aerobic biodegradation of toluene and the associated biofilm growth in a fixed biofilm system is presented. The model includes four biomass fractions, three dissolved components, and seven processes. It is assumed that part of the active biomass is composed of filamentous bacteria...... which grow relatively fast and detach easily, leading to a biomass growth delayed with respect to substrate degradation. The non-filamentous bacteria inside the biofilm also degrade toluene but with a slower rate compared to the filamentous bacteria. Because the nonfilamentous bacteria do not detach......, they are primarily responsible for the biofilm growth. The active biomass decays into biodegradable and ``inert'' dead biomass which is hydrolyzed into soluble products at two different rates. These products are partly degradable by the biomass and constitute the endogenous respiration. The dynamic growth phase...

  10. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    The modelling of aerobic biodegradation of toluene and the associated biofilm growth in a fixed biofilm system is presented. The model includes four biomass fractions, three dissolved components, and seven processes. It is assumed that part of the active biomass is composed of filamentous bacteria......, they are primarily responsible for the biofilm growth. The active biomass decays into biodegradable and ``inert'' dead biomass which is hydrolyzed into soluble products at two different rates. These products are partly degradable by the biomass and constitute the endogenous respiration. The dynamic growth phase...... which grow relatively fast and detach easily, leading to a biomass growth delayed with respect to substrate degradation. The non-filamentous bacteria inside the biofilm also degrade toluene but with a slower rate compared to the filamentous bacteria. Because the nonfilamentous bacteria do not detach...

  11. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments

    International Nuclear Information System (INIS)

    Khan, Ali M.; Wick, Lukas Y.; Harms, Hauke; Thullner, Martin

    2016-01-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. - Highlights: • The column setup allows resolving vapor-phase VOC concentration gradients at cm scale resolution. • Vapor-phase and liquid-phase concentrations are measured simultaneously. • Isotopically labelled VOC was used as reference species of low biodegradability. • Biodegradation rates in the unsaturated zone can be very high and act at a cm scale. • Unsaturated material can be an effective bio-barrier avoiding biodegradable VOC emissions. - Microbial degradation activity can be sufficient to remove VOC from unsaturated porous media after a few centimeter of vapor-phase diffusive transport and mayeffectively avoid atmospheric emissions.

  12. Biodegradation of petroleum hydrocarbons at low temperatures

    International Nuclear Information System (INIS)

    Whyte, L. G.; Greer, C W.

    1999-01-01

    Bioremediation of contaminated Arctic sites has been proposed as the logistically and economically most favorable solution despite the known technical difficulties. The difficulties involve the inhibition of pollutants removal by biodegradation below freezing temperatures and the relative slowness of the process to remove enough hydrocarbon pollutants during the above-freezing summer months. Despite these formidable drawbacks, biodegradation of hydrocarbon contaminants is possible even in below-zero temperatures, especially if indigenous psychrophilic and psychrotropic micro-organism are used. This paper reports results of a study involving several hydrocarbon-degrading psychrotropic bacteria and suggests bioaugmentation with specific cold-adapted organisms and/or biostimulation with commercial fertilizers for enhancing degradation of specific contaminants in soils from northern Canada. An evaluation of the biodegradation potential of hydrocarbon contaminated soils in the high Arctic suggested that the contaminated soils contained sufficient numbers of cold-adapted hydrocarbon-degrading bacteria and that the addition of fertilizer was sufficient to enhance the level of hydrocarbon degradation at low ambient summer temperatures. 9 refs., 2 tabs., 3 figs

  13. Dynamics of Dissolved Organic Matter and Microbes in Seawater through Sub-Micron Particle Size Analyses

    Digital Repository Service at National Institute of Oceanography (India)

    Goes, J.I.; Balch, W.M.; Vaughn, J.M.; Gomes, H.R.

    -78. Hansell, D.A. and Carlson, C.A., (1998) Deep-ocean gradients in the concentration of dissolved organic carbon. Nature, 395, 263-266. J. E. (1977) Characterization of suspended matter in the Gulf of Mexico ? II. Particles size analysis of suspended matter.... and Morris, I. (1980) Extracellular release of carbon by marine phytoplankton: a physiological approach. Limnol. Oceanogr., 25, 262-279. Maurer, L. G. (1976) Organic polymers in seawater: changes with depth in the Gulf of Mexico. Deep-Sea Res., 23, 1059...

  14. Characteristics of dissolved organic matter in the Upper Klamath River, Lost River, and Klamath Straits Drain, Oregon and California

    Science.gov (United States)

    Goldman, Jami H.; Sullivan, Annett B.

    2017-12-11

    Concentrations of particulate organic carbon (POC) and dissolved organic carbon (DOC), which together comprise total organic carbon, were measured in this reconnaissance study at sampling sites in the Upper Klamath River, Lost River, and Klamath Straits Drain in 2013–16. Optical absorbance and fluorescence properties of dissolved organic matter (DOM), which contains DOC, also were analyzed. Parallel factor analysis was used to decompose the optical fluorescence data into five key components for all samples. Principal component analysis (PCA) was used to investigate differences in DOM source and processing among sites.At all sites in this study, average DOC concentrations were higher than average POC concentrations. The highest DOC concentrations were at sites in the Klamath Straits Drain and at Pump Plant D. Evaluation of optical properties indicated that Klamath Straits Drain DOM had a refractory, terrestrial source, likely extracted from the interaction of this water with wetland peats and irrigated soils. Pump Plant D DOM exhibited more labile characteristics, which could, for instance, indicate contributions from algal or microbial exudates. The samples from Klamath River also had more microbial or algal derived material, as indicated by PCA analysis of the optical properties. Most sites, except Pump Plant D, showed a linear relation between fluorescent dissolved organic matter (fDOM) and DOC concentration, indicating these measurements are highly correlated (R2=0.84), and thus a continuous fDOM probe could be used to estimate DOC loads from these sites.

  15. The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function

    DEFF Research Database (Denmark)

    Traving, Sachia J.; Rowe, Owen; Jakobsen, Nina M.

    2017-01-01

    Increased river loads are projected as one of the major consequences of climate change in the northern hemisphere, leading to elevated inputs of riverine dissolved organic matter (DOM) and inorganic nutrients to coastal ecosystems. The objective of this study was to investigate the effects...

  16. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes.

    Science.gov (United States)

    Porowska, Dorota

    2015-05-01

    Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ(13)CDIC) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ(13)CDIC values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4-54% of the DIC pool is derived from organic matter degradation and 96-46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20-53% of the DIC is derived from organic matter degradation of natural origin and 80-47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO2 (P CO2) was generally above the atmospheric, hence atmospheric CO2 as a source of carbon in DIC pool was negligible in the aquifer. P CO2 values in the aquifer in Otwock were always one to two orders of magnitude above the atmospheric P CO2, and thus CO2 escaped directly into the vadose zone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    Science.gov (United States)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  18. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    International Nuclear Information System (INIS)

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  19. Aerobic biodegradation of a nonylphenol polyethoxylate and toxicity of the biodegradation metabolites.

    Science.gov (United States)

    Jurado, Encarnación; Fernández-Serrano, Mercedes; Núñez-Olea, Josefa; Lechuga, Manuela

    2009-09-01

    In this paper a study was made of the biodegradation of a non-ionic surfactant, a nonylphenol polyethoxylate, in biodegradability tests by monitoring the residual surfactant matter. The influence of the concentration on the extent of primary biodegradation, the toxicity of biodegradation metabolites, and the kinetics of degradation were also determined. The primary biodegradation was studied at different initial concentrations: 5, 25 and 50 mg/L, (at sub-and supra-critical micelle concentration). The NPEO used in this study can be considered biodegradable since the primary biodegradation had already taken place (a biodegradation greater than 80% was found for the different initial concentration tested). The initial concentration affected the shape of the resulting curve, the mean biodegradation rate and the percentage of biodegradation reached (99% in less than 8 days at 5 mg/L, 98% in less than 13 days at 25 mg/L and 95% in 14 days at 50 mg/L). The kinetic model of Quiroga and Sales (1991) was applied to predict the biodegradation of the NPEO. The toxicity value was measured as EC(20) and EC(50). In addition, during the biodegradation process of the surfactant a toxicity analysis was made of the evolution of metabolites generated, confirming that the subproducts of the biodegradation process were more toxic than the original.

  20. Dissolved organic matter dynamics in surface waters affected by oil spill pollution: Results from the Serious Game exercise

    Science.gov (United States)

    Gonnelli, M.; Galletti, Y.; Marchetti, E.; Mercadante, L.; Retelletti Brogi, S.; Ribotti, A.; Sorgente, R.; Vestri, S.; Santinelli, C.

    2016-11-01

    Dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM, respectively) surface distribution was studied during the Serious Game exercise carried out in the Eastern Ligurian Sea, where an oil spill was localized by using satellite images and models. This paper reports the first DOC, CDOM and FDOM data for this area together with an evaluation of fluorescence as a fast and inexpensive tool for early oil spill detection in marine waters. The samples collected in the oil spill showed a fluorescence intensity markedly higher ( 5 fold) than all the other samples. The excitation-emission matrixes, coupled with parallel factor analysis (PARAFAC), allowed for the identification in the FDOM pool of a mixture of polycyclic aromatic hydrocarbons, humic-like and protein-like fluorophores.

  1. State factor relationships of dissolved organic carbon and nitrogen losses from unpolluted temperate forest watersheds

    Science.gov (United States)

    Perakis, S.S.; Hedin, L.O.

    2007-01-01

    We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.

  2. Effect of light availability on dissolved organic carbon release by Caribbean reef algae and corals

    NARCIS (Netherlands)

    Mueller, B.; van der Zande, R.M.; van Leent, P.J.M.; Meesters, E.H.; Vermeij, M.J.A.; van Duyl, F.C.

    2014-01-01

    Dissolved organic carbon (DOC) release of three algal and two coral species was determined at three light intensities (0, 30–80, and 200–400 µmol photons m–2 s–1) in ex situ incubations to quantify the effect of light availability on DOC release by reef primary producers. DOC release of three

  3. Photochemical degradation of dissolved organic matter reduces the availability of phosphorus for aquatic primary producers

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Kopáček, Jiří

    2018-01-01

    Roč. 193, FEB (2018), s. 1018-1026 ISSN 0045-6535 R&D Projects: GA ČR GA15-09721S Institutional support: RVO:60077344 Keywords : photochemistry * phosphorus * dissolved organic matter * aluminum * iron Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.208, year: 2016

  4. Isolation and characterization of dissolved organic matter from the Callovo-Oxfordian formation

    International Nuclear Information System (INIS)

    Courdouan, Amandine; Christl, Iso; Meylan, Sebastien; Wersin, Paul; Kretzschmar, Ruben

    2007-01-01

    Characterizing dissolved organic matter (DOM) in the pore water of the Callovo-Oxfordian formation, a potential host rock for the disposal of radioactive waste, is important to estimate its potential influence on the mobility of radionuclides in the rock. To isolate DOM, crushed rock material was extracted under anoxic conditions with deionized water, 0.1 M NaOH and synthetic pore water (SPW, water containing all major ions at pore water concentrations but no organic matter), respectively. The effects of extraction parameters on the extracted DOM including the solid-to-liquid ratio, extraction time, exposure to O 2 and acid pretreatment of the rock material prior to the anoxic extraction were evaluated. In addition, DOM in one of the first pore water samples collected in the underground rock laboratory at Bure (France) was characterized for comparison. The size distribution and the low molecular weight organic acid contents of the extracts and pore water DOM were determined by liquid chromatography coupled with an organic C detector (LC-OCD) and by ion chromatography. The results revealed that only a fraction of less than 1.2% of the total organic C present in the rock was extractable. Maximum dissolved organic C (DOC) concentrations in the anoxic extracts ranged from 5.5 ± 0.3 mg/L for SPW extracts to 14.2 ± 1.1 mg/L for 0.1 M NaOH extracts. The major portion of the DOC in the anoxic extracts consisted of hydrophilic compounds (48-78%) having a molecular weight of less than 500 Da. Up to 21% of DOC in the anoxic extracts was identified as acetate, formate, lactate and malate. The short-term exposure of rock material to O 2 during rock crushing strongly increased DOC concentrations and led to a shift towards smaller molecular weight compounds and to a higher low molecular weight organic acid (LMWOA) content as compared to the strictly anoxic extraction. The pore water sampled from a packed-off borehole exhibited a higher DOC concentration (56.7 mg/L) than the

  5. Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight

    Science.gov (United States)

    Aluwihare, Lihini I.; Repeta, Daniel J.; Chen, Robert F.

    This study focuses on the chemical characterization of high molecular-weight dissolved organic matter (HMW DOM) isolated from the Middle Atlantic Bight in April 1994 and March 1996. Using proton nuclear magnetic resonance spectroscopy ( 1HNMR) and monosaccharide analysis we compared both spatial and temporal variations in the chemical structure of HMW DOM across this region. Our analyses support the presence of at least two compositionally distinct components to HMW DOM. The major component is acyl polysaccharide (APS), a biopolymer rich in carbohydrates, acetate and lipid, accounting for between 50% and 80% of the total high molecular-weight dissolved organic carbon (HMW DOC) in surface samples. APS is most abundant in fully marine, surface-water samples, and is a product of autochthonous production. Organic matter with spectral properties characteristic of humic substances is the second major component of HMW DOM. Humic substances are most abundant (up to 49% of the total carbon) in samples collected from estuaries, near the coast, and in deep water, suggesting both marine and perhaps terrestrial sources. Radiocarbon analyses of neutral monosaccharides released by the hydrolysis of APS have similar and modern (average 71‰) Δ 14C values. Radiocarbon data support our suggestion that these sugars occur as part of a common macromolecule, with an origin via recent biosynthesis. Preliminary radiocarbon data for total neutral monosaccharides isolated from APS at 300 and 750 m show this fraction to be substantially enriched relative to total HMW DOC and DOC. The relatively enriched radiocarbon values of APS at depth suggest APS is rapidly transported into the deep ocean.

  6. Non-conservative behavior of fluorescent dissolved organic matter (FDOM) within a subterranean estuary

    Science.gov (United States)

    Suryaputra, I. G. N. A.; Santos, I. R.; Huettel, M.; Burnett, W. C.; Dittmar, T.

    2015-11-01

    The role of submarine groundwater discharge (SGD) in releasing fluorescent dissolved organic matter (FDOM) to the coastal ocean and the possibility of using FDOM as a proxy for dissolved organic carbon (DOC) was investigated in a subterranean estuary in the northeastern Gulf of Mexico (Turkey Point, Florida). FDOM was continuously monitored for three weeks in shallow beach groundwater and in the adjacent coastal ocean. Radon (222Rn) was used as a natural groundwater tracer. FDOM and DOC correlated in groundwater and seawater samples, implying that FDOM may be a proxy of DOC in waters influenced by SGD. A mixing model using salinity as a seawater tracer revealed FDOM production in the high salinity region of the subterranean estuary. This production was probably a result of infiltration and transformation of labile marine organic matter in the beach sediments. The non-conservative FDOM behavior in this subterranean estuary differs from most surface estuaries where FDOM typically behaves conservatively. At the study site, fresh and saline SGD delivered about 1800 mg d-1 of FDOM (quinine equivalents) to the coastal ocean per meter of shoreline. About 11% of this input was related to fresh SGD, while 89% were related to saline SGD resulting from FDOM production within the shallow aquifer. If these fluxes are representative of the Florida Gulf Coast, SGD-derived FDOM fluxes would be equivalent to at least 18% of the potential regional riverine FDOM inputs. To reduce uncertainties related to the scarcity of FDOM data, further investigations of river and groundwater FDOM inputs in Florida and elsewhere are necessary.

  7. Aerobic biodegradation of a mixture of chlorinated organics in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... DCM; and 0.232 – 0.588 week-1 for DCA in both water microcosms with higher degradation generally observed in New ... Key words: Bioaugmentation, biodegradation, biostimulation, chlorinated aliphatic hydrocarbons, microcosms. ... culture (OD of 1 at λ600) of the consortia was added separately to.

  8. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.

    Science.gov (United States)

    Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y

    2011-03-01

    The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Flexible biodegradable citrate-based polymeric step-index optical fiber.

    Science.gov (United States)

    Shan, Dingying; Zhang, Chenji; Kalaba, Surge; Mehta, Nikhil; Kim, Gloria B; Liu, Zhiwen; Yang, Jian

    2017-10-01

    Implanting fiber optical waveguides into tissue or organs for light delivery and collection is among the most effective ways to overcome the issue of tissue turbidity, a long-standing obstacle for biomedical optical technologies. Here, we report a citrate-based material platform with engineerable opto-mechano-biological properties and demonstrate a new type of biodegradable, biocompatible, and low-loss step-index optical fiber for organ-scale light delivery and collection. By leveraging the rich designability and processibility of citrate-based biodegradable polymers, two exemplary biodegradable elastomers with a fine refractive index difference and yet matched mechanical properties and biodegradation profiles were developed. Furthermore, we developed a two-step fabrication method to fabricate flexible and low-loss (0.4 db/cm) optical fibers, and performed systematic characterizations to study optical, spectroscopic, mechanical, and biodegradable properties. In addition, we demonstrated the proof of concept of image transmission through the citrate-based polymeric optical fibers and conducted in vivo deep tissue light delivery and fluorescence sensing in a Sprague-Dawley (SD) rat, laying the groundwork for realizing future implantable devices for long-term implantation where deep-tissue light delivery, sensing and imaging are desired, such as cell, tissue, and scaffold imaging in regenerative medicine and in vivo optogenetic stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Photomineralization and photomethanification of dissolved organic matter in Saguenay River surface water

    Science.gov (United States)

    Zhang, Y.; Xie, H.

    2015-11-01

    Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a higher degree of mineralization under suboxic conditions than under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr-1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7-8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10-6 mol m-2 yr-1 in the Saguenay River and, by extrapolation, of (1.9-8.1) × 108 mol yr-1 in the global ocean. AQYCH4 changed little with

  11. Proceedings of biodegradation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of Biodegradation. Topics include:biodegradation using the tools of biotechnology, basic science aspects of biodegradation, the physiological characteristics of microorganisms, the use of selective techniques that enhance the process of microbial evolution of biodegradative genes in nature, the genetic characteristics of microorganisms allowing them to biodegrade both natural and synthetic toxic chemicals, the molecular techniques that allow selective assembly of genetic segments form a variety of bacterial strains to a single strain, and methods needed to advance biodegradation research as well as the high-priority chemical problems important to the Department of Defense or to the chemical industry

  12. Spatial and temporal distribution of coloured dissolved organic matter in a hypertrophic freshwater lagoon

    Directory of Open Access Journals (Sweden)

    Diana Vaičiūtė

    2015-05-01

    Full Text Available A dataset of 224 Medium Resolution Imaging Spectrometer (MERIS full resolution satellite images were processed to retrieve the concentration of coloured dissolved organic matter (CDOM in a hypertrophic estuary (Curonian Lagoon, Lithuania and Russia. Images covered a period of 7 months, spanning from the ice melting (March to the late summer (September of 7 consecutive years (2005-2011. The aim of the study was to analyse the spatial and temporal variations of CDOM, by focusing on the main regulating factors (riverine discharge, sea-lagoon water exchange, water temperature, chlorophyll a, wind in a large estuary. The working hypothesis is that CDOM distribution may reveal distinct, site specific seasonal patterns. Our results demonstrated that CDOM concentrations at the whole lagoon level were elevated (1.5-4 m-1 and slightly but significantly higher in spring (1.50 m-1 on average compared to the summer (1.45 m-1 on average. This is due to very different flow of CDOM-rich freshwater from the main lagoon tributary in spring compared to summer. They also highlight macroscopic differences among areas within the lagoon, depending on season, suggesting a complex regulation of CDOM in this system. Significant factors explaining observed differences are the dilution of lagoon water with CDOM-poor brackish water, regeneration of large amounts of dissolved organic matter from sediments and combinations of uptake/release from phytoplankton. CDOM and its variations are understudied due to inherent methodological and analytical difficulties. However, this pool has a demonstrated relevant role in the biogeochemistry of aquatic environments. We speculate that the dissolved organic pool in the Curonian Lagoon has a mainly allochthonous origin in the high discharge period and an autochthonous origin in the summer, algal bloom period. Both positive and negative relationships between CDOM and phytoplankton suggest that pelagic microalgae may act as a source or as

  13. Measuring the pollutant transport capacity of dissolved organic matter in complex matrixes

    DEFF Research Database (Denmark)

    Persson, L.; Alsberg, T.; Odham, G.

    2003-01-01

    Dissolved organic matter (DOM) facilitated transport in contaminated groundwater was investigated through the measurement of the binding capacity of landfill leachate DOM (Vejen, Denmark) towards two model pollutants (pyrene and phenanthrene). Three different methods for measuring binding capacity....... It was further concluded that DOM facilitated transport should be taken into account for non-ionic PAHs with lg K OW above 5, at DOM concentrations above 250 mg C/L. The total DOM concentration was found to be more important for the potential of facilitated transport than differences in the DOM binding capacity....

  14. Biodegradation of bacterial polysaccharides adsorbed on montmorillonite

    International Nuclear Information System (INIS)

    Guckert, A.; Tok, H.H.; Jacquin, F.

    1977-01-01

    In this research, by means of a model, a study was made of the biodegradation of microbial organic compounds adsorbed on clays, with a parallel experiment on Fontainebleau sand serving as the control. During incubation the three classes of organic matter ( 14 C-labelled glucose, 14 C-labelled polysaccharides and 14 C-labelled microbial cells) mineralize more actively in the presence of sand than in the presence of clay, since the latter provides protection against biodegradation. Mineralization of the adsorbed organic compounds, however, is marked by clear-cut differences after three weeks - glucose (55%)>polysaccharides (43%)>microbial organisms (7.3%). After incubation, chemical extraction of the organo-mineral complexes by alkaline solvents shows only water-soluble and alkali-soluble products in the case of sand; conversely, in that of montmorillonite the bulk of the 14 C was found in the non-extractable fraction or humin (18.1% of the initial 14 C for glucose, 27.3% for the polysaccharides, and 67.6% for the microbial organisms). A second incubation carried out after a phase in which there was drying and remoistening of the organo-mineral complexes, brings to light the important part played by climatic alternations during the biodegradation process. A new mineralization phase is observed, affecting more the bacterial organisms (14.1%) than the polysaccharides (6.3%), with the glucose-base complexes occupying an intermediate position (11.2%). The chemical fractioning of the organo-mineral complexes following re-incubation shows the stability of 14 C in humin very clearly, especially in the case of polysaccharides, where the mineralization phase relates primarily to the products extractable with alkalis. (author)

  15. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    Directory of Open Access Journals (Sweden)

    Paul James Mann

    2016-03-01

    Full Text Available Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM spectral slope (S275-295 tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of ‘terrestrial humic-like’ versus ‘marine humic-like’ fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350 proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93. Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years. Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the

  16. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    Science.gov (United States)

    Mann, Paul; Spencer, Robert; Hernes, Peter; Six, Johan; Aiken, George; Tank, Suzanne; McClelland, James; Butler, Kenna; Dyda, Rachael; Holmes, Robert

    2016-03-01

    Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275-295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of 'terrestrial humic-like' versus 'marine humic-like' fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in

  17. Development And Application of Functional Assays For Freshwater Dissolved Organic Matter

    Science.gov (United States)

    Thacker, S.; Tipping, E.; Gondar, D.; Baker, A.

    2006-12-01

    Dissolved organic matter (DOM) in natural waters participates in many important ecological and geochemical reactions, including acid-base buffering, light absorption, proton binding, binding of heavy metals, organic contaminants, aluminium and radionuclides, adsorption at surfaces, aggregation and photochemical reactivity. We are studying DOM in order to understand and quantify these functional properties, so we can use the knowledge to predict the influence of DOM on the natural freshwater environment. As DOM has no readily identifiable structure, our approach is to measure what it does, rather than what it is. Thus, we have developed a series of 12 standardised, reproducible assays of physico-chemical functions of dissolved organic matter (DOM) in freshwaters. The assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo(a)pyrene binding, hydrophilicity and adsorption to alumina. We have collected twenty DOM samples in total, ten samples from a eutrophic lake (Esthwaite Water) and ten samples from three stream waters. A mild isolation method was then used to concentrate the DOM samples for the assay work. When assaying the concentrates, parallel assays were also preformed with Suwannee River Fulvic Acid (SRFA), as a quality control standard. Our results showed that; (i) for eleven of the assays, the variability among the twenty DOM samples was significantly (p<0.001) greater than can be explained by analytical error, i.e. by comparison with results from the SRFA quality control; (ii) the functional properties of the DOM from Esthwaite Water are strongly influenced by the seasonally-dependent input of autochthonous DOM, derived from phytoplankton. The autochthonous DOM is less fluorescent, light absorbing, hydrophobic and has a lower acid group content and capacity to be adsorbed onto alumina than terrestrially derived allochthonous DOM; (iii) significant correlations were found between

  18. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    Science.gov (United States)

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nutrient and dissolved organic carbon removal from natural waters using industrial by-products.

    Science.gov (United States)

    Wendling, Laura A; Douglas, Grant B; Coleman, Shandel; Yuan, Zheng

    2013-01-01

    Attenuation of excess nutrients in wastewater and stormwater is required to safeguard aquatic ecosystems. The use of low-cost, mineral-based industrial by-products with high Ca, Mg, Fe or Al content as a solid phase in constructed wetlands potentially offers a cost-effective wastewater treatment option in areas without centralised water treatment facilities. Our objective was to investigate use of water treatment residuals (WTRs), coal fly ash (CFA), and granular activated carbon (GAC) from biomass combustion in in-situ water treatment schemes to manage dissolved organic carbon (DOC) and nutrients. Both CaO- and CaCO(3)-based WTRs effectively attenuated inorganic N species but exhibited little capacity for organic N removal. The CaO-based WTR demonstrated effective attenuation of DOC and P in column trials, and a high capacity for P sorption in batch experiments. Granular activated carbon proved effective for DOC and dissolved organic nitrogen (DON) removal in column trials, but was ineffective for P attenuation. Only CFA demonstrated effective removal of a broad suite of inorganic and organic nutrients and DOC; however, Se concentrations in column effluents exceeded Australian and New Zealand water quality guideline values. Water treated by filtering through the CaO-based WTR exhibited nutrient ratios characteristic of potential P-limitation with no potential N- or Si-limitation respective to growth of aquatic biota, indicating that treatment of nutrient-rich water using the CaO-based WTR may result in conditions less favourable for cyanobacterial growth and more favourable for growth of diatoms. Results show that selected industrial by-products may mitigate eutrophication through targeted use in nutrient intervention schemes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  20. Assessing the bioavailability of dissolved organic phosphorus in pasture and cultivated soils treated with different rates of nitrogen fertiliser

    NARCIS (Netherlands)

    McDowell, R.W.; Koopmans, G.F.

    2006-01-01

    A proportion of dissolved organic phosphorus (DOP) in soil leachates is readily available for uptake by aquatic organisms and, therefore, can represent a hazard to surface water quality. A study was conducted to characterise DOP in water extracts and soil P fractions of lysimeter soils (pasture

  1. Toward a quantitative and empirical dissolved organic carbon budget for the Gulf of Maine, a semienclosed shelf sea

    Science.gov (United States)

    Balch, William; Huntington, Thomas G.; Aiken, George R.; Drapeau, David; Bowler, Bruce; Lubelczyk, Laura; Butler, Kenna D.

    2016-01-01

    A time series of organic carbon export from Gulf of Maine (GoM) watersheds was compared to a time series of biological, chemical, bio-optical, and hydrographic properties, measured across the GoM between Yarmouth, NS, Canada, and Portland, ME, U.S. Optical proxies were used to quantify the dissolved organic carbon (DOC) and particulate organic carbon in the GoM. The Load Estimator regression model applied to river discharge data demonstrated that riverine DOC export (and its decadal variance) has increased over the last 80 years. Several extraordinarily wet years (2006–2010) resulted in a massive pulse of chromophoric dissolved organic matter (CDOM; proxy for DOC) into the western GoM along with unidentified optically scattering material (Time lags between DOC discharge and its appearance in the GoM increased with distance from the river mouths. Algae were also a significant source of DOC but not CDOM. Gulf-wide algal primary production has decreased. Increases in precipitation and DOC discharge to the GoM are predicted over the next century.

  2. The source and distribution of thermogenic dissolved organic matter in the ocean

    Science.gov (United States)

    Dittmar, T.; Suryaputra, I. G. N. A.; Paeng, J.

    2009-04-01

    Thermogenic organic matter (ThOM) is abundant in the environment. ThOM is produced at elevated temperature and pressure in deep sediments and earth's crust, and it is also a residue of fossil fuel and biomass burning ("black carbon"). Because of its refractory character, it accumulates in soils and sediments and, therefore, may sequester carbon from active cycles. It was hypothesized that a significant component of marine dissolved organic matter (DOM) might be thermogenic. Here we present a detailed data set on the distribution of thermogenic DOM in major water masses of the deep and surface ocean. In addition, several potential sources of thermogenic DOM to the ocean were investigated: active seeps of brine fluids in the deep Gulf of Mexico, rivers, estuaries and submarine groundwaters. Studies on deep-sea hydrothermal vents and aerosol deposition are ongoing. All DOM samples were isolated from seawater via solid phase extraction (SPE-DOM). ThOM was quantified in the extracts as benzene-polycarboxylic acids (BPCAs) after nitric acid oxidation via high-performance liquid chromatography and diode array detection (HPLC-DAD). BPCAs are produced exclusively from fused ring systems and are therefore unambiguous molecular tracers for ThOM. In addition to BPCA determination, the molecular composition and structure of ThOM was characterized in detail via ultrahigh resolution mass spectrometry (FT-ICR-MS). All marine and river DOM samples yielded significant amounts of BPCAs. The cold seep system in the deep Gulf of Mexico, but also black water rivers (like the Suwannee River) were particularly rich in ThOM. Up to 10% of total dissolved organic carbon was thermogenic in both systems. The most abundant BPCA was benzene-pentacarboxylic acid (B5CA). The molecular composition of BPCAs and the FT-ICR-MS data indicate a relatively small number (5-8) of fused aromatic rings per molecule. Overall, the molecular BPCA patterns were very similar independent of the source of Th

  3. Characterization and sources of colored dissolved organic matter in a coral reef ecosystem subject to ultramafic erosion pressure (New Caledonia, Southwest Pacific).

    Science.gov (United States)

    Martias, Chloé; Tedetti, Marc; Lantoine, François; Jamet, Léocadie; Dupouy, Cécile

    2018-03-01

    The eastern lagoon of New Caledonia (NC, Southwest Pacific), listed as a UNESCO World Heritage site, hosts the world's second longest double-barrier coral reef. This lagoon receives river inputs, oceanic water arrivals, and erosion pressure from ultramafic rocks, enriched in nickel (Ni) and cobalt (Co). The aim of this study was to characterize colored dissolved organic matter (CDOM), as well as to determine its main sources and its possible relationships (through the use of Pearson correlation coefficients, r) with biogeochemical parameters, plankton communities and trace metals in the NC eastern lagoon. Water samples were collected in March 2016 along a series of river/lagoon/open-ocean transects. The absorption coefficient at 350nm (a 350 ) revealed the influence of river inputs on the CDOM distribution. The high values of spectral slope (S 275-295 , >0.03m -1 ) and the low values of specific ultraviolet absorbance (SUVA 254 , CDOM in surface waters. The application of parallel factor analysis (PARAFAC) on excitation-emission matrices (EEMs) allowed the identification of four CDOM components: (1) one humic- and one tyrosine-like fluorophores. They had terrestrial origin, exported through rivers and undergoing photo- and bio-degradation in the lagoon. These two fluorophores were linked to manganese (Mn) in southern rivers (r=0.46-0.50, n=21, pCDOM sources in the NC eastern lagoon. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mathematical modeling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems

  5. Mathematical modelling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.M.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and hence, the mobility of actinides in subsurface environments. We combined mathematical modelling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bioutilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modelling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems. (orig.)

  6. Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil

    International Nuclear Information System (INIS)

    Niqui-Arroyo, Jose-Luis; Bueno-Montes, Marisa; Posada-Baquero, Rosa; Ortega-Calvo, Jose-Julio

    2006-01-01

    Given the difficulties caused by low-permeable soils in bioremediation, a new electrokinetic technology is proposed, based on laboratory results with phenanthrene, to afford bioremediation of polycyclic aromatic hydrocarbons (PAH) in clay soils. Microbial activity in a clay soil historically polluted with creosote was promoted using a specially designed electrokinetic cell with a permanent anode-to-cathode flow and controlled pH. The rates of phenanthrene losses during treatment were tenfold higher in soil treated with an electric field than in the control cells without current or microbial activity. Results from experiments with Tenax-assisted desorption and mineralization of 14 C-labeled phenanthrene indicated that phenanthrene biodegradation was limited by mass-transfer of the chemical. We suggest that the enhancement effect of the applied electric field on phenanthrene biodegradation resulted from mobilization of the PAH and nutrients dissolved in the soil fluids. - Electrokinetic bioremediation is a potentially effective technology to treat PAH-polluted, clay-rich soils

  7. Biodegradable Piezoelectric Force Sensor.

    Science.gov (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  8. Characterization and Fate of Dissolved Organic Matter in the Lena Delta Region, Siberia

    Science.gov (United States)

    Goncalves-Araujo, R.; Stedmon, C. A.; Heim, B.; Dubinenkov, I.; Kraberg, A.; Moiseev, D.; Bracher, A.

    2016-02-01

    Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.

  9. [Application of excitation-emission matrix spectrum combined with parallel factor analysis in dissolved organic matter in East China Sea].

    Science.gov (United States)

    Lü, Li-Sha; Zhao, Wei-Hong; Miao, Hui

    2013-03-01

    Using excitation-emission matrix spectrum(EEMs) combined with parallel factor analysis (PARAFAC) examine the fluorescent components feature of dissolved organic matter (DOM) sampled from East China Sea in the summer and autumn was examined. The type, distribution and origin of the fluorescence dissolved organic matter were also discussed. Three fluorescent components were identified by PARAFAC, including protein-like component C1 (235, 280/330), terrestrial or marine humic-like component C2 (255, 330/400) and terrestrial humic-like component C3 (275, 360/480). The good linearity of the two humic-like components showed the same source or some relationship between the chemical constitutions. As a whole, the level of the fluorescence intensity in coastal ocean was higher than that of the open ocean in different water layers in two seasons. The relationship of three components with chlorophyll-a and salinity showed the DOM in the study area is almost not influenced by the living algal matter, but the fresh water outflow of the Yangtze River might be the source of them in the Yangtze River estuary in Summer. From what has been discussed above, we can draw the conclusion that the application of EEM-PARAFAC modeling will exert a profound influence upon the research of the dissolved organic matter.

  10. Spatiotemporal Characterization of Chromophoric Dissolved Organic Matter (CDOM and CDOM-DOC Relationships for Highly Polluted Rivers

    Directory of Open Access Journals (Sweden)

    Sijia Li

    2016-09-01

    Full Text Available Spectral characteristics of CDOM (Chromophoric dissolved organic matter in water columns are a key parameter for bio-optical modeling. Knowledge of CDOM optical properties and spatial discrepancy based on the relationship between water quality and spectral parameters in the Yinma River watershed with in situ data collected from highly polluted waters are exhibited in this study. Based on the comprehensive index method, the riverine waters showed serious contamination; especially the chemical oxygen demand (COD, iron (Fe, manganese (Mn, mercury (Hg and dissolved oxygen (DO were out of range of the contamination warning. Dissolved organic carbon (DOC and total suspended matter (TSM with prominent non-homogenizing were significantly high in the riverine waters, but chlorophyll-a (Chl-a was the opposite. The ternary phase diagram showed that non-algal particle absorption played an important role in total non-water light absorption (>50% in most sampling locations, and mean contributions of CDOM were 13% and 22% in the summer and autumn, respectively. The analysis of the ratio of absorption at 250–365 nm (E250:365 and the spectral slope (S275–295 indicated that CDOM had higher aromaticity and molecular weight in autumn than in summer, which is consistent with the results of water quality and the CDOM relative contribution rate. Redundancy analysis (RDA indicated that the environmental variables OSM (Organic suspended matter had a strong correlation with CDOM absorption, followed by heavy metals, e.g., Mn, Hg and Cr6+. However, for the specific UV absorbance (SUVA254, the seasonal values showed opposite results compared with the reported literature. The potential reasons were that more UDOM (uncolored dissolved organic matter from human sources (wastewater effluent existed in the waters. Terrigenous inputs simultaneously are in relation to the aCDOM(440-DOC relationship with the correlation coefficient of 0.90 in the summer (two-tailed, p < 0

  11. BTEX biodegradation by bacteria from effluents of petroleum refinery.

    Science.gov (United States)

    Mazzeo, Dânia Elisa Christofoletti; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2010-09-15

    Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and

  12. Biodegradation of resorcinol byPseudomonas sp.

    Institute of Scientific and Technical Information of China (English)

    Nader Hajizadeh; Najibeh Shirzad; Ali Farzi; Mojtaba Salouti; Azra Momeni

    2016-01-01

    ABSTRACT Objective:To investigate the ability ofPseudomonas sp. isolated from East Azarbaijan, Iran in bioremediation of resorcinol. Methods: Resorcinol biodegradation was evaluated using spectrophotometry and confirmed by gas chromatography-mass spectroscopy. Results:This isolate was able to remove up to 37.12% of resorcinol from contaminated water. Reusability experiments had confirmed the biodegradation process which produced seven intermediate compounds. These intermediates were characterized by gas chromatography-mass spectroscopy technique. The products of resorcinol biodegradation were apparently 1, 4-cyclohexadiene, nonadecene, 2-heptadecanone, 1-isopropyl-2-methoxy-4-methylbenzene, hexadecanoic acid, 9-octadecenoic acid, phenol and 5-methyl-2-(1-methylethyl). Conclusions: The findings revealed thatPseudomonas sp. is able to degrade resorcinol. Because of being an indigenous organism, this isolate is more compatible with the climate of the northwest region of Iran and possibly will be used for degradation of other similar aromatic compounds.

  13. Fringe-controlled biodegradation under dynamic conditions: quasi 2-D flow-through experiments and reactive-transport modeling.

    Science.gov (United States)

    Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A

    2015-01-01

    Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Laboratory evidence of MTBE biodegradation in Borden aquifer material

    Science.gov (United States)

    Schirmer, Mario; Butler, Barbara J.; Church, Clinton D.; Barker, James F.; Nadarajah, Nalina

    2003-02-01

    Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.

  15. Contrasted response of colloidal, organic and inorganic dissolved phosphorus forms during rewetting of dried riparian soils

    Science.gov (United States)

    Gu, Sen; Gruau, Gérard; Malique, François; Dupas, Rémi; Gascuel-Odoux, Chantal; Petitjean, Patrice; Bouhnik-Le Coz, Martine

    2017-04-01

    Riparian vegetated buffer strip (RVBS) are currently used to protect surface waters from phosphorus (P) emissions because of their ability to retain P-enriched soil particles. However, this protection role may be counterbalanced by the development in these zones of conditions able to trigger the release of highly mobile dissolved or colloidal P forms. Rewetting after drying is one of these conditions. So far, the potential sources of P mobilized during rewetting after drying are not clearly identified, nor are clearly identified the chemical nature of the released dissolved P species, or the role of the soil P speciation on these forms. In this study, two riparian soils (G and K) showing contrasting soil P speciation (65% of inorganic P species in soil G, as against 70% of organic P) were submitted to three successive dry/wet cycles in the laboratory. Conventional colorimetric determination of P concentrations combined with ultrafiltration, and measurements of iron (Fe) and aluminum (Al) and dissolved organic carbon (DOC) contents using ICP-MS and TOC analyzers, respectively, were used to study the response of the different P forms to rewetting after drying and also their release kinetics during soil leaching. For both soils, marked P release peaks were observed at the beginning of each wet cycles, with the organic-rich K soils giving, however, larger peaks than the inorganic one (G soil). For both soils also, concentrations in molybdate reactive P (MRP) remained quite constant throughout each leaching episode, contrary to the molybdate unreactive P (MUP) concentrations which were high immediately after rewetting and then decreased rapidly during leaching. A speciation change was observed from the beginning to the end of all leaching cycles. Colloidal P was found to be a major fraction of the total P immediately after rewetting (up to 50-70%) and then decreased to the end of each wet cycle where most of the eluted P was true dissolved inorganic P. Colloidal

  16. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    DEFF Research Database (Denmark)

    Goncalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid

    2016-01-01

    were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (f(mw)), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait...... and EGS, a robust correlation between visible wavelength fluorescence and f(mw) was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM...

  17. Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline

    Science.gov (United States)

    Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.

    2001-12-01

    Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.

  18. Evaluating the impact of water supply strategies on p-xylene biodegradation performance in an organic media-based biofilter.

    Science.gov (United States)

    Gallastegui, G; Muñoz, R; Barona, A; Ibarra-Berastegi, G; Rojo, N; Elías, A

    2011-01-30

    The influence of water irrigation on both the long-term and short-term performance of p-xylene biodegradation under several organic loading scenarios was investigated using an organic packing material composed of pelletised sawdust and pig manure. Process operation in a modular biofilter, using no external water supply other than the moisture from the saturated inlet air stream, showed poor p-xylene abatement efficiencies (≈33 ± 7%), while sustained irrigation every 25 days rendered a high removal efficiency (RE) for a critical loading rate of 120 g m(-3)h(-1). Periodic profiles of removal efficiency, temperature and moisture content were recorded throughout the biofilter column subsequent to each biofilter irrigation. Hence, higher p-xylene biodegradation rates were always initially recorded in the upper module, which resulted in a subsequent increase in temperature and a decrease in moisture content. This decrease in the moisture content in the upper module resulted in a higher removal rate in the middle module, while the moisture level in the lower module steadily increased as a result of water condensation. Based on these results, mass balance calculations performed using measured bed temperatures and relatively humidity values were successfully used to account for water balances in the biofilter over time. Finally, the absence of bed compaction after 550 days of continuous operation confirmed the suitability of this organic material for biofiltration processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    Science.gov (United States)

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Coagulation with metal-based salts is a practice commonly employed by drinking-water utilities to decrease particle and dissolved organic carbon concentrations in water. In addition to decreasing dissolved organic carbon concentrations, the effectiveness of iron- and aluminum-based coagulants for decreasing dissolved concentrations both of inorganic and monomethyl mercury in water was demonstrated in laboratory studies that used agricultural drainage water from the Sacramento–San Joaquin Delta of California. To test the effectiveness of this approach at the field scale, nine 15-by-40‑meter wetland cells were constructed on Twitchell Island that received untreated water from island drainage canals (control) or drainage water treated with polyaluminum chloride or ferric sulfate coagulants. Surface-water samples were collected approximately monthly during November 2012–September 2013 from the inlets and outlets of the wetland cells and then analyzed by the U.S. Geological Survey for total concentrations of mercury and monomethyl mercury in filtered (less than 0.3 micrometers) and suspended-particulate fractions and for concentrations of dissolved organic carbon.

  20. Sulfurization of Dissolved Organic Matter Increases Hg-Sulfide-Dissolved Organic Matter Bioavailability to a Hg-Methylating Bacterium.

    Science.gov (United States)

    Graham, Andrew M; Cameron-Burr, Keaton T; Hajic, Hayley A; Lee, Connie; Msekela, Deborah; Gilmour, Cynthia C

    2017-08-15

    Reactions of dissolved organic matter (DOM) with aqueous sulfide (termed sulfurization) in anoxic environments can substantially increase DOM's reduced sulfur functional group content. Sulfurization may affect DOM-trace metal interactions, including complexation and metal-containing particle precipitation, aggregation, and dissolution. Using a diverse suite of DOM samples, we found that susceptibility to additional sulfur incorporation via reaction with aqueous sulfide increased with increasing DOM aromatic-, carbonyl-, and carboxyl-C content. The role of DOM sulfurization in enhancing Hg bioavailability for microbial methylation was evaluated under conditions typical of Hg methylation environments (μM sulfide concentrations and low Hg-to-DOM molar ratios). Under the conditions of predicted metacinnabar supersaturation, microbial Hg methylation increased with increasing DOM sulfurization, likely reflecting either effective inhibition of metacinnabar growth and aggregation or the formation of Hg(II)-DOM thiol complexes with high bioavailability. Remarkably, Hg methylation efficiencies with the most sulfurized DOM samples were similar (>85% of total Hg methylated) to that observed in the presence of l-cysteine, a ligand facilitating rapid Hg(II) biouptake and methylation. This suggests that complexes of Hg(II) with DOM thiols have similar bioavailability to Hg(II) complexes with low-molecular-weight thiols. Overall, our results are a demonstration of the importance of DOM sulfurization to trace metal and metalloid (especially mercury) fate in the environment. DOM sulfurization likely represents another link between anthropogenic sulfate enrichment and MeHg production in the environment.

  1. Characterization Of Dissolved Organic Mattter In The Florida Keys Ecosystem

    Science.gov (United States)

    Adams, D. G.; Shank, G. C.

    2009-12-01

    Over the past few decades, Scleractinian coral populations in the Florida Keys have increasingly experienced mortality due to bleaching events as well as microbial mediated illnesses such as black band and white band disease. Such pathologies seem to be most correlated with elevated sea surface temperatures, increased UV exposures, and shifts in the microbial community living on the coral itself. Recent studies indicate that corals’ exposure to UV in the Florida Keys is primarily controlled by the concentration of CDOM (Chromophoric Dissolved Organic Matter) in the water column. Further, microbial community alterations may be linked to changes in concentration and chemical composition of the larger DOM (Dissolved Organic Matter) pool. Our research characterized the spatial and temporal properties of DOM in Florida Bay and along the Keys ecosystems using DOC analyses, in-situ water column optical measurements, and spectral analyses including absorbance and fluorescence measurements. We analyzed DOM characteristics along transects running from the mouth of the Shark River at the southwest base of the Everglades, through Florida Bay, and along near-shore Keys coastal waters. Two 12 hour time-series samplings were also performed at the Seven-Mile Bridge, the primary Florida Bay discharge channel to the lower Keys region. Photo-bleaching experiments showed that the chemical characteristics of the DOM pool are altered by exposure to solar radiation. Results also show that DOC (~0.8-5.8 mg C/L) and CDOM (~0.5-16.5 absorbance coefficient at 305nm) concentrations exhibit seasonal fluctuations in our study region. EEM analyses suggest seasonal transitions between primarily marine (summer) and terrestrial (winter) sources along the Keys. We are currently combining EEM-PARAFAC analysis with in-situ optical measurements to model changes in the spectral properties of DOM in the water column. Additionally, we are using stable δ13C isotopic analysis to further characterize DOM

  2. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    KAUST Repository

    Baltar, Federico; Moran, Xose Anxelu G.; Lø nborg, Christian

    2017-01-01

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes

  3. Dissolved organic carbon ameliorates the effects of UV radiation on a freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Manek, Aditya K., E-mail: aditya.manek@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada); Ferrari, Maud C.O. [Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, S7N 5B4 SK (Canada); Chivers, Douglas P.; Niyogi, Som [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada)

    2014-08-15

    Anthropogenic activities over the past several decades have depleted stratospheric ozone, resulting in a global increase in ultraviolet radiation (UVR). Much of the negative effects of UVR in aquatic systems is minimized by dissolved organic carbon (DOC) which is known to attenuate UVR across the water column. The skin of many fishes contains large epidermal club cells (ECCs) that are known to play a role in innate immune responses and also release chemical alarm cues that warn other fishes of danger. This study investigated the effects of in vivo UVR exposure to fathead minnows (Pimephales promelas), under the influence of two sources of DOC: Sigma Aldrich humic acid, a coal based commercial source of DOC and Luther Marsh natural organic matter, a terrigenous source of DOC. Specifically, we examined ECC investment and physiological stress responses and found that fish exposed to high UVR, in the presence of either source of DOC, had higher ECC investment than fish exposed to high UVR only. Similarly, exposure to high UVR under either source of DOC, reduced cortisol levels relative to that in the high UVR only treatment. This indicates that DOC protects fish from physiological stress associated with UVR exposure and helps maintain production of ECC under conditions of UVR exposure. - Highlights: • We examined the combined effect of UV radiation and Dissolved Organic Carbon on fish. • Physiological stress response and epidermal club cell investment were measured. • Fish exposed to high UVR and DOC had higher ECC investment and reduced cortisol levels. • DOC plays a role in protecting fish from physiological stress and maintains ECC production.

  4. Dissolved organic carbon ameliorates the effects of UV radiation on a freshwater fish

    International Nuclear Information System (INIS)

    Manek, Aditya K.; Ferrari, Maud C.O.; Chivers, Douglas P.; Niyogi, Som

    2014-01-01

    Anthropogenic activities over the past several decades have depleted stratospheric ozone, resulting in a global increase in ultraviolet radiation (UVR). Much of the negative effects of UVR in aquatic systems is minimized by dissolved organic carbon (DOC) which is known to attenuate UVR across the water column. The skin of many fishes contains large epidermal club cells (ECCs) that are known to play a role in innate immune responses and also release chemical alarm cues that warn other fishes of danger. This study investigated the effects of in vivo UVR exposure to fathead minnows (Pimephales promelas), under the influence of two sources of DOC: Sigma Aldrich humic acid, a coal based commercial source of DOC and Luther Marsh natural organic matter, a terrigenous source of DOC. Specifically, we examined ECC investment and physiological stress responses and found that fish exposed to high UVR, in the presence of either source of DOC, had higher ECC investment than fish exposed to high UVR only. Similarly, exposure to high UVR under either source of DOC, reduced cortisol levels relative to that in the high UVR only treatment. This indicates that DOC protects fish from physiological stress associated with UVR exposure and helps maintain production of ECC under conditions of UVR exposure. - Highlights: • We examined the combined effect of UV radiation and Dissolved Organic Carbon on fish. • Physiological stress response and epidermal club cell investment were measured. • Fish exposed to high UVR and DOC had higher ECC investment and reduced cortisol levels. • DOC plays a role in protecting fish from physiological stress and maintains ECC production

  5. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    Science.gov (United States)

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  6. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems

    Science.gov (United States)

    Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.

    2016-01-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in

  7. Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)

    Science.gov (United States)

    Van Engeland, T.; Soetaert, K.; Knuijt, A.; Laane, R. W. P. M.; Middelburg, J. J.

    2010-09-01

    Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the robustness of the patterns against these missing data. No long-term trends in DON concentrations were found over the sampling period (1995-2005). Inter-annual variability in the different time series showed both common and station-specific behavior. The stations could be divided into two regions, based on absolute concentrations and the dominant times scales of variability. Average DON concentrations were 11 μmol l -1 in the coastal region and 5 μmol l -1 in the open sea. Organic fractions of total dissolved nitrogen (TDN) averaged 38 and 71% in the coastal zone and open sea, respectively, but increased over time due to decreasing dissolved inorganic nitrogen (DIN) concentrations. In both regions intra-annual variability dominated over inter-annual variability, but DON variation in the open sea was markedly shifted towards shorter time scales relative to coastal stations. In the coastal zone a consistent seasonal DON cycle existed with high values in spring-summer and low values in autumn-winter. In the open sea seasonality was weak. A marked shift in the seasonality was found at the Dogger Bank, with DON accumulation towards summer and low values in winter prior to 1999, and accumulation in spring and decline throughout summer after 1999. This study clearly shows that DON is a dynamic actor in the North Sea and should be monitored systematically to enable us to understand fully the functioning of this ecosystem.

  8. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter.

    Science.gov (United States)

    Hua, Pei; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-05-15

    A second order kinetic model for simulating chlorine decay in bulk water due to the reaction with dissolved organic matter (DOM) was developed. It takes into account the decreasing reactivity of dissolved organic matter using a variable reaction rate coefficient (VRRC) which decreases with an increasing conversion. The concentration of reducing species is surrogated by the maximum chlorine demand. Temperature dependency, respectively, is described by the Arrhenius-relationship. The accuracy and adequacy of the proposed model to describe chlorine decay in bulk water were evaluated and shown for very different waters and different conditions such as water mixing or rechlorination by applying statistical tests. It is thus very well suited for application in water quality modeling for distribution systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space

    Science.gov (United States)

    Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.

    2013-02-01

    A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM) into CDOM and non-algal particles (NAP) through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012) showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  10. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Elmitwalli, Tarek A; Otterpohl, Ralf

    2007-03-01

    Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).

  11. Chemical structure-based predictive model for methanogenic anaerobic biodegradation potential.

    Science.gov (United States)

    Meylan, William; Boethling, Robert; Aronson, Dallas; Howard, Philip; Tunkel, Jay

    2007-09-01

    Many screening-level models exist for predicting aerobic biodegradation potential from chemical structure, but anaerobic biodegradation generally has been ignored by modelers. We used a fragment contribution approach to develop a model for predicting biodegradation potential under methanogenic anaerobic conditions. The new model has 37 fragments (substructures) and classifies a substance as either fast or slow, relative to the potential to be biodegraded in the "serum bottle" anaerobic biodegradation screening test (Organization for Economic Cooperation and Development Guideline 311). The model correctly classified 90, 77, and 91% of the chemicals in the training set (n = 169) and two independent validation sets (n = 35 and 23), respectively. Accuracy of predictions of fast and slow degradation was equal for training-set chemicals, but fast-degradation predictions were less accurate than slow-degradation predictions for the validation sets. Analysis of the signs of the fragment coefficients for this and the other (aerobic) Biowin models suggests that in the context of simple group contribution models, the majority of positive and negative structural influences on ultimate degradation are the same for aerobic and methanogenic anaerobic biodegradation.

  12. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    Science.gov (United States)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  13. Fate of {sup 14}C-labeled dissolved organic matter in paddy and upland soils in responding to moisture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangbi [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100 (China); Wang, Aihua [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Li, Yang; Hu, Lening; Zheng, Hua; He, Xunyang [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100 (China); Ge, Tida; Wu, Jinshui [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Kuzyakov, Yakov [Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen (Germany); Su, Yirong, E-mail: yrsu@isa.ac.cn [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100 (China)

    2014-08-01

    Soil organic matter (SOM) content in paddy soils is higher than that in upland soils in tropical and subtropical China. The dissolved organic matter (DOM) concentration, however, is lower in paddy soils. We hypothesize that soil moisture strongly controls the fate of DOM, and thereby leads to differences between the two agricultural soils under contrasting management regimens. A 100-day incubation experiment was conducted to trace the fate and biodegradability of DOM in paddy and upland soils under three moisture levels: 45%, 75%, and 105% of the water holding capacity (WHC). {sup 14}C labeled DOM, extracted from the {sup 14}C labeled rice plant material, was incubated in paddy and upland soils, and the mineralization to {sup 14}CO{sub 2} and incorporation into microbial biomass were analyzed. Labile and refractory components of the initial {sup 14}C labeled DOM and their respective half-lives were calculated by a double exponential model. During incubation, the mineralization of the initial {sup 14}C labeled DOM in the paddy soils was more affected by moisture than in the upland soils. The amount of {sup 14}C incorporated into the microbial biomass (2.4–11.0% of the initial DOM-{sup 14}C activity) was less affected by moisture in the paddy soils than in the upland soils. At any of the moisture levels, 1) the mineralization of DOM to {sup 14}CO{sub 2} within 100 days was 1.2–2.1-fold higher in the paddy soils (41.9–60.0% of the initial DOM-{sup 14}C activity) than in the upland soils (28.7–35.7%), 2) {sup 14}C activity remaining in solution was significantly lower in the paddy soils than in the upland soils, and 3) {sup 14}C activity remaining in the same agricultural soil solution was not significantly different among the three moisture levels after 20 days. Therefore, moisture strongly controls DOM fate, but moisture was not the key factor in determining the lower DOM in the paddy soils than in the upland soils. The UV absorbance of DOM at 280 nm

  14. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  15. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary

    Science.gov (United States)

    Santos, Isaac R.; Burnett, William C.; Dittmar, Thorsten; Suryaputra, I. G. N. A.; Chanton, Jeffrey

    2009-03-01

    We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ˜5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ˜25% of DOC and ˜50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.

  16. The use of chromatographic indexes to study the biodegradation of crude oil in cold/icy seawater

    International Nuclear Information System (INIS)

    Siron, R.; Pelletier, E.

    1993-01-01

    A group of five protected mesocosms (3.5 m 3 each) was used to study the biodegradation of dispersed crude oil in cold and icy seawater. A wide range of oil concentrations was tested over four experiments lasting two weeks to six months. Various oil treatments were studied with respect to the natural bacterial degradation: chemically dispersed and untreated crude oil; and oil adsorbed on, and released from, an immersed substrate. The study was concerned with oil accommodated in the water column, accumulated in surface (sheens and emulsions), and collected in sediment traps. The oil biodegradation was assessed by means of the following gas chromatographic indexes: C17/pristane; C18/phytane; n-alkanes/isoprenoids; pristane/phytane; naphthalene/phenanthrene; 2-methyl naphthalene/1-methyl naphthalene; and methylnaphthalenes/total substituted naphthalenes. A combined index of biodegradation defined from the most significant hydrocarbon ratios is proposed to evaluate the overall biodegradation of dissolved compounds and oil droplets, involving both aliphatic and aromatic hydrocarbons. Coupled with mesocosm facilities, this approach appears very convenient to determine the potential degradability of crude oils by natural indigenous microflora. 26 refs., 11 figs., 2 tabs

  17. Analysis of metallic traces from the biodegradation of endomedullary AZ31 alloy temporary implants in rat organs after long implantation times.

    Science.gov (United States)

    Bodelón, O G; Iglesias, C; Garrido, J; Clemente, C; Garcia-Alonso, M C; Escudero, M L

    2015-08-04

    AZ31 alloy has been tested as a biodegradable material in the form of endomedullary implants in female Wistar rat femurs. In order to evaluate the accumulation of potentially toxic elements from the biodegradation of the implant, magnesium (Mg), aluminium (Al), zinc (Zn), manganese (Mn) and fluorine (F) levels have been measured in different organs such as kidneys, liver, lungs, spleen and brain. Several factors that may influence accumulation have been taken into account: how long the implant has been in place, whether or not the bone is fractured, and the presence of an MgF2 protective coating on the implant. The main conclusions and the clinical relevance of the study have been that AZ31 endomedullary implants have a degradation rate of about 60% after 13 months, which is fully compatible with fracture consolidation. Neither bone fracture nor an MgF2 coating seems to influence the accumulation of trace elements in the studied organs. Aluminium is the only alloying element in this study that requires special attention. The increase in Al recovered from the sampled organs represents 3.95% of the amount contained in the AZ31 implant. Al accumulates in a statistically significant way in all the organs except the brain. All of this suggests that in long-term tests AZ31 may be a suitable material for osteosynthesis.

  18. BIODEGRADATION DURING CONTAMINANT TRANSPORT IN POROUS MEDIA. 3. APPARENT CONDITION-DEPENDENCY OF GROWTH-RELATED COEFFICIENTS. (R825415)

    Science.gov (United States)

    AbstractThe biodegradation of organic contaminants in the subsurface has become a major focus of attention, in part, due to the tremendous interest in applying in situ biodegradation and natural attenuation approaches for site remediation. The biodegradation and trans...

  19. Improvement of biodegradability of industrial wastewaters by radiation treatment

    International Nuclear Information System (INIS)

    Jo, H.J.; Kim, H.J.; Kim, J.G.; Jung, J.; Choi, J.S.; Park, Y.K.

    2006-01-01

    In order to evaluate the use of gamma-ray treatment as a pretreatment to conventional biological methods, the effects of gamma-irradiation on biodegradability (BOD 5 /COD) of textile and pulp wastewaters were investigated. For all wastewaters studied in this work, the efficiency of treatment based on TOC removal was insignificant even at an absorbed dose of 20 kGy. However, the change of biodegradability was noticeable and largely dependent on the chemical property of wastewaters and the absorbed dose of gamma-rays. For textile wastewaters, gamma-ray treatment increased the biodegradability of desizing effluent due to degradation of polymeric sizing agents such as polyvinyl alcohol. Interestingly, the weight-loss showed the highest value of 0.97 at a relatively low dose of 1 kGy. This may be caused by the degradation of less biodegradable ethylene glycol prior to terephthalic acid decomposition. For pulp wastewater, the gamma-ray treatment did not improve the biodegradability of cooking and bleaching of C/D effluents. However, the biodegradability of bleaching E1 and final effluents was abruptly increased up to 5 kGy then slowly decreased as the absorbed dose was increased. The initial increase of biodegradability may be induced by the decomposition of refractory organic compounds such as chlorophenols, which are known to be the main components of bleaching C/D and final effluents. (author)

  20. Characteristics and sources analysis of riverine chromophoric dissolved organic matter in Liaohe River, China.

    Science.gov (United States)

    Shao, Tiantian; Song, Kaishan; Jacinthe, Pierre-Andre; Du, Jia; Zhao, Ying; Ding, Zhi; Guan, Ying; Bai, Zhang

    2016-12-01

    Chromophoric dissolved organic matter (CDOM) in riverine systems can be affected by environmental conditions and land-use, and thus could provide important information regarding human activities in surrounding landscapes. The optical properties of water samples collected at 42 locations across the Liaohe River (LHR, China) watershed were examined using UV-Vis and fluorescence spectroscopy to determine CDOM characteristics, composition and sources. Total nitrogen (TN) and total phosphorus (TP) concentrations at all sampling sites exceeded the GB3838-2002 (national quality standards for surface waters, China) standard for Class V waters of 2.0 mg N/L and 0.4 mg P/L respectively, while trophic state index (TSI M ) indicated that all the sites investigated were mesotrophic, 64% of which were eutrophic at the same time. Redundancy analysis showed that total suspended matter (TSM), dissolved organic carbon (DOC), and turbidity had a strong correlation with CDOM, while the other parameters (Chl a, TN, TP and TSI M ) exhibited weak correlations with CDOM absorption. High spectral slope values and low SUVA254 (the specific UV absorption) values indicated that CDOM in the LHR was primarily comprised of low molecular weight organic substances. Analysis of excitation-emission matrices contour plots showed that CDOM in water samples collected from upstream locations exhibited fulvic-acid-like characteristics whereas protein-like substances were most likely predominant in samples collected in estuarine areas and downstream from large cities. These patterns were interpreted as indicative of water pollution from urban and industrial activities in several downstream sections of the LHR watershed.

  1. Organic matter iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland

    International Nuclear Information System (INIS)

    Heikkinen, K.

    1994-01-01

    Organic carbon and iron transport into the Gulf of Bothnia and the seasonal changes in the nature of dissolved organic matter (DOM) were studied in 1983 and 1984 at the mouth of the River Kiiminkijoki, which crosses an area of minerotrophic mires in northern Finland. Organic and inorganic transport within the drainage basin was studied in the summer and autumn of 1985 and 1986. The results indicate that the dissolved organic carbon (DOC) is mainly of terrestrial origin, leaching mostly from peatlands. The DOC concentrations decrease under low flow conditions. The proportion of drifting algae as a particulate organic carbon (POC) source seems to increase in summer. The changes in the ratio of Fe/DOC, the colour of the DOM and the ratio of Fe/DOC, the colour of the DOM and the ratio of fluorescence to DOC with discharge give indications of the origin, formation, nature and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of Fe-organic colloids seem to be important. Estimates are given for the amounts and transport rates of organic carbon and Fe discharged into the Gulf of Bothnia by river. High apparent molecular weight (HAMW) organic colloids are important for the organic, Fe and P transport in the basin. The DOM in the water consists mainly of fulvic acids, although humic acids are also important. The results indicate an increase in the mobilization of HAMW Fe-organic colloids in the peatlands following drainage and peat mining. The transport of inorganic nitrogen from the peatlands in the area and in the river is increasing due to peat mining. The changes in the transport of organic matter, Fe and P are less marked

  2. The second green revolution? Production of plant-based biodegradable plastics.

    Science.gov (United States)

    Mooney, Brian P

    2009-03-01

    Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants--so-called 'white biotechnology'--have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.

  3. Using dissolved gas analysis to investigate the performance of an organic carbon permeable reactive barrier for the treatment of mine drainage

    Science.gov (United States)

    Williams, R.L.; Mayer, K.U.; Amos, R.T.; Blowes, D.W.; Ptacek, C.J.; Bain, J.G.

    2007-01-01

    The strongly reducing nature of permeable reactive barrier (PRB) treatment materials can lead to gas production, potentially resulting in the formation of gas bubbles and ebullition. Degassing in organic C based PRB systems due to the production of gases (primarily CO2 and CH4) is investigated using the depletion of naturally occurring non-reactive gases Ar and N2, to identify, confirm, and quantify chemical and physical processes. Sampling and analysis of dissolved gases were performed at the Nickel Rim Mine Organic Carbon PRB, which was designed for the treatment of groundwater contaminated by low quality mine drainage characterized by slightly acidic pH, and elevated Fe(II) and SO4 concentrations. A simple 4-gas degassing model was used to analyze the dissolved gas data, and the results indicate that SO4 reduction is by far the dominant process of organic C consumption within the barrier. The data provided additional information to delineate rates of microbially mediated SO4 reduction and confirm the presence of slow and fast flow zones within the barrier. Degassing was incorporated into multicomponent reactive transport simulations for the barrier and the simulations were successful in reproducing observed dissolved gas trends.

  4. Dual partitioning and attachment effects of rhamnolipid on pyrene biodegradation under bioavailability restrictions

    International Nuclear Information System (INIS)

    Congiu, Eleonora; Parsons, John R.; Ortega-Calvo, José-Julio

    2015-01-01

    We investigated the effects of different bioavailability scenarios on the rhamnolipid-enhanced biodegradation of pyrene by the representative polycyclic aromatic hydrocarbon degrader Mycobacterium gilvum VM552. This biosurfactant enhanced biodegradation when pyrene was provided in the form of solid crystals; no effect was observed when the same amount of the chemical was preloaded on polydimethylsiloxane (PDMS). An enhanced effect was observed when pyrene was sorbed into soil but not with the dissolved compound. Synchronous fluorescence spectrophotometry and liquid scintillation were used to determine the phase exchange of pyrene. We also investigated the phase distribution of bacteria. Our results suggest that the rhamnolipid can enhance the biodegradation of pyrene by micellar solubilization and increase diffusive uptake. These mechanisms increase substrate acquisition by bacterial cells at exposure concentrations well above the half-saturation constant for active uptake. The moderate solubilization of pyrene from PDMS by the rhamnolipid and the prevention of cell attachment may explain the lack of enhancement for pyrene-preloaded PDMS. - Highlights: • Rhamnolipid biosurfactant can enhance the biodegradation of pyrene. • The enhancement depends on how the bacteria are exposed to the pollutant. • Rhamnolipid stimulates if pyrene is provided by dissolution from crystals. • No effect is observed if pyrene is provided by partitioning from a silicone polymer. • This lack of effect is due to the balance between enhanced dissolution and decreased cell attachment. - Rhamnolipid-enhanced biodegradation of pyrene may depend on the exposure regime. Moderate solubilization from difficult matrices and prevention of cell attachment may have no effect

  5. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for Southern Beaufort Sea (Canadian Arctic) waters: application to deriving concentrations of dissolved organic carbon from space

    Science.gov (United States)

    Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.

    2012-10-01

    A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for Southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows to separate colored detrital matter (CDM) into CDOM and non-algal particles (NAP) by determining NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, that were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and turbid waters, respectively. In situ measurements showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the Southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  6. The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation – A review

    Directory of Open Access Journals (Sweden)

    Djamel Ghernaout

    2014-07-01

    Full Text Available This review discusses the hydrophilic/hydrophobic ratio as a function of the hydrophilic and hydrophobic contents removal by coagulation process. It is well established that coagulation process could bring a reduction in dissolved organic carbon of around 30–60% by increasing the coagulant dose and optimising reaction pH, in which large organic molecules with hydrophobic property was removed preferentially. Furthermore, the literature affirmed that the greater removal of UV-absorbing substances indicates that alum coagulation preferentially removed the hydrophobic fraction of the total organic carbon. For the hydrophobic fraction, it needs to be removed entirely without its transformation into hydrophilic fractions by coagulation process avoiding pre-chlorination/pre-oxidation due to the risk of organic molecules fragmentation. Determining the exact numerical values of the hydrophilic/hydrophobic ratio for raw water and treated water at different stages of the treatment processes in a water treatment plant, as for the DCO/DBO5 ratio in the case of wastewater treatment, would help on more focusing on OM control and removal.

  7. Potential for biodegradation of polycyclic aromatic hydrocarbons by ...

    African Journals Online (AJOL)

    WiTT

    2012-05-08

    May 8, 2012 ... Full Length Research Paper. Biodegradation of ... organic compounds, including some organometallic ... is a major source of toxic PAHs that contributes signi- ficantly to ... microorganisms for bioremediation of hydrocarbon-.

  8. Alteration of Chemical Composition of Soil-leached Dissolved Organic Matter under Cryogenic Cycles

    Science.gov (United States)

    Zhang, X.; Bianchi, T. S.; Schuur, E.

    2016-02-01

    Arctic permafrost thawing has drawn great attention because of the large amount of organic carbon (OC) storage in Arctic soils that are susceptible to increasing global temperatures. Due to microbial activities, some of the OC pool is converted in part to greenhouse gases, like CH4 and CO2 gas, which can result in a positive feedback on global warming. In Artic soils, a portion of OC can be mobilized by precipitation, drainage, and groundwater circulation which can in some cases be transported to rivers and eventually the coastal margins. To determine some of the mechanisms associated with the mobilization of OC from soils to aquatic ecosystems, we conducted a series of laboratory soil leaching experiments. Surface soil samples collected from Healy, Alaska were eluted with artificial rain at a constant rate. Leachates were collected over time and analyzed for dissolved organic carbon (DOC) concentrations. Concentrations began from 387-705 mg/L and then dropped to asymptote states to 25-219 mg/L. High-resolution spectroscopy was used to characterize colored dissolved organic matter (CDOM) and CDOM fluorescence intensity also dropped with time. Fluorescence maximum intensity (Fmax) for peak C ranged from 0.7-4.2 RU, with Exmax/Emmax = 310/450 nm. Fmax for peak T ranged from 0.5-3.2 RU, with Exmax/Emmax = 275/325 nm. Peak C: peak T values indicated preferential leaching of humic-like components over protein-like components. After reaching asymptotic levels, samples were stored frozen and then thawed to study the cryogenic impact on OC composition. CDOM intensity and DOC concentration increased after the freeze-thaw cycle. It was likely that cryogenic processes promoted the breakdown of OC and the releases of more DOC from soils. PARAFAC of CDOM excitation and emission matrices (EEMs) will be used to analyze CDOM composition of the soil leachates.

  9. The effect of combination of sugar palm fruit, carrageenan, and citric acid on mechanical properties of biodegradable film

    Science.gov (United States)

    Rinanda, S. A.; Nastabiq, M.; Raharjo, S. H.; Hayati, S. K.; Yaqin, M. A.; Ratnawati

    2017-11-01

    Biodegradable film is a type of plastic material that can be degraded naturally and is usually made of organic material. The material commonly used is polysaccharides. The purpose of this study is to observe the effect of the combination of sugar palm fruit, carrageenan, and citric acid (CA) on the mechanical properties of the biodegradable films, such as tensile strength, elongation and film thickness. The experiment begins with dissolving the sugar palm fruit porridge and carrageenan with ratios of 1:0, 3:1, 2:1, 1:1 in water. The mixture was heated using a heater and magnetic stirrer at 80° C for 10 minutes. Glycerol and citric acid (CA) were added to the solution and stirred for 5 minutes. Each film solution was printed on a modified acrylic and, dried for 18 hours in an oven at 55° C. The formed film layer was then removed from the acrylic mold and inserted in a desiccatorsat 23° C for 1 hour. Then the film analyzed for its tensile strength, elongation using Dynamic Mechanical Thermal Analysis (DMTA), and thickness. The optimum result shown by sugar palm fruit and carrageenan ratio of 1:1 with 1% citric acid (CA).

  10. The role of dissolved organic matters in the aquatic photodegradation of atenolol

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Ji, Yuefei; Zhou, Lei; Zhang, Ya [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Yang, Xi, E-mail: yangxi@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The main reactive species in the photosensitization between atenolol and DOMs is {center_dot}OH. Black-Right-Pointing-Pointer Dissolved organic matter (DOM) can quench {center_dot}OH and screen light. Black-Right-Pointing-Pointer High yield of {center_dot}OH was observed with iron ions and DOM coexisting under irradiation. Black-Right-Pointing-Pointer SRFA can promote addition of {center_dot}OH on aromatic ring. - Abstract: Atenolol (ATL) is a photostable and hydrolysis resistant beta-blocker and has been frequently detected in natural water. In this study, mechanism on aquatic photodegradation of ATL was investigated with an emphasis on the role of dissolved organic matters (DOMs) as well as other natural water compositions (nitrate, bicarbonate and ferric ions). Significant acceleration of photodegradtion of ATL was observed in the presence of each DOMs added, namely Suwannee River Fulvic Acid (SRFA), Suwannee River Humic Acid (SRHA), Nordic Lake Fulvic Acid (NOFA) and Nordic Lake Humic Acid (NOHA). Hydroxyl radical ({center_dot}OH) was determined as the main reactive species in this process, instead of singlet oxygen or excited triplet of DOM. Addition of these four DOMs all inhibited photodegradation of ATL in nitrate solutions through reducing nitrated-derived {center_dot}OH and screening photons absorbed by nitrate. No loss of ATL was detected in bicarbonate solution with or without DOMs. Bicarbonate exhibited a scavenger of {center_dot}OH derived from DOMs. However, in the presence of iron species, photodegradation of ATL was significantly enhanced by the addition of each DOM, due to the high yield of {center_dot}OH in the photoprocess of Fe(III)-DOM complex. The photoproducts distribution of ATL demonstrated that SRFA promote the hydroxylation on aromatic ring in the presence of nitrate and reduce the ketone moiety to alcohol in the system of ferric ions. Our findings indicate that DOMs should be considered in

  11. Response Characteristics of Dissolved Organic Carbon Flushing in a Subarctic Alpine Catchment

    Science.gov (United States)

    Carey, S. K.

    2002-12-01

    Dissolved organic carbon (DOC) is an important part of ecosystem-scale carbon balances and in the transport of contaminants as it interacts with other dissolved substances including trace metals. It also can be used as a surrogate hydrological tracer in permafrost regions as near-surface waters are often DOC enriched due to the presence of thick organic soils. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, DOC was studied in the summer of 2001 and spring of 2002 to determine the role frost (both permanent and seasonal), snowmelt and summer storms on DOC flushing. Peak DOC concentrations occurred during the snowmelt period, approximately one week prior to peak discharge. However, peak discharge took place several weeks after snow on south facing exposures had melted. Within the hillslopes, DOC concentrations were three to five times greater in wells underlain with permafrost compared with seasonal frost. Groundwater DOC concentrations declined during snowmelt, yet remained at levels above the streamflow. After peaking, streamflow DOC concentrations declined exponentially suggesting a simple flushing mechanism, however there did not appear to be a relation between DOC and topographic position. Following melt, permafrost underlain slopes had near-surface water tables and retained elevated levels of DOC, whereas slopes without permafrost had rapidly declining water tables at upslope locations with low DOC concentrations at all positions except near-stream riparian zones. The influence of summer rainstorms on DOC was monitored on three occasions. In each case DOC peaked on the ascending limb of the runoff hydrograph and declined exponentially on the receding limb and hysteretic behavior occurred between discharge and DOC during all events. Patterns of DOC within the hillslopes and streams suggest that runoff from permafrost-underlain slopes control DOC flushing within the stream during both snowmelt and summer periods. This

  12. Dissolved organic phosphorus utilization and alkaline phosphatase activity of the dinoflagellate Gymnodinium impudicum isolated from the South Sea of Korea

    Science.gov (United States)

    Oh, Seok Jin; Kwon, Hyeong Kyu; Noh, Il Hyeon; Yang, Han-Soeb

    2010-09-01

    This study investigated alkaline phosphatase (APase) activity and dissolved organic and inorganic phosphorus utilization by the harmful dinoflagellate Gymnodinium impudicum (Fraga et Bravo) Hansen et Moestrup isolated from the South Sea of Korea. Under conditions of limited phosphorus, observation of growth kinetics in batch culture yielded a maximum growth rate (μmax) of 0.41 /day and a half saturation constant (Ks) of 0.71 μM. In time-course experiments, APase was induced as dissolved inorganic phosphorus (DIP) concentrations fell below 0.83 μM, a threshold near the estimated Ks; APase activity increased with further DIP depletion to a maximum of 0.70 pmol/cell/h in the senescent phase. Thus, Ks may be an important index of the threshold DIP concentration for APase induction. G. impudicum utilizes a wide variety of dissolved organic phosphorus compounds in addition to DIP. These results suggest that DIP limitation in the Southern Sea of Korea may have led to the spread of G. impudicum along with the harmful dinoflagellate Cochlodinium polykrikoides in recent years.

  13. Technical Note: Comparison between a direct and the standard, indirect method for dissolved organic nitrogen determination in freshwater environments with high dissolved inorganic nitrogen concentrations

    DEFF Research Database (Denmark)

    Graeber, Daniel; Gelbrecht, Jörg; Kronvang, Brian

    2012-01-01

    Research on dissolved organic nitrogen (DON) in aquatic systems with high dissolved inorganic nitrogen (DIN, the sum of NO3–, NO2– and NH4+) concentrations is often hampered by high uncertainties regarding the determined DON concentration. The reason is that DON is determined indirectly...... accuracy at high DIN : TDN ratios, we investigated the DON measurement accuracy of this standard approach according to the DIN : TDN ratio and compared it to the direct measurement of DON by size-exclusion chromatography (SEC) for freshwater systems. For this, we used standard compounds and natural samples...... separation of DON from DIN. For SEC, DON recovery rates were 91–108% for five pure standard compounds and 89–103% for two standard compounds, enriched with DIN. Moreover, SEC resulted in 93–108% recovery rates for DON concentrations of natural samples at a DIN : TDN ratio of 0.8 and the technique...

  14. Using Biowin, Bayes, and batteries to predict ready biodegradability.

    Science.gov (United States)

    Boethling, Robert S; Lynch, David G; Jaworska, Joanna S; Tunkel, Jay L; Thom, Gary C; Webb, Simon

    2004-04-01

    Whether or not a given chemical substance is readily biodegradable is an important piece of information in risk screening for both new and existing chemicals. Despite the relatively low cost of Organization for Economic Cooperation and Development tests, data are often unavailable and biodegradability must be estimated. In this paper, we focus on the predictive value of selected Biowin models and model batteries using Bayesian analysis. Posterior probabilities, calculated based on performance with the model training sets using Bayes' theorem, were closely matched by actual performance with an expanded set of 374 premanufacture notice (PMN) substances. Further analysis suggested that a simple battery consisting of Biowin3 (survey ultimate biodegradation model) and Biowin5 (Ministry of International Trade and Industry [MITI] linear model) would have enhanced predictive power in comparison to individual models. Application of the battery to PMN substances showed that performance matched expectation. This approach significantly reduced both false positives for ready biodegradability and the overall misclassification rate. Similar results were obtained for a set of 63 pharmaceuticals using a battery consisting of Biowin3 and Biowin6 (MITI nonlinear model). Biodegradation data for PMNs tested in multiple ready tests or both inherent and ready biodegradation tests yielded additional insights that may be useful in risk screening.

  15. Molecular composition and bioavailability of dissolved organic nitrogen in a lake flow-influenced river in south Florida, USA

    Science.gov (United States)

    Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...

  16. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume.

    Science.gov (United States)

    Ziegler, Brady A; Schreiber, Madeline E; Cozzarelli, Isabelle M

    2017-09-01

    In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011-2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich "iron curtain," associated with the anoxic-suboxic transition zone, migrated 30m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume

    Science.gov (United States)

    Ziegler, Brady A.; Schreiber, Madeline E.; Cozzarelli, Isabelle M.

    2017-01-01

    In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011–2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich “iron curtain,” associated with the anoxic-suboxic transition zone, migrated 30 m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter.

  18. Biodegradation of plastics: current scenario and future prospects for environmental safety.

    Science.gov (United States)

    Ahmed, Temoor; Shahid, Muhammad; Azeem, Farrukh; Rasul, Ijaz; Shah, Asad Ali; Noman, Muhammad; Hameed, Amir; Manzoor, Natasha; Manzoor, Irfan; Muhammad, Sher

    2018-03-01

    Plastic is a general term used for a wide range of high molecular weight organic polymers obtained mostly from the various hydrocarbon and petroleum derivatives. There is an ever-increasing trend towards the production and consumption of plastics due to their extensive industrial and domestic applications. However, a wide spectrum of these polymers is non-biodegradable with few exceptions. The extensive use of plastics, lack of waste management, and casual community behavior towards their proper disposal pose a significant threat to the environment. This has raised growing concerns among various stakeholders to devise policies and innovative strategies for plastic waste management, use of biodegradable polymers especially in packaging, and educating people for their proper disposal. Current polymer degradation strategies rely on chemical, thermal, photo, and biological procedures. In the presence of proper waste management strategies coupled with industrially controlled biodegradation facilities, the use of biodegradable plastics for some applications such as packaging or health industry is a promising and attractive option for economic, environmental, and health benefits. This review highlights the classification of plastics with special emphasis on biodegradable plastics and their rational use, the identified mechanisms of plastic biodegradation, the microorganisms involved in biodegradation, and the current insights into the research on biodegradable plastics. The review has also identified the research gaps in plastic biodegradation followed by future research directions.

  19. In-situ production of humic-like fluorescent dissolved organic matter during Cochlodinium polykrikoides blooms

    Science.gov (United States)

    Kwon, Hyeong Kyu; Kim, Guebuem; Lim, Weol Ae; Park, Jong Woo

    2018-04-01

    We investigated phytoplankton pigments, dissolved organic carbon (DOC), and fluorescent dissolved organic matter (FDOM) during the summers of 2013 and 2016 in the coastal area of Tongyeong, Korea, where Cochlodinium polykrikoides blooms often occur. The density of red tides was evaluated using a dinoflagellate pigment, peridinin. The concentrations of peridinin and DOC in the patch areas were 15- and 4-fold higher than those in the non-patch areas. The parallel factor analysis (PARAFAC) model identified one protein-like FDOM (FDOMT) and two humic-like FDOM, classically classified as marine FDOM (FDOMM) and terrestrial FDOM (FDOMC). The concentrations of FDOMT in the patch areas were 5-fold higher than those in the non-patch areas, likely associated with biological production. In general, FDOMM and FDOMC are known to be dependent exclusively on salinity in any surface waters of the coastal ocean. However, in this study, we observed strikingly enhanced FDOMC concentration over that expected from the salinity mixing, whereas FDOMM increases were not clear. These FDOMC concentrations showed a significant positive correlation against peridinin, indicating that the production of FDOMC is associated with the red tide blooms. Our results suggest that FDOMC can be naturally enriched by some phytoplankton species, without FDOMM enrichment. Such naturally produced FDOM may play a critical role in biological production as well as biogeochemical cycle in red tide regions.

  20. Characterization and biodegradation of polycyclic aromatic hydrocarbons in radioactive wastewater

    International Nuclear Information System (INIS)

    Tikilili, Phumza V.; Nkhalambayausi-Chirwa, Evans M.

    2011-01-01

    Highlights: → Biodegradation of recalcitrant toxic organics under radioactive conditions. → Biodegradation of PAHs of varying size and complexity in mixed waste streams. → Validation of radiation-tolerance and performance of the isolated organisms. - Abstract: PAH degrading Pseudomonad and Alcaligenes species were isolated from landfill soil and mine drainage in South Africa. The isolated organisms were mildly radiation tolerant and were able to degrade PAHs in simulated nuclear wastewater. The radiation in the simulated wastewater, at 0.677 Bq/μL, was compatible to measured values in wastewater from a local radioisotope manufacturing facility, and was enough to inhibit metabolic activity of known PAH degraders from soil such as Pseudomonas putida GMP-1. The organic constituents in the original radioactive waste stream consisted of the full range of PAHs except fluoranthene. Among the observed PAHs in the nuclear wastewater from the radioisotope manufacturing facility, acenaphthene and chrysene predominated-measured at 25.1 and 14.2 mg/L, respectively. Up to sixteen U.S.EPA priority PAHs were detected at levels higher than allowable limits in drinking water. The biodegradation of the PAHs was limited by the solubility of the compounds. This contributed to the observed faster degradation rates in low molecular weight (LMW) compounds than in high molecular weight compounds.

  1. [Influence of Natural Dissolved Organic Matter on the Passive Sampling Technique and its Application].

    Science.gov (United States)

    Yu, Shang-yun; Zhou, Yan-mei

    2015-08-01

    This paper studied the effects of different concentrations of natural dissolved organic matter (DOM) on the passive sampling technique. The results showed that the presence of DOM affected the organic pollutant adsorption ability of the membrane. For lgK(OW), 3-5, DOM had less impact on the adsorption of organic matter by the membrane; for lgK(OW), > 5.5, DOM significantly increased the adsorption capacity of the membrane. Meanwhile, LDPE passive sampling technique was applied to monitor PAHs and PAEs in pore water of three surface sediments in Taizi River. All of the target pollutants were detected in varying degrees at each sampling point. Finally, the quotient method was used to assess the ecological risks of PAHs and PAEs. The results showed that fluoranthene exceeded the reference value of the aquatic ecosystem, meaning there was a big ecological risk.

  2. Impact of Wetland Decline on Decreasing Dissolved Organic Carbon Concentrations along the Mississippi River Continuum

    OpenAIRE

    Duan, Shuiwang; He, Yuxiang; Kaushal, Sujay S.; Bianchi, Thomas S.; Ward, Nicholas D.; Guo, Laodong

    2017-01-01

    Prior to discharging to the ocean, large rivers constantly receive inputs of dissolved organic carbon (DOC) from tributaries or fringing floodplains and lose DOC via continuous in situ processing along distances that span thousands of kilometers. Current concepts predicting longitudinal changes in DOC mainly focus on in situ processing or exchange with fringing floodplain wetlands, while effects of heterogeneous watershed characteristics are generally ignored. We analyzed results from a 17-ye...

  3. Estimating absorption coefficients of colored dissolved organic matter (CDOM using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space

    Directory of Open Access Journals (Sweden)

    A. Matsuoka

    2013-02-01

    Full Text Available A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM, has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM into CDOM and non-algal particles (NAP through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012 showed that dissolved organic carbon (DOC concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97. By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  4. Evaluation of rapid methods for in-situ characterization of organic contaminant load and biodegradation rates in winery wastewater.

    Science.gov (United States)

    Carvallo, M J; Vargas, I; Vega, A; Pizarro, G; Pizarr, G; Pastén, P

    2007-01-01

    Rapid methods for the in-situ evaluation of the organic load have recently been developed and successfully implemented in municipal wastewater treatment systems. Their direct application to winery wastewater treatment is questionable due to substantial differences between municipal and winery wastewater. We critically evaluate the use of UV-VIS spectrometry, buffer capacity testing (BCT), and respirometry as rapid methods to determine organic load and biodegradation rates of winery wastewater. We tested three types of samples: actual and treated winery wastewater, synthetic winery wastewater, and samples from a biological batch reactor. Not surprisingly, respirometry gave a good estimation of biodegradation rates for substrate of different complexities, whereas UV-VIS and BCT did not provide a quantitative measure of the easily degradable sugars and ethanol, typically the main components of the COD in the influent. However, our results strongly suggest that UV-VIS and BCT can be used to identify and estimate the concentration of complex substrates in the influent and soluble microbial products (SMP) in biological reactors and their effluent. Furthermore, the integration of UV-VIS spectrometry, BCT, and mathematical modeling was able to differentiate between the two components of SMPs: substrate utilization associated products (UAP) and biomass associated products (BAP). Since the effluent COD in biologically treated wastewaters is composed primarily by SMPs, the quantitative information given by these techniques may be used for plant control and optimization.

  5. Molecular simulation of a model of dissolved organic matter.

    Science.gov (United States)

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S; Schulten, Hans-Rolf

    2005-08-01

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na+ or Ca2+ were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal-humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na+, Ca2+ was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca2+. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  6. The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor

    OpenAIRE

    Niu, Cheng; Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Liu, Xiaohan; Qin, Boqiang

    2014-01-01

    This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen ...

  7. Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.

    Science.gov (United States)

    Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao

    2016-07-01

    In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p Chromatographic analyses demonstrated that the saccharides in the interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms.

  8. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae

    NARCIS (Netherlands)

    Mueller, B.; den Haan, J.; Visser, P.M.; Vermeij, M.J.A.; van Duyl, F.C.

    2016-01-01

    Turf algae increasingly dominate benthic communities on coral reefs. Given their abundance and high dissolved organic carbon (DOC) release rates, turf algae are considered important contributors to the DOC pool on modern reefs. The release of photosynthetically fixed carbon as DOC generally, but not

  9. Nickel toxicity to benthic organisms: The role of dissolved organic carbon, suspended solids, and route of exposure.

    Science.gov (United States)

    Custer, Kevin W; Hammerschmidt, Chad R; Burton, G Allen

    2016-01-01

    Nickel bioavailability is reduced in the presence of dissolved organic carbon (DOC), suspended solids (TSS), and other complexing ligands; however, no studies have examined the relative importance of Ni exposure through different compartments (water, sediment, food). Hyalella azteca and Lymnaea stagnalis were exposed to Ni-amended water, sediment, and food, either separately or in combination. Both organisms experienced survival and growth effects in several Ni compartment tests. The DOC amendments attenuated L. stagnalis Ni effects (survival, growth, and (62)Ni bioaccumulation), and presence of TSS exposures demonstrated both protective and synergistic effects on H. azteca and L. stagnalis. (62)Ni trophic transfer from food to H. azteca and L. stagnalis was negligible; however, bioaccumulating (62)Ni was attributed to (62)Ni-water ((62)Ni flux from food), (62)Ni-TSS, and (62)Ni-food. Overall, H. azteca and L. stagnalis Ni compartment toxicity increased in the following order: Ni-water > Ni-sediment > Ni-all (water, sediment, food) > Ni-food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Role of self-assembly coated Er3+: YAlO3/TiO2 in intimate coupling of visible-light-responsive photocatalysis and biodegradation reactions

    International Nuclear Information System (INIS)

    Dong, Shanshan; Dong, Shuangshi; Tian, Xiadi; Xu, Zhengxue; Ma, Dongmei; Cui, Bin; Ren, Nanqi; Rittmann, Bruce E.

    2016-01-01

    Highlights: • First study on intimate coupling of photocatalysis & biodegradation by visible light. • Self-assembly was used to coat Er 3+ : YAlO 3 /TiO 2 on the sponge carriers. • Fewer accumulated intermediates & higher phenol removal for VPCB than VPC or B alone. • Self-regulation in VPCB contributes to the high degradation efficiency. - Abstract: Conventionally used ultraviolet light can result in dissolved organic carbon (DOC) increasing and biofilm damage in intimate coupling of photocatalysis and biodegradation (ICPB). Visible-light-responsive photocatalysis offers an alternative for achieving ICPB. In this study, composite-cubes were developed using self-assembly to coat a thin and even layer of visible-light-responsive photocatalyst (Er 3+ : YAlO 3 /TiO 2 ) on sponge-type carriers, followed by biofilm cultivation. The degradations of phenol (50 mg L −1 ) were compared for four protocols in circulating beds: adsorption (AD), visible-light-responsive photocatalysis (VPC), biodegradation (B), and intimately coupled visible-light-responsive photocatalysis and biodegradation (VPCB). The phenol and DOC removal efficiencies using VPCB in 16 h were 99.8% and 65.2%, respectively, i.e., higher than those achieved using VPC (71.6% and 50.0%) or B (99.4% and 58.2%). The phenol removal of 96.3% could be obtained even after 3 additional cycles. The 6.17-min intermediate detected by HPLC, continuously accumulated for VPC, appeared at 1–6 h and then was completely removed for VPCB in 10 h. ICPB was further illustrated in that most of the biofilm was protected in the carrier interiors, with less protection on the carrier exterior in VPCB. A self-regulation mechanism that helped photocatalyst exposure to visible-light irradiation was identified, promoting the combined photocatalysis and biodegradation.

  11. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.

    Science.gov (United States)

    Ward, Collin P; Cory, Rose M

    2016-04-05

    Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw.

  12. Identification of Reactive and Refractory Components of Dissolved Organic Nitrogen by FT-ICR Mass Spectrometry

    Science.gov (United States)

    Cooper, W. T.; Podgorski, D. C.; Osborne, D. M.; Corbett, J.; Chanton, J.

    2010-12-01

    Dissolved organic nitrogen is an often overlooked but potentially significant bioavailable component of dissolved organic matter. Studies of bulk DON turnover have been reported, but the compositions of the reactive and refractory components of DON are largely unknown. Here we show the unique ability of atmospheric pressure photoionization (APPI) coupled to ultrahigh resolution mass spectrometry to identify the reactive and refractory components of DON. Figure 1 is an isolated 0.30 m/z window from an ultrahigh resolution APPI FT-ICR mass spectrum of DON in surface waters draining an agricultural area in South Florida. Using this optimized, negative-ion APPI strategy we have been able to identify the reactive and refractory components of DON in these nitrogen-rich waters. Similar results were observed with samples from soil porewaters in sedge-dominated fens and sphagnum-dominated bogs within the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota. Surprisingly, microbes appear to initially use similar enzymatic pathways to degrade DON and DOC, often with little release of nitrogen. Figure 1. Isolated 0.30 m/z window at nominal mass 432 from negative-ion APPI FT-ICR mass spectrum of DOM from waters draining an agricultural area in South Florida. Peaks marked contain nitrogen.

  13. Selection of magnetic anion exchange resins for the removal of dissolved organic and inorganic matters.

    Science.gov (United States)

    Wang, Qiongjie; Li, Aimin; Wang, Jinnan; Shuang, Chengdong

    2012-01-01

    Four magnetic anion exchange resins (MAERs) were used as adsorbents to purify drinking water. The effect of water quality (pH, temperature, ionic strength, etc.) on the performance of MAER for the removal of dissolved organic matter (DOM) was also investigated. Among the four studied MAERs, the strong base resin named NDMP-1 with high water content and enhanced exchange capacity exhibited the highest removal rate of dissolved organic carbon (DOC) (48.9% removal rate) and UV-absorbing substances (82.4% removal rate) with a resin dose of 10 mL/L after 30 min of contact time. The MAERs could also effectively remove inorganic matter such as sulfate, nitrate and fluoride. Because of the higher specific UV absorbance (SUVA) value, the DOM in the raw water was found to be removed more effectively than that in the clarified water by NDMP resin. The temperature showed a weak influence on the removal of DOC from 6 to 26 degrees C, while a relatively strong one at 36 degrees C. The removal of DOM by NDMP was also affected to some extent by the pH value. Moreover, increasing the sulfate concentration in the raw water could decrease the removal rates of DOC and UV-absorbing substances.

  14. Assessment of potential climate change impacts on peatland dissolved organic carbon release and drinking water treatment from laboratory experiments

    International Nuclear Information System (INIS)

    Tang, R.; Clark, J.M.; Bond, T.; Graham, N.; Hughes, D.; Freeman, C.

    2013-01-01

    Catchments draining peat soils provide the majority of drinking water in the UK. Over the past decades, concentrations of dissolved organic carbon (DOC) have increased in surface waters. Residual DOC can cause harmful carcinogenic disinfection by-products to form during water treatment processes. Increased frequency and severity of droughts combined with and increased temperatures expected as the climate changes, have potentials to change water quality. We used a novel approach to investigate links between climate change, DOC release and subsequent effects on drinking water treatment. We designed a climate manipulation experiment to simulate projected climate changes and monitored releases from peat soil and litter, then simulated coagulation used in water treatment. We showed that the ‘drought’ simulation was the dominant factor altering DOC release and affected the ability to remove DOC. Our results imply that future short-term drought events could have a greater impact than increased temperature on DOC treatability. - Highlights: ► We model realistic temperature and moisture changes on peat and surface vegetation. ► Quantity, quality and treatability changes of dissolved organic carbon were examined. ► Moisture has significantly greater influence than temperature on DOC production. ► Dry conditions alter treatability of DOC released from surface litter. ► Droughts have greater impact on water treatment than short-term heat waves alone. - Future drought events are likely to alter soil moisture, which predominately controls production of peat-derived dissolved organic carbon and subsequently drinking water quality.

  15. Key parameters in testing biodegradation of bio-based materials in soil.

    Science.gov (United States)

    Briassoulis, D; Mistriotis, A

    2018-05-05

    Biodegradation of plastics in soil is currently tested by international standard testing methods (e.g. ISO 17556-12 or ASTM D5988-12). Although these testing methods have been developed for plastics, it has been shown in project KBBPPS that they can be extended also to lubricants with small modifications. Reproducibility is a critical issue regarding biodegradation tests in the laboratory. Among the main testing variables are the soil types and nutrients available (mainly nitrogen). For this reason, the effect of the soil type on the biodegradation rates of various bio-based materials (cellulose and lubricants) was tested for five different natural soil types (loam, loamy sand, clay, clay-loam, and silt-loam organic). It was shown that use of samples containing 1 g of C in a substrate of 300 g of soil with the addition of 0.1 g of N as nutrient strongly improves the reproducibility of the test making the results practically independent of the soil type with the exception of the organic soil. The sandy soil was found to need addition of higher amount of nutrients to exhibit similar biodegradation rates as those achieved with the other soil types. Therefore, natural soils can be used for Standard biodegradation tests of bio-based materials yielding reproducible results with the addition of appropriate nutrients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review.

    Science.gov (United States)

    Chen, Meilian; Hur, Jin

    2015-08-01

    Dissolved organic matter (DOM) in sediments, termed here sediment DOM, plays a variety of important roles in global biogeochemical cycling of carbon and nutrients as well as in the fate and transport of xenobiotics. Here we reviewed sediment DOM, including pore waters and water extractable organic matter from inland and coastal sediments, based on recent literature (from 1996 to 2014). Sampling, pre-treatment, and characterization methods for sediment DOM were summarized. The characteristics of sediment DOM have been compared along an inland to coastal ecosystems gradient and also with the overlying DOM in water column to distinguish the unique nature of it. Dissolved organic carbon (DOC) from inland sediment DOM was generally higher than coastal areas, while no notable differences were found for their aromaticity and apparent molecular weight. Fluorescence index (FI) revealed that mixed sources are dominant for inland sediment DOM, but marine end-member prevails for coastal sediment DOM. Many reports showed that sediments operate as a net source of DOC and chromophoric DOM (CDOM) to the water column. Sediment DOM has shown more enrichment of nitrogen- and sulfur-containing compounds in the elemental signature than the overlying DOM. Fluorescent fingerprint investigated by excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) further demonstrated the characteristics of sediment DOM lacking in the photo-oxidized and the intermediate components, which are typically present in the overlying surface water. In addition, the biogeochemical changes in sediment DOM and the subsequent environmental implications were discussed with the focus on the binding and the complexation properties with pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Using High Spatio-Temporal Optical Remote Sensing to Monitor Dissolved Organic Carbon in the Arctic River Yenisei

    Directory of Open Access Journals (Sweden)

    Pierre-Alexis Herrault

    2016-09-01

    Full Text Available In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM. It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May. The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5 and Landsat 8 (OLI images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM. Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8

  19. Biodegradation of imidazolium ionic liquids by activated sludge microorganisms.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Maton, Cedric; Stevens, Christian V

    2015-11-01

    Biological properties of ionic liquids (ILs) have been usually tested with the help of standard biodegradation or ecotoxicity tests. So far, several articles on the identification of intermediate metabolites of microbiological decay of ILs have been published. Simultaneously, the number of novel ILs with unrecognized characteristics regarding biodegradability and effect on organisms and environment is still increasing. In this work, seven imidazolium ionic liquids of different chemical structure were studied. Three of them are 1-alkyl-3-methyl-imidazolium bromides, while the other four are tetra- or completely substituted imidazolium iodides. This study focused on the identification of intermediate metabolites of the aforementioned ionic liquids subjected to biodegradation in a laboratory activated sludge system. Both fully substituted ionic liquids and 1-ethyl-3-methyl-imidazolium bromide were barely biodegradable. In the case of two of them, no biotransformation products were detected. The elongation of the alkyl side chain made the IL more susceptible for microbiological decomposition. 1-Decyl-3-methyl-imidazolium bromide was biotransformed most easily. Its primary biodegradation up to 100 % could be achieved. Nevertheless, the cleavage of the imidazolium ring has not been observed.

  20. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...